tools headers UAPI: Sync drm/i915_drm.h with the kernel sources
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         q->mq_freeze_depth--;
195         WARN_ON_ONCE(q->mq_freeze_depth < 0);
196         if (!q->mq_freeze_depth) {
197                 percpu_ref_resurrect(&q->q_usage_counter);
198                 wake_up_all(&q->mq_freeze_wq);
199         }
200         mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225         struct blk_mq_hw_ctx *hctx;
226         unsigned int i;
227         bool rcu = false;
228
229         blk_mq_quiesce_queue_nowait(q);
230
231         queue_for_each_hw_ctx(q, hctx, i) {
232                 if (hctx->flags & BLK_MQ_F_BLOCKING)
233                         synchronize_srcu(hctx->srcu);
234                 else
235                         rcu = true;
236         }
237         if (rcu)
238                 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253         /* dispatch requests which are inserted during quiescing */
254         blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260         struct blk_mq_hw_ctx *hctx;
261         unsigned int i;
262
263         queue_for_each_hw_ctx(q, hctx, i)
264                 if (blk_mq_hw_queue_mapped(hctx))
265                         blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, u64 alloc_time_ns)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282
283         if (data->q->elevator) {
284                 rq->tag = BLK_MQ_NO_TAG;
285                 rq->internal_tag = tag;
286         } else {
287                 rq->tag = tag;
288                 rq->internal_tag = BLK_MQ_NO_TAG;
289         }
290
291         /* csd/requeue_work/fifo_time is initialized before use */
292         rq->q = data->q;
293         rq->mq_ctx = data->ctx;
294         rq->mq_hctx = data->hctx;
295         rq->rq_flags = 0;
296         rq->cmd_flags = data->cmd_flags;
297         if (data->flags & BLK_MQ_REQ_PM)
298                 rq->rq_flags |= RQF_PM;
299         if (blk_queue_io_stat(data->q))
300                 rq->rq_flags |= RQF_IO_STAT;
301         INIT_LIST_HEAD(&rq->queuelist);
302         INIT_HLIST_NODE(&rq->hash);
303         RB_CLEAR_NODE(&rq->rb_node);
304         rq->rq_disk = NULL;
305         rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307         rq->alloc_time_ns = alloc_time_ns;
308 #endif
309         if (blk_mq_need_time_stamp(rq))
310                 rq->start_time_ns = ktime_get_ns();
311         else
312                 rq->start_time_ns = 0;
313         rq->io_start_time_ns = 0;
314         rq->stats_sectors = 0;
315         rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317         rq->nr_integrity_segments = 0;
318 #endif
319         blk_crypto_rq_set_defaults(rq);
320         /* tag was already set */
321         WRITE_ONCE(rq->deadline, 0);
322
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327
328         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329         refcount_set(&rq->ref, 1);
330
331         if (!op_is_flush(data->cmd_flags)) {
332                 struct elevator_queue *e = data->q->elevator;
333
334                 rq->elv.icq = NULL;
335                 if (e && e->type->ops.prepare_request) {
336                         if (e->type->icq_cache)
337                                 blk_mq_sched_assign_ioc(rq);
338
339                         e->type->ops.prepare_request(rq);
340                         rq->rq_flags |= RQF_ELVPRIV;
341                 }
342         }
343
344         data->hctx->queued++;
345         return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350         struct request_queue *q = data->q;
351         struct elevator_queue *e = q->elevator;
352         u64 alloc_time_ns = 0;
353         unsigned int tag;
354
355         /* alloc_time includes depth and tag waits */
356         if (blk_queue_rq_alloc_time(q))
357                 alloc_time_ns = ktime_get_ns();
358
359         if (data->cmd_flags & REQ_NOWAIT)
360                 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362         if (e) {
363                 /*
364                  * Flush requests are special and go directly to the
365                  * dispatch list. Don't include reserved tags in the
366                  * limiting, as it isn't useful.
367                  */
368                 if (!op_is_flush(data->cmd_flags) &&
369                     e->type->ops.limit_depth &&
370                     !(data->flags & BLK_MQ_REQ_RESERVED))
371                         e->type->ops.limit_depth(data->cmd_flags, data);
372         }
373
374 retry:
375         data->ctx = blk_mq_get_ctx(q);
376         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377         if (!e)
378                 blk_mq_tag_busy(data->hctx);
379
380         /*
381          * Waiting allocations only fail because of an inactive hctx.  In that
382          * case just retry the hctx assignment and tag allocation as CPU hotplug
383          * should have migrated us to an online CPU by now.
384          */
385         tag = blk_mq_get_tag(data);
386         if (tag == BLK_MQ_NO_TAG) {
387                 if (data->flags & BLK_MQ_REQ_NOWAIT)
388                         return NULL;
389
390                 /*
391                  * Give up the CPU and sleep for a random short time to ensure
392                  * that thread using a realtime scheduling class are migrated
393                  * off the CPU, and thus off the hctx that is going away.
394                  */
395                 msleep(3);
396                 goto retry;
397         }
398         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
399 }
400
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402                 blk_mq_req_flags_t flags)
403 {
404         struct blk_mq_alloc_data data = {
405                 .q              = q,
406                 .flags          = flags,
407                 .cmd_flags      = op,
408         };
409         struct request *rq;
410         int ret;
411
412         ret = blk_queue_enter(q, flags);
413         if (ret)
414                 return ERR_PTR(ret);
415
416         rq = __blk_mq_alloc_request(&data);
417         if (!rq)
418                 goto out_queue_exit;
419         rq->__data_len = 0;
420         rq->__sector = (sector_t) -1;
421         rq->bio = rq->biotail = NULL;
422         return rq;
423 out_queue_exit:
424         blk_queue_exit(q);
425         return ERR_PTR(-EWOULDBLOCK);
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432         struct blk_mq_alloc_data data = {
433                 .q              = q,
434                 .flags          = flags,
435                 .cmd_flags      = op,
436         };
437         u64 alloc_time_ns = 0;
438         unsigned int cpu;
439         unsigned int tag;
440         int ret;
441
442         /* alloc_time includes depth and tag waits */
443         if (blk_queue_rq_alloc_time(q))
444                 alloc_time_ns = ktime_get_ns();
445
446         /*
447          * If the tag allocator sleeps we could get an allocation for a
448          * different hardware context.  No need to complicate the low level
449          * allocator for this for the rare use case of a command tied to
450          * a specific queue.
451          */
452         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
453                 return ERR_PTR(-EINVAL);
454
455         if (hctx_idx >= q->nr_hw_queues)
456                 return ERR_PTR(-EIO);
457
458         ret = blk_queue_enter(q, flags);
459         if (ret)
460                 return ERR_PTR(ret);
461
462         /*
463          * Check if the hardware context is actually mapped to anything.
464          * If not tell the caller that it should skip this queue.
465          */
466         ret = -EXDEV;
467         data.hctx = q->queue_hw_ctx[hctx_idx];
468         if (!blk_mq_hw_queue_mapped(data.hctx))
469                 goto out_queue_exit;
470         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471         data.ctx = __blk_mq_get_ctx(q, cpu);
472
473         if (!q->elevator)
474                 blk_mq_tag_busy(data.hctx);
475
476         ret = -EWOULDBLOCK;
477         tag = blk_mq_get_tag(&data);
478         if (tag == BLK_MQ_NO_TAG)
479                 goto out_queue_exit;
480         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
481
482 out_queue_exit:
483         blk_queue_exit(q);
484         return ERR_PTR(ret);
485 }
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
487
488 static void __blk_mq_free_request(struct request *rq)
489 {
490         struct request_queue *q = rq->q;
491         struct blk_mq_ctx *ctx = rq->mq_ctx;
492         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493         const int sched_tag = rq->internal_tag;
494
495         blk_crypto_free_request(rq);
496         blk_pm_mark_last_busy(rq);
497         rq->mq_hctx = NULL;
498         if (rq->tag != BLK_MQ_NO_TAG)
499                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500         if (sched_tag != BLK_MQ_NO_TAG)
501                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
502         blk_mq_sched_restart(hctx);
503         blk_queue_exit(q);
504 }
505
506 void blk_mq_free_request(struct request *rq)
507 {
508         struct request_queue *q = rq->q;
509         struct elevator_queue *e = q->elevator;
510         struct blk_mq_ctx *ctx = rq->mq_ctx;
511         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
512
513         if (rq->rq_flags & RQF_ELVPRIV) {
514                 if (e && e->type->ops.finish_request)
515                         e->type->ops.finish_request(rq);
516                 if (rq->elv.icq) {
517                         put_io_context(rq->elv.icq->ioc);
518                         rq->elv.icq = NULL;
519                 }
520         }
521
522         ctx->rq_completed[rq_is_sync(rq)]++;
523         if (rq->rq_flags & RQF_MQ_INFLIGHT)
524                 __blk_mq_dec_active_requests(hctx);
525
526         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
527                 laptop_io_completion(q->backing_dev_info);
528
529         rq_qos_done(q, rq);
530
531         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
532         if (refcount_dec_and_test(&rq->ref))
533                 __blk_mq_free_request(rq);
534 }
535 EXPORT_SYMBOL_GPL(blk_mq_free_request);
536
537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
538 {
539         u64 now = 0;
540
541         if (blk_mq_need_time_stamp(rq))
542                 now = ktime_get_ns();
543
544         if (rq->rq_flags & RQF_STATS) {
545                 blk_mq_poll_stats_start(rq->q);
546                 blk_stat_add(rq, now);
547         }
548
549         blk_mq_sched_completed_request(rq, now);
550
551         blk_account_io_done(rq, now);
552
553         if (rq->end_io) {
554                 rq_qos_done(rq->q, rq);
555                 rq->end_io(rq, error);
556         } else {
557                 blk_mq_free_request(rq);
558         }
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565                 BUG();
566         __blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569
570 static void blk_complete_reqs(struct llist_head *list)
571 {
572         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
573         struct request *rq, *next;
574
575         llist_for_each_entry_safe(rq, next, entry, ipi_list)
576                 rq->q->mq_ops->complete(rq);
577 }
578
579 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
580 {
581         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
582 }
583
584 static int blk_softirq_cpu_dead(unsigned int cpu)
585 {
586         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
587         return 0;
588 }
589
590 static void __blk_mq_complete_request_remote(void *data)
591 {
592         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
593 }
594
595 static inline bool blk_mq_complete_need_ipi(struct request *rq)
596 {
597         int cpu = raw_smp_processor_id();
598
599         if (!IS_ENABLED(CONFIG_SMP) ||
600             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
601                 return false;
602         /*
603          * With force threaded interrupts enabled, raising softirq from an SMP
604          * function call will always result in waking the ksoftirqd thread.
605          * This is probably worse than completing the request on a different
606          * cache domain.
607          */
608         if (force_irqthreads)
609                 return false;
610
611         /* same CPU or cache domain?  Complete locally */
612         if (cpu == rq->mq_ctx->cpu ||
613             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
614              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
615                 return false;
616
617         /* don't try to IPI to an offline CPU */
618         return cpu_online(rq->mq_ctx->cpu);
619 }
620
621 static void blk_mq_complete_send_ipi(struct request *rq)
622 {
623         struct llist_head *list;
624         unsigned int cpu;
625
626         cpu = rq->mq_ctx->cpu;
627         list = &per_cpu(blk_cpu_done, cpu);
628         if (llist_add(&rq->ipi_list, list)) {
629                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
630                 smp_call_function_single_async(cpu, &rq->csd);
631         }
632 }
633
634 static void blk_mq_raise_softirq(struct request *rq)
635 {
636         struct llist_head *list;
637
638         preempt_disable();
639         list = this_cpu_ptr(&blk_cpu_done);
640         if (llist_add(&rq->ipi_list, list))
641                 raise_softirq(BLOCK_SOFTIRQ);
642         preempt_enable();
643 }
644
645 bool blk_mq_complete_request_remote(struct request *rq)
646 {
647         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
648
649         /*
650          * For a polled request, always complete locallly, it's pointless
651          * to redirect the completion.
652          */
653         if (rq->cmd_flags & REQ_HIPRI)
654                 return false;
655
656         if (blk_mq_complete_need_ipi(rq)) {
657                 blk_mq_complete_send_ipi(rq);
658                 return true;
659         }
660
661         if (rq->q->nr_hw_queues == 1) {
662                 blk_mq_raise_softirq(rq);
663                 return true;
664         }
665         return false;
666 }
667 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
668
669 /**
670  * blk_mq_complete_request - end I/O on a request
671  * @rq:         the request being processed
672  *
673  * Description:
674  *      Complete a request by scheduling the ->complete_rq operation.
675  **/
676 void blk_mq_complete_request(struct request *rq)
677 {
678         if (!blk_mq_complete_request_remote(rq))
679                 rq->q->mq_ops->complete(rq);
680 }
681 EXPORT_SYMBOL(blk_mq_complete_request);
682
683 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
684         __releases(hctx->srcu)
685 {
686         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
687                 rcu_read_unlock();
688         else
689                 srcu_read_unlock(hctx->srcu, srcu_idx);
690 }
691
692 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
693         __acquires(hctx->srcu)
694 {
695         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
696                 /* shut up gcc false positive */
697                 *srcu_idx = 0;
698                 rcu_read_lock();
699         } else
700                 *srcu_idx = srcu_read_lock(hctx->srcu);
701 }
702
703 /**
704  * blk_mq_start_request - Start processing a request
705  * @rq: Pointer to request to be started
706  *
707  * Function used by device drivers to notify the block layer that a request
708  * is going to be processed now, so blk layer can do proper initializations
709  * such as starting the timeout timer.
