Merge tag 'pm-5.15-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65         return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70         int mask, ret;
71
72         ret = fp_toint(x);
73         mask = (1 << FRAC_BITS) - 1;
74         if (x & mask)
75                 ret += 1;
76         return ret;
77 }
78
79 static inline u64 mul_ext_fp(u64 x, u64 y)
80 {
81         return (x * y) >> EXT_FRAC_BITS;
82 }
83
84 static inline u64 div_ext_fp(u64 x, u64 y)
85 {
86         return div64_u64(x << EXT_FRAC_BITS, y);
87 }
88
89 /**
90  * struct sample -      Store performance sample
91  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
92  *                      performance during last sample period
93  * @busy_scaled:        Scaled busy value which is used to calculate next
94  *                      P state. This can be different than core_avg_perf
95  *                      to account for cpu idle period
96  * @aperf:              Difference of actual performance frequency clock count
97  *                      read from APERF MSR between last and current sample
98  * @mperf:              Difference of maximum performance frequency clock count
99  *                      read from MPERF MSR between last and current sample
100  * @tsc:                Difference of time stamp counter between last and
101  *                      current sample
102  * @time:               Current time from scheduler
103  *
104  * This structure is used in the cpudata structure to store performance sample
105  * data for choosing next P State.
106  */
107 struct sample {
108         int32_t core_avg_perf;
109         int32_t busy_scaled;
110         u64 aperf;
111         u64 mperf;
112         u64 tsc;
113         u64 time;
114 };
115
116 /**
117  * struct pstate_data - Store P state data
118  * @current_pstate:     Current requested P state
119  * @min_pstate:         Min P state possible for this platform
120  * @max_pstate:         Max P state possible for this platform
121  * @max_pstate_physical:This is physical Max P state for a processor
122  *                      This can be higher than the max_pstate which can
123  *                      be limited by platform thermal design power limits
124  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
125  * @scaling:            Scaling factor between performance and frequency
126  * @turbo_pstate:       Max Turbo P state possible for this platform
127  * @min_freq:           @min_pstate frequency in cpufreq units
128  * @max_freq:           @max_pstate frequency in cpufreq units
129  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
130  *
131  * Stores the per cpu model P state limits and current P state.
132  */
133 struct pstate_data {
134         int     current_pstate;
135         int     min_pstate;
136         int     max_pstate;
137         int     max_pstate_physical;
138         int     perf_ctl_scaling;
139         int     scaling;
140         int     turbo_pstate;
141         unsigned int min_freq;
142         unsigned int max_freq;
143         unsigned int turbo_freq;
144 };
145
146 /**
147  * struct vid_data -    Stores voltage information data
148  * @min:                VID data for this platform corresponding to
149  *                      the lowest P state
150  * @max:                VID data corresponding to the highest P State.
151  * @turbo:              VID data for turbo P state
152  * @ratio:              Ratio of (vid max - vid min) /
153  *                      (max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160         int min;
161         int max;
162         int turbo;
163         int32_t ratio;
164 };
165
166 /**
167  * struct global_params - Global parameters, mostly tunable via sysfs.
168  * @no_turbo:           Whether or not to use turbo P-states.
169  * @turbo_disabled:     Whether or not turbo P-states are available at all,
170  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
171  *                      not the maximum reported turbo P-state is different from
172  *                      the maximum reported non-turbo one.
173  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
174  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
175  *                      P-state capacity.
176  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
177  *                      P-state capacity.
178  */
179 struct global_params {
180         bool no_turbo;
181         bool turbo_disabled;
182         bool turbo_disabled_mf;
183         int max_perf_pct;
184         int min_perf_pct;
185 };
186
187 /**
188  * struct cpudata -     Per CPU instance data storage
189  * @cpu:                CPU number for this instance data
190  * @policy:             CPUFreq policy value
191  * @update_util:        CPUFreq utility callback information
192  * @update_util_set:    CPUFreq utility callback is set
193  * @iowait_boost:       iowait-related boost fraction
194  * @last_update:        Time of the last update.
195  * @pstate:             Stores P state limits for this CPU
196  * @vid:                Stores VID limits for this CPU
197  * @last_sample_time:   Last Sample time
198  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
199  * @prev_aperf:         Last APERF value read from APERF MSR
200  * @prev_mperf:         Last MPERF value read from MPERF MSR
201  * @prev_tsc:           Last timestamp counter (TSC) value
202  * @prev_cummulative_iowait: IO Wait time difference from last and
203  *                      current sample
204  * @sample:             Storage for storing last Sample data
205  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
206  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
207  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
208  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
209  * @epp_powersave:      Last saved HWP energy performance preference
210  *                      (EPP) or energy performance bias (EPB),
211  *                      when policy switched to performance
212  * @epp_policy:         Last saved policy used to set EPP/EPB
213  * @epp_default:        Power on default HWP energy performance
214  *                      preference/bias
215  * @epp_cached          Cached HWP energy-performance preference value
216  * @hwp_req_cached:     Cached value of the last HWP Request MSR
217  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
218  * @last_io_update:     Last time when IO wake flag was set
219  * @sched_flags:        Store scheduler flags for possible cross CPU update
220  * @hwp_boost_min:      Last HWP boosted min performance
221  * @suspended:          Whether or not the driver has been suspended.
222  *
223  * This structure stores per CPU instance data for all CPUs.
224  */
225 struct cpudata {
226         int cpu;
227
228         unsigned int policy;
229         struct update_util_data update_util;
230         bool   update_util_set;
231
232         struct pstate_data pstate;
233         struct vid_data vid;
234
235         u64     last_update;
236         u64     last_sample_time;
237         u64     aperf_mperf_shift;
238         u64     prev_aperf;
239         u64     prev_mperf;
240         u64     prev_tsc;
241         u64     prev_cummulative_iowait;
242         struct sample sample;
243         int32_t min_perf_ratio;
244         int32_t max_perf_ratio;
245 #ifdef CONFIG_ACPI
246         struct acpi_processor_performance acpi_perf_data;
247         bool valid_pss_table;
248 #endif
249         unsigned int iowait_boost;
250         s16 epp_powersave;
251         s16 epp_policy;
252         s16 epp_default;
253         s16 epp_cached;
254         u64 hwp_req_cached;
255         u64 hwp_cap_cached;
256         u64 last_io_update;
257         unsigned int sched_flags;
258         u32 hwp_boost_min;
259         bool suspended;
260 };
261
262 static struct cpudata **all_cpu_data;
263
264 /**
265  * struct pstate_funcs - Per CPU model specific callbacks
266  * @get_max:            Callback to get maximum non turbo effective P state
267  * @get_max_physical:   Callback to get maximum non turbo physical P state
268  * @get_min:            Callback to get minimum P state
269  * @get_turbo:          Callback to get turbo P state
270  * @get_scaling:        Callback to get frequency scaling factor
271  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
272  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
273  * @get_val:            Callback to convert P state to actual MSR write value
274  * @get_vid:            Callback to get VID data for Atom platforms
275  *
276  * Core and Atom CPU models have different way to get P State limits. This
277  * structure is used to store those callbacks.
278  */
279 struct pstate_funcs {
280         int (*get_max)(void);
281         int (*get_max_physical)(void);
282         int (*get_min)(void);
283         int (*get_turbo)(void);
284         int (*get_scaling)(void);
285         int (*get_cpu_scaling)(int cpu);
286         int (*get_aperf_mperf_shift)(void);
287         u64 (*get_val)(struct cpudata*, int pstate);
288         void (*get_vid)(struct cpudata *);
289 };
290
291 static struct pstate_funcs pstate_funcs __read_mostly;
292
293 static int hwp_active __read_mostly;
294 static int hwp_mode_bdw __read_mostly;
295 static bool per_cpu_limits __read_mostly;
296 static bool hwp_boost __read_mostly;
297
298 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
299
300 #ifdef CONFIG_ACPI
301 static bool acpi_ppc;
302 #endif
303
304 static struct global_params global;
305
306 static DEFINE_MUTEX(intel_pstate_driver_lock);
307 static DEFINE_MUTEX(intel_pstate_limits_lock);
308
309 #ifdef CONFIG_ACPI
310
311 static bool intel_pstate_acpi_pm_profile_server(void)
312 {
313         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
314             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
315                 return true;
316
317         return false;
318 }
319
320 static bool intel_pstate_get_ppc_enable_status(void)
321 {
322         if (intel_pstate_acpi_pm_profile_server())
323                 return true;
324
325         return acpi_ppc;
326 }
327
328 #ifdef CONFIG_ACPI_CPPC_LIB
329
330 /* The work item is needed to avoid CPU hotplug locking issues */
331 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
332 {
333         sched_set_itmt_support();
334 }
335
336 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
337
338 static void intel_pstate_set_itmt_prio(int cpu)
339 {
340         struct cppc_perf_caps cppc_perf;
341         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
342         int ret;
343
344         ret = cppc_get_perf_caps(cpu, &cppc_perf);
345         if (ret)
346                 return;
347
348         /*
349          * The priorities can be set regardless of whether or not
350          * sched_set_itmt_support(true) has been called and it is valid to
351          * update them at any time after it has been called.
352          */
353         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
354
355         if (max_highest_perf <= min_highest_perf) {
356                 if (cppc_perf.highest_perf > max_highest_perf)
357                         max_highest_perf = cppc_perf.highest_perf;
358
359                 if (cppc_perf.highest_perf < min_highest_perf)
360                         min_highest_perf = cppc_perf.highest_perf;
361
362                 if (max_highest_perf > min_highest_perf) {
363                         /*
364                          * This code can be run during CPU online under the
365                          * CPU hotplug locks, so sched_set_itmt_support()
366                          * cannot be called from here.  Queue up a work item
367                          * to invoke it.
368                          */
369                         schedule_work(&sched_itmt_work);
370                 }
371         }
372 }
373
374 static int intel_pstate_get_cppc_guaranteed(int cpu)
375 {
376         struct cppc_perf_caps cppc_perf;
377         int ret;
378
379         ret = cppc_get_perf_caps(cpu, &cppc_perf);
380         if (ret)
381                 return ret;
382
383         if (cppc_perf.guaranteed_perf)
384                 return cppc_perf.guaranteed_perf;
385
386         return cppc_perf.nominal_perf;
387 }
388
389 static u32 intel_pstate_cppc_nominal(int cpu)
390 {
391         u64 nominal_perf;
392
393         if (cppc_get_nominal_perf(cpu, &nominal_perf))
394                 return 0;
395
396         return nominal_perf;
397 }
398 #else /* CONFIG_ACPI_CPPC_LIB */
399 static inline void intel_pstate_set_itmt_prio(int cpu)
400 {
401 }
402 #endif /* CONFIG_ACPI_CPPC_LIB */
403
404 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
405 {
406         struct cpudata *cpu;
407         int ret;
408         int i;
409
410         if (hwp_active) {
411                 intel_pstate_set_itmt_prio(policy->cpu);
412                 return;
413         }
414
415         if (!intel_pstate_get_ppc_enable_status())
416                 return;
417
418         cpu = all_cpu_data[policy->cpu];
419
420         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
421                                                   policy->cpu);
422         if (ret)
423                 return;
424
425         /*
426          * Check if the control value in _PSS is for PERF_CTL MSR, which should
427          * guarantee that the states returned by it map to the states in our
428          * list directly.
429          */
430         if (cpu->acpi_perf_data.control_register.space_id !=
431                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
432                 goto err;
433
434         /*
435          * If there is only one entry _PSS, simply ignore _PSS and continue as
436          * usual without taking _PSS into account
437          */
438         if (cpu->acpi_perf_data.state_count < 2)
439                 goto err;
440
441         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
442         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
443                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
444                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
445                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
446                          (u32) cpu->acpi_perf_data.states[i].power,
447                          (u32) cpu->acpi_perf_data.states[i].control);
448         }
449
450         /*
451          * The _PSS table doesn't contain whole turbo frequency range.
