Merge tag 'dt-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / cpufreq / acpi-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22
23 #include <linux/acpi.h>
24 #include <linux/io.h>
25 #include <linux/delay.h>
26 #include <linux/uaccess.h>
27
28 #include <acpi/processor.h>
29 #include <acpi/cppc_acpi.h>
30
31 #include <asm/msr.h>
32 #include <asm/processor.h>
33 #include <asm/cpufeature.h>
34 #include <asm/cpu_device_id.h>
35
36 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
37 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
38 MODULE_LICENSE("GPL");
39
40 enum {
41         UNDEFINED_CAPABLE = 0,
42         SYSTEM_INTEL_MSR_CAPABLE,
43         SYSTEM_AMD_MSR_CAPABLE,
44         SYSTEM_IO_CAPABLE,
45 };
46
47 #define INTEL_MSR_RANGE         (0xffff)
48 #define AMD_MSR_RANGE           (0x7)
49 #define HYGON_MSR_RANGE         (0x7)
50
51 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
52
53 struct acpi_cpufreq_data {
54         unsigned int resume;
55         unsigned int cpu_feature;
56         unsigned int acpi_perf_cpu;
57         cpumask_var_t freqdomain_cpus;
58         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
59         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
60 };
61
62 /* acpi_perf_data is a pointer to percpu data. */
63 static struct acpi_processor_performance __percpu *acpi_perf_data;
64
65 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
66 {
67         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
68 }
69
70 static struct cpufreq_driver acpi_cpufreq_driver;
71
72 static unsigned int acpi_pstate_strict;
73
74 static bool boost_state(unsigned int cpu)
75 {
76         u32 lo, hi;
77         u64 msr;
78
79         switch (boot_cpu_data.x86_vendor) {
80         case X86_VENDOR_INTEL:
81                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
82                 msr = lo | ((u64)hi << 32);
83                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
84         case X86_VENDOR_HYGON:
85         case X86_VENDOR_AMD:
86                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
87                 msr = lo | ((u64)hi << 32);
88                 return !(msr & MSR_K7_HWCR_CPB_DIS);
89         }
90         return false;
91 }
92
93 static int boost_set_msr(bool enable)
94 {
95         u32 msr_addr;
96         u64 msr_mask, val;
97
98         switch (boot_cpu_data.x86_vendor) {
99         case X86_VENDOR_INTEL:
100                 msr_addr = MSR_IA32_MISC_ENABLE;
101                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
102                 break;
103         case X86_VENDOR_HYGON:
104         case X86_VENDOR_AMD:
105                 msr_addr = MSR_K7_HWCR;
106                 msr_mask = MSR_K7_HWCR_CPB_DIS;
107                 break;
108         default:
109                 return -EINVAL;
110         }
111
112         rdmsrl(msr_addr, val);
113
114         if (enable)
115                 val &= ~msr_mask;
116         else
117                 val |= msr_mask;
118
119         wrmsrl(msr_addr, val);
120         return 0;
121 }
122
123 static void boost_set_msr_each(void *p_en)
124 {
125         bool enable = (bool) p_en;
126
127         boost_set_msr(enable);
128 }
129
130 static int set_boost(struct cpufreq_policy *policy, int val)
131 {
132         on_each_cpu_mask(policy->cpus, boost_set_msr_each,
133                          (void *)(long)val, 1);
134         pr_debug("CPU %*pbl: Core Boosting %sabled.\n",
135                  cpumask_pr_args(policy->cpus), val ? "en" : "dis");
136
137         return 0;
138 }
139
140 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
141 {
142         struct acpi_cpufreq_data *data = policy->driver_data;
143
144         if (unlikely(!data))
145                 return -ENODEV;
146
147         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
148 }
149
150 cpufreq_freq_attr_ro(freqdomain_cpus);
151
152 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
153 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
154                          size_t count)
155 {
156         int ret;
157         unsigned int val = 0;
158
159         if (!acpi_cpufreq_driver.set_boost)
160                 return -EINVAL;
161
162         ret = kstrtouint(buf, 10, &val);
163         if (ret || val > 1)
164                 return -EINVAL;
165
166         cpus_read_lock();
167         set_boost(policy, val);
168         cpus_read_unlock();
169
170         return count;
171 }
172
173 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
174 {
175         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
176 }
177
178 cpufreq_freq_attr_rw(cpb);
179 #endif
180
181 static int check_est_cpu(unsigned int cpuid)
182 {
183         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
184
185         return cpu_has(cpu, X86_FEATURE_EST);
186 }
187
188 static int check_amd_hwpstate_cpu(unsigned int cpuid)
189 {
190         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
191
192         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
193 }
194
195 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
196 {
197         struct acpi_cpufreq_data *data = policy->driver_data;
198         struct acpi_processor_performance *perf;
199         int i;
200
201         perf = to_perf_data(data);
202
203         for (i = 0; i < perf->state_count; i++) {
204                 if (value == perf->states[i].status)
205                         return policy->freq_table[i].frequency;
