Merge tag 'dt-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / x86 / tools / relocs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* This is included from relocs_32/64.c */
3
4 #define ElfW(type)              _ElfW(ELF_BITS, type)
5 #define _ElfW(bits, type)       __ElfW(bits, type)
6 #define __ElfW(bits, type)      Elf##bits##_##type
7
8 #define Elf_Addr                ElfW(Addr)
9 #define Elf_Ehdr                ElfW(Ehdr)
10 #define Elf_Phdr                ElfW(Phdr)
11 #define Elf_Shdr                ElfW(Shdr)
12 #define Elf_Sym                 ElfW(Sym)
13
14 static Elf_Ehdr         ehdr;
15 static unsigned long    shnum;
16 static unsigned int     shstrndx;
17
18 struct relocs {
19         uint32_t        *offset;
20         unsigned long   count;
21         unsigned long   size;
22 };
23
24 static struct relocs relocs16;
25 static struct relocs relocs32;
26 #if ELF_BITS == 64
27 static struct relocs relocs32neg;
28 static struct relocs relocs64;
29 #define FMT PRIu64
30 #else
31 #define FMT PRIu32
32 #endif
33
34 struct section {
35         Elf_Shdr       shdr;
36         struct section *link;
37         Elf_Sym        *symtab;
38         Elf_Rel        *reltab;
39         char           *strtab;
40 };
41 static struct section *secs;
42
43 static const char * const sym_regex_kernel[S_NSYMTYPES] = {
44 /*
45  * Following symbols have been audited. There values are constant and do
46  * not change if bzImage is loaded at a different physical address than
47  * the address for which it has been compiled. Don't warn user about
48  * absolute relocations present w.r.t these symbols.
49  */
50         [S_ABS] =
51         "^(xen_irq_disable_direct_reloc$|"
52         "xen_save_fl_direct_reloc$|"
53         "VDSO|"
54         "__crc_)",
55
56 /*
57  * These symbols are known to be relative, even if the linker marks them
58  * as absolute (typically defined outside any section in the linker script.)
59  */
60         [S_REL] =
61         "^(__init_(begin|end)|"
62         "__x86_cpu_dev_(start|end)|"
63         "(__parainstructions|__alt_instructions)(_end)?|"
64         "(__iommu_table|__apicdrivers|__smp_locks)(_end)?|"
65         "__(start|end)_pci_.*|"
66         "__(start|end)_builtin_fw|"
67         "__(start|stop)___ksymtab(_gpl)?|"
68         "__(start|stop)___kcrctab(_gpl)?|"
69         "__(start|stop)___param|"
70         "__(start|stop)___modver|"
71         "__(start|stop)___bug_table|"
72         "__tracedata_(start|end)|"
73         "__(start|stop)_notes|"
74         "__end_rodata|"
75         "__end_rodata_aligned|"
76         "__initramfs_start|"
77         "(jiffies|jiffies_64)|"
78 #if ELF_BITS == 64
79         "__per_cpu_load|"
80         "init_per_cpu__.*|"
81         "__end_rodata_hpage_align|"
82 #endif
83         "__vvar_page|"
84         "_end)$"
85 };
86
87
88 static const char * const sym_regex_realmode[S_NSYMTYPES] = {
89 /*
90  * These symbols are known to be relative, even if the linker marks them
91  * as absolute (typically defined outside any section in the linker script.)
92  */
93         [S_REL] =
94         "^pa_",
95
96 /*
97  * These are 16-bit segment symbols when compiling 16-bit code.
98  */
99         [S_SEG] =
100         "^real_mode_seg$",
101
102 /*
103  * These are offsets belonging to segments, as opposed to linear addresses,
104  * when compiling 16-bit code.