452          * This just contains +1 MHZ above the max non turbo frequency,
453          * with control value corresponding to max turbo ratio. But
454          * when cpufreq set policy is called, it will call with this
455          * max frequency, which will cause a reduced performance as
456          * this driver uses real max turbo frequency as the max
457          * frequency. So correct this frequency in _PSS table to
458          * correct max turbo frequency based on the turbo state.
459          * Also need to convert to MHz as _PSS freq is in MHz.
460          */
461         if (!global.turbo_disabled)
462                 cpu->acpi_perf_data.states[0].core_frequency =
463                                         policy->cpuinfo.max_freq / 1000;
464         cpu->valid_pss_table = true;
465         pr_debug("_PPC limits will be enforced\n");
466
467         return;
468
469  err:
470         cpu->valid_pss_table = false;
471         acpi_processor_unregister_performance(policy->cpu);
472 }
473
474 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
475 {
476         struct cpudata *cpu;
477
478         cpu = all_cpu_data[policy->cpu];
479         if (!cpu->valid_pss_table)
480                 return;
481
482         acpi_processor_unregister_performance(policy->cpu);
483 }
484 #else /* CONFIG_ACPI */
485 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
486 {
487 }
488
489 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
490 {
491 }
492
493 static inline bool intel_pstate_acpi_pm_profile_server(void)
494 {
495         return false;
496 }
497 #endif /* CONFIG_ACPI */
498
499 #ifndef CONFIG_ACPI_CPPC_LIB
500 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
501 {
502         return -ENOTSUPP;
503 }
504 #endif /* CONFIG_ACPI_CPPC_LIB */
505
506 /**
507  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
508  * @cpu: Target CPU.
509  *
510  * On hybrid processors, HWP may expose more performance levels than there are
511  * P-states accessible through the PERF_CTL interface.  If that happens, the
512  * scaling factor between HWP performance levels and CPU frequency will be less
513  * than the scaling factor between P-state values and CPU frequency.
514  *
515  * In that case, adjust the CPU parameters used in computations accordingly.
516  */
517 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
518 {
519         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
520         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
521         int perf_ctl_turbo = pstate_funcs.get_turbo();
522         int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
523         int scaling = cpu->pstate.scaling;
524
525         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
526         pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
527         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
528         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
529         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
530         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
531         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
532
533         /*
534          * If the product of the HWP performance scaling factor and the HWP_CAP
535          * highest performance is greater than the maximum turbo frequency
536          * corresponding to the pstate_funcs.get_turbo() return value, the
537          * scaling factor is too high, so recompute it to make the HWP_CAP
538          * highest performance correspond to the maximum turbo frequency.
539          */
540         if (turbo_freq < cpu->pstate.turbo_pstate * scaling) {
541                 cpu->pstate.turbo_freq = turbo_freq;
542                 scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
543                 cpu->pstate.scaling = scaling;
544
545                 pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
546                          cpu->cpu, scaling);
547         }
548
549         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
550                                          perf_ctl_scaling);
551
552         cpu->pstate.max_pstate_physical =
553                         DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
554                                      scaling);
555
556         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
557         /*
558          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
559          * the effective range of HWP performance levels.
560          */
561         cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
562 }
563
564 static inline void update_turbo_state(void)
565 {
566         u64 misc_en;
567         struct cpudata *cpu;
568
569         cpu = all_cpu_data[0];
570         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
571         global.turbo_disabled =
572                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
573                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
574 }
575
576 static int min_perf_pct_min(void)
577 {
578         struct cpudata *cpu = all_cpu_data[0];
579         int turbo_pstate = cpu->pstate.turbo_pstate;
580
581         return turbo_pstate ?
582                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
583 }
584
585 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
586 {
587         u64 epb;
588         int ret;
589
590         if (!boot_cpu_has(X86_FEATURE_EPB))
591                 return -ENXIO;
592
593         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
594         if (ret)
595                 return (s16)ret;
596
597         return (s16)(epb & 0x0f);
598 }
599
600 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
601 {
602         s16 epp;
603
604         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
605                 /*
606                  * When hwp_req_data is 0, means that caller didn't read
607                  * MSR_HWP_REQUEST, so need to read and get EPP.
608                  */
609                 if (!hwp_req_data) {
610                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
611                                             &hwp_req_data);
612                         if (epp)
613                                 return epp;
614                 }
615                 epp = (hwp_req_data >> 24) & 0xff;
616         } else {
617                 /* When there is no EPP present, HWP uses EPB settings */
618                 epp = intel_pstate_get_epb(cpu_data);
619         }
620
621         return epp;
622 }
623
624 static int intel_pstate_set_epb(int cpu, s16 pref)
625 {
626         u64 epb;
627         int ret;
628
629         if (!boot_cpu_has(X86_FEATURE_EPB))
630                 return -ENXIO;
631
632         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
633         if (ret)
634                 return ret;
635
636         epb = (epb & ~0x0f) | pref;
637         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
638
639         return 0;
640 }
641
642 /*
643  * EPP/EPB display strings corresponding to EPP index in the
644  * energy_perf_strings[]
645  *      index           String
646  *-------------------------------------
647  *      0               default
648  *      1               performance
649  *      2               balance_performance
650  *      3               balance_power
651  *      4               power
652  */
653 static const char * const energy_perf_strings[] = {
654         "default",
655         "performance",
656         "balance_performance",
657         "balance_power",
658         "power",
659         NULL
660 };
661 static const unsigned int epp_values[] = {
662         HWP_EPP_PERFORMANCE,
663         HWP_EPP_BALANCE_PERFORMANCE,
664         HWP_EPP_BALANCE_POWERSAVE,
665         HWP_EPP_POWERSAVE
666 };
667
668 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
669 {
670         s16 epp;
671         int index = -EINVAL;
672
673         *raw_epp = 0;
674         epp = intel_pstate_get_epp(cpu_data, 0);
675         if (epp < 0)
676                 return epp;
677
678         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
679                 if (epp == HWP_EPP_PERFORMANCE)
680                         return 1;
681                 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
682                         return 2;
683                 if (epp == HWP_EPP_BALANCE_POWERSAVE)
684                         return 3;
685                 if (epp == HWP_EPP_POWERSAVE)
686                         return 4;
687                 *raw_epp = epp;
688                 return 0;
689         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
690                 /*
691                  * Range:
692                  *      0x00-0x03       :       Performance
693                  *      0x04-0x07       :       Balance performance
694                  *      0x08-0x0B       :       Balance power
695                  *      0x0C-0x0F       :       Power
696                  * The EPB is a 4 bit value, but our ranges restrict the
697                  * value which can be set. Here only using top two bits
698                  * effectively.
699                  */
700                 index = (epp >> 2) + 1;
701         }
702
703         return index;
704 }
705
706 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
707 {
708         int ret;
709
710         /*
711          * Use the cached HWP Request MSR value, because in the active mode the
712          * register itself may be updated by intel_pstate_hwp_boost_up() or
713          * intel_pstate_hwp_boost_down() at any time.
714          */
715         u64 value = READ_ONCE(cpu->hwp_req_cached);
716
717         value &= ~GENMASK_ULL(31, 24);
718         value |= (u64)epp << 24;
719         /*
720          * The only other updater of hwp_req_cached in the active mode,
721          * intel_pstate_hwp_set(), is called under the same lock as this
722          * function, so it cannot run in parallel with the update below.
723          */
724         WRITE_ONCE(cpu->hwp_req_cached, value);
725         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
726         if (!ret)
727                 cpu->epp_cached = epp;
728
729         return ret;
730 }
731
732 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
733                                               int pref_index, bool use_raw,
734                                               u32 raw_epp)
735 {
736         int epp = -EINVAL;
737         int ret;
738
739         if (!pref_index)
740                 epp = cpu_data->epp_default;
741
742         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
743                 if (use_raw)
744                         epp = raw_epp;
745                 else if (epp == -EINVAL)
746                         epp = epp_values[pref_index - 1];
747
748                 /*
749                  * To avoid confusion, refuse to set EPP to any values different
750                  * from 0 (performance) if the current policy is "performance",
751                  * because those values would be overridden.
752                  */
753                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
754                         return -EBUSY;
755
756                 ret = intel_pstate_set_epp(cpu_data, epp);
757         } else {
758                 if (epp == -EINVAL)
759                         epp = (pref_index - 1) << 2;
760                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
761         }
762
763         return ret;
764 }
765
766 static ssize_t show_energy_performance_available_preferences(
767                                 struct cpufreq_policy *policy, char *buf)
768 {
769         int i = 0;
770         int ret = 0;
771
772         while (energy_perf_strings[i] != NULL)
773                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
774
775         ret += sprintf(&buf[ret], "\n");
776
777         return ret;
778 }
779
780 cpufreq_freq_attr_ro(energy_performance_available_preferences);
781
782 static struct cpufreq_driver intel_pstate;
783
784 static ssize_t store_energy_performance_preference(
785                 struct cpufreq_policy *policy, const char *buf, size_t count)
786 {
787         struct cpudata *cpu = all_cpu_data[policy->cpu];
788         char str_preference[21];
789         bool raw = false;
790         ssize_t ret;
791         u32 epp = 0;
792
793         ret = sscanf(buf, "%20s", str_preference);
794         if (ret != 1)
795                 return -EINVAL;
796
797         ret = match_string(energy_perf_strings, -1, str_preference);
798         if (ret < 0) {
799                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
800                         return ret;
801
802                 ret = kstrtouint(buf, 10, &epp);
803                 if (ret)
804                         return ret;
805
806                 if (epp > 255)
807                         return -EINVAL;
808
809                 raw = true;
810         }
811
812         /*
813          * This function runs with the policy R/W semaphore held, which
814          * guarantees that the driver pointer will not change while it is
815          * running.
816          */
817         if (!intel_pstate_driver)
818                 return -EAGAIN;
819
820         mutex_lock(&intel_pstate_limits_lock);
821
822         if (intel_pstate_driver == &intel_pstate) {
823                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
824         } else {
825                 /*
826                  * In the passive mode the governor needs to be stopped on the
827                  * target CPU before the EPP update and restarted after it,
828                  * which is super-heavy-weight, so make sure it is worth doing
829                  * upfront.