710  */
711 void blk_mq_start_request(struct request *rq)
712 {
713         struct request_queue *q = rq->q;
714
715         trace_block_rq_issue(rq);
716
717         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
718                 rq->io_start_time_ns = ktime_get_ns();
719                 rq->stats_sectors = blk_rq_sectors(rq);
720                 rq->rq_flags |= RQF_STATS;
721                 rq_qos_issue(q, rq);
722         }
723
724         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
725
726         blk_add_timer(rq);
727         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
728
729 #ifdef CONFIG_BLK_DEV_INTEGRITY
730         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
731                 q->integrity.profile->prepare_fn(rq);
732 #endif
733 }
734 EXPORT_SYMBOL(blk_mq_start_request);
735
736 static void __blk_mq_requeue_request(struct request *rq)
737 {
738         struct request_queue *q = rq->q;
739
740         blk_mq_put_driver_tag(rq);
741
742         trace_block_rq_requeue(rq);
743         rq_qos_requeue(q, rq);
744
745         if (blk_mq_request_started(rq)) {
746                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
747                 rq->rq_flags &= ~RQF_TIMED_OUT;
748         }
749 }
750
751 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
752 {
753         __blk_mq_requeue_request(rq);
754
755         /* this request will be re-inserted to io scheduler queue */
756         blk_mq_sched_requeue_request(rq);
757
758         BUG_ON(!list_empty(&rq->queuelist));
759         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
760 }
761 EXPORT_SYMBOL(blk_mq_requeue_request);
762
763 static void blk_mq_requeue_work(struct work_struct *work)
764 {
765         struct request_queue *q =
766                 container_of(work, struct request_queue, requeue_work.work);
767         LIST_HEAD(rq_list);
768         struct request *rq, *next;
769
770         spin_lock_irq(&q->requeue_lock);
771         list_splice_init(&q->requeue_list, &rq_list);
772         spin_unlock_irq(&q->requeue_lock);
773
774         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
775                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
776                         continue;
777
778                 rq->rq_flags &= ~RQF_SOFTBARRIER;
779                 list_del_init(&rq->queuelist);
780                 /*
781                  * If RQF_DONTPREP, rq has contained some driver specific
782                  * data, so insert it to hctx dispatch list to avoid any
783                  * merge.
784                  */
785                 if (rq->rq_flags & RQF_DONTPREP)
786                         blk_mq_request_bypass_insert(rq, false, false);
787                 else
788                         blk_mq_sched_insert_request(rq, true, false, false);
789         }
790
791         while (!list_empty(&rq_list)) {
792                 rq = list_entry(rq_list.next, struct request, queuelist);
793                 list_del_init(&rq->queuelist);
794                 blk_mq_sched_insert_request(rq, false, false, false);
795         }
796
797         blk_mq_run_hw_queues(q, false);
798 }
799
800 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
801                                 bool kick_requeue_list)
802 {
803         struct request_queue *q = rq->q;
804         unsigned long flags;
805
806         /*
807          * We abuse this flag that is otherwise used by the I/O scheduler to
808          * request head insertion from the workqueue.
809          */
810         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
811
812         spin_lock_irqsave(&q->requeue_lock, flags);
813         if (at_head) {
814                 rq->rq_flags |= RQF_SOFTBARRIER;
815                 list_add(&rq->queuelist, &q->requeue_list);
816         } else {
817                 list_add_tail(&rq->queuelist, &q->requeue_list);
818         }
819         spin_unlock_irqrestore(&q->requeue_lock, flags);
820
821         if (kick_requeue_list)
822                 blk_mq_kick_requeue_list(q);
823 }
824
825 void blk_mq_kick_requeue_list(struct request_queue *q)
826 {
827         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
828 }
829 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
830
831 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
832                                     unsigned long msecs)
833 {
834         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
835                                     msecs_to_jiffies(msecs));
836 }
837 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
838
839 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
840 {
841         if (tag < tags->nr_tags) {
842                 prefetch(tags->rqs[tag]);
843                 return tags->rqs[tag];
844         }
845
846         return NULL;
847 }
848 EXPORT_SYMBOL(blk_mq_tag_to_rq);
849
850 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
851                                void *priv, bool reserved)
852 {
853         /*
854          * If we find a request that isn't idle and the queue matches,
855          * we know the queue is busy. Return false to stop the iteration.
856          */
857         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
858                 bool *busy = priv;
859
860                 *busy = true;
861                 return false;
862         }
863
864         return true;
865 }
866
867 bool blk_mq_queue_inflight(struct request_queue *q)
868 {
869         bool busy = false;
870
871         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
872         return busy;
873 }
874 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
875
876 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
877 {
878         req->rq_flags |= RQF_TIMED_OUT;
879         if (req->q->mq_ops->timeout) {
880                 enum blk_eh_timer_return ret;
881
882                 ret = req->q->mq_ops->timeout(req, reserved);
883                 if (ret == BLK_EH_DONE)
884                         return;
885                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
886         }
887
888         blk_add_timer(req);
889 }
890
891 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
892 {
893         unsigned long deadline;
894
895         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
896                 return false;
897         if (rq->rq_flags & RQF_TIMED_OUT)
898                 return false;
899
900         deadline = READ_ONCE(rq->deadline);
901         if (time_after_eq(jiffies, deadline))
902                 return true;
903
904         if (*next == 0)
905                 *next = deadline;
906         else if (time_after(*next, deadline))
907                 *next = deadline;
908         return false;
909 }
910
911 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
912                 struct request *rq, void *priv, bool reserved)
913 {
914         unsigned long *next = priv;
915
916         /*
917          * Just do a quick check if it is expired before locking the request in
918          * so we're not unnecessarilly synchronizing across CPUs.
919          */
920         if (!blk_mq_req_expired(rq, next))
921                 return true;
922
923         /*
924          * We have reason to believe the request may be expired. Take a
925          * reference on the request to lock this request lifetime into its
926          * currently allocated context to prevent it from being reallocated in
927          * the event the completion by-passes this timeout handler.
928          *
929          * If the reference was already released, then the driver beat the
930          * timeout handler to posting a natural completion.
931          */
932         if (!refcount_inc_not_zero(&rq->ref))
933                 return true;
934
935         /*
936          * The request is now locked and cannot be reallocated underneath the
937          * timeout handler's processing. Re-verify this exact request is truly
938          * expired; if it is not expired, then the request was completed and
939          * reallocated as a new request.
940          */
941         if (blk_mq_req_expired(rq, next))
942                 blk_mq_rq_timed_out(rq, reserved);
943
944         if (is_flush_rq(rq, hctx))
945                 rq->end_io(rq, 0);
946         else if (refcount_dec_and_test(&rq->ref))
947                 __blk_mq_free_request(rq);
948
949         return true;
950 }
951
952 static void blk_mq_timeout_work(struct work_struct *work)
953 {
954         struct request_queue *q =
955                 container_of(work, struct request_queue, timeout_work);
956         unsigned long next = 0;
957         struct blk_mq_hw_ctx *hctx;
958         int i;
959
960         /* A deadlock might occur if a request is stuck requiring a
961          * timeout at the same time a queue freeze is waiting
962          * completion, since the timeout code would not be able to
963          * acquire the queue reference here.
964          *
965          * That's why we don't use blk_queue_enter here; instead, we use
966          * percpu_ref_tryget directly, because we need to be able to
967          * obtain a reference even in the short window between the queue
968          * starting to freeze, by dropping the first reference in
969          * blk_freeze_queue_start, and the moment the last request is
970          * consumed, marked by the instant q_usage_counter reaches
971          * zero.
972          */
973         if (!percpu_ref_tryget(&q->q_usage_counter))
974                 return;
975
976         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
977
978         if (next != 0) {
979                 mod_timer(&q->timeout, next);
980         } else {
981                 /*
982                  * Request timeouts are handled as a forward rolling timer. If
983                  * we end up here it means that no requests are pending and
984                  * also that no request has been pending for a while. Mark
985                  * each hctx as idle.
986                  */
987                 queue_for_each_hw_ctx(q, hctx, i) {
988                         /* the hctx may be unmapped, so check it here */
989                         if (blk_mq_hw_queue_mapped(hctx))
990                                 blk_mq_tag_idle(hctx);
991                 }
992         }
993         blk_queue_exit(q);
994 }
995
996 struct flush_busy_ctx_data {
997         struct blk_mq_hw_ctx *hctx;
998         struct list_head *list;
999 };
1000
1001 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1002 {
1003         struct flush_busy_ctx_data *flush_data = data;
1004         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1005         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1006         enum hctx_type type = hctx->type;
1007
1008         spin_lock(&ctx->lock);
1009         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1010         sbitmap_clear_bit(sb, bitnr);
1011         spin_unlock(&ctx->lock);
1012         return true;
1013 }
1014
1015 /*
1016  * Process software queues that have been marked busy, splicing them
1017  * to the for-dispatch
1018  */
1019 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1020 {
1021         struct flush_busy_ctx_data data = {
1022                 .hctx = hctx,
1023                 .list = list,
1024         };
1025
1026         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1027 }
1028 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1029
1030 struct dispatch_rq_data {
1031         struct blk_mq_hw_ctx *hctx;
1032         struct request *rq;
1033 };
1034
1035 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1036                 void *data)
1037 {
1038         struct dispatch_rq_data *dispatch_data = data;
1039         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1040         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1041         enum hctx_type type = hctx->type;
1042
1043         spin_lock(&ctx->lock);
1044         if (!list_empty(&ctx->rq_lists[type])) {
1045                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1046                 list_del_init(&dispatch_data->rq->queuelist);
1047                 if (list_empty(&ctx->rq_lists[type]))
1048                         sbitmap_clear_bit(sb, bitnr);
1049         }
1050         spin_unlock(&ctx->lock);
1051
1052         return !dispatch_data->rq;
1053 }
1054
1055 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1056                                         struct blk_mq_ctx *start)
1057 {
1058         unsigned off = start ? start->index_hw[hctx->type] : 0;
1059         struct dispatch_rq_data data = {
1060                 .hctx = hctx,
1061                 .rq   = NULL,
1062         };
1063
1064         __sbitmap_for_each_set(&hctx->ctx_map, off,
1065                                dispatch_rq_from_ctx, &data);
1066
1067         return data.rq;
1068 }
1069
1070 static inline unsigned int queued_to_index(unsigned int queued)
1071 {
1072         if (!queued)
1073                 return 0;
1074
1075         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1076 }
1077
1078 static bool __blk_mq_get_driver_tag(struct request *rq)
1079 {
1080         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1081         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1082         int tag;
1083
1084         blk_mq_tag_busy(rq->mq_hctx);
1085
1086         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1087                 bt = rq->mq_hctx->tags->breserved_tags;
1088                 tag_offset = 0;
1089         } else {
1090                 if (!hctx_may_queue(rq->mq_hctx, bt))
1091                         return false;
1092         }
1093
1094         tag = __sbitmap_queue_get(bt);
1095         if (tag == BLK_MQ_NO_TAG)
1096                 return false;
1097
1098         rq->tag = tag + tag_offset;
1099         return true;
1100 }
1101
1102 static bool blk_mq_get_driver_tag(struct request *rq)
1103 {
1104         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1105
1106         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1107                 return false;
1108
1109         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1110                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1111                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1112                 __blk_mq_inc_active_requests(hctx);
1113         }
1114         hctx->tags->rqs[rq->tag] = rq;
1115         return true;
1116 }
1117
1118 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1119                                 int flags, void *key)
1120 {
1121         struct blk_mq_hw_ctx *hctx;
1122
1123         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1124
1125         spin_lock(&hctx->dispatch_wait_lock);
1126         if (!list_empty(&wait->entry)) {
1127                 struct sbitmap_queue *sbq;
1128
1129                 list_del_init(&wait->entry);
1130                 sbq = hctx->tags->bitmap_tags;
1131                 atomic_dec(&sbq->ws_active);
1132         }
1133         spin_unlock(&hctx->dispatch_wait_lock);
1134
1135         blk_mq_run_hw_queue(hctx, true);
1136         return 1;
1137 }
1138
1139 /*
1140  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1141  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1142  * restart. For both cases, take care to check the condition again after
1143  * marking us as waiting.
1144  */
1145 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1146                                  struct request *rq)
1147 {
1148         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1149         struct wait_queue_head *wq;
1150         wait_queue_entry_t *wait;
1151         bool ret;
1152
1153         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1154                 blk_mq_sched_mark_restart_hctx(hctx);
1155
1156                 /*
1157                  * It's possible that a tag was freed in the window between the
1158                  * allocation failure and adding the hardware queue to the wait
1159                  * queue.
1160                  *
1161                  * Don't clear RESTART here, someone else could have set it.
1162                  * At most this will cost an extra queue run.
1163                  */
1164                 return blk_mq_get_driver_tag(rq);
1165         }
1166
1167         wait = &hctx->dispatch_wait;
1168         if (!list_empty_careful(&wait->entry))
1169                 return false;
1170
1171         wq = &bt_wait_ptr(sbq, hctx)->wait;
1172
1173         spin_lock_irq(&wq->lock);
1174         spin_lock(&hctx->dispatch_wait_lock);
1175         if (!list_empty(&wait->entry)) {
1176                 spin_unlock(&hctx->dispatch_wait_lock);
1177                 spin_unlock_irq(&wq->lock);
1178                 return false;
1179         }
1180
1181         atomic_inc(&sbq->ws_active);
1182         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1183         __add_wait_queue(wq, wait);
1184
1185         /*
1186          * It's possible that a tag was freed in the window between the
1187          * allocation failure and adding the hardware queue to the wait
1188          * queue.
