Merge tag 'defconfig-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / clocksource / exynos_mct.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* linux/arch/arm/mach-exynos4/mct.c
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  *              http://www.samsung.com
6  *
7  * Exynos4 MCT(Multi-Core Timer) support
8 */
9
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/err.h>
13 #include <linux/clk.h>
14 #include <linux/clockchips.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/clocksource.h>
22 #include <linux/sched_clock.h>
23
24 #define EXYNOS4_MCTREG(x)               (x)
25 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
26 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
27 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
28 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
29 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
30 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
31 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
32 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
33 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
34 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
35 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
36 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
37 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
38
39 #define MCT_L_TCNTB_OFFSET              (0x00)
40 #define MCT_L_ICNTB_OFFSET              (0x08)
41 #define MCT_L_TCON_OFFSET               (0x20)
42 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
43 #define MCT_L_INT_ENB_OFFSET            (0x34)
44 #define MCT_L_WSTAT_OFFSET              (0x40)
45 #define MCT_G_TCON_START                (1 << 8)
46 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
47 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
48 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
49 #define MCT_L_TCON_INT_START            (1 << 1)
50 #define MCT_L_TCON_TIMER_START          (1 << 0)
51
52 #define TICK_BASE_CNT   1
53
54 #ifdef CONFIG_ARM
55 /* Use values higher than ARM arch timer. See 6282edb72bed. */
56 #define MCT_CLKSOURCE_RATING            450
57 #define MCT_CLKEVENTS_RATING            500
58 #else
59 #define MCT_CLKSOURCE_RATING            350
60 #define MCT_CLKEVENTS_RATING            350
61 #endif
62
63 enum {
64         MCT_INT_SPI,
65         MCT_INT_PPI
66 };
67
68 enum {
69         MCT_G0_IRQ,
70         MCT_G1_IRQ,
71         MCT_G2_IRQ,
72         MCT_G3_IRQ,
73         MCT_L0_IRQ,
74         MCT_L1_IRQ,
75         MCT_L2_IRQ,
76         MCT_L3_IRQ,
77         MCT_L4_IRQ,
78         MCT_L5_IRQ,
79         MCT_L6_IRQ,
80         MCT_L7_IRQ,
81         MCT_NR_IRQS,
82 };
83
84 static void __iomem *reg_base;
85 static unsigned long clk_rate;
86 static unsigned int mct_int_type;
87 static int mct_irqs[MCT_NR_IRQS];
88
89 struct mct_clock_event_device {
90         struct clock_event_device evt;
91         unsigned long base;
92         char name[10];
93 };
94
95 static void exynos4_mct_write(unsigned int value, unsigned long offset)
96 {
97         unsigned long stat_addr;
98         u32 mask;
99         u32 i;
100
101         writel_relaxed(value, reg_base + offset);
102
103         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
104                 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
105                 switch (offset & ~EXYNOS4_MCT_L_MASK) {
106                 case MCT_L_TCON_OFFSET:
107                         mask = 1 << 3;          /* L_TCON write status */
108                         break;
109                 case MCT_L_ICNTB_OFFSET:
110                         mask = 1 << 1;          /* L_ICNTB write status */
111                         break;
112                 case MCT_L_TCNTB_OFFSET:
113                         mask = 1 << 0;          /* L_TCNTB write status */
114                         break;
115                 default:
116                         return;
117                 }
118         } else {
119                 switch (offset) {
120                 case EXYNOS4_MCT_G_TCON:
121                         stat_addr = EXYNOS4_MCT_G_WSTAT;
122                         mask = 1 << 16;         /* G_TCON write status */
123                         break;
124                 case EXYNOS4_MCT_G_COMP0_L:
125                         stat_addr = EXYNOS4_MCT_G_WSTAT;
126                         mask = 1 << 0;          /* G_COMP0_L write status */
127                         break;
128                 case EXYNOS4_MCT_G_COMP0_U:
129                         stat_addr = EXYNOS4_MCT_G_WSTAT;
130                         mask = 1 << 1;          /* G_COMP0_U write status */
131                         break;
132                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
133                         stat_addr = EXYNOS4_MCT_G_WSTAT;
134                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
135                         break;
136                 case EXYNOS4_MCT_G_CNT_L:
137                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138                         mask = 1 << 0;          /* G_CNT_L write status */
139                         break;
140                 case EXYNOS4_MCT_G_CNT_U:
141                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
142                         mask = 1 << 1;          /* G_CNT_U write status */
143                         break;
144                 default:
145                         return;
146                 }
147         }
148
149         /* Wait maximum 1 ms until written values are applied */
150         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
151                 if (readl_relaxed(reg_base + stat_addr) & mask) {
152                         writel_relaxed(mask, reg_base + stat_addr);
153                         return;
154                 }
155
156         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
157 }
158
159 /* Clocksource handling */
160 static void exynos4_mct_frc_start(void)
161 {
162         u32 reg;
163
164         reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
165         reg |= MCT_G_TCON_START;
166         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
167 }
168
169 /**
170  * exynos4_read_count_64 - Read all 64-bits of the global counter
171  *
172  * This will read all 64-bits of the global counter taking care to make sure
173  * that the upper and lower half match.  Note that reading the MCT can be quite
174  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
175  * only) version when possible.
