KVM: SVM: Add required changes to support intercepts under SEV-ES
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88         ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
165 /*
166  * Restoring the host value for MSRs that are only consumed when running in
167  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
168  * returns to userspace, i.e. the kernel can run with the guest's value.
169  */
170 #define KVM_MAX_NR_USER_RETURN_MSRS 16
171
172 struct kvm_user_return_msrs_global {
173         int nr;
174         u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
175 };
176
177 struct kvm_user_return_msrs {
178         struct user_return_notifier urn;
179         bool registered;
180         struct kvm_user_return_msr_values {
181                 u64 host;
182                 u64 curr;
183         } values[KVM_MAX_NR_USER_RETURN_MSRS];
184 };
185
186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
187 static struct kvm_user_return_msrs __percpu *user_return_msrs;
188
189 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
190                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
191                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
192                                 | XFEATURE_MASK_PKRU)
193
194 u64 __read_mostly host_efer;
195 EXPORT_SYMBOL_GPL(host_efer);
196
197 bool __read_mostly allow_smaller_maxphyaddr = 0;
198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
199
200 static u64 __read_mostly host_xss;
201 u64 __read_mostly supported_xss;
202 EXPORT_SYMBOL_GPL(supported_xss);
203
204 struct kvm_stats_debugfs_item debugfs_entries[] = {
205         VCPU_STAT("pf_fixed", pf_fixed),
206         VCPU_STAT("pf_guest", pf_guest),
207         VCPU_STAT("tlb_flush", tlb_flush),
208         VCPU_STAT("invlpg", invlpg),
209         VCPU_STAT("exits", exits),
210         VCPU_STAT("io_exits", io_exits),
211         VCPU_STAT("mmio_exits", mmio_exits),
212         VCPU_STAT("signal_exits", signal_exits),
213         VCPU_STAT("irq_window", irq_window_exits),
214         VCPU_STAT("nmi_window", nmi_window_exits),
215         VCPU_STAT("halt_exits", halt_exits),
216         VCPU_STAT("halt_successful_poll", halt_successful_poll),
217         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
218         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
219         VCPU_STAT("halt_wakeup", halt_wakeup),
220         VCPU_STAT("hypercalls", hypercalls),
221         VCPU_STAT("request_irq", request_irq_exits),
222         VCPU_STAT("irq_exits", irq_exits),
223         VCPU_STAT("host_state_reload", host_state_reload),
224         VCPU_STAT("fpu_reload", fpu_reload),
225         VCPU_STAT("insn_emulation", insn_emulation),
226         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
227         VCPU_STAT("irq_injections", irq_injections),
228         VCPU_STAT("nmi_injections", nmi_injections),
229         VCPU_STAT("req_event", req_event),
230         VCPU_STAT("l1d_flush", l1d_flush),
231         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
232         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
233         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
234         VM_STAT("mmu_pte_write", mmu_pte_write),
235         VM_STAT("mmu_pte_updated", mmu_pte_updated),
236         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
237         VM_STAT("mmu_flooded", mmu_flooded),
238         VM_STAT("mmu_recycled", mmu_recycled),
239         VM_STAT("mmu_cache_miss", mmu_cache_miss),
240         VM_STAT("mmu_unsync", mmu_unsync),
241         VM_STAT("remote_tlb_flush", remote_tlb_flush),
242         VM_STAT("largepages", lpages, .mode = 0444),
243         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
244         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
245         { NULL }
246 };
247
248 u64 __read_mostly host_xcr0;
249 u64 __read_mostly supported_xcr0;
250 EXPORT_SYMBOL_GPL(supported_xcr0);
251
252 static struct kmem_cache *x86_fpu_cache;
253
254 static struct kmem_cache *x86_emulator_cache;
255
256 /*
257  * When called, it means the previous get/set msr reached an invalid msr.
258  * Return true if we want to ignore/silent this failed msr access.
259  */
260 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
261                                   u64 data, bool write)
262 {
263         const char *op = write ? "wrmsr" : "rdmsr";
264
265         if (ignore_msrs) {
266                 if (report_ignored_msrs)
267                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
268                                       op, msr, data);
269                 /* Mask the error */
270                 return true;
271         } else {
272                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
273                                       op, msr, data);
274                 return false;
275         }
276 }
277
278 static struct kmem_cache *kvm_alloc_emulator_cache(void)
279 {
280         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
281         unsigned int size = sizeof(struct x86_emulate_ctxt);
282
283         return kmem_cache_create_usercopy("x86_emulator", size,
284                                           __alignof__(struct x86_emulate_ctxt),
285                                           SLAB_ACCOUNT, useroffset,
286                                           size - useroffset, NULL);
287 }
288
289 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
290
291 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
292 {
293         int i;
294         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
295                 vcpu->arch.apf.gfns[i] = ~0;
296 }
297
298 static void kvm_on_user_return(struct user_return_notifier *urn)
299 {
300         unsigned slot;
301         struct kvm_user_return_msrs *msrs
302                 = container_of(urn, struct kvm_user_return_msrs, urn);
303         struct kvm_user_return_msr_values *values;
304         unsigned long flags;
305
306         /*
307          * Disabling irqs at this point since the following code could be
308          * interrupted and executed through kvm_arch_hardware_disable()
309          */
310         local_irq_save(flags);
311         if (msrs->registered) {
312                 msrs->registered = false;
313                 user_return_notifier_unregister(urn);
314         }
315         local_irq_restore(flags);
316         for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
317                 values = &msrs->values[slot];
318                 if (values->host != values->curr) {
319                         wrmsrl(user_return_msrs_global.msrs[slot], values->host);
320                         values->curr = values->host;
321                 }
322         }
323 }
324
325 void kvm_define_user_return_msr(unsigned slot, u32 msr)
326 {
327         BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
328         user_return_msrs_global.msrs[slot] = msr;
329         if (slot >= user_return_msrs_global.nr)
330                 user_return_msrs_global.nr = slot + 1;
331 }
332 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
333
334 static void kvm_user_return_msr_cpu_online(void)
335 {
336         unsigned int cpu = smp_processor_id();
337         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
338         u64 value;
339         int i;
340
341         for (i = 0; i < user_return_msrs_global.nr; ++i) {
342                 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
343                 msrs->values[i].host = value;
344                 msrs->values[i].curr = value;
345         }
346 }
347
348 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
349 {
350         unsigned int cpu = smp_processor_id();
351         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352         int err;
353
354         value = (value & mask) | (msrs->values[slot].host & ~mask);
355         if (value == msrs->values[slot].curr)
356                 return 0;
357         err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
358         if (err)
359                 return 1;
360
361         msrs->values[slot].curr = value;
362         if (!msrs->registered) {
363                 msrs->urn.on_user_return = kvm_on_user_return;
364                 user_return_notifier_register(&msrs->urn);
365                 msrs->registered = true;
366         }
367         return 0;
368 }
369 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
370
371 static void drop_user_return_notifiers(void)
372 {
373         unsigned int cpu = smp_processor_id();
374         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
375
376         if (msrs->registered)
377                 kvm_on_user_return(&msrs->urn);
378 }
379
380 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
381 {
382         return vcpu->arch.apic_base;
383 }
384 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
385
386 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
387 {
388         return kvm_apic_mode(kvm_get_apic_base(vcpu));
389 }
390 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
391
392 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
393 {
394         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
395         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
396         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
397                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
398
399         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
400                 return 1;
401         if (!msr_info->host_initiated) {
402                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
403                         return 1;
404                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
405                         return 1;
406         }
407
408         kvm_lapic_set_base(vcpu, msr_info->data);
409         kvm_recalculate_apic_map(vcpu->kvm);
410         return 0;
411 }
412 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
413
414 asmlinkage __visible noinstr void kvm_spurious_fault(void)
415 {
416         /* Fault while not rebooting.  We want the trace. */
417         BUG_ON(!kvm_rebooting);
418 }
419 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
420
421 #define EXCPT_BENIGN            0
422 #define EXCPT_CONTRIBUTORY      1
423 #define EXCPT_PF                2
424
425 static int exception_class(int vector)
426 {
427         switch (vector) {
428         case PF_VECTOR:
429                 return EXCPT_PF;
430         case DE_VECTOR:
431         case TS_VECTOR:
432         case NP_VECTOR:
433         case SS_VECTOR:
434         case GP_VECTOR:
435                 return EXCPT_CONTRIBUTORY;
436         default:
437                 break;
438         }
439         return EXCPT_BENIGN;
440 }
441
442 #define EXCPT_FAULT             0
443 #define EXCPT_TRAP              1
444 #define EXCPT_ABORT             2
445 #define EXCPT_INTERRUPT         3
446
447 static int exception_type(int vector)
448 {
449         unsigned int mask;
450
451         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
452                 return EXCPT_INTERRUPT;
453
454         mask = 1 << vector;
455
456         /* #DB is trap, as instruction watchpoints are handled elsewhere */
457         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
458                 return EXCPT_TRAP;
459
460         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
461                 return EXCPT_ABORT;
462
463         /* Reserved exceptions will result in fault */
464         return EXCPT_FAULT;
465 }
466
467 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
468 {
469         unsigned nr = vcpu->arch.exception.nr;
470         bool has_payload = vcpu->arch.exception.has_payload;
471         unsigned long payload = vcpu->arch.exception.payload;
472
473         if (!has_payload)
474                 return;
475
476         switch (nr) {
477         case DB_VECTOR:
478                 /*
479                  * "Certain debug exceptions may clear bit 0-3.  The
480                  * remaining contents of the DR6 register are never
481                  * cleared by the processor".
482                  */
483                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
484                 /*
485                  * DR6.RTM is set by all #DB exceptions that don't clear it.
486                  */
487                 vcpu->arch.dr6 |= DR6_RTM;
488                 vcpu->arch.dr6 |= payload;
489                 /*
490                  * Bit 16 should be set in the payload whenever the #DB
491                  * exception should clear DR6.RTM. This makes the payload
492                  * compatible with the pending debug exceptions under VMX.
493                  * Though not currently documented in the SDM, this also
494                  * makes the payload compatible with the exit qualification
495                  * for #DB exceptions under VMX.
496                  */
497                 vcpu->arch.dr6 ^= payload & DR6_RTM;
498
499                 /*
500                  * The #DB payload is defined as compatible with the 'pending
501                  * debug exceptions' field under VMX, not DR6. While bit 12 is
502                  * defined in the 'pending debug exceptions' field (enabled
503                  * breakpoint), it is reserved and must be zero in DR6.
504                  */
505                 vcpu->arch.dr6 &= ~BIT(12);
506                 break;
507         case PF_VECTOR:
508                 vcpu->arch.cr2 = payload;
509                 break;
510         }
511
512         vcpu->arch.exception.has_payload = false;
513         vcpu->arch.exception.payload = 0;
514 }
515 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
516
517 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
518                 unsigned nr, bool has_error, u32 error_code,
519                 bool has_payload, unsigned long payload, bool reinject)
520 {
521         u32 prev_nr;
522         int class1, class2;
523
524         kvm_make_request(KVM_REQ_EVENT, vcpu);
525
526         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
527         queue:
528                 if (has_error && !is_protmode(vcpu))
529                         has_error = false;
530                 if (reinject) {
531                         /*
532                          * On vmentry, vcpu->arch.exception.pending is only
533                          * true if an event injection was blocked by
534                          * nested_run_pending.  In that case, however,
535                          * vcpu_enter_guest requests an immediate exit,
536                          * and the guest shouldn't proceed far enough to
537                          * need reinjection.
538                          */
539                         WARN_ON_ONCE(vcpu->arch.exception.pending);
540                         vcpu->arch.exception.injected = true;
541                         if (WARN_ON_ONCE(has_payload)) {
542                                 /*
543                                  * A reinjected event has already
544                                  * delivered its payload.
545                                  */
546                                 has_payload = false;
547                                 payload = 0;
548                         }
549                 } else {
550                         vcpu->arch.exception.pending = true;
551                         vcpu->arch.exception.injected = false;
552                 }
553                 vcpu->arch.exception.has_error_code = has_error;
554                 vcpu->arch.exception.nr = nr;
555                 vcpu->arch.exception.error_code = error_code;
556                 vcpu->arch.exception.has_payload = has_payload;
557                 vcpu->arch.exception.payload = payload;
558                 if (!is_guest_mode(vcpu))
559                         kvm_deliver_exception_payload(vcpu);
560                 return;
561         }
562
563         /* to check exception */
564         prev_nr = vcpu->arch.exception.nr;
565         if (prev_nr == DF_VECTOR) {
566                 /* triple fault -> shutdown */
567                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
568                 return;
569         }
570         class1 = exception_class(prev_nr);
571         class2 = exception_class(nr);
572         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
573                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
574                 /*
575                  * Generate double fault per SDM Table 5-5.  Set
576                  * exception.pending = true so that the double fault
577                  * can trigger a nested vmexit.
578                  */
579                 vcpu->arch.exception.pending = true;
580                 vcpu->arch.exception.injected = false;
581                 vcpu->arch.exception.has_error_code = true;
582                 vcpu->arch.exception.nr = DF_VECTOR;
583                 vcpu->arch.exception.error_code = 0;
584                 vcpu->arch.exception.has_payload = false;
585                 vcpu->arch.exception.payload = 0;
586         } else
587                 /* replace previous exception with a new one in a hope
588                    that instruction re-execution will regenerate lost
589                    exception */
590                 goto queue;
591 }
592
593 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
594 {
595         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
596 }
597 EXPORT_SYMBOL_GPL(kvm_queue_exception);
598
599 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
600 {
601         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
602 }
603 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
604
605 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
606                            unsigned long payload)
607 {
608         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
609 }
610 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
611
612 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
613                                     u32 error_code, unsigned long payload)
614 {
615         kvm_multiple_exception(vcpu, nr, true, error_code,
616                                true, payload, false);
617 }
618
619 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
620 {
621         if (err)
622                 kvm_inject_gp(vcpu, 0);
623         else
624                 return kvm_skip_emulated_instruction(vcpu);
625
626         return 1;
627 }
628 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
629
630 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
631 {
632         ++vcpu->stat.pf_guest;
633         vcpu->arch.exception.nested_apf =
634                 is_guest_mode(vcpu) && fault->async_page_fault;
635         if (vcpu->arch.exception.nested_apf) {
636                 vcpu->arch.apf.nested_apf_token = fault->address;
637                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
638         } else {
639                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
640                                         fault->address);
641         }
642 }
643 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
644
645 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
646                                     struct x86_exception *fault)
647 {
648         struct kvm_mmu *fault_mmu;
649         WARN_ON_ONCE(fault->vector != PF_VECTOR);
650
651         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
652                                                vcpu->arch.walk_mmu;
653
654         /*
655          * Invalidate the TLB entry for the faulting address, if it exists,
656          * else the access will fault indefinitely (and to emulate hardware).
657          */
658         if ((fault->error_code & PFERR_PRESENT_MASK) &&
659             !(fault->error_code & PFERR_RSVD_MASK))
660                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
661                                        fault_mmu->root_hpa);
662
663         fault_mmu->inject_page_fault(vcpu, fault);
664         return fault->nested_page_fault;
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
667
668 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
669 {
670         atomic_inc(&vcpu->arch.nmi_queued);
671         kvm_make_request(KVM_REQ_NMI, vcpu);
672 }
673 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
674
675 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
676 {
677         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
678 }
679 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
680
681 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
682 {
683         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
684 }
685 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
686
687 /*
688  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
689  * a #GP and return false.
690  */
691 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
692 {
693         if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
694                 return true;
695         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
696         return false;
697 }
698 EXPORT_SYMBOL_GPL(kvm_require_cpl);
699
700 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
701 {
702         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703                 return true;
704
705         kvm_queue_exception(vcpu, UD_VECTOR);
706         return false;
707 }
708 EXPORT_SYMBOL_GPL(kvm_require_dr);
709
710 /*
711  * This function will be used to read from the physical memory of the currently
712  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
713  * can read from guest physical or from the guest's guest physical memory.