105  */
106         [S_LIN] =
107         "^pa_",
108 };
109
110 static const char * const *sym_regex;
111
112 static regex_t sym_regex_c[S_NSYMTYPES];
113 static int is_reloc(enum symtype type, const char *sym_name)
114 {
115         return sym_regex[type] &&
116                 !regexec(&sym_regex_c[type], sym_name, 0, NULL, 0);
117 }
118
119 static void regex_init(int use_real_mode)
120 {
121         char errbuf[128];
122         int err;
123         int i;
124
125         if (use_real_mode)
126                 sym_regex = sym_regex_realmode;
127         else
128                 sym_regex = sym_regex_kernel;
129
130         for (i = 0; i < S_NSYMTYPES; i++) {
131                 if (!sym_regex[i])
132                         continue;
133
134                 err = regcomp(&sym_regex_c[i], sym_regex[i],
135                               REG_EXTENDED|REG_NOSUB);
136
137                 if (err) {
138                         regerror(err, &sym_regex_c[i], errbuf, sizeof(errbuf));
139                         die("%s", errbuf);
140                 }
141         }
142 }
143
144 static const char *sym_type(unsigned type)
145 {
146         static const char *type_name[] = {
147 #define SYM_TYPE(X) [X] = #X
148                 SYM_TYPE(STT_NOTYPE),
149                 SYM_TYPE(STT_OBJECT),
150                 SYM_TYPE(STT_FUNC),
151                 SYM_TYPE(STT_SECTION),
152                 SYM_TYPE(STT_FILE),
153                 SYM_TYPE(STT_COMMON),
154                 SYM_TYPE(STT_TLS),
155 #undef SYM_TYPE
156         };
157         const char *name = "unknown sym type name";
158         if (type < ARRAY_SIZE(type_name)) {
159                 name = type_name[type];
160         }
161         return name;
162 }
163
164 static const char *sym_bind(unsigned bind)
165 {
166         static const char *bind_name[] = {
167 #define SYM_BIND(X) [X] = #X
168                 SYM_BIND(STB_LOCAL),
169                 SYM_BIND(STB_GLOBAL),
170                 SYM_BIND(STB_WEAK),
171 #undef SYM_BIND
172         };
173         const char *name = "unknown sym bind name";
174         if (bind < ARRAY_SIZE(bind_name)) {
175                 name = bind_name[bind];
176         }
177         return name;
178 }
179
180 static const char *sym_visibility(unsigned visibility)
181 {
182         static const char *visibility_name[] = {
183 #define SYM_VISIBILITY(X) [X] = #X
184                 SYM_VISIBILITY(STV_DEFAULT),
185                 SYM_VISIBILITY(STV_INTERNAL),
186                 SYM_VISIBILITY(STV_HIDDEN),
187                 SYM_VISIBILITY(STV_PROTECTED),
188 #undef SYM_VISIBILITY
189         };
190         const char *name = "unknown sym visibility name";
191         if (visibility < ARRAY_SIZE(visibility_name)) {
192                 name = visibility_name[visibility];
193         }
194         return name;
195 }
196
197 static const char *rel_type(unsigned type)
198 {
199         static const char *type_name[] = {
200 #define REL_TYPE(X) [X] = #X
201 #if ELF_BITS == 64
202                 REL_TYPE(R_X86_64_NONE),
203                 REL_TYPE(R_X86_64_64),
204                 REL_TYPE(R_X86_64_PC64),
205                 REL_TYPE(R_X86_64_PC32),
206                 REL_TYPE(R_X86_64_GOT32),
207                 REL_TYPE(R_X86_64_PLT32),
208                 REL_TYPE(R_X86_64_COPY),
209                 REL_TYPE(R_X86_64_GLOB_DAT),
210                 REL_TYPE(R_X86_64_JUMP_SLOT),
211                 REL_TYPE(R_X86_64_RELATIVE),
212                 REL_TYPE(R_X86_64_GOTPCREL),
213                 REL_TYPE(R_X86_64_32),
214                 REL_TYPE(R_X86_64_32S),
215                 REL_TYPE(R_X86_64_16),
216                 REL_TYPE(R_X86_64_PC16),
217                 REL_TYPE(R_X86_64_8),
218                 REL_TYPE(R_X86_64_PC8),
219 #else
220                 REL_TYPE(R_386_NONE),
221                 REL_TYPE(R_386_32),
222                 REL_TYPE(R_386_PC32),
223                 REL_TYPE(R_386_GOT32),
224                 REL_TYPE(R_386_PLT32),
225                 REL_TYPE(R_386_COPY),
226                 REL_TYPE(R_386_GLOB_DAT),
227                 REL_TYPE(R_386_JMP_SLOT),
228                 REL_TYPE(R_386_RELATIVE),
229                 REL_TYPE(R_386_GOTOFF),
230                 REL_TYPE(R_386_GOTPC),
231                 REL_TYPE(R_386_8),
232                 REL_TYPE(R_386_PC8),
233                 REL_TYPE(R_386_16),
234                 REL_TYPE(R_386_PC16),
235 #endif
236 #undef REL_TYPE
237         };
238         const char *name = "unknown type rel type name";
239         if (type < ARRAY_SIZE(type_name) && type_name[type]) {
240                 name = type_name[type];
241         }
242         return name;
243 }
244
245 static const char *sec_name(unsigned shndx)
246 {
247         const char *sec_strtab;
248         const char *name;
249         sec_strtab = secs[shstrndx].strtab;
250         name = "<noname>";
251         if (shndx < shnum) {
252                 name = sec_strtab + secs[shndx].shdr.sh_name;
253         }
254         else if (shndx == SHN_ABS) {
255                 name = "ABSOLUTE";
256         }
257         else if (shndx == SHN_COMMON) {
258                 name = "COMMON";
259         }
260         return name;
261 }
262
263 static const char *sym_name(const char *sym_strtab, Elf_Sym *sym)
264 {
265         const char *name;
266         name = "<noname>";
267         if (sym->st_name) {
268                 name = sym_strtab + sym->st_name;
269         }
270         else {
271                 name = sec_name(sym->st_shndx);
272         }
273         return name;
274 }
275
276 static Elf_Sym *sym_lookup(const char *symname)
277 {
278         int i;
279         for (i = 0; i < shnum; i++) {
280                 struct section *sec = &secs[i];
281                 long nsyms;
282                 char *strtab;
283                 Elf_Sym *symtab;
284                 Elf_Sym *sym;
285
