Merge tag 'thermal-v5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/therma...
[linux-2.6-microblaze.git] / drivers / acpi / scan.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/nls.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/platform_data/x86/apple.h>
22 #include <linux/pgtable.h>
23
24 #include "internal.h"
25
26 extern struct acpi_device *acpi_root;
27
28 #define ACPI_BUS_CLASS                  "system_bus"
29 #define ACPI_BUS_HID                    "LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME            "System Bus"
31
32 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
33
34 #define INVALID_ACPI_HANDLE     ((acpi_handle)empty_zero_page)
35
36 static const char *dummy_hid = "device";
37
38 static LIST_HEAD(acpi_dep_list);
39 static DEFINE_MUTEX(acpi_dep_list_lock);
40 LIST_HEAD(acpi_bus_id_list);
41 static DEFINE_MUTEX(acpi_scan_lock);
42 static LIST_HEAD(acpi_scan_handlers_list);
43 DEFINE_MUTEX(acpi_device_lock);
44 LIST_HEAD(acpi_wakeup_device_list);
45 static DEFINE_MUTEX(acpi_hp_context_lock);
46
47 /*
48  * The UART device described by the SPCR table is the only object which needs
49  * special-casing. Everything else is covered by ACPI namespace paths in STAO
50  * table.
51  */
52 static u64 spcr_uart_addr;
53
54 void acpi_scan_lock_acquire(void)
55 {
56         mutex_lock(&acpi_scan_lock);
57 }
58 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
59
60 void acpi_scan_lock_release(void)
61 {
62         mutex_unlock(&acpi_scan_lock);
63 }
64 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
65
66 void acpi_lock_hp_context(void)
67 {
68         mutex_lock(&acpi_hp_context_lock);
69 }
70
71 void acpi_unlock_hp_context(void)
72 {
73         mutex_unlock(&acpi_hp_context_lock);
74 }
75
76 void acpi_initialize_hp_context(struct acpi_device *adev,
77                                 struct acpi_hotplug_context *hp,
78                                 int (*notify)(struct acpi_device *, u32),
79                                 void (*uevent)(struct acpi_device *, u32))
80 {
81         acpi_lock_hp_context();
82         hp->notify = notify;
83         hp->uevent = uevent;
84         acpi_set_hp_context(adev, hp);
85         acpi_unlock_hp_context();
86 }
87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
88
89 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
90 {
91         if (!handler)
92                 return -EINVAL;
93
94         list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
95         return 0;
96 }
97
98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
99                                        const char *hotplug_profile_name)
100 {
101         int error;
102
103         error = acpi_scan_add_handler(handler);
104         if (error)
105                 return error;
106
107         acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
108         return 0;
109 }
110
111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
112 {
113         struct acpi_device_physical_node *pn;
114         bool offline = true;
115         char *envp[] = { "EVENT=offline", NULL };
116
117         /*
118          * acpi_container_offline() calls this for all of the container's
119          * children under the container's physical_node_lock lock.
120          */
121         mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
122
123         list_for_each_entry(pn, &adev->physical_node_list, node)
124                 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
125                         if (uevent)
126                                 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
127
128                         offline = false;
129                         break;
130                 }
131
132         mutex_unlock(&adev->physical_node_lock);
133         return offline;
134 }
135
136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
137                                     void **ret_p)
138 {
139         struct acpi_device *device = NULL;
140         struct acpi_device_physical_node *pn;
141         bool second_pass = (bool)data;
142         acpi_status status = AE_OK;
143
144         if (acpi_bus_get_device(handle, &device))
145                 return AE_OK;
146
147         if (device->handler && !device->handler->hotplug.enabled) {
148                 *ret_p = &device->dev;
149                 return AE_SUPPORT;
150         }
151
152         mutex_lock(&device->physical_node_lock);
153
154         list_for_each_entry(pn, &device->physical_node_list, node) {
155                 int ret;
156
157                 if (second_pass) {
158                         /* Skip devices offlined by the first pass. */
159                         if (pn->put_online)
160                                 continue;
161                 } else {
162                         pn->put_online = false;
163                 }
164                 ret = device_offline(pn->dev);
165                 if (ret >= 0) {
166                         pn->put_online = !ret;
167                 } else {
168                         *ret_p = pn->dev;
169                         if (second_pass) {
170                                 status = AE_ERROR;
171                                 break;
172                         }
173                 }
174         }
175
176         mutex_unlock(&device->physical_node_lock);
177
178         return status;
179 }
180
181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
182                                    void **ret_p)
183 {
184         struct acpi_device *device = NULL;
185         struct acpi_device_physical_node *pn;
186
187         if (acpi_bus_get_device(handle, &device))
188                 return AE_OK;
189
190         mutex_lock(&device->physical_node_lock);
191
192         list_for_each_entry(pn, &device->physical_node_list, node)
193                 if (pn->put_online) {
194                         device_online(pn->dev);
195                         pn->put_online = false;
196                 }
197
198         mutex_unlock(&device->physical_node_lock);
199
200         return AE_OK;
201 }
202
203 static int acpi_scan_try_to_offline(struct acpi_device *device)
204 {
205         acpi_handle handle = device->handle;
206         struct device *errdev = NULL;
207         acpi_status status;
208
209         /*
210          * Carry out two passes here and ignore errors in the first pass,
211          * because if the devices in question are memory blocks and
212          * CONFIG_MEMCG is set, one of the blocks may hold data structures
213          * that the other blocks depend on, but it is not known in advance which
214          * block holds them.
215          *
216          * If the first pass is successful, the second one isn't needed, though.
217          */
218         status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
219                                      NULL, acpi_bus_offline, (void *)false,
220                                      (void **)&errdev);
221         if (status == AE_SUPPORT) {
222                 dev_warn(errdev, "Offline disabled.\n");
223                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
224                                     acpi_bus_online, NULL, NULL, NULL);
225                 return -EPERM;
226         }
227         acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
228         if (errdev) {
229                 errdev = NULL;
230                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
231                                     NULL, acpi_bus_offline, (void *)true,
232                                     (void **)&errdev);
233                 if (!errdev)
234                         acpi_bus_offline(handle, 0, (void *)true,
235                                          (void **)&errdev);
236
237                 if (errdev) {
238                         dev_warn(errdev, "Offline failed.\n");
239                         acpi_bus_online(handle, 0, NULL, NULL);
240                         acpi_walk_namespace(ACPI_TYPE_ANY, handle,
241                                             ACPI_UINT32_MAX, acpi_bus_online,
242                                             NULL, NULL, NULL);
243                         return -EBUSY;
244                 }
245         }
246         return 0;
247 }
248
249 static int acpi_scan_hot_remove(struct acpi_device *device)
250 {
251         acpi_handle handle = device->handle;
252         unsigned long long sta;
253         acpi_status status;
254
255         if (device->handler && device->handler->hotplug.demand_offline) {
256                 if (!acpi_scan_is_offline(device, true))
257                         return -EBUSY;
258         } else {
259                 int error = acpi_scan_try_to_offline(device);
260                 if (error)
261                         return error;
262         }
263
264         acpi_handle_debug(handle, "Ejecting\n");
265
266         acpi_bus_trim(device);
267
268         acpi_evaluate_lck(handle, 0);
269         /*
270          * TBD: _EJD support.
271          */
272         status = acpi_evaluate_ej0(handle);
273         if (status == AE_NOT_FOUND)
274                 return -ENODEV;
275         else if (ACPI_FAILURE(status))
276                 return -EIO;
277
278         /*
279          * Verify if eject was indeed successful.  If not, log an error
280          * message.  No need to call _OST since _EJ0 call was made OK.
281          */
282         status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
283         if (ACPI_FAILURE(status)) {
284                 acpi_handle_warn(handle,
285                         "Status check after eject failed (0x%x)\n", status);
286         } else if (sta & ACPI_STA_DEVICE_ENABLED) {
287                 acpi_handle_warn(handle,
288                         "Eject incomplete - status 0x%llx\n", sta);
289         }
290
291         return 0;
292 }
293
294 static int acpi_scan_device_not_present(struct acpi_device *adev)
295 {
296         if (!acpi_device_enumerated(adev)) {
297                 dev_warn(&adev->dev, "Still not present\n");
298                 return -EALREADY;
299         }
300         acpi_bus_trim(adev);
301         return 0;
302 }
303
304 static int acpi_scan_device_check(struct acpi_device *adev)
305 {
306         int error;
307
308         acpi_bus_get_status(adev);
309         if (adev->status.present || adev->status.functional) {
310                 /*
311                  * This function is only called for device objects for which
312                  * matching scan handlers exist.  The only situation in which
313                  * the scan handler is not attached to this device object yet
314                  * is when the device has just appeared (either it wasn't
315                  * present at all before or it was removed and then added
316                  * again).
