Merge tag 'block-5.15-2021-09-05' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / block / blk-map.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11
12 #include "blk.h"
13
14 struct bio_map_data {
15         bool is_our_pages : 1;
16         bool is_null_mapped : 1;
17         struct iov_iter iter;
18         struct iovec iov[];
19 };
20
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22                                                gfp_t gfp_mask)
23 {
24         struct bio_map_data *bmd;
25
26         if (data->nr_segs > UIO_MAXIOV)
27                 return NULL;
28
29         bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30         if (!bmd)
31                 return NULL;
32         memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33         bmd->iter = *data;
34         bmd->iter.iov = bmd->iov;
35         return bmd;
36 }
37
38 /**
39  * bio_copy_from_iter - copy all pages from iov_iter to bio
40  * @bio: The &struct bio which describes the I/O as destination
41  * @iter: iov_iter as source
42  *
43  * Copy all pages from iov_iter to bio.
44  * Returns 0 on success, or error on failure.
45  */
46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48         struct bio_vec *bvec;
49         struct bvec_iter_all iter_all;
50
51         bio_for_each_segment_all(bvec, bio, iter_all) {
52                 ssize_t ret;
53
54                 ret = copy_page_from_iter(bvec->bv_page,
55                                           bvec->bv_offset,
56                                           bvec->bv_len,
57                                           iter);
58
59                 if (!iov_iter_count(iter))
60                         break;
61
62                 if (ret < bvec->bv_len)
63                         return -EFAULT;
64         }
65
66         return 0;
67 }
68
69 /**
70  * bio_copy_to_iter - copy all pages from bio to iov_iter
71  * @bio: The &struct bio which describes the I/O as source
72  * @iter: iov_iter as destination
73  *
74  * Copy all pages from bio to iov_iter.
75  * Returns 0 on success, or error on failure.
76  */
77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79         struct bio_vec *bvec;
80         struct bvec_iter_all iter_all;
81
82         bio_for_each_segment_all(bvec, bio, iter_all) {
83                 ssize_t ret;
84
85                 ret = copy_page_to_iter(bvec->bv_page,
86                                         bvec->bv_offset,
87                                         bvec->bv_len,
88                                         &iter);
89
90                 if (!iov_iter_count(&iter))
91                         break;
92
93                 if (ret < bvec->bv_len)
94                         return -EFAULT;
95         }
96
97         return 0;
98 }
99
100 /**
101  *      bio_uncopy_user -       finish previously mapped bio
102  *      @bio: bio being terminated
103  *
104  *      Free pages allocated from bio_copy_user_iov() and write back data
105  *      to user space in case of a read.
106  */
107 static int bio_uncopy_user(struct bio *bio)
108 {
109         struct bio_map_data *bmd = bio->bi_private;
110         int ret = 0;
111
112         if (!bmd->is_null_mapped) {
113                 /*
114                  * if we're in a workqueue, the request is orphaned, so
115                  * don't copy into a random user address space, just free
116                  * and return -EINTR so user space doesn't expect any data.
117                  */
118                 if (!current->mm)
119                         ret = -EINTR;
120                 else if (bio_data_dir(bio) == READ)
121                         ret = bio_copy_to_iter(bio, bmd->iter);
122                 if (bmd->is_our_pages)
123                         bio_free_pages(bio);
124         }
125         kfree(bmd);
126         return ret;
127 }
128
129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
130                 struct iov_iter *iter, gfp_t gfp_mask)
131 {
132         struct bio_map_data *bmd;
133         struct page *page;
134         struct bio *bio;
135         int i = 0, ret;
136         int nr_pages;
137         unsigned int len = iter->count;
138         unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
139
140         bmd = bio_alloc_map_data(iter, gfp_mask);
141         if (!bmd)
142                 return -ENOMEM;
143
144         /*
145          * We need to do a deep copy of the iov_iter including the iovecs.
146          * The caller provided iov might point to an on-stack or otherwise
147          * shortlived one.