286                 if (sec->shdr.sh_type != SHT_SYMTAB)
287                         continue;
288
289                 nsyms = sec->shdr.sh_size/sizeof(Elf_Sym);
290                 symtab = sec->symtab;
291                 strtab = sec->link->strtab;
292
293                 for (sym = symtab; --nsyms >= 0; sym++) {
294                         if (!sym->st_name)
295                                 continue;
296                         if (strcmp(symname, strtab + sym->st_name) == 0)
297                                 return sym;
298                 }
299         }
300         return 0;
301 }
302
303 #if BYTE_ORDER == LITTLE_ENDIAN
304 #define le16_to_cpu(val) (val)
305 #define le32_to_cpu(val) (val)
306 #define le64_to_cpu(val) (val)
307 #endif
308 #if BYTE_ORDER == BIG_ENDIAN
309 #define le16_to_cpu(val) bswap_16(val)
310 #define le32_to_cpu(val) bswap_32(val)
311 #define le64_to_cpu(val) bswap_64(val)
312 #endif
313
314 static uint16_t elf16_to_cpu(uint16_t val)
315 {
316         return le16_to_cpu(val);
317 }
318
319 static uint32_t elf32_to_cpu(uint32_t val)
320 {
321         return le32_to_cpu(val);
322 }
323
324 #define elf_half_to_cpu(x)      elf16_to_cpu(x)
325 #define elf_word_to_cpu(x)      elf32_to_cpu(x)
326
327 #if ELF_BITS == 64
328 static uint64_t elf64_to_cpu(uint64_t val)
329 {
330         return le64_to_cpu(val);
331 }
332 #define elf_addr_to_cpu(x)      elf64_to_cpu(x)
333 #define elf_off_to_cpu(x)       elf64_to_cpu(x)
334 #define elf_xword_to_cpu(x)     elf64_to_cpu(x)
335 #else
336 #define elf_addr_to_cpu(x)      elf32_to_cpu(x)
337 #define elf_off_to_cpu(x)       elf32_to_cpu(x)
338 #define elf_xword_to_cpu(x)     elf32_to_cpu(x)
339 #endif
340
341 static void read_ehdr(FILE *fp)
342 {
343         if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) {
344                 die("Cannot read ELF header: %s\n",
345                         strerror(errno));
346         }
347         if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) {
348                 die("No ELF magic\n");
349         }
350         if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) {
351                 die("Not a %d bit executable\n", ELF_BITS);
352         }
353         if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) {
354                 die("Not a LSB ELF executable\n");
355         }
356         if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
357                 die("Unknown ELF version\n");
358         }
359         /* Convert the fields to native endian */
360         ehdr.e_type      = elf_half_to_cpu(ehdr.e_type);
361         ehdr.e_machine   = elf_half_to_cpu(ehdr.e_machine);
362         ehdr.e_version   = elf_word_to_cpu(ehdr.e_version);
363         ehdr.e_entry     = elf_addr_to_cpu(ehdr.e_entry);
364         ehdr.e_phoff     = elf_off_to_cpu(ehdr.e_phoff);
365         ehdr.e_shoff     = elf_off_to_cpu(ehdr.e_shoff);
366         ehdr.e_flags     = elf_word_to_cpu(ehdr.e_flags);
367         ehdr.e_ehsize    = elf_half_to_cpu(ehdr.e_ehsize);
368         ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize);
369         ehdr.e_phnum     = elf_half_to_cpu(ehdr.e_phnum);
370         ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize);
371         ehdr.e_shnum     = elf_half_to_cpu(ehdr.e_shnum);
372         ehdr.e_shstrndx  = elf_half_to_cpu(ehdr.e_shstrndx);
373
374         shnum = ehdr.e_shnum;
375         shstrndx = ehdr.e_shstrndx;
376
377         if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN))
378                 die("Unsupported ELF header type\n");
379         if (ehdr.e_machine != ELF_MACHINE)
380                 die("Not for %s\n", ELF_MACHINE_NAME);
381         if (ehdr.e_version != EV_CURRENT)
382                 die("Unknown ELF version\n");
383         if (ehdr.e_ehsize != sizeof(Elf_Ehdr))
384                 die("Bad Elf header size\n");
385         if (ehdr.e_phentsize != sizeof(Elf_Phdr))
386                 die("Bad program header entry\n");
387         if (ehdr.e_shentsize != sizeof(Elf_Shdr))
388                 die("Bad section header entry\n");
389
390
391         if (shnum == SHN_UNDEF || shstrndx == SHN_XINDEX) {
392                 Elf_Shdr shdr;
393
394                 if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0)
395                         die("Seek to %" FMT " failed: %s\n", ehdr.e_shoff, strerror(errno));
396
397                 if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
398                         die("Cannot read initial ELF section header: %s\n", strerror(errno));
399
400                 if (shnum == SHN_UNDEF)
401                         shnum = elf_xword_to_cpu(shdr.sh_size);
402
403                 if (shstrndx == SHN_XINDEX)
404                         shstrndx = elf_word_to_cpu(shdr.sh_link);
405         }
406
407         if (shstrndx >= shnum)
408                 die("String table index out of bounds\n");
409 }
410
411 static void read_shdrs(FILE *fp)
412 {
413         int i;
414         Elf_Shdr shdr;
415
416         secs = calloc(shnum, sizeof(struct section));
417         if (!secs) {
418                 die("Unable to allocate %ld section headers\n",
419                     shnum);
420         }
421         if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) {
422                 die("Seek to %" FMT " failed: %s\n",
423                     ehdr.e_shoff, strerror(errno));
424         }
425         for (i = 0; i < shnum; i++) {
426                 struct section *sec = &secs[i];
427                 if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
428                         die("Cannot read ELF section headers %d/%ld: %s\n",
429                             i, shnum, strerror(errno));
430                 sec->shdr.sh_name      = elf_word_to_cpu(shdr.sh_name);
431                 sec->shdr.sh_type      = elf_word_to_cpu(shdr.sh_type);
