Merge tag 'perf-tools-for-v5.15-2021-09-11' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / drivers / char / ipmi / ipmi_si_intf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_si.c
4  *
5  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6  * BT).
7  *
8  * Author: MontaVista Software, Inc.
9  *         Corey Minyard <minyard@mvista.com>
10  *         source@mvista.com
11  *
12  * Copyright 2002 MontaVista Software Inc.
13  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14  */
15
16 /*
17  * This file holds the "policy" for the interface to the SMI state
18  * machine.  It does the configuration, handles timers and interrupts,
19  * and drives the real SMI state machine.
20  */
21
22 #define pr_fmt(fmt) "ipmi_si: " fmt
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
37 #include <asm/irq.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
42 #include "ipmi_si.h"
43 #include "ipmi_si_sm.h"
44 #include <linux/string.h>
45 #include <linux/ctype.h>
46
47 /* Measure times between events in the driver. */
48 #undef DEBUG_TIMING
49
50 /* Call every 10 ms. */
51 #define SI_TIMEOUT_TIME_USEC    10000
52 #define SI_USEC_PER_JIFFY       (1000000/HZ)
53 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
55                                       short timeout */
56
57 enum si_intf_state {
58         SI_NORMAL,
59         SI_GETTING_FLAGS,
60         SI_GETTING_EVENTS,
61         SI_CLEARING_FLAGS,
62         SI_GETTING_MESSAGES,
63         SI_CHECKING_ENABLES,
64         SI_SETTING_ENABLES
65         /* FIXME - add watchdog stuff. */
66 };
67
68 /* Some BT-specific defines we need here. */
69 #define IPMI_BT_INTMASK_REG             2
70 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
71 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
72
73 /* 'invalid' to allow a firmware-specified interface to be disabled */
74 const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
75
76 static bool initialized;
77
78 /*
79  * Indexes into stats[] in smi_info below.
80  */
81 enum si_stat_indexes {
82         /*
83          * Number of times the driver requested a timer while an operation
84          * was in progress.
85          */
86         SI_STAT_short_timeouts = 0,
87
88         /*
89          * Number of times the driver requested a timer while nothing was in
90          * progress.
91          */
92         SI_STAT_long_timeouts,
93
94         /* Number of times the interface was idle while being polled. */
95         SI_STAT_idles,
96
97         /* Number of interrupts the driver handled. */
98         SI_STAT_interrupts,
99
100         /* Number of time the driver got an ATTN from the hardware. */
101         SI_STAT_attentions,
102
103         /* Number of times the driver requested flags from the hardware. */
104         SI_STAT_flag_fetches,
105
106         /* Number of times the hardware didn't follow the state machine. */
107         SI_STAT_hosed_count,
108
109         /* Number of completed messages. */
110         SI_STAT_complete_transactions,
111
112         /* Number of IPMI events received from the hardware. */
113         SI_STAT_events,
114
115         /* Number of watchdog pretimeouts. */
116         SI_STAT_watchdog_pretimeouts,
117
118         /* Number of asynchronous messages received. */
119         SI_STAT_incoming_messages,
120
121
122         /* This *must* remain last, add new values above this. */
123         SI_NUM_STATS
124 };
125
126 struct smi_info {
127         int                    si_num;
128         struct ipmi_smi        *intf;
129         struct si_sm_data      *si_sm;
130         const struct si_sm_handlers *handlers;
131         spinlock_t             si_lock;
132         struct ipmi_smi_msg    *waiting_msg;
133         struct ipmi_smi_msg    *curr_msg;
134         enum si_intf_state     si_state;
135
136         /*
137          * Used to handle the various types of I/O that can occur with
138          * IPMI
139          */
140         struct si_sm_io io;
141
142         /*
143          * Per-OEM handler, called from handle_flags().  Returns 1
144          * when handle_flags() needs to be re-run or 0 indicating it
145          * set si_state itself.
146          */
147         int (*oem_data_avail_handler)(struct smi_info *smi_info);
148
149         /*
150          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
151          * is set to hold the flags until we are done handling everything
152          * from the flags.
153          */
154 #define RECEIVE_MSG_AVAIL       0x01
155 #define EVENT_MSG_BUFFER_FULL   0x02
156 #define WDT_PRE_TIMEOUT_INT     0x08
157 #define OEM0_DATA_AVAIL     0x20
158 #define OEM1_DATA_AVAIL     0x40
159 #define OEM2_DATA_AVAIL     0x80
160 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
161                              OEM1_DATA_AVAIL | \
162                              OEM2_DATA_AVAIL)
163         unsigned char       msg_flags;
164
165         /* Does the BMC have an event buffer? */
166         bool                has_event_buffer;
167
168         /*
169          * If set to true, this will request events the next time the
170          * state machine is idle.
171          */
172         atomic_t            req_events;
173
174         /*
175          * If true, run the state machine to completion on every send
176          * call.  Generally used after a panic to make sure stuff goes
177          * out.
178          */
179         bool                run_to_completion;
180
181         /* The timer for this si. */
182         struct timer_list   si_timer;
183
184         /* This flag is set, if the timer can be set */
185         bool                timer_can_start;
186
187         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
188         bool                timer_running;
189
190         /* The time (in jiffies) the last timeout occurred at. */
191         unsigned long       last_timeout_jiffies;
192
193         /* Are we waiting for the events, pretimeouts, received msgs? */
194         atomic_t            need_watch;
195
196         /*
197          * The driver will disable interrupts when it gets into a
198          * situation where it cannot handle messages due to lack of
199          * memory.  Once that situation clears up, it will re-enable
200          * interrupts.
201          */
202         bool interrupt_disabled;
203
204         /*
205          * Does the BMC support events?
206          */
207         bool supports_event_msg_buff;
208
209         /*
210          * Can we disable interrupts the global enables receive irq
211          * bit?  There are currently two forms of brokenness, some
212          * systems cannot disable the bit (which is technically within
213          * the spec but a bad idea) and some systems have the bit
214          * forced to zero even though interrupts work (which is
215          * clearly outside the spec).  The next bool tells which form
216          * of brokenness is present.
217          */
218         bool cannot_disable_irq;
219
220         /*
221          * Some systems are broken and cannot set the irq enable
222          * bit, even if they support interrupts.
223          */
224         bool irq_enable_broken;
225
226         /* Is the driver in maintenance mode? */
227         bool in_maintenance_mode;
228
229         /*
230          * Did we get an attention that we did not handle?
231          */
232         bool got_attn;
233
234         /* From the get device id response... */
235         struct ipmi_device_id device_id;
236
237         /* Have we added the device group to the device? */
238         bool dev_group_added;
239
240         /* Counters and things for the proc filesystem. */
241         atomic_t stats[SI_NUM_STATS];
242
243         struct task_struct *thread;
244
245         struct list_head link;
246 };
247
248 #define smi_inc_stat(smi, stat) \
249         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
250 #define smi_get_stat(smi, stat) \
251         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
252
253 #define IPMI_MAX_INTFS 4
254 static int force_kipmid[IPMI_MAX_INTFS];
255 static int num_force_kipmid;
256
257 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
258 static int num_max_busy_us;
259
260 static bool unload_when_empty = true;
261
262 static int try_smi_init(struct smi_info *smi);
263 static void cleanup_one_si(struct smi_info *smi_info);
264 static void cleanup_ipmi_si(void);
265
266 #ifdef DEBUG_TIMING
267 void debug_timestamp(char *msg)
268 {
269         struct timespec64 t;
270
271         ktime_get_ts64(&t);
272         pr_debug("**%s: %lld.%9.9ld\n", msg, t.tv_sec, t.tv_nsec);
273 }
274 #else
275 #define debug_timestamp(x)
276 #endif
277
278 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
279 static int register_xaction_notifier(struct notifier_block *nb)
280 {
281         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
282 }
283
284 static void deliver_recv_msg(struct smi_info *smi_info,
285                              struct ipmi_smi_msg *msg)
286 {
287         /* Deliver the message to the upper layer. */
288         ipmi_smi_msg_received(smi_info->intf, msg);
289 }
290
291 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
292 {
293         struct ipmi_smi_msg *msg = smi_info->curr_msg;
294
295         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
296                 cCode = IPMI_ERR_UNSPECIFIED;
297         /* else use it as is */
298
299         /* Make it a response */
300         msg->rsp[0] = msg->data[0] | 4;
301         msg->rsp[1] = msg->data[1];
302         msg->rsp[2] = cCode;
303         msg->rsp_size = 3;
304
305         smi_info->curr_msg = NULL;
306         deliver_recv_msg(smi_info, msg);
307 }
308
309 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
310 {
311         int              rv;
312
313         if (!smi_info->waiting_msg) {
314                 smi_info->curr_msg = NULL;
315                 rv = SI_SM_IDLE;
316         } else {
317                 int err;
318
319                 smi_info->curr_msg = smi_info->waiting_msg;
320                 smi_info->waiting_msg = NULL;
321                 debug_timestamp("Start2");
322                 err = atomic_notifier_call_chain(&xaction_notifier_list,
323                                 0, smi_info);
324                 if (err & NOTIFY_STOP_MASK) {
325                         rv = SI_SM_CALL_WITHOUT_DELAY;
326                         goto out;
327                 }
328                 err = smi_info->handlers->start_transaction(
329                         smi_info->si_sm,
330                         smi_info->curr_msg->data,
331                         smi_info->curr_msg->data_size);
332                 if (err)
333                         return_hosed_msg(smi_info, err);
334
335                 rv = SI_SM_CALL_WITHOUT_DELAY;
336         }
337 out:
338         return rv;
339 }
340
341 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
342 {
343         if (!smi_info->timer_can_start)
344                 return;
345         smi_info->last_timeout_jiffies = jiffies;
346         mod_timer(&smi_info->si_timer, new_val);
347         smi_info->timer_running = true;
348 }
349
350 /*
351  * Start a new message and (re)start the timer and thread.