148          */
149         bmd->is_our_pages = !map_data;
150         bmd->is_null_mapped = (map_data && map_data->null_mapped);
151
152         nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
153
154         ret = -ENOMEM;
155         bio = bio_kmalloc(gfp_mask, nr_pages);
156         if (!bio)
157                 goto out_bmd;
158         bio->bi_opf |= req_op(rq);
159
160         if (map_data) {
161                 nr_pages = 1 << map_data->page_order;
162                 i = map_data->offset / PAGE_SIZE;
163         }
164         while (len) {
165                 unsigned int bytes = PAGE_SIZE;
166
167                 bytes -= offset;
168
169                 if (bytes > len)
170                         bytes = len;
171
172                 if (map_data) {
173                         if (i == map_data->nr_entries * nr_pages) {
174                                 ret = -ENOMEM;
175                                 goto cleanup;
176                         }
177
178                         page = map_data->pages[i / nr_pages];
179                         page += (i % nr_pages);
180
181                         i++;
182                 } else {
183                         page = alloc_page(GFP_NOIO | gfp_mask);
184                         if (!page) {
185                                 ret = -ENOMEM;
186                                 goto cleanup;
187                         }
188                 }
189
190                 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
191                         if (!map_data)
192                                 __free_page(page);
193                         break;
194                 }
195
196                 len -= bytes;
197                 offset = 0;
198         }
199
200         if (map_data)
201                 map_data->offset += bio->bi_iter.bi_size;
202
203         /*
204          * success
205          */
206         if ((iov_iter_rw(iter) == WRITE &&
207              (!map_data || !map_data->null_mapped)) ||
208             (map_data && map_data->from_user)) {
209                 ret = bio_copy_from_iter(bio, iter);
210                 if (ret)
211                         goto cleanup;
212         } else {
213                 if (bmd->is_our_pages)
214                         zero_fill_bio(bio);
215                 iov_iter_advance(iter, bio->bi_iter.bi_size);
216         }
217
218         bio->bi_private = bmd;
219
220         ret = blk_rq_append_bio(rq, bio);
221         if (ret)
222                 goto cleanup;
223         return 0;
224 cleanup:
225         if (!map_data)
226                 bio_free_pages(bio);
227         bio_put(bio);
228 out_bmd:
229         kfree(bmd);
230         return ret;
231 }
232
233 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
234                 gfp_t gfp_mask)
235 {
236         unsigned int max_sectors = queue_max_hw_sectors(rq->q);
237         struct bio *bio;
238         int ret;
239         int j;
240
241         if (!iov_iter_count(iter))
242                 return -EINVAL;
243
244         bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_VECS));
245         if (!bio)
246                 return -ENOMEM;
247         bio->bi_opf |= req_op(rq);
248
249         while (iov_iter_count(iter)) {
250                 struct page **pages;
251                 ssize_t bytes;
252                 size_t offs, added = 0;
253                 int npages;
254
255                 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
256                 if (unlikely(bytes <= 0)) {
257                         ret = bytes ? bytes : -EFAULT;
258                         goto out_unmap;
259                 }
260
261                 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
262
263                 if (unlikely(offs & queue_dma_alignment(rq->q))) {
264                         ret = -EINVAL;
265                         j = 0;
266                 } else {
267                         for (j = 0; j < npages; j++) {
268                                 struct page *page = pages[j];
269                                 unsigned int n = PAGE_SIZE - offs;
270                                 bool same_page = false;
271
272                                 if (n > bytes)
273                                         n = bytes;
274
275                                 if (!bio_add_hw_page(rq->q, bio, page, n, offs,
276                                                      max_sectors, &same_page)) {
277                                         if (same_page)
278                                                 put_page(page);
279                                         break;
280                                 }
281
282                                 added += n;
283                                 bytes -= n;
284                                 offs = 0;
285                         }
286                         iov_iter_advance(iter, added);
287                 }
288                 /*
289                  * release the pages we didn't map into the bio, if any
290                  */
291                 while (j < npages)
292                         put_page(pages[j++]);
293                 kvfree(pages);
294                 /* couldn't stuff something into bio? */
295                 if (bytes)
296                         break;
297         }
298
299         ret = blk_rq_append_bio(rq, bio);
300         if (ret)
301                 goto out_unmap;
302         return 0;
303
304  out_unmap:
305         bio_release_pages(bio, false);
306         bio_put(bio);
307         return ret;
308 }
309
310 static void bio_invalidate_vmalloc_pages(struct bio *bio)
311 {
312 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
313         if (bio->bi_private && !op_is_write(bio_op(bio))) {
314                 unsigned long i, len = 0;
315
316                 for (i = 0; i < bio->bi_vcnt; i++)
317                         len += bio->bi_io_vec[i].bv_len;
318                 invalidate_kernel_vmap_range(bio->bi_private, len);
319         }
320 #endif
321 }
322
323 static void bio_map_kern_endio(struct bio *bio)
324 {
325         bio_invalidate_vmalloc_pages(bio);
326         bio_put(bio);
327 }
328
329 /**
330  *      bio_map_kern    -       map kernel address into bio
331  *      @q: the struct request_queue for the bio
332  *      @data: pointer to buffer to map
333  *      @len: length in bytes
334  *      @gfp_mask: allocation flags for bio allocation
335  *
336  *      Map the kernel address into a bio suitable for io to a block
337  *      device. Returns an error pointer in case of error.