432                 sec->shdr.sh_flags     = elf_xword_to_cpu(shdr.sh_flags);
433                 sec->shdr.sh_addr      = elf_addr_to_cpu(shdr.sh_addr);
434                 sec->shdr.sh_offset    = elf_off_to_cpu(shdr.sh_offset);
435                 sec->shdr.sh_size      = elf_xword_to_cpu(shdr.sh_size);
436                 sec->shdr.sh_link      = elf_word_to_cpu(shdr.sh_link);
437                 sec->shdr.sh_info      = elf_word_to_cpu(shdr.sh_info);
438                 sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign);
439                 sec->shdr.sh_entsize   = elf_xword_to_cpu(shdr.sh_entsize);
440                 if (sec->shdr.sh_link < shnum)
441                         sec->link = &secs[sec->shdr.sh_link];
442         }
443
444 }
445
446 static void read_strtabs(FILE *fp)
447 {
448         int i;
449         for (i = 0; i < shnum; i++) {
450                 struct section *sec = &secs[i];
451                 if (sec->shdr.sh_type != SHT_STRTAB) {
452                         continue;
453                 }
454                 sec->strtab = malloc(sec->shdr.sh_size);
455                 if (!sec->strtab) {
456                         die("malloc of %" FMT " bytes for strtab failed\n",
457                             sec->shdr.sh_size);
458                 }
459                 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
460                         die("Seek to %" FMT " failed: %s\n",
461                             sec->shdr.sh_offset, strerror(errno));
462                 }
463                 if (fread(sec->strtab, 1, sec->shdr.sh_size, fp)
464                     != sec->shdr.sh_size) {
465                         die("Cannot read symbol table: %s\n",
466                                 strerror(errno));
467                 }
468         }
469 }
470
471 static void read_symtabs(FILE *fp)
472 {
473         int i,j;
474         for (i = 0; i < shnum; i++) {
475                 struct section *sec = &secs[i];
476                 if (sec->shdr.sh_type != SHT_SYMTAB) {
477                         continue;
478                 }
479                 sec->symtab = malloc(sec->shdr.sh_size);
480                 if (!sec->symtab) {
481                         die("malloc of %" FMT " bytes for symtab failed\n",
482                             sec->shdr.sh_size);
483                 }
484                 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
485                         die("Seek to %" FMT " failed: %s\n",
486                             sec->shdr.sh_offset, strerror(errno));
487                 }
488                 if (fread(sec->symtab, 1, sec->shdr.sh_size, fp)
489                     != sec->shdr.sh_size) {
490                         die("Cannot read symbol table: %s\n",
491                                 strerror(errno));
492                 }
493                 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
494                         Elf_Sym *sym = &sec->symtab[j];
495                         sym->st_name  = elf_word_to_cpu(sym->st_name);
496                         sym->st_value = elf_addr_to_cpu(sym->st_value);
497                         sym->st_size  = elf_xword_to_cpu(sym->st_size);
498                         sym->st_shndx = elf_half_to_cpu(sym->st_shndx);
499                 }
500         }
501 }
502
503
504 static void read_relocs(FILE *fp)
505 {
506         int i,j;
507         for (i = 0; i < shnum; i++) {
508                 struct section *sec = &secs[i];
509                 if (sec->shdr.sh_type != SHT_REL_TYPE) {
510                         continue;
511                 }
512                 sec->reltab = malloc(sec->shdr.sh_size);
513                 if (!sec->reltab) {
514                         die("malloc of %" FMT " bytes for relocs failed\n",
515                             sec->shdr.sh_size);
516                 }
517                 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
518                         die("Seek to %" FMT " failed: %s\n",
519                             sec->shdr.sh_offset, strerror(errno));
520                 }
521                 if (fread(sec->reltab, 1, sec->shdr.sh_size, fp)
522                     != sec->shdr.sh_size) {
523                         die("Cannot read symbol table: %s\n",
524                                 strerror(errno));
525                 }
526                 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
527                         Elf_Rel *rel = &sec->reltab[j];
528                         rel->r_offset = elf_addr_to_cpu(rel->r_offset);
529                         rel->r_info   = elf_xword_to_cpu(rel->r_info);
530 #if (SHT_REL_TYPE == SHT_RELA)
531                         rel->r_addend = elf_xword_to_cpu(rel->r_addend);
532 #endif
533                 }
534         }
535 }
536
537
538 static void print_absolute_symbols(void)
539 {
540         int i;
541         const char *format;
542
543         if (ELF_BITS == 64)
544                 format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n";
545         else
546                 format = "%5d %08"PRIx32"  %5"PRId32" %10s %10s %12s %s\n";
547
548         printf("Absolute symbols\n");
549         printf(" Num:    Value Size  Type       Bind        Visibility  Name\n");
550         for (i = 0; i < shnum; i++) {
551                 struct section *sec = &secs[i];
552                 char *sym_strtab;
553                 int j;
554
555                 if (sec->shdr.sh_type != SHT_SYMTAB) {
556                         continue;
557                 }
558                 sym_strtab = sec->link->strtab;
559                 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
560                         Elf_Sym *sym;
561                         const char *name;
562                         sym = &sec->symtab[j];
563                         name = sym_name(sym_strtab, sym);
564                         if (sym->st_shndx != SHN_ABS) {