176  *
177  * Returns the number of cycles in the global counter.
178  */
179 static u64 exynos4_read_count_64(void)
180 {
181         unsigned int lo, hi;
182         u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
183
184         do {
185                 hi = hi2;
186                 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
187                 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
188         } while (hi != hi2);
189
190         return ((u64)hi << 32) | lo;
191 }
192
193 /**
194  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
195  *
196  * This will read just the lower 32-bits of the global counter.  This is marked
197  * as notrace so it can be used by the scheduler clock.
198  *
199  * Returns the number of cycles in the global counter (lower 32 bits).
200  */
201 static u32 notrace exynos4_read_count_32(void)
202 {
203         return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
204 }
205
206 static u64 exynos4_frc_read(struct clocksource *cs)
207 {
208         return exynos4_read_count_32();
209 }
210
211 static void exynos4_frc_resume(struct clocksource *cs)
212 {
213         exynos4_mct_frc_start();
214 }
215
216 static struct clocksource mct_frc = {
217         .name           = "mct-frc",
218         .rating         = MCT_CLKSOURCE_RATING,
219         .read           = exynos4_frc_read,
220         .mask           = CLOCKSOURCE_MASK(32),
221         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
222         .resume         = exynos4_frc_resume,
223 };
224
225 static u64 notrace exynos4_read_sched_clock(void)
226 {
227         return exynos4_read_count_32();
228 }
229
230 #if defined(CONFIG_ARM)
231 static struct delay_timer exynos4_delay_timer;
232
233 static cycles_t exynos4_read_current_timer(void)
234 {
235         BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
236                          "cycles_t needs to move to 32-bit for ARM64 usage");
237         return exynos4_read_count_32();
238 }
239 #endif
240
241 static int __init exynos4_clocksource_init(void)
242 {
243         exynos4_mct_frc_start();
244
245 #if defined(CONFIG_ARM)
246         exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
247         exynos4_delay_timer.freq = clk_rate;
248         register_current_timer_delay(&exynos4_delay_timer);
249 #endif
250
251         if (clocksource_register_hz(&mct_frc, clk_rate))
252                 panic("%s: can't register clocksource\n", mct_frc.name);
253
254         sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
255
256         return 0;
257 }
258
259 static void exynos4_mct_comp0_stop(void)
260 {
261         unsigned int tcon;
262
263         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
264         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
265
266         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
267         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
268 }
269
270 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
271 {
272         unsigned int tcon;
273         u64 comp_cycle;
274
275         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
276
277         if (periodic) {
278                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
279                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
280         }
281
282         comp_cycle = exynos4_read_count_64() + cycles;
283         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
284         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
285
286         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
287
288         tcon |= MCT_G_TCON_COMP0_ENABLE;
289         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
290 }
291
292 static int exynos4_comp_set_next_event(unsigned long cycles,
293                                        struct clock_event_device *evt)
294 {
295         exynos4_mct_comp0_start(false, cycles);
296
297         return 0;
298 }
299
300 static int mct_set_state_shutdown(struct clock_event_device *evt)
301 {
302         exynos4_mct_comp0_stop();
303         return 0;
304 }
305
306 static int mct_set_state_periodic(struct clock_event_device *evt)
307 {
308         unsigned long cycles_per_jiffy;
309
310         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
311                             >> evt->shift);
312         exynos4_mct_comp0_stop();
313         exynos4_mct_comp0_start(true, cycles_per_jiffy);
314         return 0;
315 }
316
317 static struct clock_event_device mct_comp_device = {