317                  */
318                 if (adev->handler) {
319                         dev_warn(&adev->dev, "Already enumerated\n");
320                         return -EALREADY;
321                 }
322                 error = acpi_bus_scan(adev->handle);
323                 if (error) {
324                         dev_warn(&adev->dev, "Namespace scan failure\n");
325                         return error;
326                 }
327                 if (!adev->handler) {
328                         dev_warn(&adev->dev, "Enumeration failure\n");
329                         error = -ENODEV;
330                 }
331         } else {
332                 error = acpi_scan_device_not_present(adev);
333         }
334         return error;
335 }
336
337 static int acpi_scan_bus_check(struct acpi_device *adev)
338 {
339         struct acpi_scan_handler *handler = adev->handler;
340         struct acpi_device *child;
341         int error;
342
343         acpi_bus_get_status(adev);
344         if (!(adev->status.present || adev->status.functional)) {
345                 acpi_scan_device_not_present(adev);
346                 return 0;
347         }
348         if (handler && handler->hotplug.scan_dependent)
349                 return handler->hotplug.scan_dependent(adev);
350
351         error = acpi_bus_scan(adev->handle);
352         if (error) {
353                 dev_warn(&adev->dev, "Namespace scan failure\n");
354                 return error;
355         }
356         list_for_each_entry(child, &adev->children, node) {
357                 error = acpi_scan_bus_check(child);
358                 if (error)
359                         return error;
360         }
361         return 0;
362 }
363
364 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
365 {
366         switch (type) {
367         case ACPI_NOTIFY_BUS_CHECK:
368                 return acpi_scan_bus_check(adev);
369         case ACPI_NOTIFY_DEVICE_CHECK:
370                 return acpi_scan_device_check(adev);
371         case ACPI_NOTIFY_EJECT_REQUEST:
372         case ACPI_OST_EC_OSPM_EJECT:
373                 if (adev->handler && !adev->handler->hotplug.enabled) {
374                         dev_info(&adev->dev, "Eject disabled\n");
375                         return -EPERM;
376                 }
377                 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
378                                   ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
379                 return acpi_scan_hot_remove(adev);
380         }
381         return -EINVAL;
382 }
383
384 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
385 {
386         u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
387         int error = -ENODEV;
388
389         lock_device_hotplug();
390         mutex_lock(&acpi_scan_lock);
391
392         /*
393          * The device object's ACPI handle cannot become invalid as long as we
394          * are holding acpi_scan_lock, but it might have become invalid before
395          * that lock was acquired.
396          */
397         if (adev->handle == INVALID_ACPI_HANDLE)
398                 goto err_out;
399
400         if (adev->flags.is_dock_station) {
401                 error = dock_notify(adev, src);
402         } else if (adev->flags.hotplug_notify) {
403                 error = acpi_generic_hotplug_event(adev, src);
404         } else {
405                 int (*notify)(struct acpi_device *, u32);
406
407                 acpi_lock_hp_context();
408                 notify = adev->hp ? adev->hp->notify : NULL;
409                 acpi_unlock_hp_context();
410                 /*
411                  * There may be additional notify handlers for device objects
412                  * without the .event() callback, so ignore them here.
413                  */
414                 if (notify)
415                         error = notify(adev, src);
416                 else
417                         goto out;
418         }
419         switch (error) {
420         case 0:
421                 ost_code = ACPI_OST_SC_SUCCESS;
422                 break;
423         case -EPERM:
424                 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
425                 break;
426         case -EBUSY:
427                 ost_code = ACPI_OST_SC_DEVICE_BUSY;
428                 break;
429         default:
430                 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
431                 break;
432         }
433
434  err_out:
435         acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
436
437  out:
438         acpi_bus_put_acpi_device(adev);
439         mutex_unlock(&acpi_scan_lock);
440         unlock_device_hotplug();
441 }
442
443 static void acpi_free_power_resources_lists(struct acpi_device *device)
444 {
445         int i;
446
447         if (device->wakeup.flags.valid)
448                 acpi_power_resources_list_free(&device->wakeup.resources);
449
450         if (!device->power.flags.power_resources)
451                 return;
452
453         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
454                 struct acpi_device_power_state *ps = &device->power.states[i];
455                 acpi_power_resources_list_free(&ps->resources);
456         }
457 }
458
459 static void acpi_device_release(struct device *dev)
460 {
461         struct acpi_device *acpi_dev = to_acpi_device(dev);
462
463         acpi_free_properties(acpi_dev);
464         acpi_free_pnp_ids(&acpi_dev->pnp);
465         acpi_free_power_resources_lists(acpi_dev);
466         kfree(acpi_dev);
467 }
468
469 static void acpi_device_del(struct acpi_device *device)
470 {
471         struct acpi_device_bus_id *acpi_device_bus_id;
472
473         mutex_lock(&acpi_device_lock);
474         if (device->parent)
475                 list_del(&device->node);
476
477         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
478                 if (!strcmp(acpi_device_bus_id->bus_id,
479                             acpi_device_hid(device))) {
480                         ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
481                         if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
482                                 list_del(&acpi_device_bus_id->node);
483                                 kfree_const(acpi_device_bus_id->bus_id);
484                                 kfree(acpi_device_bus_id);
485                         }
486                         break;
487                 }
488
489         list_del(&device->wakeup_list);
490         mutex_unlock(&acpi_device_lock);
491
492         acpi_power_add_remove_device(device, false);
493         acpi_device_remove_files(device);
494         if (device->remove)
495                 device->remove(device);
496
497         device_del(&device->dev);
498 }
499
500 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
501
502 static LIST_HEAD(acpi_device_del_list);
503 static DEFINE_MUTEX(acpi_device_del_lock);
504
505 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
506 {
507         for (;;) {
508                 struct acpi_device *adev;
509
510                 mutex_lock(&acpi_device_del_lock);
511
512                 if (list_empty(&acpi_device_del_list)) {
513                         mutex_unlock(&acpi_device_del_lock);
514                         break;
515                 }
516                 adev = list_first_entry(&acpi_device_del_list,
517                                         struct acpi_device, del_list);
518                 list_del(&adev->del_list);
519
520                 mutex_unlock(&acpi_device_del_lock);
521
522                 blocking_notifier_call_chain(&acpi_reconfig_chain,
523                                              ACPI_RECONFIG_DEVICE_REMOVE, adev);
524
525                 acpi_device_del(adev);
526                 /*
527                  * Drop references to all power resources that might have been
528                  * used by the device.
529                  */
530                 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
531                 acpi_dev_put(adev);
532         }
533 }
534
535 /**
536  * acpi_scan_drop_device - Drop an ACPI device object.
537  * @handle: Handle of an ACPI namespace node, not used.
538  * @context: Address of the ACPI device object to drop.
539  *
540  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
541  * namespace node the device object pointed to by @context is attached to.
542  *
543  * The unregistration is carried out asynchronously to avoid running
544  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
545  * ensure the correct ordering (the device objects must be unregistered in the
546  * same order in which the corresponding namespace nodes are deleted).
547  */
548 static void acpi_scan_drop_device(acpi_handle handle, void *context)
549 {
550         static DECLARE_WORK(work, acpi_device_del_work_fn);
551         struct acpi_device *adev = context;
552
553         mutex_lock(&acpi_device_del_lock);
554
555         /*
556          * Use the ACPI hotplug workqueue which is ordered, so this work item
557          * won't run after any hotplug work items submitted subsequently.  That
558          * prevents attempts to register device objects identical to those being
559          * deleted from happening concurrently (such attempts result from
560          * hotplug events handled via the ACPI hotplug workqueue).  It also will
561          * run after all of the work items submitted previously, which helps
562          * those work items to ensure that they are not accessing stale device
563          * objects.
564          */
565         if (list_empty(&acpi_device_del_list))
566                 acpi_queue_hotplug_work(&work);
567
568         list_add_tail(&adev->del_list, &acpi_device_del_list);
569         /* Make acpi_ns_validate_handle() return NULL for this handle. */
570         adev->handle = INVALID_ACPI_HANDLE;
571
572         mutex_unlock(&acpi_device_del_lock);
573 }
574
575 static struct acpi_device *handle_to_device(acpi_handle handle,
576                                             void (*callback)(void *))
577 {
578         struct acpi_device *adev = NULL;
579         acpi_status status;
580
581         status = acpi_get_data_full(handle, acpi_scan_drop_device,
582                                     (void **)&adev, callback);
583         if (ACPI_FAILURE(status) || !adev) {
584                 acpi_handle_debug(handle, "No context!\n");
585                 return NULL;
586         }
587         return adev;
588 }
589
590 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
591 {
592         if (!device)
593                 return -EINVAL;
594
595         *device = handle_to_device(handle, NULL);
596         if (!*device)
597                 return -ENODEV;
598
599         return 0;
600 }
601 EXPORT_SYMBOL(acpi_bus_get_device);
602
603 static void get_acpi_device(void *dev)
604 {
605         acpi_dev_get(dev);
606 }
607
608 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
609 {
610         return handle_to_device(handle, get_acpi_device);
611 }
612
613 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
614 {
615         struct acpi_device_bus_id *acpi_device_bus_id;
616
617         /* Find suitable bus_id and instance number in acpi_bus_id_list. */
618         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
619                 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
620                         return acpi_device_bus_id;
621         }
622         return NULL;
623 }
624
625 static int acpi_device_set_name(struct acpi_device *device,
626                                 struct acpi_device_bus_id *acpi_device_bus_id)
627 {
628         struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
629         int result;
630
631         result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
632         if (result < 0)
633                 return result;
634
635         device->pnp.instance_no = result;
636         dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
637         return 0;
638 }
639
640 static int acpi_tie_acpi_dev(struct acpi_device *adev)
641 {
642         acpi_handle handle = adev->handle;
643         acpi_status status;
644
645         if (!handle)
646                 return 0;
647
648         status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
649         if (ACPI_FAILURE(status)) {
650                 acpi_handle_err(handle, "Unable to attach device data\n");
651                 return -ENODEV;
652         }
653
654         return 0;
655 }
656
657 static int __acpi_device_add(struct acpi_device *device,
658                              void (*release)(struct device *))
659 {
660         struct acpi_device_bus_id *acpi_device_bus_id;
661         int result;
662
663         /*
664          * Linkage
665          * -------
666          * Link this device to its parent and siblings.