830                  */
831                 if (!raw)
832                         epp = ret ? epp_values[ret - 1] : cpu->epp_default;
833
834                 if (cpu->epp_cached != epp) {
835                         int err;
836
837                         cpufreq_stop_governor(policy);
838                         ret = intel_pstate_set_epp(cpu, epp);
839                         err = cpufreq_start_governor(policy);
840                         if (!ret)
841                                 ret = err;
842                 }
843         }
844
845         mutex_unlock(&intel_pstate_limits_lock);
846
847         return ret ?: count;
848 }
849
850 static ssize_t show_energy_performance_preference(
851                                 struct cpufreq_policy *policy, char *buf)
852 {
853         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
854         int preference, raw_epp;
855
856         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
857         if (preference < 0)
858                 return preference;
859
860         if (raw_epp)
861                 return  sprintf(buf, "%d\n", raw_epp);
862         else
863                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
864 }
865
866 cpufreq_freq_attr_rw(energy_performance_preference);
867
868 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
869 {
870         struct cpudata *cpu = all_cpu_data[policy->cpu];
871         int ratio, freq;
872
873         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
874         if (ratio <= 0) {
875                 u64 cap;
876
877                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
878                 ratio = HWP_GUARANTEED_PERF(cap);
879         }
880
881         freq = ratio * cpu->pstate.scaling;
882         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
883                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
884
885         return sprintf(buf, "%d\n", freq);
886 }
887
888 cpufreq_freq_attr_ro(base_frequency);
889
890 static struct freq_attr *hwp_cpufreq_attrs[] = {
891         &energy_performance_preference,
892         &energy_performance_available_preferences,
893         &base_frequency,
894         NULL,
895 };
896
897 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
898 {
899         u64 cap;
900
901         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
902         WRITE_ONCE(cpu->hwp_cap_cached, cap);
903         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
904         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
905 }
906
907 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
908 {
909         int scaling = cpu->pstate.scaling;
910
911         __intel_pstate_get_hwp_cap(cpu);
912
913         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
914         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
915         if (scaling != cpu->pstate.perf_ctl_scaling) {
916                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
917
918                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
919                                                  perf_ctl_scaling);
920                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
921                                                    perf_ctl_scaling);
922         }
923 }
924
925 static void intel_pstate_hwp_set(unsigned int cpu)
926 {
927         struct cpudata *cpu_data = all_cpu_data[cpu];
928         int max, min;
929         u64 value;
930         s16 epp;
931
932         max = cpu_data->max_perf_ratio;
933         min = cpu_data->min_perf_ratio;
934
935         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
936                 min = max;
937
938         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
939
940         value &= ~HWP_MIN_PERF(~0L);
941         value |= HWP_MIN_PERF(min);
942
943         value &= ~HWP_MAX_PERF(~0L);
944         value |= HWP_MAX_PERF(max);
945
946         if (cpu_data->epp_policy == cpu_data->policy)
947                 goto skip_epp;
948
949         cpu_data->epp_policy = cpu_data->policy;
950
951         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
952                 epp = intel_pstate_get_epp(cpu_data, value);
953                 cpu_data->epp_powersave = epp;
954                 /* If EPP read was failed, then don't try to write */
955                 if (epp < 0)
956                         goto skip_epp;
957
958                 epp = 0;
959         } else {
960                 /* skip setting EPP, when saved value is invalid */
961                 if (cpu_data->epp_powersave < 0)
962                         goto skip_epp;
963
964                 /*
965                  * No need to restore EPP when it is not zero. This
966                  * means:
967                  *  - Policy is not changed
968                  *  - user has manually changed
969                  *  - Error reading EPB
970                  */
971                 epp = intel_pstate_get_epp(cpu_data, value);
972                 if (epp)
973                         goto skip_epp;
974
975                 epp = cpu_data->epp_powersave;
976         }
977         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
978                 value &= ~GENMASK_ULL(31, 24);
979                 value |= (u64)epp << 24;
980         } else {
981                 intel_pstate_set_epb(cpu, epp);
982         }
983 skip_epp:
984         WRITE_ONCE(cpu_data->hwp_req_cached, value);
985         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
986 }
987
988 static void intel_pstate_hwp_offline(struct cpudata *cpu)
989 {
990         u64 value = READ_ONCE(cpu->hwp_req_cached);
991         int min_perf;
992
993         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
994                 /*
995                  * In case the EPP has been set to "performance" by the
996                  * active mode "performance" scaling algorithm, replace that
997                  * temporary value with the cached EPP one.
998                  */
999                 value &= ~GENMASK_ULL(31, 24);
1000                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1001                 WRITE_ONCE(cpu->hwp_req_cached, value);
1002         }
1003
1004         value &= ~GENMASK_ULL(31, 0);
1005         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1006
1007         /* Set hwp_max = hwp_min */
1008         value |= HWP_MAX_PERF(min_perf);
1009         value |= HWP_MIN_PERF(min_perf);
1010
1011         /* Set EPP to min */
1012         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1013                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1014
1015         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1016 }
1017
1018 #define POWER_CTL_EE_ENABLE     1
1019 #define POWER_CTL_EE_DISABLE    2
1020
1021 static int power_ctl_ee_state;
1022
1023 static void set_power_ctl_ee_state(bool input)
1024 {
1025         u64 power_ctl;
1026
1027         mutex_lock(&intel_pstate_driver_lock);
1028         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1029         if (input) {
1030                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1031                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1032         } else {
1033                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1034                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1035         }
1036         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1037         mutex_unlock(&intel_pstate_driver_lock);
1038 }
1039
1040 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1041
1042 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1043 {
1044         intel_pstate_hwp_enable(cpu);
1045         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1046 }
1047
1048 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1049 {
1050         struct cpudata *cpu = all_cpu_data[policy->cpu];
1051
1052         pr_debug("CPU %d suspending\n", cpu->cpu);
1053
1054         cpu->suspended = true;
1055
1056         return 0;
1057 }
1058
1059 static int intel_pstate_resume(struct cpufreq_policy *policy)
1060 {
1061         struct cpudata *cpu = all_cpu_data[policy->cpu];
1062
1063         pr_debug("CPU %d resuming\n", cpu->cpu);
1064
1065         /* Only restore if the system default is changed */
1066         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1067                 set_power_ctl_ee_state(true);
1068         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1069                 set_power_ctl_ee_state(false);
1070
1071         if (cpu->suspended && hwp_active) {
1072                 mutex_lock(&intel_pstate_limits_lock);
1073
1074                 /* Re-enable HWP, because "online" has not done that. */
1075                 intel_pstate_hwp_reenable(cpu);
1076
1077                 mutex_unlock(&intel_pstate_limits_lock);
1078         }
1079
1080         cpu->suspended = false;
1081
1082         return 0;
1083 }
1084
1085 static void intel_pstate_update_policies(void)
1086 {
1087         int cpu;
1088
1089         for_each_possible_cpu(cpu)
1090                 cpufreq_update_policy(cpu);
1091 }
1092
1093 static void intel_pstate_update_max_freq(unsigned int cpu)
1094 {
1095         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1096         struct cpudata *cpudata;
1097
1098         if (!policy)
1099                 return;
1100
1101         cpudata = all_cpu_data[cpu];
1102         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1103                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1104
1105         refresh_frequency_limits(policy);
1106
1107         cpufreq_cpu_release(policy);
1108 }
1109
1110 static void intel_pstate_update_limits(unsigned int cpu)
1111 {
1112         mutex_lock(&intel_pstate_driver_lock);
1113
1114         update_turbo_state();
1115         /*
1116          * If turbo has been turned on or off globally, policy limits for
1117          * all CPUs need to be updated to reflect that.
1118          */
1119         if (global.turbo_disabled_mf != global.turbo_disabled) {
1120                 global.turbo_disabled_mf = global.turbo_disabled;
1121                 arch_set_max_freq_ratio(global.turbo_disabled);
1122                 for_each_possible_cpu(cpu)
1123                         intel_pstate_update_max_freq(cpu);
1124         } else {
1125                 cpufreq_update_policy(cpu);
1126         }
1127
1128         mutex_unlock(&intel_pstate_driver_lock);
1129 }
1130
1131 /************************** sysfs begin ************************/
1132 #define show_one(file_name, object)                                     \
1133         static ssize_t show_##file_name                                 \
1134         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1135         {                                                               \
1136                 return sprintf(buf, "%u\n", global.object);             \
1137         }
1138
1139 static ssize_t intel_pstate_show_status(char *buf);
1140 static int intel_pstate_update_status(const char *buf, size_t size);
1141
1142 static ssize_t show_status(struct kobject *kobj,
1143                            struct kobj_attribute *attr, char *buf)
1144 {
1145         ssize_t ret;
1146
1147         mutex_lock(&intel_pstate_driver_lock);
1148         ret = intel_pstate_show_status(buf);
1149         mutex_unlock(&intel_pstate_driver_lock);
1150
1151         return ret;
1152 }
1153
1154 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1155                             const char *buf, size_t count)
1156 {
1157         char *p = memchr(buf, '\n', count);
1158         int ret;
1159
1160         mutex_lock(&intel_pstate_driver_lock);
1161         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1162         mutex_unlock(&intel_pstate_driver_lock);
1163
1164         return ret < 0 ? ret : count;
1165 }
1166
1167 static ssize_t show_turbo_pct(struct kobject *kobj,
1168                                 struct kobj_attribute *attr, char *buf)
1169 {
1170         struct cpudata *cpu;
1171         int total, no_turbo, turbo_pct;
1172         uint32_t turbo_fp;
1173
1174         mutex_lock(&intel_pstate_driver_lock);
1175
1176         if (!intel_pstate_driver) {
1177                 mutex_unlock(&intel_pstate_driver_lock);
1178                 return -EAGAIN;
1179         }
1180
1181         cpu = all_cpu_data[0];
1182
1183         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1184         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1185         turbo_fp = div_fp(no_turbo, total);
1186         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1187
1188         mutex_unlock(&intel_pstate_driver_lock);
1189
1190         return sprintf(buf, "%u\n", turbo_pct);
1191 }
1192
1193 static ssize_t show_num_pstates(struct kobject *kobj,
1194                                 struct kobj_attribute *attr, char *buf)
1195 {
1196         struct cpudata *cpu;
1197         int total;
1198
1199         mutex_lock(&intel_pstate_driver_lock);
1200
1201         if (!intel_pstate_driver) {
1202                 mutex_unlock(&intel_pstate_driver_lock);
1203                 return -EAGAIN;
1204         }
1205
1206         cpu = all_cpu_data[0];
1207         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1208
1209         mutex_unlock(&intel_pstate_driver_lock);
1210
1211         return sprintf(buf, "%u\n", total);
1212 }
1213
1214 static ssize_t show_no_turbo(struct kobject *kobj,
1215                              struct kobj_attribute *attr, char *buf)
1216 {
1217         ssize_t ret;
1218
1219         mutex_lock(&intel_pstate_driver_lock);
1220
1221         if (!intel_pstate_driver) {
1222                 mutex_unlock(&intel_pstate_driver_lock);
1223                 return -EAGAIN;
1224         }
1225
1226         update_turbo_state();
1227         if (global.turbo_disabled)
1228                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1229         else
1230                 ret = sprintf(buf, "%u\n", global.no_turbo);
1231
1232         mutex_unlock(&intel_pstate_driver_lock);
1233
1234         return ret;
1235 }
1236
1237 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1238                               const char *buf, size_t count)
1239 {
1240         unsigned int input;
1241         int ret;
1242
1243         ret = sscanf(buf, "%u", &input);
1244         if (ret != 1)
1245                 return -EINVAL;
1246
1247         mutex_lock(&intel_pstate_driver_lock);
1248
1249         if (!intel_pstate_driver) {
1250                 mutex_unlock(&intel_pstate_driver_lock);
1251                 return -EAGAIN;
1252         }
1253
1254         mutex_lock(&intel_pstate_limits_lock);
1255
1256         update_turbo_state();
1257         if (global.turbo_disabled) {
1258                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1259                 mutex_unlock(&intel_pstate_limits_lock);
1260                 mutex_unlock(&intel_pstate_driver_lock);
1261                 return -EPERM;
1262         }
1263
1264         global.no_turbo = clamp_t(int, input, 0, 1);
1265
1266         if (global.no_turbo) {
1267                 struct cpudata *cpu = all_cpu_data[0];
1268                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1269
1270                 /* Squash the global minimum into the permitted range. */
1271                 if (global.min_perf_pct > pct)
1272                         global.min_perf_pct = pct;
1273         }
1274
1275         mutex_unlock(&intel_pstate_limits_lock);
1276
1277         intel_pstate_update_policies();
1278
1279         mutex_unlock(&intel_pstate_driver_lock);
1280
1281         return count;
1282 }
1283
1284 static void update_qos_request(enum freq_qos_req_type type)
1285 {
1286         struct freq_qos_request *req;
1287         struct cpufreq_policy *policy;
1288         int i;
1289
1290         for_each_possible_cpu(i) {
1291                 struct cpudata *cpu = all_cpu_data[i];
1292                 unsigned int freq, perf_pct;
1293
1294                 policy = cpufreq_cpu_get(i);
1295                 if (!policy)
1296                         continue;
1297
1298                 req = policy->driver_data;
1299                 cpufreq_cpu_put(policy);
1300
1301                 if (!req)
1302                         continue;
1303
1304                 if (hwp_active)
