Merge tag 'block-5.15-2021-09-05' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / crypto / crypto_engine.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <crypto/engine.h>
14 #include <uapi/linux/sched/types.h>
15 #include "internal.h"
16
17 #define CRYPTO_ENGINE_MAX_QLEN 10
18
19 /**
20  * crypto_finalize_request - finalize one request if the request is done
21  * @engine: the hardware engine
22  * @req: the request need to be finalized
23  * @err: error number
24  */
25 static void crypto_finalize_request(struct crypto_engine *engine,
26                                     struct crypto_async_request *req, int err)
27 {
28         unsigned long flags;
29         bool finalize_req = false;
30         int ret;
31         struct crypto_engine_ctx *enginectx;
32
33         /*
34          * If hardware cannot enqueue more requests
35          * and retry mechanism is not supported
36          * make sure we are completing the current request
37          */
38         if (!engine->retry_support) {
39                 spin_lock_irqsave(&engine->queue_lock, flags);
40                 if (engine->cur_req == req) {
41                         finalize_req = true;
42                         engine->cur_req = NULL;
43                 }
44                 spin_unlock_irqrestore(&engine->queue_lock, flags);
45         }
46
47         if (finalize_req || engine->retry_support) {
48                 enginectx = crypto_tfm_ctx(req->tfm);
49                 if (enginectx->op.prepare_request &&
50                     enginectx->op.unprepare_request) {
51                         ret = enginectx->op.unprepare_request(engine, req);
52                         if (ret)
53                                 dev_err(engine->dev, "failed to unprepare request\n");
54                 }
55         }
56         req->complete(req, err);
57
58         kthread_queue_work(engine->kworker, &engine->pump_requests);
59 }
60
61 /**
62  * crypto_pump_requests - dequeue one request from engine queue to process
63  * @engine: the hardware engine
64  * @in_kthread: true if we are in the context of the request pump thread
65  *
66  * This function checks if there is any request in the engine queue that
67  * needs processing and if so call out to the driver to initialize hardware
68  * and handle each request.
69  */
70 static void crypto_pump_requests(struct crypto_engine *engine,
71                                  bool in_kthread)
72 {
73         struct crypto_async_request *async_req, *backlog;
74         unsigned long flags;
75         bool was_busy = false;
76         int ret;
77         struct crypto_engine_ctx *enginectx;
78
79         spin_lock_irqsave(&engine->queue_lock, flags);
80
81         /* Make sure we are not already running a request */
82         if (!engine->retry_support && engine->cur_req)
83                 goto out;
84
85         /* If another context is idling then defer */
86         if (engine->idling) {
87                 kthread_queue_work(engine->kworker, &engine->pump_requests);
88                 goto out;
89         }
90
91         /* Check if the engine queue is idle */
92         if (!crypto_queue_len(&engine->queue) || !engine->running) {
93                 if (!engine->busy)
94                         goto out;
95
96                 /* Only do teardown in the thread */
97                 if (!in_kthread) {
98                         kthread_queue_work(engine->kworker,
99                                            &engine->pump_requests);
100                         goto out;
101                 }
102
103                 engine->busy = false;
104                 engine->idling = true;
105                 spin_unlock_irqrestore(&engine->queue_lock, flags);
106
107                 if (engine->unprepare_crypt_hardware &&
108                     engine->unprepare_crypt_hardware(engine))
109                         dev_err(engine->dev, "failed to unprepare crypt hardware\n");
110
111                 spin_lock_irqsave(&engine->queue_lock, flags);
112                 engine->idling = false;
113                 goto out;
114         }
115
116 start_request:
117         /* Get the fist request from the engine queue to handle */
118         backlog = crypto_get_backlog(&engine->queue);
119         async_req = crypto_dequeue_request(&engine->queue);
120         if (!async_req)
121                 goto out;
122
123         /*
124          * If hardware doesn't support the retry mechanism,
125          * keep track of the request we are processing now.
126          * We'll need it on completion (crypto_finalize_request).