714  */
715 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
716                             gfn_t ngfn, void *data, int offset, int len,
717                             u32 access)
718 {
719         struct x86_exception exception;
720         gfn_t real_gfn;
721         gpa_t ngpa;
722
723         ngpa     = gfn_to_gpa(ngfn);
724         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
725         if (real_gfn == UNMAPPED_GVA)
726                 return -EFAULT;
727
728         real_gfn = gpa_to_gfn(real_gfn);
729
730         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
731 }
732 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
733
734 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
735                                void *data, int offset, int len, u32 access)
736 {
737         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
738                                        data, offset, len, access);
739 }
740
741 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
742 {
743         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
744                rsvd_bits(1, 2);
745 }
746
747 /*
748  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
749  */
750 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
751 {
752         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
753         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
754         int i;
755         int ret;
756         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
757
758         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
759                                       offset * sizeof(u64), sizeof(pdpte),
760                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
761         if (ret < 0) {
762                 ret = 0;
763                 goto out;
764         }
765         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
766                 if ((pdpte[i] & PT_PRESENT_MASK) &&
767                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
768                         ret = 0;
769                         goto out;
770                 }
771         }
772         ret = 1;
773
774         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
775         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
776
777 out:
778
779         return ret;
780 }
781 EXPORT_SYMBOL_GPL(load_pdptrs);
782
783 bool pdptrs_changed(struct kvm_vcpu *vcpu)
784 {
785         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
786         int offset;
787         gfn_t gfn;
788         int r;
789
790         if (!is_pae_paging(vcpu))
791                 return false;
792
793         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
794                 return true;
795
796         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
797         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
798         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
799                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
800         if (r < 0)
801                 return true;
802
803         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
804 }
805 EXPORT_SYMBOL_GPL(pdptrs_changed);
806
807 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
808 {
809         unsigned long old_cr0 = kvm_read_cr0(vcpu);
810         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
811         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
812
813         cr0 |= X86_CR0_ET;
814
815 #ifdef CONFIG_X86_64
816         if (cr0 & 0xffffffff00000000UL)
817                 return 1;
818 #endif
819
820         cr0 &= ~CR0_RESERVED_BITS;
821
822         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
823                 return 1;
824
825         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
826                 return 1;
827
828 #ifdef CONFIG_X86_64
829         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
830             (cr0 & X86_CR0_PG)) {
831                 int cs_db, cs_l;
832
833                 if (!is_pae(vcpu))
834                         return 1;
835                 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
836                 if (cs_l)
837                         return 1;
838         }
839 #endif
840         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
841             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
842             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
843                 return 1;
844
845         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
846                 return 1;
847
848         kvm_x86_ops.set_cr0(vcpu, cr0);
849
850         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
851                 kvm_clear_async_pf_completion_queue(vcpu);
852                 kvm_async_pf_hash_reset(vcpu);
853         }
854
855         if ((cr0 ^ old_cr0) & update_bits)
856                 kvm_mmu_reset_context(vcpu);
857
858         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
859             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
860             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
861                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
862
863         return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_cr0);
866
867 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
868 {
869         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
870 }
871 EXPORT_SYMBOL_GPL(kvm_lmsw);
872
873 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
874 {
875         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
876
877                 if (vcpu->arch.xcr0 != host_xcr0)
878                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
879
880                 if (vcpu->arch.xsaves_enabled &&
881                     vcpu->arch.ia32_xss != host_xss)
882                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
883         }
884
885         if (static_cpu_has(X86_FEATURE_PKU) &&
886             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
887              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
888             vcpu->arch.pkru != vcpu->arch.host_pkru)
889                 __write_pkru(vcpu->arch.pkru);
890 }
891 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
892
893 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
894 {
895         if (static_cpu_has(X86_FEATURE_PKU) &&
896             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
897              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
898                 vcpu->arch.pkru = rdpkru();
899                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
900                         __write_pkru(vcpu->arch.host_pkru);
901         }
902
903         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904
905                 if (vcpu->arch.xcr0 != host_xcr0)
906                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
907
908                 if (vcpu->arch.xsaves_enabled &&
909                     vcpu->arch.ia32_xss != host_xss)
910                         wrmsrl(MSR_IA32_XSS, host_xss);
911         }
912
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
915
916 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
917 {
918         u64 xcr0 = xcr;
919         u64 old_xcr0 = vcpu->arch.xcr0;
920         u64 valid_bits;
921
922         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
923         if (index != XCR_XFEATURE_ENABLED_MASK)
924                 return 1;
925         if (!(xcr0 & XFEATURE_MASK_FP))
926                 return 1;
927         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
928                 return 1;
929
930         /*
931          * Do not allow the guest to set bits that we do not support
932          * saving.  However, xcr0 bit 0 is always set, even if the
933          * emulated CPU does not support XSAVE (see fx_init).
934          */
935         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
936         if (xcr0 & ~valid_bits)
937                 return 1;
938
939         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
940             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
941                 return 1;
942
943         if (xcr0 & XFEATURE_MASK_AVX512) {
944                 if (!(xcr0 & XFEATURE_MASK_YMM))
945                         return 1;
946                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
947                         return 1;
948         }
949         vcpu->arch.xcr0 = xcr0;
950
951         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
952                 kvm_update_cpuid_runtime(vcpu);
953         return 0;
954 }
955
956 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
957 {
958         if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
959             __kvm_set_xcr(vcpu, index, xcr)) {
960                 kvm_inject_gp(vcpu, 0);
961                 return 1;
962         }
963         return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_xcr);
966
967 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
968 {
969         if (cr4 & cr4_reserved_bits)
970                 return false;
971
972         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
973                 return false;
974
975         return kvm_x86_ops.is_valid_cr4(vcpu, cr4);
976 }
977 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
978
979 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
980 {
981         unsigned long old_cr4 = kvm_read_cr4(vcpu);
982         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
983                                    X86_CR4_SMEP;
984         unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
985
986         if (!kvm_is_valid_cr4(vcpu, cr4))
987                 return 1;
988
989         if (is_long_mode(vcpu)) {
990                 if (!(cr4 & X86_CR4_PAE))
991                         return 1;
992                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
993                         return 1;
994         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
995                    && ((cr4 ^ old_cr4) & pdptr_bits)
996                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
997                                    kvm_read_cr3(vcpu)))
998                 return 1;
999
1000         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1001                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1002                         return 1;
1003
1004                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1005                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1006                         return 1;
1007         }
1008
1009         kvm_x86_ops.set_cr4(vcpu, cr4);
1010
1011         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1012             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1013                 kvm_mmu_reset_context(vcpu);
1014
1015         return 0;
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1018
1019 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1020 {
1021         bool skip_tlb_flush = false;
1022 #ifdef CONFIG_X86_64
1023         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1024
1025         if (pcid_enabled) {
1026                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1027                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1028         }
1029 #endif
1030
1031         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1032                 if (!skip_tlb_flush) {
1033                         kvm_mmu_sync_roots(vcpu);
1034                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1035                 }
1036                 return 0;
1037         }
1038
1039         if (is_long_mode(vcpu) &&
1040             (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1041                 return 1;
1042         else if (is_pae_paging(vcpu) &&
1043                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1044                 return 1;
1045
1046         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1047         vcpu->arch.cr3 = cr3;
1048         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1049
1050         return 0;
1051 }
1052 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1053
1054 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1055 {
1056         if (cr8 & CR8_RESERVED_BITS)
1057                 return 1;
1058         if (lapic_in_kernel(vcpu))
1059                 kvm_lapic_set_tpr(vcpu, cr8);
1060         else
1061                 vcpu->arch.cr8 = cr8;
1062         return 0;
1063 }
1064 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1065
1066 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1067 {
1068         if (lapic_in_kernel(vcpu))
1069                 return kvm_lapic_get_cr8(vcpu);
1070         else
1071                 return vcpu->arch.cr8;
1072 }
1073 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1074
1075 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1076 {
1077         int i;
1078
1079         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1080                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1081                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1082                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1083         }
1084 }
1085
1086 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1087 {
1088         unsigned long dr7;
1089
1090         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1091                 dr7 = vcpu->arch.guest_debug_dr7;
1092         else
1093                 dr7 = vcpu->arch.dr7;
1094         kvm_x86_ops.set_dr7(vcpu, dr7);
1095         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1096         if (dr7 & DR7_BP_EN_MASK)
1097                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1100
1101 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1102 {
1103         u64 fixed = DR6_FIXED_1;
1104
1105         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1106                 fixed |= DR6_RTM;
1107         return fixed;
1108 }
1109
1110 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1111 {
1112         size_t size = ARRAY_SIZE(vcpu->arch.db);
1113
1114         switch (dr) {
1115         case 0 ... 3:
1116                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1117                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1118                         vcpu->arch.eff_db[dr] = val;
1119                 break;
1120         case 4:
1121         case 6:
1122                 if (!kvm_dr6_valid(val))
1123                         return -1; /* #GP */
1124                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1125                 break;
1126         case 5:
1127         default: /* 7 */
1128                 if (!kvm_dr7_valid(val))
1129                         return -1; /* #GP */
1130                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1131                 kvm_update_dr7(vcpu);
1132                 break;
1133         }
1134
1135         return 0;
1136 }
1137
1138 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1139 {
1140         if (__kvm_set_dr(vcpu, dr, val)) {
1141                 kvm_inject_gp(vcpu, 0);
1142                 return 1;
1143         }
1144         return 0;
1145 }
1146 EXPORT_SYMBOL_GPL(kvm_set_dr);
1147
1148 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1149 {
1150         size_t size = ARRAY_SIZE(vcpu->arch.db);
1151
1152         switch (dr) {
1153         case 0 ... 3:
1154                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1155                 break;
1156         case 4:
1157         case 6:
1158                 *val = vcpu->arch.dr6;
1159                 break;
1160         case 5:
1161         default: /* 7 */
1162                 *val = vcpu->arch.dr7;
1163                 break;
1164         }
1165         return 0;
1166 }
1167 EXPORT_SYMBOL_GPL(kvm_get_dr);
1168
1169 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1170 {
1171         u32 ecx = kvm_rcx_read(vcpu);
1172         u64 data;
1173         int err;
1174
1175         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1176         if (err)
1177                 return err;
1178         kvm_rax_write(vcpu, (u32)data);
1179         kvm_rdx_write(vcpu, data >> 32);
1180         return err;
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1183
1184 /*
1185  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1186  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1187  *
1188  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1189  * extract the supported MSRs from the related const lists.
1190  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1191  * capabilities of the host cpu. This capabilities test skips MSRs that are
1192  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1193  * may depend on host virtualization features rather than host cpu features.
1194  */
1195
1196 static const u32 msrs_to_save_all[] = {
1197         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1198         MSR_STAR,
1199 #ifdef CONFIG_X86_64
1200         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1201 #endif
1202         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1203         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1204         MSR_IA32_SPEC_CTRL,
1205         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1206         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1207         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1208         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1209         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1210         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1211         MSR_IA32_UMWAIT_CONTROL,
1212
1213         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1214         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1215         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1216         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1217         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1218         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1219         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1220         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1221         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1222         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1223         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1224         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1225         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1226         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1227         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1228         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1229         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1230         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1231         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1232         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1233         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1234         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1235 };
1236
1237 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1238 static unsigned num_msrs_to_save;
1239
1240 static const u32 emulated_msrs_all[] = {
1241         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1242         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1243         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1244         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1245         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1246         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1247         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1248         HV_X64_MSR_RESET,
1249         HV_X64_MSR_VP_INDEX,
1250         HV_X64_MSR_VP_RUNTIME,
1251         HV_X64_MSR_SCONTROL,
1252         HV_X64_MSR_STIMER0_CONFIG,
1253         HV_X64_MSR_VP_ASSIST_PAGE,
1254         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1255         HV_X64_MSR_TSC_EMULATION_STATUS,
1256         HV_X64_MSR_SYNDBG_OPTIONS,
1257         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1258         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1259         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1260
1261         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1262         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1263
1264         MSR_IA32_TSC_ADJUST,
1265         MSR_IA32_TSCDEADLINE,
1266         MSR_IA32_ARCH_CAPABILITIES,
1267         MSR_IA32_PERF_CAPABILITIES,
1268         MSR_IA32_MISC_ENABLE,
1269         MSR_IA32_MCG_STATUS,
1270         MSR_IA32_MCG_CTL,
1271         MSR_IA32_MCG_EXT_CTL,
1272         MSR_IA32_SMBASE,
1273         MSR_SMI_COUNT,
1274         MSR_PLATFORM_INFO,
1275         MSR_MISC_FEATURES_ENABLES,
1276         MSR_AMD64_VIRT_SPEC_CTRL,
1277         MSR_IA32_POWER_CTL,
1278         MSR_IA32_UCODE_REV,
1279
1280         /*
1281          * The following list leaves out MSRs whose values are determined
1282          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1283          * We always support the "true" VMX control MSRs, even if the host
1284          * processor does not, so I am putting these registers here rather
1285          * than in msrs_to_save_all.
1286          */
1287         MSR_IA32_VMX_BASIC,
1288         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1289         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1290         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1291         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1292         MSR_IA32_VMX_MISC,
1293         MSR_IA32_VMX_CR0_FIXED0,
1294         MSR_IA32_VMX_CR4_FIXED0,
1295         MSR_IA32_VMX_VMCS_ENUM,
1296         MSR_IA32_VMX_PROCBASED_CTLS2,
1297         MSR_IA32_VMX_EPT_VPID_CAP,
1298         MSR_IA32_VMX_VMFUNC,
1299
1300         MSR_K7_HWCR,
1301         MSR_KVM_POLL_CONTROL,
1302 };
1303
1304 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1305 static unsigned num_emulated_msrs;
1306
1307 /*
1308  * List of msr numbers which are used to expose MSR-based features that
1309  * can be used by a hypervisor to validate requested CPU features.
1310  */
1311 static const u32 msr_based_features_all[] = {
1312         MSR_IA32_VMX_BASIC,
1313         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1314         MSR_IA32_VMX_PINBASED_CTLS,
1315         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1316         MSR_IA32_VMX_PROCBASED_CTLS,
1317         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1318         MSR_IA32_VMX_EXIT_CTLS,
1319         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1320         MSR_IA32_VMX_ENTRY_CTLS,
1321         MSR_IA32_VMX_MISC,
1322         MSR_IA32_VMX_CR0_FIXED0,
1323         MSR_IA32_VMX_CR0_FIXED1,
1324         MSR_IA32_VMX_CR4_FIXED0,
1325         MSR_IA32_VMX_CR4_FIXED1,
1326         MSR_IA32_VMX_VMCS_ENUM,
1327         MSR_IA32_VMX_PROCBASED_CTLS2,
1328         MSR_IA32_VMX_EPT_VPID_CAP,
1329         MSR_IA32_VMX_VMFUNC,
1330
1331         MSR_F10H_DECFG,
1332         MSR_IA32_UCODE_REV,
1333         MSR_IA32_ARCH_CAPABILITIES,
1334         MSR_IA32_PERF_CAPABILITIES,
1335 };
1336
1337 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1338 static unsigned int num_msr_based_features;
1339
1340 static u64 kvm_get_arch_capabilities(void)
1341 {
1342         u64 data = 0;
1343
1344         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1345                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1346
1347         /*
1348          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1349          * the nested hypervisor runs with NX huge pages.  If it is not,
1350          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1351          * L1 guests, so it need not worry about its own (L2) guests.
1352          */
1353         data |= ARCH_CAP_PSCHANGE_MC_NO;
1354
1355         /*
1356          * If we're doing cache flushes (either "always" or "cond")
1357          * we will do one whenever the guest does a vmlaunch/vmresume.
1358          * If an outer hypervisor is doing the cache flush for us
1359          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1360          * capability to the guest too, and if EPT is disabled we're not
1361          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1362          * require a nested hypervisor to do a flush of its own.
1363          */
1364         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1365                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1366
1367         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1368                 data |= ARCH_CAP_RDCL_NO;
1369         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1370                 data |= ARCH_CAP_SSB_NO;
1371         if (!boot_cpu_has_bug(X86_BUG_MDS))
1372                 data |= ARCH_CAP_MDS_NO;
1373
1374         /*
1375          * On TAA affected systems:
1376          *      - nothing to do if TSX is disabled on the host.
1377          *      - we emulate TSX_CTRL if present on the host.
1378          *        This lets the guest use VERW to clear CPU buffers.
1379          */
1380         if (!boot_cpu_has(X86_FEATURE_RTM))
1381                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1382         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1383                 data |= ARCH_CAP_TAA_NO;
1384
1385         return data;
1386 }
1387
1388 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1389 {
1390         switch (msr->index) {
1391         case MSR_IA32_ARCH_CAPABILITIES:
1392                 msr->data = kvm_get_arch_capabilities();
1393                 break;
1394         case MSR_IA32_UCODE_REV:
1395                 rdmsrl_safe(msr->index, &msr->data);
1396                 break;
1397         default:
1398                 return kvm_x86_ops.get_msr_feature(msr);
1399         }
1400         return 0;
1401 }
1402
1403 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1404 {
1405         struct kvm_msr_entry msr;
1406         int r;
1407
1408         msr.index = index;
1409         r = kvm_get_msr_feature(&msr);
1410
1411         if (r == KVM_MSR_RET_INVALID) {
1412                 /* Unconditionally clear the output for simplicity */
1413                 *data = 0;
1414                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1415                         r = 0;
1416         }
1417
1418         if (r)
1419                 return r;
1420
1421         *data = msr.data;
1422
1423         return 0;
1424 }
1425
1426 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1427 {
1428         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1429                 return false;
1430
1431         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1432                 return false;
1433
1434         if (efer & (EFER_LME | EFER_LMA) &&
1435             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1436                 return false;
1437
1438         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1439                 return false;
1440
1441         return true;
1442
1443 }
1444 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1445 {
1446         if (efer & efer_reserved_bits)
1447                 return false;
1448
1449         return __kvm_valid_efer(vcpu, efer);
1450 }
1451 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1452
1453 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1454 {
1455         u64 old_efer = vcpu->arch.efer;
1456         u64 efer = msr_info->data;
1457         int r;
1458
1459         if (efer & efer_reserved_bits)
1460                 return 1;
1461
1462         if (!msr_info->host_initiated) {
1463                 if (!__kvm_valid_efer(vcpu, efer))
1464                         return 1;
1465
1466                 if (is_paging(vcpu) &&
1467                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1468                         return 1;
1469         }
1470
1471         efer &= ~EFER_LMA;
1472         efer |= vcpu->arch.efer & EFER_LMA;
1473
1474         r = kvm_x86_ops.set_efer(vcpu, efer);
1475         if (r) {
1476                 WARN_ON(r > 0);
1477                 return r;
1478         }
1479
1480         /* Update reserved bits */
1481         if ((efer ^ old_efer) & EFER_NX)
1482                 kvm_mmu_reset_context(vcpu);
1483
1484         return 0;
1485 }
1486
1487 void kvm_enable_efer_bits(u64 mask)
1488 {
1489        efer_reserved_bits &= ~mask;
1490 }
1491 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1492
1493 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1494 {
1495         struct kvm *kvm = vcpu->kvm;
1496         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1497         u32 count = kvm->arch.msr_filter.count;
1498         u32 i;
1499         bool r = kvm->arch.msr_filter.default_allow;
1500         int idx;
1501
1502         /* MSR filtering not set up or x2APIC enabled, allow everything */
1503         if (!count || (index >= 0x800 && index <= 0x8ff))
1504                 return true;
1505
1506         /* Prevent collision with set_msr_filter */
1507         idx = srcu_read_lock(&kvm->srcu);
1508
1509         for (i = 0; i < count; i++) {
1510                 u32 start = ranges[i].base;
1511                 u32 end = start + ranges[i].nmsrs;
1512                 u32 flags = ranges[i].flags;
1513                 unsigned long *bitmap = ranges[i].bitmap;
1514
1515                 if ((index >= start) && (index < end) && (flags & type)) {
1516                         r = !!test_bit(index - start, bitmap);
1517                         break;
1518                 }
1519         }
1520
1521         srcu_read_unlock(&kvm->srcu, idx);
1522
1523         return r;
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1526
1527 /*
1528  * Write @data into the MSR specified by @index.  Select MSR specific fault
1529  * checks are bypassed if @host_initiated is %true.
