n64cart: fix return value check in n64cart_probe()
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         q->mq_freeze_depth--;
195         WARN_ON_ONCE(q->mq_freeze_depth < 0);
196         if (!q->mq_freeze_depth) {
197                 percpu_ref_resurrect(&q->q_usage_counter);
198                 wake_up_all(&q->mq_freeze_wq);
199         }
200         mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225         struct blk_mq_hw_ctx *hctx;
226         unsigned int i;
227         bool rcu = false;
228
229         blk_mq_quiesce_queue_nowait(q);
230
231         queue_for_each_hw_ctx(q, hctx, i) {
232                 if (hctx->flags & BLK_MQ_F_BLOCKING)
233                         synchronize_srcu(hctx->srcu);
234                 else
235                         rcu = true;
236         }
237         if (rcu)
238                 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253         /* dispatch requests which are inserted during quiescing */
254         blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260         struct blk_mq_hw_ctx *hctx;
261         unsigned int i;
262
263         queue_for_each_hw_ctx(q, hctx, i)
264                 if (blk_mq_hw_queue_mapped(hctx))
265                         blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, u64 alloc_time_ns)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282
283         if (data->q->elevator) {
284                 rq->tag = BLK_MQ_NO_TAG;
285                 rq->internal_tag = tag;
286         } else {
287                 rq->tag = tag;
288                 rq->internal_tag = BLK_MQ_NO_TAG;
289         }
290
291         /* csd/requeue_work/fifo_time is initialized before use */
292         rq->q = data->q;
293         rq->mq_ctx = data->ctx;
294         rq->mq_hctx = data->hctx;
295         rq->rq_flags = 0;
296         rq->cmd_flags = data->cmd_flags;
297         if (data->flags & BLK_MQ_REQ_PM)
298                 rq->rq_flags |= RQF_PM;
299         if (blk_queue_io_stat(data->q))
300                 rq->rq_flags |= RQF_IO_STAT;
301         INIT_LIST_HEAD(&rq->queuelist);
302         INIT_HLIST_NODE(&rq->hash);
303         RB_CLEAR_NODE(&rq->rb_node);
304         rq->rq_disk = NULL;
305         rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307         rq->alloc_time_ns = alloc_time_ns;
308 #endif
309         if (blk_mq_need_time_stamp(rq))
310                 rq->start_time_ns = ktime_get_ns();
311         else
312                 rq->start_time_ns = 0;
313         rq->io_start_time_ns = 0;
314         rq->stats_sectors = 0;
315         rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317         rq->nr_integrity_segments = 0;
318 #endif
319         blk_crypto_rq_set_defaults(rq);
320         /* tag was already set */
321         WRITE_ONCE(rq->deadline, 0);
322
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327
328         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329         refcount_set(&rq->ref, 1);
330
331         if (!op_is_flush(data->cmd_flags)) {
332                 struct elevator_queue *e = data->q->elevator;
333
334                 rq->elv.icq = NULL;
335                 if (e && e->type->ops.prepare_request) {
336                         if (e->type->icq_cache)
337                                 blk_mq_sched_assign_ioc(rq);
338
339                         e->type->ops.prepare_request(rq);
340                         rq->rq_flags |= RQF_ELVPRIV;
341                 }
342         }
343
344         data->hctx->queued++;
345         return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350         struct request_queue *q = data->q;
351         struct elevator_queue *e = q->elevator;
352         u64 alloc_time_ns = 0;
353         unsigned int tag;
354
355         /* alloc_time includes depth and tag waits */
356         if (blk_queue_rq_alloc_time(q))
357                 alloc_time_ns = ktime_get_ns();
358
359         if (data->cmd_flags & REQ_NOWAIT)
360                 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362         if (e) {
363                 /*
364                  * Flush/passthrough requests are special and go directly to the
365                  * dispatch list. Don't include reserved tags in the
366                  * limiting, as it isn't useful.
367                  */
368                 if (!op_is_flush(data->cmd_flags) &&
369                     !blk_op_is_passthrough(data->cmd_flags) &&
370                     e->type->ops.limit_depth &&
371                     !(data->flags & BLK_MQ_REQ_RESERVED))
372                         e->type->ops.limit_depth(data->cmd_flags, data);
373         }
374
375 retry:
376         data->ctx = blk_mq_get_ctx(q);
377         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378         if (!e)
379                 blk_mq_tag_busy(data->hctx);
380
381         /*
382          * Waiting allocations only fail because of an inactive hctx.  In that
383          * case just retry the hctx assignment and tag allocation as CPU hotplug
384          * should have migrated us to an online CPU by now.
385          */
386         tag = blk_mq_get_tag(data);
387         if (tag == BLK_MQ_NO_TAG) {
388                 if (data->flags & BLK_MQ_REQ_NOWAIT)
389                         return NULL;
390
391                 /*
392                  * Give up the CPU and sleep for a random short time to ensure
393                  * that thread using a realtime scheduling class are migrated
394                  * off the CPU, and thus off the hctx that is going away.
395                  */
396                 msleep(3);
397                 goto retry;
398         }
399         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403                 blk_mq_req_flags_t flags)
404 {
405         struct blk_mq_alloc_data data = {
406                 .q              = q,
407                 .flags          = flags,
408                 .cmd_flags      = op,
409         };
410         struct request *rq;
411         int ret;
412
413         ret = blk_queue_enter(q, flags);
414         if (ret)
415                 return ERR_PTR(ret);
416
417         rq = __blk_mq_alloc_request(&data);
418         if (!rq)
419                 goto out_queue_exit;
420         rq->__data_len = 0;
421         rq->__sector = (sector_t) -1;
422         rq->bio = rq->biotail = NULL;
423         return rq;
424 out_queue_exit:
425         blk_queue_exit(q);
426         return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433         struct blk_mq_alloc_data data = {
434                 .q              = q,
435                 .flags          = flags,
436                 .cmd_flags      = op,
437         };
438         u64 alloc_time_ns = 0;
439         unsigned int cpu;
440         unsigned int tag;
441         int ret;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         /*
448          * If the tag allocator sleeps we could get an allocation for a
449          * different hardware context.  No need to complicate the low level
450          * allocator for this for the rare use case of a command tied to
451          * a specific queue.
452          */
453         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454                 return ERR_PTR(-EINVAL);
455
456         if (hctx_idx >= q->nr_hw_queues)
457                 return ERR_PTR(-EIO);
458
459         ret = blk_queue_enter(q, flags);
460         if (ret)
461                 return ERR_PTR(ret);
462
463         /*
464          * Check if the hardware context is actually mapped to anything.
465          * If not tell the caller that it should skip this queue.
466          */
467         ret = -EXDEV;
468         data.hctx = q->queue_hw_ctx[hctx_idx];
469         if (!blk_mq_hw_queue_mapped(data.hctx))
470                 goto out_queue_exit;
471         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472         data.ctx = __blk_mq_get_ctx(q, cpu);
473
474         if (!q->elevator)
475                 blk_mq_tag_busy(data.hctx);
476
477         ret = -EWOULDBLOCK;
478         tag = blk_mq_get_tag(&data);
479         if (tag == BLK_MQ_NO_TAG)
480                 goto out_queue_exit;
481         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482
483 out_queue_exit:
484         blk_queue_exit(q);
485         return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488
489 static void __blk_mq_free_request(struct request *rq)
490 {
491         struct request_queue *q = rq->q;
492         struct blk_mq_ctx *ctx = rq->mq_ctx;
493         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494         const int sched_tag = rq->internal_tag;
495
496         blk_crypto_free_request(rq);
497         blk_pm_mark_last_busy(rq);
498         rq->mq_hctx = NULL;
499         if (rq->tag != BLK_MQ_NO_TAG)
500                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501         if (sched_tag != BLK_MQ_NO_TAG)
502                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503         blk_mq_sched_restart(hctx);
504         blk_queue_exit(q);
505 }
506
507 void blk_mq_free_request(struct request *rq)
508 {
509         struct request_queue *q = rq->q;
510         struct elevator_queue *e = q->elevator;
511         struct blk_mq_ctx *ctx = rq->mq_ctx;
512         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513
514         if (rq->rq_flags & RQF_ELVPRIV) {
515                 if (e && e->type->ops.finish_request)
516                         e->type->ops.finish_request(rq);
517                 if (rq->elv.icq) {
518                         put_io_context(rq->elv.icq->ioc);
519                         rq->elv.icq = NULL;
520                 }
521         }
522
523         ctx->rq_completed[rq_is_sync(rq)]++;
524         if (rq->rq_flags & RQF_MQ_INFLIGHT)
525                 __blk_mq_dec_active_requests(hctx);
526
527         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528                 laptop_io_completion(q->disk->bdi);
529
530         rq_qos_done(q, rq);
531
532         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533         if (refcount_dec_and_test(&rq->ref))
534                 __blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540         u64 now = 0;
541
542         if (blk_mq_need_time_stamp(rq))
543                 now = ktime_get_ns();
544
545         if (rq->rq_flags & RQF_STATS) {
546                 blk_mq_poll_stats_start(rq->q);
547                 blk_stat_add(rq, now);
548         }
549
550         blk_mq_sched_completed_request(rq, now);
551
552         blk_account_io_done(rq, now);
553
554         if (rq->end_io) {
555                 rq_qos_done(rq->q, rq);
556                 rq->end_io(rq, error);
557         } else {
558                 blk_mq_free_request(rq);
559         }
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566                 BUG();
567         __blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574         struct request *rq, *next;
575
576         llist_for_each_entry_safe(rq, next, entry, ipi_list)
577                 rq->q->mq_ops->complete(rq);
578 }
579
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588         return 0;
589 }
590
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598         int cpu = raw_smp_processor_id();
599
600         if (!IS_ENABLED(CONFIG_SMP) ||
601             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602                 return false;
603         /*
604          * With force threaded interrupts enabled, raising softirq from an SMP
605          * function call will always result in waking the ksoftirqd thread.
606          * This is probably worse than completing the request on a different
607          * cache domain.
608          */
609         if (force_irqthreads())
610                 return false;
611
612         /* same CPU or cache domain?  Complete locally */
613         if (cpu == rq->mq_ctx->cpu ||
614             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616                 return false;
617
618         /* don't try to IPI to an offline CPU */
619         return cpu_online(rq->mq_ctx->cpu);
620 }
621
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624         struct llist_head *list;
625         unsigned int cpu;
626
627         cpu = rq->mq_ctx->cpu;
628         list = &per_cpu(blk_cpu_done, cpu);
629         if (llist_add(&rq->ipi_list, list)) {
630                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631                 smp_call_function_single_async(cpu, &rq->csd);
632         }
633 }
634
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637         struct llist_head *list;
638
639         preempt_disable();
640         list = this_cpu_ptr(&blk_cpu_done);
641         if (llist_add(&rq->ipi_list, list))
642                 raise_softirq(BLOCK_SOFTIRQ);
643         preempt_enable();
644 }
645
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649
650         /*
651          * For a polled request, always complete locallly, it's pointless
652          * to redirect the completion.
653          */
654         if (rq->cmd_flags & REQ_HIPRI)
655                 return false;
656
657         if (blk_mq_complete_need_ipi(rq)) {
658                 blk_mq_complete_send_ipi(rq);
659                 return true;
660         }
661
662         if (rq->q->nr_hw_queues == 1) {
663                 blk_mq_raise_softirq(rq);
664                 return true;
665         }
666         return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669
670 /**
671  * blk_mq_complete_request - end I/O on a request
672  * @rq:         the request being processed
673  *
674  * Description:
675  *      Complete a request by scheduling the ->complete_rq operation.
676  **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679         if (!blk_mq_complete_request_remote(rq))
680                 rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685         __releases(hctx->srcu)
686 {
687         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688                 rcu_read_unlock();
689         else
690                 srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694         __acquires(hctx->srcu)
695 {
696         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697                 /* shut up gcc false positive */
698                 *srcu_idx = 0;
699                 rcu_read_lock();
700         } else
701                 *srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703
704 /**
705  * blk_mq_start_request - Start processing a request
706  * @rq: Pointer to request to be started
707  *
708  * Function used by device drivers to notify the block layer that a request
709  * is going to be processed now, so blk layer can do proper initializations
710  * such as starting the timeout timer.
711  */
712 void blk_mq_start_request(struct request *rq)
713 {
714         struct request_queue *q = rq->q;
715
716         trace_block_rq_issue(rq);
717
718         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719                 rq->io_start_time_ns = ktime_get_ns();
720                 rq->stats_sectors = blk_rq_sectors(rq);
721                 rq->rq_flags |= RQF_STATS;
722                 rq_qos_issue(q, rq);
723         }
724
725         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726
727         blk_add_timer(rq);
728         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732                 q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739         struct request_queue *q = rq->q;
740
741         blk_mq_put_driver_tag(rq);
742
743         trace_block_rq_requeue(rq);
744         rq_qos_requeue(q, rq);
745
746         if (blk_mq_request_started(rq)) {
747                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748                 rq->rq_flags &= ~RQF_TIMED_OUT;
749         }
750 }
751
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754         __blk_mq_requeue_request(rq);
755
756         /* this request will be re-inserted to io scheduler queue */
757         blk_mq_sched_requeue_request(rq);
758
759         BUG_ON(!list_empty(&rq->queuelist));
760         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766         struct request_queue *q =
767                 container_of(work, struct request_queue, requeue_work.work);
768         LIST_HEAD(rq_list);
769         struct request *rq, *next;
770
771         spin_lock_irq(&q->requeue_lock);
772         list_splice_init(&q->requeue_list, &rq_list);
773         spin_unlock_irq(&q->requeue_lock);
774
775         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777                         continue;
778
779                 rq->rq_flags &= ~RQF_SOFTBARRIER;
780                 list_del_init(&rq->queuelist);
781                 /*
782                  * If RQF_DONTPREP, rq has contained some driver specific
783                  * data, so insert it to hctx dispatch list to avoid any
784                  * merge.