127          */
128         if (!engine->retry_support)
129                 engine->cur_req = async_req;
130
131         if (backlog)
132                 backlog->complete(backlog, -EINPROGRESS);
133
134         if (engine->busy)
135                 was_busy = true;
136         else
137                 engine->busy = true;
138
139         spin_unlock_irqrestore(&engine->queue_lock, flags);
140
141         /* Until here we get the request need to be encrypted successfully */
142         if (!was_busy && engine->prepare_crypt_hardware) {
143                 ret = engine->prepare_crypt_hardware(engine);
144                 if (ret) {
145                         dev_err(engine->dev, "failed to prepare crypt hardware\n");
146                         goto req_err_2;
147                 }
148         }
149
150         enginectx = crypto_tfm_ctx(async_req->tfm);
151
152         if (enginectx->op.prepare_request) {
153                 ret = enginectx->op.prepare_request(engine, async_req);
154                 if (ret) {
155                         dev_err(engine->dev, "failed to prepare request: %d\n",
156                                 ret);
157                         goto req_err_2;
158                 }
159         }
160         if (!enginectx->op.do_one_request) {
161                 dev_err(engine->dev, "failed to do request\n");
162                 ret = -EINVAL;
163                 goto req_err_1;
164         }
165
166         ret = enginectx->op.do_one_request(engine, async_req);
167
168         /* Request unsuccessfully executed by hardware */
169         if (ret < 0) {
170                 /*
171                  * If hardware queue is full (-ENOSPC), requeue request
172                  * regardless of backlog flag.
173                  * Otherwise, unprepare and complete the request.
174                  */
175                 if (!engine->retry_support ||
176                     (ret != -ENOSPC)) {
177                         dev_err(engine->dev,
178                                 "Failed to do one request from queue: %d\n",
179                                 ret);
180                         goto req_err_1;
181                 }
182                 /*
183                  * If retry mechanism is supported,
184                  * unprepare current request and
185                  * enqueue it back into crypto-engine queue.
186                  */
187                 if (enginectx->op.unprepare_request) {
188                         ret = enginectx->op.unprepare_request(engine,
189                                                               async_req);
190                         if (ret)
191                                 dev_err(engine->dev,
192                                         "failed to unprepare request\n");
193                 }
194                 spin_lock_irqsave(&engine->queue_lock, flags);
195                 /*
196                  * If hardware was unable to execute request, enqueue it
197                  * back in front of crypto-engine queue, to keep the order
198                  * of requests.
199                  */
200                 crypto_enqueue_request_head(&engine->queue, async_req);
201
202                 kthread_queue_work(engine->kworker, &engine->pump_requests);
203                 goto out;
204         }
205
206         goto retry;
207
208 req_err_1:
209         if (enginectx->op.unprepare_request) {
210                 ret = enginectx->op.unprepare_request(engine, async_req);
211                 if (ret)
212                         dev_err(engine->dev, "failed to unprepare request\n");
213         }
214
215 req_err_2:
216         async_req->complete(async_req, ret);
217
218 retry:
219         /* If retry mechanism is supported, send new requests to engine */
220         if (engine->retry_support) {
221                 spin_lock_irqsave(&engine->queue_lock, flags);
222                 goto start_request;
223         }
224         return;
225
226 out:
227         spin_unlock_irqrestore(&engine->queue_lock, flags);
228
229         /*
230          * Batch requests is possible only if
231          * hardware can enqueue multiple requests
232          */
233         if (engine->do_batch_requests) {
234                 ret = engine->do_batch_requests(engine);
235                 if (ret)
236                         dev_err(engine->dev, "failed to do batch requests: %d\n",
237                                 ret);
238         }
239
240         return;
241 }
242
243 static void crypto_pump_work(struct kthread_work *work)
244 {
245         struct crypto_engine *engine =
246                 container_of(work, struct crypto_engine, pump_requests);
247
248         crypto_pump_requests(engine, true);
249 }
250
251 /**
252  * crypto_transfer_request - transfer the new request into the engine queue
253  * @engine: the hardware engine
254  * @req: the request need to be listed into the engine queue
255  */
256 static int crypto_transfer_request(struct crypto_engine *engine,
257                                    struct crypto_async_request *req,
258                                    bool need_pump)
259 {
260         unsigned long flags;
261         int ret;
262
263         spin_lock_irqsave(&engine->queue_lock, flags);
264
265         if (!engine->running) {
266                 spin_unlock_irqrestore(&engine->queue_lock, flags);
267                 return -ESHUTDOWN;
268         }
269
270         ret = crypto_enqueue_request(&engine->queue, req);
271
272         if (!engine->busy && need_pump)