206         }
207         return 0;
208 }
209
210 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
211 {
212         struct acpi_cpufreq_data *data = policy->driver_data;
213         struct cpufreq_frequency_table *pos;
214         struct acpi_processor_performance *perf;
215
216         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
217                 msr &= AMD_MSR_RANGE;
218         else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
219                 msr &= HYGON_MSR_RANGE;
220         else
221                 msr &= INTEL_MSR_RANGE;
222
223         perf = to_perf_data(data);
224
225         cpufreq_for_each_entry(pos, policy->freq_table)
226                 if (msr == perf->states[pos->driver_data].status)
227                         return pos->frequency;
228         return policy->freq_table[0].frequency;
229 }
230
231 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
232 {
233         struct acpi_cpufreq_data *data = policy->driver_data;
234
235         switch (data->cpu_feature) {
236         case SYSTEM_INTEL_MSR_CAPABLE:
237         case SYSTEM_AMD_MSR_CAPABLE:
238                 return extract_msr(policy, val);
239         case SYSTEM_IO_CAPABLE:
240                 return extract_io(policy, val);
241         default:
242                 return 0;
243         }
244 }
245
246 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
247 {
248         u32 val, dummy __always_unused;
249
250         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
251         return val;
252 }
253
254 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
255 {
256         u32 lo, hi;
257
258         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
259         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
260         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
261 }
262
263 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
264 {
265         u32 val, dummy __always_unused;
266
267         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
268         return val;
269 }
270
271 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
272 {
273         wrmsr(MSR_AMD_PERF_CTL, val, 0);
274 }
275
276 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
277 {
278         u32 val;
279
280         acpi_os_read_port(reg->address, &val, reg->bit_width);
281         return val;
282 }
283
284 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
285 {
286         acpi_os_write_port(reg->address, val, reg->bit_width);
287 }
288
289 struct drv_cmd {
290         struct acpi_pct_register *reg;
291         u32 val;
292         union {
293                 void (*write)(struct acpi_pct_register *reg, u32 val);
294                 u32 (*read)(struct acpi_pct_register *reg);
295         } func;
296 };
297
298 /* Called via smp_call_function_single(), on the target CPU */
299 static void do_drv_read(void *_cmd)
300 {
301         struct drv_cmd *cmd = _cmd;
302
303         cmd->val = cmd->func.read(cmd->reg);
304 }
305
306 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
307 {
308         struct acpi_processor_performance *perf = to_perf_data(data);
309         struct drv_cmd cmd = {
310                 .reg = &perf->control_register,
311                 .func.read = data->cpu_freq_read,
312         };
313         int err;
314
315         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
316         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
317         return cmd.val;
318 }
319
320 /* Called via smp_call_function_many(), on the target CPUs */
321 static void do_drv_write(void *_cmd)
322 {
323         struct drv_cmd *cmd = _cmd;
324
325         cmd->func.write(cmd->reg, cmd->val);
326 }
327
328 static void drv_write(struct acpi_cpufreq_data *data,
329                       const struct cpumask *mask, u32 val)
330 {
331         struct acpi_processor_performance *perf = to_perf_data(data);
332         struct drv_cmd cmd = {
333                 .reg = &perf->control_register,
334                 .val = val,
335                 .func.write = data->cpu_freq_write,
336         };
337         int this_cpu;
338
339         this_cpu = get_cpu();
340         if (cpumask_test_cpu(this_cpu, mask))
341                 do_drv_write(&cmd);
342
343         smp_call_function_many(mask, do_drv_write, &cmd, 1);
344         put_cpu();
345 }
346
347 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
348 {
349         u32 val;
350
351         if (unlikely(cpumask_empty(mask)))
352                 return 0;
353
354         val = drv_read(data, mask);
355
356         pr_debug("%s = %u\n", __func__, val);
357
358         return val;
359 }
360
361 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
362 {
363         struct acpi_cpufreq_data *data;
364         struct cpufreq_policy *policy;
365         unsigned int freq;
366         unsigned int cached_freq;
367
368         pr_debug("%s (%d)\n", __func__, cpu);
369
370         policy = cpufreq_cpu_get_raw(cpu);
371         if (unlikely(!policy))
372                 return 0;
373
374         data = policy->driver_data;
375         if (unlikely(!data || !policy->freq_table))
376                 return 0;
377
378         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
379         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
380         if (freq != cached_freq) {
381                 /*
382                  * The dreaded BIOS frequency change behind our back.