1305                         intel_pstate_get_hwp_cap(cpu);
1306
1307                 if (type == FREQ_QOS_MIN) {
1308                         perf_pct = global.min_perf_pct;
1309                 } else {
1310                         req++;
1311                         perf_pct = global.max_perf_pct;
1312                 }
1313
1314                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1315
1316                 if (freq_qos_update_request(req, freq) < 0)
1317                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1318         }
1319 }
1320
1321 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1322                                   const char *buf, size_t count)
1323 {
1324         unsigned int input;
1325         int ret;
1326
1327         ret = sscanf(buf, "%u", &input);
1328         if (ret != 1)
1329                 return -EINVAL;
1330
1331         mutex_lock(&intel_pstate_driver_lock);
1332
1333         if (!intel_pstate_driver) {
1334                 mutex_unlock(&intel_pstate_driver_lock);
1335                 return -EAGAIN;
1336         }
1337
1338         mutex_lock(&intel_pstate_limits_lock);
1339
1340         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1341
1342         mutex_unlock(&intel_pstate_limits_lock);
1343
1344         if (intel_pstate_driver == &intel_pstate)
1345                 intel_pstate_update_policies();
1346         else
1347                 update_qos_request(FREQ_QOS_MAX);
1348
1349         mutex_unlock(&intel_pstate_driver_lock);
1350
1351         return count;
1352 }
1353
1354 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1355                                   const char *buf, size_t count)
1356 {
1357         unsigned int input;
1358         int ret;
1359
1360         ret = sscanf(buf, "%u", &input);
1361         if (ret != 1)
1362                 return -EINVAL;
1363
1364         mutex_lock(&intel_pstate_driver_lock);
1365
1366         if (!intel_pstate_driver) {
1367                 mutex_unlock(&intel_pstate_driver_lock);
1368                 return -EAGAIN;
1369         }
1370
1371         mutex_lock(&intel_pstate_limits_lock);
1372
1373         global.min_perf_pct = clamp_t(int, input,
1374                                       min_perf_pct_min(), global.max_perf_pct);
1375
1376         mutex_unlock(&intel_pstate_limits_lock);
1377
1378         if (intel_pstate_driver == &intel_pstate)
1379                 intel_pstate_update_policies();
1380         else
1381                 update_qos_request(FREQ_QOS_MIN);
1382
1383         mutex_unlock(&intel_pstate_driver_lock);
1384
1385         return count;
1386 }
1387
1388 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1389                                 struct kobj_attribute *attr, char *buf)
1390 {
1391         return sprintf(buf, "%u\n", hwp_boost);
1392 }
1393
1394 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1395                                        struct kobj_attribute *b,
1396                                        const char *buf, size_t count)
1397 {
1398         unsigned int input;
1399         int ret;
1400
1401         ret = kstrtouint(buf, 10, &input);
1402         if (ret)
1403                 return ret;
1404
1405         mutex_lock(&intel_pstate_driver_lock);
1406         hwp_boost = !!input;
1407         intel_pstate_update_policies();
1408         mutex_unlock(&intel_pstate_driver_lock);
1409
1410         return count;
1411 }
1412
1413 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1414                                       char *buf)
1415 {
1416         u64 power_ctl;
1417         int enable;
1418
1419         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1420         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1421         return sprintf(buf, "%d\n", !enable);
1422 }
1423
1424 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1425                                        const char *buf, size_t count)
1426 {
1427         bool input;
1428         int ret;
1429
1430         ret = kstrtobool(buf, &input);
1431         if (ret)
1432                 return ret;
1433
1434         set_power_ctl_ee_state(input);
1435
1436         return count;
1437 }
1438
1439 show_one(max_perf_pct, max_perf_pct);
1440 show_one(min_perf_pct, min_perf_pct);
1441
1442 define_one_global_rw(status);
1443 define_one_global_rw(no_turbo);
1444 define_one_global_rw(max_perf_pct);
1445 define_one_global_rw(min_perf_pct);
1446 define_one_global_ro(turbo_pct);
1447 define_one_global_ro(num_pstates);
1448 define_one_global_rw(hwp_dynamic_boost);
1449 define_one_global_rw(energy_efficiency);
1450
1451 static struct attribute *intel_pstate_attributes[] = {
1452         &status.attr,
1453         &no_turbo.attr,
1454         NULL
1455 };
1456
1457 static const struct attribute_group intel_pstate_attr_group = {
1458         .attrs = intel_pstate_attributes,
1459 };
1460
1461 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1462
1463 static struct kobject *intel_pstate_kobject;
1464
1465 static void __init intel_pstate_sysfs_expose_params(void)
1466 {
1467         int rc;
1468
1469         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1470                                                 &cpu_subsys.dev_root->kobj);
1471         if (WARN_ON(!intel_pstate_kobject))
1472                 return;
1473
1474         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1475         if (WARN_ON(rc))
1476                 return;
1477
1478         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1479                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1480                 WARN_ON(rc);
1481
1482                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1483                 WARN_ON(rc);
1484         }
1485
1486         /*
1487          * If per cpu limits are enforced there are no global limits, so
1488          * return without creating max/min_perf_pct attributes
1489          */
1490         if (per_cpu_limits)
1491                 return;
1492
1493         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1494         WARN_ON(rc);
1495
1496         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1497         WARN_ON(rc);
1498
1499         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1500                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1501                 WARN_ON(rc);
1502         }
1503 }
1504
1505 static void __init intel_pstate_sysfs_remove(void)
1506 {
1507         if (!intel_pstate_kobject)
1508                 return;
1509
1510         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1511
1512         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1513                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1514                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1515         }
1516
1517         if (!per_cpu_limits) {
1518                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1519                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1520
1521                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1522                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1523         }
1524
1525         kobject_put(intel_pstate_kobject);
1526 }
1527
1528 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1529 {
1530         int rc;
1531
1532         if (!hwp_active)
1533                 return;
1534
1535         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1536         WARN_ON_ONCE(rc);
1537 }
1538
1539 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1540 {
1541         if (!hwp_active)
1542                 return;
1543
1544         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1545 }
1546
1547 /************************** sysfs end ************************/
1548
1549 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1550 {
1551         /* First disable HWP notification interrupt as we don't process them */
1552         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1553                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1554
1555         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1556         if (cpudata->epp_default == -EINVAL)
1557                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1558 }
1559
1560 static int atom_get_min_pstate(void)
1561 {
1562         u64 value;
1563
1564         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1565         return (value >> 8) & 0x7F;
1566 }
1567
1568 static int atom_get_max_pstate(void)
1569 {
1570         u64 value;
1571
1572         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1573         return (value >> 16) & 0x7F;
1574 }
1575
1576 static int atom_get_turbo_pstate(void)
1577 {
1578         u64 value;
1579
1580         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1581         return value & 0x7F;
1582 }
1583
1584 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1585 {
1586         u64 val;
1587         int32_t vid_fp;
1588         u32 vid;
1589
1590         val = (u64)pstate << 8;
1591         if (global.no_turbo && !global.turbo_disabled)
1592                 val |= (u64)1 << 32;
1593
1594         vid_fp = cpudata->vid.min + mul_fp(
1595                 int_tofp(pstate - cpudata->pstate.min_pstate),
1596                 cpudata->vid.ratio);
1597
1598         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1599         vid = ceiling_fp(vid_fp);
1600
1601         if (pstate > cpudata->pstate.max_pstate)
1602                 vid = cpudata->vid.turbo;
1603
1604         return val | vid;
1605 }
1606
1607 static int silvermont_get_scaling(void)
1608 {
1609         u64 value;
1610         int i;
1611         /* Defined in Table 35-6 from SDM (Sept 2015) */
1612         static int silvermont_freq_table[] = {
1613                 83300, 100000, 133300, 116700, 80000};
1614
1615         rdmsrl(MSR_FSB_FREQ, value);
1616         i = value & 0x7;
1617         WARN_ON(i > 4);
1618
1619         return silvermont_freq_table[i];
1620 }
1621
1622 static int airmont_get_scaling(void)
1623 {
1624         u64 value;
1625         int i;
1626         /* Defined in Table 35-10 from SDM (Sept 2015) */
1627         static int airmont_freq_table[] = {
1628                 83300, 100000, 133300, 116700, 80000,
1629                 93300, 90000, 88900, 87500};
1630
1631         rdmsrl(MSR_FSB_FREQ, value);
1632         i = value & 0xF;
1633         WARN_ON(i > 8);
1634
1635         return airmont_freq_table[i];
1636 }
1637
1638 static void atom_get_vid(struct cpudata *cpudata)
1639 {
1640         u64 value;
1641
1642         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1643         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1644         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1645         cpudata->vid.ratio = div_fp(
1646                 cpudata->vid.max - cpudata->vid.min,
1647                 int_tofp(cpudata->pstate.max_pstate -
1648                         cpudata->pstate.min_pstate));
1649
1650         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1651         cpudata->vid.turbo = value & 0x7f;
1652 }
1653
1654 static int core_get_min_pstate(void)
1655 {
1656         u64 value;
1657
1658         rdmsrl(MSR_PLATFORM_INFO, value);
1659         return (value >> 40) & 0xFF;
1660 }
1661
1662 static int core_get_max_pstate_physical(void)
1663 {
1664         u64 value;
1665
1666         rdmsrl(MSR_PLATFORM_INFO, value);
1667         return (value >> 8) & 0xFF;
1668 }
1669
1670 static int core_get_tdp_ratio(u64 plat_info)
1671 {
1672         /* Check how many TDP levels present */
1673         if (plat_info & 0x600000000) {
1674                 u64 tdp_ctrl;
1675                 u64 tdp_ratio;
1676                 int tdp_msr;
1677                 int err;
1678
1679                 /* Get the TDP level (0, 1, 2) to get ratios */
1680                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1681                 if (err)
1682                         return err;
1683
1684                 /* TDP MSR are continuous starting at 0x648 */
1685                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1686                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1687                 if (err)
1688                         return err;
1689
1690                 /* For level 1 and 2, bits[23:16] contain the ratio */
1691                 if (tdp_ctrl & 0x03)
1692                         tdp_ratio >>= 16;
1693
1694                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1695                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1696
1697                 return (int)tdp_ratio;
1698         }
1699
1700         return -ENXIO;
1701 }
1702
1703 static int core_get_max_pstate(void)
1704 {
1705         u64 tar;
1706         u64 plat_info;
1707         int max_pstate;
1708         int tdp_ratio;
1709         int err;
1710
1711         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1712         max_pstate = (plat_info >> 8) & 0xFF;
1713
1714         tdp_ratio = core_get_tdp_ratio(plat_info);
1715         if (tdp_ratio <= 0)
1716                 return max_pstate;
1717
1718         if (hwp_active) {
1719                 /* Turbo activation ratio is not used on HWP platforms */
1720                 return tdp_ratio;
1721         }
1722
1723         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1724         if (!err) {
1725                 int tar_levels;
1726
1727                 /* Do some sanity checking for safety */
1728                 tar_levels = tar & 0xff;
1729                 if (tdp_ratio - 1 == tar_levels) {
1730                         max_pstate = tar_levels;
1731                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1732                 }
1733         }
1734
1735         return max_pstate;
1736 }
1737
1738 static int core_get_turbo_pstate(void)
1739 {
1740         u64 value;
1741         int nont, ret;
1742
1743         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1744         nont = core_get_max_pstate();
1745         ret = (value) & 255;
1746         if (ret <= nont)
1747                 ret = nont;
1748         return ret;
1749 }
1750
1751 static inline int core_get_scaling(void)
1752 {
1753         return 100000;
1754 }
1755
1756 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1757 {
1758         u64 val;
1759
1760         val = (u64)pstate << 8;
1761         if (global.no_turbo && !global.turbo_disabled)
1762                 val |= (u64)1 << 32;
1763
1764         return val;
1765 }
1766
1767 static int knl_get_aperf_mperf_shift(void)
1768 {
1769         return 10;
1770 }
1771
1772 static int knl_get_turbo_pstate(void)
1773 {
1774         u64 value;
1775         int nont, ret;
1776
1777         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1778         nont = core_get_max_pstate();
1779         ret = (((value) >> 8) & 0xFF);
1780         if (ret <= nont)
1781                 ret = nont;
1782         return ret;
1783 }
1784
1785 #ifdef CONFIG_ACPI_CPPC_LIB
1786 static u32 hybrid_ref_perf;
1787
1788 static int hybrid_get_cpu_scaling(int cpu)
1789 {
1790         return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
1791                             intel_pstate_cppc_nominal(cpu));
1792 }
1793
1794 static void intel_pstate_cppc_set_cpu_scaling(void)
1795 {
1796         u32 min_nominal_perf = U32_MAX;
1797         int cpu;
1798
1799         for_each_present_cpu(cpu) {
1800                 u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
1801
1802                 if (nominal_perf && nominal_perf < min_nominal_perf)
1803                         min_nominal_perf = nominal_perf;
1804         }
1805
1806         if (min_nominal_perf < U32_MAX) {
1807                 hybrid_ref_perf = min_nominal_perf;
1808                 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
1809         }
1810 }
1811 #else
1812 static inline void intel_pstate_cppc_set_cpu_scaling(void)
1813 {
1814 }
1815 #endif /* CONFIG_ACPI_CPPC_LIB */
1816
1817 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1818 {
1819         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1820         cpu->pstate.current_pstate = pstate;
1821         /*
1822          * Generally, there is no guarantee that this code will always run on
1823          * the CPU being updated, so force the register update to run on the
1824          * right CPU.