785                  */
786                 if (rq->rq_flags & RQF_DONTPREP)
787                         blk_mq_request_bypass_insert(rq, false, false);
788                 else
789                         blk_mq_sched_insert_request(rq, true, false, false);
790         }
791
792         while (!list_empty(&rq_list)) {
793                 rq = list_entry(rq_list.next, struct request, queuelist);
794                 list_del_init(&rq->queuelist);
795                 blk_mq_sched_insert_request(rq, false, false, false);
796         }
797
798         blk_mq_run_hw_queues(q, false);
799 }
800
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802                                 bool kick_requeue_list)
803 {
804         struct request_queue *q = rq->q;
805         unsigned long flags;
806
807         /*
808          * We abuse this flag that is otherwise used by the I/O scheduler to
809          * request head insertion from the workqueue.
810          */
811         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812
813         spin_lock_irqsave(&q->requeue_lock, flags);
814         if (at_head) {
815                 rq->rq_flags |= RQF_SOFTBARRIER;
816                 list_add(&rq->queuelist, &q->requeue_list);
817         } else {
818                 list_add_tail(&rq->queuelist, &q->requeue_list);
819         }
820         spin_unlock_irqrestore(&q->requeue_lock, flags);
821
822         if (kick_requeue_list)
823                 blk_mq_kick_requeue_list(q);
824 }
825
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833                                     unsigned long msecs)
834 {
835         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836                                     msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842         if (tag < tags->nr_tags) {
843                 prefetch(tags->rqs[tag]);
844                 return tags->rqs[tag];
845         }
846
847         return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852                                void *priv, bool reserved)
853 {
854         /*
855          * If we find a request that isn't idle and the queue matches,
856          * we know the queue is busy. Return false to stop the iteration.
857          */
858         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859                 bool *busy = priv;
860
861                 *busy = true;
862                 return false;
863         }
864
865         return true;
866 }
867
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870         bool busy = false;
871
872         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873         return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879         req->rq_flags |= RQF_TIMED_OUT;
880         if (req->q->mq_ops->timeout) {
881                 enum blk_eh_timer_return ret;
882
883                 ret = req->q->mq_ops->timeout(req, reserved);
884                 if (ret == BLK_EH_DONE)
885                         return;
886                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887         }
888
889         blk_add_timer(req);
890 }
891
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894         unsigned long deadline;
895
896         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897                 return false;
898         if (rq->rq_flags & RQF_TIMED_OUT)
899                 return false;
900
901         deadline = READ_ONCE(rq->deadline);
902         if (time_after_eq(jiffies, deadline))
903                 return true;
904
905         if (*next == 0)
906                 *next = deadline;
907         else if (time_after(*next, deadline))
908                 *next = deadline;
909         return false;
910 }
911
912 void blk_mq_put_rq_ref(struct request *rq)
913 {
914         if (is_flush_rq(rq))
915                 rq->end_io(rq, 0);
916         else if (refcount_dec_and_test(&rq->ref))
917                 __blk_mq_free_request(rq);
918 }
919
920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
921                 struct request *rq, void *priv, bool reserved)
922 {
923         unsigned long *next = priv;
924
925         /*
926          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
927          * be reallocated underneath the timeout handler's processing, then
928          * the expire check is reliable. If the request is not expired, then
929          * it was completed and reallocated as a new request after returning
930          * from blk_mq_check_expired().
931          */
932         if (blk_mq_req_expired(rq, next))
933                 blk_mq_rq_timed_out(rq, reserved);
934         return true;
935 }
936
937 static void blk_mq_timeout_work(struct work_struct *work)
938 {
939         struct request_queue *q =
940                 container_of(work, struct request_queue, timeout_work);
941         unsigned long next = 0;
942         struct blk_mq_hw_ctx *hctx;
943         int i;
944
945         /* A deadlock might occur if a request is stuck requiring a
946          * timeout at the same time a queue freeze is waiting
947          * completion, since the timeout code would not be able to
948          * acquire the queue reference here.
949          *
950          * That's why we don't use blk_queue_enter here; instead, we use
951          * percpu_ref_tryget directly, because we need to be able to
952          * obtain a reference even in the short window between the queue
953          * starting to freeze, by dropping the first reference in
954          * blk_freeze_queue_start, and the moment the last request is
955          * consumed, marked by the instant q_usage_counter reaches
956          * zero.
957          */
958         if (!percpu_ref_tryget(&q->q_usage_counter))
959                 return;
960
961         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
962
963         if (next != 0) {
964                 mod_timer(&q->timeout, next);
965         } else {
966                 /*
967                  * Request timeouts are handled as a forward rolling timer. If
968                  * we end up here it means that no requests are pending and
969                  * also that no request has been pending for a while. Mark
970                  * each hctx as idle.
971                  */
972                 queue_for_each_hw_ctx(q, hctx, i) {
973                         /* the hctx may be unmapped, so check it here */
974                         if (blk_mq_hw_queue_mapped(hctx))
975                                 blk_mq_tag_idle(hctx);
976                 }
977         }
978         blk_queue_exit(q);
979 }
980
981 struct flush_busy_ctx_data {
982         struct blk_mq_hw_ctx *hctx;
983         struct list_head *list;
984 };
985
986 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
987 {
988         struct flush_busy_ctx_data *flush_data = data;
989         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
990         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
991         enum hctx_type type = hctx->type;
992
993         spin_lock(&ctx->lock);
994         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
995         sbitmap_clear_bit(sb, bitnr);
996         spin_unlock(&ctx->lock);
997         return true;
998 }
999
1000 /*
1001  * Process software queues that have been marked busy, splicing them
1002  * to the for-dispatch
1003  */
1004 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1005 {
1006         struct flush_busy_ctx_data data = {
1007                 .hctx = hctx,
1008                 .list = list,
1009         };
1010
1011         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1012 }
1013 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1014
1015 struct dispatch_rq_data {
1016         struct blk_mq_hw_ctx *hctx;
1017         struct request *rq;
1018 };
1019
1020 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1021                 void *data)
1022 {
1023         struct dispatch_rq_data *dispatch_data = data;
1024         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1025         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1026         enum hctx_type type = hctx->type;
1027
1028         spin_lock(&ctx->lock);
1029         if (!list_empty(&ctx->rq_lists[type])) {
1030                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1031                 list_del_init(&dispatch_data->rq->queuelist);
1032                 if (list_empty(&ctx->rq_lists[type]))
1033                         sbitmap_clear_bit(sb, bitnr);
1034         }
1035         spin_unlock(&ctx->lock);
1036
1037         return !dispatch_data->rq;
1038 }
1039
1040 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1041                                         struct blk_mq_ctx *start)
1042 {
1043         unsigned off = start ? start->index_hw[hctx->type] : 0;
1044         struct dispatch_rq_data data = {
1045                 .hctx = hctx,
1046                 .rq   = NULL,
1047         };
1048
1049         __sbitmap_for_each_set(&hctx->ctx_map, off,
1050                                dispatch_rq_from_ctx, &data);
1051
1052         return data.rq;
1053 }
1054
1055 static inline unsigned int queued_to_index(unsigned int queued)
1056 {
1057         if (!queued)
1058                 return 0;
1059
1060         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1061 }
1062
1063 static bool __blk_mq_get_driver_tag(struct request *rq)
1064 {
1065         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1066         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1067         int tag;
1068
1069         blk_mq_tag_busy(rq->mq_hctx);
1070
1071         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1072                 bt = rq->mq_hctx->tags->breserved_tags;
1073                 tag_offset = 0;
1074         } else {
1075                 if (!hctx_may_queue(rq->mq_hctx, bt))
1076                         return false;
1077         }
1078
1079         tag = __sbitmap_queue_get(bt);
1080         if (tag == BLK_MQ_NO_TAG)
1081                 return false;
1082
1083         rq->tag = tag + tag_offset;
1084         return true;
1085 }
1086
1087 bool blk_mq_get_driver_tag(struct request *rq)
1088 {
1089         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1090
1091         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1092                 return false;
1093
1094         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1095                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1096                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1097                 __blk_mq_inc_active_requests(hctx);
1098         }
1099         hctx->tags->rqs[rq->tag] = rq;
1100         return true;
1101 }
1102
1103 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1104                                 int flags, void *key)
1105 {
1106         struct blk_mq_hw_ctx *hctx;
1107
1108         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1109
1110         spin_lock(&hctx->dispatch_wait_lock);
1111         if (!list_empty(&wait->entry)) {
1112                 struct sbitmap_queue *sbq;
1113
1114                 list_del_init(&wait->entry);
1115                 sbq = hctx->tags->bitmap_tags;
1116                 atomic_dec(&sbq->ws_active);
1117         }
1118         spin_unlock(&hctx->dispatch_wait_lock);
1119
1120         blk_mq_run_hw_queue(hctx, true);
1121         return 1;
1122 }
1123
1124 /*
1125  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1126  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1127  * restart. For both cases, take care to check the condition again after
1128  * marking us as waiting.
1129  */
1130 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1131                                  struct request *rq)
1132 {
1133         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1134         struct wait_queue_head *wq;
1135         wait_queue_entry_t *wait;
1136         bool ret;
1137
1138         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1139                 blk_mq_sched_mark_restart_hctx(hctx);
1140
1141                 /*
1142                  * It's possible that a tag was freed in the window between the
1143                  * allocation failure and adding the hardware queue to the wait
1144                  * queue.
1145                  *
1146                  * Don't clear RESTART here, someone else could have set it.
1147                  * At most this will cost an extra queue run.
1148                  */
1149                 return blk_mq_get_driver_tag(rq);
1150         }
1151
1152         wait = &hctx->dispatch_wait;
1153         if (!list_empty_careful(&wait->entry))
1154                 return false;
1155
1156         wq = &bt_wait_ptr(sbq, hctx)->wait;
1157
1158         spin_lock_irq(&wq->lock);
1159         spin_lock(&hctx->dispatch_wait_lock);
1160         if (!list_empty(&wait->entry)) {
1161                 spin_unlock(&hctx->dispatch_wait_lock);
1162                 spin_unlock_irq(&wq->lock);
1163                 return false;
1164         }
1165
1166         atomic_inc(&sbq->ws_active);
1167         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1168         __add_wait_queue(wq, wait);
1169
1170         /*
1171          * It's possible that a tag was freed in the window between the
1172          * allocation failure and adding the hardware queue to the wait
1173          * queue.
1174          */
1175         ret = blk_mq_get_driver_tag(rq);
1176         if (!ret) {
1177                 spin_unlock(&hctx->dispatch_wait_lock);
1178                 spin_unlock_irq(&wq->lock);
1179                 return false;
1180         }
1181
1182         /*
1183          * We got a tag, remove ourselves from the wait queue to ensure
1184          * someone else gets the wakeup.
1185          */
1186         list_del_init(&wait->entry);
1187         atomic_dec(&sbq->ws_active);
1188         spin_unlock(&hctx->dispatch_wait_lock);
1189         spin_unlock_irq(&wq->lock);
1190
1191         return true;
1192 }
1193
1194 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1195 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1196 /*
1197  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1198  * - EWMA is one simple way to compute running average value
1199  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1200  * - take 4 as factor for avoiding to get too small(0) result, and this
1201  *   factor doesn't matter because EWMA decreases exponentially
1202  */
1203 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1204 {
1205         unsigned int ewma;
1206
1207         ewma = hctx->dispatch_busy;
1208
1209         if (!ewma && !busy)
1210                 return;
1211
1212         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1213         if (busy)
1214                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1215         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1216
1217         hctx->dispatch_busy = ewma;
1218 }
1219
1220 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1221
1222 static void blk_mq_handle_dev_resource(struct request *rq,
1223                                        struct list_head *list)
1224 {
1225         struct request *next =
1226                 list_first_entry_or_null(list, struct request, queuelist);
1227
1228         /*
1229          * If an I/O scheduler has been configured and we got a driver tag for
1230          * the next request already, free it.
1231          */
1232         if (next)
1233                 blk_mq_put_driver_tag(next);
1234
1235         list_add(&rq->queuelist, list);
1236         __blk_mq_requeue_request(rq);
1237 }
1238
1239 static void blk_mq_handle_zone_resource(struct request *rq,
1240                                         struct list_head *zone_list)
1241 {
1242         /*
1243          * If we end up here it is because we cannot dispatch a request to a
1244          * specific zone due to LLD level zone-write locking or other zone
1245          * related resource not being available. In this case, set the request
1246          * aside in zone_list for retrying it later.
1247          */
1248         list_add(&rq->queuelist, zone_list);
1249         __blk_mq_requeue_request(rq);
1250 }
1251
1252 enum prep_dispatch {
1253         PREP_DISPATCH_OK,
1254         PREP_DISPATCH_NO_TAG,
1255         PREP_DISPATCH_NO_BUDGET,
1256 };
1257
1258 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1259                                                   bool need_budget)
1260 {
1261         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1262         int budget_token = -1;
1263
1264         if (need_budget) {
1265                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1266                 if (budget_token < 0) {
1267                         blk_mq_put_driver_tag(rq);
1268                         return PREP_DISPATCH_NO_BUDGET;
1269                 }
1270                 blk_mq_set_rq_budget_token(rq, budget_token);
1271         }
1272
1273         if (!blk_mq_get_driver_tag(rq)) {
1274                 /*
1275                  * The initial allocation attempt failed, so we need to
1276                  * rerun the hardware queue when a tag is freed. The
1277                  * waitqueue takes care of that. If the queue is run
1278                  * before we add this entry back on the dispatch list,
1279                  * we'll re-run it below.