667          */
668         INIT_LIST_HEAD(&device->children);
669         INIT_LIST_HEAD(&device->node);
670         INIT_LIST_HEAD(&device->wakeup_list);
671         INIT_LIST_HEAD(&device->physical_node_list);
672         INIT_LIST_HEAD(&device->del_list);
673         mutex_init(&device->physical_node_lock);
674
675         mutex_lock(&acpi_device_lock);
676
677         acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
678         if (acpi_device_bus_id) {
679                 result = acpi_device_set_name(device, acpi_device_bus_id);
680                 if (result)
681                         goto err_unlock;
682         } else {
683                 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
684                                              GFP_KERNEL);
685                 if (!acpi_device_bus_id) {
686                         result = -ENOMEM;
687                         goto err_unlock;
688                 }
689                 acpi_device_bus_id->bus_id =
690                         kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
691                 if (!acpi_device_bus_id->bus_id) {
692                         kfree(acpi_device_bus_id);
693                         result = -ENOMEM;
694                         goto err_unlock;
695                 }
696
697                 ida_init(&acpi_device_bus_id->instance_ida);
698
699                 result = acpi_device_set_name(device, acpi_device_bus_id);
700                 if (result) {
701                         kfree_const(acpi_device_bus_id->bus_id);
702                         kfree(acpi_device_bus_id);
703                         goto err_unlock;
704                 }
705
706                 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
707         }
708
709         if (device->parent)
710                 list_add_tail(&device->node, &device->parent->children);
711
712         if (device->wakeup.flags.valid)
713                 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
714
715         mutex_unlock(&acpi_device_lock);
716
717         if (device->parent)
718                 device->dev.parent = &device->parent->dev;
719
720         device->dev.bus = &acpi_bus_type;
721         device->dev.release = release;
722         result = device_add(&device->dev);
723         if (result) {
724                 dev_err(&device->dev, "Error registering device\n");
725                 goto err;
726         }
727
728         result = acpi_device_setup_files(device);
729         if (result)
730                 pr_err("Error creating sysfs interface for device %s\n",
731                        dev_name(&device->dev));
732
733         return 0;
734
735 err:
736         mutex_lock(&acpi_device_lock);
737
738         if (device->parent)
739                 list_del(&device->node);
740
741         list_del(&device->wakeup_list);
742
743 err_unlock:
744         mutex_unlock(&acpi_device_lock);
745
746         acpi_detach_data(device->handle, acpi_scan_drop_device);
747
748         return result;
749 }
750
751 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
752 {
753         int ret;
754
755         ret = acpi_tie_acpi_dev(adev);
756         if (ret)
757                 return ret;
758
759         return __acpi_device_add(adev, release);
760 }
761
762 /* --------------------------------------------------------------------------
763                                  Device Enumeration
764    -------------------------------------------------------------------------- */
765 static bool acpi_info_matches_ids(struct acpi_device_info *info,
766                                   const char * const ids[])
767 {
768         struct acpi_pnp_device_id_list *cid_list = NULL;
769         int i, index;
770
771         if (!(info->valid & ACPI_VALID_HID))
772                 return false;
773
774         index = match_string(ids, -1, info->hardware_id.string);
775         if (index >= 0)
776                 return true;
777
778         if (info->valid & ACPI_VALID_CID)
779                 cid_list = &info->compatible_id_list;
780
781         if (!cid_list)
782                 return false;
783
784         for (i = 0; i < cid_list->count; i++) {
785                 index = match_string(ids, -1, cid_list->ids[i].string);
786                 if (index >= 0)
787                         return true;
788         }
789
790         return false;
791 }
792
793 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
794 static const char * const acpi_ignore_dep_ids[] = {
795         "PNP0D80", /* Windows-compatible System Power Management Controller */
796         "INT33BD", /* Intel Baytrail Mailbox Device */
797         NULL
798 };
799
800 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
801 {
802         struct acpi_device *device = NULL;
803         acpi_status status;
804
805         /*
806          * Fixed hardware devices do not appear in the namespace and do not
807          * have handles, but we fabricate acpi_devices for them, so we have
808          * to deal with them specially.
809          */
810         if (!handle)
811                 return acpi_root;
812
813         do {
814                 status = acpi_get_parent(handle, &handle);
815                 if (ACPI_FAILURE(status))
816                         return status == AE_NULL_ENTRY ? NULL : acpi_root;
817         } while (acpi_bus_get_device(handle, &device));
818         return device;
819 }
820
821 acpi_status
822 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
823 {
824         acpi_status status;
825         acpi_handle tmp;
826         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
827         union acpi_object *obj;
828
829         status = acpi_get_handle(handle, "_EJD", &tmp);
830         if (ACPI_FAILURE(status))
831                 return status;
832
833         status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
834         if (ACPI_SUCCESS(status)) {
835                 obj = buffer.pointer;
836                 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
837                                          ejd);
838                 kfree(buffer.pointer);
839         }
840         return status;
841 }
842 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
843
844 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
845 {
846         acpi_handle handle = dev->handle;
847         struct acpi_device_wakeup *wakeup = &dev->wakeup;
848         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
849         union acpi_object *package = NULL;
850         union acpi_object *element = NULL;
851         acpi_status status;
852         int err = -ENODATA;
853
854         INIT_LIST_HEAD(&wakeup->resources);
855
856         /* _PRW */
857         status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
858         if (ACPI_FAILURE(status)) {
859                 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
860                                  acpi_format_exception(status));
861                 return err;
862         }
863
864         package = (union acpi_object *)buffer.pointer;
865
866         if (!package || package->package.count < 2)
867                 goto out;
868
869         element = &(package->package.elements[0]);
870         if (!element)
871                 goto out;
872
873         if (element->type == ACPI_TYPE_PACKAGE) {
874                 if ((element->package.count < 2) ||
875                     (element->package.elements[0].type !=
876                      ACPI_TYPE_LOCAL_REFERENCE)
877                     || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
878                         goto out;
879
880                 wakeup->gpe_device =
881                     element->package.elements[0].reference.handle;
882                 wakeup->gpe_number =
883                     (u32) element->package.elements[1].integer.value;
884         } else if (element->type == ACPI_TYPE_INTEGER) {
885                 wakeup->gpe_device = NULL;
886                 wakeup->gpe_number = element->integer.value;
887         } else {
888                 goto out;
889         }
890
891         element = &(package->package.elements[1]);
892         if (element->type != ACPI_TYPE_INTEGER)
893                 goto out;
894
895         wakeup->sleep_state = element->integer.value;
896
897         err = acpi_extract_power_resources(package, 2, &wakeup->resources);
898         if (err)
899                 goto out;
900
901         if (!list_empty(&wakeup->resources)) {
902                 int sleep_state;
903
904                 err = acpi_power_wakeup_list_init(&wakeup->resources,
905                                                   &sleep_state);
906                 if (err) {
907                         acpi_handle_warn(handle, "Retrieving current states "
908                                          "of wakeup power resources failed\n");
909                         acpi_power_resources_list_free(&wakeup->resources);
910                         goto out;
911                 }
912                 if (sleep_state < wakeup->sleep_state) {
913                         acpi_handle_warn(handle, "Overriding _PRW sleep state "
914                                          "(S%d) by S%d from power resources\n",
915                                          (int)wakeup->sleep_state, sleep_state);
916                         wakeup->sleep_state = sleep_state;
917                 }
918         }
919
920  out:
921         kfree(buffer.pointer);
922         return err;
923 }
924
925 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
926 {
927         static const struct acpi_device_id button_device_ids[] = {
928                 {"PNP0C0C", 0},         /* Power button */
929                 {"PNP0C0D", 0},         /* Lid */
930                 {"PNP0C0E", 0},         /* Sleep button */
931                 {"", 0},
932         };
933         struct acpi_device_wakeup *wakeup = &device->wakeup;
934         acpi_status status;
935
936         wakeup->flags.notifier_present = 0;
937
938         /* Power button, Lid switch always enable wakeup */
939         if (!acpi_match_device_ids(device, button_device_ids)) {
940                 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
941                         /* Do not use Lid/sleep button for S5 wakeup */
942                         if (wakeup->sleep_state == ACPI_STATE_S5)
943                                 wakeup->sleep_state = ACPI_STATE_S4;
944                 }
945                 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
946                 device_set_wakeup_capable(&device->dev, true);
947                 return true;
948         }
949
950         status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
951                                          wakeup->gpe_number);
952         return ACPI_SUCCESS(status);
953 }
954
955 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
956 {
957         int err;
958
959         /* Presence of _PRW indicates wake capable */
960         if (!acpi_has_method(device->handle, "_PRW"))
961                 return;
962
963         err = acpi_bus_extract_wakeup_device_power_package(device);
964         if (err) {
965                 dev_err(&device->dev, "Unable to extract wakeup power resources");
966                 return;
967         }
968
969         device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
970         device->wakeup.prepare_count = 0;
971         /*
972          * Call _PSW/_DSW object to disable its ability to wake the sleeping
973          * system for the ACPI device with the _PRW object.
974          * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
975          * So it is necessary to call _DSW object first. Only when it is not
976          * present will the _PSW object used.