1189          */
1190         ret = blk_mq_get_driver_tag(rq);
1191         if (!ret) {
1192                 spin_unlock(&hctx->dispatch_wait_lock);
1193                 spin_unlock_irq(&wq->lock);
1194                 return false;
1195         }
1196
1197         /*
1198          * We got a tag, remove ourselves from the wait queue to ensure
1199          * someone else gets the wakeup.
1200          */
1201         list_del_init(&wait->entry);
1202         atomic_dec(&sbq->ws_active);
1203         spin_unlock(&hctx->dispatch_wait_lock);
1204         spin_unlock_irq(&wq->lock);
1205
1206         return true;
1207 }
1208
1209 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1211 /*
1212  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1213  * - EWMA is one simple way to compute running average value
1214  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1215  * - take 4 as factor for avoiding to get too small(0) result, and this
1216  *   factor doesn't matter because EWMA decreases exponentially
1217  */
1218 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1219 {
1220         unsigned int ewma;
1221
1222         if (hctx->queue->elevator)
1223                 return;
1224
1225         ewma = hctx->dispatch_busy;
1226
1227         if (!ewma && !busy)
1228                 return;
1229
1230         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1231         if (busy)
1232                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1233         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1234
1235         hctx->dispatch_busy = ewma;
1236 }
1237
1238 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1239
1240 static void blk_mq_handle_dev_resource(struct request *rq,
1241                                        struct list_head *list)
1242 {
1243         struct request *next =
1244                 list_first_entry_or_null(list, struct request, queuelist);
1245
1246         /*
1247          * If an I/O scheduler has been configured and we got a driver tag for
1248          * the next request already, free it.
1249          */
1250         if (next)
1251                 blk_mq_put_driver_tag(next);
1252
1253         list_add(&rq->queuelist, list);
1254         __blk_mq_requeue_request(rq);
1255 }
1256
1257 static void blk_mq_handle_zone_resource(struct request *rq,
1258                                         struct list_head *zone_list)
1259 {
1260         /*
1261          * If we end up here it is because we cannot dispatch a request to a
1262          * specific zone due to LLD level zone-write locking or other zone
1263          * related resource not being available. In this case, set the request
1264          * aside in zone_list for retrying it later.
1265          */
1266         list_add(&rq->queuelist, zone_list);
1267         __blk_mq_requeue_request(rq);
1268 }
1269
1270 enum prep_dispatch {
1271         PREP_DISPATCH_OK,
1272         PREP_DISPATCH_NO_TAG,
1273         PREP_DISPATCH_NO_BUDGET,
1274 };
1275
1276 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1277                                                   bool need_budget)
1278 {
1279         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1280
1281         if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1282                 blk_mq_put_driver_tag(rq);
1283                 return PREP_DISPATCH_NO_BUDGET;
1284         }
1285
1286         if (!blk_mq_get_driver_tag(rq)) {
1287                 /*
1288                  * The initial allocation attempt failed, so we need to
1289                  * rerun the hardware queue when a tag is freed. The
1290                  * waitqueue takes care of that. If the queue is run
1291                  * before we add this entry back on the dispatch list,
1292                  * we'll re-run it below.
1293                  */
1294                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1295                         /*
1296                          * All budgets not got from this function will be put
1297                          * together during handling partial dispatch
1298                          */
1299                         if (need_budget)
1300                                 blk_mq_put_dispatch_budget(rq->q);
1301                         return PREP_DISPATCH_NO_TAG;
1302                 }
1303         }
1304
1305         return PREP_DISPATCH_OK;
1306 }
1307
1308 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1309 static void blk_mq_release_budgets(struct request_queue *q,
1310                 unsigned int nr_budgets)
1311 {
1312         int i;
1313
1314         for (i = 0; i < nr_budgets; i++)
1315                 blk_mq_put_dispatch_budget(q);
1316 }
1317
1318 /*
1319  * Returns true if we did some work AND can potentially do more.
1320  */
1321 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1322                              unsigned int nr_budgets)
1323 {
1324         enum prep_dispatch prep;
1325         struct request_queue *q = hctx->queue;
1326         struct request *rq, *nxt;
1327         int errors, queued;
1328         blk_status_t ret = BLK_STS_OK;
1329         LIST_HEAD(zone_list);
1330
1331         if (list_empty(list))
1332                 return false;
1333
1334         /*
1335          * Now process all the entries, sending them to the driver.
1336          */
1337         errors = queued = 0;
1338         do {
1339                 struct blk_mq_queue_data bd;
1340
1341                 rq = list_first_entry(list, struct request, queuelist);
1342
1343                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1344                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1345                 if (prep != PREP_DISPATCH_OK)
1346                         break;
1347
1348                 list_del_init(&rq->queuelist);
1349
1350                 bd.rq = rq;
1351
1352                 /*
1353                  * Flag last if we have no more requests, or if we have more
1354                  * but can't assign a driver tag to it.
1355                  */
1356                 if (list_empty(list))
1357                         bd.last = true;
1358                 else {
1359                         nxt = list_first_entry(list, struct request, queuelist);
1360                         bd.last = !blk_mq_get_driver_tag(nxt);
1361                 }
1362
1363                 /*
1364                  * once the request is queued to lld, no need to cover the
1365                  * budget any more
1366                  */
1367                 if (nr_budgets)
1368                         nr_budgets--;
1369                 ret = q->mq_ops->queue_rq(hctx, &bd);
1370                 switch (ret) {
1371                 case BLK_STS_OK:
1372                         queued++;
1373                         break;
1374                 case BLK_STS_RESOURCE:
1375                 case BLK_STS_DEV_RESOURCE:
1376                         blk_mq_handle_dev_resource(rq, list);
1377                         goto out;
1378                 case BLK_STS_ZONE_RESOURCE:
1379                         /*
1380                          * Move the request to zone_list and keep going through
1381                          * the dispatch list to find more requests the drive can
1382                          * accept.
1383                          */
1384                         blk_mq_handle_zone_resource(rq, &zone_list);
1385                         break;
1386                 default:
1387                         errors++;
1388                         blk_mq_end_request(rq, ret);
1389                 }
1390         } while (!list_empty(list));
1391 out:
1392         if (!list_empty(&zone_list))
1393                 list_splice_tail_init(&zone_list, list);
1394
1395         hctx->dispatched[queued_to_index(queued)]++;
1396
1397         /* If we didn't flush the entire list, we could have told the driver
1398          * there was more coming, but that turned out to be a lie.
1399          */
1400         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1401                 q->mq_ops->commit_rqs(hctx);
1402         /*
1403          * Any items that need requeuing? Stuff them into hctx->dispatch,
1404          * that is where we will continue on next queue run.
1405          */
1406         if (!list_empty(list)) {
1407                 bool needs_restart;
1408                 /* For non-shared tags, the RESTART check will suffice */
1409                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1410                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1411                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1412
1413                 blk_mq_release_budgets(q, nr_budgets);
1414
1415                 spin_lock(&hctx->lock);
1416                 list_splice_tail_init(list, &hctx->dispatch);
1417                 spin_unlock(&hctx->lock);
1418
1419                 /*
1420                  * Order adding requests to hctx->dispatch and checking
1421                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1422                  * in blk_mq_sched_restart(). Avoid restart code path to
1423                  * miss the new added requests to hctx->dispatch, meantime
1424                  * SCHED_RESTART is observed here.
1425                  */
1426                 smp_mb();
1427
1428                 /*
1429                  * If SCHED_RESTART was set by the caller of this function and
1430                  * it is no longer set that means that it was cleared by another
1431                  * thread and hence that a queue rerun is needed.
1432                  *
1433                  * If 'no_tag' is set, that means that we failed getting
1434                  * a driver tag with an I/O scheduler attached. If our dispatch
1435                  * waitqueue is no longer active, ensure that we run the queue
1436                  * AFTER adding our entries back to the list.
1437                  *
1438                  * If no I/O scheduler has been configured it is possible that
1439                  * the hardware queue got stopped and restarted before requests
1440                  * were pushed back onto the dispatch list. Rerun the queue to
1441                  * avoid starvation. Notes:
1442                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1443                  *   been stopped before rerunning a queue.
1444                  * - Some but not all block drivers stop a queue before
1445                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1446                  *   and dm-rq.
1447                  *
1448                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1449                  * bit is set, run queue after a delay to avoid IO stalls
1450                  * that could otherwise occur if the queue is idle.  We'll do
1451                  * similar if we couldn't get budget and SCHED_RESTART is set.
1452                  */
1453                 needs_restart = blk_mq_sched_needs_restart(hctx);
1454                 if (!needs_restart ||
1455                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1456                         blk_mq_run_hw_queue(hctx, true);
1457                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1458                                            no_budget_avail))
1459                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1460
1461                 blk_mq_update_dispatch_busy(hctx, true);
1462                 return false;
1463         } else
1464                 blk_mq_update_dispatch_busy(hctx, false);
1465
1466         return (queued + errors) != 0;
1467 }
1468
1469 /**
1470  * __blk_mq_run_hw_queue - Run a hardware queue.
1471  * @hctx: Pointer to the hardware queue to run.
1472  *
1473  * Send pending requests to the hardware.
1474  */
1475 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1476 {
1477         int srcu_idx;
1478
1479         /*
1480          * We can't run the queue inline with ints disabled. Ensure that
1481          * we catch bad users of this early.
1482          */
1483         WARN_ON_ONCE(in_interrupt());
1484
1485         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1486
1487         hctx_lock(hctx, &srcu_idx);
1488         blk_mq_sched_dispatch_requests(hctx);
1489         hctx_unlock(hctx, srcu_idx);
1490 }
1491
1492 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1493 {
1494         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1495
1496         if (cpu >= nr_cpu_ids)
1497                 cpu = cpumask_first(hctx->cpumask);
1498         return cpu;
1499 }
1500
1501 /*
1502  * It'd be great if the workqueue API had a way to pass
1503  * in a mask and had some smarts for more clever placement.
1504  * For now we just round-robin here, switching for every
1505  * BLK_MQ_CPU_WORK_BATCH queued items.
1506  */
1507 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1508 {
1509         bool tried = false;
1510         int next_cpu = hctx->next_cpu;
1511
1512         if (hctx->queue->nr_hw_queues == 1)
1513                 return WORK_CPU_UNBOUND;
1514
1515         if (--hctx->next_cpu_batch <= 0) {
1516 select_cpu:
1517                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1518                                 cpu_online_mask);
1519                 if (next_cpu >= nr_cpu_ids)
1520                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1521                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1522         }
1523
1524         /*
1525          * Do unbound schedule if we can't find a online CPU for this hctx,
1526          * and it should only happen in the path of handling CPU DEAD.
1527          */
1528         if (!cpu_online(next_cpu)) {
1529                 if (!tried) {
1530                         tried = true;
1531                         goto select_cpu;
1532                 }
1533
1534                 /*
1535                  * Make sure to re-select CPU next time once after CPUs
1536                  * in hctx->cpumask become online again.
1537                  */
1538                 hctx->next_cpu = next_cpu;
1539                 hctx->next_cpu_batch = 1;
1540                 return WORK_CPU_UNBOUND;
1541         }
1542
1543         hctx->next_cpu = next_cpu;
1544         return next_cpu;
1545 }
1546
1547 /**
1548  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1549  * @hctx: Pointer to the hardware queue to run.
1550  * @async: If we want to run the queue asynchronously.
1551  * @msecs: Milliseconds of delay to wait before running the queue.
1552  *
1553  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1554  * with a delay of @msecs.
1555  */
1556 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1557                                         unsigned long msecs)
1558 {
1559         if (unlikely(blk_mq_hctx_stopped(hctx)))
1560                 return;
1561
1562         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1563                 int cpu = get_cpu();
1564                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1565                         __blk_mq_run_hw_queue(hctx);
1566                         put_cpu();
1567                         return;
1568                 }
1569
1570                 put_cpu();
1571         }
1572
1573         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1574                                     msecs_to_jiffies(msecs));
1575 }
1576
1577 /**
1578  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1579  * @hctx: Pointer to the hardware queue to run.
1580  * @msecs: Milliseconds of delay to wait before running the queue.
1581  *
1582  * Run a hardware queue asynchronously with a delay of @msecs.
1583  */
1584 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1585 {
1586         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1587 }
1588 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1589
1590 /**
1591  * blk_mq_run_hw_queue - Start to run a hardware queue.
1592  * @hctx: Pointer to the hardware queue to run.
1593  * @async: If we want to run the queue asynchronously.
1594  *
1595  * Check if the request queue is not in a quiesced state and if there are
1596  * pending requests to be sent. If this is true, run the queue to send requests
1597  * to hardware.
1598  */
1599 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1600 {
1601         int srcu_idx;
1602         bool need_run;
1603
1604         /*
1605          * When queue is quiesced, we may be switching io scheduler, or
1606          * updating nr_hw_queues, or other things, and we can't run queue
1607          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1608          *
1609          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1610          * quiesced.
1611          */
1612         hctx_lock(hctx, &srcu_idx);
1613         need_run = !blk_queue_quiesced(hctx->queue) &&
1614                 blk_mq_hctx_has_pending(hctx);
1615         hctx_unlock(hctx, srcu_idx);
1616
1617         if (need_run)
1618                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1619 }
1620 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1621
1622 /*
1623  * Is the request queue handled by an IO scheduler that does not respect
1624  * hardware queues when dispatching?
1625  */
1626 static bool blk_mq_has_sqsched(struct request_queue *q)
1627 {
1628         struct elevator_queue *e = q->elevator;
1629
1630         if (e && e->type->ops.dispatch_request &&
1631             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1632                 return true;
1633         return false;
1634 }
1635
1636 /*
1637  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1638  * scheduler.