1280                  */
1281                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1282                         /*
1283                          * All budgets not got from this function will be put
1284                          * together during handling partial dispatch
1285                          */
1286                         if (need_budget)
1287                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1288                         return PREP_DISPATCH_NO_TAG;
1289                 }
1290         }
1291
1292         return PREP_DISPATCH_OK;
1293 }
1294
1295 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1296 static void blk_mq_release_budgets(struct request_queue *q,
1297                 struct list_head *list)
1298 {
1299         struct request *rq;
1300
1301         list_for_each_entry(rq, list, queuelist) {
1302                 int budget_token = blk_mq_get_rq_budget_token(rq);
1303
1304                 if (budget_token >= 0)
1305                         blk_mq_put_dispatch_budget(q, budget_token);
1306         }
1307 }
1308
1309 /*
1310  * Returns true if we did some work AND can potentially do more.
1311  */
1312 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1313                              unsigned int nr_budgets)
1314 {
1315         enum prep_dispatch prep;
1316         struct request_queue *q = hctx->queue;
1317         struct request *rq, *nxt;
1318         int errors, queued;
1319         blk_status_t ret = BLK_STS_OK;
1320         LIST_HEAD(zone_list);
1321
1322         if (list_empty(list))
1323                 return false;
1324
1325         /*
1326          * Now process all the entries, sending them to the driver.
1327          */
1328         errors = queued = 0;
1329         do {
1330                 struct blk_mq_queue_data bd;
1331
1332                 rq = list_first_entry(list, struct request, queuelist);
1333
1334                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1335                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1336                 if (prep != PREP_DISPATCH_OK)
1337                         break;
1338
1339                 list_del_init(&rq->queuelist);
1340
1341                 bd.rq = rq;
1342
1343                 /*
1344                  * Flag last if we have no more requests, or if we have more
1345                  * but can't assign a driver tag to it.
1346                  */
1347                 if (list_empty(list))
1348                         bd.last = true;
1349                 else {
1350                         nxt = list_first_entry(list, struct request, queuelist);
1351                         bd.last = !blk_mq_get_driver_tag(nxt);
1352                 }
1353
1354                 /*
1355                  * once the request is queued to lld, no need to cover the
1356                  * budget any more
1357                  */
1358                 if (nr_budgets)
1359                         nr_budgets--;
1360                 ret = q->mq_ops->queue_rq(hctx, &bd);
1361                 switch (ret) {
1362                 case BLK_STS_OK:
1363                         queued++;
1364                         break;
1365                 case BLK_STS_RESOURCE:
1366                 case BLK_STS_DEV_RESOURCE:
1367                         blk_mq_handle_dev_resource(rq, list);
1368                         goto out;
1369                 case BLK_STS_ZONE_RESOURCE:
1370                         /*
1371                          * Move the request to zone_list and keep going through
1372                          * the dispatch list to find more requests the drive can
1373                          * accept.
1374                          */
1375                         blk_mq_handle_zone_resource(rq, &zone_list);
1376                         break;
1377                 default:
1378                         errors++;
1379                         blk_mq_end_request(rq, ret);
1380                 }
1381         } while (!list_empty(list));
1382 out:
1383         if (!list_empty(&zone_list))
1384                 list_splice_tail_init(&zone_list, list);
1385
1386         hctx->dispatched[queued_to_index(queued)]++;
1387
1388         /* If we didn't flush the entire list, we could have told the driver
1389          * there was more coming, but that turned out to be a lie.
1390          */
1391         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1392                 q->mq_ops->commit_rqs(hctx);
1393         /*
1394          * Any items that need requeuing? Stuff them into hctx->dispatch,
1395          * that is where we will continue on next queue run.
1396          */
1397         if (!list_empty(list)) {
1398                 bool needs_restart;
1399                 /* For non-shared tags, the RESTART check will suffice */
1400                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1401                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1402                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1403
1404                 if (nr_budgets)
1405                         blk_mq_release_budgets(q, list);
1406
1407                 spin_lock(&hctx->lock);
1408                 list_splice_tail_init(list, &hctx->dispatch);
1409                 spin_unlock(&hctx->lock);
1410
1411                 /*
1412                  * Order adding requests to hctx->dispatch and checking
1413                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1414                  * in blk_mq_sched_restart(). Avoid restart code path to
1415                  * miss the new added requests to hctx->dispatch, meantime
1416                  * SCHED_RESTART is observed here.
1417                  */
1418                 smp_mb();
1419
1420                 /*
1421                  * If SCHED_RESTART was set by the caller of this function and
1422                  * it is no longer set that means that it was cleared by another
1423                  * thread and hence that a queue rerun is needed.
1424                  *
1425                  * If 'no_tag' is set, that means that we failed getting
1426                  * a driver tag with an I/O scheduler attached. If our dispatch
1427                  * waitqueue is no longer active, ensure that we run the queue
1428                  * AFTER adding our entries back to the list.
1429                  *
1430                  * If no I/O scheduler has been configured it is possible that
1431                  * the hardware queue got stopped and restarted before requests
1432                  * were pushed back onto the dispatch list. Rerun the queue to
1433                  * avoid starvation. Notes:
1434                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1435                  *   been stopped before rerunning a queue.
1436                  * - Some but not all block drivers stop a queue before
1437                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1438                  *   and dm-rq.
1439                  *
1440                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1441                  * bit is set, run queue after a delay to avoid IO stalls
1442                  * that could otherwise occur if the queue is idle.  We'll do
1443                  * similar if we couldn't get budget and SCHED_RESTART is set.
1444                  */
1445                 needs_restart = blk_mq_sched_needs_restart(hctx);
1446                 if (!needs_restart ||
1447                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1448                         blk_mq_run_hw_queue(hctx, true);
1449                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1450                                            no_budget_avail))
1451                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1452
1453                 blk_mq_update_dispatch_busy(hctx, true);
1454                 return false;
1455         } else
1456                 blk_mq_update_dispatch_busy(hctx, false);
1457
1458         return (queued + errors) != 0;
1459 }
1460
1461 /**
1462  * __blk_mq_run_hw_queue - Run a hardware queue.
1463  * @hctx: Pointer to the hardware queue to run.
1464  *
1465  * Send pending requests to the hardware.
1466  */
1467 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1468 {
1469         int srcu_idx;
1470
1471         /*
1472          * We can't run the queue inline with ints disabled. Ensure that
1473          * we catch bad users of this early.
1474          */
1475         WARN_ON_ONCE(in_interrupt());
1476
1477         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1478
1479         hctx_lock(hctx, &srcu_idx);
1480         blk_mq_sched_dispatch_requests(hctx);
1481         hctx_unlock(hctx, srcu_idx);
1482 }
1483
1484 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1485 {
1486         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1487
1488         if (cpu >= nr_cpu_ids)
1489                 cpu = cpumask_first(hctx->cpumask);
1490         return cpu;
1491 }
1492
1493 /*
1494  * It'd be great if the workqueue API had a way to pass
1495  * in a mask and had some smarts for more clever placement.
1496  * For now we just round-robin here, switching for every
1497  * BLK_MQ_CPU_WORK_BATCH queued items.
1498  */
1499 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1500 {
1501         bool tried = false;
1502         int next_cpu = hctx->next_cpu;
1503
1504         if (hctx->queue->nr_hw_queues == 1)
1505                 return WORK_CPU_UNBOUND;
1506
1507         if (--hctx->next_cpu_batch <= 0) {
1508 select_cpu:
1509                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1510                                 cpu_online_mask);
1511                 if (next_cpu >= nr_cpu_ids)
1512                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1513                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1514         }
1515
1516         /*
1517          * Do unbound schedule if we can't find a online CPU for this hctx,
1518          * and it should only happen in the path of handling CPU DEAD.
1519          */
1520         if (!cpu_online(next_cpu)) {
1521                 if (!tried) {
1522                         tried = true;
1523                         goto select_cpu;
1524                 }
1525
1526                 /*
1527                  * Make sure to re-select CPU next time once after CPUs
1528                  * in hctx->cpumask become online again.
1529                  */
1530                 hctx->next_cpu = next_cpu;
1531                 hctx->next_cpu_batch = 1;
1532                 return WORK_CPU_UNBOUND;
1533         }
1534
1535         hctx->next_cpu = next_cpu;
1536         return next_cpu;
1537 }
1538
1539 /**
1540  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1541  * @hctx: Pointer to the hardware queue to run.
1542  * @async: If we want to run the queue asynchronously.
1543  * @msecs: Milliseconds of delay to wait before running the queue.
1544  *
1545  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1546  * with a delay of @msecs.
1547  */
1548 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1549                                         unsigned long msecs)
1550 {
1551         if (unlikely(blk_mq_hctx_stopped(hctx)))
1552                 return;
1553
1554         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1555                 int cpu = get_cpu();
1556                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1557                         __blk_mq_run_hw_queue(hctx);
1558                         put_cpu();
1559                         return;
1560                 }
1561
1562                 put_cpu();
1563         }
1564
1565         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1566                                     msecs_to_jiffies(msecs));
1567 }
1568
1569 /**
1570  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1571  * @hctx: Pointer to the hardware queue to run.
1572  * @msecs: Milliseconds of delay to wait before running the queue.
1573  *
1574  * Run a hardware queue asynchronously with a delay of @msecs.
1575  */
1576 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1577 {
1578         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1579 }
1580 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1581
1582 /**
1583  * blk_mq_run_hw_queue - Start to run a hardware queue.
1584  * @hctx: Pointer to the hardware queue to run.
1585  * @async: If we want to run the queue asynchronously.
1586  *
1587  * Check if the request queue is not in a quiesced state and if there are
1588  * pending requests to be sent. If this is true, run the queue to send requests
1589  * to hardware.
1590  */
1591 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1592 {
1593         int srcu_idx;
1594         bool need_run;
1595
1596         /*
1597          * When queue is quiesced, we may be switching io scheduler, or
1598          * updating nr_hw_queues, or other things, and we can't run queue
1599          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1600          *
1601          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1602          * quiesced.
1603          */
1604         hctx_lock(hctx, &srcu_idx);
1605         need_run = !blk_queue_quiesced(hctx->queue) &&
1606                 blk_mq_hctx_has_pending(hctx);
1607         hctx_unlock(hctx, srcu_idx);
1608
1609         if (need_run)
1610                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1611 }
1612 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1613
1614 /*
1615  * Is the request queue handled by an IO scheduler that does not respect
1616  * hardware queues when dispatching?
1617  */
1618 static bool blk_mq_has_sqsched(struct request_queue *q)
1619 {
1620         struct elevator_queue *e = q->elevator;
1621
1622         if (e && e->type->ops.dispatch_request &&
1623             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1624                 return true;
1625         return false;
1626 }
1627
1628 /*
1629  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1630  * scheduler.
1631  */
1632 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1633 {
1634         struct blk_mq_hw_ctx *hctx;
1635
1636         /*
1637          * If the IO scheduler does not respect hardware queues when
1638          * dispatching, we just don't bother with multiple HW queues and
1639          * dispatch from hctx for the current CPU since running multiple queues
1640          * just causes lock contention inside the scheduler and pointless cache
1641          * bouncing.
1642          */
1643         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1644                                      raw_smp_processor_id());
1645         if (!blk_mq_hctx_stopped(hctx))
1646                 return hctx;
1647         return NULL;
1648 }
1649
1650 /**
1651  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1652  * @q: Pointer to the request queue to run.
1653  * @async: If we want to run the queue asynchronously.
1654  */
1655 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1656 {
1657         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1658         int i;
1659
1660         sq_hctx = NULL;
1661         if (blk_mq_has_sqsched(q))
1662                 sq_hctx = blk_mq_get_sq_hctx(q);
1663         queue_for_each_hw_ctx(q, hctx, i) {
1664                 if (blk_mq_hctx_stopped(hctx))
1665                         continue;
1666                 /*
1667                  * Dispatch from this hctx either if there's no hctx preferred
1668                  * by IO scheduler or if it has requests that bypass the
1669                  * scheduler.
1670                  */
1671                 if (!sq_hctx || sq_hctx == hctx ||
1672                     !list_empty_careful(&hctx->dispatch))
1673                         blk_mq_run_hw_queue(hctx, async);
1674         }
1675 }
1676 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1677
1678 /**
1679  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1680  * @q: Pointer to the request queue to run.
1681  * @msecs: Milliseconds of delay to wait before running the queues.
1682  */
1683 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1684 {
1685         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1686         int i;
1687
1688         sq_hctx = NULL;
1689         if (blk_mq_has_sqsched(q))
1690                 sq_hctx = blk_mq_get_sq_hctx(q);
1691         queue_for_each_hw_ctx(q, hctx, i) {
1692                 if (blk_mq_hctx_stopped(hctx))
1693                         continue;
1694                 /*
1695                  * Dispatch from this hctx either if there's no hctx preferred
1696                  * by IO scheduler or if it has requests that bypass the
1697                  * scheduler.
1698                  */
1699                 if (!sq_hctx || sq_hctx == hctx ||
1700                     !list_empty_careful(&hctx->dispatch))
1701                         blk_mq_delay_run_hw_queue(hctx, msecs);
1702         }
1703 }
1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1705
1706 /**
1707  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1708  * @q: request queue.
1709  *
1710  * The caller is responsible for serializing this function against
1711  * blk_mq_{start,stop}_hw_queue().
