memblock: make memblock_find_in_range method private
[linux-2.6-microblaze.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h>            /* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
28 #include <asm/memtype.h>
29
30 /*
31  * We need to define the tracepoints somewhere, and tlb.c
32  * is only compiled when SMP=y.
33  */
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/tlb.h>
36
37 #include "mm_internal.h"
38
39 /*
40  * Tables translating between page_cache_type_t and pte encoding.
41  *
42  * The default values are defined statically as minimal supported mode;
43  * WC and WT fall back to UC-.  pat_init() updates these values to support
44  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
45  * for the details.  Note, __early_ioremap() used during early boot-time
46  * takes pgprot_t (pte encoding) and does not use these tables.
47  *
48  *   Index into __cachemode2pte_tbl[] is the cachemode.
49  *
50  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52  */
53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54         [_PAGE_CACHE_MODE_WB      ]     = 0         | 0        ,
55         [_PAGE_CACHE_MODE_WC      ]     = 0         | _PAGE_PCD,
56         [_PAGE_CACHE_MODE_UC_MINUS]     = 0         | _PAGE_PCD,
57         [_PAGE_CACHE_MODE_UC      ]     = _PAGE_PWT | _PAGE_PCD,
58         [_PAGE_CACHE_MODE_WT      ]     = 0         | _PAGE_PCD,
59         [_PAGE_CACHE_MODE_WP      ]     = 0         | _PAGE_PCD,
60 };
61
62 unsigned long cachemode2protval(enum page_cache_mode pcm)
63 {
64         if (likely(pcm == 0))
65                 return 0;
66         return __cachemode2pte_tbl[pcm];
67 }
68 EXPORT_SYMBOL(cachemode2protval);
69
70 static uint8_t __pte2cachemode_tbl[8] = {
71         [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
72         [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
73         [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74         [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
75         [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76         [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77         [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78         [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79 };
80
81 /* Check that the write-protect PAT entry is set for write-protect */
82 bool x86_has_pat_wp(void)
83 {
84         return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
85 }
86
87 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
88 {
89         unsigned long masked;
90
91         masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
92         if (likely(masked == 0))
93                 return 0;
94         return __pte2cachemode_tbl[__pte2cm_idx(masked)];
95 }
96
97 static unsigned long __initdata pgt_buf_start;
98 static unsigned long __initdata pgt_buf_end;
99 static unsigned long __initdata pgt_buf_top;
100
101 static unsigned long min_pfn_mapped;
102
103 static bool __initdata can_use_brk_pgt = true;
104
105 /*
106  * Pages returned are already directly mapped.
107  *
108  * Changing that is likely to break Xen, see commit:
109  *
110  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
111  *
112  * for detailed information.
113  */
114 __ref void *alloc_low_pages(unsigned int num)
115 {
116         unsigned long pfn;
117         int i;
118
119         if (after_bootmem) {
120                 unsigned int order;
121
122                 order = get_order((unsigned long)num << PAGE_SHIFT);
123                 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
124         }
125
126         if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
127                 unsigned long ret = 0;
128
129                 if (min_pfn_mapped < max_pfn_mapped) {
130                         ret = memblock_phys_alloc_range(
131                                         PAGE_SIZE * num, PAGE_SIZE,
132                                         min_pfn_mapped << PAGE_SHIFT,
133                                         max_pfn_mapped << PAGE_SHIFT);
134                 }
135                 if (!ret && can_use_brk_pgt)
136                         ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
137
138                 if (!ret)
139                         panic("alloc_low_pages: can not alloc memory");
140
141                 pfn = ret >> PAGE_SHIFT;
142         } else {
143                 pfn = pgt_buf_end;
144                 pgt_buf_end += num;
145         }
146
147         for (i = 0; i < num; i++) {
148                 void *adr;
149
150                 adr = __va((pfn + i) << PAGE_SHIFT);
151                 clear_page(adr);
152         }
153
154         return __va(pfn << PAGE_SHIFT);
155 }
156
157 /*
158  * By default need to be able to allocate page tables below PGD firstly for
159  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
160  * With KASLR memory randomization, depending on the machine e820 memory and the
161  * PUD alignment, twice that many pages may be needed when KASLR memory
162  * randomization is enabled.