1639  */
1640 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1641 {
1642         struct blk_mq_hw_ctx *hctx;
1643
1644         /*
1645          * If the IO scheduler does not respect hardware queues when
1646          * dispatching, we just don't bother with multiple HW queues and
1647          * dispatch from hctx for the current CPU since running multiple queues
1648          * just causes lock contention inside the scheduler and pointless cache
1649          * bouncing.
1650          */
1651         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1652                                      raw_smp_processor_id());
1653         if (!blk_mq_hctx_stopped(hctx))
1654                 return hctx;
1655         return NULL;
1656 }
1657
1658 /**
1659  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1660  * @q: Pointer to the request queue to run.
1661  * @async: If we want to run the queue asynchronously.
1662  */
1663 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1664 {
1665         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1666         int i;
1667
1668         sq_hctx = NULL;
1669         if (blk_mq_has_sqsched(q))
1670                 sq_hctx = blk_mq_get_sq_hctx(q);
1671         queue_for_each_hw_ctx(q, hctx, i) {
1672                 if (blk_mq_hctx_stopped(hctx))
1673                         continue;
1674                 /*
1675                  * Dispatch from this hctx either if there's no hctx preferred
1676                  * by IO scheduler or if it has requests that bypass the
1677                  * scheduler.
1678                  */
1679                 if (!sq_hctx || sq_hctx == hctx ||
1680                     !list_empty_careful(&hctx->dispatch))
1681                         blk_mq_run_hw_queue(hctx, async);
1682         }
1683 }
1684 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1685
1686 /**
1687  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1688  * @q: Pointer to the request queue to run.
1689  * @msecs: Milliseconds of delay to wait before running the queues.
1690  */
1691 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1692 {
1693         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1694         int i;
1695
1696         sq_hctx = NULL;
1697         if (blk_mq_has_sqsched(q))
1698                 sq_hctx = blk_mq_get_sq_hctx(q);
1699         queue_for_each_hw_ctx(q, hctx, i) {
1700                 if (blk_mq_hctx_stopped(hctx))
1701                         continue;
1702                 /*
1703                  * Dispatch from this hctx either if there's no hctx preferred
1704                  * by IO scheduler or if it has requests that bypass the
1705                  * scheduler.
1706                  */
1707                 if (!sq_hctx || sq_hctx == hctx ||
1708                     !list_empty_careful(&hctx->dispatch))
1709                         blk_mq_delay_run_hw_queue(hctx, msecs);
1710         }
1711 }
1712 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1713
1714 /**
1715  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1716  * @q: request queue.
1717  *
1718  * The caller is responsible for serializing this function against
1719  * blk_mq_{start,stop}_hw_queue().
1720  */
1721 bool blk_mq_queue_stopped(struct request_queue *q)
1722 {
1723         struct blk_mq_hw_ctx *hctx;
1724         int i;
1725
1726         queue_for_each_hw_ctx(q, hctx, i)
1727                 if (blk_mq_hctx_stopped(hctx))
1728                         return true;
1729
1730         return false;
1731 }
1732 EXPORT_SYMBOL(blk_mq_queue_stopped);
1733
1734 /*
1735  * This function is often used for pausing .queue_rq() by driver when
1736  * there isn't enough resource or some conditions aren't satisfied, and
1737  * BLK_STS_RESOURCE is usually returned.
1738  *
1739  * We do not guarantee that dispatch can be drained or blocked
1740  * after blk_mq_stop_hw_queue() returns. Please use
1741  * blk_mq_quiesce_queue() for that requirement.
1742  */
1743 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1744 {
1745         cancel_delayed_work(&hctx->run_work);
1746
1747         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1748 }
1749 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1750
1751 /*
1752  * This function is often used for pausing .queue_rq() by driver when
1753  * there isn't enough resource or some conditions aren't satisfied, and
1754  * BLK_STS_RESOURCE is usually returned.
1755  *
1756  * We do not guarantee that dispatch can be drained or blocked
1757  * after blk_mq_stop_hw_queues() returns. Please use
1758  * blk_mq_quiesce_queue() for that requirement.
1759  */
1760 void blk_mq_stop_hw_queues(struct request_queue *q)
1761 {
1762         struct blk_mq_hw_ctx *hctx;
1763         int i;
1764
1765         queue_for_each_hw_ctx(q, hctx, i)
1766                 blk_mq_stop_hw_queue(hctx);
1767 }
1768 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1769
1770 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1771 {
1772         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1773
1774         blk_mq_run_hw_queue(hctx, false);
1775 }
1776 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1777
1778 void blk_mq_start_hw_queues(struct request_queue *q)
1779 {
1780         struct blk_mq_hw_ctx *hctx;
1781         int i;
1782
1783         queue_for_each_hw_ctx(q, hctx, i)
1784                 blk_mq_start_hw_queue(hctx);
1785 }
1786 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1787
1788 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1789 {
1790         if (!blk_mq_hctx_stopped(hctx))
1791                 return;
1792
1793         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1794         blk_mq_run_hw_queue(hctx, async);
1795 }
1796 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1797
1798 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1799 {
1800         struct blk_mq_hw_ctx *hctx;
1801         int i;
1802
1803         queue_for_each_hw_ctx(q, hctx, i)
1804                 blk_mq_start_stopped_hw_queue(hctx, async);
1805 }
1806 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1807
1808 static void blk_mq_run_work_fn(struct work_struct *work)
1809 {
1810         struct blk_mq_hw_ctx *hctx;
1811
1812         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1813
1814         /*
1815          * If we are stopped, don't run the queue.
1816          */
1817         if (blk_mq_hctx_stopped(hctx))
1818                 return;
1819
1820         __blk_mq_run_hw_queue(hctx);
1821 }
1822
1823 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1824                                             struct request *rq,
1825                                             bool at_head)
1826 {
1827         struct blk_mq_ctx *ctx = rq->mq_ctx;
1828         enum hctx_type type = hctx->type;
1829
1830         lockdep_assert_held(&ctx->lock);
1831
1832         trace_block_rq_insert(rq);
1833
1834         if (at_head)
1835                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1836         else
1837                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1838 }
1839
1840 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1841                              bool at_head)
1842 {
1843         struct blk_mq_ctx *ctx = rq->mq_ctx;
1844
1845         lockdep_assert_held(&ctx->lock);
1846
1847         __blk_mq_insert_req_list(hctx, rq, at_head);
1848         blk_mq_hctx_mark_pending(hctx, ctx);
1849 }
1850
1851 /**
1852  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1853  * @rq: Pointer to request to be inserted.
1854  * @at_head: true if the request should be inserted at the head of the list.
1855  * @run_queue: If we should run the hardware queue after inserting the request.
1856  *
1857  * Should only be used carefully, when the caller knows we want to
1858  * bypass a potential IO scheduler on the target device.
1859  */
1860 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1861                                   bool run_queue)
1862 {
1863         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1864
1865         spin_lock(&hctx->lock);
1866         if (at_head)
1867                 list_add(&rq->queuelist, &hctx->dispatch);
1868         else
1869                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1870         spin_unlock(&hctx->lock);
1871
1872         if (run_queue)
1873                 blk_mq_run_hw_queue(hctx, false);
1874 }
1875
1876 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1877                             struct list_head *list)
1878
1879 {
1880         struct request *rq;
1881         enum hctx_type type = hctx->type;
1882
1883         /*
1884          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1885          * offline now
1886          */
1887         list_for_each_entry(rq, list, queuelist) {
1888                 BUG_ON(rq->mq_ctx != ctx);
1889                 trace_block_rq_insert(rq);
1890         }
1891
1892         spin_lock(&ctx->lock);
1893         list_splice_tail_init(list, &ctx->rq_lists[type]);
1894         blk_mq_hctx_mark_pending(hctx, ctx);
1895         spin_unlock(&ctx->lock);
1896 }
1897
1898 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1899 {
1900         struct request *rqa = container_of(a, struct request, queuelist);
1901         struct request *rqb = container_of(b, struct request, queuelist);
1902
1903         if (rqa->mq_ctx != rqb->mq_ctx)
1904                 return rqa->mq_ctx > rqb->mq_ctx;
1905         if (rqa->mq_hctx != rqb->mq_hctx)
1906                 return rqa->mq_hctx > rqb->mq_hctx;
1907
1908         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1909 }
1910
1911 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1912 {
1913         LIST_HEAD(list);
1914
1915         if (list_empty(&plug->mq_list))
1916                 return;
1917         list_splice_init(&plug->mq_list, &list);
1918
1919         if (plug->rq_count > 2 && plug->multiple_queues)
1920                 list_sort(NULL, &list, plug_rq_cmp);
1921
1922         plug->rq_count = 0;
1923
1924         do {
1925                 struct list_head rq_list;
1926                 struct request *rq, *head_rq = list_entry_rq(list.next);
1927                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1928                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1929                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1930                 unsigned int depth = 1;
1931
1932                 list_for_each_continue(pos, &list) {
1933                         rq = list_entry_rq(pos);
1934                         BUG_ON(!rq->q);
1935                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1936                                 break;
1937                         depth++;
1938                 }
1939
1940                 list_cut_before(&rq_list, &list, pos);
1941                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1942                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1943                                                 from_schedule);
1944         } while(!list_empty(&list));
1945 }
1946
1947 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1948                 unsigned int nr_segs)
1949 {
1950         int err;
1951
1952         if (bio->bi_opf & REQ_RAHEAD)
1953                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1954
1955         rq->__sector = bio->bi_iter.bi_sector;
1956         rq->write_hint = bio->bi_write_hint;
1957         blk_rq_bio_prep(rq, bio, nr_segs);
1958
1959         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1960         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1961         WARN_ON_ONCE(err);
1962
1963         blk_account_io_start(rq);
1964 }
1965
1966 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1967                                             struct request *rq,
1968                                             blk_qc_t *cookie, bool last)
1969 {
1970         struct request_queue *q = rq->q;
1971         struct blk_mq_queue_data bd = {
1972                 .rq = rq,
1973                 .last = last,
1974         };
1975         blk_qc_t new_cookie;
1976         blk_status_t ret;
1977
1978         new_cookie = request_to_qc_t(hctx, rq);
1979
1980         /*
1981          * For OK queue, we are done. For error, caller may kill it.
1982          * Any other error (busy), just add it to our list as we
1983          * previously would have done.
1984          */
1985         ret = q->mq_ops->queue_rq(hctx, &bd);
1986         switch (ret) {
1987         case BLK_STS_OK:
1988                 blk_mq_update_dispatch_busy(hctx, false);
1989                 *cookie = new_cookie;
1990                 break;
1991         case BLK_STS_RESOURCE:
1992         case BLK_STS_DEV_RESOURCE:
1993                 blk_mq_update_dispatch_busy(hctx, true);
1994                 __blk_mq_requeue_request(rq);
1995                 break;
1996         default:
1997                 blk_mq_update_dispatch_busy(hctx, false);
1998                 *cookie = BLK_QC_T_NONE;
1999                 break;
2000         }
2001
2002         return ret;
2003 }
2004
2005 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2006                                                 struct request *rq,
2007                                                 blk_qc_t *cookie,
2008                                                 bool bypass_insert, bool last)
2009 {
2010         struct request_queue *q = rq->q;
2011         bool run_queue = true;
2012
2013         /*
2014          * RCU or SRCU read lock is needed before checking quiesced flag.
2015          *
2016          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2017          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2018          * and avoid driver to try to dispatch again.
2019          */
2020         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2021                 run_queue = false;
2022                 bypass_insert = false;
2023                 goto insert;
2024         }
2025
2026         if (q->elevator && !bypass_insert)
2027                 goto insert;
2028
2029         if (!blk_mq_get_dispatch_budget(q))
2030                 goto insert;
2031
2032         if (!blk_mq_get_driver_tag(rq)) {
2033                 blk_mq_put_dispatch_budget(q);
2034                 goto insert;
2035         }
2036
2037         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2038 insert:
2039         if (bypass_insert)
2040                 return BLK_STS_RESOURCE;
2041
2042         blk_mq_sched_insert_request(rq, false, run_queue, false);
2043
2044         return BLK_STS_OK;
2045 }
2046
2047 /**
2048  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2049  * @hctx: Pointer of the associated hardware queue.
2050  * @rq: Pointer to request to be sent.
2051  * @cookie: Request queue cookie.
2052  *
2053  * If the device has enough resources to accept a new request now, send the
2054  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2055  * we can try send it another time in the future. Requests inserted at this
2056  * queue have higher priority.
2057  */
2058 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2059                 struct request *rq, blk_qc_t *cookie)
2060 {
2061         blk_status_t ret;
2062         int srcu_idx;
2063
2064         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2065
2066         hctx_lock(hctx, &srcu_idx);
2067
2068         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2069         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2070                 blk_mq_request_bypass_insert(rq, false, true);
2071         else if (ret != BLK_STS_OK)
2072                 blk_mq_end_request(rq, ret);
2073
2074         hctx_unlock(hctx, srcu_idx);
2075 }
2076
2077 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2078 {
2079         blk_status_t ret;
2080         int srcu_idx;
2081         blk_qc_t unused_cookie;
2082         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2083
2084         hctx_lock(hctx, &srcu_idx);
2085         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2086         hctx_unlock(hctx, srcu_idx);
2087
2088         return ret;
2089 }
2090
2091 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2092                 struct list_head *list)
2093 {
2094         int queued = 0;
2095         int errors = 0;
2096
2097         while (!list_empty(list)) {
2098                 blk_status_t ret;
2099                 struct request *rq = list_first_entry(list, struct request,
2100                                 queuelist);
2101
2102                 list_del_init(&rq->queuelist);
2103                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2104                 if (ret != BLK_STS_OK) {
2105                         if (ret == BLK_STS_RESOURCE ||
2106                                         ret == BLK_STS_DEV_RESOURCE) {
2107                                 blk_mq_request_bypass_insert(rq, false,
2108                                                         list_empty(list));
2109                                 break;
2110                         }
2111                         blk_mq_end_request(rq, ret);
2112                         errors++;
2113                 } else
2114                         queued++;
2115         }
2116
2117         /*
2118          * If we didn't flush the entire list, we could have told
2119          * the driver there was more coming, but that turned out to
2120          * be a lie.