565                                 continue;
566                         }
567                         printf(format,
568                                 j, sym->st_value, sym->st_size,
569                                 sym_type(ELF_ST_TYPE(sym->st_info)),
570                                 sym_bind(ELF_ST_BIND(sym->st_info)),
571                                 sym_visibility(ELF_ST_VISIBILITY(sym->st_other)),
572                                 name);
573                 }
574         }
575         printf("\n");
576 }
577
578 static void print_absolute_relocs(void)
579 {
580         int i, printed = 0;
581         const char *format;
582
583         if (ELF_BITS == 64)
584                 format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64"  %s\n";
585         else
586                 format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32"  %s\n";
587
588         for (i = 0; i < shnum; i++) {
589                 struct section *sec = &secs[i];
590                 struct section *sec_applies, *sec_symtab;
591                 char *sym_strtab;
592                 Elf_Sym *sh_symtab;
593                 int j;
594                 if (sec->shdr.sh_type != SHT_REL_TYPE) {
595                         continue;
596                 }
597                 sec_symtab  = sec->link;
598                 sec_applies = &secs[sec->shdr.sh_info];
599                 if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
600                         continue;
601                 }
602                 sh_symtab  = sec_symtab->symtab;
603                 sym_strtab = sec_symtab->link->strtab;
604                 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
605                         Elf_Rel *rel;
606                         Elf_Sym *sym;
607                         const char *name;
608                         rel = &sec->reltab[j];
609                         sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
610                         name = sym_name(sym_strtab, sym);
611                         if (sym->st_shndx != SHN_ABS) {
612                                 continue;
613                         }
614
615                         /* Absolute symbols are not relocated if bzImage is
616                          * loaded at a non-compiled address. Display a warning
617                          * to user at compile time about the absolute
618                          * relocations present.
619                          *
620                          * User need to audit the code to make sure
621                          * some symbols which should have been section
622                          * relative have not become absolute because of some
623                          * linker optimization or wrong programming usage.
624                          *
625                          * Before warning check if this absolute symbol
626                          * relocation is harmless.
627                          */
628                         if (is_reloc(S_ABS, name) || is_reloc(S_REL, name))
629                                 continue;
630
631                         if (!printed) {
632                                 printf("WARNING: Absolute relocations"
633                                         " present\n");
634                                 printf("Offset     Info     Type     Sym.Value "
635                                         "Sym.Name\n");
636                                 printed = 1;
637                         }
638
639                         printf(format,
640                                 rel->r_offset,
641                                 rel->r_info,
642                                 rel_type(ELF_R_TYPE(rel->r_info)),
643                                 sym->st_value,
644                                 name);
645                 }
646         }
647
648         if (printed)
649                 printf("\n");
650 }
651
652 static void add_reloc(struct relocs *r, uint32_t offset)
653 {
654         if (r->count == r->size) {
655                 unsigned long newsize = r->size + 50000;
656                 void *mem = realloc(r->offset, newsize * sizeof(r->offset[0]));
657
658                 if (!mem)
659                         die("realloc of %ld entries for relocs failed\n",
660                                 newsize);
661                 r->offset = mem;
662                 r->size = newsize;
663         }
664         r->offset[r->count++] = offset;
665 }
666
667 static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel,
668                         Elf_Sym *sym, const char *symname))
669 {
670         int i;
671         /* Walk through the relocations */
672         for (i = 0; i < shnum; i++) {
673                 char *sym_strtab;
674                 Elf_Sym *sh_symtab;
675                 struct section *sec_applies, *sec_symtab;
676                 int j;
677                 struct section *sec = &secs[i];
678
679                 if (sec->shdr.sh_type != SHT_REL_TYPE) {
680                         continue;
681                 }
682                 sec_symtab  = sec->link;
683                 sec_applies = &secs[sec->shdr.sh_info];
684                 if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
685                         continue;
686                 }
687                 sh_symtab = sec_symtab->symtab;
688                 sym_strtab = sec_symtab->link->strtab;
689                 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
690                         Elf_Rel *rel = &sec->reltab[j];
691                         Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
692                         const char *symname = sym_name(sym_strtab, sym);
693
694                         process(sec, rel, sym, symname);
695                 }
696         }
697 }
698
699 /*
700  * The .data..percpu section is a special case for x86_64 SMP kernels.