318         .name                   = "mct-comp",
319         .features               = CLOCK_EVT_FEAT_PERIODIC |
320                                   CLOCK_EVT_FEAT_ONESHOT,
321         .rating                 = 250,
322         .set_next_event         = exynos4_comp_set_next_event,
323         .set_state_periodic     = mct_set_state_periodic,
324         .set_state_shutdown     = mct_set_state_shutdown,
325         .set_state_oneshot      = mct_set_state_shutdown,
326         .set_state_oneshot_stopped = mct_set_state_shutdown,
327         .tick_resume            = mct_set_state_shutdown,
328 };
329
330 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
331 {
332         struct clock_event_device *evt = dev_id;
333
334         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
335
336         evt->event_handler(evt);
337
338         return IRQ_HANDLED;
339 }
340
341 static int exynos4_clockevent_init(void)
342 {
343         mct_comp_device.cpumask = cpumask_of(0);
344         clockevents_config_and_register(&mct_comp_device, clk_rate,
345                                         0xf, 0xffffffff);
346         if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
347                         IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
348                         &mct_comp_device))
349                 pr_err("%s: request_irq() failed\n", "mct_comp_irq");
350
351         return 0;
352 }
353
354 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
355
356 /* Clock event handling */
357 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
358 {
359         unsigned long tmp;
360         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
361         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
362
363         tmp = readl_relaxed(reg_base + offset);
364         if (tmp & mask) {
365                 tmp &= ~mask;
366                 exynos4_mct_write(tmp, offset);
367         }
368 }
369
370 static void exynos4_mct_tick_start(unsigned long cycles,
371                                    struct mct_clock_event_device *mevt)
372 {
373         unsigned long tmp;
374
375         exynos4_mct_tick_stop(mevt);
376
377         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
378
379         /* update interrupt count buffer */
380         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
381
382         /* enable MCT tick interrupt */
383         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
384
385         tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
386         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
387                MCT_L_TCON_INTERVAL_MODE;
388         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
389 }
390
391 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
392 {
393         /* Clear the MCT tick interrupt */
394         if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
395                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
396 }
397
398 static int exynos4_tick_set_next_event(unsigned long cycles,
399                                        struct clock_event_device *evt)
400 {
401         struct mct_clock_event_device *mevt;
402
403         mevt = container_of(evt, struct mct_clock_event_device, evt);
404         exynos4_mct_tick_start(cycles, mevt);
405         return 0;
406 }
407
408 static int set_state_shutdown(struct clock_event_device *evt)
409 {
410         struct mct_clock_event_device *mevt;
411
412         mevt = container_of(evt, struct mct_clock_event_device, evt);
413         exynos4_mct_tick_stop(mevt);
414         exynos4_mct_tick_clear(mevt);
415         return 0;
416 }
417
418 static int set_state_periodic(struct clock_event_device *evt)
419 {
420         struct mct_clock_event_device *mevt;
421         unsigned long cycles_per_jiffy;
422
423         mevt = container_of(evt, struct mct_clock_event_device, evt);
424         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
425                             >> evt->shift);
426         exynos4_mct_tick_stop(mevt);
427         exynos4_mct_tick_start(cycles_per_jiffy, mevt);
428         return 0;
429 }
430
431 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
432 {
433         struct mct_clock_event_device *mevt = dev_id;
434         struct clock_event_device *evt = &mevt->evt;
435
436         /*
437          * This is for supporting oneshot mode.
438          * Mct would generate interrupt periodically
439          * without explicit stopping.