1712  */
1713 bool blk_mq_queue_stopped(struct request_queue *q)
1714 {
1715         struct blk_mq_hw_ctx *hctx;
1716         int i;
1717
1718         queue_for_each_hw_ctx(q, hctx, i)
1719                 if (blk_mq_hctx_stopped(hctx))
1720                         return true;
1721
1722         return false;
1723 }
1724 EXPORT_SYMBOL(blk_mq_queue_stopped);
1725
1726 /*
1727  * This function is often used for pausing .queue_rq() by driver when
1728  * there isn't enough resource or some conditions aren't satisfied, and
1729  * BLK_STS_RESOURCE is usually returned.
1730  *
1731  * We do not guarantee that dispatch can be drained or blocked
1732  * after blk_mq_stop_hw_queue() returns. Please use
1733  * blk_mq_quiesce_queue() for that requirement.
1734  */
1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1736 {
1737         cancel_delayed_work(&hctx->run_work);
1738
1739         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740 }
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742
1743 /*
1744  * This function is often used for pausing .queue_rq() by driver when
1745  * there isn't enough resource or some conditions aren't satisfied, and
1746  * BLK_STS_RESOURCE is usually returned.
1747  *
1748  * We do not guarantee that dispatch can be drained or blocked
1749  * after blk_mq_stop_hw_queues() returns. Please use
1750  * blk_mq_quiesce_queue() for that requirement.
1751  */
1752 void blk_mq_stop_hw_queues(struct request_queue *q)
1753 {
1754         struct blk_mq_hw_ctx *hctx;
1755         int i;
1756
1757         queue_for_each_hw_ctx(q, hctx, i)
1758                 blk_mq_stop_hw_queue(hctx);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1761
1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1763 {
1764         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765
1766         blk_mq_run_hw_queue(hctx, false);
1767 }
1768 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1769
1770 void blk_mq_start_hw_queues(struct request_queue *q)
1771 {
1772         struct blk_mq_hw_ctx *hctx;
1773         int i;
1774
1775         queue_for_each_hw_ctx(q, hctx, i)
1776                 blk_mq_start_hw_queue(hctx);
1777 }
1778 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1779
1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1781 {
1782         if (!blk_mq_hctx_stopped(hctx))
1783                 return;
1784
1785         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1786         blk_mq_run_hw_queue(hctx, async);
1787 }
1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1789
1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791 {
1792         struct blk_mq_hw_ctx *hctx;
1793         int i;
1794
1795         queue_for_each_hw_ctx(q, hctx, i)
1796                 blk_mq_start_stopped_hw_queue(hctx, async);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1799
1800 static void blk_mq_run_work_fn(struct work_struct *work)
1801 {
1802         struct blk_mq_hw_ctx *hctx;
1803
1804         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805
1806         /*
1807          * If we are stopped, don't run the queue.
1808          */
1809         if (blk_mq_hctx_stopped(hctx))
1810                 return;
1811
1812         __blk_mq_run_hw_queue(hctx);
1813 }
1814
1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1816                                             struct request *rq,
1817                                             bool at_head)
1818 {
1819         struct blk_mq_ctx *ctx = rq->mq_ctx;
1820         enum hctx_type type = hctx->type;
1821
1822         lockdep_assert_held(&ctx->lock);
1823
1824         trace_block_rq_insert(rq);
1825
1826         if (at_head)
1827                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828         else
1829                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830 }
1831
1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1833                              bool at_head)
1834 {
1835         struct blk_mq_ctx *ctx = rq->mq_ctx;
1836
1837         lockdep_assert_held(&ctx->lock);
1838
1839         __blk_mq_insert_req_list(hctx, rq, at_head);
1840         blk_mq_hctx_mark_pending(hctx, ctx);
1841 }
1842
1843 /**
1844  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1845  * @rq: Pointer to request to be inserted.
1846  * @at_head: true if the request should be inserted at the head of the list.
1847  * @run_queue: If we should run the hardware queue after inserting the request.
1848  *
1849  * Should only be used carefully, when the caller knows we want to
1850  * bypass a potential IO scheduler on the target device.
1851  */
1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1853                                   bool run_queue)
1854 {
1855         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856
1857         spin_lock(&hctx->lock);
1858         if (at_head)
1859                 list_add(&rq->queuelist, &hctx->dispatch);
1860         else
1861                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1862         spin_unlock(&hctx->lock);
1863
1864         if (run_queue)
1865                 blk_mq_run_hw_queue(hctx, false);
1866 }
1867
1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1869                             struct list_head *list)
1870
1871 {
1872         struct request *rq;
1873         enum hctx_type type = hctx->type;
1874
1875         /*
1876          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1877          * offline now
1878          */
1879         list_for_each_entry(rq, list, queuelist) {
1880                 BUG_ON(rq->mq_ctx != ctx);
1881                 trace_block_rq_insert(rq);
1882         }
1883
1884         spin_lock(&ctx->lock);
1885         list_splice_tail_init(list, &ctx->rq_lists[type]);
1886         blk_mq_hctx_mark_pending(hctx, ctx);
1887         spin_unlock(&ctx->lock);
1888 }
1889
1890 static int plug_rq_cmp(void *priv, const struct list_head *a,
1891                        const struct list_head *b)
1892 {
1893         struct request *rqa = container_of(a, struct request, queuelist);
1894         struct request *rqb = container_of(b, struct request, queuelist);
1895
1896         if (rqa->mq_ctx != rqb->mq_ctx)
1897                 return rqa->mq_ctx > rqb->mq_ctx;
1898         if (rqa->mq_hctx != rqb->mq_hctx)
1899                 return rqa->mq_hctx > rqb->mq_hctx;
1900
1901         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1902 }
1903
1904 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1905 {
1906         LIST_HEAD(list);
1907
1908         if (list_empty(&plug->mq_list))
1909                 return;
1910         list_splice_init(&plug->mq_list, &list);
1911
1912         if (plug->rq_count > 2 && plug->multiple_queues)
1913                 list_sort(NULL, &list, plug_rq_cmp);
1914
1915         plug->rq_count = 0;
1916
1917         do {
1918                 struct list_head rq_list;
1919                 struct request *rq, *head_rq = list_entry_rq(list.next);
1920                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1921                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1922                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1923                 unsigned int depth = 1;
1924
1925                 list_for_each_continue(pos, &list) {
1926                         rq = list_entry_rq(pos);
1927                         BUG_ON(!rq->q);
1928                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1929                                 break;
1930                         depth++;
1931                 }
1932
1933                 list_cut_before(&rq_list, &list, pos);
1934                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1935                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1936                                                 from_schedule);
1937         } while(!list_empty(&list));
1938 }
1939
1940 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1941                 unsigned int nr_segs)
1942 {
1943         int err;
1944
1945         if (bio->bi_opf & REQ_RAHEAD)
1946                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1947
1948         rq->__sector = bio->bi_iter.bi_sector;
1949         rq->write_hint = bio->bi_write_hint;
1950         blk_rq_bio_prep(rq, bio, nr_segs);
1951
1952         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1953         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1954         WARN_ON_ONCE(err);
1955
1956         blk_account_io_start(rq);
1957 }
1958
1959 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1960                                             struct request *rq,
1961                                             blk_qc_t *cookie, bool last)
1962 {
1963         struct request_queue *q = rq->q;
1964         struct blk_mq_queue_data bd = {
1965                 .rq = rq,
1966                 .last = last,
1967         };
1968         blk_qc_t new_cookie;
1969         blk_status_t ret;
1970
1971         new_cookie = request_to_qc_t(hctx, rq);
1972
1973         /*
1974          * For OK queue, we are done. For error, caller may kill it.
1975          * Any other error (busy), just add it to our list as we
1976          * previously would have done.
1977          */
1978         ret = q->mq_ops->queue_rq(hctx, &bd);
1979         switch (ret) {
1980         case BLK_STS_OK:
1981                 blk_mq_update_dispatch_busy(hctx, false);
1982                 *cookie = new_cookie;
1983                 break;
1984         case BLK_STS_RESOURCE:
1985         case BLK_STS_DEV_RESOURCE:
1986                 blk_mq_update_dispatch_busy(hctx, true);
1987                 __blk_mq_requeue_request(rq);
1988                 break;
1989         default:
1990                 blk_mq_update_dispatch_busy(hctx, false);
1991                 *cookie = BLK_QC_T_NONE;
1992                 break;
1993         }
1994
1995         return ret;
1996 }
1997
1998 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1999                                                 struct request *rq,
2000                                                 blk_qc_t *cookie,
2001                                                 bool bypass_insert, bool last)
2002 {
2003         struct request_queue *q = rq->q;
2004         bool run_queue = true;
2005         int budget_token;
2006
2007         /*
2008          * RCU or SRCU read lock is needed before checking quiesced flag.
2009          *
2010          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2011          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2012          * and avoid driver to try to dispatch again.
2013          */
2014         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2015                 run_queue = false;
2016                 bypass_insert = false;
2017                 goto insert;
2018         }
2019
2020         if (q->elevator && !bypass_insert)
2021                 goto insert;
2022
2023         budget_token = blk_mq_get_dispatch_budget(q);
2024         if (budget_token < 0)
2025                 goto insert;
2026
2027         blk_mq_set_rq_budget_token(rq, budget_token);
2028
2029         if (!blk_mq_get_driver_tag(rq)) {
2030                 blk_mq_put_dispatch_budget(q, budget_token);
2031                 goto insert;
2032         }
2033
2034         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2035 insert:
2036         if (bypass_insert)
2037                 return BLK_STS_RESOURCE;
2038
2039         blk_mq_sched_insert_request(rq, false, run_queue, false);
2040
2041         return BLK_STS_OK;
2042 }
2043
2044 /**
2045  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2046  * @hctx: Pointer of the associated hardware queue.
2047  * @rq: Pointer to request to be sent.
2048  * @cookie: Request queue cookie.
2049  *
2050  * If the device has enough resources to accept a new request now, send the
2051  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2052  * we can try send it another time in the future. Requests inserted at this
2053  * queue have higher priority.
2054  */
2055 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2056                 struct request *rq, blk_qc_t *cookie)
2057 {
2058         blk_status_t ret;
2059         int srcu_idx;
2060
2061         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2062
2063         hctx_lock(hctx, &srcu_idx);
2064
2065         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2066         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2067                 blk_mq_request_bypass_insert(rq, false, true);
2068         else if (ret != BLK_STS_OK)
2069                 blk_mq_end_request(rq, ret);
2070
2071         hctx_unlock(hctx, srcu_idx);
2072 }
2073
2074 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2075 {
2076         blk_status_t ret;
2077         int srcu_idx;
2078         blk_qc_t unused_cookie;
2079         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2080
2081         hctx_lock(hctx, &srcu_idx);
2082         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2083         hctx_unlock(hctx, srcu_idx);
2084
2085         return ret;
2086 }
2087
2088 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2089                 struct list_head *list)
2090 {
2091         int queued = 0;
2092         int errors = 0;
2093
2094         while (!list_empty(list)) {
2095                 blk_status_t ret;
2096                 struct request *rq = list_first_entry(list, struct request,
2097                                 queuelist);
2098
2099                 list_del_init(&rq->queuelist);
2100                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2101                 if (ret != BLK_STS_OK) {
2102                         if (ret == BLK_STS_RESOURCE ||
2103                                         ret == BLK_STS_DEV_RESOURCE) {
2104                                 blk_mq_request_bypass_insert(rq, false,
2105                                                         list_empty(list));
2106                                 break;
2107                         }
2108                         blk_mq_end_request(rq, ret);
2109                         errors++;
2110                 } else
2111                         queued++;
2112         }
2113
2114         /*
2115          * If we didn't flush the entire list, we could have told
2116          * the driver there was more coming, but that turned out to
2117          * be a lie.
2118          */
2119         if ((!list_empty(list) || errors) &&
2120              hctx->queue->mq_ops->commit_rqs && queued)
2121                 hctx->queue->mq_ops->commit_rqs(hctx);
2122 }
2123
2124 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2125 {
2126         list_add_tail(&rq->queuelist, &plug->mq_list);
2127         plug->rq_count++;
2128         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2129                 struct request *tmp;
2130
2131                 tmp = list_first_entry(&plug->mq_list, struct request,
2132                                                 queuelist);
2133                 if (tmp->q != rq->q)
2134                         plug->multiple_queues = true;
2135         }
2136 }
2137
2138 /*
2139  * Allow 4x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2140  * queues. This is important for md arrays to benefit from merging
2141  * requests.
2142  */
2143 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2144 {
2145         if (plug->multiple_queues)
2146                 return BLK_MAX_REQUEST_COUNT * 4;
2147         return BLK_MAX_REQUEST_COUNT;
2148 }
2149
2150 /**
2151  * blk_mq_submit_bio - Create and send a request to block device.
2152  * @bio: Bio pointer.
2153  *
2154  * Builds up a request structure from @q and @bio and send to the device. The
2155  * request may not be queued directly to hardware if:
2156  * * This request can be merged with another one
2157  * * We want to place request at plug queue for possible future merging
2158  * * There is an IO scheduler active at this queue
2159  *
2160  * It will not queue the request if there is an error with the bio, or at the
2161  * request creation.
2162  *
2163  * Returns: Request queue cookie.