2121          */
2122         if ((!list_empty(list) || errors) &&
2123              hctx->queue->mq_ops->commit_rqs && queued)
2124                 hctx->queue->mq_ops->commit_rqs(hctx);
2125 }
2126
2127 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2128 {
2129         list_add_tail(&rq->queuelist, &plug->mq_list);
2130         plug->rq_count++;
2131         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2132                 struct request *tmp;
2133
2134                 tmp = list_first_entry(&plug->mq_list, struct request,
2135                                                 queuelist);
2136                 if (tmp->q != rq->q)
2137                         plug->multiple_queues = true;
2138         }
2139 }
2140
2141 /**
2142  * blk_mq_submit_bio - Create and send a request to block device.
2143  * @bio: Bio pointer.
2144  *
2145  * Builds up a request structure from @q and @bio and send to the device. The
2146  * request may not be queued directly to hardware if:
2147  * * This request can be merged with another one
2148  * * We want to place request at plug queue for possible future merging
2149  * * There is an IO scheduler active at this queue
2150  *
2151  * It will not queue the request if there is an error with the bio, or at the
2152  * request creation.
2153  *
2154  * Returns: Request queue cookie.
2155  */
2156 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2157 {
2158         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2159         const int is_sync = op_is_sync(bio->bi_opf);
2160         const int is_flush_fua = op_is_flush(bio->bi_opf);
2161         struct blk_mq_alloc_data data = {
2162                 .q              = q,
2163         };
2164         struct request *rq;
2165         struct blk_plug *plug;
2166         struct request *same_queue_rq = NULL;
2167         unsigned int nr_segs;
2168         blk_qc_t cookie;
2169         blk_status_t ret;
2170         bool hipri;
2171
2172         blk_queue_bounce(q, &bio);
2173         __blk_queue_split(&bio, &nr_segs);
2174
2175         if (!bio_integrity_prep(bio))
2176                 goto queue_exit;
2177
2178         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2179             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2180                 goto queue_exit;
2181
2182         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2183                 goto queue_exit;
2184
2185         rq_qos_throttle(q, bio);
2186
2187         hipri = bio->bi_opf & REQ_HIPRI;
2188
2189         data.cmd_flags = bio->bi_opf;
2190         rq = __blk_mq_alloc_request(&data);
2191         if (unlikely(!rq)) {
2192                 rq_qos_cleanup(q, bio);
2193                 if (bio->bi_opf & REQ_NOWAIT)
2194                         bio_wouldblock_error(bio);
2195                 goto queue_exit;
2196         }
2197
2198         trace_block_getrq(bio);
2199
2200         rq_qos_track(q, rq, bio);
2201
2202         cookie = request_to_qc_t(data.hctx, rq);
2203
2204         blk_mq_bio_to_request(rq, bio, nr_segs);
2205
2206         ret = blk_crypto_init_request(rq);
2207         if (ret != BLK_STS_OK) {
2208                 bio->bi_status = ret;
2209                 bio_endio(bio);
2210                 blk_mq_free_request(rq);
2211                 return BLK_QC_T_NONE;
2212         }
2213
2214         plug = blk_mq_plug(q, bio);
2215         if (unlikely(is_flush_fua)) {
2216                 /* Bypass scheduler for flush requests */
2217                 blk_insert_flush(rq);
2218                 blk_mq_run_hw_queue(data.hctx, true);
2219         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2220                                 !blk_queue_nonrot(q))) {
2221                 /*
2222                  * Use plugging if we have a ->commit_rqs() hook as well, as
2223                  * we know the driver uses bd->last in a smart fashion.
2224                  *
2225                  * Use normal plugging if this disk is slow HDD, as sequential
2226                  * IO may benefit a lot from plug merging.
2227                  */
2228                 unsigned int request_count = plug->rq_count;
2229                 struct request *last = NULL;
2230
2231                 if (!request_count)
2232                         trace_block_plug(q);
2233                 else
2234                         last = list_entry_rq(plug->mq_list.prev);
2235
2236                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2237                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2238                         blk_flush_plug_list(plug, false);
2239                         trace_block_plug(q);
2240                 }
2241
2242                 blk_add_rq_to_plug(plug, rq);
2243         } else if (q->elevator) {
2244                 /* Insert the request at the IO scheduler queue */
2245                 blk_mq_sched_insert_request(rq, false, true, true);
2246         } else if (plug && !blk_queue_nomerges(q)) {
2247                 /*
2248                  * We do limited plugging. If the bio can be merged, do that.
2249                  * Otherwise the existing request in the plug list will be
2250                  * issued. So the plug list will have one request at most
2251                  * The plug list might get flushed before this. If that happens,
2252                  * the plug list is empty, and same_queue_rq is invalid.
2253                  */
2254                 if (list_empty(&plug->mq_list))
2255                         same_queue_rq = NULL;
2256                 if (same_queue_rq) {
2257                         list_del_init(&same_queue_rq->queuelist);
2258                         plug->rq_count--;
2259                 }
2260                 blk_add_rq_to_plug(plug, rq);
2261                 trace_block_plug(q);
2262
2263                 if (same_queue_rq) {
2264                         data.hctx = same_queue_rq->mq_hctx;
2265                         trace_block_unplug(q, 1, true);
2266                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2267                                         &cookie);
2268                 }
2269         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2270                         !data.hctx->dispatch_busy) {
2271                 /*
2272                  * There is no scheduler and we can try to send directly
2273                  * to the hardware.
2274                  */
2275                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2276         } else {
2277                 /* Default case. */
2278                 blk_mq_sched_insert_request(rq, false, true, true);
2279         }
2280
2281         if (!hipri)
2282                 return BLK_QC_T_NONE;
2283         return cookie;
2284 queue_exit:
2285         blk_queue_exit(q);
2286         return BLK_QC_T_NONE;
2287 }
2288
2289 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2290                      unsigned int hctx_idx)
2291 {
2292         struct page *page;
2293
2294         if (tags->rqs && set->ops->exit_request) {
2295                 int i;
2296
2297                 for (i = 0; i < tags->nr_tags; i++) {
2298                         struct request *rq = tags->static_rqs[i];
2299
2300                         if (!rq)
2301                                 continue;
2302                         set->ops->exit_request(set, rq, hctx_idx);
2303                         tags->static_rqs[i] = NULL;
2304                 }
2305         }
2306
2307         while (!list_empty(&tags->page_list)) {
2308                 page = list_first_entry(&tags->page_list, struct page, lru);
2309                 list_del_init(&page->lru);
2310                 /*
2311                  * Remove kmemleak object previously allocated in
2312                  * blk_mq_alloc_rqs().
2313                  */
2314                 kmemleak_free(page_address(page));
2315                 __free_pages(page, page->private);
2316         }
2317 }
2318
2319 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2320 {
2321         kfree(tags->rqs);
2322         tags->rqs = NULL;
2323         kfree(tags->static_rqs);
2324         tags->static_rqs = NULL;
2325
2326         blk_mq_free_tags(tags, flags);
2327 }
2328
2329 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2330                                         unsigned int hctx_idx,
2331                                         unsigned int nr_tags,
2332                                         unsigned int reserved_tags,
2333                                         unsigned int flags)
2334 {
2335         struct blk_mq_tags *tags;
2336         int node;
2337
2338         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2339         if (node == NUMA_NO_NODE)
2340                 node = set->numa_node;
2341
2342         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2343         if (!tags)
2344                 return NULL;
2345
2346         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2347                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2348                                  node);
2349         if (!tags->rqs) {
2350                 blk_mq_free_tags(tags, flags);
2351                 return NULL;
2352         }
2353
2354         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2355                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2356                                         node);
2357         if (!tags->static_rqs) {
2358                 kfree(tags->rqs);
2359                 blk_mq_free_tags(tags, flags);
2360                 return NULL;
2361         }
2362
2363         return tags;
2364 }
2365
2366 static size_t order_to_size(unsigned int order)
2367 {
2368         return (size_t)PAGE_SIZE << order;
2369 }
2370
2371 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2372                                unsigned int hctx_idx, int node)
2373 {
2374         int ret;
2375
2376         if (set->ops->init_request) {
2377                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2378                 if (ret)
2379                         return ret;
2380         }
2381
2382         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2383         return 0;
2384 }
2385
2386 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2387                      unsigned int hctx_idx, unsigned int depth)
2388 {
2389         unsigned int i, j, entries_per_page, max_order = 4;
2390         size_t rq_size, left;
2391         int node;
2392
2393         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2394         if (node == NUMA_NO_NODE)
2395                 node = set->numa_node;
2396
2397         INIT_LIST_HEAD(&tags->page_list);
2398
2399         /*
2400          * rq_size is the size of the request plus driver payload, rounded
2401          * to the cacheline size
2402          */
2403         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2404                                 cache_line_size());
2405         left = rq_size * depth;
2406
2407         for (i = 0; i < depth; ) {
2408                 int this_order = max_order;
2409                 struct page *page;
2410                 int to_do;
2411                 void *p;
2412
2413                 while (this_order && left < order_to_size(this_order - 1))
2414                         this_order--;
2415
2416                 do {
2417                         page = alloc_pages_node(node,
2418                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2419                                 this_order);
2420                         if (page)
2421                                 break;
2422                         if (!this_order--)
2423                                 break;
2424                         if (order_to_size(this_order) < rq_size)
2425                                 break;
2426                 } while (1);
2427
2428                 if (!page)
2429                         goto fail;
2430
2431                 page->private = this_order;
2432                 list_add_tail(&page->lru, &tags->page_list);
2433
2434                 p = page_address(page);
2435                 /*
2436                  * Allow kmemleak to scan these pages as they contain pointers
2437                  * to additional allocations like via ops->init_request().
2438                  */
2439                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2440                 entries_per_page = order_to_size(this_order) / rq_size;
2441                 to_do = min(entries_per_page, depth - i);
2442                 left -= to_do * rq_size;
2443                 for (j = 0; j < to_do; j++) {
2444                         struct request *rq = p;
2445
2446                         tags->static_rqs[i] = rq;
2447                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2448                                 tags->static_rqs[i] = NULL;
2449                                 goto fail;
2450                         }
2451
2452                         p += rq_size;
2453                         i++;
2454                 }
2455         }
2456         return 0;
2457
2458 fail:
2459         blk_mq_free_rqs(set, tags, hctx_idx);
2460         return -ENOMEM;
2461 }
2462
2463 struct rq_iter_data {
2464         struct blk_mq_hw_ctx *hctx;
2465         bool has_rq;
2466 };
2467
2468 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2469 {
2470         struct rq_iter_data *iter_data = data;
2471
2472         if (rq->mq_hctx != iter_data->hctx)
2473                 return true;
2474         iter_data->has_rq = true;
2475         return false;
2476 }
2477
2478 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2479 {
2480         struct blk_mq_tags *tags = hctx->sched_tags ?
2481                         hctx->sched_tags : hctx->tags;
2482         struct rq_iter_data data = {
2483                 .hctx   = hctx,
2484         };
2485
2486         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2487         return data.has_rq;
2488 }
2489
2490 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2491                 struct blk_mq_hw_ctx *hctx)
2492 {
2493         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2494                 return false;
2495         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2496                 return false;
2497         return true;
2498 }
2499
2500 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2501 {
2502         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2503                         struct blk_mq_hw_ctx, cpuhp_online);
2504
2505         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2506             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2507                 return 0;
2508
2509         /*
2510          * Prevent new request from being allocated on the current hctx.
2511          *
2512          * The smp_mb__after_atomic() Pairs with the implied barrier in
2513          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2514          * seen once we return from the tag allocator.
2515          */
2516         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2517         smp_mb__after_atomic();
2518
2519         /*
2520          * Try to grab a reference to the queue and wait for any outstanding
2521          * requests.  If we could not grab a reference the queue has been
2522          * frozen and there are no requests.
2523          */
2524         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2525                 while (blk_mq_hctx_has_requests(hctx))
2526                         msleep(5);
2527                 percpu_ref_put(&hctx->queue->q_usage_counter);
2528         }
2529
2530         return 0;
2531 }
2532
2533 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2534 {
2535         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2536                         struct blk_mq_hw_ctx, cpuhp_online);
2537
2538         if (cpumask_test_cpu(cpu, hctx->cpumask))
2539                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2540         return 0;
2541 }
2542
2543 /*
2544  * 'cpu' is going away. splice any existing rq_list entries from this
2545  * software queue to the hw queue dispatch list, and ensure that it
2546  * gets run.