701  * It is used to initialize the actual per_cpu areas and to provide
702  * definitions for the per_cpu variables that correspond to their offsets
703  * within the percpu area. Since the values of all of the symbols need
704  * to be offsets from the start of the per_cpu area the virtual address
705  * (sh_addr) of .data..percpu is 0 in SMP kernels.
706  *
707  * This means that:
708  *
709  *      Relocations that reference symbols in the per_cpu area do not
710  *      need further relocation (since the value is an offset relative
711  *      to the start of the per_cpu area that does not change).
712  *
713  *      Relocations that apply to the per_cpu area need to have their
714  *      offset adjusted by by the value of __per_cpu_load to make them
715  *      point to the correct place in the loaded image (because the
716  *      virtual address of .data..percpu is 0).
717  *
718  * For non SMP kernels .data..percpu is linked as part of the normal
719  * kernel data and does not require special treatment.
720  *
721  */
722 static int per_cpu_shndx        = -1;
723 static Elf_Addr per_cpu_load_addr;
724
725 static void percpu_init(void)
726 {
727         int i;
728         for (i = 0; i < shnum; i++) {
729                 ElfW(Sym) *sym;
730                 if (strcmp(sec_name(i), ".data..percpu"))
731                         continue;
732
733                 if (secs[i].shdr.sh_addr != 0)  /* non SMP kernel */
734                         return;
735
736                 sym = sym_lookup("__per_cpu_load");
737                 if (!sym)
738                         die("can't find __per_cpu_load\n");
739
740                 per_cpu_shndx = i;
741                 per_cpu_load_addr = sym->st_value;
742                 return;
743         }
744 }
745
746 #if ELF_BITS == 64
747
748 /*
749  * Check to see if a symbol lies in the .data..percpu section.
750  *
751  * The linker incorrectly associates some symbols with the
752  * .data..percpu section so we also need to check the symbol
753  * name to make sure that we classify the symbol correctly.
754  *
755  * The GNU linker incorrectly associates:
756  *      __init_begin
757  *      __per_cpu_load
758  *
759  * The "gold" linker incorrectly associates:
760  *      init_per_cpu__fixed_percpu_data
761  *      init_per_cpu__gdt_page
762  */
763 static int is_percpu_sym(ElfW(Sym) *sym, const char *symname)
764 {
765         return (sym->st_shndx == per_cpu_shndx) &&
766                 strcmp(symname, "__init_begin") &&
767                 strcmp(symname, "__per_cpu_load") &&
768                 strncmp(symname, "init_per_cpu_", 13);
769 }
770
771
772 static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
773                       const char *symname)
774 {
775         unsigned r_type = ELF64_R_TYPE(rel->r_info);
776         ElfW(Addr) offset = rel->r_offset;
777         int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
778
779         if (sym->st_shndx == SHN_UNDEF)
780                 return 0;
781
782         /*
783          * Adjust the offset if this reloc applies to the percpu section.
784          */
785         if (sec->shdr.sh_info == per_cpu_shndx)
786                 offset += per_cpu_load_addr;
787
788         switch (r_type) {
789         case R_X86_64_NONE:
790                 /* NONE can be ignored. */
791                 break;
792
793         case R_X86_64_PC32:
794         case R_X86_64_PLT32:
795                 /*
796                  * PC relative relocations don't need to be adjusted unless
797                  * referencing a percpu symbol.
798                  *
799                  * NB: R_X86_64_PLT32 can be treated as R_X86_64_PC32.
800                  */
801                 if (is_percpu_sym(sym, symname))
802                         add_reloc(&relocs32neg, offset);
803                 break;
804
805         case R_X86_64_PC64:
806                 /*
807                  * Only used by jump labels
808                  */
809                 if (is_percpu_sym(sym, symname))
810                         die("Invalid R_X86_64_PC64 relocation against per-CPU symbol %s\n",
811                             symname);
812                 break;
813
814         case R_X86_64_32:
815         case R_X86_64_32S:
816         case R_X86_64_64:
817                 /*
818                  * References to the percpu area don't need to be adjusted.