1530  * Returns 0 on success, non-0 otherwise.
1531  * Assumes vcpu_load() was already called.
1532  */
1533 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1534                          bool host_initiated)
1535 {
1536         struct msr_data msr;
1537
1538         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1539                 return KVM_MSR_RET_FILTERED;
1540
1541         switch (index) {
1542         case MSR_FS_BASE:
1543         case MSR_GS_BASE:
1544         case MSR_KERNEL_GS_BASE:
1545         case MSR_CSTAR:
1546         case MSR_LSTAR:
1547                 if (is_noncanonical_address(data, vcpu))
1548                         return 1;
1549                 break;
1550         case MSR_IA32_SYSENTER_EIP:
1551         case MSR_IA32_SYSENTER_ESP:
1552                 /*
1553                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1554                  * non-canonical address is written on Intel but not on
1555                  * AMD (which ignores the top 32-bits, because it does
1556                  * not implement 64-bit SYSENTER).
1557                  *
1558                  * 64-bit code should hence be able to write a non-canonical
1559                  * value on AMD.  Making the address canonical ensures that
1560                  * vmentry does not fail on Intel after writing a non-canonical
1561                  * value, and that something deterministic happens if the guest
1562                  * invokes 64-bit SYSENTER.
1563                  */
1564                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1565         }
1566
1567         msr.data = data;
1568         msr.index = index;
1569         msr.host_initiated = host_initiated;
1570
1571         return kvm_x86_ops.set_msr(vcpu, &msr);
1572 }
1573
1574 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1575                                      u32 index, u64 data, bool host_initiated)
1576 {
1577         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1578
1579         if (ret == KVM_MSR_RET_INVALID)
1580                 if (kvm_msr_ignored_check(vcpu, index, data, true))
1581                         ret = 0;
1582
1583         return ret;
1584 }
1585
1586 /*
1587  * Read the MSR specified by @index into @data.  Select MSR specific fault
1588  * checks are bypassed if @host_initiated is %true.
1589  * Returns 0 on success, non-0 otherwise.
1590  * Assumes vcpu_load() was already called.
1591  */
1592 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1593                   bool host_initiated)
1594 {
1595         struct msr_data msr;
1596         int ret;
1597
1598         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1599                 return KVM_MSR_RET_FILTERED;
1600
1601         msr.index = index;
1602         msr.host_initiated = host_initiated;
1603
1604         ret = kvm_x86_ops.get_msr(vcpu, &msr);
1605         if (!ret)
1606                 *data = msr.data;
1607         return ret;
1608 }
1609
1610 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1611                                      u32 index, u64 *data, bool host_initiated)
1612 {
1613         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1614
1615         if (ret == KVM_MSR_RET_INVALID) {
1616                 /* Unconditionally clear *data for simplicity */
1617                 *data = 0;
1618                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1619                         ret = 0;
1620         }
1621
1622         return ret;
1623 }
1624
1625 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1626 {
1627         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1628 }
1629 EXPORT_SYMBOL_GPL(kvm_get_msr);
1630
1631 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1632 {
1633         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1634 }
1635 EXPORT_SYMBOL_GPL(kvm_set_msr);
1636
1637 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1638 {
1639         int err = vcpu->run->msr.error;
1640         if (!err) {
1641                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1642                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1643         }
1644
1645         return kvm_x86_ops.complete_emulated_msr(vcpu, err);
1646 }
1647
1648 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1649 {
1650         return kvm_x86_ops.complete_emulated_msr(vcpu, vcpu->run->msr.error);
1651 }
1652
1653 static u64 kvm_msr_reason(int r)
1654 {
1655         switch (r) {
1656         case KVM_MSR_RET_INVALID:
1657                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1658         case KVM_MSR_RET_FILTERED:
1659                 return KVM_MSR_EXIT_REASON_FILTER;
1660         default:
1661                 return KVM_MSR_EXIT_REASON_INVAL;
1662         }
1663 }
1664
1665 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1666                               u32 exit_reason, u64 data,
1667                               int (*completion)(struct kvm_vcpu *vcpu),
1668                               int r)
1669 {
1670         u64 msr_reason = kvm_msr_reason(r);
1671
1672         /* Check if the user wanted to know about this MSR fault */
1673         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1674                 return 0;
1675
1676         vcpu->run->exit_reason = exit_reason;
1677         vcpu->run->msr.error = 0;
1678         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1679         vcpu->run->msr.reason = msr_reason;
1680         vcpu->run->msr.index = index;
1681         vcpu->run->msr.data = data;
1682         vcpu->arch.complete_userspace_io = completion;
1683
1684         return 1;
1685 }
1686
1687 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1688 {
1689         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1690                                    complete_emulated_rdmsr, r);
1691 }
1692
1693 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1694 {
1695         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1696                                    complete_emulated_wrmsr, r);
1697 }
1698
1699 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1700 {
1701         u32 ecx = kvm_rcx_read(vcpu);
1702         u64 data;
1703         int r;
1704
1705         r = kvm_get_msr(vcpu, ecx, &data);
1706
1707         /* MSR read failed? See if we should ask user space */
1708         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1709                 /* Bounce to user space */
1710                 return 0;
1711         }
1712
1713         if (!r) {
1714                 trace_kvm_msr_read(ecx, data);
1715
1716                 kvm_rax_write(vcpu, data & -1u);
1717                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1718         } else {
1719                 trace_kvm_msr_read_ex(ecx);
1720         }
1721
1722         return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1725
1726 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1727 {
1728         u32 ecx = kvm_rcx_read(vcpu);
1729         u64 data = kvm_read_edx_eax(vcpu);
1730         int r;
1731
1732         r = kvm_set_msr(vcpu, ecx, data);
1733
1734         /* MSR write failed? See if we should ask user space */
1735         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1736                 /* Bounce to user space */
1737                 return 0;
1738
1739         /* Signal all other negative errors to userspace */
1740         if (r < 0)
1741                 return r;
1742
1743         if (!r)
1744                 trace_kvm_msr_write(ecx, data);
1745         else
1746                 trace_kvm_msr_write_ex(ecx, data);
1747
1748         return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1751
1752 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1753 {
1754         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1755                 xfer_to_guest_mode_work_pending();
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1758
1759 /*
1760  * The fast path for frequent and performance sensitive wrmsr emulation,
1761  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1762  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1763  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1764  * other cases which must be called after interrupts are enabled on the host.
1765  */
1766 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1767 {
1768         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1769                 return 1;
1770
1771         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1772                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1773                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1774                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1775
1776                 data &= ~(1 << 12);
1777                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1778                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1779                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1780                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1781                 return 0;
1782         }
1783
1784         return 1;
1785 }
1786
1787 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1788 {
1789         if (!kvm_can_use_hv_timer(vcpu))
1790                 return 1;
1791
1792         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1793         return 0;
1794 }
1795
1796 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1797 {
1798         u32 msr = kvm_rcx_read(vcpu);
1799         u64 data;
1800         fastpath_t ret = EXIT_FASTPATH_NONE;
1801
1802         switch (msr) {
1803         case APIC_BASE_MSR + (APIC_ICR >> 4):
1804                 data = kvm_read_edx_eax(vcpu);
1805                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1806                         kvm_skip_emulated_instruction(vcpu);
1807                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1808                 }
1809                 break;
1810         case MSR_IA32_TSCDEADLINE:
1811                 data = kvm_read_edx_eax(vcpu);
1812                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1813                         kvm_skip_emulated_instruction(vcpu);
1814                         ret = EXIT_FASTPATH_REENTER_GUEST;
1815                 }
1816                 break;
1817         default:
1818                 break;
1819         }
1820
1821         if (ret != EXIT_FASTPATH_NONE)
1822                 trace_kvm_msr_write(msr, data);
1823
1824         return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1827
1828 /*
1829  * Adapt set_msr() to msr_io()'s calling convention
1830  */
1831 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1832 {
1833         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1834 }
1835
1836 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1837 {
1838         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1839 }
1840
1841 #ifdef CONFIG_X86_64
1842 struct pvclock_clock {
1843         int vclock_mode;
1844         u64 cycle_last;
1845         u64 mask;
1846         u32 mult;
1847         u32 shift;
1848         u64 base_cycles;
1849         u64 offset;
1850 };
1851
1852 struct pvclock_gtod_data {
1853         seqcount_t      seq;
1854
1855         struct pvclock_clock clock; /* extract of a clocksource struct */
1856         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1857
1858         ktime_t         offs_boot;
1859         u64             wall_time_sec;
1860 };
1861
1862 static struct pvclock_gtod_data pvclock_gtod_data;
1863
1864 static void update_pvclock_gtod(struct timekeeper *tk)
1865 {
1866         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1867
1868         write_seqcount_begin(&vdata->seq);
1869
1870         /* copy pvclock gtod data */
1871         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1872         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1873         vdata->clock.mask               = tk->tkr_mono.mask;
1874         vdata->clock.mult               = tk->tkr_mono.mult;
1875         vdata->clock.shift              = tk->tkr_mono.shift;
1876         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1877         vdata->clock.offset             = tk->tkr_mono.base;
1878
1879         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1880         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1881         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1882         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1883         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1884         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1885         vdata->raw_clock.offset         = tk->tkr_raw.base;
1886
1887         vdata->wall_time_sec            = tk->xtime_sec;
1888
1889         vdata->offs_boot                = tk->offs_boot;
1890
1891         write_seqcount_end(&vdata->seq);
1892 }
1893
1894 static s64 get_kvmclock_base_ns(void)
1895 {
1896         /* Count up from boot time, but with the frequency of the raw clock.  */
1897         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1898 }
1899 #else
1900 static s64 get_kvmclock_base_ns(void)
1901 {
1902         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1903         return ktime_get_boottime_ns();
1904 }
1905 #endif
1906
1907 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1908 {
1909         int version;
1910         int r;
1911         struct pvclock_wall_clock wc;
1912         u64 wall_nsec;
1913
1914         kvm->arch.wall_clock = wall_clock;
1915
1916         if (!wall_clock)
1917                 return;
1918
1919         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1920         if (r)
1921                 return;
1922
1923         if (version & 1)
1924                 ++version;  /* first time write, random junk */
1925
1926         ++version;
1927
1928         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1929                 return;
1930
1931         /*
1932          * The guest calculates current wall clock time by adding
1933          * system time (updated by kvm_guest_time_update below) to the
1934          * wall clock specified here.  We do the reverse here.
1935          */
1936         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1937
1938         wc.nsec = do_div(wall_nsec, 1000000000);
1939         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1940         wc.version = version;
1941
1942         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1943
1944         version++;
1945         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1946 }
1947
1948 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1949                                   bool old_msr, bool host_initiated)
1950 {
1951         struct kvm_arch *ka = &vcpu->kvm->arch;
1952
1953         if (vcpu->vcpu_id == 0 && !host_initiated) {
1954                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1955                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1956
1957                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1958         }
1959
1960         vcpu->arch.time = system_time;
1961         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1962
1963         /* we verify if the enable bit is set... */
1964         vcpu->arch.pv_time_enabled = false;
1965         if (!(system_time & 1))
1966                 return;
1967
1968         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1969                                        &vcpu->arch.pv_time, system_time & ~1ULL,
1970                                        sizeof(struct pvclock_vcpu_time_info)))
1971                 vcpu->arch.pv_time_enabled = true;
1972
1973         return;
1974 }
1975
1976 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1977 {
1978         do_shl32_div32(dividend, divisor);
1979         return dividend;
1980 }
1981
1982 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1983                                s8 *pshift, u32 *pmultiplier)
1984 {
1985         uint64_t scaled64;
1986         int32_t  shift = 0;
1987         uint64_t tps64;
1988         uint32_t tps32;
1989
1990         tps64 = base_hz;
1991         scaled64 = scaled_hz;
1992         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1993                 tps64 >>= 1;
1994                 shift--;
1995         }
1996
1997         tps32 = (uint32_t)tps64;
1998         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1999                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2000                         scaled64 >>= 1;
2001                 else
2002                         tps32 <<= 1;
2003                 shift++;
2004         }
2005
2006         *pshift = shift;
2007         *pmultiplier = div_frac(scaled64, tps32);
2008 }
2009
2010 #ifdef CONFIG_X86_64
2011 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2012 #endif
2013
2014 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2015 static unsigned long max_tsc_khz;
2016
2017 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2018 {
2019         u64 v = (u64)khz * (1000000 + ppm);
2020         do_div(v, 1000000);
2021         return v;
2022 }
2023
2024 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2025 {
2026         u64 ratio;
2027
2028         /* Guest TSC same frequency as host TSC? */
2029         if (!scale) {
2030                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2031                 return 0;
2032         }
2033
2034         /* TSC scaling supported? */
2035         if (!kvm_has_tsc_control) {
2036                 if (user_tsc_khz > tsc_khz) {
2037                         vcpu->arch.tsc_catchup = 1;
2038                         vcpu->arch.tsc_always_catchup = 1;
2039                         return 0;
2040                 } else {
2041                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2042                         return -1;
2043                 }
2044         }
2045
2046         /* TSC scaling required  - calculate ratio */
2047         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2048                                 user_tsc_khz, tsc_khz);
2049
2050         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2051                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2052                                     user_tsc_khz);
2053                 return -1;
2054         }
2055
2056         vcpu->arch.tsc_scaling_ratio = ratio;
2057         return 0;
2058 }
2059
2060 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2061 {
2062         u32 thresh_lo, thresh_hi;
2063         int use_scaling = 0;
2064
2065         /* tsc_khz can be zero if TSC calibration fails */
2066         if (user_tsc_khz == 0) {
2067                 /* set tsc_scaling_ratio to a safe value */
2068                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2069                 return -1;
2070         }
2071
2072         /* Compute a scale to convert nanoseconds in TSC cycles */
2073         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2074                            &vcpu->arch.virtual_tsc_shift,
2075                            &vcpu->arch.virtual_tsc_mult);
2076         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2077
2078         /*
2079          * Compute the variation in TSC rate which is acceptable
2080          * within the range of tolerance and decide if the
2081          * rate being applied is within that bounds of the hardware
2082          * rate.  If so, no scaling or compensation need be done.
2083          */
2084         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2085         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2086         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2087                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2088                 use_scaling = 1;
2089         }
2090         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2091 }
2092
2093 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2094 {
2095         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2096                                       vcpu->arch.virtual_tsc_mult,
2097                                       vcpu->arch.virtual_tsc_shift);
2098         tsc += vcpu->arch.this_tsc_write;
2099         return tsc;
2100 }
2101
2102 static inline int gtod_is_based_on_tsc(int mode)
2103 {
2104         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2105 }
2106
2107 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2108 {
2109 #ifdef CONFIG_X86_64
2110         bool vcpus_matched;
2111         struct kvm_arch *ka = &vcpu->kvm->arch;
2112         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2113
2114         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2115                          atomic_read(&vcpu->kvm->online_vcpus));
2116
2117         /*
2118          * Once the masterclock is enabled, always perform request in
2119          * order to update it.
2120          *
2121          * In order to enable masterclock, the host clocksource must be TSC
2122          * and the vcpus need to have matched TSCs.  When that happens,
2123          * perform request to enable masterclock.
2124          */
2125         if (ka->use_master_clock ||
2126             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2127                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2128
2129         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2130                             atomic_read(&vcpu->kvm->online_vcpus),
2131                             ka->use_master_clock, gtod->clock.vclock_mode);
2132 #endif
2133 }
2134
2135 /*
2136  * Multiply tsc by a fixed point number represented by ratio.
2137  *
2138  * The most significant 64-N bits (mult) of ratio represent the
2139  * integral part of the fixed point number; the remaining N bits
2140  * (frac) represent the fractional part, ie. ratio represents a fixed
2141  * point number (mult + frac * 2^(-N)).
2142  *
2143  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2144  */
2145 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2146 {
2147         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2148 }
2149
2150 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2151 {
2152         u64 _tsc = tsc;
2153         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2154
2155         if (ratio != kvm_default_tsc_scaling_ratio)
2156                 _tsc = __scale_tsc(ratio, tsc);
2157
2158         return _tsc;
2159 }
2160 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2161
2162 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2163 {
2164         u64 tsc;
2165
2166         tsc = kvm_scale_tsc(vcpu, rdtsc());
2167
2168         return target_tsc - tsc;
2169 }
2170
2171 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2172 {
2173         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2174 }
2175 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2176
2177 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2178 {
2179         vcpu->arch.l1_tsc_offset = offset;
2180         vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2181 }
2182
2183 static inline bool kvm_check_tsc_unstable(void)
2184 {
2185 #ifdef CONFIG_X86_64
2186         /*
2187          * TSC is marked unstable when we're running on Hyper-V,
2188          * 'TSC page' clocksource is good.