2547  */
2548 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2549 {
2550         struct blk_mq_hw_ctx *hctx;
2551         struct blk_mq_ctx *ctx;
2552         LIST_HEAD(tmp);
2553         enum hctx_type type;
2554
2555         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2556         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2557                 return 0;
2558
2559         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2560         type = hctx->type;
2561
2562         spin_lock(&ctx->lock);
2563         if (!list_empty(&ctx->rq_lists[type])) {
2564                 list_splice_init(&ctx->rq_lists[type], &tmp);
2565                 blk_mq_hctx_clear_pending(hctx, ctx);
2566         }
2567         spin_unlock(&ctx->lock);
2568
2569         if (list_empty(&tmp))
2570                 return 0;
2571
2572         spin_lock(&hctx->lock);
2573         list_splice_tail_init(&tmp, &hctx->dispatch);
2574         spin_unlock(&hctx->lock);
2575
2576         blk_mq_run_hw_queue(hctx, true);
2577         return 0;
2578 }
2579
2580 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2581 {
2582         if (!(hctx->flags & BLK_MQ_F_STACKING))
2583                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2584                                                     &hctx->cpuhp_online);
2585         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2586                                             &hctx->cpuhp_dead);
2587 }
2588
2589 /* hctx->ctxs will be freed in queue's release handler */
2590 static void blk_mq_exit_hctx(struct request_queue *q,
2591                 struct blk_mq_tag_set *set,
2592                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2593 {
2594         if (blk_mq_hw_queue_mapped(hctx))
2595                 blk_mq_tag_idle(hctx);
2596
2597         if (set->ops->exit_request)
2598                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2599
2600         if (set->ops->exit_hctx)
2601                 set->ops->exit_hctx(hctx, hctx_idx);
2602
2603         blk_mq_remove_cpuhp(hctx);
2604
2605         spin_lock(&q->unused_hctx_lock);
2606         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2607         spin_unlock(&q->unused_hctx_lock);
2608 }
2609
2610 static void blk_mq_exit_hw_queues(struct request_queue *q,
2611                 struct blk_mq_tag_set *set, int nr_queue)
2612 {
2613         struct blk_mq_hw_ctx *hctx;
2614         unsigned int i;
2615
2616         queue_for_each_hw_ctx(q, hctx, i) {
2617                 if (i == nr_queue)
2618                         break;
2619                 blk_mq_debugfs_unregister_hctx(hctx);
2620                 blk_mq_exit_hctx(q, set, hctx, i);
2621         }
2622 }
2623
2624 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2625 {
2626         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2627
2628         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2629                            __alignof__(struct blk_mq_hw_ctx)) !=
2630                      sizeof(struct blk_mq_hw_ctx));
2631
2632         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2633                 hw_ctx_size += sizeof(struct srcu_struct);
2634
2635         return hw_ctx_size;
2636 }
2637
2638 static int blk_mq_init_hctx(struct request_queue *q,
2639                 struct blk_mq_tag_set *set,
2640                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2641 {
2642         hctx->queue_num = hctx_idx;
2643
2644         if (!(hctx->flags & BLK_MQ_F_STACKING))
2645                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2646                                 &hctx->cpuhp_online);
2647         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2648
2649         hctx->tags = set->tags[hctx_idx];
2650
2651         if (set->ops->init_hctx &&
2652             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2653                 goto unregister_cpu_notifier;
2654
2655         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2656                                 hctx->numa_node))
2657                 goto exit_hctx;
2658         return 0;
2659
2660  exit_hctx:
2661         if (set->ops->exit_hctx)
2662                 set->ops->exit_hctx(hctx, hctx_idx);
2663  unregister_cpu_notifier:
2664         blk_mq_remove_cpuhp(hctx);
2665         return -1;
2666 }
2667
2668 static struct blk_mq_hw_ctx *
2669 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2670                 int node)
2671 {
2672         struct blk_mq_hw_ctx *hctx;
2673         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2674
2675         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2676         if (!hctx)
2677                 goto fail_alloc_hctx;
2678
2679         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2680                 goto free_hctx;
2681
2682         atomic_set(&hctx->nr_active, 0);
2683         if (node == NUMA_NO_NODE)
2684                 node = set->numa_node;
2685         hctx->numa_node = node;
2686
2687         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2688         spin_lock_init(&hctx->lock);
2689         INIT_LIST_HEAD(&hctx->dispatch);
2690         hctx->queue = q;
2691         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2692
2693         INIT_LIST_HEAD(&hctx->hctx_list);
2694
2695         /*
2696          * Allocate space for all possible cpus to avoid allocation at
2697          * runtime
2698          */
2699         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2700                         gfp, node);
2701         if (!hctx->ctxs)
2702                 goto free_cpumask;
2703
2704         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2705                                 gfp, node))
2706                 goto free_ctxs;
2707         hctx->nr_ctx = 0;
2708
2709         spin_lock_init(&hctx->dispatch_wait_lock);
2710         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2711         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2712
2713         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2714         if (!hctx->fq)
2715                 goto free_bitmap;
2716
2717         if (hctx->flags & BLK_MQ_F_BLOCKING)
2718                 init_srcu_struct(hctx->srcu);
2719         blk_mq_hctx_kobj_init(hctx);
2720
2721         return hctx;
2722
2723  free_bitmap:
2724         sbitmap_free(&hctx->ctx_map);
2725  free_ctxs:
2726         kfree(hctx->ctxs);
2727  free_cpumask:
2728         free_cpumask_var(hctx->cpumask);
2729  free_hctx:
2730         kfree(hctx);
2731  fail_alloc_hctx:
2732         return NULL;
2733 }
2734
2735 static void blk_mq_init_cpu_queues(struct request_queue *q,
2736                                    unsigned int nr_hw_queues)
2737 {
2738         struct blk_mq_tag_set *set = q->tag_set;
2739         unsigned int i, j;
2740
2741         for_each_possible_cpu(i) {
2742                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2743                 struct blk_mq_hw_ctx *hctx;
2744                 int k;
2745
2746                 __ctx->cpu = i;
2747                 spin_lock_init(&__ctx->lock);
2748                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2749                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2750
2751                 __ctx->queue = q;
2752
2753                 /*
2754                  * Set local node, IFF we have more than one hw queue. If
2755                  * not, we remain on the home node of the device
2756                  */
2757                 for (j = 0; j < set->nr_maps; j++) {
2758                         hctx = blk_mq_map_queue_type(q, j, i);
2759                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2760                                 hctx->numa_node = cpu_to_node(i);
2761                 }
2762         }
2763 }
2764
2765 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2766                                         int hctx_idx)
2767 {
2768         unsigned int flags = set->flags;
2769         int ret = 0;
2770
2771         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2772                                         set->queue_depth, set->reserved_tags, flags);
2773         if (!set->tags[hctx_idx])
2774                 return false;
2775
2776         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2777                                 set->queue_depth);
2778         if (!ret)
2779                 return true;
2780
2781         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2782         set->tags[hctx_idx] = NULL;
2783         return false;
2784 }
2785
2786 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2787                                          unsigned int hctx_idx)
2788 {
2789         unsigned int flags = set->flags;
2790
2791         if (set->tags && set->tags[hctx_idx]) {
2792                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2793                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2794                 set->tags[hctx_idx] = NULL;
2795         }
2796 }
2797
2798 static void blk_mq_map_swqueue(struct request_queue *q)
2799 {
2800         unsigned int i, j, hctx_idx;
2801         struct blk_mq_hw_ctx *hctx;
2802         struct blk_mq_ctx *ctx;
2803         struct blk_mq_tag_set *set = q->tag_set;
2804
2805         queue_for_each_hw_ctx(q, hctx, i) {
2806                 cpumask_clear(hctx->cpumask);
2807                 hctx->nr_ctx = 0;
2808                 hctx->dispatch_from = NULL;
2809         }
2810
2811         /*
2812          * Map software to hardware queues.
2813          *
2814          * If the cpu isn't present, the cpu is mapped to first hctx.
2815          */
2816         for_each_possible_cpu(i) {
2817
2818                 ctx = per_cpu_ptr(q->queue_ctx, i);
2819                 for (j = 0; j < set->nr_maps; j++) {
2820                         if (!set->map[j].nr_queues) {
2821                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2822                                                 HCTX_TYPE_DEFAULT, i);
2823                                 continue;
2824                         }
2825                         hctx_idx = set->map[j].mq_map[i];
2826                         /* unmapped hw queue can be remapped after CPU topo changed */
2827                         if (!set->tags[hctx_idx] &&
2828                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2829                                 /*
2830                                  * If tags initialization fail for some hctx,
2831                                  * that hctx won't be brought online.  In this
2832                                  * case, remap the current ctx to hctx[0] which
2833                                  * is guaranteed to always have tags allocated
2834                                  */
2835                                 set->map[j].mq_map[i] = 0;
2836                         }
2837
2838                         hctx = blk_mq_map_queue_type(q, j, i);
2839                         ctx->hctxs[j] = hctx;
2840                         /*
2841                          * If the CPU is already set in the mask, then we've
2842                          * mapped this one already. This can happen if
2843                          * devices share queues across queue maps.
2844                          */
2845                         if (cpumask_test_cpu(i, hctx->cpumask))
2846                                 continue;
2847
2848                         cpumask_set_cpu(i, hctx->cpumask);
2849                         hctx->type = j;
2850                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2851                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2852
2853                         /*
2854                          * If the nr_ctx type overflows, we have exceeded the
2855                          * amount of sw queues we can support.
2856                          */
2857                         BUG_ON(!hctx->nr_ctx);
2858                 }
2859
2860                 for (; j < HCTX_MAX_TYPES; j++)
2861                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2862                                         HCTX_TYPE_DEFAULT, i);
2863         }
2864
2865         queue_for_each_hw_ctx(q, hctx, i) {
2866                 /*
2867                  * If no software queues are mapped to this hardware queue,
2868                  * disable it and free the request entries.
2869                  */
2870                 if (!hctx->nr_ctx) {
2871                         /* Never unmap queue 0.  We need it as a
2872                          * fallback in case of a new remap fails
2873                          * allocation
2874                          */
2875                         if (i && set->tags[i])
2876                                 blk_mq_free_map_and_requests(set, i);
2877
2878                         hctx->tags = NULL;
2879                         continue;
2880                 }
2881
2882                 hctx->tags = set->tags[i];
2883                 WARN_ON(!hctx->tags);
2884
2885                 /*
2886                  * Set the map size to the number of mapped software queues.
2887                  * This is more accurate and more efficient than looping
2888                  * over all possibly mapped software queues.
2889                  */
2890                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2891
2892                 /*
2893                  * Initialize batch roundrobin counts
2894                  */
2895                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2896                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2897         }
2898 }
2899
2900 /*
2901  * Caller needs to ensure that we're either frozen/quiesced, or that
2902  * the queue isn't live yet.
2903  */
2904 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2905 {
2906         struct blk_mq_hw_ctx *hctx;
2907         int i;
2908
2909         queue_for_each_hw_ctx(q, hctx, i) {
2910                 if (shared)
2911                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2912                 else
2913                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2914         }
2915 }
2916
2917 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2918                                          bool shared)
2919 {
2920         struct request_queue *q;
2921
2922         lockdep_assert_held(&set->tag_list_lock);
2923
2924         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2925                 blk_mq_freeze_queue(q);
2926                 queue_set_hctx_shared(q, shared);
2927                 blk_mq_unfreeze_queue(q);
2928         }
2929 }
2930
2931 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2932 {
2933         struct blk_mq_tag_set *set = q->tag_set;
2934
2935         mutex_lock(&set->tag_list_lock);
2936         list_del(&q->tag_set_list);
2937         if (list_is_singular(&set->tag_list)) {
2938                 /* just transitioned to unshared */
2939                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2940                 /* update existing queue */
2941                 blk_mq_update_tag_set_shared(set, false);
2942         }
2943         mutex_unlock(&set->tag_list_lock);
2944         INIT_LIST_HEAD(&q->tag_set_list);
2945 }
2946
2947 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2948                                      struct request_queue *q)
2949 {
2950         mutex_lock(&set->tag_list_lock);
2951
2952         /*
2953          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2954          */
2955         if (!list_empty(&set->tag_list) &&
2956             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2957                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2958                 /* update existing queue */
2959                 blk_mq_update_tag_set_shared(set, true);
2960         }
2961         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2962                 queue_set_hctx_shared(q, true);
2963         list_add_tail(&q->tag_set_list, &set->tag_list);
2964
2965         mutex_unlock(&set->tag_list_lock);
2966 }
2967
2968 /* All allocations will be freed in release handler of q->mq_kobj */
2969 static int blk_mq_alloc_ctxs(struct request_queue *q)
2970 {
2971         struct blk_mq_ctxs *ctxs;
2972         int cpu;
2973
2974         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2975         if (!ctxs)
2976                 return -ENOMEM;
2977
2978         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2979         if (!ctxs->queue_ctx)
2980                 goto fail;
2981
2982         for_each_possible_cpu(cpu) {
2983                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2984                 ctx->ctxs = ctxs;
2985         }
2986
2987         q->mq_kobj = &ctxs->kobj;
2988         q->queue_ctx = ctxs->queue_ctx;
2989
2990         return 0;
2991  fail:
2992         kfree(ctxs);
2993         return -ENOMEM;
2994 }
2995
2996 /*
2997  * It is the actual release handler for mq, but we do it from
2998  * request queue's release handler for avoiding use-after-free
2999  * and headache because q->mq_kobj shouldn't have been introduced,
3000  * but we can't group ctx/kctx kobj without it.
3001  */
3002 void blk_mq_release(struct request_queue *q)
3003 {
3004         struct blk_mq_hw_ctx *hctx, *next;
3005         int i;
3006
3007         queue_for_each_hw_ctx(q, hctx, i)
3008                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3009
3010         /* all hctx are in .unused_hctx_list now */
3011         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3012                 list_del_init(&hctx->hctx_list);
3013                 kobject_put(&hctx->kobj);
3014         }
3015
3016         kfree(q->queue_hw_ctx);
3017
3018         /*
3019          * release .mq_kobj and sw queue's kobject now because
3020          * both share lifetime with request queue.