977          */
978         err = acpi_device_sleep_wake(device, 0, 0, 0);
979         if (err)
980                 pr_debug("error in _DSW or _PSW evaluation\n");
981 }
982
983 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
984 {
985         struct acpi_device_power_state *ps = &device->power.states[state];
986         char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
987         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
988         acpi_status status;
989
990         INIT_LIST_HEAD(&ps->resources);
991
992         /* Evaluate "_PRx" to get referenced power resources */
993         status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
994         if (ACPI_SUCCESS(status)) {
995                 union acpi_object *package = buffer.pointer;
996
997                 if (buffer.length && package
998                     && package->type == ACPI_TYPE_PACKAGE
999                     && package->package.count)
1000                         acpi_extract_power_resources(package, 0, &ps->resources);
1001
1002                 ACPI_FREE(buffer.pointer);
1003         }
1004
1005         /* Evaluate "_PSx" to see if we can do explicit sets */
1006         pathname[2] = 'S';
1007         if (acpi_has_method(device->handle, pathname))
1008                 ps->flags.explicit_set = 1;
1009
1010         /* State is valid if there are means to put the device into it. */
1011         if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1012                 ps->flags.valid = 1;
1013
1014         ps->power = -1;         /* Unknown - driver assigned */
1015         ps->latency = -1;       /* Unknown - driver assigned */
1016 }
1017
1018 static void acpi_bus_get_power_flags(struct acpi_device *device)
1019 {
1020         u32 i;
1021
1022         /* Presence of _PS0|_PR0 indicates 'power manageable' */
1023         if (!acpi_has_method(device->handle, "_PS0") &&
1024             !acpi_has_method(device->handle, "_PR0"))
1025                 return;
1026
1027         device->flags.power_manageable = 1;
1028
1029         /*
1030          * Power Management Flags
1031          */
1032         if (acpi_has_method(device->handle, "_PSC"))
1033                 device->power.flags.explicit_get = 1;
1034
1035         if (acpi_has_method(device->handle, "_IRC"))
1036                 device->power.flags.inrush_current = 1;
1037
1038         if (acpi_has_method(device->handle, "_DSW"))
1039                 device->power.flags.dsw_present = 1;
1040
1041         /*
1042          * Enumerate supported power management states
1043          */
1044         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1045                 acpi_bus_init_power_state(device, i);
1046
1047         INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1048
1049         /* Set the defaults for D0 and D3hot (always supported). */
1050         device->power.states[ACPI_STATE_D0].flags.valid = 1;
1051         device->power.states[ACPI_STATE_D0].power = 100;
1052         device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1053
1054         /*
1055          * Use power resources only if the D0 list of them is populated, because
1056          * some platforms may provide _PR3 only to indicate D3cold support and
1057          * in those cases the power resources list returned by it may be bogus.
1058          */
1059         if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1060                 device->power.flags.power_resources = 1;
1061                 /*
1062                  * D3cold is supported if the D3hot list of power resources is
1063                  * not empty.
1064                  */
1065                 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1066                         device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1067         }
1068
1069         if (acpi_bus_init_power(device))
1070                 device->flags.power_manageable = 0;
1071 }
1072
1073 static void acpi_bus_get_flags(struct acpi_device *device)
1074 {
1075         /* Presence of _STA indicates 'dynamic_status' */
1076         if (acpi_has_method(device->handle, "_STA"))
1077                 device->flags.dynamic_status = 1;
1078
1079         /* Presence of _RMV indicates 'removable' */
1080         if (acpi_has_method(device->handle, "_RMV"))
1081                 device->flags.removable = 1;
1082
1083         /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1084         if (acpi_has_method(device->handle, "_EJD") ||
1085             acpi_has_method(device->handle, "_EJ0"))
1086                 device->flags.ejectable = 1;
1087 }
1088
1089 static void acpi_device_get_busid(struct acpi_device *device)
1090 {
1091         char bus_id[5] = { '?', 0 };
1092         struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1093         int i = 0;
1094
1095         /*
1096          * Bus ID
1097          * ------
1098          * The device's Bus ID is simply the object name.
1099          * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1100          */
1101         if (ACPI_IS_ROOT_DEVICE(device)) {
1102                 strcpy(device->pnp.bus_id, "ACPI");
1103                 return;
1104         }
1105
1106         switch (device->device_type) {
1107         case ACPI_BUS_TYPE_POWER_BUTTON:
1108                 strcpy(device->pnp.bus_id, "PWRF");
1109                 break;
1110         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1111                 strcpy(device->pnp.bus_id, "SLPF");
1112                 break;
1113         case ACPI_BUS_TYPE_ECDT_EC:
1114                 strcpy(device->pnp.bus_id, "ECDT");
1115                 break;
1116         default:
1117                 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1118                 /* Clean up trailing underscores (if any) */
1119                 for (i = 3; i > 1; i--) {
1120                         if (bus_id[i] == '_')
1121                                 bus_id[i] = '\0';
1122                         else
1123                                 break;
1124                 }
1125                 strcpy(device->pnp.bus_id, bus_id);
1126                 break;
1127         }
1128 }
1129
1130 /*
1131  * acpi_ata_match - see if an acpi object is an ATA device
1132  *
1133  * If an acpi object has one of the ACPI ATA methods defined,
1134  * then we can safely call it an ATA device.
1135  */
1136 bool acpi_ata_match(acpi_handle handle)
1137 {
1138         return acpi_has_method(handle, "_GTF") ||
1139                acpi_has_method(handle, "_GTM") ||
1140                acpi_has_method(handle, "_STM") ||
1141                acpi_has_method(handle, "_SDD");
1142 }
1143
1144 /*
1145  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1146  *
1147  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1148  * then we can safely call it an ejectable drive bay
1149  */
1150 bool acpi_bay_match(acpi_handle handle)
1151 {
1152         acpi_handle phandle;
1153
1154         if (!acpi_has_method(handle, "_EJ0"))
1155                 return false;
1156         if (acpi_ata_match(handle))
1157                 return true;
1158         if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1159                 return false;
1160
1161         return acpi_ata_match(phandle);
1162 }
1163
1164 bool acpi_device_is_battery(struct acpi_device *adev)
1165 {
1166         struct acpi_hardware_id *hwid;
1167
1168         list_for_each_entry(hwid, &adev->pnp.ids, list)
1169                 if (!strcmp("PNP0C0A", hwid->id))
1170                         return true;
1171
1172         return false;
1173 }
1174
1175 static bool is_ejectable_bay(struct acpi_device *adev)
1176 {
1177         acpi_handle handle = adev->handle;
1178
1179         if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1180                 return true;
1181
1182         return acpi_bay_match(handle);
1183 }
1184
1185 /*
1186  * acpi_dock_match - see if an acpi object has a _DCK method
1187  */
1188 bool acpi_dock_match(acpi_handle handle)
1189 {
1190         return acpi_has_method(handle, "_DCK");
1191 }
1192
1193 static acpi_status
1194 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1195                           void **return_value)
1196 {
1197         long *cap = context;
1198
1199         if (acpi_has_method(handle, "_BCM") &&
1200             acpi_has_method(handle, "_BCL")) {
1201                 acpi_handle_debug(handle, "Found generic backlight support\n");
1202                 *cap |= ACPI_VIDEO_BACKLIGHT;
1203                 /* We have backlight support, no need to scan further */
1204                 return AE_CTRL_TERMINATE;
1205         }
1206         return 0;
1207 }
1208
1209 /* Returns true if the ACPI object is a video device which can be
1210  * handled by video.ko.
1211  * The device will get a Linux specific CID added in scan.c to
1212  * identify the device as an ACPI graphics device
1213  * Be aware that the graphics device may not be physically present
1214  * Use acpi_video_get_capabilities() to detect general ACPI video
1215  * capabilities of present cards
1216  */
1217 long acpi_is_video_device(acpi_handle handle)
1218 {
1219         long video_caps = 0;
1220
1221         /* Is this device able to support video switching ? */
1222         if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1223                 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1224
1225         /* Is this device able to retrieve a video ROM ? */
1226         if (acpi_has_method(handle, "_ROM"))
1227                 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1228
1229         /* Is this device able to configure which video head to be POSTed ? */
1230         if (acpi_has_method(handle, "_VPO") &&
1231             acpi_has_method(handle, "_GPD") &&
1232             acpi_has_method(handle, "_SPD"))
1233                 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1234
1235         /* Only check for backlight functionality if one of the above hit. */
1236         if (video_caps)
1237                 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1238                                     ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1239                                     &video_caps, NULL);
1240
1241         return video_caps;
1242 }
1243 EXPORT_SYMBOL(acpi_is_video_device);
1244
1245 const char *acpi_device_hid(struct acpi_device *device)
1246 {
1247         struct acpi_hardware_id *hid;
1248
1249         if (list_empty(&device->pnp.ids))
1250                 return dummy_hid;
1251
1252         hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1253         return hid->id;
1254 }
1255 EXPORT_SYMBOL(acpi_device_hid);
1256
1257 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1258 {
1259         struct acpi_hardware_id *id;
1260
1261         id = kmalloc(sizeof(*id), GFP_KERNEL);
1262         if (!id)
1263                 return;
1264
1265         id->id = kstrdup_const(dev_id, GFP_KERNEL);
1266         if (!id->id) {
1267                 kfree(id);
1268                 return;
1269         }
1270
1271         list_add_tail(&id->list, &pnp->ids);
1272         pnp->type.hardware_id = 1;
1273 }
1274
1275 /*
1276  * Old IBM workstations have a DSDT bug wherein the SMBus object
1277  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1278  * prefix.  Work around this.
1279  */
1280 static bool acpi_ibm_smbus_match(acpi_handle handle)
1281 {
1282         char node_name[ACPI_PATH_SEGMENT_LENGTH];
1283         struct acpi_buffer path = { sizeof(node_name), node_name };
1284
1285         if (!dmi_name_in_vendors("IBM"))
1286                 return false;
1287
1288         /* Look for SMBS object */
1289         if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1290             strcmp("SMBS", path.pointer))
1291                 return false;
1292
1293         /* Does it have the necessary (but misnamed) methods? */
1294         if (acpi_has_method(handle, "SBI") &&
1295             acpi_has_method(handle, "SBR") &&
1296             acpi_has_method(handle, "SBW"))
1297                 return true;
1298
1299         return false;
1300 }
1301
1302 static bool acpi_object_is_system_bus(acpi_handle handle)
1303 {
1304         acpi_handle tmp;
1305
1306         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1307             tmp == handle)
1308                 return true;
1309         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1310             tmp == handle)
1311                 return true;
1312
1313         return false;
1314 }
1315
1316 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1317                              int device_type)
1318 {
1319         struct acpi_device_info *info = NULL;
1320         struct acpi_pnp_device_id_list *cid_list;
1321         int i;
1322
1323         switch (device_type) {
1324         case ACPI_BUS_TYPE_DEVICE:
1325                 if (handle == ACPI_ROOT_OBJECT) {
1326                         acpi_add_id(pnp, ACPI_SYSTEM_HID);
1327                         break;
1328                 }
1329
1330                 acpi_get_object_info(handle, &info);
1331                 if (!info) {
1332                         pr_err("%s: Error reading device info\n", __func__);
1333                         return;
1334                 }
1335
1336                 if (info->valid & ACPI_VALID_HID) {
1337                         acpi_add_id(pnp, info->hardware_id.string);
1338                         pnp->type.platform_id = 1;
1339                 }
1340                 if (info->valid & ACPI_VALID_CID) {
1341                         cid_list = &info->compatible_id_list;
1342                         for (i = 0; i < cid_list->count; i++)
1343                                 acpi_add_id(pnp, cid_list->ids[i].string);
1344                 }
1345                 if (info->valid & ACPI_VALID_ADR) {
1346                         pnp->bus_address = info->address;
1347                         pnp->type.bus_address = 1;
1348                 }
1349                 if (info->valid & ACPI_VALID_UID)
1350                         pnp->unique_id = kstrdup(info->unique_id.string,
1351                                                         GFP_KERNEL);
1352                 if (info->valid & ACPI_VALID_CLS)
1353                         acpi_add_id(pnp, info->class_code.string);
1354
1355                 kfree(info);
1356
1357                 /*
1358                  * Some devices don't reliably have _HIDs & _CIDs, so add
1359                  * synthetic HIDs to make sure drivers can find them.