163  */
164
165 #ifndef CONFIG_X86_5LEVEL
166 #define INIT_PGD_PAGE_TABLES    3
167 #else
168 #define INIT_PGD_PAGE_TABLES    4
169 #endif
170
171 #ifndef CONFIG_RANDOMIZE_MEMORY
172 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
173 #else
174 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
175 #endif
176
177 #define INIT_PGT_BUF_SIZE       (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
178 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
179 void  __init early_alloc_pgt_buf(void)
180 {
181         unsigned long tables = INIT_PGT_BUF_SIZE;
182         phys_addr_t base;
183
184         base = __pa(extend_brk(tables, PAGE_SIZE));
185
186         pgt_buf_start = base >> PAGE_SHIFT;
187         pgt_buf_end = pgt_buf_start;
188         pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
189 }
190
191 int after_bootmem;
192
193 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
194
195 struct map_range {
196         unsigned long start;
197         unsigned long end;
198         unsigned page_size_mask;
199 };
200
201 static int page_size_mask;
202
203 /*
204  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
205  * enable and PPro Global page enable), so that any CPU's that boot
206  * up after us can get the correct flags. Invoked on the boot CPU.
207  */
208 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
209 {
210         mmu_cr4_features |= mask;
211         if (trampoline_cr4_features)
212                 *trampoline_cr4_features = mmu_cr4_features;
213         cr4_set_bits(mask);
214 }
215
216 static void __init probe_page_size_mask(void)
217 {
218         /*
219          * For pagealloc debugging, identity mapping will use small pages.
220          * This will simplify cpa(), which otherwise needs to support splitting
221          * large pages into small in interrupt context, etc.
222          */
223         if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
224                 page_size_mask |= 1 << PG_LEVEL_2M;
225         else
226                 direct_gbpages = 0;
227
228         /* Enable PSE if available */
229         if (boot_cpu_has(X86_FEATURE_PSE))
230                 cr4_set_bits_and_update_boot(X86_CR4_PSE);
231
232         /* Enable PGE if available */
233         __supported_pte_mask &= ~_PAGE_GLOBAL;
234         if (boot_cpu_has(X86_FEATURE_PGE)) {
235                 cr4_set_bits_and_update_boot(X86_CR4_PGE);
236                 __supported_pte_mask |= _PAGE_GLOBAL;
237         }
238
239         /* By the default is everything supported: */
240         __default_kernel_pte_mask = __supported_pte_mask;
241         /* Except when with PTI where the kernel is mostly non-Global: */
242         if (cpu_feature_enabled(X86_FEATURE_PTI))
243                 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
244
245         /* Enable 1 GB linear kernel mappings if available: */
246         if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
247                 printk(KERN_INFO "Using GB pages for direct mapping\n");
248                 page_size_mask |= 1 << PG_LEVEL_1G;
249         } else {
250                 direct_gbpages = 0;
251         }
252 }
253
254 static void setup_pcid(void)
255 {
256         if (!IS_ENABLED(CONFIG_X86_64))
257                 return;
258
259         if (!boot_cpu_has(X86_FEATURE_PCID))
260                 return;
261
262         if (boot_cpu_has(X86_FEATURE_PGE)) {
263                 /*
264                  * This can't be cr4_set_bits_and_update_boot() -- the
265                  * trampoline code can't handle CR4.PCIDE and it wouldn't
266                  * do any good anyway.  Despite the name,
267                  * cr4_set_bits_and_update_boot() doesn't actually cause
268                  * the bits in question to remain set all the way through
269                  * the secondary boot asm.
270                  *
271                  * Instead, we brute-force it and set CR4.PCIDE manually in
272                  * start_secondary().
273                  */
274                 cr4_set_bits(X86_CR4_PCIDE);
275
276                 /*
277                  * INVPCID's single-context modes (2/3) only work if we set
278                  * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
279                  * on systems that have X86_CR4_PCIDE clear, or that have
280                  * no INVPCID support at all.