352  */
353 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
354                           unsigned int size)
355 {
356         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
357
358         if (smi_info->thread)
359                 wake_up_process(smi_info->thread);
360
361         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
362 }
363
364 static void start_check_enables(struct smi_info *smi_info)
365 {
366         unsigned char msg[2];
367
368         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
369         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
370
371         start_new_msg(smi_info, msg, 2);
372         smi_info->si_state = SI_CHECKING_ENABLES;
373 }
374
375 static void start_clear_flags(struct smi_info *smi_info)
376 {
377         unsigned char msg[3];
378
379         /* Make sure the watchdog pre-timeout flag is not set at startup. */
380         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
381         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
382         msg[2] = WDT_PRE_TIMEOUT_INT;
383
384         start_new_msg(smi_info, msg, 3);
385         smi_info->si_state = SI_CLEARING_FLAGS;
386 }
387
388 static void start_getting_msg_queue(struct smi_info *smi_info)
389 {
390         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
391         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
392         smi_info->curr_msg->data_size = 2;
393
394         start_new_msg(smi_info, smi_info->curr_msg->data,
395                       smi_info->curr_msg->data_size);
396         smi_info->si_state = SI_GETTING_MESSAGES;
397 }
398
399 static void start_getting_events(struct smi_info *smi_info)
400 {
401         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
402         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
403         smi_info->curr_msg->data_size = 2;
404
405         start_new_msg(smi_info, smi_info->curr_msg->data,
406                       smi_info->curr_msg->data_size);
407         smi_info->si_state = SI_GETTING_EVENTS;
408 }
409
410 /*
411  * When we have a situtaion where we run out of memory and cannot
412  * allocate messages, we just leave them in the BMC and run the system
413  * polled until we can allocate some memory.  Once we have some
414  * memory, we will re-enable the interrupt.
415  *
416  * Note that we cannot just use disable_irq(), since the interrupt may
417  * be shared.
418  */
419 static inline bool disable_si_irq(struct smi_info *smi_info)
420 {
421         if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
422                 smi_info->interrupt_disabled = true;
423                 start_check_enables(smi_info);
424                 return true;
425         }
426         return false;
427 }
428
429 static inline bool enable_si_irq(struct smi_info *smi_info)
430 {
431         if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
432                 smi_info->interrupt_disabled = false;
433                 start_check_enables(smi_info);
434                 return true;
435         }
436         return false;
437 }
438
439 /*
440  * Allocate a message.  If unable to allocate, start the interrupt
441  * disable process and return NULL.  If able to allocate but
442  * interrupts are disabled, free the message and return NULL after
443  * starting the interrupt enable process.
444  */
445 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
446 {
447         struct ipmi_smi_msg *msg;
448
449         msg = ipmi_alloc_smi_msg();
450         if (!msg) {
451                 if (!disable_si_irq(smi_info))
452                         smi_info->si_state = SI_NORMAL;
453         } else if (enable_si_irq(smi_info)) {
454                 ipmi_free_smi_msg(msg);
455                 msg = NULL;
456         }
457         return msg;
458 }
459
460 static void handle_flags(struct smi_info *smi_info)
461 {
462 retry:
463         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
464                 /* Watchdog pre-timeout */
465                 smi_inc_stat(smi_info, watchdog_pretimeouts);
466
467                 start_clear_flags(smi_info);
468                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
469                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
470         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
471                 /* Messages available. */
472                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
473                 if (!smi_info->curr_msg)
474                         return;
475
476                 start_getting_msg_queue(smi_info);
477         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
478                 /* Events available. */
479                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
480                 if (!smi_info->curr_msg)
481                         return;
482
483                 start_getting_events(smi_info);
484         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
485                    smi_info->oem_data_avail_handler) {
486                 if (smi_info->oem_data_avail_handler(smi_info))
487                         goto retry;
488         } else
489                 smi_info->si_state = SI_NORMAL;
490 }
491
492 /*
493  * Global enables we care about.
494  */
495 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
496                              IPMI_BMC_EVT_MSG_INTR)
497
498 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
499                                  bool *irq_on)
500 {
501         u8 enables = 0;
502
503         if (smi_info->supports_event_msg_buff)
504                 enables |= IPMI_BMC_EVT_MSG_BUFF;
505
506         if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
507              smi_info->cannot_disable_irq) &&
508             !smi_info->irq_enable_broken)
509                 enables |= IPMI_BMC_RCV_MSG_INTR;
510
511         if (smi_info->supports_event_msg_buff &&
512             smi_info->io.irq && !smi_info->interrupt_disabled &&
513             !smi_info->irq_enable_broken)
514                 enables |= IPMI_BMC_EVT_MSG_INTR;
515
516         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
517
518         return enables;
519 }
520
521 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
522 {
523         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
524
525         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
526
527         if ((bool)irqstate == irq_on)
528                 return;
529
530         if (irq_on)
531                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
532                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
533         else
534                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
535 }
536
537 static void handle_transaction_done(struct smi_info *smi_info)
538 {
539         struct ipmi_smi_msg *msg;
540
541         debug_timestamp("Done");
542         switch (smi_info->si_state) {
543         case SI_NORMAL:
544                 if (!smi_info->curr_msg)
545                         break;
546
547                 smi_info->curr_msg->rsp_size
548                         = smi_info->handlers->get_result(
549                                 smi_info->si_sm,
550                                 smi_info->curr_msg->rsp,
551                                 IPMI_MAX_MSG_LENGTH);
552
553                 /*
554                  * Do this here becase deliver_recv_msg() releases the
555                  * lock, and a new message can be put in during the
556                  * time the lock is released.
557                  */
558                 msg = smi_info->curr_msg;
559                 smi_info->curr_msg = NULL;
560                 deliver_recv_msg(smi_info, msg);
561                 break;
562
563         case SI_GETTING_FLAGS:
564         {
565                 unsigned char msg[4];
566                 unsigned int  len;
567
568                 /* We got the flags from the SMI, now handle them. */
569                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
570                 if (msg[2] != 0) {
571                         /* Error fetching flags, just give up for now. */
572                         smi_info->si_state = SI_NORMAL;
573                 } else if (len < 4) {
574                         /*
575                          * Hmm, no flags.  That's technically illegal, but
576                          * don't use uninitialized data.
577                          */
578                         smi_info->si_state = SI_NORMAL;
579                 } else {
580                         smi_info->msg_flags = msg[3];
581                         handle_flags(smi_info);
582                 }
583                 break;
584         }
585
586         case SI_CLEARING_FLAGS:
587         {
588                 unsigned char msg[3];
589
590                 /* We cleared the flags. */
591                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
592                 if (msg[2] != 0) {
593                         /* Error clearing flags */
594                         dev_warn_ratelimited(smi_info->io.dev,
595                                  "Error clearing flags: %2.2x\n", msg[2]);
596                 }
597                 smi_info->si_state = SI_NORMAL;
598                 break;
599         }
600
601         case SI_GETTING_EVENTS:
602         {
603                 smi_info->curr_msg->rsp_size
604                         = smi_info->handlers->get_result(
605                                 smi_info->si_sm,
606                                 smi_info->curr_msg->rsp,
607                                 IPMI_MAX_MSG_LENGTH);
608
609                 /*
610                  * Do this here becase deliver_recv_msg() releases the
611                  * lock, and a new message can be put in during the
612                  * time the lock is released.