819                  */
820                 if (is_percpu_sym(sym, symname))
821                         break;
822
823                 if (shn_abs) {
824                         /*
825                          * Whitelisted absolute symbols do not require
826                          * relocation.
827                          */
828                         if (is_reloc(S_ABS, symname))
829                                 break;
830
831                         die("Invalid absolute %s relocation: %s\n",
832                             rel_type(r_type), symname);
833                         break;
834                 }
835
836                 /*
837                  * Relocation offsets for 64 bit kernels are output
838                  * as 32 bits and sign extended back to 64 bits when
839                  * the relocations are processed.
840                  * Make sure that the offset will fit.
841                  */
842                 if ((int32_t)offset != (int64_t)offset)
843                         die("Relocation offset doesn't fit in 32 bits\n");
844
845                 if (r_type == R_X86_64_64)
846                         add_reloc(&relocs64, offset);
847                 else
848                         add_reloc(&relocs32, offset);
849                 break;
850
851         default:
852                 die("Unsupported relocation type: %s (%d)\n",
853                     rel_type(r_type), r_type);
854                 break;
855         }
856
857         return 0;
858 }
859
860 #else
861
862 static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
863                       const char *symname)
864 {
865         unsigned r_type = ELF32_R_TYPE(rel->r_info);
866         int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
867
868         switch (r_type) {
869         case R_386_NONE:
870         case R_386_PC32:
871         case R_386_PC16:
872         case R_386_PC8:
873         case R_386_PLT32:
874                 /*
875                  * NONE can be ignored and PC relative relocations don't need
876                  * to be adjusted. Because sym must be defined, R_386_PLT32 can
877                  * be treated the same way as R_386_PC32.
878                  */
879                 break;
880
881         case R_386_32:
882                 if (shn_abs) {
883                         /*
884                          * Whitelisted absolute symbols do not require
885                          * relocation.
886                          */
887                         if (is_reloc(S_ABS, symname))
888                                 break;
889
890                         die("Invalid absolute %s relocation: %s\n",
891                             rel_type(r_type), symname);
892                         break;
893                 }
894
895                 add_reloc(&relocs32, rel->r_offset);
896                 break;
897
898         default:
899                 die("Unsupported relocation type: %s (%d)\n",
900                     rel_type(r_type), r_type);
901                 break;
902         }
903
904         return 0;
905 }
906
907 static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
908                          const char *symname)
909 {
910         unsigned r_type = ELF32_R_TYPE(rel->r_info);
911         int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
912
913         switch (r_type) {
914         case R_386_NONE:
915         case R_386_PC32:
916         case R_386_PC16:
917         case R_386_PC8:
918         case R_386_PLT32:
919                 /*
920                  * NONE can be ignored and PC relative relocations don't need
921                  * to be adjusted. Because sym must be defined, R_386_PLT32 can
922                  * be treated the same way as R_386_PC32.
923                  */
924                 break;
925
926         case R_386_16:
927                 if (shn_abs) {
928                         /*
929                          * Whitelisted absolute symbols do not require
930                          * relocation.
931                          */
932                         if (is_reloc(S_ABS, symname))
933                                 break;
934
935                         if (is_reloc(S_SEG, symname)) {
936                                 add_reloc(&relocs16, rel->r_offset);
937                                 break;
938                         }
939                 } else {
940                         if (!is_reloc(S_LIN, symname))
941                                 break;
942                 }
943                 die("Invalid %s %s relocation: %s\n",
944                     shn_abs ? "absolute" : "relative",
945                     rel_type(r_type), symname);
946                 break;
947
948         case R_386_32:
949                 if (shn_abs) {
950                         /*
951                          * Whitelisted absolute symbols do not require
952                          * relocation.