1360                  */
1361                 if (acpi_is_video_device(handle))
1362                         acpi_add_id(pnp, ACPI_VIDEO_HID);
1363                 else if (acpi_bay_match(handle))
1364                         acpi_add_id(pnp, ACPI_BAY_HID);
1365                 else if (acpi_dock_match(handle))
1366                         acpi_add_id(pnp, ACPI_DOCK_HID);
1367                 else if (acpi_ibm_smbus_match(handle))
1368                         acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1369                 else if (list_empty(&pnp->ids) &&
1370                          acpi_object_is_system_bus(handle)) {
1371                         /* \_SB, \_TZ, LNXSYBUS */
1372                         acpi_add_id(pnp, ACPI_BUS_HID);
1373                         strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1374                         strcpy(pnp->device_class, ACPI_BUS_CLASS);
1375                 }
1376
1377                 break;
1378         case ACPI_BUS_TYPE_POWER:
1379                 acpi_add_id(pnp, ACPI_POWER_HID);
1380                 break;
1381         case ACPI_BUS_TYPE_PROCESSOR:
1382                 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1383                 break;
1384         case ACPI_BUS_TYPE_THERMAL:
1385                 acpi_add_id(pnp, ACPI_THERMAL_HID);
1386                 break;
1387         case ACPI_BUS_TYPE_POWER_BUTTON:
1388                 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1389                 break;
1390         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1391                 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1392                 break;
1393         case ACPI_BUS_TYPE_ECDT_EC:
1394                 acpi_add_id(pnp, ACPI_ECDT_HID);
1395                 break;
1396         }
1397 }
1398
1399 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1400 {
1401         struct acpi_hardware_id *id, *tmp;
1402
1403         list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1404                 kfree_const(id->id);
1405                 kfree(id);
1406         }
1407         kfree(pnp->unique_id);
1408 }
1409
1410 /**
1411  * acpi_dma_supported - Check DMA support for the specified device.
1412  * @adev: The pointer to acpi device
1413  *
1414  * Return false if DMA is not supported. Otherwise, return true
1415  */
1416 bool acpi_dma_supported(const struct acpi_device *adev)
1417 {
1418         if (!adev)
1419                 return false;
1420
1421         if (adev->flags.cca_seen)
1422                 return true;
1423
1424         /*
1425         * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1426         * DMA on "Intel platforms".  Presumably that includes all x86 and
1427         * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1428         */
1429         if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1430                 return true;
1431
1432         return false;
1433 }
1434
1435 /**
1436  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1437  * @adev: The pointer to acpi device
1438  *
1439  * Return enum dev_dma_attr.
1440  */
1441 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1442 {
1443         if (!acpi_dma_supported(adev))
1444                 return DEV_DMA_NOT_SUPPORTED;
1445
1446         if (adev->flags.coherent_dma)
1447                 return DEV_DMA_COHERENT;
1448         else
1449                 return DEV_DMA_NON_COHERENT;
1450 }
1451
1452 /**
1453  * acpi_dma_get_range() - Get device DMA parameters.
1454  *
1455  * @dev: device to configure
1456  * @dma_addr: pointer device DMA address result
1457  * @offset: pointer to the DMA offset result
1458  * @size: pointer to DMA range size result
1459  *
1460  * Evaluate DMA regions and return respectively DMA region start, offset
1461  * and size in dma_addr, offset and size on parsing success; it does not
1462  * update the passed in values on failure.
1463  *
1464  * Return 0 on success, < 0 on failure.
1465  */
1466 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1467                        u64 *size)
1468 {
1469         struct acpi_device *adev;
1470         LIST_HEAD(list);
1471         struct resource_entry *rentry;
1472         int ret;
1473         struct device *dma_dev = dev;
1474         u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1475
1476         /*
1477          * Walk the device tree chasing an ACPI companion with a _DMA
1478          * object while we go. Stop if we find a device with an ACPI
1479          * companion containing a _DMA method.
1480          */
1481         do {
1482                 adev = ACPI_COMPANION(dma_dev);
1483                 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1484                         break;
1485
1486                 dma_dev = dma_dev->parent;
1487         } while (dma_dev);
1488
1489         if (!dma_dev)
1490                 return -ENODEV;
1491
1492         if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1493                 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1494                 return -EINVAL;
1495         }
1496
1497         ret = acpi_dev_get_dma_resources(adev, &list);
1498         if (ret > 0) {
1499                 list_for_each_entry(rentry, &list, node) {
1500                         if (dma_offset && rentry->offset != dma_offset) {
1501                                 ret = -EINVAL;
1502                                 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1503                                 goto out;
1504                         }
1505                         dma_offset = rentry->offset;
1506
1507                         /* Take lower and upper limits */
1508                         if (rentry->res->start < dma_start)
1509                                 dma_start = rentry->res->start;
1510                         if (rentry->res->end > dma_end)
1511                                 dma_end = rentry->res->end;
1512                 }
1513
1514                 if (dma_start >= dma_end) {
1515                         ret = -EINVAL;
1516                         dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1517                         goto out;
1518                 }
1519
1520                 *dma_addr = dma_start - dma_offset;
1521                 len = dma_end - dma_start;
1522                 *size = max(len, len + 1);
1523                 *offset = dma_offset;
1524         }
1525  out:
1526         acpi_dev_free_resource_list(&list);
1527
1528         return ret >= 0 ? 0 : ret;
1529 }
1530
1531 #ifdef CONFIG_IOMMU_API
1532 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1533                            struct fwnode_handle *fwnode,
1534                            const struct iommu_ops *ops)
1535 {
1536         int ret = iommu_fwspec_init(dev, fwnode, ops);
1537
1538         if (!ret)
1539                 ret = iommu_fwspec_add_ids(dev, &id, 1);
1540
1541         return ret;
1542 }
1543
1544 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1545 {
1546         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1547
1548         return fwspec ? fwspec->ops : NULL;
1549 }
1550
1551 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1552                                                        const u32 *id_in)
1553 {
1554         int err;
1555         const struct iommu_ops *ops;
1556
1557         /*
1558          * If we already translated the fwspec there is nothing left to do,
1559          * return the iommu_ops.
1560          */
1561         ops = acpi_iommu_fwspec_ops(dev);
1562         if (ops)
1563                 return ops;
1564
1565         err = iort_iommu_configure_id(dev, id_in);
1566         if (err && err != -EPROBE_DEFER)
1567                 err = viot_iommu_configure(dev);
1568
1569         /*
1570          * If we have reason to believe the IOMMU driver missed the initial
1571          * iommu_probe_device() call for dev, replay it to get things in order.
1572          */
1573         if (!err && dev->bus && !device_iommu_mapped(dev))
1574                 err = iommu_probe_device(dev);
1575
1576         /* Ignore all other errors apart from EPROBE_DEFER */
1577         if (err == -EPROBE_DEFER) {
1578                 return ERR_PTR(err);
1579         } else if (err) {
1580                 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1581                 return NULL;
1582         }
1583         return acpi_iommu_fwspec_ops(dev);
1584 }
1585
1586 #else /* !CONFIG_IOMMU_API */
1587
1588 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1589                            struct fwnode_handle *fwnode,
1590                            const struct iommu_ops *ops)
1591 {
1592         return -ENODEV;
1593 }
1594
1595 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1596                                                        const u32 *id_in)
1597 {
1598         return NULL;
1599 }
1600
1601 #endif /* !CONFIG_IOMMU_API */
1602
1603 /**
1604  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1605  * @dev: The pointer to the device
1606  * @attr: device dma attributes
1607  * @input_id: input device id const value pointer
1608  */
1609 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1610                           const u32 *input_id)
1611 {
1612         const struct iommu_ops *iommu;
1613         u64 dma_addr = 0, size = 0;
1614
1615         if (attr == DEV_DMA_NOT_SUPPORTED) {
1616                 set_dma_ops(dev, &dma_dummy_ops);
1617                 return 0;
1618         }
1619
1620         acpi_arch_dma_setup(dev, &dma_addr, &size);
1621
1622         iommu = acpi_iommu_configure_id(dev, input_id);
1623         if (PTR_ERR(iommu) == -EPROBE_DEFER)
1624                 return -EPROBE_DEFER;
1625
1626         arch_setup_dma_ops(dev, dma_addr, size,
1627                                 iommu, attr == DEV_DMA_COHERENT);
1628
1629         return 0;
1630 }
1631 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1632
1633 static void acpi_init_coherency(struct acpi_device *adev)
1634 {
1635         unsigned long long cca = 0;
1636         acpi_status status;
1637         struct acpi_device *parent = adev->parent;
1638
1639         if (parent && parent->flags.cca_seen) {
1640                 /*
1641                  * From ACPI spec, OSPM will ignore _CCA if an ancestor
1642                  * already saw one.