613                  */
614                 msg = smi_info->curr_msg;
615                 smi_info->curr_msg = NULL;
616                 if (msg->rsp[2] != 0) {
617                         /* Error getting event, probably done. */
618                         msg->done(msg);
619
620                         /* Take off the event flag. */
621                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
622                         handle_flags(smi_info);
623                 } else {
624                         smi_inc_stat(smi_info, events);
625
626                         /*
627                          * Do this before we deliver the message
628                          * because delivering the message releases the
629                          * lock and something else can mess with the
630                          * state.
631                          */
632                         handle_flags(smi_info);
633
634                         deliver_recv_msg(smi_info, msg);
635                 }
636                 break;
637         }
638
639         case SI_GETTING_MESSAGES:
640         {
641                 smi_info->curr_msg->rsp_size
642                         = smi_info->handlers->get_result(
643                                 smi_info->si_sm,
644                                 smi_info->curr_msg->rsp,
645                                 IPMI_MAX_MSG_LENGTH);
646
647                 /*
648                  * Do this here becase deliver_recv_msg() releases the
649                  * lock, and a new message can be put in during the
650                  * time the lock is released.
651                  */
652                 msg = smi_info->curr_msg;
653                 smi_info->curr_msg = NULL;
654                 if (msg->rsp[2] != 0) {
655                         /* Error getting event, probably done. */
656                         msg->done(msg);
657
658                         /* Take off the msg flag. */
659                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
660                         handle_flags(smi_info);
661                 } else {
662                         smi_inc_stat(smi_info, incoming_messages);
663
664                         /*
665                          * Do this before we deliver the message
666                          * because delivering the message releases the
667                          * lock and something else can mess with the
668                          * state.
669                          */
670                         handle_flags(smi_info);
671
672                         deliver_recv_msg(smi_info, msg);
673                 }
674                 break;
675         }
676
677         case SI_CHECKING_ENABLES:
678         {
679                 unsigned char msg[4];
680                 u8 enables;
681                 bool irq_on;
682
683                 /* We got the flags from the SMI, now handle them. */
684                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
685                 if (msg[2] != 0) {
686                         dev_warn_ratelimited(smi_info->io.dev,
687                                 "Couldn't get irq info: %x,\n"
688                                 "Maybe ok, but ipmi might run very slowly.\n",
689                                 msg[2]);
690                         smi_info->si_state = SI_NORMAL;
691                         break;
692                 }
693                 enables = current_global_enables(smi_info, 0, &irq_on);
694                 if (smi_info->io.si_type == SI_BT)
695                         /* BT has its own interrupt enable bit. */
696                         check_bt_irq(smi_info, irq_on);
697                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
698                         /* Enables are not correct, fix them. */
699                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
700                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
701                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
702                         smi_info->handlers->start_transaction(
703                                 smi_info->si_sm, msg, 3);
704                         smi_info->si_state = SI_SETTING_ENABLES;
705                 } else if (smi_info->supports_event_msg_buff) {
706                         smi_info->curr_msg = ipmi_alloc_smi_msg();
707                         if (!smi_info->curr_msg) {
708                                 smi_info->si_state = SI_NORMAL;
709                                 break;
710                         }
711                         start_getting_events(smi_info);
712                 } else {
713                         smi_info->si_state = SI_NORMAL;
714                 }
715                 break;
716         }
717
718         case SI_SETTING_ENABLES:
719         {
720                 unsigned char msg[4];
721
722                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
723                 if (msg[2] != 0)
724                         dev_warn_ratelimited(smi_info->io.dev,
725                                  "Could not set the global enables: 0x%x.\n",
726                                  msg[2]);
727
728                 if (smi_info->supports_event_msg_buff) {
729                         smi_info->curr_msg = ipmi_alloc_smi_msg();
730                         if (!smi_info->curr_msg) {
731                                 smi_info->si_state = SI_NORMAL;
732                                 break;
733                         }
734                         start_getting_events(smi_info);
735                 } else {
736                         smi_info->si_state = SI_NORMAL;
737                 }
738                 break;
739         }
740         }
741 }
742
743 /*
744  * Called on timeouts and events.  Timeouts should pass the elapsed
745  * time, interrupts should pass in zero.  Must be called with
746  * si_lock held and interrupts disabled.
747  */
748 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
749                                            int time)
750 {
751         enum si_sm_result si_sm_result;
752
753 restart:
754         /*
755          * There used to be a loop here that waited a little while
756          * (around 25us) before giving up.  That turned out to be
757          * pointless, the minimum delays I was seeing were in the 300us
758          * range, which is far too long to wait in an interrupt.  So
759          * we just run until the state machine tells us something
760          * happened or it needs a delay.
761          */
762         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
763         time = 0;
764         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
765                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
766
767         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
768                 smi_inc_stat(smi_info, complete_transactions);
769
770                 handle_transaction_done(smi_info);
771                 goto restart;
772         } else if (si_sm_result == SI_SM_HOSED) {
773                 smi_inc_stat(smi_info, hosed_count);
774
775                 /*
776                  * Do the before return_hosed_msg, because that
777                  * releases the lock.
778                  */
779                 smi_info->si_state = SI_NORMAL;
780                 if (smi_info->curr_msg != NULL) {
781                         /*
782                          * If we were handling a user message, format
783                          * a response to send to the upper layer to
784                          * tell it about the error.
785                          */
786                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
787                 }
788                 goto restart;
789         }
790
791         /*
792          * We prefer handling attn over new messages.  But don't do
793          * this if there is not yet an upper layer to handle anything.
794          */
795         if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
796                 unsigned char msg[2];
797
798                 if (smi_info->si_state != SI_NORMAL) {
799                         /*
800                          * We got an ATTN, but we are doing something else.
801                          * Handle the ATTN later.
802                          */
803                         smi_info->got_attn = true;
804                 } else {
805                         smi_info->got_attn = false;
806                         smi_inc_stat(smi_info, attentions);
807
808                         /*
809                          * Got a attn, send down a get message flags to see
810                          * what's causing it.  It would be better to handle
811                          * this in the upper layer, but due to the way
812                          * interrupts work with the SMI, that's not really
813                          * possible.
814                          */
815                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
816                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
817
818                         start_new_msg(smi_info, msg, 2);
819                         smi_info->si_state = SI_GETTING_FLAGS;
820                         goto restart;
821                 }
822         }
823
824         /* If we are currently idle, try to start the next message. */
825         if (si_sm_result == SI_SM_IDLE) {
826                 smi_inc_stat(smi_info, idles);
827
828                 si_sm_result = start_next_msg(smi_info);
829                 if (si_sm_result != SI_SM_IDLE)
830                         goto restart;
831         }
832
833         if ((si_sm_result == SI_SM_IDLE)
834             && (atomic_read(&smi_info->req_events))) {
835                 /*
836                  * We are idle and the upper layer requested that I fetch
837                  * events, so do so.
838                  */
839                 atomic_set(&smi_info->req_events, 0);
840
841                 /*
842                  * Take this opportunity to check the interrupt and
843                  * message enable state for the BMC.  The BMC can be
844                  * asynchronously reset, and may thus get interrupts
845                  * disable and messages disabled.
846                  */
847                 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
848                         start_check_enables(smi_info);
849                 } else {
850                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
851                         if (!smi_info->curr_msg)
852                                 goto out;
853
854                         start_getting_events(smi_info);
855                 }
856                 goto restart;
857         }
858
859         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
860                 /* Ok it if fails, the timer will just go off. */
861                 if (del_timer(&smi_info->si_timer))
862                         smi_info->timer_running = false;
863         }
864
865 out:
866         return si_sm_result;
867 }
868
869 static void check_start_timer_thread(struct smi_info *smi_info)
870 {
871         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
872                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
873
874                 if (smi_info->thread)
875                         wake_up_process(smi_info->thread);
876
877                 start_next_msg(smi_info);
878                 smi_event_handler(smi_info, 0);
879         }
880 }
881
882 static void flush_messages(void *send_info)
883 {
884         struct smi_info *smi_info = send_info;
885         enum si_sm_result result;
886
887         /*
888          * Currently, this function is called only in run-to-completion
889          * mode.  This means we are single-threaded, no need for locks.
890          */
891         result = smi_event_handler(smi_info, 0);
892         while (result != SI_SM_IDLE) {
893                 udelay(SI_SHORT_TIMEOUT_USEC);
894                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
895         }
896 }
897
898 static void sender(void                *send_info,
899                    struct ipmi_smi_msg *msg)
900 {
901         struct smi_info   *smi_info = send_info;
902         unsigned long     flags;
903
904         debug_timestamp("Enqueue");
905
906         if (smi_info->run_to_completion) {
907                 /*
908                  * If we are running to completion, start it.  Upper
909                  * layer will call flush_messages to clear it out.