281                  */
282                 if (boot_cpu_has(X86_FEATURE_INVPCID))
283                         setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
284         } else {
285                 /*
286                  * flush_tlb_all(), as currently implemented, won't work if
287                  * PCID is on but PGE is not.  Since that combination
288                  * doesn't exist on real hardware, there's no reason to try
289                  * to fully support it, but it's polite to avoid corrupting
290                  * data if we're on an improperly configured VM.
291                  */
292                 setup_clear_cpu_cap(X86_FEATURE_PCID);
293         }
294 }
295
296 #ifdef CONFIG_X86_32
297 #define NR_RANGE_MR 3
298 #else /* CONFIG_X86_64 */
299 #define NR_RANGE_MR 5
300 #endif
301
302 static int __meminit save_mr(struct map_range *mr, int nr_range,
303                              unsigned long start_pfn, unsigned long end_pfn,
304                              unsigned long page_size_mask)
305 {
306         if (start_pfn < end_pfn) {
307                 if (nr_range >= NR_RANGE_MR)
308                         panic("run out of range for init_memory_mapping\n");
309                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
310                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
311                 mr[nr_range].page_size_mask = page_size_mask;
312                 nr_range++;
313         }
314
315         return nr_range;
316 }
317
318 /*
319  * adjust the page_size_mask for small range to go with
320  *      big page size instead small one if nearby are ram too.
321  */
322 static void __ref adjust_range_page_size_mask(struct map_range *mr,
323                                                          int nr_range)
324 {
325         int i;
326
327         for (i = 0; i < nr_range; i++) {
328                 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
329                     !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
330                         unsigned long start = round_down(mr[i].start, PMD_SIZE);
331                         unsigned long end = round_up(mr[i].end, PMD_SIZE);
332
333 #ifdef CONFIG_X86_32
334                         if ((end >> PAGE_SHIFT) > max_low_pfn)
335                                 continue;
336 #endif
337
338                         if (memblock_is_region_memory(start, end - start))
339                                 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
340                 }
341                 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
342                     !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
343                         unsigned long start = round_down(mr[i].start, PUD_SIZE);
344                         unsigned long end = round_up(mr[i].end, PUD_SIZE);
345
346                         if (memblock_is_region_memory(start, end - start))
347                                 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
348                 }
349         }
350 }
351
352 static const char *page_size_string(struct map_range *mr)
353 {
354         static const char str_1g[] = "1G";
355         static const char str_2m[] = "2M";
356         static const char str_4m[] = "4M";
357         static const char str_4k[] = "4k";
358
359         if (mr->page_size_mask & (1<<PG_LEVEL_1G))
360                 return str_1g;
361         /*
362          * 32-bit without PAE has a 4M large page size.
363          * PG_LEVEL_2M is misnamed, but we can at least
364          * print out the right size in the string.
365          */
366         if (IS_ENABLED(CONFIG_X86_32) &&
367             !IS_ENABLED(CONFIG_X86_PAE) &&
368             mr->page_size_mask & (1<<PG_LEVEL_2M))
369                 return str_4m;
370
371         if (mr->page_size_mask & (1<<PG_LEVEL_2M))
372                 return str_2m;
373
374         return str_4k;
375 }
376
377 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
378                                      unsigned long start,
379                                      unsigned long end)
380 {
381         unsigned long start_pfn, end_pfn, limit_pfn;
382         unsigned long pfn;
383         int i;
384
385         limit_pfn = PFN_DOWN(end);
386
387         /* head if not big page alignment ? */
388         pfn = start_pfn = PFN_DOWN(start);
389 #ifdef CONFIG_X86_32
390         /*
391          * Don't use a large page for the first 2/4MB of memory
392          * because there are often fixed size MTRRs in there
393          * and overlapping MTRRs into large pages can cause
394          * slowdowns.