2164  */
2165 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2166 {
2167         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2168         const int is_sync = op_is_sync(bio->bi_opf);
2169         const int is_flush_fua = op_is_flush(bio->bi_opf);
2170         struct blk_mq_alloc_data data = {
2171                 .q              = q,
2172         };
2173         struct request *rq;
2174         struct blk_plug *plug;
2175         struct request *same_queue_rq = NULL;
2176         unsigned int nr_segs;
2177         blk_qc_t cookie;
2178         blk_status_t ret;
2179         bool hipri;
2180
2181         blk_queue_bounce(q, &bio);
2182         __blk_queue_split(&bio, &nr_segs);
2183
2184         if (!bio_integrity_prep(bio))
2185                 goto queue_exit;
2186
2187         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2188             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2189                 goto queue_exit;
2190
2191         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2192                 goto queue_exit;
2193
2194         rq_qos_throttle(q, bio);
2195
2196         hipri = bio->bi_opf & REQ_HIPRI;
2197
2198         data.cmd_flags = bio->bi_opf;
2199         rq = __blk_mq_alloc_request(&data);
2200         if (unlikely(!rq)) {
2201                 rq_qos_cleanup(q, bio);
2202                 if (bio->bi_opf & REQ_NOWAIT)
2203                         bio_wouldblock_error(bio);
2204                 goto queue_exit;
2205         }
2206
2207         trace_block_getrq(bio);
2208
2209         rq_qos_track(q, rq, bio);
2210
2211         cookie = request_to_qc_t(data.hctx, rq);
2212
2213         blk_mq_bio_to_request(rq, bio, nr_segs);
2214
2215         ret = blk_crypto_init_request(rq);
2216         if (ret != BLK_STS_OK) {
2217                 bio->bi_status = ret;
2218                 bio_endio(bio);
2219                 blk_mq_free_request(rq);
2220                 return BLK_QC_T_NONE;
2221         }
2222
2223         plug = blk_mq_plug(q, bio);
2224         if (unlikely(is_flush_fua)) {
2225                 /* Bypass scheduler for flush requests */
2226                 blk_insert_flush(rq);
2227                 blk_mq_run_hw_queue(data.hctx, true);
2228         } else if (plug && (q->nr_hw_queues == 1 ||
2229                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2230                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2231                 /*
2232                  * Use plugging if we have a ->commit_rqs() hook as well, as
2233                  * we know the driver uses bd->last in a smart fashion.
2234                  *
2235                  * Use normal plugging if this disk is slow HDD, as sequential
2236                  * IO may benefit a lot from plug merging.
2237                  */
2238                 unsigned int request_count = plug->rq_count;
2239                 struct request *last = NULL;
2240
2241                 if (!request_count)
2242                         trace_block_plug(q);
2243                 else
2244                         last = list_entry_rq(plug->mq_list.prev);
2245
2246                 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2247                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2248                         blk_flush_plug_list(plug, false);
2249                         trace_block_plug(q);
2250                 }
2251
2252                 blk_add_rq_to_plug(plug, rq);
2253         } else if (q->elevator) {
2254                 /* Insert the request at the IO scheduler queue */
2255                 blk_mq_sched_insert_request(rq, false, true, true);
2256         } else if (plug && !blk_queue_nomerges(q)) {
2257                 /*
2258                  * We do limited plugging. If the bio can be merged, do that.
2259                  * Otherwise the existing request in the plug list will be
2260                  * issued. So the plug list will have one request at most
2261                  * The plug list might get flushed before this. If that happens,
2262                  * the plug list is empty, and same_queue_rq is invalid.
2263                  */
2264                 if (list_empty(&plug->mq_list))
2265                         same_queue_rq = NULL;
2266                 if (same_queue_rq) {
2267                         list_del_init(&same_queue_rq->queuelist);
2268                         plug->rq_count--;
2269                 }
2270                 blk_add_rq_to_plug(plug, rq);
2271                 trace_block_plug(q);
2272
2273                 if (same_queue_rq) {
2274                         data.hctx = same_queue_rq->mq_hctx;
2275                         trace_block_unplug(q, 1, true);
2276                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2277                                         &cookie);
2278                 }
2279         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2280                         !data.hctx->dispatch_busy) {
2281                 /*
2282                  * There is no scheduler and we can try to send directly
2283                  * to the hardware.
2284                  */
2285                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2286         } else {
2287                 /* Default case. */
2288                 blk_mq_sched_insert_request(rq, false, true, true);
2289         }
2290
2291         if (!hipri)
2292                 return BLK_QC_T_NONE;
2293         return cookie;
2294 queue_exit:
2295         blk_queue_exit(q);
2296         return BLK_QC_T_NONE;
2297 }
2298
2299 static size_t order_to_size(unsigned int order)
2300 {
2301         return (size_t)PAGE_SIZE << order;
2302 }
2303
2304 /* called before freeing request pool in @tags */
2305 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2306                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2307 {
2308         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2309         struct page *page;
2310         unsigned long flags;
2311
2312         list_for_each_entry(page, &tags->page_list, lru) {
2313                 unsigned long start = (unsigned long)page_address(page);
2314                 unsigned long end = start + order_to_size(page->private);
2315                 int i;
2316
2317                 for (i = 0; i < set->queue_depth; i++) {
2318                         struct request *rq = drv_tags->rqs[i];
2319                         unsigned long rq_addr = (unsigned long)rq;
2320
2321                         if (rq_addr >= start && rq_addr < end) {
2322                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2323                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2324                         }
2325                 }
2326         }
2327
2328         /*
2329          * Wait until all pending iteration is done.
2330          *
2331          * Request reference is cleared and it is guaranteed to be observed
2332          * after the ->lock is released.
2333          */
2334         spin_lock_irqsave(&drv_tags->lock, flags);
2335         spin_unlock_irqrestore(&drv_tags->lock, flags);
2336 }
2337
2338 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2339                      unsigned int hctx_idx)
2340 {
2341         struct page *page;
2342
2343         if (tags->rqs && set->ops->exit_request) {
2344                 int i;
2345
2346                 for (i = 0; i < tags->nr_tags; i++) {
2347                         struct request *rq = tags->static_rqs[i];
2348
2349                         if (!rq)
2350                                 continue;
2351                         set->ops->exit_request(set, rq, hctx_idx);
2352                         tags->static_rqs[i] = NULL;
2353                 }
2354         }
2355
2356         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2357
2358         while (!list_empty(&tags->page_list)) {
2359                 page = list_first_entry(&tags->page_list, struct page, lru);
2360                 list_del_init(&page->lru);
2361                 /*
2362                  * Remove kmemleak object previously allocated in
2363                  * blk_mq_alloc_rqs().
2364                  */
2365                 kmemleak_free(page_address(page));
2366                 __free_pages(page, page->private);
2367         }
2368 }
2369
2370 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2371 {
2372         kfree(tags->rqs);
2373         tags->rqs = NULL;
2374         kfree(tags->static_rqs);
2375         tags->static_rqs = NULL;
2376
2377         blk_mq_free_tags(tags, flags);
2378 }
2379
2380 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2381                                         unsigned int hctx_idx,
2382                                         unsigned int nr_tags,
2383                                         unsigned int reserved_tags,
2384                                         unsigned int flags)
2385 {
2386         struct blk_mq_tags *tags;
2387         int node;
2388
2389         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2390         if (node == NUMA_NO_NODE)
2391                 node = set->numa_node;
2392
2393         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2394         if (!tags)
2395                 return NULL;
2396
2397         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2398                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2399                                  node);
2400         if (!tags->rqs) {
2401                 blk_mq_free_tags(tags, flags);
2402                 return NULL;
2403         }
2404
2405         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2406                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2407                                         node);
2408         if (!tags->static_rqs) {
2409                 kfree(tags->rqs);
2410                 blk_mq_free_tags(tags, flags);
2411                 return NULL;
2412         }
2413
2414         return tags;
2415 }
2416
2417 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2418                                unsigned int hctx_idx, int node)
2419 {
2420         int ret;
2421
2422         if (set->ops->init_request) {
2423                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2424                 if (ret)
2425                         return ret;
2426         }
2427
2428         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2429         return 0;
2430 }
2431
2432 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2433                      unsigned int hctx_idx, unsigned int depth)
2434 {
2435         unsigned int i, j, entries_per_page, max_order = 4;
2436         size_t rq_size, left;
2437         int node;
2438
2439         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2440         if (node == NUMA_NO_NODE)
2441                 node = set->numa_node;
2442
2443         INIT_LIST_HEAD(&tags->page_list);
2444
2445         /*
2446          * rq_size is the size of the request plus driver payload, rounded
2447          * to the cacheline size
2448          */
2449         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2450                                 cache_line_size());
2451         left = rq_size * depth;
2452
2453         for (i = 0; i < depth; ) {
2454                 int this_order = max_order;
2455                 struct page *page;
2456                 int to_do;
2457                 void *p;
2458
2459                 while (this_order && left < order_to_size(this_order - 1))
2460                         this_order--;
2461
2462                 do {
2463                         page = alloc_pages_node(node,
2464                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2465                                 this_order);
2466                         if (page)
2467                                 break;
2468                         if (!this_order--)
2469                                 break;
2470                         if (order_to_size(this_order) < rq_size)
2471                                 break;
2472                 } while (1);
2473
2474                 if (!page)
2475                         goto fail;
2476
2477                 page->private = this_order;
2478                 list_add_tail(&page->lru, &tags->page_list);
2479
2480                 p = page_address(page);
2481                 /*
2482                  * Allow kmemleak to scan these pages as they contain pointers
2483                  * to additional allocations like via ops->init_request().
2484                  */
2485                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2486                 entries_per_page = order_to_size(this_order) / rq_size;
2487                 to_do = min(entries_per_page, depth - i);
2488                 left -= to_do * rq_size;
2489                 for (j = 0; j < to_do; j++) {
2490                         struct request *rq = p;
2491
2492                         tags->static_rqs[i] = rq;
2493                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2494                                 tags->static_rqs[i] = NULL;
2495                                 goto fail;
2496                         }
2497
2498                         p += rq_size;
2499                         i++;
2500                 }
2501         }
2502         return 0;
2503
2504 fail:
2505         blk_mq_free_rqs(set, tags, hctx_idx);
2506         return -ENOMEM;
2507 }
2508
2509 struct rq_iter_data {
2510         struct blk_mq_hw_ctx *hctx;
2511         bool has_rq;
2512 };
2513
2514 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2515 {
2516         struct rq_iter_data *iter_data = data;
2517
2518         if (rq->mq_hctx != iter_data->hctx)
2519                 return true;
2520         iter_data->has_rq = true;
2521         return false;
2522 }
2523
2524 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2525 {
2526         struct blk_mq_tags *tags = hctx->sched_tags ?
2527                         hctx->sched_tags : hctx->tags;
2528         struct rq_iter_data data = {
2529                 .hctx   = hctx,
2530         };
2531
2532         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2533         return data.has_rq;
2534 }
2535
2536 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2537                 struct blk_mq_hw_ctx *hctx)
2538 {
2539         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2540                 return false;
2541         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2542                 return false;
2543         return true;
2544 }
2545
2546 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2547 {
2548         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2549                         struct blk_mq_hw_ctx, cpuhp_online);
2550
2551         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2552             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2553                 return 0;
2554
2555         /*
2556          * Prevent new request from being allocated on the current hctx.
2557          *
2558          * The smp_mb__after_atomic() Pairs with the implied barrier in
2559          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2560          * seen once we return from the tag allocator.
2561          */
2562         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2563         smp_mb__after_atomic();
2564
2565         /*
2566          * Try to grab a reference to the queue and wait for any outstanding
2567          * requests.  If we could not grab a reference the queue has been
2568          * frozen and there are no requests.
2569          */
2570         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2571                 while (blk_mq_hctx_has_requests(hctx))
2572                         msleep(5);
2573                 percpu_ref_put(&hctx->queue->q_usage_counter);
2574         }
2575
2576         return 0;
2577 }
2578
2579 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2580 {
2581         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2582                         struct blk_mq_hw_ctx, cpuhp_online);
2583
2584         if (cpumask_test_cpu(cpu, hctx->cpumask))
2585                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2586         return 0;
2587 }
2588
2589 /*
2590  * 'cpu' is going away. splice any existing rq_list entries from this
2591  * software queue to the hw queue dispatch list, and ensure that it
2592  * gets run.
2593  */
2594 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2595 {
2596         struct blk_mq_hw_ctx *hctx;
2597         struct blk_mq_ctx *ctx;
2598         LIST_HEAD(tmp);
2599         enum hctx_type type;
2600
2601         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2602         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2603                 return 0;
2604
2605         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2606         type = hctx->type;
2607
2608         spin_lock(&ctx->lock);
2609         if (!list_empty(&ctx->rq_lists[type])) {
2610                 list_splice_init(&ctx->rq_lists[type], &tmp);
2611                 blk_mq_hctx_clear_pending(hctx, ctx);
2612         }
2613         spin_unlock(&ctx->lock);
2614
2615         if (list_empty(&tmp))
2616                 return 0;
2617
2618         spin_lock(&hctx->lock);
2619         list_splice_tail_init(&tmp, &hctx->dispatch);
2620         spin_unlock(&hctx->lock);
2621
2622         blk_mq_run_hw_queue(hctx, true);
2623         return 0;
2624 }
2625
2626 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2627 {
2628         if (!(hctx->flags & BLK_MQ_F_STACKING))
2629                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2630                                                     &hctx->cpuhp_online);
2631         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2632                                             &hctx->cpuhp_dead);
2633 }
2634
2635 /*
2636  * Before freeing hw queue, clearing the flush request reference in
2637  * tags->rqs[] for avoiding potential UAF.
2638  */
2639 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2640                 unsigned int queue_depth, struct request *flush_rq)
2641 {
2642         int i;
2643         unsigned long flags;
2644
2645         /* The hw queue may not be mapped yet */
2646         if (!tags)
2647                 return;
2648
2649         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2650
2651         for (i = 0; i < queue_depth; i++)
2652                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2653
2654         /*
2655          * Wait until all pending iteration is done.
2656          *
2657          * Request reference is cleared and it is guaranteed to be observed
2658          * after the ->lock is released.