910                  */
911                 smi_info->waiting_msg = msg;
912                 return;
913         }
914
915         spin_lock_irqsave(&smi_info->si_lock, flags);
916         /*
917          * The following two lines don't need to be under the lock for
918          * the lock's sake, but they do need SMP memory barriers to
919          * avoid getting things out of order.  We are already claiming
920          * the lock, anyway, so just do it under the lock to avoid the
921          * ordering problem.
922          */
923         BUG_ON(smi_info->waiting_msg);
924         smi_info->waiting_msg = msg;
925         check_start_timer_thread(smi_info);
926         spin_unlock_irqrestore(&smi_info->si_lock, flags);
927 }
928
929 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
930 {
931         struct smi_info   *smi_info = send_info;
932
933         smi_info->run_to_completion = i_run_to_completion;
934         if (i_run_to_completion)
935                 flush_messages(smi_info);
936 }
937
938 /*
939  * Use -1 as a special constant to tell that we are spinning in kipmid
940  * looking for something and not delaying between checks
941  */
942 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
943 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
944                                          const struct smi_info *smi_info,
945                                          ktime_t *busy_until)
946 {
947         unsigned int max_busy_us = 0;
948
949         if (smi_info->si_num < num_max_busy_us)
950                 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
951         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
952                 *busy_until = IPMI_TIME_NOT_BUSY;
953         else if (*busy_until == IPMI_TIME_NOT_BUSY) {
954                 *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
955         } else {
956                 if (unlikely(ktime_get() > *busy_until)) {
957                         *busy_until = IPMI_TIME_NOT_BUSY;
958                         return false;
959                 }
960         }
961         return true;
962 }
963
964
965 /*
966  * A busy-waiting loop for speeding up IPMI operation.
967  *
968  * Lousy hardware makes this hard.  This is only enabled for systems
969  * that are not BT and do not have interrupts.  It starts spinning
970  * when an operation is complete or until max_busy tells it to stop
971  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
972  * Documentation/driver-api/ipmi.rst for details.
973  */
974 static int ipmi_thread(void *data)
975 {
976         struct smi_info *smi_info = data;
977         unsigned long flags;
978         enum si_sm_result smi_result;
979         ktime_t busy_until = IPMI_TIME_NOT_BUSY;
980
981         set_user_nice(current, MAX_NICE);
982         while (!kthread_should_stop()) {
983                 int busy_wait;
984
985                 spin_lock_irqsave(&(smi_info->si_lock), flags);
986                 smi_result = smi_event_handler(smi_info, 0);
987
988                 /*
989                  * If the driver is doing something, there is a possible
990                  * race with the timer.  If the timer handler see idle,
991                  * and the thread here sees something else, the timer
992                  * handler won't restart the timer even though it is
993                  * required.  So start it here if necessary.
994                  */
995                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
996                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
997
998                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
999                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1000                                                   &busy_until);
1001                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1002                         ; /* do nothing */
1003                 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1004                         /*
1005                          * In maintenance mode we run as fast as
1006                          * possible to allow firmware updates to
1007                          * complete as fast as possible, but normally
1008                          * don't bang on the scheduler.
1009                          */
1010                         if (smi_info->in_maintenance_mode)
1011                                 schedule();
1012                         else
1013                                 usleep_range(100, 200);
1014                 } else if (smi_result == SI_SM_IDLE) {
1015                         if (atomic_read(&smi_info->need_watch)) {
1016                                 schedule_timeout_interruptible(100);
1017                         } else {
1018                                 /* Wait to be woken up when we are needed. */
1019                                 __set_current_state(TASK_INTERRUPTIBLE);
1020                                 schedule();
1021                         }
1022                 } else {
1023                         schedule_timeout_interruptible(1);
1024                 }
1025         }
1026         return 0;
1027 }
1028
1029
1030 static void poll(void *send_info)
1031 {
1032         struct smi_info *smi_info = send_info;
1033         unsigned long flags = 0;
1034         bool run_to_completion = smi_info->run_to_completion;
1035
1036         /*
1037          * Make sure there is some delay in the poll loop so we can
1038          * drive time forward and timeout things.
1039          */
1040         udelay(10);
1041         if (!run_to_completion)
1042                 spin_lock_irqsave(&smi_info->si_lock, flags);
1043         smi_event_handler(smi_info, 10);
1044         if (!run_to_completion)
1045                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1046 }
1047
1048 static void request_events(void *send_info)
1049 {
1050         struct smi_info *smi_info = send_info;
1051
1052         if (!smi_info->has_event_buffer)
1053                 return;
1054
1055         atomic_set(&smi_info->req_events, 1);
1056 }
1057
1058 static void set_need_watch(void *send_info, unsigned int watch_mask)
1059 {
1060         struct smi_info *smi_info = send_info;
1061         unsigned long flags;
1062         int enable;
1063
1064         enable = !!watch_mask;
1065
1066         atomic_set(&smi_info->need_watch, enable);
1067         spin_lock_irqsave(&smi_info->si_lock, flags);
1068         check_start_timer_thread(smi_info);
1069         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1070 }
1071
1072 static void smi_timeout(struct timer_list *t)
1073 {
1074         struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1075         enum si_sm_result smi_result;
1076         unsigned long     flags;
1077         unsigned long     jiffies_now;
1078         long              time_diff;
1079         long              timeout;
1080
1081         spin_lock_irqsave(&(smi_info->si_lock), flags);
1082         debug_timestamp("Timer");
1083
1084         jiffies_now = jiffies;
1085         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1086                      * SI_USEC_PER_JIFFY);
1087         smi_result = smi_event_handler(smi_info, time_diff);
1088
1089         if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1090                 /* Running with interrupts, only do long timeouts. */
1091                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1092                 smi_inc_stat(smi_info, long_timeouts);
1093                 goto do_mod_timer;
1094         }
1095
1096         /*
1097          * If the state machine asks for a short delay, then shorten
1098          * the timer timeout.
1099          */
1100         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1101                 smi_inc_stat(smi_info, short_timeouts);
1102                 timeout = jiffies + 1;
1103         } else {
1104                 smi_inc_stat(smi_info, long_timeouts);
1105                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1106         }
1107
1108 do_mod_timer:
1109         if (smi_result != SI_SM_IDLE)
1110                 smi_mod_timer(smi_info, timeout);
1111         else
1112                 smi_info->timer_running = false;
1113         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1114 }
1115
1116 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1117 {
1118         struct smi_info *smi_info = data;
1119         unsigned long   flags;
1120
1121         if (smi_info->io.si_type == SI_BT)
1122                 /* We need to clear the IRQ flag for the BT interface. */
1123                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1124                                      IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1125                                      | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1126
1127         spin_lock_irqsave(&(smi_info->si_lock), flags);
1128
1129         smi_inc_stat(smi_info, interrupts);
1130
1131         debug_timestamp("Interrupt");
1132
1133         smi_event_handler(smi_info, 0);
1134         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1135         return IRQ_HANDLED;
1136 }
1137
1138 static int smi_start_processing(void            *send_info,
1139                                 struct ipmi_smi *intf)
1140 {
1141         struct smi_info *new_smi = send_info;
1142         int             enable = 0;
1143
1144         new_smi->intf = intf;
1145
1146         /* Set up the timer that drives the interface. */
1147         timer_setup(&new_smi->si_timer, smi_timeout, 0);
1148         new_smi->timer_can_start = true;
1149         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1150
1151         /* Try to claim any interrupts. */
1152         if (new_smi->io.irq_setup) {
1153                 new_smi->io.irq_handler_data = new_smi;
1154                 new_smi->io.irq_setup(&new_smi->io);
1155         }
1156
1157         /*
1158          * Check if the user forcefully enabled the daemon.
1159          */
1160         if (new_smi->si_num < num_force_kipmid)
1161                 enable = force_kipmid[new_smi->si_num];
1162         /*
1163          * The BT interface is efficient enough to not need a thread,
1164          * and there is no need for a thread if we have interrupts.