1643                  */
1644                 adev->flags.cca_seen = 1;
1645                 cca = parent->flags.coherent_dma;
1646         } else {
1647                 status = acpi_evaluate_integer(adev->handle, "_CCA",
1648                                                NULL, &cca);
1649                 if (ACPI_SUCCESS(status))
1650                         adev->flags.cca_seen = 1;
1651                 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1652                         /*
1653                          * If architecture does not specify that _CCA is
1654                          * required for DMA-able devices (e.g. x86),
1655                          * we default to _CCA=1.
1656                          */
1657                         cca = 1;
1658                 else
1659                         acpi_handle_debug(adev->handle,
1660                                           "ACPI device is missing _CCA.\n");
1661         }
1662
1663         adev->flags.coherent_dma = cca;
1664 }
1665
1666 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1667 {
1668         bool *is_serial_bus_slave_p = data;
1669
1670         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1671                 return 1;
1672
1673         *is_serial_bus_slave_p = true;
1674
1675          /* no need to do more checking */
1676         return -1;
1677 }
1678
1679 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1680 {
1681         struct acpi_device *parent = device->parent;
1682         static const struct acpi_device_id indirect_io_hosts[] = {
1683                 {"HISI0191", 0},
1684                 {}
1685         };
1686
1687         return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1688 }
1689
1690 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1691 {
1692         struct list_head resource_list;
1693         bool is_serial_bus_slave = false;
1694         /*
1695          * These devices have multiple I2cSerialBus resources and an i2c-client
1696          * must be instantiated for each, each with its own i2c_device_id.
1697          * Normally we only instantiate an i2c-client for the first resource,
1698          * using the ACPI HID as id. These special cases are handled by the
1699          * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1700          * which i2c_device_id to use for each resource.
1701          */
1702         static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1703                 {"BSG1160", },
1704                 {"BSG2150", },
1705                 {"INT33FE", },
1706                 {"INT3515", },
1707                 {}
1708         };
1709
1710         if (acpi_is_indirect_io_slave(device))
1711                 return true;
1712
1713         /* Macs use device properties in lieu of _CRS resources */
1714         if (x86_apple_machine &&
1715             (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1716              fwnode_property_present(&device->fwnode, "i2cAddress") ||
1717              fwnode_property_present(&device->fwnode, "baud")))
1718                 return true;
1719
1720         /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1721         if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1722                 return false;
1723
1724         INIT_LIST_HEAD(&resource_list);
1725         acpi_dev_get_resources(device, &resource_list,
1726                                acpi_check_serial_bus_slave,
1727                                &is_serial_bus_slave);
1728         acpi_dev_free_resource_list(&resource_list);
1729
1730         return is_serial_bus_slave;
1731 }
1732
1733 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1734                              int type)
1735 {
1736         INIT_LIST_HEAD(&device->pnp.ids);
1737         device->device_type = type;
1738         device->handle = handle;
1739         device->parent = acpi_bus_get_parent(handle);
1740         fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1741         acpi_set_device_status(device, ACPI_STA_DEFAULT);
1742         acpi_device_get_busid(device);
1743         acpi_set_pnp_ids(handle, &device->pnp, type);
1744         acpi_init_properties(device);
1745         acpi_bus_get_flags(device);
1746         device->flags.match_driver = false;
1747         device->flags.initialized = true;
1748         device->flags.enumeration_by_parent =
1749                 acpi_device_enumeration_by_parent(device);
1750         acpi_device_clear_enumerated(device);
1751         device_initialize(&device->dev);
1752         dev_set_uevent_suppress(&device->dev, true);
1753         acpi_init_coherency(device);
1754 }
1755
1756 static void acpi_scan_dep_init(struct acpi_device *adev)
1757 {
1758         struct acpi_dep_data *dep;
1759
1760         list_for_each_entry(dep, &acpi_dep_list, node) {
1761                 if (dep->consumer == adev->handle)
1762                         adev->dep_unmet++;
1763         }
1764 }
1765
1766 void acpi_device_add_finalize(struct acpi_device *device)
1767 {
1768         dev_set_uevent_suppress(&device->dev, false);
1769         kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1770 }
1771
1772 static void acpi_scan_init_status(struct acpi_device *adev)
1773 {
1774         if (acpi_bus_get_status(adev))
1775                 acpi_set_device_status(adev, 0);
1776 }
1777
1778 static int acpi_add_single_object(struct acpi_device **child,
1779                                   acpi_handle handle, int type, bool dep_init)
1780 {
1781         struct acpi_device *device;
1782         bool release_dep_lock = false;
1783         int result;
1784
1785         device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1786         if (!device)
1787                 return -ENOMEM;
1788
1789         acpi_init_device_object(device, handle, type);
1790         /*
1791          * Getting the status is delayed till here so that we can call
1792          * acpi_bus_get_status() and use its quirk handling.  Note that
1793          * this must be done before the get power-/wakeup_dev-flags calls.
1794          */
1795         if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1796                 if (dep_init) {
1797                         mutex_lock(&acpi_dep_list_lock);
1798                         /*
1799                          * Hold the lock until the acpi_tie_acpi_dev() call
1800                          * below to prevent concurrent acpi_scan_clear_dep()
1801                          * from deleting a dependency list entry without
1802                          * updating dep_unmet for the device.
1803                          */
1804                         release_dep_lock = true;
1805                         acpi_scan_dep_init(device);
1806                 }
1807                 acpi_scan_init_status(device);
1808         }
1809
1810         acpi_bus_get_power_flags(device);
1811         acpi_bus_get_wakeup_device_flags(device);
1812
1813         result = acpi_tie_acpi_dev(device);
1814
1815         if (release_dep_lock)
1816                 mutex_unlock(&acpi_dep_list_lock);
1817
1818         if (!result)
1819                 result = __acpi_device_add(device, acpi_device_release);
1820
1821         if (result) {
1822                 acpi_device_release(&device->dev);
1823                 return result;
1824         }
1825
1826         acpi_power_add_remove_device(device, true);
1827         acpi_device_add_finalize(device);
1828
1829         acpi_handle_debug(handle, "Added as %s, parent %s\n",
1830                           dev_name(&device->dev), device->parent ?
1831                                 dev_name(&device->parent->dev) : "(null)");
1832
1833         *child = device;
1834         return 0;
1835 }
1836
1837 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1838                                             void *context)
1839 {
1840         struct resource *res = context;
1841
1842         if (acpi_dev_resource_memory(ares, res))
1843                 return AE_CTRL_TERMINATE;
1844
1845         return AE_OK;
1846 }
1847
1848 static bool acpi_device_should_be_hidden(acpi_handle handle)
1849 {
1850         acpi_status status;
1851         struct resource res;
1852
1853         /* Check if it should ignore the UART device */
1854         if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1855                 return false;
1856
1857         /*
1858          * The UART device described in SPCR table is assumed to have only one
1859          * memory resource present. So we only look for the first one here.
1860          */
1861         status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1862                                      acpi_get_resource_memory, &res);
1863         if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1864                 return false;
1865
1866         acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1867                          &res.start);
1868
1869         return true;
1870 }
1871
1872 bool acpi_device_is_present(const struct acpi_device *adev)
1873 {
1874         return adev->status.present || adev->status.functional;
1875 }
1876
1877 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1878                                        const char *idstr,
1879                                        const struct acpi_device_id **matchid)
1880 {
1881         const struct acpi_device_id *devid;
1882
1883         if (handler->match)
1884                 return handler->match(idstr, matchid);
1885
1886         for (devid = handler->ids; devid->id[0]; devid++)
1887                 if (!strcmp((char *)devid->id, idstr)) {
1888                         if (matchid)
1889                                 *matchid = devid;
1890
1891                         return true;
1892                 }
1893
1894         return false;
1895 }
1896
1897 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1898                                         const struct acpi_device_id **matchid)
1899 {
1900         struct acpi_scan_handler *handler;
1901
1902         list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1903                 if (acpi_scan_handler_matching(handler, idstr, matchid))
1904                         return handler;
1905
1906         return NULL;
1907 }
1908
1909 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1910 {
1911         if (!!hotplug->enabled == !!val)
1912                 return;
1913
1914         mutex_lock(&acpi_scan_lock);
1915
1916         hotplug->enabled = val;
1917
1918         mutex_unlock(&acpi_scan_lock);
1919 }
1920
1921 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1922 {
1923         struct acpi_hardware_id *hwid;
1924
1925         if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1926                 acpi_dock_add(adev);
1927                 return;
1928         }
1929         list_for_each_entry(hwid, &adev->pnp.ids, list) {
1930                 struct acpi_scan_handler *handler;
1931
1932                 handler = acpi_scan_match_handler(hwid->id, NULL);
1933                 if (handler) {
1934                         adev->flags.hotplug_notify = true;
1935                         break;
1936                 }
1937         }
1938 }
1939
1940 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1941 {
1942         struct acpi_handle_list dep_devices;
1943         acpi_status status;
1944         u32 count;
1945         int i;
1946
1947         /*
1948          * Check for _HID here to avoid deferring the enumeration of:
1949          * 1. PCI devices.
1950          * 2. ACPI nodes describing USB ports.
1951          * Still, checking for _HID catches more then just these cases ...
