tools headers UAPI: Sync linux/prctl.h with the kernel sources
[linux-2.6-microblaze.git] / block / blk.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4
5 #include <linux/idr.h>
6 #include <linux/blk-mq.h>
7 #include <linux/part_stat.h>
8 #include <linux/blk-crypto.h>
9 #include <linux/memblock.h>     /* for max_pfn/max_low_pfn */
10 #include <xen/xen.h>
11 #include "blk-crypto-internal.h"
12 #include "blk-mq.h"
13 #include "blk-mq-sched.h"
14
15 /* Max future timer expiry for timeouts */
16 #define BLK_MAX_TIMEOUT         (5 * HZ)
17
18 extern struct dentry *blk_debugfs_root;
19
20 struct blk_flush_queue {
21         unsigned int            flush_pending_idx:1;
22         unsigned int            flush_running_idx:1;
23         blk_status_t            rq_status;
24         unsigned long           flush_pending_since;
25         struct list_head        flush_queue[2];
26         struct list_head        flush_data_in_flight;
27         struct request          *flush_rq;
28
29         spinlock_t              mq_flush_lock;
30 };
31
32 extern struct kmem_cache *blk_requestq_cachep;
33 extern struct kobj_type blk_queue_ktype;
34 extern struct ida blk_queue_ida;
35
36 static inline struct blk_flush_queue *
37 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
38 {
39         return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
40 }
41
42 static inline void __blk_get_queue(struct request_queue *q)
43 {
44         kobject_get(&q->kobj);
45 }
46
47 static inline bool
48 is_flush_rq(struct request *req, struct blk_mq_hw_ctx *hctx)
49 {
50         return hctx->fq->flush_rq == req;
51 }
52
53 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
54                                               gfp_t flags);
55 void blk_free_flush_queue(struct blk_flush_queue *q);
56
57 void blk_freeze_queue(struct request_queue *q);
58
59 #define BIO_INLINE_VECS 4
60 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
61                 gfp_t gfp_mask);
62 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
63
64 static inline bool biovec_phys_mergeable(struct request_queue *q,
65                 struct bio_vec *vec1, struct bio_vec *vec2)
66 {
67         unsigned long mask = queue_segment_boundary(q);
68         phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
69         phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
70
71         if (addr1 + vec1->bv_len != addr2)
72                 return false;
73         if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
74                 return false;
75         if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
76                 return false;
77         return true;
78 }
79
80 static inline bool __bvec_gap_to_prev(struct request_queue *q,
81                 struct bio_vec *bprv, unsigned int offset)
82 {
83         return (offset & queue_virt_boundary(q)) ||
84                 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
85 }
86
87 /*
88  * Check if adding a bio_vec after bprv with offset would create a gap in
89  * the SG list. Most drivers don't care about this, but some do.