395          */
396         if (pfn == 0)
397                 end_pfn = PFN_DOWN(PMD_SIZE);
398         else
399                 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
400 #else /* CONFIG_X86_64 */
401         end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
402 #endif
403         if (end_pfn > limit_pfn)
404                 end_pfn = limit_pfn;
405         if (start_pfn < end_pfn) {
406                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
407                 pfn = end_pfn;
408         }
409
410         /* big page (2M) range */
411         start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
412 #ifdef CONFIG_X86_32
413         end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
414 #else /* CONFIG_X86_64 */
415         end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
416         if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
417                 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
418 #endif
419
420         if (start_pfn < end_pfn) {
421                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
422                                 page_size_mask & (1<<PG_LEVEL_2M));
423                 pfn = end_pfn;
424         }
425
426 #ifdef CONFIG_X86_64
427         /* big page (1G) range */
428         start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
429         end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
430         if (start_pfn < end_pfn) {
431                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
432                                 page_size_mask &
433                                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
434                 pfn = end_pfn;
435         }
436
437         /* tail is not big page (1G) alignment */
438         start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
439         end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
440         if (start_pfn < end_pfn) {
441                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
442                                 page_size_mask & (1<<PG_LEVEL_2M));
443                 pfn = end_pfn;
444         }
445 #endif
446
447         /* tail is not big page (2M) alignment */
448         start_pfn = pfn;
449         end_pfn = limit_pfn;
450         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
451
452         if (!after_bootmem)
453                 adjust_range_page_size_mask(mr, nr_range);
454
455         /* try to merge same page size and continuous */
456         for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
457                 unsigned long old_start;
458                 if (mr[i].end != mr[i+1].start ||
459                     mr[i].page_size_mask != mr[i+1].page_size_mask)
460                         continue;
461                 /* move it */
462                 old_start = mr[i].start;
463                 memmove(&mr[i], &mr[i+1],
464                         (nr_range - 1 - i) * sizeof(struct map_range));
465                 mr[i--].start = old_start;
466                 nr_range--;
467         }
468
469         for (i = 0; i < nr_range; i++)
470                 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
471                                 mr[i].start, mr[i].end - 1,
472                                 page_size_string(&mr[i]));
473
474         return nr_range;
475 }
476
477 struct range pfn_mapped[E820_MAX_ENTRIES];
478 int nr_pfn_mapped;
479
480 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
481 {
482         nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
483                                              nr_pfn_mapped, start_pfn, end_pfn);
484         nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
485
486         max_pfn_mapped = max(max_pfn_mapped, end_pfn);
487
488         if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
489                 max_low_pfn_mapped = max(max_low_pfn_mapped,
490                                          min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
491 }
492
493 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
494 {
495         int i;
496
497         for (i = 0; i < nr_pfn_mapped; i++)
498                 if ((start_pfn >= pfn_mapped[i].start) &&
499                     (end_pfn <= pfn_mapped[i].end))
500                         return true;
501
502         return false;
503 }
504
505 /*
506  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
507  * This runs before bootmem is initialized and gets pages directly from
508  * the physical memory. To access them they are temporarily mapped.
509  */
510 unsigned long __ref init_memory_mapping(unsigned long start,
511                                         unsigned long end, pgprot_t prot)
512 {
513         struct map_range mr[NR_RANGE_MR];
514         unsigned long ret = 0;
515         int nr_range, i;
516
517         pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
518                start, end - 1);
519
520         memset(mr, 0, sizeof(mr));
521         nr_range = split_mem_range(mr, 0, start, end);
522
523         for (i = 0; i < nr_range; i++)
524                 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
525                                                    mr[i].page_size_mask,
526                                                    prot);
527
528         add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
529
530         return ret >> PAGE_SHIFT;
531 }
532
533 /*
534  * We need to iterate through the E820 memory map and create direct mappings
535  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
536  * create direct mappings for all pfns from [0 to max_low_pfn) and
537  * [4GB to max_pfn) because of possible memory holes in high addresses
538  * that cannot be marked as UC by fixed/variable range MTRRs.
539  * Depending on the alignment of E820 ranges, this may possibly result
540  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
541  *
542  * init_mem_mapping() calls init_range_memory_mapping() with big range.
543  * That range would have hole in the middle or ends, and only ram parts
544  * will be mapped in init_range_memory_mapping().