1165          */
1166         else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1167                 enable = 1;
1168
1169         if (enable) {
1170                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1171                                               "kipmi%d", new_smi->si_num);
1172                 if (IS_ERR(new_smi->thread)) {
1173                         dev_notice(new_smi->io.dev,
1174                                    "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1175                                    PTR_ERR(new_smi->thread));
1176                         new_smi->thread = NULL;
1177                 }
1178         }
1179
1180         return 0;
1181 }
1182
1183 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1184 {
1185         struct smi_info *smi = send_info;
1186
1187         data->addr_src = smi->io.addr_source;
1188         data->dev = smi->io.dev;
1189         data->addr_info = smi->io.addr_info;
1190         get_device(smi->io.dev);
1191
1192         return 0;
1193 }
1194
1195 static void set_maintenance_mode(void *send_info, bool enable)
1196 {
1197         struct smi_info   *smi_info = send_info;
1198
1199         if (!enable)
1200                 atomic_set(&smi_info->req_events, 0);
1201         smi_info->in_maintenance_mode = enable;
1202 }
1203
1204 static void shutdown_smi(void *send_info);
1205 static const struct ipmi_smi_handlers handlers = {
1206         .owner                  = THIS_MODULE,
1207         .start_processing       = smi_start_processing,
1208         .shutdown               = shutdown_smi,
1209         .get_smi_info           = get_smi_info,
1210         .sender                 = sender,
1211         .request_events         = request_events,
1212         .set_need_watch         = set_need_watch,
1213         .set_maintenance_mode   = set_maintenance_mode,
1214         .set_run_to_completion  = set_run_to_completion,
1215         .flush_messages         = flush_messages,
1216         .poll                   = poll,
1217 };
1218
1219 static LIST_HEAD(smi_infos);
1220 static DEFINE_MUTEX(smi_infos_lock);
1221 static int smi_num; /* Used to sequence the SMIs */
1222
1223 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1224
1225 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1226 MODULE_PARM_DESC(force_kipmid,
1227                  "Force the kipmi daemon to be enabled (1) or disabled(0).  Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1228 module_param(unload_when_empty, bool, 0);
1229 MODULE_PARM_DESC(unload_when_empty,
1230                  "Unload the module if no interfaces are specified or found, default is 1.  Setting to 0 is useful for hot add of devices using hotmod.");
1231 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1232 MODULE_PARM_DESC(kipmid_max_busy_us,
1233                  "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1234
1235 void ipmi_irq_finish_setup(struct si_sm_io *io)
1236 {
1237         if (io->si_type == SI_BT)
1238                 /* Enable the interrupt in the BT interface. */
1239                 io->outputb(io, IPMI_BT_INTMASK_REG,
1240                             IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1241 }
1242
1243 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1244 {
1245         if (io->si_type == SI_BT)
1246                 /* Disable the interrupt in the BT interface. */
1247                 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1248 }
1249
1250 static void std_irq_cleanup(struct si_sm_io *io)
1251 {
1252         ipmi_irq_start_cleanup(io);
1253         free_irq(io->irq, io->irq_handler_data);
1254 }
1255
1256 int ipmi_std_irq_setup(struct si_sm_io *io)
1257 {
1258         int rv;
1259
1260         if (!io->irq)
1261                 return 0;
1262
1263         rv = request_irq(io->irq,
1264                          ipmi_si_irq_handler,
1265                          IRQF_SHARED,
1266                          SI_DEVICE_NAME,
1267                          io->irq_handler_data);
1268         if (rv) {
1269                 dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1270                          SI_DEVICE_NAME, io->irq);
1271                 io->irq = 0;
1272         } else {
1273                 io->irq_cleanup = std_irq_cleanup;
1274                 ipmi_irq_finish_setup(io);
1275                 dev_info(io->dev, "Using irq %d\n", io->irq);
1276         }
1277
1278         return rv;
1279 }
1280
1281 static int wait_for_msg_done(struct smi_info *smi_info)
1282 {
1283         enum si_sm_result     smi_result;
1284
1285         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1286         for (;;) {
1287                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1288                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1289                         schedule_timeout_uninterruptible(1);
1290                         smi_result = smi_info->handlers->event(
1291                                 smi_info->si_sm, jiffies_to_usecs(1));
1292                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1293                         smi_result = smi_info->handlers->event(
1294                                 smi_info->si_sm, 0);
1295                 } else
1296                         break;
1297         }
1298         if (smi_result == SI_SM_HOSED)
1299                 /*
1300                  * We couldn't get the state machine to run, so whatever's at
1301                  * the port is probably not an IPMI SMI interface.
1302                  */
1303                 return -ENODEV;
1304
1305         return 0;
1306 }
1307
1308 static int try_get_dev_id(struct smi_info *smi_info)
1309 {
1310         unsigned char         msg[2];
1311         unsigned char         *resp;
1312         unsigned long         resp_len;
1313         int                   rv = 0;
1314         unsigned int          retry_count = 0;
1315
1316         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1317         if (!resp)
1318                 return -ENOMEM;
1319
1320         /*
1321          * Do a Get Device ID command, since it comes back with some
1322          * useful info.
1323          */
1324         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1325         msg[1] = IPMI_GET_DEVICE_ID_CMD;
1326
1327 retry:
1328         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1329
1330         rv = wait_for_msg_done(smi_info);
1331         if (rv)
1332                 goto out;
1333
1334         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1335                                                   resp, IPMI_MAX_MSG_LENGTH);
1336
1337         /* Check and record info from the get device id, in case we need it. */
1338         rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1339                         resp + 2, resp_len - 2, &smi_info->device_id);
1340         if (rv) {
1341                 /* record completion code */
1342                 unsigned char cc = *(resp + 2);
1343
1344                 if (cc != IPMI_CC_NO_ERROR &&
1345                     ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1346                         dev_warn_ratelimited(smi_info->io.dev,
1347                             "BMC returned 0x%2.2x, retry get bmc device id\n",
1348                             cc);
1349                         goto retry;
1350                 }
1351         }
1352
1353 out:
1354         kfree(resp);
1355         return rv;
1356 }
1357
1358 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1359 {
1360         unsigned char         msg[3];
1361         unsigned char         *resp;
1362         unsigned long         resp_len;
1363         int                   rv;
1364
1365         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1366         if (!resp)
1367                 return -ENOMEM;
1368
1369         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1370         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1371         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1372
1373         rv = wait_for_msg_done(smi_info);
1374         if (rv) {
1375                 dev_warn(smi_info->io.dev,
1376                          "Error getting response from get global enables command: %d\n",
1377                          rv);
1378                 goto out;
1379         }
1380
1381         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1382                                                   resp, IPMI_MAX_MSG_LENGTH);
1383
1384         if (resp_len < 4 ||
1385                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1386                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1387                         resp[2] != 0) {
1388                 dev_warn(smi_info->io.dev,
1389                          "Invalid return from get global enables command: %ld %x %x %x\n",
1390                          resp_len, resp[0], resp[1], resp[2]);
1391                 rv = -EINVAL;
1392                 goto out;
1393         } else {
1394                 *enables = resp[3];
1395         }
1396
1397 out:
1398         kfree(resp);
1399         return rv;
1400 }
1401
1402 /*
1403  * Returns 1 if it gets an error from the command.
1404  */
1405 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1406 {
1407         unsigned char         msg[3];
1408         unsigned char         *resp;
1409         unsigned long         resp_len;
1410         int                   rv;
1411
1412         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1413         if (!resp)
1414                 return -ENOMEM;
1415
1416         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1417         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1418         msg[2] = enables;
1419         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1420
1421         rv = wait_for_msg_done(smi_info);
1422         if (rv) {
1423                 dev_warn(smi_info->io.dev,
1424                          "Error getting response from set global enables command: %d\n",
1425                          rv);
1426                 goto out;
1427         }
1428
1429         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1430                                                   resp, IPMI_MAX_MSG_LENGTH);
1431
1432         if (resp_len < 3 ||
1433                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1434                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1435                 dev_warn(smi_info->io.dev,
1436                          "Invalid return from set global enables command: %ld %x %x\n",
1437                          resp_len, resp[0], resp[1]);
1438                 rv = -EINVAL;
1439                 goto out;
1440         }
1441
1442         if (resp[2] != 0)
1443                 rv = 1;
1444
1445 out:
1446         kfree(resp);
1447         return rv;
1448 }
1449
1450 /*
1451  * Some BMCs do not support clearing the receive irq bit in the global
1452  * enables (even if they don't support interrupts on the BMC).  Check
1453  * for this and handle it properly.
1454  */
1455 static void check_clr_rcv_irq(struct smi_info *smi_info)
1456 {
1457         u8 enables = 0;
1458         int rv;
1459
1460         rv = get_global_enables(smi_info, &enables);
1461         if (!rv) {
1462                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1463                         /* Already clear, should work ok. */
1464                         return;
1465
1466                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1467                 rv = set_global_enables(smi_info, enables);
1468         }
1469
1470         if (rv < 0) {
1471                 dev_err(smi_info->io.dev,
1472                         "Cannot check clearing the rcv irq: %d\n", rv);
1473                 return;
1474         }
1475
1476         if (rv) {
1477                 /*
1478                  * An error when setting the event buffer bit means
1479                  * clearing the bit is not supported.
1480                  */
1481                 dev_warn(smi_info->io.dev,
1482                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1483                 smi_info->cannot_disable_irq = true;
1484         }
1485 }
1486
1487 /*
1488  * Some BMCs do not support setting the interrupt bits in the global
1489  * enables even if they support interrupts.  Clearly bad, but we can
1490  * compensate.