2659          */
2660         spin_lock_irqsave(&tags->lock, flags);
2661         spin_unlock_irqrestore(&tags->lock, flags);
2662 }
2663
2664 /* hctx->ctxs will be freed in queue's release handler */
2665 static void blk_mq_exit_hctx(struct request_queue *q,
2666                 struct blk_mq_tag_set *set,
2667                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2668 {
2669         struct request *flush_rq = hctx->fq->flush_rq;
2670
2671         if (blk_mq_hw_queue_mapped(hctx))
2672                 blk_mq_tag_idle(hctx);
2673
2674         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2675                         set->queue_depth, flush_rq);
2676         if (set->ops->exit_request)
2677                 set->ops->exit_request(set, flush_rq, hctx_idx);
2678
2679         if (set->ops->exit_hctx)
2680                 set->ops->exit_hctx(hctx, hctx_idx);
2681
2682         blk_mq_remove_cpuhp(hctx);
2683
2684         spin_lock(&q->unused_hctx_lock);
2685         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2686         spin_unlock(&q->unused_hctx_lock);
2687 }
2688
2689 static void blk_mq_exit_hw_queues(struct request_queue *q,
2690                 struct blk_mq_tag_set *set, int nr_queue)
2691 {
2692         struct blk_mq_hw_ctx *hctx;
2693         unsigned int i;
2694
2695         queue_for_each_hw_ctx(q, hctx, i) {
2696                 if (i == nr_queue)
2697                         break;
2698                 blk_mq_debugfs_unregister_hctx(hctx);
2699                 blk_mq_exit_hctx(q, set, hctx, i);
2700         }
2701 }
2702
2703 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2704 {
2705         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2706
2707         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2708                            __alignof__(struct blk_mq_hw_ctx)) !=
2709                      sizeof(struct blk_mq_hw_ctx));
2710
2711         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2712                 hw_ctx_size += sizeof(struct srcu_struct);
2713
2714         return hw_ctx_size;
2715 }
2716
2717 static int blk_mq_init_hctx(struct request_queue *q,
2718                 struct blk_mq_tag_set *set,
2719                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2720 {
2721         hctx->queue_num = hctx_idx;
2722
2723         if (!(hctx->flags & BLK_MQ_F_STACKING))
2724                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2725                                 &hctx->cpuhp_online);
2726         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2727
2728         hctx->tags = set->tags[hctx_idx];
2729
2730         if (set->ops->init_hctx &&
2731             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2732                 goto unregister_cpu_notifier;
2733
2734         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2735                                 hctx->numa_node))
2736                 goto exit_hctx;
2737         return 0;
2738
2739  exit_hctx:
2740         if (set->ops->exit_hctx)
2741                 set->ops->exit_hctx(hctx, hctx_idx);
2742  unregister_cpu_notifier:
2743         blk_mq_remove_cpuhp(hctx);
2744         return -1;
2745 }
2746
2747 static struct blk_mq_hw_ctx *
2748 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2749                 int node)
2750 {
2751         struct blk_mq_hw_ctx *hctx;
2752         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2753
2754         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2755         if (!hctx)
2756                 goto fail_alloc_hctx;
2757
2758         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2759                 goto free_hctx;
2760
2761         atomic_set(&hctx->nr_active, 0);
2762         if (node == NUMA_NO_NODE)
2763                 node = set->numa_node;
2764         hctx->numa_node = node;
2765
2766         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2767         spin_lock_init(&hctx->lock);
2768         INIT_LIST_HEAD(&hctx->dispatch);
2769         hctx->queue = q;
2770         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2771
2772         INIT_LIST_HEAD(&hctx->hctx_list);
2773
2774         /*
2775          * Allocate space for all possible cpus to avoid allocation at
2776          * runtime
2777          */
2778         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2779                         gfp, node);
2780         if (!hctx->ctxs)
2781                 goto free_cpumask;
2782
2783         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2784                                 gfp, node, false, false))
2785                 goto free_ctxs;
2786         hctx->nr_ctx = 0;
2787
2788         spin_lock_init(&hctx->dispatch_wait_lock);
2789         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2790         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2791
2792         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2793         if (!hctx->fq)
2794                 goto free_bitmap;
2795
2796         if (hctx->flags & BLK_MQ_F_BLOCKING)
2797                 init_srcu_struct(hctx->srcu);
2798         blk_mq_hctx_kobj_init(hctx);
2799
2800         return hctx;
2801
2802  free_bitmap:
2803         sbitmap_free(&hctx->ctx_map);
2804  free_ctxs:
2805         kfree(hctx->ctxs);
2806  free_cpumask:
2807         free_cpumask_var(hctx->cpumask);
2808  free_hctx:
2809         kfree(hctx);
2810  fail_alloc_hctx:
2811         return NULL;
2812 }
2813
2814 static void blk_mq_init_cpu_queues(struct request_queue *q,
2815                                    unsigned int nr_hw_queues)
2816 {
2817         struct blk_mq_tag_set *set = q->tag_set;
2818         unsigned int i, j;
2819
2820         for_each_possible_cpu(i) {
2821                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2822                 struct blk_mq_hw_ctx *hctx;
2823                 int k;
2824
2825                 __ctx->cpu = i;
2826                 spin_lock_init(&__ctx->lock);
2827                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2828                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2829
2830                 __ctx->queue = q;
2831
2832                 /*
2833                  * Set local node, IFF we have more than one hw queue. If
2834                  * not, we remain on the home node of the device
2835                  */
2836                 for (j = 0; j < set->nr_maps; j++) {
2837                         hctx = blk_mq_map_queue_type(q, j, i);
2838                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2839                                 hctx->numa_node = cpu_to_node(i);
2840                 }
2841         }
2842 }
2843
2844 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2845                                         int hctx_idx)
2846 {
2847         unsigned int flags = set->flags;
2848         int ret = 0;
2849
2850         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2851                                         set->queue_depth, set->reserved_tags, flags);
2852         if (!set->tags[hctx_idx])
2853                 return false;
2854
2855         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2856                                 set->queue_depth);
2857         if (!ret)
2858                 return true;
2859
2860         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2861         set->tags[hctx_idx] = NULL;
2862         return false;
2863 }
2864
2865 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2866                                          unsigned int hctx_idx)
2867 {
2868         unsigned int flags = set->flags;
2869
2870         if (set->tags && set->tags[hctx_idx]) {
2871                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2872                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2873                 set->tags[hctx_idx] = NULL;
2874         }
2875 }
2876
2877 static void blk_mq_map_swqueue(struct request_queue *q)
2878 {
2879         unsigned int i, j, hctx_idx;
2880         struct blk_mq_hw_ctx *hctx;
2881         struct blk_mq_ctx *ctx;
2882         struct blk_mq_tag_set *set = q->tag_set;
2883
2884         queue_for_each_hw_ctx(q, hctx, i) {
2885                 cpumask_clear(hctx->cpumask);
2886                 hctx->nr_ctx = 0;
2887                 hctx->dispatch_from = NULL;
2888         }
2889
2890         /*
2891          * Map software to hardware queues.
2892          *
2893          * If the cpu isn't present, the cpu is mapped to first hctx.
2894          */
2895         for_each_possible_cpu(i) {
2896
2897                 ctx = per_cpu_ptr(q->queue_ctx, i);
2898                 for (j = 0; j < set->nr_maps; j++) {
2899                         if (!set->map[j].nr_queues) {
2900                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2901                                                 HCTX_TYPE_DEFAULT, i);
2902                                 continue;
2903                         }
2904                         hctx_idx = set->map[j].mq_map[i];
2905                         /* unmapped hw queue can be remapped after CPU topo changed */
2906                         if (!set->tags[hctx_idx] &&
2907                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2908                                 /*
2909                                  * If tags initialization fail for some hctx,
2910                                  * that hctx won't be brought online.  In this
2911                                  * case, remap the current ctx to hctx[0] which
2912                                  * is guaranteed to always have tags allocated
2913                                  */
2914                                 set->map[j].mq_map[i] = 0;
2915                         }
2916
2917                         hctx = blk_mq_map_queue_type(q, j, i);
2918                         ctx->hctxs[j] = hctx;
2919                         /*
2920                          * If the CPU is already set in the mask, then we've
2921                          * mapped this one already. This can happen if
2922                          * devices share queues across queue maps.
2923                          */
2924                         if (cpumask_test_cpu(i, hctx->cpumask))
2925                                 continue;
2926
2927                         cpumask_set_cpu(i, hctx->cpumask);
2928                         hctx->type = j;
2929                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2930                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2931
2932                         /*
2933                          * If the nr_ctx type overflows, we have exceeded the
2934                          * amount of sw queues we can support.
2935                          */
2936                         BUG_ON(!hctx->nr_ctx);
2937                 }
2938
2939                 for (; j < HCTX_MAX_TYPES; j++)
2940                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2941                                         HCTX_TYPE_DEFAULT, i);
2942         }
2943
2944         queue_for_each_hw_ctx(q, hctx, i) {
2945                 /*
2946                  * If no software queues are mapped to this hardware queue,
2947                  * disable it and free the request entries.
2948                  */
2949                 if (!hctx->nr_ctx) {
2950                         /* Never unmap queue 0.  We need it as a
2951                          * fallback in case of a new remap fails
2952                          * allocation
2953                          */
2954                         if (i && set->tags[i])
2955                                 blk_mq_free_map_and_requests(set, i);
2956
2957                         hctx->tags = NULL;
2958                         continue;
2959                 }
2960
2961                 hctx->tags = set->tags[i];
2962                 WARN_ON(!hctx->tags);
2963
2964                 /*
2965                  * Set the map size to the number of mapped software queues.
2966                  * This is more accurate and more efficient than looping
2967                  * over all possibly mapped software queues.
2968                  */
2969                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2970
2971                 /*
2972                  * Initialize batch roundrobin counts
2973                  */
2974                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2975                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2976         }
2977 }
2978
2979 /*
2980  * Caller needs to ensure that we're either frozen/quiesced, or that
2981  * the queue isn't live yet.
2982  */
2983 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2984 {
2985         struct blk_mq_hw_ctx *hctx;
2986         int i;
2987
2988         queue_for_each_hw_ctx(q, hctx, i) {
2989                 if (shared) {
2990                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2991                 } else {
2992                         blk_mq_tag_idle(hctx);
2993                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2994                 }
2995         }
2996 }
2997
2998 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2999                                          bool shared)
3000 {
3001         struct request_queue *q;
3002
3003         lockdep_assert_held(&set->tag_list_lock);
3004
3005         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3006                 blk_mq_freeze_queue(q);
3007                 queue_set_hctx_shared(q, shared);
3008                 blk_mq_unfreeze_queue(q);
3009         }
3010 }
3011
3012 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3013 {
3014         struct blk_mq_tag_set *set = q->tag_set;
3015
3016         mutex_lock(&set->tag_list_lock);
3017         list_del(&q->tag_set_list);
3018         if (list_is_singular(&set->tag_list)) {
3019                 /* just transitioned to unshared */
3020                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3021                 /* update existing queue */
3022                 blk_mq_update_tag_set_shared(set, false);
3023         }
3024         mutex_unlock(&set->tag_list_lock);
3025         INIT_LIST_HEAD(&q->tag_set_list);
3026 }
3027
3028 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3029                                      struct request_queue *q)
3030 {
3031         mutex_lock(&set->tag_list_lock);
3032
3033         /*
3034          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3035          */
3036         if (!list_empty(&set->tag_list) &&
3037             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3038                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3039                 /* update existing queue */
3040                 blk_mq_update_tag_set_shared(set, true);
3041         }
3042         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3043                 queue_set_hctx_shared(q, true);
3044         list_add_tail(&q->tag_set_list, &set->tag_list);
3045
3046         mutex_unlock(&set->tag_list_lock);
3047 }
3048
3049 /* All allocations will be freed in release handler of q->mq_kobj */
3050 static int blk_mq_alloc_ctxs(struct request_queue *q)
3051 {
3052         struct blk_mq_ctxs *ctxs;
3053         int cpu;
3054
3055         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3056         if (!ctxs)
3057                 return -ENOMEM;
3058
3059         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3060         if (!ctxs->queue_ctx)
3061                 goto fail;
3062
3063         for_each_possible_cpu(cpu) {
3064                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3065                 ctx->ctxs = ctxs;
3066         }
3067
3068         q->mq_kobj = &ctxs->kobj;
3069         q->queue_ctx = ctxs->queue_ctx;
3070
3071         return 0;
3072  fail:
3073         kfree(ctxs);
3074         return -ENOMEM;
3075 }
3076
3077 /*
3078  * It is the actual release handler for mq, but we do it from
3079  * request queue's release handler for avoiding use-after-free
3080  * and headache because q->mq_kobj shouldn't have been introduced,
3081  * but we can't group ctx/kctx kobj without it.
3082  */
3083 void blk_mq_release(struct request_queue *q)
3084 {
3085         struct blk_mq_hw_ctx *hctx, *next;
3086         int i;
3087
3088         queue_for_each_hw_ctx(q, hctx, i)
3089                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3090
3091         /* all hctx are in .unused_hctx_list now */
3092         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3093                 list_del_init(&hctx->hctx_list);
3094                 kobject_put(&hctx->kobj);
3095         }
3096
3097         kfree(q->queue_hw_ctx);
3098
3099         /*
3100          * release .mq_kobj and sw queue's kobject now because
3101          * both share lifetime with request queue.