383                  * Force set the frequency on next target call.
384                  */
385                 data->resume = 1;
386         }
387
388         pr_debug("cur freq = %u\n", freq);
389
390         return freq;
391 }
392
393 static unsigned int check_freqs(struct cpufreq_policy *policy,
394                                 const struct cpumask *mask, unsigned int freq)
395 {
396         struct acpi_cpufreq_data *data = policy->driver_data;
397         unsigned int cur_freq;
398         unsigned int i;
399
400         for (i = 0; i < 100; i++) {
401                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
402                 if (cur_freq == freq)
403                         return 1;
404                 udelay(10);
405         }
406         return 0;
407 }
408
409 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
410                                unsigned int index)
411 {
412         struct acpi_cpufreq_data *data = policy->driver_data;
413         struct acpi_processor_performance *perf;
414         const struct cpumask *mask;
415         unsigned int next_perf_state = 0; /* Index into perf table */
416         int result = 0;
417
418         if (unlikely(!data)) {
419                 return -ENODEV;
420         }
421
422         perf = to_perf_data(data);
423         next_perf_state = policy->freq_table[index].driver_data;
424         if (perf->state == next_perf_state) {
425                 if (unlikely(data->resume)) {
426                         pr_debug("Called after resume, resetting to P%d\n",
427                                 next_perf_state);
428                         data->resume = 0;
429                 } else {
430                         pr_debug("Already at target state (P%d)\n",
431                                 next_perf_state);
432                         return 0;
433                 }
434         }
435
436         /*
437          * The core won't allow CPUs to go away until the governor has been
438          * stopped, so we can rely on the stability of policy->cpus.
439          */
440         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
441                 cpumask_of(policy->cpu) : policy->cpus;
442
443         drv_write(data, mask, perf->states[next_perf_state].control);
444
445         if (acpi_pstate_strict) {
446                 if (!check_freqs(policy, mask,
447                                  policy->freq_table[index].frequency)) {
448                         pr_debug("%s (%d)\n", __func__, policy->cpu);
449                         result = -EAGAIN;
450                 }
451         }
452
453         if (!result)
454                 perf->state = next_perf_state;
455
456         return result;
457 }
458
459 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
460                                              unsigned int target_freq)
461 {
462         struct acpi_cpufreq_data *data = policy->driver_data;
463         struct acpi_processor_performance *perf;
464         struct cpufreq_frequency_table *entry;
465         unsigned int next_perf_state, next_freq, index;
466
467         /*
468          * Find the closest frequency above target_freq.