273                 kthread_queue_work(engine->kworker, &engine->pump_requests);
274
275         spin_unlock_irqrestore(&engine->queue_lock, flags);
276         return ret;
277 }
278
279 /**
280  * crypto_transfer_request_to_engine - transfer one request to list
281  * into the engine queue
282  * @engine: the hardware engine
283  * @req: the request need to be listed into the engine queue
284  */
285 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
286                                              struct crypto_async_request *req)
287 {
288         return crypto_transfer_request(engine, req, true);
289 }
290
291 /**
292  * crypto_transfer_aead_request_to_engine - transfer one aead_request
293  * to list into the engine queue
294  * @engine: the hardware engine
295  * @req: the request need to be listed into the engine queue
296  */
297 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
298                                            struct aead_request *req)
299 {
300         return crypto_transfer_request_to_engine(engine, &req->base);
301 }
302 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
303
304 /**
305  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
306  * to list into the engine queue
307  * @engine: the hardware engine
308  * @req: the request need to be listed into the engine queue
309  */
310 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
311                                                struct akcipher_request *req)
312 {
313         return crypto_transfer_request_to_engine(engine, &req->base);
314 }
315 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
316
317 /**
318  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
319  * to list into the engine queue
320  * @engine: the hardware engine
321  * @req: the request need to be listed into the engine queue
322  */
323 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
324                                            struct ahash_request *req)
325 {
326         return crypto_transfer_request_to_engine(engine, &req->base);
327 }
328 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
329
330 /**
331  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
332  * to list into the engine queue
333  * @engine: the hardware engine
334  * @req: the request need to be listed into the engine queue
335  */
336 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
337                                                struct skcipher_request *req)
338 {
339         return crypto_transfer_request_to_engine(engine, &req->base);
340 }
341 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
342
343 /**
344  * crypto_finalize_aead_request - finalize one aead_request if
345  * the request is done
346  * @engine: the hardware engine
347  * @req: the request need to be finalized
348  * @err: error number
349  */
350 void crypto_finalize_aead_request(struct crypto_engine *engine,
351                                   struct aead_request *req, int err)
352 {
353         return crypto_finalize_request(engine, &req->base, err);
354 }
355 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
356
357 /**
358  * crypto_finalize_akcipher_request - finalize one akcipher_request if
359  * the request is done
360  * @engine: the hardware engine
361  * @req: the request need to be finalized
362  * @err: error number
363  */
364 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
365                                       struct akcipher_request *req, int err)
366 {
367         return crypto_finalize_request(engine, &req->base, err);
368 }
369 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
370
371 /**
372  * crypto_finalize_hash_request - finalize one ahash_request if
373  * the request is done
374  * @engine: the hardware engine
375  * @req: the request need to be finalized
376  * @err: error number
377  */
378 void crypto_finalize_hash_request(struct crypto_engine *engine,
379                                   struct ahash_request *req, int err)
380 {
381         return crypto_finalize_request(engine, &req->base, err);
382 }
383 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
384
385 /**
386  * crypto_finalize_skcipher_request - finalize one skcipher_request if
387  * the request is done
388  * @engine: the hardware engine
389  * @req: the request need to be finalized
390  * @err: error number
391  */
392 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
393                                       struct skcipher_request *req, int err)
394 {
395         return crypto_finalize_request(engine, &req->base, err);
396 }
397 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
398
399 /**
400  * crypto_engine_start - start the hardware engine
401  * @engine: the hardware engine need to be started
402  *
403  * Return 0 on success, else on fail.
404  */
405 int crypto_engine_start(struct crypto_engine *engine)
406 {
407         unsigned long flags;
408
409         spin_lock_irqsave(&engine->queue_lock, flags);
410
411         if (engine->running || engine->busy) {
412                 spin_unlock_irqrestore(&engine->queue_lock, flags);
413                 return -EBUSY;
414         }
415
416         engine->running = true;
417         spin_unlock_irqrestore(&engine->queue_lock, flags);
418
419         kthread_queue_work(engine->kworker, &engine->pump_requests);
420
421         return 0;
422 }
423 EXPORT_SYMBOL_GPL(crypto_engine_start);
424
425 /**
426  * crypto_engine_stop - stop the hardware engine
427  * @engine: the hardware engine need to be stopped
428  *
429  * Return 0 on success, else on fail.