1491  */
1492 static void check_set_rcv_irq(struct smi_info *smi_info)
1493 {
1494         u8 enables = 0;
1495         int rv;
1496
1497         if (!smi_info->io.irq)
1498                 return;
1499
1500         rv = get_global_enables(smi_info, &enables);
1501         if (!rv) {
1502                 enables |= IPMI_BMC_RCV_MSG_INTR;
1503                 rv = set_global_enables(smi_info, enables);
1504         }
1505
1506         if (rv < 0) {
1507                 dev_err(smi_info->io.dev,
1508                         "Cannot check setting the rcv irq: %d\n", rv);
1509                 return;
1510         }
1511
1512         if (rv) {
1513                 /*
1514                  * An error when setting the event buffer bit means
1515                  * setting the bit is not supported.
1516                  */
1517                 dev_warn(smi_info->io.dev,
1518                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1519                 smi_info->cannot_disable_irq = true;
1520                 smi_info->irq_enable_broken = true;
1521         }
1522 }
1523
1524 static int try_enable_event_buffer(struct smi_info *smi_info)
1525 {
1526         unsigned char         msg[3];
1527         unsigned char         *resp;
1528         unsigned long         resp_len;
1529         int                   rv = 0;
1530
1531         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1532         if (!resp)
1533                 return -ENOMEM;
1534
1535         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1536         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1537         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1538
1539         rv = wait_for_msg_done(smi_info);
1540         if (rv) {
1541                 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1542                 goto out;
1543         }
1544
1545         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1546                                                   resp, IPMI_MAX_MSG_LENGTH);
1547
1548         if (resp_len < 4 ||
1549                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1550                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1551                         resp[2] != 0) {
1552                 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1553                 rv = -EINVAL;
1554                 goto out;
1555         }
1556
1557         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1558                 /* buffer is already enabled, nothing to do. */
1559                 smi_info->supports_event_msg_buff = true;
1560                 goto out;
1561         }
1562
1563         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1564         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1565         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1566         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1567
1568         rv = wait_for_msg_done(smi_info);
1569         if (rv) {
1570                 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1571                 goto out;
1572         }
1573
1574         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1575                                                   resp, IPMI_MAX_MSG_LENGTH);
1576
1577         if (resp_len < 3 ||
1578                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1579                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1580                 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1581                 rv = -EINVAL;
1582                 goto out;
1583         }
1584
1585         if (resp[2] != 0)
1586                 /*
1587                  * An error when setting the event buffer bit means
1588                  * that the event buffer is not supported.
1589                  */
1590                 rv = -ENOENT;
1591         else
1592                 smi_info->supports_event_msg_buff = true;
1593
1594 out:
1595         kfree(resp);
1596         return rv;
1597 }
1598
1599 #define IPMI_SI_ATTR(name) \
1600 static ssize_t name##_show(struct device *dev,                  \
1601                            struct device_attribute *attr,               \
1602                            char *buf)                                   \
1603 {                                                                       \
1604         struct smi_info *smi_info = dev_get_drvdata(dev);               \
1605                                                                         \
1606         return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1607 }                                                                       \
1608 static DEVICE_ATTR_RO(name)
1609
1610 static ssize_t type_show(struct device *dev,
1611                          struct device_attribute *attr,
1612                          char *buf)
1613 {
1614         struct smi_info *smi_info = dev_get_drvdata(dev);
1615
1616         return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1617 }
1618 static DEVICE_ATTR_RO(type);
1619
1620 static ssize_t interrupts_enabled_show(struct device *dev,
1621                                        struct device_attribute *attr,
1622                                        char *buf)
1623 {
1624         struct smi_info *smi_info = dev_get_drvdata(dev);
1625         int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1626
1627         return snprintf(buf, 10, "%d\n", enabled);
1628 }
1629 static DEVICE_ATTR_RO(interrupts_enabled);
1630
1631 IPMI_SI_ATTR(short_timeouts);
1632 IPMI_SI_ATTR(long_timeouts);
1633 IPMI_SI_ATTR(idles);
1634 IPMI_SI_ATTR(interrupts);
1635 IPMI_SI_ATTR(attentions);
1636 IPMI_SI_ATTR(flag_fetches);
1637 IPMI_SI_ATTR(hosed_count);
1638 IPMI_SI_ATTR(complete_transactions);
1639 IPMI_SI_ATTR(events);
1640 IPMI_SI_ATTR(watchdog_pretimeouts);
1641 IPMI_SI_ATTR(incoming_messages);
1642
1643 static ssize_t params_show(struct device *dev,
1644                            struct device_attribute *attr,
1645                            char *buf)
1646 {
1647         struct smi_info *smi_info = dev_get_drvdata(dev);
1648
1649         return snprintf(buf, 200,
1650                         "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1651                         si_to_str[smi_info->io.si_type],
1652                         addr_space_to_str[smi_info->io.addr_space],
1653                         smi_info->io.addr_data,
1654                         smi_info->io.regspacing,
1655                         smi_info->io.regsize,
1656                         smi_info->io.regshift,
1657                         smi_info->io.irq,
1658                         smi_info->io.slave_addr);
1659 }
1660 static DEVICE_ATTR_RO(params);
1661
1662 static struct attribute *ipmi_si_dev_attrs[] = {
1663         &dev_attr_type.attr,
1664         &dev_attr_interrupts_enabled.attr,
1665         &dev_attr_short_timeouts.attr,
1666         &dev_attr_long_timeouts.attr,
1667         &dev_attr_idles.attr,
1668         &dev_attr_interrupts.attr,
1669         &dev_attr_attentions.attr,
1670         &dev_attr_flag_fetches.attr,
1671         &dev_attr_hosed_count.attr,
1672         &dev_attr_complete_transactions.attr,
1673         &dev_attr_events.attr,
1674         &dev_attr_watchdog_pretimeouts.attr,
1675         &dev_attr_incoming_messages.attr,
1676         &dev_attr_params.attr,
1677         NULL
1678 };
1679
1680 static const struct attribute_group ipmi_si_dev_attr_group = {
1681         .attrs          = ipmi_si_dev_attrs,
1682 };
1683
1684 /*
1685  * oem_data_avail_to_receive_msg_avail
1686  * @info - smi_info structure with msg_flags set
1687  *
1688  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1689  * Returns 1 indicating need to re-run handle_flags().
1690  */
1691 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1692 {
1693         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1694                                RECEIVE_MSG_AVAIL);
1695         return 1;
1696 }
1697
1698 /*
1699  * setup_dell_poweredge_oem_data_handler
1700  * @info - smi_info.device_id must be populated
1701  *
1702  * Systems that match, but have firmware version < 1.40 may assert
1703  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1704  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1705  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1706  * as RECEIVE_MSG_AVAIL instead.
1707  *
1708  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1709  * assert the OEM[012] bits, and if it did, the driver would have to
1710  * change to handle that properly, we don't actually check for the
1711  * firmware version.
1712  * Device ID = 0x20                BMC on PowerEdge 8G servers
1713  * Device Revision = 0x80
1714  * Firmware Revision1 = 0x01       BMC version 1.40
1715  * Firmware Revision2 = 0x40       BCD encoded
1716  * IPMI Version = 0x51             IPMI 1.5
1717  * Manufacturer ID = A2 02 00      Dell IANA
1718  *
1719  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1720  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1721  *
1722  */
1723 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1724 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1725 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1726 #define DELL_IANA_MFR_ID 0x0002a2
1727 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1728 {
1729         struct ipmi_device_id *id = &smi_info->device_id;
1730         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1731                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1732                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1733                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1734                         smi_info->oem_data_avail_handler =
1735                                 oem_data_avail_to_receive_msg_avail;
1736                 } else if (ipmi_version_major(id) < 1 ||
1737                            (ipmi_version_major(id) == 1 &&
1738                             ipmi_version_minor(id) < 5)) {
1739                         smi_info->oem_data_avail_handler =
1740                                 oem_data_avail_to_receive_msg_avail;
1741                 }
1742         }
1743 }
1744
1745 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1746 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1747 {
1748         struct ipmi_smi_msg *msg = smi_info->curr_msg;
1749
1750         /* Make it a response */
1751         msg->rsp[0] = msg->data[0] | 4;
1752         msg->rsp[1] = msg->data[1];
1753         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1754         msg->rsp_size = 3;
1755         smi_info->curr_msg = NULL;
1756         deliver_recv_msg(smi_info, msg);
1757 }
1758
1759 /*
1760  * dell_poweredge_bt_xaction_handler
1761  * @info - smi_info.device_id must be populated
1762  *
1763  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1764  * not respond to a Get SDR command if the length of the data
1765  * requested is exactly 0x3A, which leads to command timeouts and no
1766  * data returned.  This intercepts such commands, and causes userspace
1767  * callers to try again with a different-sized buffer, which succeeds.