2189          */
2190         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2191                 return false;
2192 #endif
2193         return check_tsc_unstable();
2194 }
2195
2196 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2197 {
2198         struct kvm *kvm = vcpu->kvm;
2199         u64 offset, ns, elapsed;
2200         unsigned long flags;
2201         bool matched;
2202         bool already_matched;
2203         bool synchronizing = false;
2204
2205         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2206         offset = kvm_compute_tsc_offset(vcpu, data);
2207         ns = get_kvmclock_base_ns();
2208         elapsed = ns - kvm->arch.last_tsc_nsec;
2209
2210         if (vcpu->arch.virtual_tsc_khz) {
2211                 if (data == 0) {
2212                         /*
2213                          * detection of vcpu initialization -- need to sync
2214                          * with other vCPUs. This particularly helps to keep
2215                          * kvm_clock stable after CPU hotplug
2216                          */
2217                         synchronizing = true;
2218                 } else {
2219                         u64 tsc_exp = kvm->arch.last_tsc_write +
2220                                                 nsec_to_cycles(vcpu, elapsed);
2221                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2222                         /*
2223                          * Special case: TSC write with a small delta (1 second)
2224                          * of virtual cycle time against real time is
2225                          * interpreted as an attempt to synchronize the CPU.
2226                          */
2227                         synchronizing = data < tsc_exp + tsc_hz &&
2228                                         data + tsc_hz > tsc_exp;
2229                 }
2230         }
2231
2232         /*
2233          * For a reliable TSC, we can match TSC offsets, and for an unstable
2234          * TSC, we add elapsed time in this computation.  We could let the
2235          * compensation code attempt to catch up if we fall behind, but
2236          * it's better to try to match offsets from the beginning.
2237          */
2238         if (synchronizing &&
2239             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2240                 if (!kvm_check_tsc_unstable()) {
2241                         offset = kvm->arch.cur_tsc_offset;
2242                 } else {
2243                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2244                         data += delta;
2245                         offset = kvm_compute_tsc_offset(vcpu, data);
2246                 }
2247                 matched = true;
2248                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2249         } else {
2250                 /*
2251                  * We split periods of matched TSC writes into generations.
2252                  * For each generation, we track the original measured
2253                  * nanosecond time, offset, and write, so if TSCs are in
2254                  * sync, we can match exact offset, and if not, we can match
2255                  * exact software computation in compute_guest_tsc()
2256                  *
2257                  * These values are tracked in kvm->arch.cur_xxx variables.
2258                  */
2259                 kvm->arch.cur_tsc_generation++;
2260                 kvm->arch.cur_tsc_nsec = ns;
2261                 kvm->arch.cur_tsc_write = data;
2262                 kvm->arch.cur_tsc_offset = offset;
2263                 matched = false;
2264         }
2265
2266         /*
2267          * We also track th most recent recorded KHZ, write and time to
2268          * allow the matching interval to be extended at each write.
2269          */
2270         kvm->arch.last_tsc_nsec = ns;
2271         kvm->arch.last_tsc_write = data;
2272         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2273
2274         vcpu->arch.last_guest_tsc = data;
2275
2276         /* Keep track of which generation this VCPU has synchronized to */
2277         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2278         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2279         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2280
2281         kvm_vcpu_write_tsc_offset(vcpu, offset);
2282         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2283
2284         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2285         if (!matched) {
2286                 kvm->arch.nr_vcpus_matched_tsc = 0;
2287         } else if (!already_matched) {
2288                 kvm->arch.nr_vcpus_matched_tsc++;
2289         }
2290
2291         kvm_track_tsc_matching(vcpu);
2292         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2293 }
2294
2295 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2296                                            s64 adjustment)
2297 {
2298         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2299         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2300 }
2301
2302 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2303 {
2304         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2305                 WARN_ON(adjustment < 0);
2306         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2307         adjust_tsc_offset_guest(vcpu, adjustment);
2308 }
2309
2310 #ifdef CONFIG_X86_64
2311
2312 static u64 read_tsc(void)
2313 {
2314         u64 ret = (u64)rdtsc_ordered();
2315         u64 last = pvclock_gtod_data.clock.cycle_last;
2316
2317         if (likely(ret >= last))
2318                 return ret;
2319
2320         /*
2321          * GCC likes to generate cmov here, but this branch is extremely
2322          * predictable (it's just a function of time and the likely is
2323          * very likely) and there's a data dependence, so force GCC
2324          * to generate a branch instead.  I don't barrier() because
2325          * we don't actually need a barrier, and if this function
2326          * ever gets inlined it will generate worse code.
2327          */
2328         asm volatile ("");
2329         return last;
2330 }
2331
2332 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2333                           int *mode)
2334 {
2335         long v;
2336         u64 tsc_pg_val;
2337
2338         switch (clock->vclock_mode) {
2339         case VDSO_CLOCKMODE_HVCLOCK:
2340                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2341                                                   tsc_timestamp);
2342                 if (tsc_pg_val != U64_MAX) {
2343                         /* TSC page valid */
2344                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2345                         v = (tsc_pg_val - clock->cycle_last) &
2346                                 clock->mask;
2347                 } else {
2348                         /* TSC page invalid */
2349                         *mode = VDSO_CLOCKMODE_NONE;
2350                 }
2351                 break;
2352         case VDSO_CLOCKMODE_TSC:
2353                 *mode = VDSO_CLOCKMODE_TSC;
2354                 *tsc_timestamp = read_tsc();
2355                 v = (*tsc_timestamp - clock->cycle_last) &
2356                         clock->mask;
2357                 break;
2358         default:
2359                 *mode = VDSO_CLOCKMODE_NONE;
2360         }
2361
2362         if (*mode == VDSO_CLOCKMODE_NONE)
2363                 *tsc_timestamp = v = 0;
2364
2365         return v * clock->mult;
2366 }
2367
2368 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2369 {
2370         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2371         unsigned long seq;
2372         int mode;
2373         u64 ns;
2374
2375         do {
2376                 seq = read_seqcount_begin(&gtod->seq);
2377                 ns = gtod->raw_clock.base_cycles;
2378                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2379                 ns >>= gtod->raw_clock.shift;
2380                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2381         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2382         *t = ns;
2383
2384         return mode;
2385 }
2386
2387 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2388 {
2389         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2390         unsigned long seq;
2391         int mode;
2392         u64 ns;
2393
2394         do {
2395                 seq = read_seqcount_begin(&gtod->seq);
2396                 ts->tv_sec = gtod->wall_time_sec;
2397                 ns = gtod->clock.base_cycles;
2398                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2399                 ns >>= gtod->clock.shift;
2400         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2401
2402         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2403         ts->tv_nsec = ns;
2404
2405         return mode;
2406 }
2407
2408 /* returns true if host is using TSC based clocksource */
2409 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2410 {
2411         /* checked again under seqlock below */
2412         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2413                 return false;
2414
2415         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2416                                                       tsc_timestamp));
2417 }
2418
2419 /* returns true if host is using TSC based clocksource */
2420 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2421                                            u64 *tsc_timestamp)
2422 {
2423         /* checked again under seqlock below */
2424         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2425                 return false;
2426
2427         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2428 }
2429 #endif
2430
2431 /*
2432  *
2433  * Assuming a stable TSC across physical CPUS, and a stable TSC
2434  * across virtual CPUs, the following condition is possible.
2435  * Each numbered line represents an event visible to both
2436  * CPUs at the next numbered event.
2437  *
2438  * "timespecX" represents host monotonic time. "tscX" represents
2439  * RDTSC value.
2440  *
2441  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2442  *
2443  * 1.  read timespec0,tsc0
2444  * 2.                                   | timespec1 = timespec0 + N
2445  *                                      | tsc1 = tsc0 + M
2446  * 3. transition to guest               | transition to guest
2447  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2448  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2449  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2450  *
2451  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2452  *
2453  *      - ret0 < ret1
2454  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2455  *              ...
2456  *      - 0 < N - M => M < N
2457  *
2458  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2459  * always the case (the difference between two distinct xtime instances
2460  * might be smaller then the difference between corresponding TSC reads,
2461  * when updating guest vcpus pvclock areas).
2462  *
2463  * To avoid that problem, do not allow visibility of distinct
2464  * system_timestamp/tsc_timestamp values simultaneously: use a master
2465  * copy of host monotonic time values. Update that master copy
2466  * in lockstep.
2467  *
2468  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2469  *
2470  */
2471
2472 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2473 {
2474 #ifdef CONFIG_X86_64
2475         struct kvm_arch *ka = &kvm->arch;
2476         int vclock_mode;
2477         bool host_tsc_clocksource, vcpus_matched;
2478
2479         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2480                         atomic_read(&kvm->online_vcpus));
2481
2482         /*
2483          * If the host uses TSC clock, then passthrough TSC as stable
2484          * to the guest.
2485          */
2486         host_tsc_clocksource = kvm_get_time_and_clockread(
2487                                         &ka->master_kernel_ns,
2488                                         &ka->master_cycle_now);
2489
2490         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2491                                 && !ka->backwards_tsc_observed
2492                                 && !ka->boot_vcpu_runs_old_kvmclock;
2493
2494         if (ka->use_master_clock)
2495                 atomic_set(&kvm_guest_has_master_clock, 1);
2496
2497         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2498         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2499                                         vcpus_matched);
2500 #endif
2501 }
2502
2503 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2504 {
2505         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2506 }
2507
2508 static void kvm_gen_update_masterclock(struct kvm *kvm)
2509 {
2510 #ifdef CONFIG_X86_64
2511         int i;
2512         struct kvm_vcpu *vcpu;
2513         struct kvm_arch *ka = &kvm->arch;
2514
2515         spin_lock(&ka->pvclock_gtod_sync_lock);
2516         kvm_make_mclock_inprogress_request(kvm);
2517         /* no guest entries from this point */
2518         pvclock_update_vm_gtod_copy(kvm);
2519
2520         kvm_for_each_vcpu(i, vcpu, kvm)
2521                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2522
2523         /* guest entries allowed */
2524         kvm_for_each_vcpu(i, vcpu, kvm)
2525                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2526
2527         spin_unlock(&ka->pvclock_gtod_sync_lock);
2528 #endif
2529 }
2530
2531 u64 get_kvmclock_ns(struct kvm *kvm)
2532 {
2533         struct kvm_arch *ka = &kvm->arch;
2534         struct pvclock_vcpu_time_info hv_clock;
2535         u64 ret;
2536
2537         spin_lock(&ka->pvclock_gtod_sync_lock);
2538         if (!ka->use_master_clock) {
2539                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2540                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2541         }
2542
2543         hv_clock.tsc_timestamp = ka->master_cycle_now;
2544         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2545         spin_unlock(&ka->pvclock_gtod_sync_lock);
2546
2547         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2548         get_cpu();
2549
2550         if (__this_cpu_read(cpu_tsc_khz)) {
2551                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2552                                    &hv_clock.tsc_shift,
2553                                    &hv_clock.tsc_to_system_mul);
2554                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2555         } else
2556                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2557
2558         put_cpu();
2559
2560         return ret;
2561 }
2562
2563 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2564 {
2565         struct kvm_vcpu_arch *vcpu = &v->arch;
2566         struct pvclock_vcpu_time_info guest_hv_clock;
2567
2568         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2569                 &guest_hv_clock, sizeof(guest_hv_clock))))
2570                 return;
2571
2572         /* This VCPU is paused, but it's legal for a guest to read another
2573          * VCPU's kvmclock, so we really have to follow the specification where
2574          * it says that version is odd if data is being modified, and even after
2575          * it is consistent.
2576          *
2577          * Version field updates must be kept separate.  This is because
2578          * kvm_write_guest_cached might use a "rep movs" instruction, and
2579          * writes within a string instruction are weakly ordered.  So there
2580          * are three writes overall.
2581          *
2582          * As a small optimization, only write the version field in the first
2583          * and third write.  The vcpu->pv_time cache is still valid, because the
2584          * version field is the first in the struct.
2585          */
2586         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2587
2588         if (guest_hv_clock.version & 1)
2589                 ++guest_hv_clock.version;  /* first time write, random junk */
2590
2591         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2592         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2593                                 &vcpu->hv_clock,
2594                                 sizeof(vcpu->hv_clock.version));
2595
2596         smp_wmb();
2597
2598         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2599         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2600
2601         if (vcpu->pvclock_set_guest_stopped_request) {
2602                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2603                 vcpu->pvclock_set_guest_stopped_request = false;
2604         }
2605
2606         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2607
2608         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2609                                 &vcpu->hv_clock,
2610                                 sizeof(vcpu->hv_clock));
2611
2612         smp_wmb();
2613
2614         vcpu->hv_clock.version++;
2615         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2616                                 &vcpu->hv_clock,
2617                                 sizeof(vcpu->hv_clock.version));
2618 }
2619
2620 static int kvm_guest_time_update(struct kvm_vcpu *v)
2621 {
2622         unsigned long flags, tgt_tsc_khz;
2623         struct kvm_vcpu_arch *vcpu = &v->arch;
2624         struct kvm_arch *ka = &v->kvm->arch;
2625         s64 kernel_ns;
2626         u64 tsc_timestamp, host_tsc;
2627         u8 pvclock_flags;
2628         bool use_master_clock;
2629
2630         kernel_ns = 0;
2631         host_tsc = 0;
2632
2633         /*
2634          * If the host uses TSC clock, then passthrough TSC as stable
2635          * to the guest.
2636          */
2637         spin_lock(&ka->pvclock_gtod_sync_lock);
2638         use_master_clock = ka->use_master_clock;
2639         if (use_master_clock) {
2640                 host_tsc = ka->master_cycle_now;
2641                 kernel_ns = ka->master_kernel_ns;
2642         }
2643         spin_unlock(&ka->pvclock_gtod_sync_lock);
2644
2645         /* Keep irq disabled to prevent changes to the clock */
2646         local_irq_save(flags);
2647         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2648         if (unlikely(tgt_tsc_khz == 0)) {
2649                 local_irq_restore(flags);
2650                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2651                 return 1;
2652         }
2653         if (!use_master_clock) {
2654                 host_tsc = rdtsc();
2655                 kernel_ns = get_kvmclock_base_ns();
2656         }
2657
2658         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2659
2660         /*
2661          * We may have to catch up the TSC to match elapsed wall clock
2662          * time for two reasons, even if kvmclock is used.
2663          *   1) CPU could have been running below the maximum TSC rate
2664          *   2) Broken TSC compensation resets the base at each VCPU
2665          *      entry to avoid unknown leaps of TSC even when running
2666          *      again on the same CPU.  This may cause apparent elapsed
2667          *      time to disappear, and the guest to stand still or run
2668          *      very slowly.
2669          */
2670         if (vcpu->tsc_catchup) {
2671                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2672                 if (tsc > tsc_timestamp) {
2673                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2674                         tsc_timestamp = tsc;
2675                 }
2676         }
2677
2678         local_irq_restore(flags);
2679
2680         /* With all the info we got, fill in the values */
2681
2682         if (kvm_has_tsc_control)
2683                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2684
2685         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2686                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2687                                    &vcpu->hv_clock.tsc_shift,
2688                                    &vcpu->hv_clock.tsc_to_system_mul);
2689                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2690         }
2691
2692         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2693         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2694         vcpu->last_guest_tsc = tsc_timestamp;
2695
2696         /* If the host uses TSC clocksource, then it is stable */
2697         pvclock_flags = 0;
2698         if (use_master_clock)
2699                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2700
2701         vcpu->hv_clock.flags = pvclock_flags;
2702
2703         if (vcpu->pv_time_enabled)
2704                 kvm_setup_pvclock_page(v);
2705         if (v == kvm_get_vcpu(v->kvm, 0))
2706                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2707         return 0;
2708 }
2709
2710 /*
2711  * kvmclock updates which are isolated to a given vcpu, such as
2712  * vcpu->cpu migration, should not allow system_timestamp from
2713  * the rest of the vcpus to remain static. Otherwise ntp frequency
2714  * correction applies to one vcpu's system_timestamp but not
2715  * the others.
2716  *
2717  * So in those cases, request a kvmclock update for all vcpus.
2718  * We need to rate-limit these requests though, as they can
2719  * considerably slow guests that have a large number of vcpus.
2720  * The time for a remote vcpu to update its kvmclock is bound
2721  * by the delay we use to rate-limit the updates.