469          */
470         if (policy->cached_target_freq == target_freq)
471                 index = policy->cached_resolved_idx;
472         else
473                 index = cpufreq_table_find_index_dl(policy, target_freq);
474
475         entry = &policy->freq_table[index];
476         next_freq = entry->frequency;
477         next_perf_state = entry->driver_data;
478
479         perf = to_perf_data(data);
480         if (perf->state == next_perf_state) {
481                 if (unlikely(data->resume))
482                         data->resume = 0;
483                 else
484                         return next_freq;
485         }
486
487         data->cpu_freq_write(&perf->control_register,
488                              perf->states[next_perf_state].control);
489         perf->state = next_perf_state;
490         return next_freq;
491 }
492
493 static unsigned long
494 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
495 {
496         struct acpi_processor_performance *perf;
497
498         perf = to_perf_data(data);
499         if (cpu_khz) {
500                 /* search the closest match to cpu_khz */
501                 unsigned int i;
502                 unsigned long freq;
503                 unsigned long freqn = perf->states[0].core_frequency * 1000;
504
505                 for (i = 0; i < (perf->state_count-1); i++) {
506                         freq = freqn;
507                         freqn = perf->states[i+1].core_frequency * 1000;
508                         if ((2 * cpu_khz) > (freqn + freq)) {
509                                 perf->state = i;
510                                 return freq;
511                         }
512                 }
513                 perf->state = perf->state_count-1;
514                 return freqn;
515         } else {
516                 /* assume CPU is at P0... */
517                 perf->state = 0;
518                 return perf->states[0].core_frequency * 1000;
519         }
520 }
521
522 static void free_acpi_perf_data(void)
523 {
524         unsigned int i;
525
526         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
527         for_each_possible_cpu(i)
528                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
529                                  ->shared_cpu_map);
530         free_percpu(acpi_perf_data);
531 }
532
533 static int cpufreq_boost_online(unsigned int cpu)
534 {
535         /*
536          * On the CPU_UP path we simply keep the boost-disable flag
537          * in sync with the current global state.
538          */
539         return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
540 }
541
542 static int cpufreq_boost_down_prep(unsigned int cpu)
543 {
544         /*
545          * Clear the boost-disable bit on the CPU_DOWN path so that
546          * this cpu cannot block the remaining ones from boosting.
547          */
548         return boost_set_msr(1);
549 }
550
551 /*
552  * acpi_cpufreq_early_init - initialize ACPI P-States library
553  *
554  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
555  * in order to determine correct frequency and voltage pairings. We can
556  * do _PDC and _PSD and find out the processor dependency for the
557  * actual init that will happen later...
558  */
559 static int __init acpi_cpufreq_early_init(void)
560 {
561         unsigned int i;
562         pr_debug("%s\n", __func__);
563
564         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
565         if (!acpi_perf_data) {
566                 pr_debug("Memory allocation error for acpi_perf_data.\n");
567                 return -ENOMEM;
568         }
569         for_each_possible_cpu(i) {
570                 if (!zalloc_cpumask_var_node(
571                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
572                         GFP_KERNEL, cpu_to_node(i))) {
573
574                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
575                         free_acpi_perf_data();
576                         return -ENOMEM;
577                 }
578         }
579
580         /* Do initialization in ACPI core */
581         acpi_processor_preregister_performance(acpi_perf_data);
582         return 0;
583 }
584
585 #ifdef CONFIG_SMP
586 /*
587  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
588  * or do it in BIOS firmware and won't inform about it to OS. If not
589  * detected, this has a side effect of making CPU run at a different speed
590  * than OS intended it to run at. Detect it and handle it cleanly.
591  */
592 static int bios_with_sw_any_bug;
593
594 static int sw_any_bug_found(const struct dmi_system_id *d)
595 {
596         bios_with_sw_any_bug = 1;
597         return 0;
598 }
599
600 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
601         {
602                 .callback = sw_any_bug_found,
603                 .ident = "Supermicro Server X6DLP",
604                 .matches = {
605                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
606                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
607                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
608                 },
609         },
610         { }
611 };
612
613 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
614 {
615         /* Intel Xeon Processor 7100 Series Specification Update
616          * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
617          * AL30: A Machine Check Exception (MCE) Occurring during an