545  */
546 static unsigned long __init init_range_memory_mapping(
547                                            unsigned long r_start,
548                                            unsigned long r_end)
549 {
550         unsigned long start_pfn, end_pfn;
551         unsigned long mapped_ram_size = 0;
552         int i;
553
554         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
555                 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
556                 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
557                 if (start >= end)
558                         continue;
559
560                 /*
561                  * if it is overlapping with brk pgt, we need to
562                  * alloc pgt buf from memblock instead.
563                  */
564                 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
565                                     min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
566                 init_memory_mapping(start, end, PAGE_KERNEL);
567                 mapped_ram_size += end - start;
568                 can_use_brk_pgt = true;
569         }
570
571         return mapped_ram_size;
572 }
573
574 static unsigned long __init get_new_step_size(unsigned long step_size)
575 {
576         /*
577          * Initial mapped size is PMD_SIZE (2M).
578          * We can not set step_size to be PUD_SIZE (1G) yet.
579          * In worse case, when we cross the 1G boundary, and
580          * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
581          * to map 1G range with PTE. Hence we use one less than the
582          * difference of page table level shifts.
583          *
584          * Don't need to worry about overflow in the top-down case, on 32bit,
585          * when step_size is 0, round_down() returns 0 for start, and that
586          * turns it into 0x100000000ULL.
587          * In the bottom-up case, round_up(x, 0) returns 0 though too, which
588          * needs to be taken into consideration by the code below.
589          */
590         return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
591 }
592
593 /**
594  * memory_map_top_down - Map [map_start, map_end) top down
595  * @map_start: start address of the target memory range
596  * @map_end: end address of the target memory range
597  *
598  * This function will setup direct mapping for memory range
599  * [map_start, map_end) in top-down. That said, the page tables
600  * will be allocated at the end of the memory, and we map the
601  * memory in top-down.
602  */
603 static void __init memory_map_top_down(unsigned long map_start,
604                                        unsigned long map_end)
605 {
606         unsigned long real_end, last_start;
607         unsigned long step_size;
608         unsigned long addr;
609         unsigned long mapped_ram_size = 0;
610
611         /*
612          * Systems that have many reserved areas near top of the memory,
613          * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
614          * require lots of 4K mappings which may exhaust pgt_buf.
615          * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
616          * there is enough mapped memory that can be allocated from
617          * memblock.
618          */
619         addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
620                                          map_end);
621         memblock_free(addr, PMD_SIZE);
622         real_end = addr + PMD_SIZE;
623
624         /* step_size need to be small so pgt_buf from BRK could cover it */
625         step_size = PMD_SIZE;
626         max_pfn_mapped = 0; /* will get exact value next */
627         min_pfn_mapped = real_end >> PAGE_SHIFT;
628         last_start = real_end;
629
630         /*
631          * We start from the top (end of memory) and go to the bottom.
632          * The memblock_find_in_range() gets us a block of RAM from the
633          * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
634          * for page table.
635          */
636         while (last_start > map_start) {
637                 unsigned long start;
638
639                 if (last_start > step_size) {
640                         start = round_down(last_start - 1, step_size);
641                         if (start < map_start)
642                                 start = map_start;
643                 } else
644                         start = map_start;
645                 mapped_ram_size += init_range_memory_mapping(start,
646                                                         last_start);
647                 last_start = start;
648                 min_pfn_mapped = last_start >> PAGE_SHIFT;
649                 if (mapped_ram_size >= step_size)
650                         step_size = get_new_step_size(step_size);
651         }
652
653         if (real_end < map_end)
654                 init_range_memory_mapping(real_end, map_end);
655 }
656
657 /**
658  * memory_map_bottom_up - Map [map_start, map_end) bottom up
659  * @map_start: start address of the target memory range
660  * @map_end: end address of the target memory range
661  *
662  * This function will setup direct mapping for memory range
663  * [map_start, map_end) in bottom-up. Since we have limited the
664  * bottom-up allocation above the kernel, the page tables will
665  * be allocated just above the kernel and we map the memory
666  * in [map_start, map_end) in bottom-up.