1768  */
1769
1770 #define STORAGE_NETFN 0x0A
1771 #define STORAGE_CMD_GET_SDR 0x23
1772 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1773                                              unsigned long unused,
1774                                              void *in)
1775 {
1776         struct smi_info *smi_info = in;
1777         unsigned char *data = smi_info->curr_msg->data;
1778         unsigned int size   = smi_info->curr_msg->data_size;
1779         if (size >= 8 &&
1780             (data[0]>>2) == STORAGE_NETFN &&
1781             data[1] == STORAGE_CMD_GET_SDR &&
1782             data[7] == 0x3A) {
1783                 return_hosed_msg_badsize(smi_info);
1784                 return NOTIFY_STOP;
1785         }
1786         return NOTIFY_DONE;
1787 }
1788
1789 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1790         .notifier_call  = dell_poweredge_bt_xaction_handler,
1791 };
1792
1793 /*
1794  * setup_dell_poweredge_bt_xaction_handler
1795  * @info - smi_info.device_id must be filled in already
1796  *
1797  * Fills in smi_info.device_id.start_transaction_pre_hook
1798  * when we know what function to use there.
1799  */
1800 static void
1801 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1802 {
1803         struct ipmi_device_id *id = &smi_info->device_id;
1804         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1805             smi_info->io.si_type == SI_BT)
1806                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1807 }
1808
1809 /*
1810  * setup_oem_data_handler
1811  * @info - smi_info.device_id must be filled in already
1812  *
1813  * Fills in smi_info.device_id.oem_data_available_handler
1814  * when we know what function to use there.
1815  */
1816
1817 static void setup_oem_data_handler(struct smi_info *smi_info)
1818 {
1819         setup_dell_poweredge_oem_data_handler(smi_info);
1820 }
1821
1822 static void setup_xaction_handlers(struct smi_info *smi_info)
1823 {
1824         setup_dell_poweredge_bt_xaction_handler(smi_info);
1825 }
1826
1827 static void check_for_broken_irqs(struct smi_info *smi_info)
1828 {
1829         check_clr_rcv_irq(smi_info);
1830         check_set_rcv_irq(smi_info);
1831 }
1832
1833 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1834 {
1835         if (smi_info->thread != NULL) {
1836                 kthread_stop(smi_info->thread);
1837                 smi_info->thread = NULL;
1838         }
1839
1840         smi_info->timer_can_start = false;
1841         del_timer_sync(&smi_info->si_timer);
1842 }
1843
1844 static struct smi_info *find_dup_si(struct smi_info *info)
1845 {
1846         struct smi_info *e;
1847
1848         list_for_each_entry(e, &smi_infos, link) {
1849                 if (e->io.addr_space != info->io.addr_space)
1850                         continue;
1851                 if (e->io.addr_data == info->io.addr_data) {
1852                         /*
1853                          * This is a cheap hack, ACPI doesn't have a defined
1854                          * slave address but SMBIOS does.  Pick it up from
1855                          * any source that has it available.
1856                          */
1857                         if (info->io.slave_addr && !e->io.slave_addr)
1858                                 e->io.slave_addr = info->io.slave_addr;
1859                         return e;
1860                 }
1861         }
1862
1863         return NULL;
1864 }
1865
1866 int ipmi_si_add_smi(struct si_sm_io *io)
1867 {
1868         int rv = 0;
1869         struct smi_info *new_smi, *dup;
1870
1871         /*
1872          * If the user gave us a hard-coded device at the same
1873          * address, they presumably want us to use it and not what is
1874          * in the firmware.
1875          */
1876         if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1877             ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1878                 dev_info(io->dev,
1879                          "Hard-coded device at this address already exists");
1880                 return -ENODEV;
1881         }
1882
1883         if (!io->io_setup) {
1884                 if (io->addr_space == IPMI_IO_ADDR_SPACE) {
1885                         io->io_setup = ipmi_si_port_setup;
1886                 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1887                         io->io_setup = ipmi_si_mem_setup;
1888                 } else {
1889                         return -EINVAL;
1890                 }
1891         }
1892
1893         new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1894         if (!new_smi)
1895                 return -ENOMEM;
1896         spin_lock_init(&new_smi->si_lock);
1897
1898         new_smi->io = *io;
1899
1900         mutex_lock(&smi_infos_lock);
1901         dup = find_dup_si(new_smi);
1902         if (dup) {
1903                 if (new_smi->io.addr_source == SI_ACPI &&
1904                     dup->io.addr_source == SI_SMBIOS) {
1905                         /* We prefer ACPI over SMBIOS. */
1906                         dev_info(dup->io.dev,
1907                                  "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1908                                  si_to_str[new_smi->io.si_type]);
1909                         cleanup_one_si(dup);
1910                 } else {
1911                         dev_info(new_smi->io.dev,
1912                                  "%s-specified %s state machine: duplicate\n",
1913                                  ipmi_addr_src_to_str(new_smi->io.addr_source),
1914                                  si_to_str[new_smi->io.si_type]);
1915                         rv = -EBUSY;
1916                         kfree(new_smi);
1917                         goto out_err;
1918                 }
1919         }
1920
1921         pr_info("Adding %s-specified %s state machine\n",
1922                 ipmi_addr_src_to_str(new_smi->io.addr_source),
1923                 si_to_str[new_smi->io.si_type]);
1924
1925         list_add_tail(&new_smi->link, &smi_infos);
1926
1927         if (initialized)
1928                 rv = try_smi_init(new_smi);
1929 out_err:
1930         mutex_unlock(&smi_infos_lock);
1931         return rv;
1932 }
1933
1934 /*
1935  * Try to start up an interface.  Must be called with smi_infos_lock
1936  * held, primarily to keep smi_num consistent, we only one to do these
1937  * one at a time.
1938  */
1939 static int try_smi_init(struct smi_info *new_smi)
1940 {
1941         int rv = 0;
1942         int i;
1943
1944         pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1945                 ipmi_addr_src_to_str(new_smi->io.addr_source),
1946                 si_to_str[new_smi->io.si_type],
1947                 addr_space_to_str[new_smi->io.addr_space],
1948                 new_smi->io.addr_data,
1949                 new_smi->io.slave_addr, new_smi->io.irq);
1950
1951         switch (new_smi->io.si_type) {
1952         case SI_KCS:
1953                 new_smi->handlers = &kcs_smi_handlers;
1954                 break;
1955
1956         case SI_SMIC:
1957                 new_smi->handlers = &smic_smi_handlers;
1958                 break;
1959
1960         case SI_BT:
1961                 new_smi->handlers = &bt_smi_handlers;
1962                 break;
1963
1964         default:
1965                 /* No support for anything else yet. */
1966                 rv = -EIO;
1967                 goto out_err;
1968         }
1969
1970         new_smi->si_num = smi_num;
1971
1972         /* Do this early so it's available for logs. */
1973         if (!new_smi->io.dev) {
1974                 pr_err("IPMI interface added with no device\n");
1975                 rv = -EIO;
1976                 goto out_err;
1977         }
1978
1979         /* Allocate the state machine's data and initialize it. */
1980         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1981         if (!new_smi->si_sm) {
1982                 rv = -ENOMEM;
1983                 goto out_err;
1984         }
1985         new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1986                                                            &new_smi->io);
1987
1988         /* Now that we know the I/O size, we can set up the I/O. */
1989         rv = new_smi->io.io_setup(&new_smi->io);
1990         if (rv) {
1991                 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1992                 goto out_err;
1993         }
1994
1995         /* Do low-level detection first. */
1996         if (new_smi->handlers->detect(new_smi->si_sm)) {
1997                 if (new_smi->io.addr_source)
1998                         dev_err(new_smi->io.dev,
1999                                 "Interface detection failed\n");
2000                 rv = -ENODEV;
2001                 goto out_err;
2002         }
2003
2004         /*
2005          * Attempt a get device id command.  If it fails, we probably
2006          * don't have a BMC here.