618          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
619          * Both Processor Cores to Lock Up. */
620         if (c->x86_vendor == X86_VENDOR_INTEL) {
621                 if ((c->x86 == 15) &&
622                     (c->x86_model == 6) &&
623                     (c->x86_stepping == 8)) {
624                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
625                         return -ENODEV;
626                     }
627                 }
628         return 0;
629 }
630 #endif
631
632 #ifdef CONFIG_ACPI_CPPC_LIB
633 static u64 get_max_boost_ratio(unsigned int cpu)
634 {
635         struct cppc_perf_caps perf_caps;
636         u64 highest_perf, nominal_perf;
637         int ret;
638
639         if (acpi_pstate_strict)
640                 return 0;
641
642         ret = cppc_get_perf_caps(cpu, &perf_caps);
643         if (ret) {
644                 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
645                          cpu, ret);
646                 return 0;
647         }
648
649         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
650                 highest_perf = amd_get_highest_perf();
651         else
652                 highest_perf = perf_caps.highest_perf;
653
654         nominal_perf = perf_caps.nominal_perf;
655
656         if (!highest_perf || !nominal_perf) {
657                 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
658                 return 0;
659         }
660
661         if (highest_perf < nominal_perf) {
662                 pr_debug("CPU%d: nominal performance above highest\n", cpu);
663                 return 0;
664         }
665
666         return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
667 }
668 #else
669 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
670 #endif
671
672 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
673 {
674         struct cpufreq_frequency_table *freq_table;
675         struct acpi_processor_performance *perf;
676         struct acpi_cpufreq_data *data;
677         unsigned int cpu = policy->cpu;
678         struct cpuinfo_x86 *c = &cpu_data(cpu);
679         unsigned int valid_states = 0;
680         unsigned int result = 0;
681         u64 max_boost_ratio;
682         unsigned int i;
683 #ifdef CONFIG_SMP
684         static int blacklisted;
685 #endif
686
687         pr_debug("%s\n", __func__);
688
689 #ifdef CONFIG_SMP
690         if (blacklisted)
691                 return blacklisted;
692         blacklisted = acpi_cpufreq_blacklist(c);
693         if (blacklisted)
694                 return blacklisted;
695 #endif
696
697         data = kzalloc(sizeof(*data), GFP_KERNEL);
698         if (!data)
699                 return -ENOMEM;
700
701         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
702                 result = -ENOMEM;
703                 goto err_free;
704         }
705
706         perf = per_cpu_ptr(acpi_perf_data, cpu);
707         data->acpi_perf_cpu = cpu;
708         policy->driver_data = data;
709
710         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
711                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
712
713         result = acpi_processor_register_performance(perf, cpu);
714         if (result)
715                 goto err_free_mask;
716
717         policy->shared_type = perf->shared_type;
718
719         /*
720          * Will let policy->cpus know about dependency only when software
721          * coordination is required.
722          */
723         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
724             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
725                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
726         }
727         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
728
729 #ifdef CONFIG_SMP
730         dmi_check_system(sw_any_bug_dmi_table);
731         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
732                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
733                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
734         }
735
736         if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
737             !acpi_pstate_strict) {
738                 cpumask_clear(policy->cpus);
739                 cpumask_set_cpu(cpu, policy->cpus);
740                 cpumask_copy(data->freqdomain_cpus,
741                              topology_sibling_cpumask(cpu));
742                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
743                 pr_info_once("overriding BIOS provided _PSD data\n");
744         }
745 #endif
746
747         /* capability check */
748         if (perf->state_count <= 1) {
749                 pr_debug("No P-States\n");
750                 result = -ENODEV;
751                 goto err_unreg;
752         }
753
754         if (perf->control_register.space_id != perf->status_register.space_id) {
755                 result = -ENODEV;
756                 goto err_unreg;
757         }
758
759         switch (perf->control_register.space_id) {
760         case ACPI_ADR_SPACE_SYSTEM_IO:
761                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
762                     boot_cpu_data.x86 == 0xf) {
763                         pr_debug("AMD K8 systems must use native drivers.\n");
764                         result = -ENODEV;
765                         goto err_unreg;
766                 }
767                 pr_debug("SYSTEM IO addr space\n");