430  */
431 int crypto_engine_stop(struct crypto_engine *engine)
432 {
433         unsigned long flags;
434         unsigned int limit = 500;
435         int ret = 0;
436
437         spin_lock_irqsave(&engine->queue_lock, flags);
438
439         /*
440          * If the engine queue is not empty or the engine is on busy state,
441          * we need to wait for a while to pump the requests of engine queue.
442          */
443         while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
444                 spin_unlock_irqrestore(&engine->queue_lock, flags);
445                 msleep(20);
446                 spin_lock_irqsave(&engine->queue_lock, flags);
447         }
448
449         if (crypto_queue_len(&engine->queue) || engine->busy)
450                 ret = -EBUSY;
451         else
452                 engine->running = false;
453
454         spin_unlock_irqrestore(&engine->queue_lock, flags);
455
456         if (ret)
457                 dev_warn(engine->dev, "could not stop engine\n");
458
459         return ret;
460 }
461 EXPORT_SYMBOL_GPL(crypto_engine_stop);
462
463 /**
464  * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
465  * and initialize it by setting the maximum number of entries in the software
466  * crypto-engine queue.
467  * @dev: the device attached with one hardware engine
468  * @retry_support: whether hardware has support for retry mechanism
469  * @cbk_do_batch: pointer to a callback function to be invoked when executing
470  *                a batch of requests.
471  *                This has the form:
472  *                callback(struct crypto_engine *engine)
473  *                where:
474  *                @engine: the crypto engine structure.
475  * @rt: whether this queue is set to run as a realtime task
476  * @qlen: maximum size of the crypto-engine queue
477  *
478  * This must be called from context that can sleep.
479  * Return: the crypto engine structure on success, else NULL.
480  */
481 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
482                                                        bool retry_support,
483                                                        int (*cbk_do_batch)(struct crypto_engine *engine),
484                                                        bool rt, int qlen)
485 {
486         struct crypto_engine *engine;
487
488         if (!dev)
489                 return NULL;
490
491         engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
492         if (!engine)
493                 return NULL;
494
495         engine->dev = dev;
496         engine->rt = rt;
497         engine->running = false;
498         engine->busy = false;
499         engine->idling = false;
500         engine->retry_support = retry_support;
501         engine->priv_data = dev;
502         /*
503          * Batch requests is possible only if
504          * hardware has support for retry mechanism.
505          */
506         engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
507
508         snprintf(engine->name, sizeof(engine->name),
509                  "%s-engine", dev_name(dev));
510
511         crypto_init_queue(&engine->queue, qlen);
512         spin_lock_init(&engine->queue_lock);
513
514         engine->kworker = kthread_create_worker(0, "%s", engine->name);
515         if (IS_ERR(engine->kworker)) {
516                 dev_err(dev, "failed to create crypto request pump task\n");
517                 return NULL;
518         }
519         kthread_init_work(&engine->pump_requests, crypto_pump_work);
520
521         if (engine->rt) {
522                 dev_info(dev, "will run requests pump with realtime priority\n");
523                 sched_set_fifo(engine->kworker->task);
524         }
525
526         return engine;
527 }
528 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
529
530 /**
531  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
532  * initialize it.
533  * @dev: the device attached with one hardware engine
534  * @rt: whether this queue is set to run as a realtime task
535  *
536  * This must be called from context that can sleep.
537  * Return: the crypto engine structure on success, else NULL.
538  */
539 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
540 {
541         return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
542                                                 CRYPTO_ENGINE_MAX_QLEN);
543 }
544 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
545
546 /**
547  * crypto_engine_exit - free the resources of hardware engine when exit
548  * @engine: the hardware engine need to be freed
549  *
550  * Return 0 for success.
551  */
552 int crypto_engine_exit(struct crypto_engine *engine)
553 {
554         int ret;
555
556         ret = crypto_engine_stop(engine);
557         if (ret)
558                 return ret;
559
560         kthread_destroy_worker(engine->kworker);
561
562         return 0;
563 }
564 EXPORT_SYMBOL_GPL(crypto_engine_exit);
565
566 MODULE_LICENSE("GPL");
567 MODULE_DESCRIPTION("Crypto hardware engine framework");