3021          */
3022         blk_mq_sysfs_deinit(q);
3023 }
3024
3025 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3026                 void *queuedata)
3027 {
3028         struct request_queue *uninit_q, *q;
3029
3030         uninit_q = blk_alloc_queue(set->numa_node);
3031         if (!uninit_q)
3032                 return ERR_PTR(-ENOMEM);
3033         uninit_q->queuedata = queuedata;
3034
3035         /*
3036          * Initialize the queue without an elevator. device_add_disk() will do
3037          * the initialization.
3038          */
3039         q = blk_mq_init_allocated_queue(set, uninit_q, false);
3040         if (IS_ERR(q))
3041                 blk_cleanup_queue(uninit_q);
3042
3043         return q;
3044 }
3045 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3046
3047 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3048 {
3049         return blk_mq_init_queue_data(set, NULL);
3050 }
3051 EXPORT_SYMBOL(blk_mq_init_queue);
3052
3053 /*
3054  * Helper for setting up a queue with mq ops, given queue depth, and
3055  * the passed in mq ops flags.
3056  */
3057 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3058                                            const struct blk_mq_ops *ops,
3059                                            unsigned int queue_depth,
3060                                            unsigned int set_flags)
3061 {
3062         struct request_queue *q;
3063         int ret;
3064
3065         memset(set, 0, sizeof(*set));
3066         set->ops = ops;
3067         set->nr_hw_queues = 1;
3068         set->nr_maps = 1;
3069         set->queue_depth = queue_depth;
3070         set->numa_node = NUMA_NO_NODE;
3071         set->flags = set_flags;
3072
3073         ret = blk_mq_alloc_tag_set(set);
3074         if (ret)
3075                 return ERR_PTR(ret);
3076
3077         q = blk_mq_init_queue(set);
3078         if (IS_ERR(q)) {
3079                 blk_mq_free_tag_set(set);
3080                 return q;
3081         }
3082
3083         return q;
3084 }
3085 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3086
3087 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3088                 struct blk_mq_tag_set *set, struct request_queue *q,
3089                 int hctx_idx, int node)
3090 {
3091         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3092
3093         /* reuse dead hctx first */
3094         spin_lock(&q->unused_hctx_lock);
3095         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3096                 if (tmp->numa_node == node) {
3097                         hctx = tmp;
3098                         break;
3099                 }
3100         }
3101         if (hctx)
3102                 list_del_init(&hctx->hctx_list);
3103         spin_unlock(&q->unused_hctx_lock);
3104
3105         if (!hctx)
3106                 hctx = blk_mq_alloc_hctx(q, set, node);
3107         if (!hctx)
3108                 goto fail;
3109
3110         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3111                 goto free_hctx;
3112
3113         return hctx;
3114
3115  free_hctx:
3116         kobject_put(&hctx->kobj);
3117  fail:
3118         return NULL;
3119 }
3120
3121 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3122                                                 struct request_queue *q)
3123 {
3124         int i, j, end;
3125         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3126
3127         if (q->nr_hw_queues < set->nr_hw_queues) {
3128                 struct blk_mq_hw_ctx **new_hctxs;
3129
3130                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3131                                        sizeof(*new_hctxs), GFP_KERNEL,
3132                                        set->numa_node);
3133                 if (!new_hctxs)
3134                         return;
3135                 if (hctxs)
3136                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3137                                sizeof(*hctxs));
3138                 q->queue_hw_ctx = new_hctxs;
3139                 kfree(hctxs);
3140                 hctxs = new_hctxs;
3141         }
3142
3143         /* protect against switching io scheduler  */
3144         mutex_lock(&q->sysfs_lock);
3145         for (i = 0; i < set->nr_hw_queues; i++) {
3146                 int node;
3147                 struct blk_mq_hw_ctx *hctx;
3148
3149                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3150                 /*
3151                  * If the hw queue has been mapped to another numa node,
3152                  * we need to realloc the hctx. If allocation fails, fallback
3153                  * to use the previous one.
3154                  */
3155                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3156                         continue;
3157
3158                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3159                 if (hctx) {
3160                         if (hctxs[i])
3161                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3162                         hctxs[i] = hctx;
3163                 } else {
3164                         if (hctxs[i])
3165                                 pr_warn("Allocate new hctx on node %d fails,\
3166                                                 fallback to previous one on node %d\n",
3167                                                 node, hctxs[i]->numa_node);
3168                         else
3169                                 break;
3170                 }
3171         }
3172         /*
3173          * Increasing nr_hw_queues fails. Free the newly allocated
3174          * hctxs and keep the previous q->nr_hw_queues.
3175          */
3176         if (i != set->nr_hw_queues) {
3177                 j = q->nr_hw_queues;
3178                 end = i;
3179         } else {
3180                 j = i;
3181                 end = q->nr_hw_queues;
3182                 q->nr_hw_queues = set->nr_hw_queues;
3183         }
3184
3185         for (; j < end; j++) {
3186                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3187
3188                 if (hctx) {
3189                         if (hctx->tags)
3190                                 blk_mq_free_map_and_requests(set, j);
3191                         blk_mq_exit_hctx(q, set, hctx, j);
3192                         hctxs[j] = NULL;
3193                 }
3194         }
3195         mutex_unlock(&q->sysfs_lock);
3196 }
3197
3198 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3199                                                   struct request_queue *q,
3200                                                   bool elevator_init)
3201 {
3202         /* mark the queue as mq asap */
3203         q->mq_ops = set->ops;
3204
3205         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3206                                              blk_mq_poll_stats_bkt,
3207                                              BLK_MQ_POLL_STATS_BKTS, q);
3208         if (!q->poll_cb)
3209                 goto err_exit;
3210
3211         if (blk_mq_alloc_ctxs(q))
3212                 goto err_poll;
3213
3214         /* init q->mq_kobj and sw queues' kobjects */
3215         blk_mq_sysfs_init(q);
3216
3217         INIT_LIST_HEAD(&q->unused_hctx_list);
3218         spin_lock_init(&q->unused_hctx_lock);
3219
3220         blk_mq_realloc_hw_ctxs(set, q);
3221         if (!q->nr_hw_queues)
3222                 goto err_hctxs;
3223
3224         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3225         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3226
3227         q->tag_set = set;
3228
3229         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3230         if (set->nr_maps > HCTX_TYPE_POLL &&
3231             set->map[HCTX_TYPE_POLL].nr_queues)
3232                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3233
3234         q->sg_reserved_size = INT_MAX;
3235
3236         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3237         INIT_LIST_HEAD(&q->requeue_list);
3238         spin_lock_init(&q->requeue_lock);
3239
3240         q->nr_requests = set->queue_depth;
3241
3242         /*
3243          * Default to classic polling
3244          */
3245         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3246
3247         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3248         blk_mq_add_queue_tag_set(set, q);
3249         blk_mq_map_swqueue(q);
3250
3251         if (elevator_init)
3252                 elevator_init_mq(q);
3253
3254         return q;
3255
3256 err_hctxs:
3257         kfree(q->queue_hw_ctx);
3258         q->nr_hw_queues = 0;
3259         blk_mq_sysfs_deinit(q);
3260 err_poll:
3261         blk_stat_free_callback(q->poll_cb);
3262         q->poll_cb = NULL;
3263 err_exit:
3264         q->mq_ops = NULL;
3265         return ERR_PTR(-ENOMEM);
3266 }
3267 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3268
3269 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3270 void blk_mq_exit_queue(struct request_queue *q)
3271 {
3272         struct blk_mq_tag_set   *set = q->tag_set;
3273
3274         blk_mq_del_queue_tag_set(q);
3275         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3276 }
3277
3278 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3279 {
3280         int i;
3281
3282         for (i = 0; i < set->nr_hw_queues; i++) {
3283                 if (!__blk_mq_alloc_map_and_request(set, i))
3284                         goto out_unwind;
3285                 cond_resched();
3286         }
3287
3288         return 0;
3289
3290 out_unwind:
3291         while (--i >= 0)
3292                 blk_mq_free_map_and_requests(set, i);
3293
3294         return -ENOMEM;
3295 }
3296
3297 /*
3298  * Allocate the request maps associated with this tag_set. Note that this
3299  * may reduce the depth asked for, if memory is tight. set->queue_depth
3300  * will be updated to reflect the allocated depth.
3301  */
3302 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3303 {
3304         unsigned int depth;
3305         int err;
3306
3307         depth = set->queue_depth;
3308         do {
3309                 err = __blk_mq_alloc_rq_maps(set);
3310                 if (!err)
3311                         break;
3312
3313                 set->queue_depth >>= 1;
3314                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3315                         err = -ENOMEM;
3316                         break;
3317                 }
3318         } while (set->queue_depth);
3319
3320         if (!set->queue_depth || err) {
3321                 pr_err("blk-mq: failed to allocate request map\n");
3322                 return -ENOMEM;
3323         }
3324
3325         if (depth != set->queue_depth)
3326                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3327                                                 depth, set->queue_depth);
3328
3329         return 0;
3330 }
3331
3332 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3333 {
3334         /*
3335          * blk_mq_map_queues() and multiple .map_queues() implementations
3336          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3337          * number of hardware queues.
3338          */
3339         if (set->nr_maps == 1)
3340                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3341
3342         if (set->ops->map_queues && !is_kdump_kernel()) {
3343                 int i;
3344
3345                 /*
3346                  * transport .map_queues is usually done in the following
3347                  * way:
3348                  *
3349                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3350                  *      mask = get_cpu_mask(queue)
3351                  *      for_each_cpu(cpu, mask)
3352                  *              set->map[x].mq_map[cpu] = queue;
3353                  * }
3354                  *
3355                  * When we need to remap, the table has to be cleared for
3356                  * killing stale mapping since one CPU may not be mapped
3357                  * to any hw queue.
3358                  */
3359                 for (i = 0; i < set->nr_maps; i++)
3360                         blk_mq_clear_mq_map(&set->map[i]);
3361
3362                 return set->ops->map_queues(set);
3363         } else {
3364                 BUG_ON(set->nr_maps > 1);
3365                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3366         }
3367 }
3368
3369 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3370                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3371 {
3372         struct blk_mq_tags **new_tags;
3373
3374         if (cur_nr_hw_queues >= new_nr_hw_queues)
3375                 return 0;
3376
3377         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3378                                 GFP_KERNEL, set->numa_node);
3379         if (!new_tags)
3380                 return -ENOMEM;
3381
3382         if (set->tags)
3383                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3384                        sizeof(*set->tags));
3385         kfree(set->tags);
3386         set->tags = new_tags;
3387         set->nr_hw_queues = new_nr_hw_queues;
3388
3389         return 0;
3390 }
3391
3392 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3393                                 int new_nr_hw_queues)
3394 {
3395         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3396 }
3397
3398 /*
3399  * Alloc a tag set to be associated with one or more request queues.
3400  * May fail with EINVAL for various error conditions. May adjust the
3401  * requested depth down, if it's too large. In that case, the set
3402  * value will be stored in set->queue_depth.
3403  */
3404 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3405 {
3406         int i, ret;
3407
3408         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3409
3410         if (!set->nr_hw_queues)
3411                 return -EINVAL;
3412         if (!set->queue_depth)
3413                 return -EINVAL;
3414         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3415                 return -EINVAL;
3416
3417         if (!set->ops->queue_rq)
3418                 return -EINVAL;
3419
3420         if (!set->ops->get_budget ^ !set->ops->put_budget)
3421                 return -EINVAL;
3422
3423         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3424                 pr_info("blk-mq: reduced tag depth to %u\n",
3425                         BLK_MQ_MAX_DEPTH);
3426                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3427         }
3428
3429         if (!set->nr_maps)
3430                 set->nr_maps = 1;
3431         else if (set->nr_maps > HCTX_MAX_TYPES)
3432                 return -EINVAL;
3433
3434         /*
3435          * If a crashdump is active, then we are potentially in a very
3436          * memory constrained environment. Limit us to 1 queue and
3437          * 64 tags to prevent using too much memory.