440          */
441         if (!clockevent_state_periodic(&mevt->evt))
442                 exynos4_mct_tick_stop(mevt);
443
444         exynos4_mct_tick_clear(mevt);
445
446         evt->event_handler(evt);
447
448         return IRQ_HANDLED;
449 }
450
451 static int exynos4_mct_starting_cpu(unsigned int cpu)
452 {
453         struct mct_clock_event_device *mevt =
454                 per_cpu_ptr(&percpu_mct_tick, cpu);
455         struct clock_event_device *evt = &mevt->evt;
456
457         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
458         snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
459
460         evt->name = mevt->name;
461         evt->cpumask = cpumask_of(cpu);
462         evt->set_next_event = exynos4_tick_set_next_event;
463         evt->set_state_periodic = set_state_periodic;
464         evt->set_state_shutdown = set_state_shutdown;
465         evt->set_state_oneshot = set_state_shutdown;
466         evt->set_state_oneshot_stopped = set_state_shutdown;
467         evt->tick_resume = set_state_shutdown;
468         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
469                         CLOCK_EVT_FEAT_PERCPU;
470         evt->rating = MCT_CLKEVENTS_RATING,
471
472         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
473
474         if (mct_int_type == MCT_INT_SPI) {
475
476                 if (evt->irq == -1)
477                         return -EIO;
478
479                 irq_force_affinity(evt->irq, cpumask_of(cpu));
480                 enable_irq(evt->irq);
481         } else {
482                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
483         }
484         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
485                                         0xf, 0x7fffffff);
486
487         return 0;
488 }
489
490 static int exynos4_mct_dying_cpu(unsigned int cpu)
491 {
492         struct mct_clock_event_device *mevt =
493                 per_cpu_ptr(&percpu_mct_tick, cpu);
494         struct clock_event_device *evt = &mevt->evt;
495
496         evt->set_state_shutdown(evt);
497         if (mct_int_type == MCT_INT_SPI) {
498                 if (evt->irq != -1)
499                         disable_irq_nosync(evt->irq);
500                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
501         } else {
502                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
503         }
504         return 0;
505 }
506
507 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
508 {
509         int err, cpu;
510         struct clk *mct_clk, *tick_clk;
511
512         tick_clk = of_clk_get_by_name(np, "fin_pll");
513         if (IS_ERR(tick_clk))
514                 panic("%s: unable to determine tick clock rate\n", __func__);
515         clk_rate = clk_get_rate(tick_clk);
516
517         mct_clk = of_clk_get_by_name(np, "mct");
518         if (IS_ERR(mct_clk))
519                 panic("%s: unable to retrieve mct clock instance\n", __func__);
520         clk_prepare_enable(mct_clk);
521
522         reg_base = base;
523         if (!reg_base)
524                 panic("%s: unable to ioremap mct address space\n", __func__);
525
526         if (mct_int_type == MCT_INT_PPI) {
527
528                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
529                                          exynos4_mct_tick_isr, "MCT",
530                                          &percpu_mct_tick);
531                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
532                      mct_irqs[MCT_L0_IRQ], err);
533         } else {
534                 for_each_possible_cpu(cpu) {
535                         int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
536                         struct mct_clock_event_device *pcpu_mevt =
537                                 per_cpu_ptr(&percpu_mct_tick, cpu);
538
539                         pcpu_mevt->evt.irq = -1;
540
541                         irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
542                         if (request_irq(mct_irq,
543                                         exynos4_mct_tick_isr,
544                                         IRQF_TIMER | IRQF_NOBALANCING,
545                                         pcpu_mevt->name, pcpu_mevt)) {
546                                 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
547                                                                         cpu);
548
549                                 continue;
550                         }
551                         pcpu_mevt->evt.irq = mct_irq;
552                 }
553         }
554
555         /* Install hotplug callbacks which configure the timer on this CPU */
556         err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
557                                 "clockevents/exynos4/mct_timer:starting",
558                                 exynos4_mct_starting_cpu,
559                                 exynos4_mct_dying_cpu);
560         if (err)
561                 goto out_irq;
562
563         return 0;
564
565 out_irq:
566         if (mct_int_type == MCT_INT_PPI) {
567                 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
568         } else {
569                 for_each_possible_cpu(cpu) {
570                         struct mct_clock_event_device *pcpu_mevt =
571                                 per_cpu_ptr(&percpu_mct_tick, cpu);
572
573                         if (pcpu_mevt->evt.irq != -1) {
574                                 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
575                                 pcpu_mevt->evt.irq = -1;
576                         }
577                 }
578         }
579         return err;
580 }
581
582 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
583 {
584         u32 nr_irqs, i;
585         int ret;
586
587         mct_int_type = int_type;
588
589         /* This driver uses only one global timer interrupt */
590         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
591
592         /*
593          * Find out the number of local irqs specified. The local
594          * timer irqs are specified after the four global timer
595          * irqs are specified.
596          */
597         nr_irqs = of_irq_count(np);
598         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
599                 mct_irqs[i] = irq_of_parse_and_map(np, i);
600
601         ret = exynos4_timer_resources(np, of_iomap(np, 0));
602         if (ret)
603                 return ret;
604
605         ret = exynos4_clocksource_init();
606         if (ret)
607                 return ret;
608
609         return exynos4_clockevent_init();
610 }
611
612
613 static int __init mct_init_spi(struct device_node *np)
614 {
615         return mct_init_dt(np, MCT_INT_SPI);
616 }
617
618 static int __init mct_init_ppi(struct device_node *np)
619 {
620         return mct_init_dt(np, MCT_INT_PPI);
621 }
622 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
623 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);