2722  */
2723
2724 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2725
2726 static void kvmclock_update_fn(struct work_struct *work)
2727 {
2728         int i;
2729         struct delayed_work *dwork = to_delayed_work(work);
2730         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2731                                            kvmclock_update_work);
2732         struct kvm *kvm = container_of(ka, struct kvm, arch);
2733         struct kvm_vcpu *vcpu;
2734
2735         kvm_for_each_vcpu(i, vcpu, kvm) {
2736                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2737                 kvm_vcpu_kick(vcpu);
2738         }
2739 }
2740
2741 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2742 {
2743         struct kvm *kvm = v->kvm;
2744
2745         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2746         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2747                                         KVMCLOCK_UPDATE_DELAY);
2748 }
2749
2750 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2751
2752 static void kvmclock_sync_fn(struct work_struct *work)
2753 {
2754         struct delayed_work *dwork = to_delayed_work(work);
2755         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2756                                            kvmclock_sync_work);
2757         struct kvm *kvm = container_of(ka, struct kvm, arch);
2758
2759         if (!kvmclock_periodic_sync)
2760                 return;
2761
2762         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2763         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2764                                         KVMCLOCK_SYNC_PERIOD);
2765 }
2766
2767 /*
2768  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2769  */
2770 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2771 {
2772         /* McStatusWrEn enabled? */
2773         if (guest_cpuid_is_amd_or_hygon(vcpu))
2774                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2775
2776         return false;
2777 }
2778
2779 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2780 {
2781         u64 mcg_cap = vcpu->arch.mcg_cap;
2782         unsigned bank_num = mcg_cap & 0xff;
2783         u32 msr = msr_info->index;
2784         u64 data = msr_info->data;
2785
2786         switch (msr) {
2787         case MSR_IA32_MCG_STATUS:
2788                 vcpu->arch.mcg_status = data;
2789                 break;
2790         case MSR_IA32_MCG_CTL:
2791                 if (!(mcg_cap & MCG_CTL_P) &&
2792                     (data || !msr_info->host_initiated))
2793                         return 1;
2794                 if (data != 0 && data != ~(u64)0)
2795                         return 1;
2796                 vcpu->arch.mcg_ctl = data;
2797                 break;
2798         default:
2799                 if (msr >= MSR_IA32_MC0_CTL &&
2800                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2801                         u32 offset = array_index_nospec(
2802                                 msr - MSR_IA32_MC0_CTL,
2803                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2804
2805                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2806                          * some Linux kernels though clear bit 10 in bank 4 to
2807                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2808                          * this to avoid an uncatched #GP in the guest
2809                          */
2810                         if ((offset & 0x3) == 0 &&
2811                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2812                                 return -1;
2813
2814                         /* MCi_STATUS */
2815                         if (!msr_info->host_initiated &&
2816                             (offset & 0x3) == 1 && data != 0) {
2817                                 if (!can_set_mci_status(vcpu))
2818                                         return -1;
2819                         }
2820
2821                         vcpu->arch.mce_banks[offset] = data;
2822                         break;
2823                 }
2824                 return 1;
2825         }
2826         return 0;
2827 }
2828
2829 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2830 {
2831         struct kvm *kvm = vcpu->kvm;
2832         int lm = is_long_mode(vcpu);
2833         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2834                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2835         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2836                 : kvm->arch.xen_hvm_config.blob_size_32;
2837         u32 page_num = data & ~PAGE_MASK;
2838         u64 page_addr = data & PAGE_MASK;
2839         u8 *page;
2840
2841         if (page_num >= blob_size)
2842                 return 1;
2843
2844         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2845         if (IS_ERR(page))
2846                 return PTR_ERR(page);
2847
2848         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2849                 kfree(page);
2850                 return 1;
2851         }
2852         return 0;
2853 }
2854
2855 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2856 {
2857         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2858
2859         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2860 }
2861
2862 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2863 {
2864         gpa_t gpa = data & ~0x3f;
2865
2866         /* Bits 4:5 are reserved, Should be zero */
2867         if (data & 0x30)
2868                 return 1;
2869
2870         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2871             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2872                 return 1;
2873
2874         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2875             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2876                 return 1;
2877
2878         if (!lapic_in_kernel(vcpu))
2879                 return data ? 1 : 0;
2880
2881         vcpu->arch.apf.msr_en_val = data;
2882
2883         if (!kvm_pv_async_pf_enabled(vcpu)) {
2884                 kvm_clear_async_pf_completion_queue(vcpu);
2885                 kvm_async_pf_hash_reset(vcpu);
2886                 return 0;
2887         }
2888
2889         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2890                                         sizeof(u64)))
2891                 return 1;
2892
2893         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2894         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2895
2896         kvm_async_pf_wakeup_all(vcpu);
2897
2898         return 0;
2899 }
2900
2901 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2902 {
2903         /* Bits 8-63 are reserved */
2904         if (data >> 8)
2905                 return 1;
2906
2907         if (!lapic_in_kernel(vcpu))
2908                 return 1;
2909
2910         vcpu->arch.apf.msr_int_val = data;
2911
2912         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2913
2914         return 0;
2915 }
2916
2917 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2918 {
2919         vcpu->arch.pv_time_enabled = false;
2920         vcpu->arch.time = 0;
2921 }
2922
2923 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2924 {
2925         ++vcpu->stat.tlb_flush;
2926         kvm_x86_ops.tlb_flush_all(vcpu);
2927 }
2928
2929 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2930 {
2931         ++vcpu->stat.tlb_flush;
2932         kvm_x86_ops.tlb_flush_guest(vcpu);
2933 }
2934
2935 static void record_steal_time(struct kvm_vcpu *vcpu)
2936 {
2937         struct kvm_host_map map;
2938         struct kvm_steal_time *st;
2939
2940         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2941                 return;
2942
2943         /* -EAGAIN is returned in atomic context so we can just return. */
2944         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2945                         &map, &vcpu->arch.st.cache, false))
2946                 return;
2947
2948         st = map.hva +
2949                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2950
2951         /*
2952          * Doing a TLB flush here, on the guest's behalf, can avoid
2953          * expensive IPIs.
2954          */
2955         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2956                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2957                                        st->preempted & KVM_VCPU_FLUSH_TLB);
2958                 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2959                         kvm_vcpu_flush_tlb_guest(vcpu);
2960         }
2961
2962         vcpu->arch.st.preempted = 0;
2963
2964         if (st->version & 1)
2965                 st->version += 1;  /* first time write, random junk */
2966
2967         st->version += 1;
2968
2969         smp_wmb();
2970
2971         st->steal += current->sched_info.run_delay -
2972                 vcpu->arch.st.last_steal;
2973         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2974
2975         smp_wmb();
2976
2977         st->version += 1;
2978
2979         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2980 }
2981
2982 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2983 {
2984         bool pr = false;
2985         u32 msr = msr_info->index;
2986         u64 data = msr_info->data;
2987
2988         switch (msr) {
2989         case MSR_AMD64_NB_CFG:
2990         case MSR_IA32_UCODE_WRITE:
2991         case MSR_VM_HSAVE_PA:
2992         case MSR_AMD64_PATCH_LOADER:
2993         case MSR_AMD64_BU_CFG2:
2994         case MSR_AMD64_DC_CFG:
2995         case MSR_F15H_EX_CFG:
2996                 break;
2997
2998         case MSR_IA32_UCODE_REV:
2999                 if (msr_info->host_initiated)
3000                         vcpu->arch.microcode_version = data;
3001                 break;
3002         case MSR_IA32_ARCH_CAPABILITIES:
3003                 if (!msr_info->host_initiated)
3004                         return 1;
3005                 vcpu->arch.arch_capabilities = data;
3006                 break;
3007         case MSR_IA32_PERF_CAPABILITIES: {
3008                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3009
3010                 if (!msr_info->host_initiated)
3011                         return 1;
3012                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3013                         return 1;
3014                 if (data & ~msr_ent.data)
3015                         return 1;
3016
3017                 vcpu->arch.perf_capabilities = data;
3018
3019                 return 0;
3020                 }
3021         case MSR_EFER:
3022                 return set_efer(vcpu, msr_info);
3023         case MSR_K7_HWCR:
3024                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3025                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3026                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3027
3028                 /* Handle McStatusWrEn */
3029                 if (data == BIT_ULL(18)) {
3030                         vcpu->arch.msr_hwcr = data;
3031                 } else if (data != 0) {
3032                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3033                                     data);
3034                         return 1;
3035                 }
3036                 break;
3037         case MSR_FAM10H_MMIO_CONF_BASE:
3038                 if (data != 0) {
3039                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3040                                     "0x%llx\n", data);
3041                         return 1;
3042                 }
3043                 break;
3044         case MSR_IA32_DEBUGCTLMSR:
3045                 if (!data) {
3046                         /* We support the non-activated case already */
3047                         break;
3048                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3049                         /* Values other than LBR and BTF are vendor-specific,
3050                            thus reserved and should throw a #GP */
3051                         return 1;
3052                 } else if (report_ignored_msrs)
3053                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3054                                     __func__, data);
3055                 break;
3056         case 0x200 ... 0x2ff:
3057                 return kvm_mtrr_set_msr(vcpu, msr, data);
3058         case MSR_IA32_APICBASE:
3059                 return kvm_set_apic_base(vcpu, msr_info);
3060         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3061                 return kvm_x2apic_msr_write(vcpu, msr, data);
3062         case MSR_IA32_TSCDEADLINE:
3063                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3064                 break;
3065         case MSR_IA32_TSC_ADJUST:
3066                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3067                         if (!msr_info->host_initiated) {
3068                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3069                                 adjust_tsc_offset_guest(vcpu, adj);
3070                         }
3071                         vcpu->arch.ia32_tsc_adjust_msr = data;
3072                 }
3073                 break;
3074         case MSR_IA32_MISC_ENABLE:
3075                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3076                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3077                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3078                                 return 1;
3079                         vcpu->arch.ia32_misc_enable_msr = data;
3080                         kvm_update_cpuid_runtime(vcpu);
3081                 } else {
3082                         vcpu->arch.ia32_misc_enable_msr = data;
3083                 }
3084                 break;
3085         case MSR_IA32_SMBASE:
3086                 if (!msr_info->host_initiated)
3087                         return 1;
3088                 vcpu->arch.smbase = data;
3089                 break;
3090         case MSR_IA32_POWER_CTL:
3091                 vcpu->arch.msr_ia32_power_ctl = data;
3092                 break;
3093         case MSR_IA32_TSC:
3094                 if (msr_info->host_initiated) {
3095                         kvm_synchronize_tsc(vcpu, data);
3096                 } else {
3097                         u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3098                         adjust_tsc_offset_guest(vcpu, adj);
3099                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3100                 }
3101                 break;
3102         case MSR_IA32_XSS:
3103                 if (!msr_info->host_initiated &&
3104                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3105                         return 1;
3106                 /*
3107                  * KVM supports exposing PT to the guest, but does not support
3108                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3109                  * XSAVES/XRSTORS to save/restore PT MSRs.
3110                  */
3111                 if (data & ~supported_xss)
3112                         return 1;
3113                 vcpu->arch.ia32_xss = data;
3114                 break;
3115         case MSR_SMI_COUNT:
3116                 if (!msr_info->host_initiated)
3117                         return 1;
3118                 vcpu->arch.smi_count = data;
3119                 break;
3120         case MSR_KVM_WALL_CLOCK_NEW:
3121                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3122                         return 1;
3123
3124                 kvm_write_wall_clock(vcpu->kvm, data);
3125                 break;
3126         case MSR_KVM_WALL_CLOCK:
3127                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3128                         return 1;
3129
3130                 kvm_write_wall_clock(vcpu->kvm, data);
3131                 break;
3132         case MSR_KVM_SYSTEM_TIME_NEW:
3133                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3134                         return 1;
3135
3136                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3137                 break;
3138         case MSR_KVM_SYSTEM_TIME:
3139                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3140                         return 1;
3141
3142                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3143                 break;
3144         case MSR_KVM_ASYNC_PF_EN:
3145                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3146                         return 1;
3147
3148                 if (kvm_pv_enable_async_pf(vcpu, data))
3149                         return 1;
3150                 break;
3151         case MSR_KVM_ASYNC_PF_INT:
3152                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3153                         return 1;
3154
3155                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3156                         return 1;
3157                 break;
3158         case MSR_KVM_ASYNC_PF_ACK:
3159                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3160                         return 1;
3161                 if (data & 0x1) {
3162                         vcpu->arch.apf.pageready_pending = false;
3163                         kvm_check_async_pf_completion(vcpu);
3164                 }
3165                 break;
3166         case MSR_KVM_STEAL_TIME:
3167                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3168                         return 1;
3169
3170                 if (unlikely(!sched_info_on()))
3171                         return 1;
3172
3173                 if (data & KVM_STEAL_RESERVED_MASK)
3174                         return 1;
3175
3176                 vcpu->arch.st.msr_val = data;
3177
3178                 if (!(data & KVM_MSR_ENABLED))
3179                         break;
3180
3181                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3182
3183                 break;
3184         case MSR_KVM_PV_EOI_EN:
3185                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3186                         return 1;
3187
3188                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3189                         return 1;
3190                 break;
3191
3192         case MSR_KVM_POLL_CONTROL:
3193                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3194                         return 1;
3195
3196                 /* only enable bit supported */
3197                 if (data & (-1ULL << 1))
3198                         return 1;
3199
3200                 vcpu->arch.msr_kvm_poll_control = data;
3201                 break;
3202
3203         case MSR_IA32_MCG_CTL:
3204         case MSR_IA32_MCG_STATUS:
3205         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3206                 return set_msr_mce(vcpu, msr_info);
3207
3208         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3209         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3210                 pr = true;
3211                 fallthrough;
3212         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3213         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3214                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3215                         return kvm_pmu_set_msr(vcpu, msr_info);
3216
3217                 if (pr || data != 0)
3218                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3219                                     "0x%x data 0x%llx\n", msr, data);
3220                 break;
3221         case MSR_K7_CLK_CTL:
3222                 /*
3223                  * Ignore all writes to this no longer documented MSR.
3224                  * Writes are only relevant for old K7 processors,
3225                  * all pre-dating SVM, but a recommended workaround from
3226                  * AMD for these chips. It is possible to specify the
3227                  * affected processor models on the command line, hence
3228                  * the need to ignore the workaround.
3229                  */
3230                 break;
3231         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3232         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3233         case HV_X64_MSR_SYNDBG_OPTIONS:
3234         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3235         case HV_X64_MSR_CRASH_CTL:
3236         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3237         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3238         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3239         case HV_X64_MSR_TSC_EMULATION_STATUS:
3240                 return kvm_hv_set_msr_common(vcpu, msr, data,
3241                                              msr_info->host_initiated);
3242         case MSR_IA32_BBL_CR_CTL3:
3243                 /* Drop writes to this legacy MSR -- see rdmsr
3244                  * counterpart for further detail.
3245                  */
3246                 if (report_ignored_msrs)
3247                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3248                                 msr, data);
3249                 break;
3250         case MSR_AMD64_OSVW_ID_LENGTH:
3251                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3252                         return 1;
3253                 vcpu->arch.osvw.length = data;
3254                 break;
3255         case MSR_AMD64_OSVW_STATUS:
3256                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3257                         return 1;
3258                 vcpu->arch.osvw.status = data;
3259                 break;
3260         case MSR_PLATFORM_INFO:
3261                 if (!msr_info->host_initiated ||
3262                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3263                      cpuid_fault_enabled(vcpu)))
3264                         return 1;
3265                 vcpu->arch.msr_platform_info = data;
3266                 break;
3267         case MSR_MISC_FEATURES_ENABLES:
3268                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3269                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3270                      !supports_cpuid_fault(vcpu)))
3271                         return 1;
3272                 vcpu->arch.msr_misc_features_enables = data;
3273                 break;
3274         default:
3275                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3276                         return xen_hvm_config(vcpu, data);
3277                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3278                         return kvm_pmu_set_msr(vcpu, msr_info);
3279                 return KVM_MSR_RET_INVALID;
3280         }
3281         return 0;
3282 }
3283 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3284
3285 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3286 {
3287         u64 data;
3288         u64 mcg_cap = vcpu->arch.mcg_cap;
3289         unsigned bank_num = mcg_cap & 0xff;
3290
3291         switch (msr) {
3292         case MSR_IA32_P5_MC_ADDR:
3293         case MSR_IA32_P5_MC_TYPE:
3294                 data = 0;
3295                 break;
3296         case MSR_IA32_MCG_CAP:
3297                 data = vcpu->arch.mcg_cap;
3298                 break;
3299         case MSR_IA32_MCG_CTL:
3300                 if (!(mcg_cap & MCG_CTL_P) && !host)
3301                         return 1;
3302                 data = vcpu->arch.mcg_ctl;
3303                 break;
3304         case MSR_IA32_MCG_STATUS:
3305                 data = vcpu->arch.mcg_status;
3306                 break;
3307         default:
3308                 if (msr >= MSR_IA32_MC0_CTL &&
3309                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3310                         u32 offset = array_index_nospec(
3311                                 msr - MSR_IA32_MC0_CTL,
3312                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3313
3314                         data = vcpu->arch.mce_banks[offset];
3315                         break;
3316                 }
3317                 return 1;
3318         }
3319         *pdata = data;
3320         return 0;
3321 }
3322
3323 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3324 {
3325         switch (msr_info->index) {
3326         case MSR_IA32_PLATFORM_ID:
3327         case MSR_IA32_EBL_CR_POWERON:
3328         case MSR_IA32_DEBUGCTLMSR:
3329         case MSR_IA32_LASTBRANCHFROMIP:
3330         case MSR_IA32_LASTBRANCHTOIP:
3331         case MSR_IA32_LASTINTFROMIP:
3332         case MSR_IA32_LASTINTTOIP:
3333         case MSR_K8_SYSCFG:
3334         case MSR_K8_TSEG_ADDR:
3335         case MSR_K8_TSEG_MASK:
3336         case MSR_VM_HSAVE_PA:
3337         case MSR_K8_INT_PENDING_MSG:
3338         case MSR_AMD64_NB_CFG:
3339         case MSR_FAM10H_MMIO_CONF_BASE:
3340         case MSR_AMD64_BU_CFG2:
3341         case MSR_IA32_PERF_CTL:
3342         case MSR_AMD64_DC_CFG:
3343         case MSR_F15H_EX_CFG:
3344         /*
3345          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3346          * limit) MSRs. Just return 0, as we do not want to expose the host
3347          * data here. Do not conditionalize this on CPUID, as KVM does not do
3348          * so for existing CPU-specific MSRs.
3349          */
3350         case MSR_RAPL_POWER_UNIT:
3351         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3352         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3353         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3354         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3355                 msr_info->data = 0;
3356                 break;
3357         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3358         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3359         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3360         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3361         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3362                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3363                         return kvm_pmu_get_msr(vcpu, msr_info);
3364                 msr_info->data = 0;
3365                 break;
3366         case MSR_IA32_UCODE_REV:
3367                 msr_info->data = vcpu->arch.microcode_version;
3368                 break;
3369         case MSR_IA32_ARCH_CAPABILITIES:
3370                 if (!msr_info->host_initiated &&
3371                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3372                         return 1;
3373                 msr_info->data = vcpu->arch.arch_capabilities;
3374                 break;
3375         case MSR_IA32_PERF_CAPABILITIES:
3376                 if (!msr_info->host_initiated &&
3377                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3378                         return 1;
3379                 msr_info->data = vcpu->arch.perf_capabilities;
3380                 break;
3381         case MSR_IA32_POWER_CTL:
3382                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3383                 break;
3384         case MSR_IA32_TSC: {
3385                 /*
3386                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3387                  * even when not intercepted. AMD manual doesn't explicitly
3388                  * state this but appears to behave the same.