1825          */
1826         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1827                       pstate_funcs.get_val(cpu, pstate));
1828 }
1829
1830 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1831 {
1832         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1833 }
1834
1835 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1836 {
1837         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1838
1839         update_turbo_state();
1840         intel_pstate_set_pstate(cpu, pstate);
1841 }
1842
1843 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1844 {
1845         int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1846         int perf_ctl_scaling = pstate_funcs.get_scaling();
1847
1848         cpu->pstate.min_pstate = pstate_funcs.get_min();
1849         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1850         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1851
1852         if (hwp_active && !hwp_mode_bdw) {
1853                 __intel_pstate_get_hwp_cap(cpu);
1854
1855                 if (pstate_funcs.get_cpu_scaling) {
1856                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
1857                         if (cpu->pstate.scaling != perf_ctl_scaling)
1858                                 intel_pstate_hybrid_hwp_adjust(cpu);
1859                 } else {
1860                         cpu->pstate.scaling = perf_ctl_scaling;
1861                 }
1862         } else {
1863                 cpu->pstate.scaling = perf_ctl_scaling;
1864                 cpu->pstate.max_pstate = pstate_funcs.get_max();
1865                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1866         }
1867
1868         if (cpu->pstate.scaling == perf_ctl_scaling) {
1869                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1870                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1871                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
1872         }
1873
1874         if (pstate_funcs.get_aperf_mperf_shift)
1875                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1876
1877         if (pstate_funcs.get_vid)
1878                 pstate_funcs.get_vid(cpu);
1879
1880         intel_pstate_set_min_pstate(cpu);
1881 }
1882
1883 /*
1884  * Long hold time will keep high perf limits for long time,
1885  * which negatively impacts perf/watt for some workloads,
1886  * like specpower. 3ms is based on experiements on some
1887  * workoads.
1888  */
1889 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1890
1891 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1892 {
1893         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1894         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
1895         u32 max_limit = (hwp_req & 0xff00) >> 8;
1896         u32 min_limit = (hwp_req & 0xff);
1897         u32 boost_level1;
1898
1899         /*
1900          * Cases to consider (User changes via sysfs or boot time):
1901          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1902          *      No boost, return.
1903          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1904          *     Should result in one level boost only for P0.
1905          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1906          *     Should result in two level boost:
1907          *         (min + p1)/2 and P1.
1908          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1909          *     Should result in three level boost:
1910          *        (min + p1)/2, P1 and P0.
1911          */
1912
1913         /* If max and min are equal or already at max, nothing to boost */
1914         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1915                 return;
1916
1917         if (!cpu->hwp_boost_min)
1918                 cpu->hwp_boost_min = min_limit;
1919
1920         /* level at half way mark between min and guranteed */
1921         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
1922
1923         if (cpu->hwp_boost_min < boost_level1)
1924                 cpu->hwp_boost_min = boost_level1;
1925         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
1926                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
1927         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
1928                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
1929                 cpu->hwp_boost_min = max_limit;
1930         else
1931                 return;
1932
1933         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1934         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1935         cpu->last_update = cpu->sample.time;
1936 }
1937
1938 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1939 {
1940         if (cpu->hwp_boost_min) {
1941                 bool expired;
1942
1943                 /* Check if we are idle for hold time to boost down */
1944                 expired = time_after64(cpu->sample.time, cpu->last_update +
1945                                        hwp_boost_hold_time_ns);
1946                 if (expired) {
1947                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1948                         cpu->hwp_boost_min = 0;
1949                 }
1950         }
1951         cpu->last_update = cpu->sample.time;
1952 }
1953
1954 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1955                                                       u64 time)
1956 {
1957         cpu->sample.time = time;
1958
1959         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1960                 bool do_io = false;
1961
1962                 cpu->sched_flags = 0;
1963                 /*
1964                  * Set iowait_boost flag and update time. Since IO WAIT flag
1965                  * is set all the time, we can't just conclude that there is
1966                  * some IO bound activity is scheduled on this CPU with just
1967                  * one occurrence. If we receive at least two in two
1968                  * consecutive ticks, then we treat as boost candidate.
1969                  */
1970                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1971                         do_io = true;
1972
1973                 cpu->last_io_update = time;
1974
1975                 if (do_io)
1976                         intel_pstate_hwp_boost_up(cpu);
1977
1978         } else {
1979                 intel_pstate_hwp_boost_down(cpu);
1980         }
1981 }
1982
1983 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1984                                                 u64 time, unsigned int flags)
1985 {
1986         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1987
1988         cpu->sched_flags |= flags;
1989
1990         if (smp_processor_id() == cpu->cpu)
1991                 intel_pstate_update_util_hwp_local(cpu, time);
1992 }
1993
1994 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1995 {
1996         struct sample *sample = &cpu->sample;
1997
1998         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1999 }
2000
2001 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2002 {
2003         u64 aperf, mperf;
2004         unsigned long flags;
2005         u64 tsc;
2006
2007         local_irq_save(flags);
2008         rdmsrl(MSR_IA32_APERF, aperf);
2009         rdmsrl(MSR_IA32_MPERF, mperf);
2010         tsc = rdtsc();
2011         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2012                 local_irq_restore(flags);
2013                 return false;
2014         }
2015         local_irq_restore(flags);
2016
2017         cpu->last_sample_time = cpu->sample.time;
2018         cpu->sample.time = time;
2019         cpu->sample.aperf = aperf;
2020         cpu->sample.mperf = mperf;
2021         cpu->sample.tsc =  tsc;
2022         cpu->sample.aperf -= cpu->prev_aperf;
2023         cpu->sample.mperf -= cpu->prev_mperf;
2024         cpu->sample.tsc -= cpu->prev_tsc;
2025
2026         cpu->prev_aperf = aperf;
2027         cpu->prev_mperf = mperf;
2028         cpu->prev_tsc = tsc;
2029         /*
2030          * First time this function is invoked in a given cycle, all of the
2031          * previous sample data fields are equal to zero or stale and they must
2032          * be populated with meaningful numbers for things to work, so assume
2033          * that sample.time will always be reset before setting the utilization
2034          * update hook and make the caller skip the sample then.
2035          */
2036         if (cpu->last_sample_time) {
2037                 intel_pstate_calc_avg_perf(cpu);
2038                 return true;
2039         }
2040         return false;
2041 }
2042
2043 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2044 {
2045         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2046 }
2047
2048 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2049 {
2050         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2051                           cpu->sample.core_avg_perf);
2052 }
2053
2054 static inline int32_t get_target_pstate(struct cpudata *cpu)
2055 {
2056         struct sample *sample = &cpu->sample;
2057         int32_t busy_frac;
2058         int target, avg_pstate;
2059
2060         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2061                            sample->tsc);
2062
2063         if (busy_frac < cpu->iowait_boost)
2064                 busy_frac = cpu->iowait_boost;
2065
2066         sample->busy_scaled = busy_frac * 100;
2067
2068         target = global.no_turbo || global.turbo_disabled ?
2069                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2070         target += target >> 2;
2071         target = mul_fp(target, busy_frac);
2072         if (target < cpu->pstate.min_pstate)
2073                 target = cpu->pstate.min_pstate;
2074
2075         /*
2076          * If the average P-state during the previous cycle was higher than the
2077          * current target, add 50% of the difference to the target to reduce
2078          * possible performance oscillations and offset possible performance
2079          * loss related to moving the workload from one CPU to another within
2080          * a package/module.