1952          */
1953         if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1954             !acpi_has_method(handle, "_HID"))
1955                 return 0;
1956
1957         status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1958         if (ACPI_FAILURE(status)) {
1959                 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1960                 return 0;
1961         }
1962
1963         for (count = 0, i = 0; i < dep_devices.count; i++) {
1964                 struct acpi_device_info *info;
1965                 struct acpi_dep_data *dep;
1966                 bool skip;
1967
1968                 status = acpi_get_object_info(dep_devices.handles[i], &info);
1969                 if (ACPI_FAILURE(status)) {
1970                         acpi_handle_debug(handle, "Error reading _DEP device info\n");
1971                         continue;
1972                 }
1973
1974                 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1975                 kfree(info);
1976
1977                 if (skip)
1978                         continue;
1979
1980                 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1981                 if (!dep)
1982                         continue;
1983
1984                 count++;
1985
1986                 dep->supplier = dep_devices.handles[i];
1987                 dep->consumer = handle;
1988
1989                 mutex_lock(&acpi_dep_list_lock);
1990                 list_add_tail(&dep->node , &acpi_dep_list);
1991                 mutex_unlock(&acpi_dep_list_lock);
1992         }
1993
1994         return count;
1995 }
1996
1997 static bool acpi_bus_scan_second_pass;
1998
1999 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2000                                       struct acpi_device **adev_p)
2001 {
2002         struct acpi_device *device = NULL;
2003         acpi_object_type acpi_type;
2004         int type;
2005
2006         acpi_bus_get_device(handle, &device);
2007         if (device)
2008                 goto out;
2009
2010         if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2011                 return AE_OK;
2012
2013         switch (acpi_type) {
2014         case ACPI_TYPE_DEVICE:
2015                 if (acpi_device_should_be_hidden(handle))
2016                         return AE_OK;
2017
2018                 /* Bail out if there are dependencies. */
2019                 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2020                         acpi_bus_scan_second_pass = true;
2021                         return AE_CTRL_DEPTH;
2022                 }
2023
2024                 fallthrough;
2025         case ACPI_TYPE_ANY:     /* for ACPI_ROOT_OBJECT */
2026                 type = ACPI_BUS_TYPE_DEVICE;
2027                 break;
2028
2029         case ACPI_TYPE_PROCESSOR:
2030                 type = ACPI_BUS_TYPE_PROCESSOR;
2031                 break;
2032
2033         case ACPI_TYPE_THERMAL:
2034                 type = ACPI_BUS_TYPE_THERMAL;
2035                 break;
2036
2037         case ACPI_TYPE_POWER:
2038                 acpi_add_power_resource(handle);
2039                 fallthrough;
2040         default:
2041                 return AE_OK;
2042         }
2043
2044         /*
2045          * If check_dep is true at this point, the device has no dependencies,
2046          * or the creation of the device object would have been postponed above.
2047          */
2048         acpi_add_single_object(&device, handle, type, !check_dep);
2049         if (!device)
2050                 return AE_CTRL_DEPTH;
2051
2052         acpi_scan_init_hotplug(device);
2053
2054 out:
2055         if (!*adev_p)
2056                 *adev_p = device;
2057
2058         return AE_OK;
2059 }
2060
2061 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2062                                         void *not_used, void **ret_p)
2063 {
2064         return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2065 }
2066
2067 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2068                                         void *not_used, void **ret_p)
2069 {
2070         return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2071 }
2072
2073 static void acpi_default_enumeration(struct acpi_device *device)
2074 {
2075         /*
2076          * Do not enumerate devices with enumeration_by_parent flag set as
2077          * they will be enumerated by their respective parents.
2078          */
2079         if (!device->flags.enumeration_by_parent) {
2080                 acpi_create_platform_device(device, NULL);
2081                 acpi_device_set_enumerated(device);
2082         } else {
2083                 blocking_notifier_call_chain(&acpi_reconfig_chain,
2084                                              ACPI_RECONFIG_DEVICE_ADD, device);
2085         }
2086 }
2087
2088 static const struct acpi_device_id generic_device_ids[] = {
2089         {ACPI_DT_NAMESPACE_HID, },
2090         {"", },
2091 };
2092
2093 static int acpi_generic_device_attach(struct acpi_device *adev,
2094                                       const struct acpi_device_id *not_used)
2095 {
2096         /*
2097          * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2098          * below can be unconditional.
2099          */
2100         if (adev->data.of_compatible)
2101                 acpi_default_enumeration(adev);
2102
2103         return 1;
2104 }
2105
2106 static struct acpi_scan_handler generic_device_handler = {
2107         .ids = generic_device_ids,
2108         .attach = acpi_generic_device_attach,
2109 };
2110
2111 static int acpi_scan_attach_handler(struct acpi_device *device)
2112 {
2113         struct acpi_hardware_id *hwid;
2114         int ret = 0;
2115
2116         list_for_each_entry(hwid, &device->pnp.ids, list) {
2117                 const struct acpi_device_id *devid;
2118                 struct acpi_scan_handler *handler;
2119
2120                 handler = acpi_scan_match_handler(hwid->id, &devid);
2121                 if (handler) {
2122                         if (!handler->attach) {
2123                                 device->pnp.type.platform_id = 0;
2124                                 continue;
2125                         }
2126                         device->handler = handler;
2127                         ret = handler->attach(device, devid);
2128                         if (ret > 0)
2129                                 break;
2130
2131                         device->handler = NULL;
2132                         if (ret < 0)
2133                                 break;
2134                 }
2135         }
2136
2137         return ret;
2138 }
2139
2140 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2141 {
2142         struct acpi_device *child;
2143         bool skip = !first_pass && device->flags.visited;
2144         acpi_handle ejd;
2145         int ret;
2146
2147         if (skip)
2148                 goto ok;
2149
2150         if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2151                 register_dock_dependent_device(device, ejd);
2152
2153         acpi_bus_get_status(device);
2154         /* Skip devices that are not present. */
2155         if (!acpi_device_is_present(device)) {
2156                 device->flags.initialized = false;
2157                 acpi_device_clear_enumerated(device);
2158                 device->flags.power_manageable = 0;
2159                 return;
2160         }
2161         if (device->handler)
2162                 goto ok;
2163
2164         if (!device->flags.initialized) {
2165                 device->flags.power_manageable =
2166                         device->power.states[ACPI_STATE_D0].flags.valid;
2167                 if (acpi_bus_init_power(device))
2168                         device->flags.power_manageable = 0;
2169
2170                 device->flags.initialized = true;
2171         } else if (device->flags.visited) {
2172                 goto ok;
2173         }
2174
2175         ret = acpi_scan_attach_handler(device);
2176         if (ret < 0)
2177                 return;
2178
2179         device->flags.match_driver = true;
2180         if (ret > 0 && !device->flags.enumeration_by_parent) {
2181                 acpi_device_set_enumerated(device);
2182                 goto ok;
2183         }
2184
2185         ret = device_attach(&device->dev);
2186         if (ret < 0)
2187                 return;
2188
2189         if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2190                 acpi_default_enumeration(device);
2191         else
2192                 acpi_device_set_enumerated(device);
2193
2194  ok:
2195         list_for_each_entry(child, &device->children, node)
2196                 acpi_bus_attach(child, first_pass);
2197
2198         if (!skip && device->handler && device->handler->hotplug.notify_online)
2199                 device->handler->hotplug.notify_online(device);
2200 }
2201
2202 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2203 {
2204         struct acpi_device *adev;
2205
2206         adev = acpi_bus_get_acpi_device(dep->consumer);
2207         if (adev) {
2208                 *(struct acpi_device **)data = adev;
2209                 return 1;
2210         }
2211         /* Continue parsing if the device object is not present. */
2212         return 0;
2213 }
2214
2215 struct acpi_scan_clear_dep_work {
2216         struct work_struct work;
2217         struct acpi_device *adev;
2218 };
2219
2220 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2221 {
2222         struct acpi_scan_clear_dep_work *cdw;
2223
2224         cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2225
2226         acpi_scan_lock_acquire();
2227         acpi_bus_attach(cdw->adev, true);
2228         acpi_scan_lock_release();
2229
2230         acpi_dev_put(cdw->adev);
2231         kfree(cdw);
2232 }
2233
2234 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2235 {
2236         struct acpi_scan_clear_dep_work *cdw;
2237
2238         if (adev->dep_unmet)
2239                 return false;
2240
2241         cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2242         if (!cdw)
2243                 return false;
2244
2245         cdw->adev = adev;
2246         INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2247         /*
2248          * Since the work function may block on the lock until the entire
2249          * initial enumeration of devices is complete, put it into the unbound
2250          * workqueue.
2251          */
2252         queue_work(system_unbound_wq, &cdw->work);
2253
2254         return true;
2255 }
2256
2257 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2258 {
2259         struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2260
2261         if (adev) {
2262                 adev->dep_unmet--;
2263                 if (!acpi_scan_clear_dep_queue(adev))
2264                         acpi_dev_put(adev);
2265         }
2266
2267         list_del(&dep->node);
2268         kfree(dep);
2269
2270         return 0;
2271 }
2272
2273 /**
2274  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2275  * @handle:     The ACPI handle of the supplier device
2276  * @callback:   Pointer to the callback function to apply
2277  * @data:       Pointer to some data to pass to the callback
2278  *
2279  * The return value of the callback determines this function's behaviour. If 0
2280  * is returned we continue to iterate over acpi_dep_list. If a positive value
2281  * is returned then the loop is broken but this function returns 0. If a
2282  * negative value is returned by the callback then the loop is broken and that
2283  * value is returned as the final error.
2284  */
2285 static int acpi_walk_dep_device_list(acpi_handle handle,
2286                                 int (*callback)(struct acpi_dep_data *, void *),
2287                                 void *data)
2288 {
2289         struct acpi_dep_data *dep, *tmp;
2290         int ret = 0;
2291
2292         mutex_lock(&acpi_dep_list_lock);
2293         list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2294                 if (dep->supplier == handle) {
2295                         ret = callback(dep, data);
2296                         if (ret)
2297                                 break;
2298                 }
2299         }
2300         mutex_unlock(&acpi_dep_list_lock);
2301
2302         return ret > 0 ? 0 : ret;
2303 }
2304
2305 /**
2306  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2307  * @supplier: Pointer to the supplier &struct acpi_device
2308  *
2309  * Clear dependencies on the given device.