3389                  *
3390                  * On userspace reads and writes, however, we unconditionally
3391                  * return L1's TSC value to ensure backwards-compatible
3392                  * behavior for migration.
3393                  */
3394                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3395                                                             vcpu->arch.tsc_offset;
3396
3397                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3398                 break;
3399         }
3400         case MSR_MTRRcap:
3401         case 0x200 ... 0x2ff:
3402                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3403         case 0xcd: /* fsb frequency */
3404                 msr_info->data = 3;
3405                 break;
3406                 /*
3407                  * MSR_EBC_FREQUENCY_ID
3408                  * Conservative value valid for even the basic CPU models.
3409                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3410                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3411                  * and 266MHz for model 3, or 4. Set Core Clock
3412                  * Frequency to System Bus Frequency Ratio to 1 (bits
3413                  * 31:24) even though these are only valid for CPU
3414                  * models > 2, however guests may end up dividing or
3415                  * multiplying by zero otherwise.
3416                  */
3417         case MSR_EBC_FREQUENCY_ID:
3418                 msr_info->data = 1 << 24;
3419                 break;
3420         case MSR_IA32_APICBASE:
3421                 msr_info->data = kvm_get_apic_base(vcpu);
3422                 break;
3423         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3424                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3425         case MSR_IA32_TSCDEADLINE:
3426                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3427                 break;
3428         case MSR_IA32_TSC_ADJUST:
3429                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3430                 break;
3431         case MSR_IA32_MISC_ENABLE:
3432                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3433                 break;
3434         case MSR_IA32_SMBASE:
3435                 if (!msr_info->host_initiated)
3436                         return 1;
3437                 msr_info->data = vcpu->arch.smbase;
3438                 break;
3439         case MSR_SMI_COUNT:
3440                 msr_info->data = vcpu->arch.smi_count;
3441                 break;
3442         case MSR_IA32_PERF_STATUS:
3443                 /* TSC increment by tick */
3444                 msr_info->data = 1000ULL;
3445                 /* CPU multiplier */
3446                 msr_info->data |= (((uint64_t)4ULL) << 40);
3447                 break;
3448         case MSR_EFER:
3449                 msr_info->data = vcpu->arch.efer;
3450                 break;
3451         case MSR_KVM_WALL_CLOCK:
3452                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3453                         return 1;
3454
3455                 msr_info->data = vcpu->kvm->arch.wall_clock;
3456                 break;
3457         case MSR_KVM_WALL_CLOCK_NEW:
3458                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3459                         return 1;
3460
3461                 msr_info->data = vcpu->kvm->arch.wall_clock;
3462                 break;
3463         case MSR_KVM_SYSTEM_TIME:
3464                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3465                         return 1;
3466
3467                 msr_info->data = vcpu->arch.time;
3468                 break;
3469         case MSR_KVM_SYSTEM_TIME_NEW:
3470                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3471                         return 1;
3472
3473                 msr_info->data = vcpu->arch.time;
3474                 break;
3475         case MSR_KVM_ASYNC_PF_EN:
3476                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3477                         return 1;
3478
3479                 msr_info->data = vcpu->arch.apf.msr_en_val;
3480                 break;
3481         case MSR_KVM_ASYNC_PF_INT:
3482                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3483                         return 1;
3484
3485                 msr_info->data = vcpu->arch.apf.msr_int_val;
3486                 break;
3487         case MSR_KVM_ASYNC_PF_ACK:
3488                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3489                         return 1;
3490
3491                 msr_info->data = 0;
3492                 break;
3493         case MSR_KVM_STEAL_TIME:
3494                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3495                         return 1;
3496
3497                 msr_info->data = vcpu->arch.st.msr_val;
3498                 break;
3499         case MSR_KVM_PV_EOI_EN:
3500                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3501                         return 1;
3502
3503                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3504                 break;
3505         case MSR_KVM_POLL_CONTROL:
3506                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3507                         return 1;
3508
3509                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3510                 break;
3511         case MSR_IA32_P5_MC_ADDR:
3512         case MSR_IA32_P5_MC_TYPE:
3513         case MSR_IA32_MCG_CAP:
3514         case MSR_IA32_MCG_CTL:
3515         case MSR_IA32_MCG_STATUS:
3516         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3517                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3518                                    msr_info->host_initiated);
3519         case MSR_IA32_XSS:
3520                 if (!msr_info->host_initiated &&
3521                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3522                         return 1;
3523                 msr_info->data = vcpu->arch.ia32_xss;
3524                 break;
3525         case MSR_K7_CLK_CTL:
3526                 /*
3527                  * Provide expected ramp-up count for K7. All other
3528                  * are set to zero, indicating minimum divisors for
3529                  * every field.
3530                  *
3531                  * This prevents guest kernels on AMD host with CPU
3532                  * type 6, model 8 and higher from exploding due to
3533                  * the rdmsr failing.
3534                  */
3535                 msr_info->data = 0x20000000;
3536                 break;
3537         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3538         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3539         case HV_X64_MSR_SYNDBG_OPTIONS:
3540         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3541         case HV_X64_MSR_CRASH_CTL:
3542         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3543         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3544         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3545         case HV_X64_MSR_TSC_EMULATION_STATUS:
3546                 return kvm_hv_get_msr_common(vcpu,
3547                                              msr_info->index, &msr_info->data,
3548                                              msr_info->host_initiated);
3549         case MSR_IA32_BBL_CR_CTL3:
3550                 /* This legacy MSR exists but isn't fully documented in current
3551                  * silicon.  It is however accessed by winxp in very narrow
3552                  * scenarios where it sets bit #19, itself documented as
3553                  * a "reserved" bit.  Best effort attempt to source coherent
3554                  * read data here should the balance of the register be
3555                  * interpreted by the guest:
3556                  *
3557                  * L2 cache control register 3: 64GB range, 256KB size,
3558                  * enabled, latency 0x1, configured
3559                  */
3560                 msr_info->data = 0xbe702111;
3561                 break;
3562         case MSR_AMD64_OSVW_ID_LENGTH:
3563                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3564                         return 1;
3565                 msr_info->data = vcpu->arch.osvw.length;
3566                 break;
3567         case MSR_AMD64_OSVW_STATUS:
3568                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3569                         return 1;
3570                 msr_info->data = vcpu->arch.osvw.status;
3571                 break;
3572         case MSR_PLATFORM_INFO:
3573                 if (!msr_info->host_initiated &&
3574                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3575                         return 1;
3576                 msr_info->data = vcpu->arch.msr_platform_info;
3577                 break;
3578         case MSR_MISC_FEATURES_ENABLES:
3579                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3580                 break;
3581         case MSR_K7_HWCR:
3582                 msr_info->data = vcpu->arch.msr_hwcr;
3583                 break;
3584         default:
3585                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3586                         return kvm_pmu_get_msr(vcpu, msr_info);
3587                 return KVM_MSR_RET_INVALID;
3588         }
3589         return 0;
3590 }
3591 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3592
3593 /*
3594  * Read or write a bunch of msrs. All parameters are kernel addresses.
3595  *
3596  * @return number of msrs set successfully.
3597  */
3598 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3599                     struct kvm_msr_entry *entries,
3600                     int (*do_msr)(struct kvm_vcpu *vcpu,
3601                                   unsigned index, u64 *data))
3602 {
3603         int i;
3604
3605         for (i = 0; i < msrs->nmsrs; ++i)
3606                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3607                         break;
3608
3609         return i;
3610 }
3611
3612 /*
3613  * Read or write a bunch of msrs. Parameters are user addresses.
3614  *
3615  * @return number of msrs set successfully.
3616  */
3617 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3618                   int (*do_msr)(struct kvm_vcpu *vcpu,
3619                                 unsigned index, u64 *data),
3620                   int writeback)
3621 {
3622         struct kvm_msrs msrs;
3623         struct kvm_msr_entry *entries;
3624         int r, n;
3625         unsigned size;
3626
3627         r = -EFAULT;
3628         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3629                 goto out;
3630
3631         r = -E2BIG;
3632         if (msrs.nmsrs >= MAX_IO_MSRS)
3633                 goto out;
3634
3635         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3636         entries = memdup_user(user_msrs->entries, size);
3637         if (IS_ERR(entries)) {
3638                 r = PTR_ERR(entries);
3639                 goto out;
3640         }
3641
3642         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3643         if (r < 0)
3644                 goto out_free;
3645
3646         r = -EFAULT;
3647         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3648                 goto out_free;
3649
3650         r = n;
3651
3652 out_free:
3653         kfree(entries);
3654 out:
3655         return r;
3656 }
3657
3658 static inline bool kvm_can_mwait_in_guest(void)
3659 {
3660         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3661                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3662                 boot_cpu_has(X86_FEATURE_ARAT);
3663 }
3664
3665 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3666                                             struct kvm_cpuid2 __user *cpuid_arg)
3667 {
3668         struct kvm_cpuid2 cpuid;
3669         int r;
3670
3671         r = -EFAULT;
3672         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3673                 return r;
3674
3675         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3676         if (r)
3677                 return r;
3678
3679         r = -EFAULT;
3680         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3681                 return r;
3682
3683         return 0;
3684 }
3685
3686 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3687 {
3688         int r = 0;
3689
3690         switch (ext) {
3691         case KVM_CAP_IRQCHIP:
3692         case KVM_CAP_HLT:
3693         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3694         case KVM_CAP_SET_TSS_ADDR:
3695         case KVM_CAP_EXT_CPUID:
3696         case KVM_CAP_EXT_EMUL_CPUID:
3697         case KVM_CAP_CLOCKSOURCE:
3698         case KVM_CAP_PIT:
3699         case KVM_CAP_NOP_IO_DELAY:
3700         case KVM_CAP_MP_STATE:
3701         case KVM_CAP_SYNC_MMU:
3702         case KVM_CAP_USER_NMI:
3703         case KVM_CAP_REINJECT_CONTROL:
3704         case KVM_CAP_IRQ_INJECT_STATUS:
3705         case KVM_CAP_IOEVENTFD:
3706         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3707         case KVM_CAP_PIT2:
3708         case KVM_CAP_PIT_STATE2:
3709         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3710         case KVM_CAP_XEN_HVM:
3711         case KVM_CAP_VCPU_EVENTS:
3712         case KVM_CAP_HYPERV:
3713         case KVM_CAP_HYPERV_VAPIC:
3714         case KVM_CAP_HYPERV_SPIN:
3715         case KVM_CAP_HYPERV_SYNIC:
3716         case KVM_CAP_HYPERV_SYNIC2:
3717         case KVM_CAP_HYPERV_VP_INDEX:
3718         case KVM_CAP_HYPERV_EVENTFD:
3719         case KVM_CAP_HYPERV_TLBFLUSH:
3720         case KVM_CAP_HYPERV_SEND_IPI:
3721         case KVM_CAP_HYPERV_CPUID:
3722         case KVM_CAP_SYS_HYPERV_CPUID:
3723         case KVM_CAP_PCI_SEGMENT:
3724         case KVM_CAP_DEBUGREGS:
3725         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3726         case KVM_CAP_XSAVE:
3727         case KVM_CAP_ASYNC_PF:
3728         case KVM_CAP_ASYNC_PF_INT:
3729         case KVM_CAP_GET_TSC_KHZ:
3730         case KVM_CAP_KVMCLOCK_CTRL:
3731         case KVM_CAP_READONLY_MEM:
3732         case KVM_CAP_HYPERV_TIME:
3733         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3734         case KVM_CAP_TSC_DEADLINE_TIMER:
3735         case KVM_CAP_DISABLE_QUIRKS:
3736         case KVM_CAP_SET_BOOT_CPU_ID:
3737         case KVM_CAP_SPLIT_IRQCHIP:
3738         case KVM_CAP_IMMEDIATE_EXIT:
3739         case KVM_CAP_PMU_EVENT_FILTER:
3740         case KVM_CAP_GET_MSR_FEATURES:
3741         case KVM_CAP_MSR_PLATFORM_INFO:
3742         case KVM_CAP_EXCEPTION_PAYLOAD:
3743         case KVM_CAP_SET_GUEST_DEBUG:
3744         case KVM_CAP_LAST_CPU:
3745         case KVM_CAP_X86_USER_SPACE_MSR:
3746         case KVM_CAP_X86_MSR_FILTER:
3747         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3748                 r = 1;
3749                 break;
3750         case KVM_CAP_SYNC_REGS:
3751                 r = KVM_SYNC_X86_VALID_FIELDS;
3752                 break;
3753         case KVM_CAP_ADJUST_CLOCK:
3754                 r = KVM_CLOCK_TSC_STABLE;
3755                 break;
3756         case KVM_CAP_X86_DISABLE_EXITS:
3757                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3758                       KVM_X86_DISABLE_EXITS_CSTATE;
3759                 if(kvm_can_mwait_in_guest())
3760                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3761                 break;
3762         case KVM_CAP_X86_SMM:
3763                 /* SMBASE is usually relocated above 1M on modern chipsets,
3764                  * and SMM handlers might indeed rely on 4G segment limits,
3765                  * so do not report SMM to be available if real mode is
3766                  * emulated via vm86 mode.  Still, do not go to great lengths
3767                  * to avoid userspace's usage of the feature, because it is a
3768                  * fringe case that is not enabled except via specific settings
3769                  * of the module parameters.
3770                  */
3771                 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3772                 break;
3773         case KVM_CAP_VAPIC:
3774                 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3775                 break;
3776         case KVM_CAP_NR_VCPUS:
3777                 r = KVM_SOFT_MAX_VCPUS;
3778                 break;
3779         case KVM_CAP_MAX_VCPUS:
3780                 r = KVM_MAX_VCPUS;
3781                 break;
3782         case KVM_CAP_MAX_VCPU_ID:
3783                 r = KVM_MAX_VCPU_ID;
3784                 break;
3785         case KVM_CAP_PV_MMU:    /* obsolete */
3786                 r = 0;
3787                 break;
3788         case KVM_CAP_MCE:
3789                 r = KVM_MAX_MCE_BANKS;
3790                 break;
3791         case KVM_CAP_XCRS:
3792                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3793                 break;
3794         case KVM_CAP_TSC_CONTROL:
3795                 r = kvm_has_tsc_control;
3796                 break;
3797         case KVM_CAP_X2APIC_API:
3798                 r = KVM_X2APIC_API_VALID_FLAGS;
3799                 break;
3800         case KVM_CAP_NESTED_STATE:
3801                 r = kvm_x86_ops.nested_ops->get_state ?
3802                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3803                 break;
3804         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3805                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3806                 break;
3807         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3808                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3809                 break;
3810         case KVM_CAP_SMALLER_MAXPHYADDR:
3811                 r = (int) allow_smaller_maxphyaddr;
3812                 break;
3813         case KVM_CAP_STEAL_TIME:
3814                 r = sched_info_on();
3815                 break;
3816         default:
3817                 break;
3818         }
3819         return r;
3820
3821 }
3822
3823 long kvm_arch_dev_ioctl(struct file *filp,
3824                         unsigned int ioctl, unsigned long arg)
3825 {
3826         void __user *argp = (void __user *)arg;
3827         long r;
3828
3829         switch (ioctl) {
3830         case KVM_GET_MSR_INDEX_LIST: {
3831                 struct kvm_msr_list __user *user_msr_list = argp;
3832                 struct kvm_msr_list msr_list;
3833                 unsigned n;
3834
3835                 r = -EFAULT;
3836                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3837                         goto out;
3838                 n = msr_list.nmsrs;
3839                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3840                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3841                         goto out;
3842                 r = -E2BIG;
3843                 if (n < msr_list.nmsrs)
3844                         goto out;
3845                 r = -EFAULT;
3846                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3847                                  num_msrs_to_save * sizeof(u32)))
3848                         goto out;
3849                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3850                                  &emulated_msrs,
3851                                  num_emulated_msrs * sizeof(u32)))
3852                         goto out;
3853                 r = 0;
3854                 break;
3855         }
3856         case KVM_GET_SUPPORTED_CPUID:
3857         case KVM_GET_EMULATED_CPUID: {
3858                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3859                 struct kvm_cpuid2 cpuid;
3860
3861                 r = -EFAULT;
3862                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3863                         goto out;
3864
3865                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3866                                             ioctl);
3867                 if (r)
3868                         goto out;
3869
3870                 r = -EFAULT;
3871                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3872                         goto out;
3873                 r = 0;
3874                 break;
3875         }
3876         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3877                 r = -EFAULT;
3878                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3879                                  sizeof(kvm_mce_cap_supported)))
3880                         goto out;
3881                 r = 0;
3882                 break;
3883         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3884                 struct kvm_msr_list __user *user_msr_list = argp;
3885                 struct kvm_msr_list msr_list;
3886                 unsigned int n;
3887
3888                 r = -EFAULT;
3889                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3890                         goto out;
3891                 n = msr_list.nmsrs;
3892                 msr_list.nmsrs = num_msr_based_features;
3893                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3894                         goto out;
3895                 r = -E2BIG;
3896                 if (n < msr_list.nmsrs)
3897                         goto out;
3898                 r = -EFAULT;
3899                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3900                                  num_msr_based_features * sizeof(u32)))
3901                         goto out;
3902                 r = 0;
3903                 break;
3904         }
3905         case KVM_GET_MSRS:
3906                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3907                 break;
3908         case KVM_GET_SUPPORTED_HV_CPUID:
3909                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3910                 break;
3911         default:
3912                 r = -EINVAL;
3913                 break;
3914         }
3915 out:
3916         return r;
3917 }
3918
3919 static void wbinvd_ipi(void *garbage)
3920 {
3921         wbinvd();
3922 }
3923
3924 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3925 {
3926         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3927 }
3928
3929 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3930 {
3931         /* Address WBINVD may be executed by guest */
3932         if (need_emulate_wbinvd(vcpu)) {
3933                 if (kvm_x86_ops.has_wbinvd_exit())
3934                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3935                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3936                         smp_call_function_single(vcpu->cpu,
3937                                         wbinvd_ipi, NULL, 1);
3938         }
3939
3940         kvm_x86_ops.vcpu_load(vcpu, cpu);
3941
3942         /* Save host pkru register if supported */
3943         vcpu->arch.host_pkru = read_pkru();
3944
3945         /* Apply any externally detected TSC adjustments (due to suspend) */
3946         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3947                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3948                 vcpu->arch.tsc_offset_adjustment = 0;
3949                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3950         }
3951
3952         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3953                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3954                                 rdtsc() - vcpu->arch.last_host_tsc;
3955                 if (tsc_delta < 0)
3956                         mark_tsc_unstable("KVM discovered backwards TSC");
3957
3958                 if (kvm_check_tsc_unstable()) {
3959                         u64 offset = kvm_compute_tsc_offset(vcpu,
3960                                                 vcpu->arch.last_guest_tsc);
3961                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3962                         vcpu->arch.tsc_catchup = 1;
3963                 }
3964
3965                 if (kvm_lapic_hv_timer_in_use(vcpu))
3966                         kvm_lapic_restart_hv_timer(vcpu);
3967
3968                 /*
3969                  * On a host with synchronized TSC, there is no need to update
3970                  * kvmclock on vcpu->cpu migration
3971                  */
3972                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3973                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3974                 if (vcpu->cpu != cpu)
3975                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3976                 vcpu->cpu = cpu;
3977         }
3978
3979         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3980 }
3981
3982 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3983 {
3984         struct kvm_host_map map;
3985         struct kvm_steal_time *st;
3986
3987         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3988                 return;
3989
3990         if (vcpu->arch.st.preempted)
3991                 return;
3992
3993         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3994                         &vcpu->arch.st.cache, true))
3995                 return;
3996
3997         st = map.hva +
3998                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3999
4000         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4001
4002         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4003 }
4004
4005 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4006 {
4007         int idx;
4008
4009         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4010                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4011
4012         /*
4013          * Disable page faults because we're in atomic context here.