2081          */
2082         avg_pstate = get_avg_pstate(cpu);
2083         if (avg_pstate > target)
2084                 target += (avg_pstate - target) >> 1;
2085
2086         return target;
2087 }
2088
2089 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2090 {
2091         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2092         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2093
2094         return clamp_t(int, pstate, min_pstate, max_pstate);
2095 }
2096
2097 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2098 {
2099         if (pstate == cpu->pstate.current_pstate)
2100                 return;
2101
2102         cpu->pstate.current_pstate = pstate;
2103         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2104 }
2105
2106 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2107 {
2108         int from = cpu->pstate.current_pstate;
2109         struct sample *sample;
2110         int target_pstate;
2111
2112         update_turbo_state();
2113
2114         target_pstate = get_target_pstate(cpu);
2115         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2116         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2117         intel_pstate_update_pstate(cpu, target_pstate);
2118
2119         sample = &cpu->sample;
2120         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2121                 fp_toint(sample->busy_scaled),
2122                 from,
2123                 cpu->pstate.current_pstate,
2124                 sample->mperf,
2125                 sample->aperf,
2126                 sample->tsc,
2127                 get_avg_frequency(cpu),
2128                 fp_toint(cpu->iowait_boost * 100));
2129 }
2130
2131 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2132                                      unsigned int flags)
2133 {
2134         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2135         u64 delta_ns;
2136
2137         /* Don't allow remote callbacks */
2138         if (smp_processor_id() != cpu->cpu)
2139                 return;
2140
2141         delta_ns = time - cpu->last_update;
2142         if (flags & SCHED_CPUFREQ_IOWAIT) {
2143                 /* Start over if the CPU may have been idle. */
2144                 if (delta_ns > TICK_NSEC) {
2145                         cpu->iowait_boost = ONE_EIGHTH_FP;
2146                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2147                         cpu->iowait_boost <<= 1;
2148                         if (cpu->iowait_boost > int_tofp(1))
2149                                 cpu->iowait_boost = int_tofp(1);
2150                 } else {
2151                         cpu->iowait_boost = ONE_EIGHTH_FP;
2152                 }
2153         } else if (cpu->iowait_boost) {
2154                 /* Clear iowait_boost if the CPU may have been idle. */
2155                 if (delta_ns > TICK_NSEC)
2156                         cpu->iowait_boost = 0;
2157                 else
2158                         cpu->iowait_boost >>= 1;
2159         }
2160         cpu->last_update = time;
2161         delta_ns = time - cpu->sample.time;
2162         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2163                 return;
2164
2165         if (intel_pstate_sample(cpu, time))
2166                 intel_pstate_adjust_pstate(cpu);
2167 }
2168
2169 static struct pstate_funcs core_funcs = {
2170         .get_max = core_get_max_pstate,
2171         .get_max_physical = core_get_max_pstate_physical,
2172         .get_min = core_get_min_pstate,
2173         .get_turbo = core_get_turbo_pstate,
2174         .get_scaling = core_get_scaling,
2175         .get_val = core_get_val,
2176 };
2177
2178 static const struct pstate_funcs silvermont_funcs = {
2179         .get_max = atom_get_max_pstate,
2180         .get_max_physical = atom_get_max_pstate,
2181         .get_min = atom_get_min_pstate,
2182         .get_turbo = atom_get_turbo_pstate,
2183         .get_val = atom_get_val,
2184         .get_scaling = silvermont_get_scaling,
2185         .get_vid = atom_get_vid,
2186 };
2187
2188 static const struct pstate_funcs airmont_funcs = {
2189         .get_max = atom_get_max_pstate,
2190         .get_max_physical = atom_get_max_pstate,
2191         .get_min = atom_get_min_pstate,
2192         .get_turbo = atom_get_turbo_pstate,
2193         .get_val = atom_get_val,
2194         .get_scaling = airmont_get_scaling,
2195         .get_vid = atom_get_vid,
2196 };
2197
2198 static const struct pstate_funcs knl_funcs = {
2199         .get_max = core_get_max_pstate,
2200         .get_max_physical = core_get_max_pstate_physical,
2201         .get_min = core_get_min_pstate,
2202         .get_turbo = knl_get_turbo_pstate,
2203         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2204         .get_scaling = core_get_scaling,
2205         .get_val = core_get_val,
2206 };
2207
2208 #define X86_MATCH(model, policy)                                         \
2209         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2210                                            X86_FEATURE_APERFMPERF, &policy)
2211
2212 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2213         X86_MATCH(SANDYBRIDGE,          core_funcs),
2214         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2215         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2216         X86_MATCH(IVYBRIDGE,            core_funcs),
2217         X86_MATCH(HASWELL,              core_funcs),
2218         X86_MATCH(BROADWELL,            core_funcs),
2219         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2220         X86_MATCH(HASWELL_X,            core_funcs),
2221         X86_MATCH(HASWELL_L,            core_funcs),
2222         X86_MATCH(HASWELL_G,            core_funcs),
2223         X86_MATCH(BROADWELL_G,          core_funcs),
2224         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2225         X86_MATCH(SKYLAKE_L,            core_funcs),
2226         X86_MATCH(BROADWELL_X,          core_funcs),
2227         X86_MATCH(SKYLAKE,              core_funcs),
2228         X86_MATCH(BROADWELL_D,          core_funcs),
2229         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2230         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2231         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2232         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2233         X86_MATCH(SKYLAKE_X,            core_funcs),
2234         X86_MATCH(COMETLAKE,            core_funcs),
2235         X86_MATCH(ICELAKE_X,            core_funcs),
2236         {}
2237 };
2238 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2239
2240 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2241         X86_MATCH(BROADWELL_D,          core_funcs),
2242         X86_MATCH(BROADWELL_X,          core_funcs),
2243         X86_MATCH(SKYLAKE_X,            core_funcs),
2244         {}
2245 };
2246
2247 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2248         X86_MATCH(KABYLAKE,             core_funcs),
2249         {}
2250 };
2251
2252 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2253         X86_MATCH(SKYLAKE_X,            core_funcs),
2254         X86_MATCH(SKYLAKE,              core_funcs),
2255         {}
2256 };
2257
2258 static int intel_pstate_init_cpu(unsigned int cpunum)
2259 {
2260         struct cpudata *cpu;
2261
2262         cpu = all_cpu_data[cpunum];
2263
2264         if (!cpu) {
2265                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2266                 if (!cpu)
2267                         return -ENOMEM;
2268
2269                 all_cpu_data[cpunum] = cpu;
2270
2271                 cpu->cpu = cpunum;
2272
2273                 cpu->epp_default = -EINVAL;
2274
2275                 if (hwp_active) {
2276                         const struct x86_cpu_id *id;
2277
2278                         intel_pstate_hwp_enable(cpu);
2279
2280                         id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2281                         if (id && intel_pstate_acpi_pm_profile_server())
2282                                 hwp_boost = true;
2283                 }
2284         } else if (hwp_active) {
2285                 /*
2286                  * Re-enable HWP in case this happens after a resume from ACPI
2287                  * S3 if the CPU was offline during the whole system/resume
2288                  * cycle.
2289                  */
2290                 intel_pstate_hwp_reenable(cpu);
2291         }
2292
2293         cpu->epp_powersave = -EINVAL;
2294         cpu->epp_policy = 0;
2295
2296         intel_pstate_get_cpu_pstates(cpu);
2297
2298         pr_debug("controlling: cpu %d\n", cpunum);
2299
2300         return 0;
2301 }
2302
2303 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2304 {
2305         struct cpudata *cpu = all_cpu_data[cpu_num];
2306
2307         if (hwp_active && !hwp_boost)
2308                 return;
2309
2310         if (cpu->update_util_set)
2311                 return;
2312
2313         /* Prevent intel_pstate_update_util() from using stale data. */
2314         cpu->sample.time = 0;
2315         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2316                                      (hwp_active ?
2317                                       intel_pstate_update_util_hwp :
2318                                       intel_pstate_update_util));
2319         cpu->update_util_set = true;
2320 }
2321
2322 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2323 {
2324         struct cpudata *cpu_data = all_cpu_data[cpu];
2325
2326         if (!cpu_data->update_util_set)
2327                 return;
2328
2329         cpufreq_remove_update_util_hook(cpu);
2330         cpu_data->update_util_set = false;
2331         synchronize_rcu();
2332 }
2333
2334 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2335 {
2336         return global.turbo_disabled || global.no_turbo ?
2337                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2338 }
2339
2340 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2341                                             unsigned int policy_min,
2342                                             unsigned int policy_max)
2343 {
2344         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2345         int32_t max_policy_perf, min_policy_perf;
2346
2347         max_policy_perf = policy_max / perf_ctl_scaling;
2348         if (policy_max == policy_min) {
2349                 min_policy_perf = max_policy_perf;
2350         } else {
2351                 min_policy_perf = policy_min / perf_ctl_scaling;
2352                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2353                                           0, max_policy_perf);
2354         }
2355
2356         /*
2357          * HWP needs some special consideration, because HWP_REQUEST uses
2358          * abstract values to represent performance rather than pure ratios.
2359          */
2360         if (hwp_active) {
2361                 intel_pstate_get_hwp_cap(cpu);
2362
2363                 if (cpu->pstate.scaling != perf_ctl_scaling) {
2364                         int scaling = cpu->pstate.scaling;
2365                         int freq;
2366
2367                         freq = max_policy_perf * perf_ctl_scaling;
2368                         max_policy_perf = DIV_ROUND_UP(freq, scaling);
2369                         freq = min_policy_perf * perf_ctl_scaling;
2370                         min_policy_perf = DIV_ROUND_UP(freq, scaling);
2371                 }
2372         }
2373
2374         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2375                  cpu->cpu, min_policy_perf, max_policy_perf);
2376
2377         /* Normalize user input to [min_perf, max_perf] */
2378         if (per_cpu_limits) {
2379                 cpu->min_perf_ratio = min_policy_perf;
2380                 cpu->max_perf_ratio = max_policy_perf;
2381         } else {
2382                 int turbo_max = cpu->pstate.turbo_pstate;
2383                 int32_t global_min, global_max;
2384
2385                 /* Global limits are in percent of the maximum turbo P-state. */
2386                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2387                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2388                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2389
2390                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2391                          global_min, global_max);
2392
2393                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2394                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2395                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2396                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2397
2398                 /* Make sure min_perf <= max_perf */
2399                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2400                                           cpu->max_perf_ratio);
2401
2402         }
2403         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2404                  cpu->max_perf_ratio,
2405                  cpu->min_perf_ratio);
2406 }
2407
2408 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2409 {
2410         struct cpudata *cpu;
2411
2412         if (!policy->cpuinfo.max_freq)
2413                 return -ENODEV;
2414
2415         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2416                  policy->cpuinfo.max_freq, policy->max);
2417
2418         cpu = all_cpu_data[policy->cpu];
2419         cpu->policy = policy->policy;
2420
2421         mutex_lock(&intel_pstate_limits_lock);
2422
2423         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2424
2425         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2426                 /*
2427                  * NOHZ_FULL CPUs need this as the governor callback may not
2428                  * be invoked on them.
2429                  */
2430                 intel_pstate_clear_update_util_hook(policy->cpu);
2431                 intel_pstate_max_within_limits(cpu);
2432         } else {
2433                 intel_pstate_set_update_util_hook(policy->cpu);
2434         }
2435
2436         if (hwp_active) {
2437                 /*
2438                  * When hwp_boost was active before and dynamically it
2439                  * was turned off, in that case we need to clear the
2440                  * update util hook.
2441                  */
2442                 if (!hwp_boost)
2443                         intel_pstate_clear_update_util_hook(policy->cpu);
2444                 intel_pstate_hwp_set(policy->cpu);
2445         }
2446
2447         mutex_unlock(&intel_pstate_limits_lock);
2448
2449         return 0;
2450 }
2451
2452 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2453                                            struct cpufreq_policy_data *policy)
2454 {
2455         if (!hwp_active &&
2456             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2457             policy->max < policy->cpuinfo.max_freq &&
2458             policy->max > cpu->pstate.max_freq) {
2459                 pr_debug("policy->max > max non turbo frequency\n");
2460                 policy->max = policy->cpuinfo.max_freq;
2461         }
2462 }
2463
2464 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2465                                            struct cpufreq_policy_data *policy)
2466 {
2467         int max_freq;
2468
2469         update_turbo_state();
2470         if (hwp_active) {
2471                 intel_pstate_get_hwp_cap(cpu);
2472                 max_freq = global.no_turbo || global.turbo_disabled ?
2473                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2474         } else {
2475                 max_freq = intel_pstate_get_max_freq(cpu);
2476         }
2477         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2478
2479         intel_pstate_adjust_policy_max(cpu, policy);
2480 }
2481
2482 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2483 {
2484         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2485
2486         return 0;
2487 }
2488
2489 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2490 {
2491         struct cpudata *cpu = all_cpu_data[policy->cpu];
2492
2493         pr_debug("CPU %d going offline\n", cpu->cpu);
2494
2495         if (cpu->suspended)
2496                 return 0;
2497
2498         /*
2499          * If the CPU is an SMT thread and it goes offline with the performance
2500          * settings different from the minimum, it will prevent its sibling
2501          * from getting to lower performance levels, so force the minimum
2502          * performance on CPU offline to prevent that from happening.