768                 data->cpu_feature = SYSTEM_IO_CAPABLE;
769                 data->cpu_freq_read = cpu_freq_read_io;
770                 data->cpu_freq_write = cpu_freq_write_io;
771                 break;
772         case ACPI_ADR_SPACE_FIXED_HARDWARE:
773                 pr_debug("HARDWARE addr space\n");
774                 if (check_est_cpu(cpu)) {
775                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
776                         data->cpu_freq_read = cpu_freq_read_intel;
777                         data->cpu_freq_write = cpu_freq_write_intel;
778                         break;
779                 }
780                 if (check_amd_hwpstate_cpu(cpu)) {
781                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
782                         data->cpu_freq_read = cpu_freq_read_amd;
783                         data->cpu_freq_write = cpu_freq_write_amd;
784                         break;
785                 }
786                 result = -ENODEV;
787                 goto err_unreg;
788         default:
789                 pr_debug("Unknown addr space %d\n",
790                         (u32) (perf->control_register.space_id));
791                 result = -ENODEV;
792                 goto err_unreg;
793         }
794
795         freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
796                              GFP_KERNEL);
797         if (!freq_table) {
798                 result = -ENOMEM;
799                 goto err_unreg;
800         }
801
802         /* detect transition latency */
803         policy->cpuinfo.transition_latency = 0;
804         for (i = 0; i < perf->state_count; i++) {
805                 if ((perf->states[i].transition_latency * 1000) >
806                     policy->cpuinfo.transition_latency)
807                         policy->cpuinfo.transition_latency =
808                             perf->states[i].transition_latency * 1000;
809         }
810
811         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
812         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
813             policy->cpuinfo.transition_latency > 20 * 1000) {
814                 policy->cpuinfo.transition_latency = 20 * 1000;
815                 pr_info_once("P-state transition latency capped at 20 uS\n");
816         }
817
818         /* table init */
819         for (i = 0; i < perf->state_count; i++) {
820                 if (i > 0 && perf->states[i].core_frequency >=
821                     freq_table[valid_states-1].frequency / 1000)
822                         continue;
823
824                 freq_table[valid_states].driver_data = i;
825                 freq_table[valid_states].frequency =
826                     perf->states[i].core_frequency * 1000;
827                 valid_states++;
828         }
829         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
830
831         max_boost_ratio = get_max_boost_ratio(cpu);
832         if (max_boost_ratio) {
833                 unsigned int freq = freq_table[0].frequency;
834
835                 /*
836                  * Because the loop above sorts the freq_table entries in the
837                  * descending order, freq is the maximum frequency in the table.
838                  * Assume that it corresponds to the CPPC nominal frequency and
839                  * use it to set cpuinfo.max_freq.
840                  */
841                 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
842         } else {
843                 /*
844                  * If the maximum "boost" frequency is unknown, ask the arch
845                  * scale-invariance code to use the "nominal" performance for
846                  * CPU utilization scaling so as to prevent the schedutil
847                  * governor from selecting inadequate CPU frequencies.
848                  */
849                 arch_set_max_freq_ratio(true);
850         }
851
852         policy->freq_table = freq_table;
853         perf->state = 0;
854
855         switch (perf->control_register.space_id) {
856         case ACPI_ADR_SPACE_SYSTEM_IO:
857                 /*
858                  * The core will not set policy->cur, because
859                  * cpufreq_driver->get is NULL, so we need to set it here.
860                  * However, we have to guess it, because the current speed is
861                  * unknown and not detectable via IO ports.
862                  */
863                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
864                 break;
865         case ACPI_ADR_SPACE_FIXED_HARDWARE:
866                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
867                 break;
868         default:
869                 break;
870         }
871
872         /* notify BIOS that we exist */
873         acpi_processor_notify_smm(THIS_MODULE);
874
875         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
876         for (i = 0; i < perf->state_count; i++)
877                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
878                         (i == perf->state ? '*' : ' '), i,
879                         (u32) perf->states[i].core_frequency,
880                         (u32) perf->states[i].power,
881                         (u32) perf->states[i].transition_latency);
882
883         /*
884          * the first call to ->target() should result in us actually
885          * writing something to the appropriate registers.