2310  */
2311 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2312 {
2313         acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2314 }
2315 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2316
2317 /**
2318  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2319  * @supplier: Pointer to the dependee device
2320  *
2321  * Returns the first &struct acpi_device which declares itself dependent on
2322  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2323  *
2324  * The caller is responsible for putting the reference to adev when it is no
2325  * longer needed.
2326  */
2327 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2328 {
2329         struct acpi_device *adev = NULL;
2330
2331         acpi_walk_dep_device_list(supplier->handle,
2332                                   acpi_dev_get_first_consumer_dev_cb, &adev);
2333
2334         return adev;
2335 }
2336 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2337
2338 /**
2339  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2340  * @handle: Root of the namespace scope to scan.
2341  *
2342  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2343  * found devices.
2344  *
2345  * If no devices were found, -ENODEV is returned, but it does not mean that
2346  * there has been a real error.  There just have been no suitable ACPI objects
2347  * in the table trunk from which the kernel could create a device and add an
2348  * appropriate driver.
2349  *
2350  * Must be called under acpi_scan_lock.
2351  */
2352 int acpi_bus_scan(acpi_handle handle)
2353 {
2354         struct acpi_device *device = NULL;
2355
2356         acpi_bus_scan_second_pass = false;
2357
2358         /* Pass 1: Avoid enumerating devices with missing dependencies. */
2359
2360         if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2361                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2362                                     acpi_bus_check_add_1, NULL, NULL,
2363                                     (void **)&device);
2364
2365         if (!device)
2366                 return -ENODEV;
2367
2368         acpi_bus_attach(device, true);
2369
2370         if (!acpi_bus_scan_second_pass)
2371                 return 0;
2372
2373         /* Pass 2: Enumerate all of the remaining devices. */
2374
2375         device = NULL;
2376
2377         if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2378                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2379                                     acpi_bus_check_add_2, NULL, NULL,
2380                                     (void **)&device);
2381
2382         acpi_bus_attach(device, false);
2383
2384         return 0;
2385 }
2386 EXPORT_SYMBOL(acpi_bus_scan);
2387
2388 /**
2389  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2390  * @adev: Root of the ACPI namespace scope to walk.
2391  *
2392  * Must be called under acpi_scan_lock.
2393  */
2394 void acpi_bus_trim(struct acpi_device *adev)
2395 {
2396         struct acpi_scan_handler *handler = adev->handler;
2397         struct acpi_device *child;
2398
2399         list_for_each_entry_reverse(child, &adev->children, node)
2400                 acpi_bus_trim(child);
2401
2402         adev->flags.match_driver = false;
2403         if (handler) {
2404                 if (handler->detach)
2405                         handler->detach(adev);
2406
2407                 adev->handler = NULL;
2408         } else {
2409                 device_release_driver(&adev->dev);
2410         }
2411         /*
2412          * Most likely, the device is going away, so put it into D3cold before
2413          * that.
2414          */
2415         acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2416         adev->flags.initialized = false;
2417         acpi_device_clear_enumerated(adev);
2418 }
2419 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2420
2421 int acpi_bus_register_early_device(int type)
2422 {
2423         struct acpi_device *device = NULL;
2424         int result;
2425
2426         result = acpi_add_single_object(&device, NULL, type, false);
2427         if (result)
2428                 return result;
2429
2430         device->flags.match_driver = true;
2431         return device_attach(&device->dev);
2432 }
2433 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2434
2435 static int acpi_bus_scan_fixed(void)
2436 {
2437         int result = 0;
2438
2439         /*
2440          * Enumerate all fixed-feature devices.
2441          */
2442         if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2443                 struct acpi_device *device = NULL;
2444
2445                 result = acpi_add_single_object(&device, NULL,
2446                                                 ACPI_BUS_TYPE_POWER_BUTTON, false);
2447                 if (result)
2448                         return result;
2449
2450                 device->flags.match_driver = true;
2451                 result = device_attach(&device->dev);
2452                 if (result < 0)
2453                         return result;
2454
2455                 device_init_wakeup(&device->dev, true);
2456         }
2457
2458         if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2459                 struct acpi_device *device = NULL;
2460
2461                 result = acpi_add_single_object(&device, NULL,
2462                                                 ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2463                 if (result)
2464                         return result;
2465
2466                 device->flags.match_driver = true;
2467                 result = device_attach(&device->dev);
2468         }
2469
2470         return result < 0 ? result : 0;
2471 }
2472
2473 static void __init acpi_get_spcr_uart_addr(void)
2474 {
2475         acpi_status status;
2476         struct acpi_table_spcr *spcr_ptr;
2477
2478         status = acpi_get_table(ACPI_SIG_SPCR, 0,
2479                                 (struct acpi_table_header **)&spcr_ptr);
2480         if (ACPI_FAILURE(status)) {
2481                 pr_warn("STAO table present, but SPCR is missing\n");
2482                 return;
2483         }
2484
2485         spcr_uart_addr = spcr_ptr->serial_port.address;
2486         acpi_put_table((struct acpi_table_header *)spcr_ptr);
2487 }
2488
2489 static bool acpi_scan_initialized;
2490
2491 int __init acpi_scan_init(void)
2492 {
2493         int result;
2494         acpi_status status;
2495         struct acpi_table_stao *stao_ptr;
2496
2497         acpi_pci_root_init();
2498         acpi_pci_link_init();
2499         acpi_processor_init();
2500         acpi_platform_init();
2501         acpi_lpss_init();
2502         acpi_apd_init();
2503         acpi_cmos_rtc_init();
2504         acpi_container_init();
2505         acpi_memory_hotplug_init();
2506         acpi_watchdog_init();
2507         acpi_pnp_init();
2508         acpi_int340x_thermal_init();
2509         acpi_amba_init();
2510         acpi_init_lpit();
2511
2512         acpi_scan_add_handler(&generic_device_handler);
2513
2514         /*
2515          * If there is STAO table, check whether it needs to ignore the UART
2516          * device in SPCR table.
2517          */
2518         status = acpi_get_table(ACPI_SIG_STAO, 0,
2519                                 (struct acpi_table_header **)&stao_ptr);
2520         if (ACPI_SUCCESS(status)) {
2521                 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2522                         pr_info("STAO Name List not yet supported.\n");
2523
2524                 if (stao_ptr->ignore_uart)
2525                         acpi_get_spcr_uart_addr();
2526
2527                 acpi_put_table((struct acpi_table_header *)stao_ptr);
2528         }
2529
2530         acpi_gpe_apply_masked_gpes();
2531         acpi_update_all_gpes();
2532
2533         /*
2534          * Although we call __add_memory() that is documented to require the
2535          * device_hotplug_lock, it is not necessary here because this is an
2536          * early code when userspace or any other code path cannot trigger
2537          * hotplug/hotunplug operations.
2538          */
2539         mutex_lock(&acpi_scan_lock);
2540         /*
2541          * Enumerate devices in the ACPI namespace.
2542          */
2543         result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2544         if (result)
2545                 goto out;
2546
2547         result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2548         if (result)
2549                 goto out;
2550
2551         /* Fixed feature devices do not exist on HW-reduced platform */
2552         if (!acpi_gbl_reduced_hardware) {
2553                 result = acpi_bus_scan_fixed();
2554                 if (result) {
2555                         acpi_detach_data(acpi_root->handle,
2556                                          acpi_scan_drop_device);
2557                         acpi_device_del(acpi_root);
2558                         acpi_bus_put_acpi_device(acpi_root);
2559                         goto out;
2560                 }
2561         }
2562
2563         acpi_turn_off_unused_power_resources();
2564
2565         acpi_scan_initialized = true;
2566
2567  out:
2568         mutex_unlock(&acpi_scan_lock);
2569         return result;
2570 }
2571
2572 static struct acpi_probe_entry *ape;
2573 static int acpi_probe_count;
2574 static DEFINE_MUTEX(acpi_probe_mutex);
2575
2576 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2577                                   const unsigned long end)
2578 {
2579         if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2580                 if (!ape->probe_subtbl(header, end))
2581                         acpi_probe_count++;
2582
2583         return 0;
2584 }
2585
2586 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2587 {
2588         int count = 0;
2589
2590         if (acpi_disabled)
2591                 return 0;
2592
2593         mutex_lock(&acpi_probe_mutex);
2594         for (ape = ap_head; nr; ape++, nr--) {
2595                 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2596                         acpi_probe_count = 0;
2597                         acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2598                         count += acpi_probe_count;
2599                 } else {
2600                         int res;
2601                         res = acpi_table_parse(ape->id, ape->probe_table);
2602                         if (!res)
2603                                 count++;
2604                 }
2605         }
2606         mutex_unlock(&acpi_probe_mutex);
2607
2608         return count;
2609 }
2610
2611 static void acpi_table_events_fn(struct work_struct *work)
2612 {
2613         acpi_scan_lock_acquire();
2614         acpi_bus_scan(ACPI_ROOT_OBJECT);
2615         acpi_scan_lock_release();
2616
2617         kfree(work);
2618 }
2619
2620 void acpi_scan_table_notify(void)
2621 {
2622         struct work_struct *work;
2623
2624         if (!acpi_scan_initialized)
2625                 return;
2626
2627         work = kmalloc(sizeof(*work), GFP_KERNEL);
2628         if (!work)
2629                 return;
2630
2631         INIT_WORK(work, acpi_table_events_fn);
2632         schedule_work(work);
2633 }
2634
2635 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2636 {
2637         return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2638 }
2639 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2640
2641 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2642 {
2643         return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2644 }
2645 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);