90  */
91 static inline bool bvec_gap_to_prev(struct request_queue *q,
92                 struct bio_vec *bprv, unsigned int offset)
93 {
94         if (!queue_virt_boundary(q))
95                 return false;
96         return __bvec_gap_to_prev(q, bprv, offset);
97 }
98
99 #ifdef CONFIG_BLK_DEV_INTEGRITY
100 void blk_flush_integrity(void);
101 bool __bio_integrity_endio(struct bio *);
102 void bio_integrity_free(struct bio *bio);
103 static inline bool bio_integrity_endio(struct bio *bio)
104 {
105         if (bio_integrity(bio))
106                 return __bio_integrity_endio(bio);
107         return true;
108 }
109
110 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
111                 struct request *);
112 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
113                 struct bio *);
114
115 static inline bool integrity_req_gap_back_merge(struct request *req,
116                 struct bio *next)
117 {
118         struct bio_integrity_payload *bip = bio_integrity(req->bio);
119         struct bio_integrity_payload *bip_next = bio_integrity(next);
120
121         return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
122                                 bip_next->bip_vec[0].bv_offset);
123 }
124
125 static inline bool integrity_req_gap_front_merge(struct request *req,
126                 struct bio *bio)
127 {
128         struct bio_integrity_payload *bip = bio_integrity(bio);
129         struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
130
131         return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
132                                 bip_next->bip_vec[0].bv_offset);
133 }
134
135 void blk_integrity_add(struct gendisk *);
136 void blk_integrity_del(struct gendisk *);
137 #else /* CONFIG_BLK_DEV_INTEGRITY */
138 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
139                 struct request *r1, struct request *r2)
140 {
141         return true;
142 }
143 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
144                 struct request *r, struct bio *b)
145 {
146         return true;
147 }
148 static inline bool integrity_req_gap_back_merge(struct request *req,
149                 struct bio *next)
150 {
151         return false;
152 }
153 static inline bool integrity_req_gap_front_merge(struct request *req,
154                 struct bio *bio)
155 {
156         return false;
157 }
158
159 static inline void blk_flush_integrity(void)
160 {
161 }
162 static inline bool bio_integrity_endio(struct bio *bio)
163 {
164         return true;
165 }
166 static inline void bio_integrity_free(struct bio *bio)
167 {
168 }
169 static inline void blk_integrity_add(struct gendisk *disk)
170 {
171 }
172 static inline void blk_integrity_del(struct gendisk *disk)
173 {
174 }
175 #endif /* CONFIG_BLK_DEV_INTEGRITY */
176
177 unsigned long blk_rq_timeout(unsigned long timeout);
178 void blk_add_timer(struct request *req);
179
180 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
181                 unsigned int nr_segs, struct request **same_queue_rq);
182 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
183                         struct bio *bio, unsigned int nr_segs);
184
185 void blk_account_io_start(struct request *req);
186 void blk_account_io_done(struct request *req, u64 now);
187
188 /*
189  * Internal elevator interface
190  */
191 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
192
193 void blk_insert_flush(struct request *rq);
194
195 void elevator_init_mq(struct request_queue *q);
196 int elevator_switch_mq(struct request_queue *q,
197                               struct elevator_type *new_e);
198 void __elevator_exit(struct request_queue *, struct elevator_queue *);
199 int elv_register_queue(struct request_queue *q, bool uevent);
200 void elv_unregister_queue(struct request_queue *q);
201
202 static inline void elevator_exit(struct request_queue *q,
203                 struct elevator_queue *e)
204 {
205         lockdep_assert_held(&q->sysfs_lock);
206
207         blk_mq_sched_free_requests(q);
208         __elevator_exit(q, e);
209 }
210
211 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
212                 char *buf);
213 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
214                 char *buf);
215 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
216                 char *buf);
217 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
218                 char *buf);
219 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
220                 const char *buf, size_t count);
221 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
222 ssize_t part_timeout_store(struct device *, struct device_attribute *,
223                                 const char *, size_t);
224
225 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs);
226 int ll_back_merge_fn(struct request *req, struct bio *bio,
227                 unsigned int nr_segs);
228 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
229                                 struct request *next);
230 unsigned int blk_recalc_rq_segments(struct request *rq);
231 void blk_rq_set_mixed_merge(struct request *rq);
232 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
233 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
234
235 int blk_dev_init(void);
236
237 /*
238  * Contribute to IO statistics IFF:
239  *
240  *      a) it's attached to a gendisk, and
241  *      b) the queue had IO stats enabled when this request was started
242  */
243 static inline bool blk_do_io_stat(struct request *rq)
244 {
245         return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT);
246 }
247
248 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
249 {
250         req->cmd_flags |= REQ_NOMERGE;
251         if (req == q->last_merge)
252                 q->last_merge = NULL;
253 }
254
255 /*
256  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
257  * is defined as 'unsigned int', meantime it has to aligned to with logical
258  * block size which is the minimum accepted unit by hardware.