2503          */
2504         if (hwp_active)
2505                 intel_pstate_hwp_offline(cpu);
2506         else
2507                 intel_pstate_set_min_pstate(cpu);
2508
2509         intel_pstate_exit_perf_limits(policy);
2510
2511         return 0;
2512 }
2513
2514 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2515 {
2516         struct cpudata *cpu = all_cpu_data[policy->cpu];
2517
2518         pr_debug("CPU %d going online\n", cpu->cpu);
2519
2520         intel_pstate_init_acpi_perf_limits(policy);
2521
2522         if (hwp_active) {
2523                 /*
2524                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2525                  * know that it need not do that.
2526                  */
2527                 intel_pstate_hwp_reenable(cpu);
2528                 cpu->suspended = false;
2529         }
2530
2531         return 0;
2532 }
2533
2534 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2535 {
2536         intel_pstate_clear_update_util_hook(policy->cpu);
2537
2538         return intel_cpufreq_cpu_offline(policy);
2539 }
2540
2541 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2542 {
2543         pr_debug("CPU %d exiting\n", policy->cpu);
2544
2545         policy->fast_switch_possible = false;
2546
2547         return 0;
2548 }
2549
2550 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2551 {
2552         struct cpudata *cpu;
2553         int rc;
2554
2555         rc = intel_pstate_init_cpu(policy->cpu);
2556         if (rc)
2557                 return rc;
2558
2559         cpu = all_cpu_data[policy->cpu];
2560
2561         cpu->max_perf_ratio = 0xFF;
2562         cpu->min_perf_ratio = 0;
2563
2564         /* cpuinfo and default policy values */
2565         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2566         update_turbo_state();
2567         global.turbo_disabled_mf = global.turbo_disabled;
2568         policy->cpuinfo.max_freq = global.turbo_disabled ?
2569                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2570
2571         policy->min = policy->cpuinfo.min_freq;
2572         policy->max = policy->cpuinfo.max_freq;
2573
2574         intel_pstate_init_acpi_perf_limits(policy);
2575
2576         policy->fast_switch_possible = true;
2577
2578         return 0;
2579 }
2580
2581 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2582 {
2583         int ret = __intel_pstate_cpu_init(policy);
2584
2585         if (ret)
2586                 return ret;
2587
2588         /*
2589          * Set the policy to powersave to provide a valid fallback value in case
2590          * the default cpufreq governor is neither powersave nor performance.
2591          */
2592         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2593
2594         if (hwp_active) {
2595                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2596
2597                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2598         }
2599
2600         return 0;
2601 }
2602
2603 static struct cpufreq_driver intel_pstate = {
2604         .flags          = CPUFREQ_CONST_LOOPS,
2605         .verify         = intel_pstate_verify_policy,
2606         .setpolicy      = intel_pstate_set_policy,
2607         .suspend        = intel_pstate_suspend,
2608         .resume         = intel_pstate_resume,
2609         .init           = intel_pstate_cpu_init,
2610         .exit           = intel_pstate_cpu_exit,
2611         .offline        = intel_pstate_cpu_offline,
2612         .online         = intel_pstate_cpu_online,
2613         .update_limits  = intel_pstate_update_limits,
2614         .name           = "intel_pstate",
2615 };
2616
2617 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2618 {
2619         struct cpudata *cpu = all_cpu_data[policy->cpu];
2620
2621         intel_pstate_verify_cpu_policy(cpu, policy);
2622         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2623
2624         return 0;
2625 }
2626
2627 /* Use of trace in passive mode:
2628  *
2629  * In passive mode the trace core_busy field (also known as the
2630  * performance field, and lablelled as such on the graphs; also known as
2631  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2632  * driver call was via the normal or fast switch path. Various graphs
2633  * output from the intel_pstate_tracer.py utility that include core_busy
2634  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2635  * so we use 10 to indicate the normal path through the driver, and
2636  * 90 to indicate the fast switch path through the driver.
2637  * The scaled_busy field is not used, and is set to 0.
2638  */
2639
2640 #define INTEL_PSTATE_TRACE_TARGET 10
2641 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2642
2643 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2644 {
2645         struct sample *sample;
2646
2647         if (!trace_pstate_sample_enabled())
2648                 return;
2649
2650         if (!intel_pstate_sample(cpu, ktime_get()))
2651                 return;
2652
2653         sample = &cpu->sample;
2654         trace_pstate_sample(trace_type,
2655                 0,
2656                 old_pstate,
2657                 cpu->pstate.current_pstate,
2658                 sample->mperf,
2659                 sample->aperf,
2660                 sample->tsc,
2661                 get_avg_frequency(cpu),
2662                 fp_toint(cpu->iowait_boost * 100));
2663 }
2664
2665 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2666                                      u32 desired, bool fast_switch)
2667 {
2668         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2669
2670         value &= ~HWP_MIN_PERF(~0L);
2671         value |= HWP_MIN_PERF(min);
2672
2673         value &= ~HWP_MAX_PERF(~0L);
2674         value |= HWP_MAX_PERF(max);
2675
2676         value &= ~HWP_DESIRED_PERF(~0L);
2677         value |= HWP_DESIRED_PERF(desired);
2678
2679         if (value == prev)
2680                 return;
2681
2682         WRITE_ONCE(cpu->hwp_req_cached, value);
2683         if (fast_switch)
2684                 wrmsrl(MSR_HWP_REQUEST, value);
2685         else
2686                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2687 }
2688
2689 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2690                                           u32 target_pstate, bool fast_switch)
2691 {
2692         if (fast_switch)
2693                 wrmsrl(MSR_IA32_PERF_CTL,
2694                        pstate_funcs.get_val(cpu, target_pstate));
2695         else
2696                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2697                               pstate_funcs.get_val(cpu, target_pstate));
2698 }
2699
2700 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2701                                        int target_pstate, bool fast_switch)
2702 {
2703         struct cpudata *cpu = all_cpu_data[policy->cpu];
2704         int old_pstate = cpu->pstate.current_pstate;
2705
2706         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2707         if (hwp_active) {
2708                 int max_pstate = policy->strict_target ?
2709                                         target_pstate : cpu->max_perf_ratio;
2710
2711                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2712                                          fast_switch);
2713         } else if (target_pstate != old_pstate) {
2714                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2715         }
2716
2717         cpu->pstate.current_pstate = target_pstate;
2718
2719         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2720                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2721
2722         return target_pstate;
2723 }
2724
2725 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2726                                 unsigned int target_freq,
2727                                 unsigned int relation)
2728 {
2729         struct cpudata *cpu = all_cpu_data[policy->cpu];
2730         struct cpufreq_freqs freqs;
2731         int target_pstate;
2732
2733         update_turbo_state();
2734
2735         freqs.old = policy->cur;
2736         freqs.new = target_freq;
2737
2738         cpufreq_freq_transition_begin(policy, &freqs);
2739
2740         switch (relation) {
2741         case CPUFREQ_RELATION_L:
2742                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2743                 break;
2744         case CPUFREQ_RELATION_H:
2745                 target_pstate = freqs.new / cpu->pstate.scaling;
2746                 break;
2747         default:
2748                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2749                 break;
2750         }
2751
2752         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2753
2754         freqs.new = target_pstate * cpu->pstate.scaling;
2755
2756         cpufreq_freq_transition_end(policy, &freqs, false);
2757
2758         return 0;
2759 }
2760
2761 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2762                                               unsigned int target_freq)
2763 {
2764         struct cpudata *cpu = all_cpu_data[policy->cpu];
2765         int target_pstate;
2766
2767         update_turbo_state();
2768
2769         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2770
2771         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2772
2773         return target_pstate * cpu->pstate.scaling;
2774 }
2775
2776 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2777                                       unsigned long min_perf,
2778                                       unsigned long target_perf,
2779                                       unsigned long capacity)
2780 {
2781         struct cpudata *cpu = all_cpu_data[cpunum];
2782         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2783         int old_pstate = cpu->pstate.current_pstate;
2784         int cap_pstate, min_pstate, max_pstate, target_pstate;
2785
2786         update_turbo_state();
2787         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2788                                              HWP_HIGHEST_PERF(hwp_cap);
2789
2790         /* Optimization: Avoid unnecessary divisions. */
2791
2792         target_pstate = cap_pstate;
2793         if (target_perf < capacity)
2794                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2795
2796         min_pstate = cap_pstate;
2797         if (min_perf < capacity)
2798                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2799
2800         if (min_pstate < cpu->pstate.min_pstate)
2801                 min_pstate = cpu->pstate.min_pstate;
2802
2803         if (min_pstate < cpu->min_perf_ratio)
2804                 min_pstate = cpu->min_perf_ratio;
2805
2806         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2807         if (max_pstate < min_pstate)
2808                 max_pstate = min_pstate;
2809
2810         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2811
2812         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2813
2814         cpu->pstate.current_pstate = target_pstate;
2815         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2816 }
2817
2818 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2819 {
2820         struct freq_qos_request *req;
2821         struct cpudata *cpu;
2822         struct device *dev;
2823         int ret, freq;
2824
2825         dev = get_cpu_device(policy->cpu);
2826         if (!dev)
2827                 return -ENODEV;
2828
2829         ret = __intel_pstate_cpu_init(policy);
2830         if (ret)
2831                 return ret;
2832
2833         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2834         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2835         policy->cur = policy->cpuinfo.min_freq;
2836
2837         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2838         if (!req) {
2839                 ret = -ENOMEM;
2840                 goto pstate_exit;
2841         }
2842
2843         cpu = all_cpu_data[policy->cpu];
2844
2845         if (hwp_active) {
2846                 u64 value;
2847
2848                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2849
2850                 intel_pstate_get_hwp_cap(cpu);
2851
2852                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2853                 WRITE_ONCE(cpu->hwp_req_cached, value);
2854
2855                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2856         } else {
2857                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2858         }
2859
2860         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2861
2862         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2863                                    freq);
2864         if (ret < 0) {
2865                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2866                 goto free_req;
2867         }
2868
2869         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2870
2871         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2872                                    freq);
2873         if (ret < 0) {
2874                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2875                 goto remove_min_req;
2876         }
2877
2878         policy->driver_data = req;
2879
2880         return 0;
2881
2882 remove_min_req:
2883         freq_qos_remove_request(req);
2884 free_req:
2885         kfree(req);
2886 pstate_exit:
2887         intel_pstate_exit_perf_limits(policy);
2888
2889         return ret;
2890 }
2891
2892 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2893 {
2894         struct freq_qos_request *req;
2895
2896         req = policy->driver_data;
2897
2898         freq_qos_remove_request(req + 1);
2899         freq_qos_remove_request(req);
2900         kfree(req);
2901
2902         return intel_pstate_cpu_exit(policy);
2903 }
2904
2905 static struct cpufreq_driver intel_cpufreq = {
2906         .flags          = CPUFREQ_CONST_LOOPS,
2907         .verify         = intel_cpufreq_verify_policy,
2908         .target         = intel_cpufreq_target,
2909         .fast_switch    = intel_cpufreq_fast_switch,
2910         .init           = intel_cpufreq_cpu_init,
2911         .exit           = intel_cpufreq_cpu_exit,
2912         .offline        = intel_cpufreq_cpu_offline,
2913         .online         = intel_pstate_cpu_online,
2914         .suspend        = intel_pstate_suspend,
2915         .resume         = intel_pstate_resume,
2916         .update_limits  = intel_pstate_update_limits,
2917         .name           = "intel_cpufreq",
2918 };
2919
2920 static struct cpufreq_driver *default_driver;
2921
2922 static void intel_pstate_driver_cleanup(void)
2923 {
2924         unsigned int cpu;
2925
2926         cpus_read_lock();