953                          */
954                         if (is_reloc(S_ABS, symname))
955                                 break;
956
957                         if (is_reloc(S_REL, symname)) {
958                                 add_reloc(&relocs32, rel->r_offset);
959                                 break;
960                         }
961                 } else {
962                         if (is_reloc(S_LIN, symname))
963                                 add_reloc(&relocs32, rel->r_offset);
964                         break;
965                 }
966                 die("Invalid %s %s relocation: %s\n",
967                     shn_abs ? "absolute" : "relative",
968                     rel_type(r_type), symname);
969                 break;
970
971         default:
972                 die("Unsupported relocation type: %s (%d)\n",
973                     rel_type(r_type), r_type);
974                 break;
975         }
976
977         return 0;
978 }
979
980 #endif
981
982 static int cmp_relocs(const void *va, const void *vb)
983 {
984         const uint32_t *a, *b;
985         a = va; b = vb;
986         return (*a == *b)? 0 : (*a > *b)? 1 : -1;
987 }
988
989 static void sort_relocs(struct relocs *r)
990 {
991         qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs);
992 }
993
994 static int write32(uint32_t v, FILE *f)
995 {
996         unsigned char buf[4];
997
998         put_unaligned_le32(v, buf);
999         return fwrite(buf, 1, 4, f) == 4 ? 0 : -1;
1000 }
1001
1002 static int write32_as_text(uint32_t v, FILE *f)
1003 {
1004         return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1;
1005 }
1006
1007 static void emit_relocs(int as_text, int use_real_mode)
1008 {
1009         int i;
1010         int (*write_reloc)(uint32_t, FILE *) = write32;
1011         int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
1012                         const char *symname);
1013
1014 #if ELF_BITS == 64
1015         if (!use_real_mode)
1016                 do_reloc = do_reloc64;
1017         else
1018                 die("--realmode not valid for a 64-bit ELF file");
1019 #else
1020         if (!use_real_mode)
1021                 do_reloc = do_reloc32;
1022         else
1023                 do_reloc = do_reloc_real;
1024 #endif
1025
1026         /* Collect up the relocations */
1027         walk_relocs(do_reloc);
1028
1029         if (relocs16.count && !use_real_mode)
1030                 die("Segment relocations found but --realmode not specified\n");
1031
1032         /* Order the relocations for more efficient processing */
1033         sort_relocs(&relocs32);
1034 #if ELF_BITS == 64
1035         sort_relocs(&relocs32neg);
1036         sort_relocs(&relocs64);
1037 #else
1038         sort_relocs(&relocs16);
1039 #endif
1040
1041         /* Print the relocations */
1042         if (as_text) {
1043                 /* Print the relocations in a form suitable that
1044                  * gas will like.
1045                  */
1046                 printf(".section \".data.reloc\",\"a\"\n");
1047                 printf(".balign 4\n");
1048                 write_reloc = write32_as_text;
1049         }
1050
1051         if (use_real_mode) {
1052                 write_reloc(relocs16.count, stdout);
1053                 for (i = 0; i < relocs16.count; i++)
1054                         write_reloc(relocs16.offset[i], stdout);
1055
1056                 write_reloc(relocs32.count, stdout);
1057                 for (i = 0; i < relocs32.count; i++)
1058                         write_reloc(relocs32.offset[i], stdout);
1059         } else {
1060 #if ELF_BITS == 64
1061                 /* Print a stop */
1062                 write_reloc(0, stdout);
1063
1064                 /* Now print each relocation */
1065                 for (i = 0; i < relocs64.count; i++)
1066                         write_reloc(relocs64.offset[i], stdout);
1067
1068                 /* Print a stop */
1069                 write_reloc(0, stdout);
1070
1071                 /* Now print each inverse 32-bit relocation */
1072                 for (i = 0; i < relocs32neg.count; i++)
1073                         write_reloc(relocs32neg.offset[i], stdout);
1074 #endif
1075
1076                 /* Print a stop */
1077                 write_reloc(0, stdout);
1078
1079                 /* Now print each relocation */
1080                 for (i = 0; i < relocs32.count; i++)
1081                         write_reloc(relocs32.offset[i], stdout);
1082         }
1083 }
1084
1085 /*
1086  * As an aid to debugging problems with different linkers
1087  * print summary information about the relocs.
1088  * Since different linkers tend to emit the sections in
1089  * different orders we use the section names in the output.
1090  */
1091 static int do_reloc_info(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
1092                                 const char *symname)
1093 {
1094         printf("%s\t%s\t%s\t%s\n",
1095                 sec_name(sec->shdr.sh_info),
1096                 rel_type(ELF_R_TYPE(rel->r_info)),
1097                 symname,
1098                 sec_name(sym->st_shndx));
1099         return 0;
1100 }
1101
1102 static void print_reloc_info(void)
1103 {
1104         printf("reloc section\treloc type\tsymbol\tsymbol section\n");
1105         walk_relocs(do_reloc_info);
1106 }
1107
1108 #if ELF_BITS == 64
1109 # define process process_64
1110 #else
1111 # define process process_32
1112 #endif
1113
1114 void process(FILE *fp, int use_real_mode, int as_text,
1115              int show_absolute_syms, int show_absolute_relocs,
1116              int show_reloc_info)
1117 {
1118         regex_init(use_real_mode);
1119         read_ehdr(fp);
1120         read_shdrs(fp);
1121         read_strtabs(fp);
1122         read_symtabs(fp);
1123         read_relocs(fp);
1124         if (ELF_BITS == 64)
1125                 percpu_init();
1126         if (show_absolute_syms) {
1127                 print_absolute_symbols();
1128                 return;
1129         }
1130         if (show_absolute_relocs) {
1131                 print_absolute_relocs();
1132                 return;
1133         }
1134         if (show_reloc_info) {
1135                 print_reloc_info();
1136                 return;
1137         }
1138         emit_relocs(as_text, use_real_mode);
1139 }