259  */
260 static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
261 {
262         return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
263 }
264
265 /*
266  * The max bio size which is aligned to q->limits.discard_granularity. This
267  * is a hint to split large discard bio in generic block layer, then if device
268  * driver needs to split the discard bio into smaller ones, their bi_size can
269  * be very probably and easily aligned to discard_granularity of the device's
270  * queue.
271  */
272 static inline unsigned int bio_aligned_discard_max_sectors(
273                                         struct request_queue *q)
274 {
275         return round_down(UINT_MAX, q->limits.discard_granularity) >>
276                         SECTOR_SHIFT;
277 }
278
279 /*
280  * Internal io_context interface
281  */
282 void get_io_context(struct io_context *ioc);
283 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
284 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
285                              gfp_t gfp_mask);
286 void ioc_clear_queue(struct request_queue *q);
287
288 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
289
290 /*
291  * Internal throttling interface
292  */
293 #ifdef CONFIG_BLK_DEV_THROTTLING
294 extern int blk_throtl_init(struct request_queue *q);
295 extern void blk_throtl_exit(struct request_queue *q);
296 extern void blk_throtl_register_queue(struct request_queue *q);
297 bool blk_throtl_bio(struct bio *bio);
298 #else /* CONFIG_BLK_DEV_THROTTLING */
299 static inline int blk_throtl_init(struct request_queue *q) { return 0; }
300 static inline void blk_throtl_exit(struct request_queue *q) { }
301 static inline void blk_throtl_register_queue(struct request_queue *q) { }
302 static inline bool blk_throtl_bio(struct bio *bio) { return false; }
303 #endif /* CONFIG_BLK_DEV_THROTTLING */
304 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
305 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
306 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
307         const char *page, size_t count);
308 extern void blk_throtl_bio_endio(struct bio *bio);
309 extern void blk_throtl_stat_add(struct request *rq, u64 time);
310 #else
311 static inline void blk_throtl_bio_endio(struct bio *bio) { }
312 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
313 #endif
314
315 void __blk_queue_bounce(struct request_queue *q, struct bio **bio);
316
317 static inline bool blk_queue_may_bounce(struct request_queue *q)
318 {
319         return IS_ENABLED(CONFIG_BOUNCE) &&
320                 q->limits.bounce == BLK_BOUNCE_HIGH &&
321                 max_low_pfn >= max_pfn;
322 }
323
324 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
325 {
326         if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio)))
327                 __blk_queue_bounce(q, bio);     
328 }
329
330 #ifdef CONFIG_BLK_CGROUP_IOLATENCY
331 extern int blk_iolatency_init(struct request_queue *q);
332 #else
333 static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
334 #endif
335
336 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
337
338 #ifdef CONFIG_BLK_DEV_ZONED
339 void blk_queue_free_zone_bitmaps(struct request_queue *q);
340 void blk_queue_clear_zone_settings(struct request_queue *q);
341 #else
342 static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
343 static inline void blk_queue_clear_zone_settings(struct request_queue *q) {}
344 #endif
345
346 int blk_alloc_devt(struct block_device *part, dev_t *devt);
347 void blk_free_devt(dev_t devt);
348 char *disk_name(struct gendisk *hd, int partno, char *buf);
349 #define ADDPART_FLAG_NONE       0
350 #define ADDPART_FLAG_RAID       1
351 #define ADDPART_FLAG_WHOLEDISK  2
352 int bdev_add_partition(struct block_device *bdev, int partno,
353                 sector_t start, sector_t length);
354 int bdev_del_partition(struct block_device *bdev, int partno);
355 int bdev_resize_partition(struct block_device *bdev, int partno,
356                 sector_t start, sector_t length);
357
358 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
359                 struct page *page, unsigned int len, unsigned int offset,
360                 unsigned int max_sectors, bool *same_page);
361
362 #endif /* BLK_INTERNAL_H */