4014          * kvm_write_guest_offset_cached() would call might_fault()
4015          * that relies on pagefault_disable() to tell if there's a
4016          * bug. NOTE: the write to guest memory may not go through if
4017          * during postcopy live migration or if there's heavy guest
4018          * paging.
4019          */
4020         pagefault_disable();
4021         /*
4022          * kvm_memslots() will be called by
4023          * kvm_write_guest_offset_cached() so take the srcu lock.
4024          */
4025         idx = srcu_read_lock(&vcpu->kvm->srcu);
4026         kvm_steal_time_set_preempted(vcpu);
4027         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4028         pagefault_enable();
4029         kvm_x86_ops.vcpu_put(vcpu);
4030         vcpu->arch.last_host_tsc = rdtsc();
4031         /*
4032          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4033          * on every vmexit, but if not, we might have a stale dr6 from the
4034          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4035          */
4036         set_debugreg(0, 6);
4037 }
4038
4039 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4040                                     struct kvm_lapic_state *s)
4041 {
4042         if (vcpu->arch.apicv_active)
4043                 kvm_x86_ops.sync_pir_to_irr(vcpu);
4044
4045         return kvm_apic_get_state(vcpu, s);
4046 }
4047
4048 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4049                                     struct kvm_lapic_state *s)
4050 {
4051         int r;
4052
4053         r = kvm_apic_set_state(vcpu, s);
4054         if (r)
4055                 return r;
4056         update_cr8_intercept(vcpu);
4057
4058         return 0;
4059 }
4060
4061 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4062 {
4063         return (!lapic_in_kernel(vcpu) ||
4064                 kvm_apic_accept_pic_intr(vcpu));
4065 }
4066
4067 /*
4068  * if userspace requested an interrupt window, check that the
4069  * interrupt window is open.
4070  *
4071  * No need to exit to userspace if we already have an interrupt queued.
4072  */
4073 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4074 {
4075         return kvm_arch_interrupt_allowed(vcpu) &&
4076                 !kvm_cpu_has_interrupt(vcpu) &&
4077                 !kvm_event_needs_reinjection(vcpu) &&
4078                 kvm_cpu_accept_dm_intr(vcpu);
4079 }
4080
4081 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4082                                     struct kvm_interrupt *irq)
4083 {
4084         if (irq->irq >= KVM_NR_INTERRUPTS)
4085                 return -EINVAL;
4086
4087         if (!irqchip_in_kernel(vcpu->kvm)) {
4088                 kvm_queue_interrupt(vcpu, irq->irq, false);
4089                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4090                 return 0;
4091         }
4092
4093         /*
4094          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4095          * fail for in-kernel 8259.
4096          */
4097         if (pic_in_kernel(vcpu->kvm))
4098                 return -ENXIO;
4099
4100         if (vcpu->arch.pending_external_vector != -1)
4101                 return -EEXIST;
4102
4103         vcpu->arch.pending_external_vector = irq->irq;
4104         kvm_make_request(KVM_REQ_EVENT, vcpu);
4105         return 0;
4106 }
4107
4108 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4109 {
4110         kvm_inject_nmi(vcpu);
4111
4112         return 0;
4113 }
4114
4115 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4116 {
4117         kvm_make_request(KVM_REQ_SMI, vcpu);
4118
4119         return 0;
4120 }
4121
4122 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4123                                            struct kvm_tpr_access_ctl *tac)
4124 {
4125         if (tac->flags)
4126                 return -EINVAL;
4127         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4128         return 0;
4129 }
4130
4131 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4132                                         u64 mcg_cap)
4133 {
4134         int r;
4135         unsigned bank_num = mcg_cap & 0xff, bank;
4136
4137         r = -EINVAL;
4138         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4139                 goto out;
4140         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4141                 goto out;
4142         r = 0;
4143         vcpu->arch.mcg_cap = mcg_cap;
4144         /* Init IA32_MCG_CTL to all 1s */
4145         if (mcg_cap & MCG_CTL_P)
4146                 vcpu->arch.mcg_ctl = ~(u64)0;
4147         /* Init IA32_MCi_CTL to all 1s */
4148         for (bank = 0; bank < bank_num; bank++)
4149                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4150
4151         kvm_x86_ops.setup_mce(vcpu);
4152 out:
4153         return r;
4154 }
4155
4156 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4157                                       struct kvm_x86_mce *mce)
4158 {
4159         u64 mcg_cap = vcpu->arch.mcg_cap;
4160         unsigned bank_num = mcg_cap & 0xff;
4161         u64 *banks = vcpu->arch.mce_banks;
4162
4163         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4164                 return -EINVAL;
4165         /*
4166          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4167          * reporting is disabled
4168          */
4169         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4170             vcpu->arch.mcg_ctl != ~(u64)0)
4171                 return 0;
4172         banks += 4 * mce->bank;
4173         /*
4174          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4175          * reporting is disabled for the bank
4176          */
4177         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4178                 return 0;
4179         if (mce->status & MCI_STATUS_UC) {
4180                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4181                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4182                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4183                         return 0;
4184                 }
4185                 if (banks[1] & MCI_STATUS_VAL)
4186                         mce->status |= MCI_STATUS_OVER;
4187                 banks[2] = mce->addr;
4188                 banks[3] = mce->misc;
4189                 vcpu->arch.mcg_status = mce->mcg_status;
4190                 banks[1] = mce->status;
4191                 kvm_queue_exception(vcpu, MC_VECTOR);
4192         } else if (!(banks[1] & MCI_STATUS_VAL)
4193                    || !(banks[1] & MCI_STATUS_UC)) {
4194                 if (banks[1] & MCI_STATUS_VAL)
4195                         mce->status |= MCI_STATUS_OVER;
4196                 banks[2] = mce->addr;
4197                 banks[3] = mce->misc;
4198                 banks[1] = mce->status;
4199         } else
4200                 banks[1] |= MCI_STATUS_OVER;
4201         return 0;
4202 }
4203
4204 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4205                                                struct kvm_vcpu_events *events)
4206 {
4207         process_nmi(vcpu);
4208
4209         /*
4210          * In guest mode, payload delivery should be deferred,
4211          * so that the L1 hypervisor can intercept #PF before
4212          * CR2 is modified (or intercept #DB before DR6 is
4213          * modified under nVMX). Unless the per-VM capability,
4214          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4215          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4216          * opportunistically defer the exception payload, deliver it if the
4217          * capability hasn't been requested before processing a
4218          * KVM_GET_VCPU_EVENTS.
4219          */
4220         if (!vcpu->kvm->arch.exception_payload_enabled &&
4221             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4222                 kvm_deliver_exception_payload(vcpu);
4223
4224         /*
4225          * The API doesn't provide the instruction length for software
4226          * exceptions, so don't report them. As long as the guest RIP
4227          * isn't advanced, we should expect to encounter the exception
4228          * again.
4229          */
4230         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4231                 events->exception.injected = 0;
4232                 events->exception.pending = 0;
4233         } else {
4234                 events->exception.injected = vcpu->arch.exception.injected;
4235                 events->exception.pending = vcpu->arch.exception.pending;
4236                 /*
4237                  * For ABI compatibility, deliberately conflate
4238                  * pending and injected exceptions when
4239                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4240                  */
4241                 if (!vcpu->kvm->arch.exception_payload_enabled)
4242                         events->exception.injected |=
4243                                 vcpu->arch.exception.pending;
4244         }
4245         events->exception.nr = vcpu->arch.exception.nr;
4246         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4247         events->exception.error_code = vcpu->arch.exception.error_code;
4248         events->exception_has_payload = vcpu->arch.exception.has_payload;
4249         events->exception_payload = vcpu->arch.exception.payload;
4250
4251         events->interrupt.injected =
4252                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4253         events->interrupt.nr = vcpu->arch.interrupt.nr;
4254         events->interrupt.soft = 0;
4255         events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4256
4257         events->nmi.injected = vcpu->arch.nmi_injected;
4258         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4259         events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4260         events->nmi.pad = 0;
4261
4262         events->sipi_vector = 0; /* never valid when reporting to user space */
4263
4264         events->smi.smm = is_smm(vcpu);
4265         events->smi.pending = vcpu->arch.smi_pending;
4266         events->smi.smm_inside_nmi =
4267                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4268         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4269
4270         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4271                          | KVM_VCPUEVENT_VALID_SHADOW
4272                          | KVM_VCPUEVENT_VALID_SMM);
4273         if (vcpu->kvm->arch.exception_payload_enabled)
4274                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4275
4276         memset(&events->reserved, 0, sizeof(events->reserved));
4277 }
4278
4279 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4280
4281 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4282                                               struct kvm_vcpu_events *events)
4283 {
4284         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4285                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4286                               | KVM_VCPUEVENT_VALID_SHADOW
4287                               | KVM_VCPUEVENT_VALID_SMM
4288                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4289                 return -EINVAL;
4290
4291         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4292                 if (!vcpu->kvm->arch.exception_payload_enabled)
4293                         return -EINVAL;
4294                 if (events->exception.pending)
4295                         events->exception.injected = 0;
4296                 else
4297                         events->exception_has_payload = 0;
4298         } else {
4299                 events->exception.pending = 0;
4300                 events->exception_has_payload = 0;
4301         }
4302
4303         if ((events->exception.injected || events->exception.pending) &&
4304             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4305                 return -EINVAL;
4306
4307         /* INITs are latched while in SMM */
4308         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4309             (events->smi.smm || events->smi.pending) &&
4310             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4311                 return -EINVAL;
4312
4313         process_nmi(vcpu);
4314         vcpu->arch.exception.injected = events->exception.injected;
4315         vcpu->arch.exception.pending = events->exception.pending;
4316         vcpu->arch.exception.nr = events->exception.nr;
4317         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4318         vcpu->arch.exception.error_code = events->exception.error_code;
4319         vcpu->arch.exception.has_payload = events->exception_has_payload;
4320         vcpu->arch.exception.payload = events->exception_payload;
4321
4322         vcpu->arch.interrupt.injected = events->interrupt.injected;
4323         vcpu->arch.interrupt.nr = events->interrupt.nr;
4324         vcpu->arch.interrupt.soft = events->interrupt.soft;
4325         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4326                 kvm_x86_ops.set_interrupt_shadow(vcpu,
4327                                                   events->interrupt.shadow);
4328
4329         vcpu->arch.nmi_injected = events->nmi.injected;
4330         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4331                 vcpu->arch.nmi_pending = events->nmi.pending;
4332         kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4333
4334         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4335             lapic_in_kernel(vcpu))
4336                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4337
4338         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4339                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4340                         if (events->smi.smm)
4341                                 vcpu->arch.hflags |= HF_SMM_MASK;
4342                         else
4343                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4344                         kvm_smm_changed(vcpu);
4345                 }
4346
4347                 vcpu->arch.smi_pending = events->smi.pending;
4348
4349                 if (events->smi.smm) {
4350                         if (events->smi.smm_inside_nmi)
4351                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4352                         else
4353                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4354                 }
4355
4356                 if (lapic_in_kernel(vcpu)) {
4357                         if (events->smi.latched_init)
4358                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4359                         else
4360                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4361                 }
4362         }
4363
4364         kvm_make_request(KVM_REQ_EVENT, vcpu);
4365
4366         return 0;
4367 }
4368
4369 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4370                                              struct kvm_debugregs *dbgregs)
4371 {
4372         unsigned long val;
4373
4374         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4375         kvm_get_dr(vcpu, 6, &val);
4376         dbgregs->dr6 = val;
4377         dbgregs->dr7 = vcpu->arch.dr7;
4378         dbgregs->flags = 0;
4379         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4380 }
4381
4382 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4383                                             struct kvm_debugregs *dbgregs)
4384 {
4385         if (dbgregs->flags)
4386                 return -EINVAL;
4387
4388         if (dbgregs->dr6 & ~0xffffffffull)
4389                 return -EINVAL;
4390         if (dbgregs->dr7 & ~0xffffffffull)
4391                 return -EINVAL;
4392
4393         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4394         kvm_update_dr0123(vcpu);
4395         vcpu->arch.dr6 = dbgregs->dr6;
4396         vcpu->arch.dr7 = dbgregs->dr7;
4397         kvm_update_dr7(vcpu);
4398
4399         return 0;
4400 }
4401
4402 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4403
4404 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4405 {
4406         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4407         u64 xstate_bv = xsave->header.xfeatures;
4408         u64 valid;
4409
4410         /*
4411          * Copy legacy XSAVE area, to avoid complications with CPUID
4412          * leaves 0 and 1 in the loop below.
4413          */
4414         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4415
4416         /* Set XSTATE_BV */
4417         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4418         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4419
4420         /*
4421          * Copy each region from the possibly compacted offset to the
4422          * non-compacted offset.
4423          */
4424         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4425         while (valid) {
4426                 u64 xfeature_mask = valid & -valid;
4427                 int xfeature_nr = fls64(xfeature_mask) - 1;
4428                 void *src = get_xsave_addr(xsave, xfeature_nr);
4429
4430                 if (src) {
4431                         u32 size, offset, ecx, edx;
4432                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4433                                     &size, &offset, &ecx, &edx);
4434                         if (xfeature_nr == XFEATURE_PKRU)
4435                                 memcpy(dest + offset, &vcpu->arch.pkru,
4436                                        sizeof(vcpu->arch.pkru));
4437                         else
4438                                 memcpy(dest + offset, src, size);
4439
4440                 }
4441
4442                 valid -= xfeature_mask;
4443         }
4444 }
4445
4446 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4447 {
4448         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4449         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4450         u64 valid;
4451
4452         /*
4453          * Copy legacy XSAVE area, to avoid complications with CPUID
4454          * leaves 0 and 1 in the loop below.
4455          */
4456         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4457
4458         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4459         xsave->header.xfeatures = xstate_bv;
4460         if (boot_cpu_has(X86_FEATURE_XSAVES))
4461                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4462
4463         /*
4464          * Copy each region from the non-compacted offset to the
4465          * possibly compacted offset.
4466          */
4467         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4468         while (valid) {
4469                 u64 xfeature_mask = valid & -valid;
4470                 int xfeature_nr = fls64(xfeature_mask) - 1;
4471                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4472
4473                 if (dest) {
4474                         u32 size, offset, ecx, edx;
4475                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4476                                     &size, &offset, &ecx, &edx);
4477                         if (xfeature_nr == XFEATURE_PKRU)
4478                                 memcpy(&vcpu->arch.pkru, src + offset,
4479                                        sizeof(vcpu->arch.pkru));
4480                         else
4481                                 memcpy(dest, src + offset, size);
4482                 }
4483
4484                 valid -= xfeature_mask;
4485         }
4486 }
4487
4488 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4489                                          struct kvm_xsave *guest_xsave)
4490 {
4491         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4492                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4493                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4494         } else {
4495                 memcpy(guest_xsave->region,
4496                         &vcpu->arch.guest_fpu->state.fxsave,
4497                         sizeof(struct fxregs_state));
4498                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4499                         XFEATURE_MASK_FPSSE;
4500         }
4501 }
4502
4503 #define XSAVE_MXCSR_OFFSET 24
4504
4505 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4506                                         struct kvm_xsave *guest_xsave)
4507 {
4508         u64 xstate_bv =
4509                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4510         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4511
4512         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4513                 /*
4514                  * Here we allow setting states that are not present in
4515                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4516                  * with old userspace.