667  */
668 static void __init memory_map_bottom_up(unsigned long map_start,
669                                         unsigned long map_end)
670 {
671         unsigned long next, start;
672         unsigned long mapped_ram_size = 0;
673         /* step_size need to be small so pgt_buf from BRK could cover it */
674         unsigned long step_size = PMD_SIZE;
675
676         start = map_start;
677         min_pfn_mapped = start >> PAGE_SHIFT;
678
679         /*
680          * We start from the bottom (@map_start) and go to the top (@map_end).
681          * The memblock_find_in_range() gets us a block of RAM from the
682          * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
683          * for page table.
684          */
685         while (start < map_end) {
686                 if (step_size && map_end - start > step_size) {
687                         next = round_up(start + 1, step_size);
688                         if (next > map_end)
689                                 next = map_end;
690                 } else {
691                         next = map_end;
692                 }
693
694                 mapped_ram_size += init_range_memory_mapping(start, next);
695                 start = next;
696
697                 if (mapped_ram_size >= step_size)
698                         step_size = get_new_step_size(step_size);
699         }
700 }
701
702 /*
703  * The real mode trampoline, which is required for bootstrapping CPUs
704  * occupies only a small area under the low 1MB.  See reserve_real_mode()
705  * for details.
706  *
707  * If KASLR is disabled the first PGD entry of the direct mapping is copied
708  * to map the real mode trampoline.
709  *
710  * If KASLR is enabled, copy only the PUD which covers the low 1MB
711  * area. This limits the randomization granularity to 1GB for both 4-level
712  * and 5-level paging.
713  */
714 static void __init init_trampoline(void)
715 {
716 #ifdef CONFIG_X86_64
717         if (!kaslr_memory_enabled())
718                 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
719         else
720                 init_trampoline_kaslr();
721 #endif
722 }
723
724 void __init init_mem_mapping(void)
725 {
726         unsigned long end;
727
728         pti_check_boottime_disable();
729         probe_page_size_mask();
730         setup_pcid();
731
732 #ifdef CONFIG_X86_64
733         end = max_pfn << PAGE_SHIFT;
734 #else
735         end = max_low_pfn << PAGE_SHIFT;
736 #endif
737
738         /* the ISA range is always mapped regardless of memory holes */
739         init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
740
741         /* Init the trampoline, possibly with KASLR memory offset */
742         init_trampoline();
743
744         /*
745          * If the allocation is in bottom-up direction, we setup direct mapping
746          * in bottom-up, otherwise we setup direct mapping in top-down.
747          */
748         if (memblock_bottom_up()) {
749                 unsigned long kernel_end = __pa_symbol(_end);
750
751                 /*
752                  * we need two separate calls here. This is because we want to
753                  * allocate page tables above the kernel. So we first map
754                  * [kernel_end, end) to make memory above the kernel be mapped
755                  * as soon as possible. And then use page tables allocated above
756                  * the kernel to map [ISA_END_ADDRESS, kernel_end).
757                  */
758                 memory_map_bottom_up(kernel_end, end);
759                 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
760         } else {
761                 memory_map_top_down(ISA_END_ADDRESS, end);
762         }
763
764 #ifdef CONFIG_X86_64
765         if (max_pfn > max_low_pfn) {
766                 /* can we preserve max_low_pfn ?*/
767                 max_low_pfn = max_pfn;
768         }
769 #else
770         early_ioremap_page_table_range_init();
771 #endif
772
773         load_cr3(swapper_pg_dir);
774         __flush_tlb_all();
775
776         x86_init.hyper.init_mem_mapping();
777
778         early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
779 }
780
781 /*
782  * Initialize an mm_struct to be used during poking and a pointer to be used
783  * during patching.
784  */
785 void __init poking_init(void)
786 {
787         spinlock_t *ptl;
788         pte_t *ptep;
789
790         poking_mm = copy_init_mm();
791         BUG_ON(!poking_mm);
792
793         /*
794          * Randomize the poking address, but make sure that the following page
795          * will be mapped at the same PMD. We need 2 pages, so find space for 3,
796          * and adjust the address if the PMD ends after the first one.