3102          */
3103         blk_mq_sysfs_deinit(q);
3104 }
3105
3106 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3107                 void *queuedata)
3108 {
3109         struct request_queue *q;
3110         int ret;
3111
3112         q = blk_alloc_queue(set->numa_node);
3113         if (!q)
3114                 return ERR_PTR(-ENOMEM);
3115         q->queuedata = queuedata;
3116         ret = blk_mq_init_allocated_queue(set, q);
3117         if (ret) {
3118                 blk_cleanup_queue(q);
3119                 return ERR_PTR(ret);
3120         }
3121         return q;
3122 }
3123
3124 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3125 {
3126         return blk_mq_init_queue_data(set, NULL);
3127 }
3128 EXPORT_SYMBOL(blk_mq_init_queue);
3129
3130 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3131                 struct lock_class_key *lkclass)
3132 {
3133         struct request_queue *q;
3134         struct gendisk *disk;
3135
3136         q = blk_mq_init_queue_data(set, queuedata);
3137         if (IS_ERR(q))
3138                 return ERR_CAST(q);
3139
3140         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3141         if (!disk) {
3142                 blk_cleanup_queue(q);
3143                 return ERR_PTR(-ENOMEM);
3144         }
3145         return disk;
3146 }
3147 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3148
3149 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3150                 struct blk_mq_tag_set *set, struct request_queue *q,
3151                 int hctx_idx, int node)
3152 {
3153         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3154
3155         /* reuse dead hctx first */
3156         spin_lock(&q->unused_hctx_lock);
3157         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3158                 if (tmp->numa_node == node) {
3159                         hctx = tmp;
3160                         break;
3161                 }
3162         }
3163         if (hctx)
3164                 list_del_init(&hctx->hctx_list);
3165         spin_unlock(&q->unused_hctx_lock);
3166
3167         if (!hctx)
3168                 hctx = blk_mq_alloc_hctx(q, set, node);
3169         if (!hctx)
3170                 goto fail;
3171
3172         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3173                 goto free_hctx;
3174
3175         return hctx;
3176
3177  free_hctx:
3178         kobject_put(&hctx->kobj);
3179  fail:
3180         return NULL;
3181 }
3182
3183 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3184                                                 struct request_queue *q)
3185 {
3186         int i, j, end;
3187         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3188
3189         if (q->nr_hw_queues < set->nr_hw_queues) {
3190                 struct blk_mq_hw_ctx **new_hctxs;
3191
3192                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3193                                        sizeof(*new_hctxs), GFP_KERNEL,
3194                                        set->numa_node);
3195                 if (!new_hctxs)
3196                         return;
3197                 if (hctxs)
3198                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3199                                sizeof(*hctxs));
3200                 q->queue_hw_ctx = new_hctxs;
3201                 kfree(hctxs);
3202                 hctxs = new_hctxs;
3203         }
3204
3205         /* protect against switching io scheduler  */
3206         mutex_lock(&q->sysfs_lock);
3207         for (i = 0; i < set->nr_hw_queues; i++) {
3208                 int node;
3209                 struct blk_mq_hw_ctx *hctx;
3210
3211                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3212                 /*
3213                  * If the hw queue has been mapped to another numa node,
3214                  * we need to realloc the hctx. If allocation fails, fallback
3215                  * to use the previous one.
3216                  */
3217                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3218                         continue;
3219
3220                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3221                 if (hctx) {
3222                         if (hctxs[i])
3223                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3224                         hctxs[i] = hctx;
3225                 } else {
3226                         if (hctxs[i])
3227                                 pr_warn("Allocate new hctx on node %d fails,\
3228                                                 fallback to previous one on node %d\n",
3229                                                 node, hctxs[i]->numa_node);
3230                         else
3231                                 break;
3232                 }
3233         }
3234         /*
3235          * Increasing nr_hw_queues fails. Free the newly allocated
3236          * hctxs and keep the previous q->nr_hw_queues.
3237          */
3238         if (i != set->nr_hw_queues) {
3239                 j = q->nr_hw_queues;
3240                 end = i;
3241         } else {
3242                 j = i;
3243                 end = q->nr_hw_queues;
3244                 q->nr_hw_queues = set->nr_hw_queues;
3245         }
3246
3247         for (; j < end; j++) {
3248                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3249
3250                 if (hctx) {
3251                         if (hctx->tags)
3252                                 blk_mq_free_map_and_requests(set, j);
3253                         blk_mq_exit_hctx(q, set, hctx, j);
3254                         hctxs[j] = NULL;
3255                 }
3256         }
3257         mutex_unlock(&q->sysfs_lock);
3258 }
3259
3260 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3261                 struct request_queue *q)
3262 {
3263         /* mark the queue as mq asap */
3264         q->mq_ops = set->ops;
3265
3266         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3267                                              blk_mq_poll_stats_bkt,
3268                                              BLK_MQ_POLL_STATS_BKTS, q);
3269         if (!q->poll_cb)
3270                 goto err_exit;
3271
3272         if (blk_mq_alloc_ctxs(q))
3273                 goto err_poll;
3274
3275         /* init q->mq_kobj and sw queues' kobjects */
3276         blk_mq_sysfs_init(q);
3277
3278         INIT_LIST_HEAD(&q->unused_hctx_list);
3279         spin_lock_init(&q->unused_hctx_lock);
3280
3281         blk_mq_realloc_hw_ctxs(set, q);
3282         if (!q->nr_hw_queues)
3283                 goto err_hctxs;
3284
3285         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3286         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3287
3288         q->tag_set = set;
3289
3290         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3291         if (set->nr_maps > HCTX_TYPE_POLL &&
3292             set->map[HCTX_TYPE_POLL].nr_queues)
3293                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3294
3295         q->sg_reserved_size = INT_MAX;
3296
3297         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3298         INIT_LIST_HEAD(&q->requeue_list);
3299         spin_lock_init(&q->requeue_lock);
3300
3301         q->nr_requests = set->queue_depth;
3302
3303         /*
3304          * Default to classic polling
3305          */
3306         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3307
3308         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3309         blk_mq_add_queue_tag_set(set, q);
3310         blk_mq_map_swqueue(q);
3311         return 0;
3312
3313 err_hctxs:
3314         kfree(q->queue_hw_ctx);
3315         q->nr_hw_queues = 0;
3316         blk_mq_sysfs_deinit(q);
3317 err_poll:
3318         blk_stat_free_callback(q->poll_cb);
3319         q->poll_cb = NULL;
3320 err_exit:
3321         q->mq_ops = NULL;
3322         return -ENOMEM;
3323 }
3324 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3325
3326 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3327 void blk_mq_exit_queue(struct request_queue *q)
3328 {
3329         struct blk_mq_tag_set *set = q->tag_set;
3330
3331         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3332         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3333         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3334         blk_mq_del_queue_tag_set(q);
3335 }
3336
3337 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3338 {
3339         int i;
3340
3341         for (i = 0; i < set->nr_hw_queues; i++) {
3342                 if (!__blk_mq_alloc_map_and_request(set, i))
3343                         goto out_unwind;
3344                 cond_resched();
3345         }
3346
3347         return 0;
3348
3349 out_unwind:
3350         while (--i >= 0)
3351                 blk_mq_free_map_and_requests(set, i);
3352
3353         return -ENOMEM;
3354 }
3355
3356 /*
3357  * Allocate the request maps associated with this tag_set. Note that this
3358  * may reduce the depth asked for, if memory is tight. set->queue_depth
3359  * will be updated to reflect the allocated depth.
3360  */
3361 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3362 {
3363         unsigned int depth;
3364         int err;
3365
3366         depth = set->queue_depth;
3367         do {
3368                 err = __blk_mq_alloc_rq_maps(set);
3369                 if (!err)
3370                         break;
3371
3372                 set->queue_depth >>= 1;
3373                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3374                         err = -ENOMEM;
3375                         break;
3376                 }
3377         } while (set->queue_depth);
3378
3379         if (!set->queue_depth || err) {
3380                 pr_err("blk-mq: failed to allocate request map\n");
3381                 return -ENOMEM;
3382         }
3383
3384         if (depth != set->queue_depth)
3385                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3386                                                 depth, set->queue_depth);
3387
3388         return 0;
3389 }
3390
3391 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3392 {
3393         /*
3394          * blk_mq_map_queues() and multiple .map_queues() implementations
3395          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3396          * number of hardware queues.
3397          */
3398         if (set->nr_maps == 1)
3399                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3400
3401         if (set->ops->map_queues && !is_kdump_kernel()) {
3402                 int i;
3403
3404                 /*
3405                  * transport .map_queues is usually done in the following
3406                  * way:
3407                  *
3408                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3409                  *      mask = get_cpu_mask(queue)
3410                  *      for_each_cpu(cpu, mask)
3411                  *              set->map[x].mq_map[cpu] = queue;
3412                  * }
3413                  *
3414                  * When we need to remap, the table has to be cleared for
3415                  * killing stale mapping since one CPU may not be mapped
3416                  * to any hw queue.
3417                  */
3418                 for (i = 0; i < set->nr_maps; i++)
3419                         blk_mq_clear_mq_map(&set->map[i]);
3420
3421                 return set->ops->map_queues(set);
3422         } else {
3423                 BUG_ON(set->nr_maps > 1);
3424                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3425         }
3426 }
3427
3428 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3429                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3430 {
3431         struct blk_mq_tags **new_tags;
3432
3433         if (cur_nr_hw_queues >= new_nr_hw_queues)
3434                 return 0;
3435
3436         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3437                                 GFP_KERNEL, set->numa_node);
3438         if (!new_tags)
3439                 return -ENOMEM;
3440
3441         if (set->tags)
3442                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3443                        sizeof(*set->tags));
3444         kfree(set->tags);
3445         set->tags = new_tags;
3446         set->nr_hw_queues = new_nr_hw_queues;
3447
3448         return 0;
3449 }
3450
3451 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3452                                 int new_nr_hw_queues)
3453 {
3454         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3455 }
3456
3457 /*
3458  * Alloc a tag set to be associated with one or more request queues.
3459  * May fail with EINVAL for various error conditions. May adjust the
3460  * requested depth down, if it's too large. In that case, the set
3461  * value will be stored in set->queue_depth.
3462  */
3463 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3464 {
3465         int i, ret;
3466
3467         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3468
3469         if (!set->nr_hw_queues)
3470                 return -EINVAL;
3471         if (!set->queue_depth)
3472                 return -EINVAL;
3473         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3474                 return -EINVAL;
3475
3476         if (!set->ops->queue_rq)
3477                 return -EINVAL;
3478
3479         if (!set->ops->get_budget ^ !set->ops->put_budget)
3480                 return -EINVAL;
3481
3482         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3483                 pr_info("blk-mq: reduced tag depth to %u\n",
3484                         BLK_MQ_MAX_DEPTH);
3485                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3486         }
3487
3488         if (!set->nr_maps)
3489                 set->nr_maps = 1;
3490         else if (set->nr_maps > HCTX_MAX_TYPES)
3491                 return -EINVAL;
3492
3493         /*
3494          * If a crashdump is active, then we are potentially in a very
3495          * memory constrained environment. Limit us to 1 queue and
3496          * 64 tags to prevent using too much memory.
3497          */
3498         if (is_kdump_kernel()) {
3499                 set->nr_hw_queues = 1;
3500                 set->nr_maps = 1;
3501                 set->queue_depth = min(64U, set->queue_depth);
3502         }
3503         /*
3504          * There is no use for more h/w queues than cpus if we just have
3505          * a single map
3506          */
3507         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3508                 set->nr_hw_queues = nr_cpu_ids;
3509
3510         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3511                 return -ENOMEM;
3512
3513         ret = -ENOMEM;
3514         for (i = 0; i < set->nr_maps; i++) {
3515                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3516                                                   sizeof(set->map[i].mq_map[0]),
3517                                                   GFP_KERNEL, set->numa_node);
3518                 if (!set->map[i].mq_map)
3519                         goto out_free_mq_map;
3520                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3521         }
3522
3523         ret = blk_mq_update_queue_map(set);
3524         if (ret)
3525                 goto out_free_mq_map;
3526
3527         ret = blk_mq_alloc_map_and_requests(set);
3528         if (ret)
3529                 goto out_free_mq_map;
3530
3531         if (blk_mq_is_sbitmap_shared(set->flags)) {
3532                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3533
3534                 if (blk_mq_init_shared_sbitmap(set)) {
3535                         ret = -ENOMEM;
3536                         goto out_free_mq_rq_maps;
3537                 }
3538         }
3539
3540         mutex_init(&set->tag_list_lock);
3541         INIT_LIST_HEAD(&set->tag_list);
3542
3543         return 0;
3544
3545 out_free_mq_rq_maps:
3546         for (i = 0; i < set->nr_hw_queues; i++)
3547                 blk_mq_free_map_and_requests(set, i);
3548 out_free_mq_map:
3549         for (i = 0; i < set->nr_maps; i++) {
3550                 kfree(set->map[i].mq_map);
3551                 set->map[i].mq_map = NULL;
3552         }
3553         kfree(set->tags);
3554         set->tags = NULL;
3555         return ret;
3556 }
3557 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3558
3559 /* allocate and initialize a tagset for a simple single-queue device */
3560 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3561                 const struct blk_mq_ops *ops, unsigned int queue_depth,
3562                 unsigned int set_flags)
3563 {
3564         memset(set, 0, sizeof(*set));
3565         set->ops = ops;
3566         set->nr_hw_queues = 1;
3567         set->nr_maps = 1;
3568         set->queue_depth = queue_depth;
3569         set->numa_node = NUMA_NO_NODE;
3570         set->flags = set_flags;
3571         return blk_mq_alloc_tag_set(set);
3572 }
3573 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3574
3575 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3576 {
3577         int i, j;
3578
3579         for (i = 0; i < set->nr_hw_queues; i++)
3580                 blk_mq_free_map_and_requests(set, i);
3581
3582         if (blk_mq_is_sbitmap_shared(set->flags))
3583                 blk_mq_exit_shared_sbitmap(set);
3584
3585         for (j = 0; j < set->nr_maps; j++) {
3586                 kfree(set->map[j].mq_map);
3587                 set->map[j].mq_map = NULL;
3588         }
3589
3590         kfree(set->tags);
3591         set->tags = NULL;
3592 }
3593 EXPORT_SYMBOL(blk_mq_free_tag_set);
3594
3595 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3596 {
3597         struct blk_mq_tag_set *set = q->tag_set;
3598         struct blk_mq_hw_ctx *hctx;
3599         int i, ret;
3600
3601         if (!set)
3602                 return -EINVAL;
3603
3604         if (q->nr_requests == nr)
3605                 return 0;
3606
3607         blk_mq_freeze_queue(q);
3608         blk_mq_quiesce_queue(q);
3609
3610         ret = 0;
3611         queue_for_each_hw_ctx(q, hctx, i) {
3612                 if (!hctx->tags)
3613                         continue;
3614                 /*
3615                  * If we're using an MQ scheduler, just update the scheduler
3616                  * queue depth. This is similar to what the old code would do.