338  */
339 static struct bio *bio_map_kern(struct request_queue *q, void *data,
340                 unsigned int len, gfp_t gfp_mask)
341 {
342         unsigned long kaddr = (unsigned long)data;
343         unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
344         unsigned long start = kaddr >> PAGE_SHIFT;
345         const int nr_pages = end - start;
346         bool is_vmalloc = is_vmalloc_addr(data);
347         struct page *page;
348         int offset, i;
349         struct bio *bio;
350
351         bio = bio_kmalloc(gfp_mask, nr_pages);
352         if (!bio)
353                 return ERR_PTR(-ENOMEM);
354
355         if (is_vmalloc) {
356                 flush_kernel_vmap_range(data, len);
357                 bio->bi_private = data;
358         }
359
360         offset = offset_in_page(kaddr);
361         for (i = 0; i < nr_pages; i++) {
362                 unsigned int bytes = PAGE_SIZE - offset;
363
364                 if (len <= 0)
365                         break;
366
367                 if (bytes > len)
368                         bytes = len;
369
370                 if (!is_vmalloc)
371                         page = virt_to_page(data);
372                 else
373                         page = vmalloc_to_page(data);
374                 if (bio_add_pc_page(q, bio, page, bytes,
375                                     offset) < bytes) {
376                         /* we don't support partial mappings */
377                         bio_put(bio);
378                         return ERR_PTR(-EINVAL);
379                 }
380
381                 data += bytes;
382                 len -= bytes;
383                 offset = 0;
384         }
385
386         bio->bi_end_io = bio_map_kern_endio;
387         return bio;
388 }
389
390 static void bio_copy_kern_endio(struct bio *bio)
391 {
392         bio_free_pages(bio);
393         bio_put(bio);
394 }
395
396 static void bio_copy_kern_endio_read(struct bio *bio)
397 {
398         char *p = bio->bi_private;
399         struct bio_vec *bvec;
400         struct bvec_iter_all iter_all;
401
402         bio_for_each_segment_all(bvec, bio, iter_all) {
403                 memcpy_from_bvec(p, bvec);
404                 p += bvec->bv_len;
405         }
406
407         bio_copy_kern_endio(bio);
408 }
409
410 /**
411  *      bio_copy_kern   -       copy kernel address into bio
412  *      @q: the struct request_queue for the bio
413  *      @data: pointer to buffer to copy
414  *      @len: length in bytes
415  *      @gfp_mask: allocation flags for bio and page allocation
416  *      @reading: data direction is READ
417  *
418  *      copy the kernel address into a bio suitable for io to a block
419  *      device. Returns an error pointer in case of error.
420  */
421 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
422                 unsigned int len, gfp_t gfp_mask, int reading)
423 {
424         unsigned long kaddr = (unsigned long)data;
425         unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
426         unsigned long start = kaddr >> PAGE_SHIFT;
427         struct bio *bio;
428         void *p = data;
429         int nr_pages = 0;
430
431         /*
432          * Overflow, abort
433          */
434         if (end < start)
435                 return ERR_PTR(-EINVAL);
436
437         nr_pages = end - start;
438         bio = bio_kmalloc(gfp_mask, nr_pages);
439         if (!bio)
440                 return ERR_PTR(-ENOMEM);
441
442         while (len) {
443                 struct page *page;
444                 unsigned int bytes = PAGE_SIZE;
445
446                 if (bytes > len)
447                         bytes = len;
448
449                 page = alloc_page(GFP_NOIO | gfp_mask);
450                 if (!page)
451                         goto cleanup;
452
453                 if (!reading)
454                         memcpy(page_address(page), p, bytes);
455
456                 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
457                         break;
458
459                 len -= bytes;
460                 p += bytes;
461         }
462
463         if (reading) {
464                 bio->bi_end_io = bio_copy_kern_endio_read;
465                 bio->bi_private = data;
466         } else {
467                 bio->bi_end_io = bio_copy_kern_endio;
468         }
469
470         return bio;
471
472 cleanup:
473         bio_free_pages(bio);
474         bio_put(bio);
475         return ERR_PTR(-ENOMEM);
476 }
477
478 /*
479  * Append a bio to a passthrough request.  Only works if the bio can be merged
480  * into the request based on the driver constraints.