797          */
798         poking_addr = TASK_UNMAPPED_BASE;
799         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
800                 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
801                         (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
802
803         if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
804                 poking_addr += PAGE_SIZE;
805
806         /*
807          * We need to trigger the allocation of the page-tables that will be
808          * needed for poking now. Later, poking may be performed in an atomic
809          * section, which might cause allocation to fail.
810          */
811         ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
812         BUG_ON(!ptep);
813         pte_unmap_unlock(ptep, ptl);
814 }
815
816 /*
817  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
818  * is valid. The argument is a physical page number.
819  *
820  * On x86, access has to be given to the first megabyte of RAM because that
821  * area traditionally contains BIOS code and data regions used by X, dosemu,
822  * and similar apps. Since they map the entire memory range, the whole range
823  * must be allowed (for mapping), but any areas that would otherwise be
824  * disallowed are flagged as being "zero filled" instead of rejected.
825  * Access has to be given to non-kernel-ram areas as well, these contain the
826  * PCI mmio resources as well as potential bios/acpi data regions.
827  */
828 int devmem_is_allowed(unsigned long pagenr)
829 {
830         if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
831                                 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
832                         != REGION_DISJOINT) {
833                 /*
834                  * For disallowed memory regions in the low 1MB range,
835                  * request that the page be shown as all zeros.
836                  */
837                 if (pagenr < 256)
838                         return 2;
839
840                 return 0;
841         }
842
843         /*
844          * This must follow RAM test, since System RAM is considered a
845          * restricted resource under CONFIG_STRICT_IOMEM.
846          */
847         if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
848                 /* Low 1MB bypasses iomem restrictions. */
849                 if (pagenr < 256)
850                         return 1;
851
852                 return 0;
853         }
854
855         return 1;
856 }
857
858 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
859 {
860         unsigned long begin_aligned, end_aligned;
861
862         /* Make sure boundaries are page aligned */
863         begin_aligned = PAGE_ALIGN(begin);
864         end_aligned   = end & PAGE_MASK;
865
866         if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
867                 begin = begin_aligned;
868                 end   = end_aligned;
869         }
870
871         if (begin >= end)
872                 return;
873
874         /*
875          * If debugging page accesses then do not free this memory but
876          * mark them not present - any buggy init-section access will
877          * create a kernel page fault:
878          */
879         if (debug_pagealloc_enabled()) {
880                 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
881                         begin, end - 1);
882                 /*
883                  * Inform kmemleak about the hole in the memory since the
884                  * corresponding pages will be unmapped.
885                  */
886                 kmemleak_free_part((void *)begin, end - begin);
887                 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
888         } else {
889                 /*
890                  * We just marked the kernel text read only above, now that
891                  * we are going to free part of that, we need to make that
892                  * writeable and non-executable first.
893                  */
894                 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
895                 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
896
897                 free_reserved_area((void *)begin, (void *)end,
898                                    POISON_FREE_INITMEM, what);
899         }
900 }
901
902 /*
903  * begin/end can be in the direct map or the "high kernel mapping"
904  * used for the kernel image only.  free_init_pages() will do the
905  * right thing for either kind of address.
906  */
907 void free_kernel_image_pages(const char *what, void *begin, void *end)
908 {
909         unsigned long begin_ul = (unsigned long)begin;
910         unsigned long end_ul = (unsigned long)end;
911         unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
912
913         free_init_pages(what, begin_ul, end_ul);
914
915         /*
916          * PTI maps some of the kernel into userspace.  For performance,
917          * this includes some kernel areas that do not contain secrets.
918          * Those areas might be adjacent to the parts of the kernel image
919          * being freed, which may contain secrets.  Remove the "high kernel
920          * image mapping" for these freed areas, ensuring they are not even
921          * potentially vulnerable to Meltdown regardless of the specific
922          * optimizations PTI is currently using.
923          *
924          * The "noalias" prevents unmapping the direct map alias which is
925          * needed to access the freed pages.