886          */
887         data->resume = 1;
888
889         policy->fast_switch_possible = !acpi_pstate_strict &&
890                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
891
892         return result;
893
894 err_unreg:
895         acpi_processor_unregister_performance(cpu);
896 err_free_mask:
897         free_cpumask_var(data->freqdomain_cpus);
898 err_free:
899         kfree(data);
900         policy->driver_data = NULL;
901
902         return result;
903 }
904
905 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
906 {
907         struct acpi_cpufreq_data *data = policy->driver_data;
908
909         pr_debug("%s\n", __func__);
910
911         policy->fast_switch_possible = false;
912         policy->driver_data = NULL;
913         acpi_processor_unregister_performance(data->acpi_perf_cpu);
914         free_cpumask_var(data->freqdomain_cpus);
915         kfree(policy->freq_table);
916         kfree(data);
917
918         return 0;
919 }
920
921 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
922 {
923         struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
924                                                               policy->cpu);
925         unsigned int freq = policy->freq_table[0].frequency;
926
927         if (perf->states[0].core_frequency * 1000 != freq)
928                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
929 }
930
931 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
932 {
933         struct acpi_cpufreq_data *data = policy->driver_data;
934
935         pr_debug("%s\n", __func__);
936
937         data->resume = 1;
938
939         return 0;
940 }
941
942 static struct freq_attr *acpi_cpufreq_attr[] = {
943         &cpufreq_freq_attr_scaling_available_freqs,
944         &freqdomain_cpus,
945 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
946         &cpb,
947 #endif
948         NULL,
949 };
950
951 static struct cpufreq_driver acpi_cpufreq_driver = {
952         .verify         = cpufreq_generic_frequency_table_verify,
953         .target_index   = acpi_cpufreq_target,
954         .fast_switch    = acpi_cpufreq_fast_switch,
955         .bios_limit     = acpi_processor_get_bios_limit,
956         .init           = acpi_cpufreq_cpu_init,
957         .exit           = acpi_cpufreq_cpu_exit,
958         .ready          = acpi_cpufreq_cpu_ready,
959         .resume         = acpi_cpufreq_resume,
960         .name           = "acpi-cpufreq",
961         .attr           = acpi_cpufreq_attr,
962 };
963
964 static enum cpuhp_state acpi_cpufreq_online;
965
966 static void __init acpi_cpufreq_boost_init(void)
967 {
968         int ret;
969
970         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
971                 pr_debug("Boost capabilities not present in the processor\n");
972                 return;
973         }
974
975         acpi_cpufreq_driver.set_boost = set_boost;
976         acpi_cpufreq_driver.boost_enabled = boost_state(0);
977
978         /*
979          * This calls the online callback on all online cpu and forces all
980          * MSRs to the same value.
981          */
982         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
983                                 cpufreq_boost_online, cpufreq_boost_down_prep);
984         if (ret < 0) {
985                 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
986                 return;
987         }
988         acpi_cpufreq_online = ret;
989 }
990
991 static void acpi_cpufreq_boost_exit(void)
992 {
993         if (acpi_cpufreq_online > 0)
994                 cpuhp_remove_state_nocalls(acpi_cpufreq_online);
995 }
996
997 static int __init acpi_cpufreq_init(void)
998 {
999         int ret;
1000
1001         if (acpi_disabled)
1002                 return -ENODEV;
1003
1004         /* don't keep reloading if cpufreq_driver exists */
1005         if (cpufreq_get_current_driver())
1006                 return -EEXIST;
1007
1008         pr_debug("%s\n", __func__);
1009
1010         ret = acpi_cpufreq_early_init();
1011         if (ret)
1012                 return ret;
1013
1014 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1015         /* this is a sysfs file with a strange name and an even stranger
1016          * semantic - per CPU instantiation, but system global effect.
1017          * Lets enable it only on AMD CPUs for compatibility reasons and
1018          * only if configured. This is considered legacy code, which
1019          * will probably be removed at some point in the future.
1020          */
1021         if (!check_amd_hwpstate_cpu(0)) {
1022                 struct freq_attr **attr;
1023
1024                 pr_debug("CPB unsupported, do not expose it\n");
1025
1026                 for (attr = acpi_cpufreq_attr; *attr; attr++)
1027                         if (*attr == &cpb) {
1028                                 *attr = NULL;
1029                                 break;
1030                         }
1031         }
1032 #endif
1033         acpi_cpufreq_boost_init();
1034
1035         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1036         if (ret) {
1037                 free_acpi_perf_data();
1038                 acpi_cpufreq_boost_exit();
1039         }
1040         return ret;
1041 }
1042
1043 static void __exit acpi_cpufreq_exit(void)
1044 {
1045         pr_debug("%s\n", __func__);
1046
1047         acpi_cpufreq_boost_exit();
1048
1049         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1050
1051         free_acpi_perf_data();
1052 }
1053
1054 module_param(acpi_pstate_strict, uint, 0644);
1055 MODULE_PARM_DESC(acpi_pstate_strict,
1056         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1057         "performed during frequency changes.");
1058
1059 late_initcall(acpi_cpufreq_init);
1060 module_exit(acpi_cpufreq_exit);
1061
1062 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
1063         X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
1064         X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
1065         {}
1066 };
1067 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1068
1069 static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1070         {ACPI_PROCESSOR_OBJECT_HID, },
1071         {ACPI_PROCESSOR_DEVICE_HID, },
1072         {},
1073 };
1074 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1075
1076 MODULE_ALIAS("acpi");