3617                  */
3618                 if (!hctx->sched_tags) {
3619                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3620                                                         false);
3621                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3622                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3623                 } else {
3624                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3625                                                         nr, true);
3626                         if (blk_mq_is_sbitmap_shared(set->flags)) {
3627                                 hctx->sched_tags->bitmap_tags =
3628                                         &q->sched_bitmap_tags;
3629                                 hctx->sched_tags->breserved_tags =
3630                                         &q->sched_breserved_tags;
3631                         }
3632                 }
3633                 if (ret)
3634                         break;
3635                 if (q->elevator && q->elevator->type->ops.depth_updated)
3636                         q->elevator->type->ops.depth_updated(hctx);
3637         }
3638         if (!ret) {
3639                 q->nr_requests = nr;
3640                 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3641                         sbitmap_queue_resize(&q->sched_bitmap_tags,
3642                                              nr - set->reserved_tags);
3643         }
3644
3645         blk_mq_unquiesce_queue(q);
3646         blk_mq_unfreeze_queue(q);
3647
3648         return ret;
3649 }
3650
3651 /*
3652  * request_queue and elevator_type pair.
3653  * It is just used by __blk_mq_update_nr_hw_queues to cache
3654  * the elevator_type associated with a request_queue.
3655  */
3656 struct blk_mq_qe_pair {
3657         struct list_head node;
3658         struct request_queue *q;
3659         struct elevator_type *type;
3660 };
3661
3662 /*
3663  * Cache the elevator_type in qe pair list and switch the
3664  * io scheduler to 'none'
3665  */
3666 static bool blk_mq_elv_switch_none(struct list_head *head,
3667                 struct request_queue *q)
3668 {
3669         struct blk_mq_qe_pair *qe;
3670
3671         if (!q->elevator)
3672                 return true;
3673
3674         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3675         if (!qe)
3676                 return false;
3677
3678         INIT_LIST_HEAD(&qe->node);
3679         qe->q = q;
3680         qe->type = q->elevator->type;
3681         list_add(&qe->node, head);
3682
3683         mutex_lock(&q->sysfs_lock);
3684         /*
3685          * After elevator_switch_mq, the previous elevator_queue will be
3686          * released by elevator_release. The reference of the io scheduler
3687          * module get by elevator_get will also be put. So we need to get
3688          * a reference of the io scheduler module here to prevent it to be
3689          * removed.
3690          */
3691         __module_get(qe->type->elevator_owner);
3692         elevator_switch_mq(q, NULL);
3693         mutex_unlock(&q->sysfs_lock);
3694
3695         return true;
3696 }
3697
3698 static void blk_mq_elv_switch_back(struct list_head *head,
3699                 struct request_queue *q)
3700 {
3701         struct blk_mq_qe_pair *qe;
3702         struct elevator_type *t = NULL;
3703
3704         list_for_each_entry(qe, head, node)
3705                 if (qe->q == q) {
3706                         t = qe->type;
3707                         break;
3708                 }
3709
3710         if (!t)
3711                 return;
3712
3713         list_del(&qe->node);
3714         kfree(qe);
3715
3716         mutex_lock(&q->sysfs_lock);
3717         elevator_switch_mq(q, t);
3718         mutex_unlock(&q->sysfs_lock);
3719 }
3720
3721 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3722                                                         int nr_hw_queues)
3723 {
3724         struct request_queue *q;
3725         LIST_HEAD(head);
3726         int prev_nr_hw_queues;
3727
3728         lockdep_assert_held(&set->tag_list_lock);
3729
3730         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3731                 nr_hw_queues = nr_cpu_ids;
3732         if (nr_hw_queues < 1)
3733                 return;
3734         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3735                 return;
3736
3737         list_for_each_entry(q, &set->tag_list, tag_set_list)
3738                 blk_mq_freeze_queue(q);
3739         /*
3740          * Switch IO scheduler to 'none', cleaning up the data associated
3741          * with the previous scheduler. We will switch back once we are done
3742          * updating the new sw to hw queue mappings.
3743          */
3744         list_for_each_entry(q, &set->tag_list, tag_set_list)
3745                 if (!blk_mq_elv_switch_none(&head, q))
3746                         goto switch_back;
3747
3748         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3749                 blk_mq_debugfs_unregister_hctxs(q);
3750                 blk_mq_sysfs_unregister(q);
3751         }
3752
3753         prev_nr_hw_queues = set->nr_hw_queues;
3754         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3755             0)
3756                 goto reregister;
3757
3758         set->nr_hw_queues = nr_hw_queues;
3759 fallback:
3760         blk_mq_update_queue_map(set);
3761         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3762                 blk_mq_realloc_hw_ctxs(set, q);
3763                 if (q->nr_hw_queues != set->nr_hw_queues) {
3764                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3765                                         nr_hw_queues, prev_nr_hw_queues);
3766                         set->nr_hw_queues = prev_nr_hw_queues;
3767                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3768                         goto fallback;
3769                 }
3770                 blk_mq_map_swqueue(q);
3771         }
3772
3773 reregister:
3774         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3775                 blk_mq_sysfs_register(q);
3776                 blk_mq_debugfs_register_hctxs(q);
3777         }
3778
3779 switch_back:
3780         list_for_each_entry(q, &set->tag_list, tag_set_list)
3781                 blk_mq_elv_switch_back(&head, q);
3782
3783         list_for_each_entry(q, &set->tag_list, tag_set_list)
3784                 blk_mq_unfreeze_queue(q);
3785 }
3786
3787 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3788 {
3789         mutex_lock(&set->tag_list_lock);
3790         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3791         mutex_unlock(&set->tag_list_lock);
3792 }
3793 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3794
3795 /* Enable polling stats and return whether they were already enabled. */
3796 static bool blk_poll_stats_enable(struct request_queue *q)
3797 {
3798         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3799             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3800                 return true;
3801         blk_stat_add_callback(q, q->poll_cb);
3802         return false;
3803 }
3804
3805 static void blk_mq_poll_stats_start(struct request_queue *q)
3806 {
3807         /*
3808          * We don't arm the callback if polling stats are not enabled or the
3809          * callback is already active.
3810          */
3811         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3812             blk_stat_is_active(q->poll_cb))
3813                 return;
3814
3815         blk_stat_activate_msecs(q->poll_cb, 100);
3816 }
3817
3818 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3819 {
3820         struct request_queue *q = cb->data;
3821         int bucket;
3822
3823         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3824                 if (cb->stat[bucket].nr_samples)
3825                         q->poll_stat[bucket] = cb->stat[bucket];
3826         }
3827 }
3828
3829 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3830                                        struct request *rq)
3831 {
3832         unsigned long ret = 0;
3833         int bucket;
3834
3835         /*
3836          * If stats collection isn't on, don't sleep but turn it on for
3837          * future users
3838          */
3839         if (!blk_poll_stats_enable(q))
3840                 return 0;
3841
3842         /*
3843          * As an optimistic guess, use half of the mean service time
3844          * for this type of request. We can (and should) make this smarter.
3845          * For instance, if the completion latencies are tight, we can
3846          * get closer than just half the mean. This is especially
3847          * important on devices where the completion latencies are longer
3848          * than ~10 usec. We do use the stats for the relevant IO size
3849          * if available which does lead to better estimates.
3850          */
3851         bucket = blk_mq_poll_stats_bkt(rq);
3852         if (bucket < 0)
3853                 return ret;
3854
3855         if (q->poll_stat[bucket].nr_samples)
3856                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3857
3858         return ret;
3859 }
3860
3861 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3862                                      struct request *rq)
3863 {
3864         struct hrtimer_sleeper hs;
3865         enum hrtimer_mode mode;
3866         unsigned int nsecs;
3867         ktime_t kt;
3868
3869         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3870                 return false;
3871
3872         /*
3873          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3874          *
3875          *  0:  use half of prev avg
3876          * >0:  use this specific value
3877          */
3878         if (q->poll_nsec > 0)
3879                 nsecs = q->poll_nsec;
3880         else
3881                 nsecs = blk_mq_poll_nsecs(q, rq);
3882
3883         if (!nsecs)
3884                 return false;
3885
3886         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3887
3888         /*
3889          * This will be replaced with the stats tracking code, using
3890          * 'avg_completion_time / 2' as the pre-sleep target.
3891          */
3892         kt = nsecs;
3893
3894         mode = HRTIMER_MODE_REL;
3895         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3896         hrtimer_set_expires(&hs.timer, kt);
3897
3898         do {
3899                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3900                         break;
3901                 set_current_state(TASK_UNINTERRUPTIBLE);
3902                 hrtimer_sleeper_start_expires(&hs, mode);
3903                 if (hs.task)
3904                         io_schedule();
3905                 hrtimer_cancel(&hs.timer);
3906                 mode = HRTIMER_MODE_ABS;
3907         } while (hs.task && !signal_pending(current));
3908
3909         __set_current_state(TASK_RUNNING);
3910         destroy_hrtimer_on_stack(&hs.timer);
3911         return true;
3912 }
3913
3914 static bool blk_mq_poll_hybrid(struct request_queue *q,
3915                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3916 {
3917         struct request *rq;
3918
3919         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3920                 return false;
3921
3922         if (!blk_qc_t_is_internal(cookie))
3923                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3924         else {
3925                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3926                 /*
3927                  * With scheduling, if the request has completed, we'll
3928                  * get a NULL return here, as we clear the sched tag when
3929                  * that happens. The request still remains valid, like always,
3930                  * so we should be safe with just the NULL check.
3931                  */
3932                 if (!rq)
3933                         return false;
3934         }
3935
3936         return blk_mq_poll_hybrid_sleep(q, rq);
3937 }
3938
3939 /**
3940  * blk_poll - poll for IO completions
3941  * @q:  the queue
3942  * @cookie: cookie passed back at IO submission time
3943  * @spin: whether to spin for completions
3944  *
3945  * Description:
3946  *    Poll for completions on the passed in queue. Returns number of
3947  *    completed entries found. If @spin is true, then blk_poll will continue
3948  *    looping until at least one completion is found, unless the task is
3949  *    otherwise marked running (or we need to reschedule).
3950  */
3951 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3952 {
3953         struct blk_mq_hw_ctx *hctx;
3954         unsigned int state;
3955
3956         if (!blk_qc_t_valid(cookie) ||
3957             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3958                 return 0;
3959
3960         if (current->plug)
3961                 blk_flush_plug_list(current->plug, false);
3962
3963         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3964
3965         /*
3966          * If we sleep, have the caller restart the poll loop to reset
3967          * the state. Like for the other success return cases, the
3968          * caller is responsible for checking if the IO completed. If
3969          * the IO isn't complete, we'll get called again and will go
3970          * straight to the busy poll loop. If specified not to spin,
3971          * we also should not sleep.
3972          */
3973         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3974                 return 1;
3975
3976         hctx->poll_considered++;
3977
3978         state = get_current_state();
3979         do {
3980                 int ret;
3981
3982                 hctx->poll_invoked++;
3983
3984                 ret = q->mq_ops->poll(hctx);
3985                 if (ret > 0) {
3986                         hctx->poll_success++;
3987                         __set_current_state(TASK_RUNNING);
3988                         return ret;
3989                 }
3990
3991                 if (signal_pending_state(state, current))
3992                         __set_current_state(TASK_RUNNING);
3993
3994                 if (task_is_running(current))
3995                         return 1;
3996                 if (ret < 0 || !spin)
3997                         break;
3998                 cpu_relax();
3999         } while (!need_resched());
4000
4001         __set_current_state(TASK_RUNNING);
4002         return 0;
4003 }
4004 EXPORT_SYMBOL_GPL(blk_poll);
4005
4006 unsigned int blk_mq_rq_cpu(struct request *rq)
4007 {
4008         return rq->mq_ctx->cpu;
4009 }
4010 EXPORT_SYMBOL(blk_mq_rq_cpu);
4011
4012 static int __init blk_mq_init(void)
4013 {
4014         int i;
4015
4016         for_each_possible_cpu(i)
4017                 init_llist_head(&per_cpu(blk_cpu_done, i));
4018         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4019
4020         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4021                                   "block/softirq:dead", NULL,
4022                                   blk_softirq_cpu_dead);
4023         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4024                                 blk_mq_hctx_notify_dead);
4025         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4026                                 blk_mq_hctx_notify_online,
4027                                 blk_mq_hctx_notify_offline);
4028         return 0;
4029 }
4030 subsys_initcall(blk_mq_init);