2007          */
2008         rv = try_get_dev_id(new_smi);
2009         if (rv) {
2010                 if (new_smi->io.addr_source)
2011                         dev_err(new_smi->io.dev,
2012                                "There appears to be no BMC at this location\n");
2013                 goto out_err;
2014         }
2015
2016         setup_oem_data_handler(new_smi);
2017         setup_xaction_handlers(new_smi);
2018         check_for_broken_irqs(new_smi);
2019
2020         new_smi->waiting_msg = NULL;
2021         new_smi->curr_msg = NULL;
2022         atomic_set(&new_smi->req_events, 0);
2023         new_smi->run_to_completion = false;
2024         for (i = 0; i < SI_NUM_STATS; i++)
2025                 atomic_set(&new_smi->stats[i], 0);
2026
2027         new_smi->interrupt_disabled = true;
2028         atomic_set(&new_smi->need_watch, 0);
2029
2030         rv = try_enable_event_buffer(new_smi);
2031         if (rv == 0)
2032                 new_smi->has_event_buffer = true;
2033
2034         /*
2035          * Start clearing the flags before we enable interrupts or the
2036          * timer to avoid racing with the timer.
2037          */
2038         start_clear_flags(new_smi);
2039
2040         /*
2041          * IRQ is defined to be set when non-zero.  req_events will
2042          * cause a global flags check that will enable interrupts.
2043          */
2044         if (new_smi->io.irq) {
2045                 new_smi->interrupt_disabled = false;
2046                 atomic_set(&new_smi->req_events, 1);
2047         }
2048
2049         dev_set_drvdata(new_smi->io.dev, new_smi);
2050         rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2051         if (rv) {
2052                 dev_err(new_smi->io.dev,
2053                         "Unable to add device attributes: error %d\n",
2054                         rv);
2055                 goto out_err;
2056         }
2057         new_smi->dev_group_added = true;
2058
2059         rv = ipmi_register_smi(&handlers,
2060                                new_smi,
2061                                new_smi->io.dev,
2062                                new_smi->io.slave_addr);
2063         if (rv) {
2064                 dev_err(new_smi->io.dev,
2065                         "Unable to register device: error %d\n",
2066                         rv);
2067                 goto out_err;
2068         }
2069
2070         /* Don't increment till we know we have succeeded. */
2071         smi_num++;
2072
2073         dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2074                  si_to_str[new_smi->io.si_type]);
2075
2076         WARN_ON(new_smi->io.dev->init_name != NULL);
2077
2078  out_err:
2079         if (rv && new_smi->io.io_cleanup) {
2080                 new_smi->io.io_cleanup(&new_smi->io);
2081                 new_smi->io.io_cleanup = NULL;
2082         }
2083
2084         return rv;
2085 }
2086
2087 static int __init init_ipmi_si(void)
2088 {
2089         struct smi_info *e;
2090         enum ipmi_addr_src type = SI_INVALID;
2091
2092         if (initialized)
2093                 return 0;
2094
2095         ipmi_hardcode_init();
2096
2097         pr_info("IPMI System Interface driver\n");
2098
2099         ipmi_si_platform_init();
2100
2101         ipmi_si_pci_init();
2102
2103         ipmi_si_parisc_init();
2104
2105         /* We prefer devices with interrupts, but in the case of a machine
2106            with multiple BMCs we assume that there will be several instances
2107            of a given type so if we succeed in registering a type then also
2108            try to register everything else of the same type */
2109         mutex_lock(&smi_infos_lock);
2110         list_for_each_entry(e, &smi_infos, link) {
2111                 /* Try to register a device if it has an IRQ and we either
2112                    haven't successfully registered a device yet or this
2113                    device has the same type as one we successfully registered */
2114                 if (e->io.irq && (!type || e->io.addr_source == type)) {
2115                         if (!try_smi_init(e)) {
2116                                 type = e->io.addr_source;
2117                         }
2118                 }
2119         }
2120
2121         /* type will only have been set if we successfully registered an si */
2122         if (type)
2123                 goto skip_fallback_noirq;
2124
2125         /* Fall back to the preferred device */
2126
2127         list_for_each_entry(e, &smi_infos, link) {
2128                 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2129                         if (!try_smi_init(e)) {
2130                                 type = e->io.addr_source;
2131                         }
2132                 }
2133         }
2134
2135 skip_fallback_noirq:
2136         initialized = true;
2137         mutex_unlock(&smi_infos_lock);
2138
2139         if (type)
2140                 return 0;
2141
2142         mutex_lock(&smi_infos_lock);
2143         if (unload_when_empty && list_empty(&smi_infos)) {
2144                 mutex_unlock(&smi_infos_lock);
2145                 cleanup_ipmi_si();
2146                 pr_warn("Unable to find any System Interface(s)\n");
2147                 return -ENODEV;
2148         } else {
2149                 mutex_unlock(&smi_infos_lock);
2150                 return 0;
2151         }
2152 }
2153 module_init(init_ipmi_si);
2154
2155 static void shutdown_smi(void *send_info)
2156 {
2157         struct smi_info *smi_info = send_info;
2158
2159         if (smi_info->dev_group_added) {
2160                 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2161                 smi_info->dev_group_added = false;
2162         }
2163         if (smi_info->io.dev)
2164                 dev_set_drvdata(smi_info->io.dev, NULL);
2165
2166         /*
2167          * Make sure that interrupts, the timer and the thread are
2168          * stopped and will not run again.
2169          */
2170         smi_info->interrupt_disabled = true;
2171         if (smi_info->io.irq_cleanup) {
2172                 smi_info->io.irq_cleanup(&smi_info->io);
2173                 smi_info->io.irq_cleanup = NULL;
2174         }
2175         stop_timer_and_thread(smi_info);
2176
2177         /*
2178          * Wait until we know that we are out of any interrupt
2179          * handlers might have been running before we freed the
2180          * interrupt.
2181          */
2182         synchronize_rcu();
2183
2184         /*
2185          * Timeouts are stopped, now make sure the interrupts are off
2186          * in the BMC.  Note that timers and CPU interrupts are off,
2187          * so no need for locks.
2188          */
2189         while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2190                 poll(smi_info);
2191                 schedule_timeout_uninterruptible(1);
2192         }
2193         if (smi_info->handlers)
2194                 disable_si_irq(smi_info);
2195         while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2196                 poll(smi_info);
2197                 schedule_timeout_uninterruptible(1);
2198         }
2199         if (smi_info->handlers)
2200                 smi_info->handlers->cleanup(smi_info->si_sm);
2201
2202         if (smi_info->io.io_cleanup) {
2203                 smi_info->io.io_cleanup(&smi_info->io);
2204                 smi_info->io.io_cleanup = NULL;
2205         }
2206
2207         kfree(smi_info->si_sm);
2208         smi_info->si_sm = NULL;
2209
2210         smi_info->intf = NULL;
2211 }
2212
2213 /*
2214  * Must be called with smi_infos_lock held, to serialize the
2215  * smi_info->intf check.
2216  */
2217 static void cleanup_one_si(struct smi_info *smi_info)
2218 {
2219         if (!smi_info)
2220                 return;
2221
2222         list_del(&smi_info->link);
2223
2224         if (smi_info->intf)
2225                 ipmi_unregister_smi(smi_info->intf);
2226
2227         kfree(smi_info);
2228 }
2229
2230 void ipmi_si_remove_by_dev(struct device *dev)
2231 {
2232         struct smi_info *e;
2233
2234         mutex_lock(&smi_infos_lock);
2235         list_for_each_entry(e, &smi_infos, link) {
2236                 if (e->io.dev == dev) {
2237                         cleanup_one_si(e);
2238                         break;
2239                 }
2240         }
2241         mutex_unlock(&smi_infos_lock);
2242 }
2243
2244 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2245                                       unsigned long addr)
2246 {
2247         /* remove */
2248         struct smi_info *e, *tmp_e;
2249         struct device *dev = NULL;
2250
2251         mutex_lock(&smi_infos_lock);
2252         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2253                 if (e->io.addr_space != addr_space)
2254                         continue;
2255                 if (e->io.si_type != si_type)
2256                         continue;
2257                 if (e->io.addr_data == addr) {
2258                         dev = get_device(e->io.dev);
2259                         cleanup_one_si(e);
2260                 }
2261         }
2262         mutex_unlock(&smi_infos_lock);
2263
2264         return dev;
2265 }
2266
2267 static void cleanup_ipmi_si(void)
2268 {
2269         struct smi_info *e, *tmp_e;
2270
2271         if (!initialized)
2272                 return;
2273
2274         ipmi_si_pci_shutdown();
2275
2276         ipmi_si_parisc_shutdown();
2277
2278         ipmi_si_platform_shutdown();
2279
2280         mutex_lock(&smi_infos_lock);
2281         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2282                 cleanup_one_si(e);
2283         mutex_unlock(&smi_infos_lock);
2284
2285         ipmi_si_hardcode_exit();
2286         ipmi_si_hotmod_exit();
2287 }
2288 module_exit(cleanup_ipmi_si);
2289
2290 MODULE_ALIAS("platform:dmi-ipmi-si");
2291 MODULE_LICENSE("GPL");
2292 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2293 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");