926          *
927          * This is only valid for 64bit kernels. 32bit has only one mapping
928          * which can't be treated in this way for obvious reasons.
929          */
930         if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
931                 set_memory_np_noalias(begin_ul, len_pages);
932 }
933
934 void __ref free_initmem(void)
935 {
936         e820__reallocate_tables();
937
938         mem_encrypt_free_decrypted_mem();
939
940         free_kernel_image_pages("unused kernel image (initmem)",
941                                 &__init_begin, &__init_end);
942 }
943
944 #ifdef CONFIG_BLK_DEV_INITRD
945 void __init free_initrd_mem(unsigned long start, unsigned long end)
946 {
947         /*
948          * end could be not aligned, and We can not align that,
949          * decompressor could be confused by aligned initrd_end
950          * We already reserve the end partial page before in
951          *   - i386_start_kernel()
952          *   - x86_64_start_kernel()
953          *   - relocate_initrd()
954          * So here We can do PAGE_ALIGN() safely to get partial page to be freed
955          */
956         free_init_pages("initrd", start, PAGE_ALIGN(end));
957 }
958 #endif
959
960 /*
961  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
962  * and pass it to the MM layer - to help it set zone watermarks more
963  * accurately.
964  *
965  * Done on 64-bit systems only for the time being, although 32-bit systems
966  * might benefit from this as well.
967  */
968 void __init memblock_find_dma_reserve(void)
969 {
970 #ifdef CONFIG_X86_64
971         u64 nr_pages = 0, nr_free_pages = 0;
972         unsigned long start_pfn, end_pfn;
973         phys_addr_t start_addr, end_addr;
974         int i;
975         u64 u;
976
977         /*
978          * Iterate over all memory ranges (free and reserved ones alike),
979          * to calculate the total number of pages in the first 16 MB of RAM:
980          */
981         nr_pages = 0;
982         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
983                 start_pfn = min(start_pfn, MAX_DMA_PFN);
984                 end_pfn   = min(end_pfn,   MAX_DMA_PFN);
985
986                 nr_pages += end_pfn - start_pfn;
987         }
988
989         /*
990          * Iterate over free memory ranges to calculate the number of free
991          * pages in the DMA zone, while not counting potential partial
992          * pages at the beginning or the end of the range:
993          */
994         nr_free_pages = 0;
995         for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
996                 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
997                 end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
998
999                 if (start_pfn < end_pfn)
1000                         nr_free_pages += end_pfn - start_pfn;
1001         }
1002
1003         set_dma_reserve(nr_pages - nr_free_pages);
1004 #endif
1005 }
1006
1007 void __init zone_sizes_init(void)
1008 {
1009         unsigned long max_zone_pfns[MAX_NR_ZONES];
1010
1011         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1012
1013 #ifdef CONFIG_ZONE_DMA
1014         max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
1015 #endif
1016 #ifdef CONFIG_ZONE_DMA32
1017         max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
1018 #endif
1019         max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
1020 #ifdef CONFIG_HIGHMEM
1021         max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
1022 #endif
1023
1024         free_area_init(max_zone_pfns);
1025 }
1026
1027 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1028         .loaded_mm = &init_mm,
1029         .next_asid = 1,
1030         .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
1031 };
1032
1033 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1034 {
1035         /* entry 0 MUST be WB (hardwired to speed up translations) */
1036         BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1037
1038         __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1039         __pte2cachemode_tbl[entry] = cache;
1040 }
1041
1042 #ifdef CONFIG_SWAP
1043 unsigned long max_swapfile_size(void)
1044 {
1045         unsigned long pages;
1046
1047         pages = generic_max_swapfile_size();
1048
1049         if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1050                 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1051                 unsigned long long l1tf_limit = l1tf_pfn_limit();
1052                 /*
1053                  * We encode swap offsets also with 3 bits below those for pfn
1054                  * which makes the usable limit higher.
1055                  */
1056 #if CONFIG_PGTABLE_LEVELS > 2
1057                 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1058 #endif
1059                 pages = min_t(unsigned long long, l1tf_limit, pages);
1060         }
1061         return pages;
1062 }
1063 #endif