2927         for_each_online_cpu(cpu) {
2928                 if (all_cpu_data[cpu]) {
2929                         if (intel_pstate_driver == &intel_pstate)
2930                                 intel_pstate_clear_update_util_hook(cpu);
2931
2932                         kfree(all_cpu_data[cpu]);
2933                         all_cpu_data[cpu] = NULL;
2934                 }
2935         }
2936         cpus_read_unlock();
2937
2938         intel_pstate_driver = NULL;
2939 }
2940
2941 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2942 {
2943         int ret;
2944
2945         if (driver == &intel_pstate)
2946                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2947
2948         memset(&global, 0, sizeof(global));
2949         global.max_perf_pct = 100;
2950
2951         intel_pstate_driver = driver;
2952         ret = cpufreq_register_driver(intel_pstate_driver);
2953         if (ret) {
2954                 intel_pstate_driver_cleanup();
2955                 return ret;
2956         }
2957
2958         global.min_perf_pct = min_perf_pct_min();
2959
2960         return 0;
2961 }
2962
2963 static ssize_t intel_pstate_show_status(char *buf)
2964 {
2965         if (!intel_pstate_driver)
2966                 return sprintf(buf, "off\n");
2967
2968         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2969                                         "active" : "passive");
2970 }
2971
2972 static int intel_pstate_update_status(const char *buf, size_t size)
2973 {
2974         if (size == 3 && !strncmp(buf, "off", size)) {
2975                 if (!intel_pstate_driver)
2976                         return -EINVAL;
2977
2978                 if (hwp_active)
2979                         return -EBUSY;
2980
2981                 cpufreq_unregister_driver(intel_pstate_driver);
2982                 intel_pstate_driver_cleanup();
2983                 return 0;
2984         }
2985
2986         if (size == 6 && !strncmp(buf, "active", size)) {
2987                 if (intel_pstate_driver) {
2988                         if (intel_pstate_driver == &intel_pstate)
2989                                 return 0;
2990
2991                         cpufreq_unregister_driver(intel_pstate_driver);
2992                 }
2993
2994                 return intel_pstate_register_driver(&intel_pstate);
2995         }
2996
2997         if (size == 7 && !strncmp(buf, "passive", size)) {
2998                 if (intel_pstate_driver) {
2999                         if (intel_pstate_driver == &intel_cpufreq)
3000                                 return 0;
3001
3002                         cpufreq_unregister_driver(intel_pstate_driver);
3003                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3004                 }
3005
3006                 return intel_pstate_register_driver(&intel_cpufreq);
3007         }
3008
3009         return -EINVAL;
3010 }
3011
3012 static int no_load __initdata;
3013 static int no_hwp __initdata;
3014 static int hwp_only __initdata;
3015 static unsigned int force_load __initdata;
3016
3017 static int __init intel_pstate_msrs_not_valid(void)
3018 {
3019         if (!pstate_funcs.get_max() ||
3020             !pstate_funcs.get_min() ||
3021             !pstate_funcs.get_turbo())
3022                 return -ENODEV;
3023
3024         return 0;
3025 }
3026
3027 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3028 {
3029         pstate_funcs.get_max   = funcs->get_max;
3030         pstate_funcs.get_max_physical = funcs->get_max_physical;
3031         pstate_funcs.get_min   = funcs->get_min;
3032         pstate_funcs.get_turbo = funcs->get_turbo;
3033         pstate_funcs.get_scaling = funcs->get_scaling;
3034         pstate_funcs.get_val   = funcs->get_val;
3035         pstate_funcs.get_vid   = funcs->get_vid;
3036         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3037 }
3038
3039 #ifdef CONFIG_ACPI
3040
3041 static bool __init intel_pstate_no_acpi_pss(void)
3042 {
3043         int i;
3044
3045         for_each_possible_cpu(i) {
3046                 acpi_status status;
3047                 union acpi_object *pss;
3048                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3049                 struct acpi_processor *pr = per_cpu(processors, i);
3050
3051                 if (!pr)
3052                         continue;
3053
3054                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3055                 if (ACPI_FAILURE(status))
3056                         continue;
3057
3058                 pss = buffer.pointer;
3059                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3060                         kfree(pss);
3061                         return false;
3062                 }
3063
3064                 kfree(pss);
3065         }
3066
3067         pr_debug("ACPI _PSS not found\n");
3068         return true;
3069 }
3070
3071 static bool __init intel_pstate_no_acpi_pcch(void)
3072 {
3073         acpi_status status;
3074         acpi_handle handle;
3075
3076         status = acpi_get_handle(NULL, "\\_SB", &handle);
3077         if (ACPI_FAILURE(status))
3078                 goto not_found;
3079
3080         if (acpi_has_method(handle, "PCCH"))
3081                 return false;
3082
3083 not_found:
3084         pr_debug("ACPI PCCH not found\n");
3085         return true;
3086 }
3087
3088 static bool __init intel_pstate_has_acpi_ppc(void)
3089 {
3090         int i;
3091
3092         for_each_possible_cpu(i) {
3093                 struct acpi_processor *pr = per_cpu(processors, i);
3094
3095                 if (!pr)
3096                         continue;
3097                 if (acpi_has_method(pr->handle, "_PPC"))
3098                         return true;
3099         }
3100         pr_debug("ACPI _PPC not found\n");
3101         return false;
3102 }
3103
3104 enum {
3105         PSS,
3106         PPC,
3107 };
3108
3109 /* Hardware vendor-specific info that has its own power management modes */
3110 static struct acpi_platform_list plat_info[] __initdata = {
3111         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3112         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3113         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3114         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3115         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3116         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3117         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3118         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3119         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3120         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3121         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3122         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3123         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3124         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3125         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3126         { } /* End */
3127 };
3128
3129 #define BITMASK_OOB     (BIT(8) | BIT(18))
3130
3131 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3132 {
3133         const struct x86_cpu_id *id;
3134         u64 misc_pwr;
3135         int idx;
3136
3137         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3138         if (id) {
3139                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3140                 if (misc_pwr & BITMASK_OOB) {
3141                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3142                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3143                         return true;
3144                 }
3145         }
3146
3147         idx = acpi_match_platform_list(plat_info);
3148         if (idx < 0)
3149                 return false;
3150
3151         switch (plat_info[idx].data) {
3152         case PSS:
3153                 if (!intel_pstate_no_acpi_pss())
3154                         return false;
3155
3156                 return intel_pstate_no_acpi_pcch();
3157         case PPC:
3158                 return intel_pstate_has_acpi_ppc() && !force_load;
3159         }
3160
3161         return false;
3162 }
3163
3164 static void intel_pstate_request_control_from_smm(void)
3165 {
3166         /*
3167          * It may be unsafe to request P-states control from SMM if _PPC support
3168          * has not been enabled.
3169          */
3170         if (acpi_ppc)
3171                 acpi_processor_pstate_control();
3172 }
3173 #else /* CONFIG_ACPI not enabled */
3174 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3175 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3176 static inline void intel_pstate_request_control_from_smm(void) {}
3177 #endif /* CONFIG_ACPI */
3178
3179 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3180
3181 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3182         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3183                                            X86_FEATURE_HWP, hwp_mode)
3184
3185 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3186         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3187         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3188         X86_MATCH_HWP(ANY,              0),
3189         {}
3190 };
3191
3192 static bool intel_pstate_hwp_is_enabled(void)
3193 {
3194         u64 value;
3195
3196         rdmsrl(MSR_PM_ENABLE, value);
3197         return !!(value & 0x1);
3198 }
3199
3200 static int __init intel_pstate_init(void)
3201 {
3202         const struct x86_cpu_id *id;
3203         int rc;
3204
3205         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3206                 return -ENODEV;
3207
3208         if (no_load)
3209                 return -ENODEV;
3210
3211         id = x86_match_cpu(hwp_support_ids);
3212         if (id) {
3213                 copy_cpu_funcs(&core_funcs);
3214                 /*
3215                  * Avoid enabling HWP for processors without EPP support,
3216                  * because that means incomplete HWP implementation which is a
3217                  * corner case and supporting it is generally problematic.
3218                  *
3219                  * If HWP is enabled already, though, there is no choice but to
3220                  * deal with it.
3221                  */
3222                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) ||
3223                     intel_pstate_hwp_is_enabled()) {
3224                         hwp_active++;
3225                         hwp_mode_bdw = id->driver_data;
3226                         intel_pstate.attr = hwp_cpufreq_attrs;
3227                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3228                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3229                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3230                         if (!default_driver)
3231                                 default_driver = &intel_pstate;
3232
3233                         if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3234                                 intel_pstate_cppc_set_cpu_scaling();
3235
3236                         goto hwp_cpu_matched;
3237                 }
3238         } else {
3239                 id = x86_match_cpu(intel_pstate_cpu_ids);
3240                 if (!id) {
3241                         pr_info("CPU model not supported\n");
3242                         return -ENODEV;
3243                 }
3244
3245                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3246         }
3247
3248         if (intel_pstate_msrs_not_valid()) {
3249                 pr_info("Invalid MSRs\n");
3250                 return -ENODEV;
3251         }
3252         /* Without HWP start in the passive mode. */
3253         if (!default_driver)
3254                 default_driver = &intel_cpufreq;
3255
3256 hwp_cpu_matched:
3257         /*
3258          * The Intel pstate driver will be ignored if the platform
3259          * firmware has its own power management modes.
3260          */
3261         if (intel_pstate_platform_pwr_mgmt_exists()) {
3262                 pr_info("P-states controlled by the platform\n");
3263                 return -ENODEV;
3264         }
3265
3266         if (!hwp_active && hwp_only)
3267                 return -ENOTSUPP;
3268
3269         pr_info("Intel P-state driver initializing\n");
3270
3271         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3272         if (!all_cpu_data)
3273                 return -ENOMEM;
3274
3275         intel_pstate_request_control_from_smm();
3276
3277         intel_pstate_sysfs_expose_params();
3278
3279         mutex_lock(&intel_pstate_driver_lock);
3280         rc = intel_pstate_register_driver(default_driver);
3281         mutex_unlock(&intel_pstate_driver_lock);
3282         if (rc) {
3283                 intel_pstate_sysfs_remove();
3284                 return rc;
3285         }
3286
3287         if (hwp_active) {
3288                 const struct x86_cpu_id *id;
3289
3290                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3291                 if (id) {
3292                         set_power_ctl_ee_state(false);
3293                         pr_info("Disabling energy efficiency optimization\n");
3294                 }
3295
3296                 pr_info("HWP enabled\n");
3297         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3298                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3299         }
3300
3301         return 0;
3302 }
3303 device_initcall(intel_pstate_init);
3304
3305 static int __init intel_pstate_setup(char *str)
3306 {
3307         if (!str)
3308                 return -EINVAL;
3309
3310         if (!strcmp(str, "disable"))
3311                 no_load = 1;
3312         else if (!strcmp(str, "active"))
3313                 default_driver = &intel_pstate;
3314         else if (!strcmp(str, "passive"))
3315                 default_driver = &intel_cpufreq;
3316
3317         if (!strcmp(str, "no_hwp")) {
3318                 pr_info("HWP disabled\n");
3319                 no_hwp = 1;
3320         }
3321         if (!strcmp(str, "force"))
3322                 force_load = 1;
3323         if (!strcmp(str, "hwp_only"))
3324                 hwp_only = 1;
3325         if (!strcmp(str, "per_cpu_perf_limits"))
3326                 per_cpu_limits = true;
3327
3328 #ifdef CONFIG_ACPI
3329         if (!strcmp(str, "support_acpi_ppc"))
3330                 acpi_ppc = true;
3331 #endif
3332
3333         return 0;
3334 }
3335 early_param("intel_pstate", intel_pstate_setup);
3336
3337 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3338 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3339 MODULE_LICENSE("GPL");