481  */
482 int blk_rq_append_bio(struct request *rq, struct bio *bio)
483 {
484         struct bvec_iter iter;
485         struct bio_vec bv;
486         unsigned int nr_segs = 0;
487
488         bio_for_each_bvec(bv, bio, iter)
489                 nr_segs++;
490
491         if (!rq->bio) {
492                 blk_rq_bio_prep(rq, bio, nr_segs);
493         } else {
494                 if (!ll_back_merge_fn(rq, bio, nr_segs))
495                         return -EINVAL;
496                 rq->biotail->bi_next = bio;
497                 rq->biotail = bio;
498                 rq->__data_len += (bio)->bi_iter.bi_size;
499                 bio_crypt_free_ctx(bio);
500         }
501
502         return 0;
503 }
504 EXPORT_SYMBOL(blk_rq_append_bio);
505
506 /**
507  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
508  * @q:          request queue where request should be inserted
509  * @rq:         request to map data to
510  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
511  * @iter:       iovec iterator
512  * @gfp_mask:   memory allocation flags
513  *
514  * Description:
515  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
516  *    a kernel bounce buffer is used.
517  *
518  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
519  *    still in process context.
520  */
521 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
522                         struct rq_map_data *map_data,
523                         const struct iov_iter *iter, gfp_t gfp_mask)
524 {
525         bool copy = false;
526         unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
527         struct bio *bio = NULL;
528         struct iov_iter i;
529         int ret = -EINVAL;
530
531         if (!iter_is_iovec(iter))
532                 goto fail;
533
534         if (map_data)
535                 copy = true;
536         else if (blk_queue_may_bounce(q))
537                 copy = true;
538         else if (iov_iter_alignment(iter) & align)
539                 copy = true;
540         else if (queue_virt_boundary(q))
541                 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
542
543         i = *iter;
544         do {
545                 if (copy)
546                         ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
547                 else
548                         ret = bio_map_user_iov(rq, &i, gfp_mask);
549                 if (ret)
550                         goto unmap_rq;
551                 if (!bio)
552                         bio = rq->bio;
553         } while (iov_iter_count(&i));
554
555         return 0;
556
557 unmap_rq:
558         blk_rq_unmap_user(bio);
559 fail:
560         rq->bio = NULL;
561         return ret;
562 }
563 EXPORT_SYMBOL(blk_rq_map_user_iov);
564
565 int blk_rq_map_user(struct request_queue *q, struct request *rq,
566                     struct rq_map_data *map_data, void __user *ubuf,
567                     unsigned long len, gfp_t gfp_mask)
568 {
569         struct iovec iov;
570         struct iov_iter i;
571         int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
572
573         if (unlikely(ret < 0))
574                 return ret;
575
576         return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
577 }
578 EXPORT_SYMBOL(blk_rq_map_user);
579
580 /**
581  * blk_rq_unmap_user - unmap a request with user data
582  * @bio:               start of bio list
583  *
584  * Description:
585  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
586  *    supply the original rq->bio from the blk_rq_map_user() return, since
587  *    the I/O completion may have changed rq->bio.
588  */
589 int blk_rq_unmap_user(struct bio *bio)
590 {
591         struct bio *next_bio;
592         int ret = 0, ret2;
593
594         while (bio) {
595                 if (bio->bi_private) {
596                         ret2 = bio_uncopy_user(bio);
597                         if (ret2 && !ret)
598                                 ret = ret2;
599                 } else {
600                         bio_release_pages(bio, bio_data_dir(bio) == READ);
601                 }
602
603                 next_bio = bio;
604                 bio = bio->bi_next;
605                 bio_put(next_bio);
606         }
607
608         return ret;
609 }
610 EXPORT_SYMBOL(blk_rq_unmap_user);
611
612 /**
613  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
614  * @q:          request queue where request should be inserted
615  * @rq:         request to fill
616  * @kbuf:       the kernel buffer
617  * @len:        length of user data
618  * @gfp_mask:   memory allocation flags
619  *
620  * Description:
621  *    Data will be mapped directly if possible. Otherwise a bounce
622  *    buffer is used. Can be called multiple times to append multiple
623  *    buffers.
624  */
625 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
626                     unsigned int len, gfp_t gfp_mask)
627 {
628         int reading = rq_data_dir(rq) == READ;
629         unsigned long addr = (unsigned long) kbuf;
630         struct bio *bio;
631         int ret;
632
633         if (len > (queue_max_hw_sectors(q) << 9))
634                 return -EINVAL;
635         if (!len || !kbuf)
636                 return -EINVAL;
637
638         if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
639             blk_queue_may_bounce(q))
640                 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
641         else
642                 bio = bio_map_kern(q, kbuf, len, gfp_mask);
643
644         if (IS_ERR(bio))
645                 return PTR_ERR(bio);
646
647         bio->bi_opf &= ~REQ_OP_MASK;
648         bio->bi_opf |= req_op(rq);
649
650         ret = blk_rq_append_bio(rq, bio);
651         if (unlikely(ret))
652                 bio_put(bio);
653         return ret;
654 }
655 EXPORT_SYMBOL(blk_rq_map_kern);