3438          */
3439         if (is_kdump_kernel()) {
3440                 set->nr_hw_queues = 1;
3441                 set->nr_maps = 1;
3442                 set->queue_depth = min(64U, set->queue_depth);
3443         }
3444         /*
3445          * There is no use for more h/w queues than cpus if we just have
3446          * a single map
3447          */
3448         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3449                 set->nr_hw_queues = nr_cpu_ids;
3450
3451         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3452                 return -ENOMEM;
3453
3454         ret = -ENOMEM;
3455         for (i = 0; i < set->nr_maps; i++) {
3456                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3457                                                   sizeof(set->map[i].mq_map[0]),
3458                                                   GFP_KERNEL, set->numa_node);
3459                 if (!set->map[i].mq_map)
3460                         goto out_free_mq_map;
3461                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3462         }
3463
3464         ret = blk_mq_update_queue_map(set);
3465         if (ret)
3466                 goto out_free_mq_map;
3467
3468         ret = blk_mq_alloc_map_and_requests(set);
3469         if (ret)
3470                 goto out_free_mq_map;
3471
3472         if (blk_mq_is_sbitmap_shared(set->flags)) {
3473                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3474
3475                 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3476                         ret = -ENOMEM;
3477                         goto out_free_mq_rq_maps;
3478                 }
3479         }
3480
3481         mutex_init(&set->tag_list_lock);
3482         INIT_LIST_HEAD(&set->tag_list);
3483
3484         return 0;
3485
3486 out_free_mq_rq_maps:
3487         for (i = 0; i < set->nr_hw_queues; i++)
3488                 blk_mq_free_map_and_requests(set, i);
3489 out_free_mq_map:
3490         for (i = 0; i < set->nr_maps; i++) {
3491                 kfree(set->map[i].mq_map);
3492                 set->map[i].mq_map = NULL;
3493         }
3494         kfree(set->tags);
3495         set->tags = NULL;
3496         return ret;
3497 }
3498 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3499
3500 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3501 {
3502         int i, j;
3503
3504         for (i = 0; i < set->nr_hw_queues; i++)
3505                 blk_mq_free_map_and_requests(set, i);
3506
3507         if (blk_mq_is_sbitmap_shared(set->flags))
3508                 blk_mq_exit_shared_sbitmap(set);
3509
3510         for (j = 0; j < set->nr_maps; j++) {
3511                 kfree(set->map[j].mq_map);
3512                 set->map[j].mq_map = NULL;
3513         }
3514
3515         kfree(set->tags);
3516         set->tags = NULL;
3517 }
3518 EXPORT_SYMBOL(blk_mq_free_tag_set);
3519
3520 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3521 {
3522         struct blk_mq_tag_set *set = q->tag_set;
3523         struct blk_mq_hw_ctx *hctx;
3524         int i, ret;
3525
3526         if (!set)
3527                 return -EINVAL;
3528
3529         if (q->nr_requests == nr)
3530                 return 0;
3531
3532         blk_mq_freeze_queue(q);
3533         blk_mq_quiesce_queue(q);
3534
3535         ret = 0;
3536         queue_for_each_hw_ctx(q, hctx, i) {
3537                 if (!hctx->tags)
3538                         continue;
3539                 /*
3540                  * If we're using an MQ scheduler, just update the scheduler
3541                  * queue depth. This is similar to what the old code would do.
3542                  */
3543                 if (!hctx->sched_tags) {
3544                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3545                                                         false);
3546                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3547                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3548                 } else {
3549                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3550                                                         nr, true);
3551                 }
3552                 if (ret)
3553                         break;
3554                 if (q->elevator && q->elevator->type->ops.depth_updated)
3555                         q->elevator->type->ops.depth_updated(hctx);
3556         }
3557
3558         if (!ret)
3559                 q->nr_requests = nr;
3560
3561         blk_mq_unquiesce_queue(q);
3562         blk_mq_unfreeze_queue(q);
3563
3564         return ret;
3565 }
3566
3567 /*
3568  * request_queue and elevator_type pair.
3569  * It is just used by __blk_mq_update_nr_hw_queues to cache
3570  * the elevator_type associated with a request_queue.
3571  */
3572 struct blk_mq_qe_pair {
3573         struct list_head node;
3574         struct request_queue *q;
3575         struct elevator_type *type;
3576 };
3577
3578 /*
3579  * Cache the elevator_type in qe pair list and switch the
3580  * io scheduler to 'none'
3581  */
3582 static bool blk_mq_elv_switch_none(struct list_head *head,
3583                 struct request_queue *q)
3584 {
3585         struct blk_mq_qe_pair *qe;
3586
3587         if (!q->elevator)
3588                 return true;
3589
3590         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3591         if (!qe)
3592                 return false;
3593
3594         INIT_LIST_HEAD(&qe->node);
3595         qe->q = q;
3596         qe->type = q->elevator->type;
3597         list_add(&qe->node, head);
3598
3599         mutex_lock(&q->sysfs_lock);
3600         /*
3601          * After elevator_switch_mq, the previous elevator_queue will be
3602          * released by elevator_release. The reference of the io scheduler
3603          * module get by elevator_get will also be put. So we need to get
3604          * a reference of the io scheduler module here to prevent it to be
3605          * removed.
3606          */
3607         __module_get(qe->type->elevator_owner);
3608         elevator_switch_mq(q, NULL);
3609         mutex_unlock(&q->sysfs_lock);
3610
3611         return true;
3612 }
3613
3614 static void blk_mq_elv_switch_back(struct list_head *head,
3615                 struct request_queue *q)
3616 {
3617         struct blk_mq_qe_pair *qe;
3618         struct elevator_type *t = NULL;
3619
3620         list_for_each_entry(qe, head, node)
3621                 if (qe->q == q) {
3622                         t = qe->type;
3623                         break;
3624                 }
3625
3626         if (!t)
3627                 return;
3628
3629         list_del(&qe->node);
3630         kfree(qe);
3631
3632         mutex_lock(&q->sysfs_lock);
3633         elevator_switch_mq(q, t);
3634         mutex_unlock(&q->sysfs_lock);
3635 }
3636
3637 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3638                                                         int nr_hw_queues)
3639 {
3640         struct request_queue *q;
3641         LIST_HEAD(head);
3642         int prev_nr_hw_queues;
3643
3644         lockdep_assert_held(&set->tag_list_lock);
3645
3646         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3647                 nr_hw_queues = nr_cpu_ids;
3648         if (nr_hw_queues < 1)
3649                 return;
3650         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3651                 return;
3652
3653         list_for_each_entry(q, &set->tag_list, tag_set_list)
3654                 blk_mq_freeze_queue(q);
3655         /*
3656          * Switch IO scheduler to 'none', cleaning up the data associated
3657          * with the previous scheduler. We will switch back once we are done
3658          * updating the new sw to hw queue mappings.
3659          */
3660         list_for_each_entry(q, &set->tag_list, tag_set_list)
3661                 if (!blk_mq_elv_switch_none(&head, q))
3662                         goto switch_back;
3663
3664         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3665                 blk_mq_debugfs_unregister_hctxs(q);
3666                 blk_mq_sysfs_unregister(q);
3667         }
3668
3669         prev_nr_hw_queues = set->nr_hw_queues;
3670         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3671             0)
3672                 goto reregister;
3673
3674         set->nr_hw_queues = nr_hw_queues;
3675 fallback:
3676         blk_mq_update_queue_map(set);
3677         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3678                 blk_mq_realloc_hw_ctxs(set, q);
3679                 if (q->nr_hw_queues != set->nr_hw_queues) {
3680                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3681                                         nr_hw_queues, prev_nr_hw_queues);
3682                         set->nr_hw_queues = prev_nr_hw_queues;
3683                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3684                         goto fallback;
3685                 }
3686                 blk_mq_map_swqueue(q);
3687         }
3688
3689 reregister:
3690         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3691                 blk_mq_sysfs_register(q);
3692                 blk_mq_debugfs_register_hctxs(q);
3693         }
3694
3695 switch_back:
3696         list_for_each_entry(q, &set->tag_list, tag_set_list)
3697                 blk_mq_elv_switch_back(&head, q);
3698
3699         list_for_each_entry(q, &set->tag_list, tag_set_list)
3700                 blk_mq_unfreeze_queue(q);
3701 }
3702
3703 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3704 {
3705         mutex_lock(&set->tag_list_lock);
3706         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3707         mutex_unlock(&set->tag_list_lock);
3708 }
3709 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3710
3711 /* Enable polling stats and return whether they were already enabled. */
3712 static bool blk_poll_stats_enable(struct request_queue *q)
3713 {
3714         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3715             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3716                 return true;
3717         blk_stat_add_callback(q, q->poll_cb);
3718         return false;
3719 }
3720
3721 static void blk_mq_poll_stats_start(struct request_queue *q)
3722 {
3723         /*
3724          * We don't arm the callback if polling stats are not enabled or the
3725          * callback is already active.
3726          */
3727         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3728             blk_stat_is_active(q->poll_cb))
3729                 return;
3730
3731         blk_stat_activate_msecs(q->poll_cb, 100);
3732 }
3733
3734 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3735 {
3736         struct request_queue *q = cb->data;
3737         int bucket;
3738
3739         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3740                 if (cb->stat[bucket].nr_samples)
3741                         q->poll_stat[bucket] = cb->stat[bucket];
3742         }
3743 }
3744
3745 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3746                                        struct request *rq)
3747 {
3748         unsigned long ret = 0;
3749         int bucket;
3750
3751         /*
3752          * If stats collection isn't on, don't sleep but turn it on for
3753          * future users
3754          */
3755         if (!blk_poll_stats_enable(q))
3756                 return 0;
3757
3758         /*
3759          * As an optimistic guess, use half of the mean service time
3760          * for this type of request. We can (and should) make this smarter.
3761          * For instance, if the completion latencies are tight, we can
3762          * get closer than just half the mean. This is especially
3763          * important on devices where the completion latencies are longer
3764          * than ~10 usec. We do use the stats for the relevant IO size
3765          * if available which does lead to better estimates.
3766          */
3767         bucket = blk_mq_poll_stats_bkt(rq);
3768         if (bucket < 0)
3769                 return ret;
3770
3771         if (q->poll_stat[bucket].nr_samples)
3772                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3773
3774         return ret;
3775 }
3776
3777 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3778                                      struct request *rq)
3779 {
3780         struct hrtimer_sleeper hs;
3781         enum hrtimer_mode mode;
3782         unsigned int nsecs;
3783         ktime_t kt;
3784
3785         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3786                 return false;
3787
3788         /*
3789          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3790          *
3791          *  0:  use half of prev avg
3792          * >0:  use this specific value
3793          */
3794         if (q->poll_nsec > 0)
3795                 nsecs = q->poll_nsec;
3796         else
3797                 nsecs = blk_mq_poll_nsecs(q, rq);
3798
3799         if (!nsecs)
3800                 return false;
3801
3802         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3803
3804         /*
3805          * This will be replaced with the stats tracking code, using
3806          * 'avg_completion_time / 2' as the pre-sleep target.
3807          */
3808         kt = nsecs;
3809
3810         mode = HRTIMER_MODE_REL;
3811         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3812         hrtimer_set_expires(&hs.timer, kt);
3813
3814         do {
3815                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3816                         break;
3817                 set_current_state(TASK_UNINTERRUPTIBLE);
3818                 hrtimer_sleeper_start_expires(&hs, mode);
3819                 if (hs.task)
3820                         io_schedule();
3821                 hrtimer_cancel(&hs.timer);
3822                 mode = HRTIMER_MODE_ABS;
3823         } while (hs.task && !signal_pending(current));
3824
3825         __set_current_state(TASK_RUNNING);
3826         destroy_hrtimer_on_stack(&hs.timer);
3827         return true;
3828 }
3829
3830 static bool blk_mq_poll_hybrid(struct request_queue *q,
3831                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3832 {
3833         struct request *rq;
3834
3835         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3836                 return false;
3837
3838         if (!blk_qc_t_is_internal(cookie))
3839                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3840         else {
3841                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3842                 /*
3843                  * With scheduling, if the request has completed, we'll
3844                  * get a NULL return here, as we clear the sched tag when
3845                  * that happens. The request still remains valid, like always,
3846                  * so we should be safe with just the NULL check.
3847                  */
3848                 if (!rq)
3849                         return false;
3850         }
3851
3852         return blk_mq_poll_hybrid_sleep(q, rq);
3853 }
3854
3855 /**
3856  * blk_poll - poll for IO completions
3857  * @q:  the queue
3858  * @cookie: cookie passed back at IO submission time
3859  * @spin: whether to spin for completions
3860  *
3861  * Description:
3862  *    Poll for completions on the passed in queue. Returns number of
3863  *    completed entries found. If @spin is true, then blk_poll will continue
3864  *    looping until at least one completion is found, unless the task is
3865  *    otherwise marked running (or we need to reschedule).
3866  */
3867 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3868 {
3869         struct blk_mq_hw_ctx *hctx;
3870         long state;
3871
3872         if (!blk_qc_t_valid(cookie) ||
3873             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3874                 return 0;
3875
3876         if (current->plug)
3877                 blk_flush_plug_list(current->plug, false);
3878
3879         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3880
3881         /*
3882          * If we sleep, have the caller restart the poll loop to reset
3883          * the state. Like for the other success return cases, the
3884          * caller is responsible for checking if the IO completed. If
3885          * the IO isn't complete, we'll get called again and will go
3886          * straight to the busy poll loop. If specified not to spin,
3887          * we also should not sleep.
3888          */
3889         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3890                 return 1;
3891
3892         hctx->poll_considered++;
3893
3894         state = current->state;
3895         do {
3896                 int ret;
3897
3898                 hctx->poll_invoked++;
3899
3900                 ret = q->mq_ops->poll(hctx);
3901                 if (ret > 0) {
3902                         hctx->poll_success++;
3903                         __set_current_state(TASK_RUNNING);
3904                         return ret;
3905                 }
3906
3907                 if (signal_pending_state(state, current))
3908                         __set_current_state(TASK_RUNNING);
3909
3910                 if (current->state == TASK_RUNNING)
3911                         return 1;
3912                 if (ret < 0 || !spin)
3913                         break;
3914                 cpu_relax();
3915         } while (!need_resched());
3916
3917         __set_current_state(TASK_RUNNING);
3918         return 0;
3919 }
3920 EXPORT_SYMBOL_GPL(blk_poll);
3921
3922 unsigned int blk_mq_rq_cpu(struct request *rq)
3923 {
3924         return rq->mq_ctx->cpu;
3925 }
3926 EXPORT_SYMBOL(blk_mq_rq_cpu);
3927
3928 static int __init blk_mq_init(void)
3929 {
3930         int i;
3931
3932         for_each_possible_cpu(i)
3933                 init_llist_head(&per_cpu(blk_cpu_done, i));
3934         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3935
3936         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3937                                   "block/softirq:dead", NULL,
3938                                   blk_softirq_cpu_dead);
3939         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3940                                 blk_mq_hctx_notify_dead);
3941         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3942                                 blk_mq_hctx_notify_online,
3943                                 blk_mq_hctx_notify_offline);
3944         return 0;
3945 }
3946 subsys_initcall(blk_mq_init);