4517                  */
4518                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4519                         return -EINVAL;
4520                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4521         } else {
4522                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4523                         mxcsr & ~mxcsr_feature_mask)
4524                         return -EINVAL;
4525                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4526                         guest_xsave->region, sizeof(struct fxregs_state));
4527         }
4528         return 0;
4529 }
4530
4531 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4532                                         struct kvm_xcrs *guest_xcrs)
4533 {
4534         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4535                 guest_xcrs->nr_xcrs = 0;
4536                 return;
4537         }
4538
4539         guest_xcrs->nr_xcrs = 1;
4540         guest_xcrs->flags = 0;
4541         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4542         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4543 }
4544
4545 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4546                                        struct kvm_xcrs *guest_xcrs)
4547 {
4548         int i, r = 0;
4549
4550         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4551                 return -EINVAL;
4552
4553         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4554                 return -EINVAL;
4555
4556         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4557                 /* Only support XCR0 currently */
4558                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4559                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4560                                 guest_xcrs->xcrs[i].value);
4561                         break;
4562                 }
4563         if (r)
4564                 r = -EINVAL;
4565         return r;
4566 }
4567
4568 /*
4569  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4570  * stopped by the hypervisor.  This function will be called from the host only.
4571  * EINVAL is returned when the host attempts to set the flag for a guest that
4572  * does not support pv clocks.
4573  */
4574 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4575 {
4576         if (!vcpu->arch.pv_time_enabled)
4577                 return -EINVAL;
4578         vcpu->arch.pvclock_set_guest_stopped_request = true;
4579         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4580         return 0;
4581 }
4582
4583 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4584                                      struct kvm_enable_cap *cap)
4585 {
4586         int r;
4587         uint16_t vmcs_version;
4588         void __user *user_ptr;
4589
4590         if (cap->flags)
4591                 return -EINVAL;
4592
4593         switch (cap->cap) {
4594         case KVM_CAP_HYPERV_SYNIC2:
4595                 if (cap->args[0])
4596                         return -EINVAL;
4597                 fallthrough;
4598
4599         case KVM_CAP_HYPERV_SYNIC:
4600                 if (!irqchip_in_kernel(vcpu->kvm))
4601                         return -EINVAL;
4602                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4603                                              KVM_CAP_HYPERV_SYNIC2);
4604         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4605                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4606                         return -ENOTTY;
4607                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4608                 if (!r) {
4609                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4610                         if (copy_to_user(user_ptr, &vmcs_version,
4611                                          sizeof(vmcs_version)))
4612                                 r = -EFAULT;
4613                 }
4614                 return r;
4615         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4616                 if (!kvm_x86_ops.enable_direct_tlbflush)
4617                         return -ENOTTY;
4618
4619                 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4620
4621         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4622                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4623                 if (vcpu->arch.pv_cpuid.enforce)
4624                         kvm_update_pv_runtime(vcpu);
4625
4626                 return 0;
4627
4628         default:
4629                 return -EINVAL;
4630         }
4631 }
4632
4633 long kvm_arch_vcpu_ioctl(struct file *filp,
4634                          unsigned int ioctl, unsigned long arg)
4635 {
4636         struct kvm_vcpu *vcpu = filp->private_data;
4637         void __user *argp = (void __user *)arg;
4638         int r;
4639         union {
4640                 struct kvm_lapic_state *lapic;
4641                 struct kvm_xsave *xsave;
4642                 struct kvm_xcrs *xcrs;
4643                 void *buffer;
4644         } u;
4645
4646         vcpu_load(vcpu);
4647
4648         u.buffer = NULL;
4649         switch (ioctl) {
4650         case KVM_GET_LAPIC: {
4651                 r = -EINVAL;
4652                 if (!lapic_in_kernel(vcpu))
4653                         goto out;
4654                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4655                                 GFP_KERNEL_ACCOUNT);
4656
4657                 r = -ENOMEM;
4658                 if (!u.lapic)
4659                         goto out;
4660                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4661                 if (r)
4662                         goto out;
4663                 r = -EFAULT;
4664                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4665                         goto out;
4666                 r = 0;
4667                 break;
4668         }
4669         case KVM_SET_LAPIC: {
4670                 r = -EINVAL;
4671                 if (!lapic_in_kernel(vcpu))
4672                         goto out;
4673                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4674                 if (IS_ERR(u.lapic)) {
4675                         r = PTR_ERR(u.lapic);
4676                         goto out_nofree;
4677                 }
4678
4679                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4680                 break;
4681         }
4682         case KVM_INTERRUPT: {
4683                 struct kvm_interrupt irq;
4684
4685                 r = -EFAULT;
4686                 if (copy_from_user(&irq, argp, sizeof(irq)))
4687                         goto out;
4688                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4689                 break;
4690         }
4691         case KVM_NMI: {
4692                 r = kvm_vcpu_ioctl_nmi(vcpu);
4693                 break;
4694         }
4695         case KVM_SMI: {
4696                 r = kvm_vcpu_ioctl_smi(vcpu);
4697                 break;
4698         }
4699         case KVM_SET_CPUID: {
4700                 struct kvm_cpuid __user *cpuid_arg = argp;
4701                 struct kvm_cpuid cpuid;
4702
4703                 r = -EFAULT;
4704                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4705                         goto out;
4706                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4707                 break;
4708         }
4709         case KVM_SET_CPUID2: {
4710                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4711                 struct kvm_cpuid2 cpuid;
4712
4713                 r = -EFAULT;
4714                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4715                         goto out;
4716                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4717                                               cpuid_arg->entries);
4718                 break;
4719         }
4720         case KVM_GET_CPUID2: {
4721                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4722                 struct kvm_cpuid2 cpuid;
4723
4724                 r = -EFAULT;
4725                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4726                         goto out;
4727                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4728                                               cpuid_arg->entries);
4729                 if (r)
4730                         goto out;
4731                 r = -EFAULT;
4732                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4733                         goto out;
4734                 r = 0;
4735                 break;
4736         }
4737         case KVM_GET_MSRS: {
4738                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4739                 r = msr_io(vcpu, argp, do_get_msr, 1);
4740                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4741                 break;
4742         }
4743         case KVM_SET_MSRS: {
4744                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4745                 r = msr_io(vcpu, argp, do_set_msr, 0);
4746                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4747                 break;
4748         }
4749         case KVM_TPR_ACCESS_REPORTING: {
4750                 struct kvm_tpr_access_ctl tac;
4751
4752                 r = -EFAULT;
4753                 if (copy_from_user(&tac, argp, sizeof(tac)))
4754                         goto out;
4755                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4756                 if (r)
4757                         goto out;
4758                 r = -EFAULT;
4759                 if (copy_to_user(argp, &tac, sizeof(tac)))
4760                         goto out;
4761                 r = 0;
4762                 break;
4763         };
4764         case KVM_SET_VAPIC_ADDR: {
4765                 struct kvm_vapic_addr va;
4766                 int idx;
4767
4768                 r = -EINVAL;
4769                 if (!lapic_in_kernel(vcpu))
4770                         goto out;
4771                 r = -EFAULT;
4772                 if (copy_from_user(&va, argp, sizeof(va)))
4773                         goto out;
4774                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4775                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4776                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4777                 break;
4778         }
4779         case KVM_X86_SETUP_MCE: {
4780                 u64 mcg_cap;
4781
4782                 r = -EFAULT;
4783                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4784                         goto out;
4785                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4786                 break;
4787         }
4788         case KVM_X86_SET_MCE: {
4789                 struct kvm_x86_mce mce;
4790
4791                 r = -EFAULT;
4792                 if (copy_from_user(&mce, argp, sizeof(mce)))
4793                         goto out;
4794                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4795                 break;
4796         }
4797         case KVM_GET_VCPU_EVENTS: {
4798                 struct kvm_vcpu_events events;
4799
4800                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4801
4802                 r = -EFAULT;
4803                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4804                         break;
4805                 r = 0;
4806                 break;
4807         }
4808         case KVM_SET_VCPU_EVENTS: {
4809                 struct kvm_vcpu_events events;
4810
4811                 r = -EFAULT;
4812                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4813                         break;
4814
4815                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4816                 break;
4817         }
4818         case KVM_GET_DEBUGREGS: {
4819                 struct kvm_debugregs dbgregs;
4820
4821                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4822
4823                 r = -EFAULT;
4824                 if (copy_to_user(argp, &dbgregs,
4825                                  sizeof(struct kvm_debugregs)))
4826                         break;
4827                 r = 0;
4828                 break;
4829         }
4830         case KVM_SET_DEBUGREGS: {
4831                 struct kvm_debugregs dbgregs;
4832
4833                 r = -EFAULT;
4834                 if (copy_from_user(&dbgregs, argp,
4835                                    sizeof(struct kvm_debugregs)))
4836                         break;
4837
4838                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4839                 break;
4840         }
4841         case KVM_GET_XSAVE: {
4842                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4843                 r = -ENOMEM;
4844                 if (!u.xsave)
4845                         break;
4846
4847                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4848
4849                 r = -EFAULT;
4850                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4851                         break;
4852                 r = 0;
4853                 break;
4854         }
4855         case KVM_SET_XSAVE: {
4856                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4857                 if (IS_ERR(u.xsave)) {
4858                         r = PTR_ERR(u.xsave);
4859                         goto out_nofree;
4860                 }
4861
4862                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4863                 break;
4864         }
4865         case KVM_GET_XCRS: {
4866                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4867                 r = -ENOMEM;
4868                 if (!u.xcrs)
4869                         break;
4870
4871                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4872
4873                 r = -EFAULT;
4874                 if (copy_to_user(argp, u.xcrs,
4875                                  sizeof(struct kvm_xcrs)))
4876                         break;
4877                 r = 0;
4878                 break;
4879         }
4880         case KVM_SET_XCRS: {
4881                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4882                 if (IS_ERR(u.xcrs)) {
4883                         r = PTR_ERR(u.xcrs);
4884                         goto out_nofree;
4885                 }
4886
4887                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4888                 break;
4889         }
4890         case KVM_SET_TSC_KHZ: {
4891                 u32 user_tsc_khz;
4892
4893                 r = -EINVAL;
4894                 user_tsc_khz = (u32)arg;
4895
4896                 if (kvm_has_tsc_control &&
4897                     user_tsc_khz >= kvm_max_guest_tsc_khz)
4898                         goto out;
4899
4900                 if (user_tsc_khz == 0)
4901                         user_tsc_khz = tsc_khz;
4902
4903                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4904                         r = 0;
4905
4906                 goto out;
4907         }
4908         case KVM_GET_TSC_KHZ: {
4909                 r = vcpu->arch.virtual_tsc_khz;
4910                 goto out;
4911         }
4912         case KVM_KVMCLOCK_CTRL: {
4913                 r = kvm_set_guest_paused(vcpu);
4914                 goto out;
4915         }
4916         case KVM_ENABLE_CAP: {
4917                 struct kvm_enable_cap cap;
4918
4919                 r = -EFAULT;
4920                 if (copy_from_user(&cap, argp, sizeof(cap)))
4921                         goto out;
4922                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4923                 break;
4924         }
4925         case KVM_GET_NESTED_STATE: {
4926                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4927                 u32 user_data_size;
4928
4929                 r = -EINVAL;
4930                 if (!kvm_x86_ops.nested_ops->get_state)
4931                         break;
4932
4933                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4934                 r = -EFAULT;
4935                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4936                         break;
4937
4938                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4939                                                      user_data_size);
4940                 if (r < 0)
4941                         break;
4942
4943                 if (r > user_data_size) {
4944                         if (put_user(r, &user_kvm_nested_state->size))
4945                                 r = -EFAULT;
4946                         else
4947                                 r = -E2BIG;
4948                         break;
4949                 }
4950
4951                 r = 0;
4952                 break;
4953         }
4954         case KVM_SET_NESTED_STATE: {
4955                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4956                 struct kvm_nested_state kvm_state;
4957                 int idx;
4958
4959                 r = -EINVAL;
4960                 if (!kvm_x86_ops.nested_ops->set_state)
4961                         break;
4962
4963                 r = -EFAULT;
4964                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4965                         break;
4966
4967                 r = -EINVAL;
4968                 if (kvm_state.size < sizeof(kvm_state))
4969                         break;
4970
4971                 if (kvm_state.flags &
4972                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4973                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4974                       | KVM_STATE_NESTED_GIF_SET))
4975                         break;
4976
4977                 /* nested_run_pending implies guest_mode.  */
4978                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4979                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4980                         break;
4981
4982                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4983                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4984                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4985                 break;
4986         }
4987         case KVM_GET_SUPPORTED_HV_CPUID:
4988                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
4989                 break;
4990         default:
4991                 r = -EINVAL;
4992         }
4993 out:
4994         kfree(u.buffer);
4995 out_nofree:
4996         vcpu_put(vcpu);
4997         return r;
4998 }
4999
5000 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5001 {
5002         return VM_FAULT_SIGBUS;
5003 }
5004
5005 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5006 {
5007         int ret;
5008
5009         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5010                 return -EINVAL;
5011         ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5012         return ret;
5013 }
5014
5015 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5016                                               u64 ident_addr)
5017 {
5018         return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5019 }
5020
5021 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5022                                          unsigned long kvm_nr_mmu_pages)
5023 {
5024         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5025                 return -EINVAL;
5026
5027         mutex_lock(&kvm->slots_lock);
5028
5029         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5030         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5031
5032         mutex_unlock(&kvm->slots_lock);
5033         return 0;
5034 }
5035
5036 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5037 {
5038         return kvm->arch.n_max_mmu_pages;
5039 }
5040
5041 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5042 {
5043         struct kvm_pic *pic = kvm->arch.vpic;
5044         int r;
5045
5046         r = 0;
5047         switch (chip->chip_id) {
5048         case KVM_IRQCHIP_PIC_MASTER:
5049                 memcpy(&chip->chip.pic, &pic->pics[0],
5050                         sizeof(struct kvm_pic_state));
5051                 break;
5052         case KVM_IRQCHIP_PIC_SLAVE:
5053                 memcpy(&chip->chip.pic, &pic->pics[1],
5054                         sizeof(struct kvm_pic_state));
5055                 break;
5056         case KVM_IRQCHIP_IOAPIC:
5057                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5058                 break;
5059         default:
5060                 r = -EINVAL;
5061                 break;
5062         }
5063         return r;
5064 }
5065
5066 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5067 {
5068         struct kvm_pic *pic = kvm->arch.vpic;
5069         int r;
5070
5071         r = 0;
5072         switch (chip->chip_id) {
5073         case KVM_IRQCHIP_PIC_MASTER:
5074                 spin_lock(&pic->lock);
5075                 memcpy(&pic->pics[0], &chip->chip.pic,
5076                         sizeof(struct kvm_pic_state));
5077                 spin_unlock(&pic->lock);
5078                 break;
5079         case KVM_IRQCHIP_PIC_SLAVE:
5080                 spin_lock(&pic->lock);
5081                 memcpy(&pic->pics[1], &chip->chip.pic,
5082                         sizeof(struct kvm_pic_state));
5083                 spin_unlock(&pic->lock);
5084                 break;
5085         case KVM_IRQCHIP_IOAPIC:
5086                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5087                 break;
5088         default:
5089                 r = -EINVAL;
5090                 break;
5091         }
5092         kvm_pic_update_irq(pic);
5093         return r;
5094 }
5095
5096 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5097 {
5098         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5099
5100         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5101
5102         mutex_lock(&kps->lock);
5103         memcpy(ps, &kps->channels, sizeof(*ps));
5104         mutex_unlock(&kps->lock);
5105         return 0;
5106 }
5107
5108 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5109 {
5110         int i;
5111         struct kvm_pit *pit = kvm->arch.vpit;
5112
5113         mutex_lock(&pit->pit_state.lock);
5114         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5115         for (i = 0; i < 3; i++)
5116                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5117         mutex_unlock(&pit->pit_state.lock);
5118         return 0;
5119 }
5120
5121 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5122 {
5123         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5124         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5125                 sizeof(ps->channels));
5126         ps->flags = kvm->arch.vpit->pit_state.flags;
5127         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5128         memset(&ps->reserved, 0, sizeof(ps->reserved));
5129         return 0;
5130 }
5131
5132 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5133 {
5134         int start = 0;
5135         int i;
5136         u32 prev_legacy, cur_legacy;
5137         struct kvm_pit *pit = kvm->arch.vpit;
5138
5139         mutex_lock(&pit->pit_state.lock);
5140         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5141         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5142         if (!prev_legacy && cur_legacy)
5143                 start = 1;
5144         memcpy(&pit->pit_state.channels, &ps->channels,
5145                sizeof(pit->pit_state.channels));
5146         pit->pit_state.flags = ps->flags;
5147         for (i = 0; i < 3; i++)
5148                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5149                                    start && i == 0);
5150         mutex_unlock(&pit->pit_state.lock);
5151         return 0;
5152 }
5153
5154 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5155                                  struct kvm_reinject_control *control)
5156 {
5157         struct kvm_pit *pit = kvm->arch.vpit;
5158
5159         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5160          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5161          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5162          */
5163         mutex_lock(&pit->pit_state.lock);
5164         kvm_pit_set_reinject(pit, control->pit_reinject);
5165         mutex_unlock(&pit->pit_state.lock);
5166
5167         return 0;
5168 }
5169
5170 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5171 {
5172         /*
5173          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5174          */
5175         if (kvm_x86_ops.flush_log_dirty)
5176                 kvm_x86_ops.flush_log_dirty(kvm);
5177 }
5178
5179 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5180                         bool line_status)
5181 {
5182         if (!irqchip_in_kernel(kvm))
5183                 return -ENXIO;
5184
5185         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5186                                         irq_event->irq, irq_event->level,
5187                                         line_status);
5188         return 0;
5189 }
5190
5191 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5192                             struct kvm_enable_cap *cap)
5193 {
5194         int r;
5195
5196         if (cap->flags)
5197                 return -EINVAL;
5198
5199         switch (cap->cap) {
5200         case KVM_CAP_DISABLE_QUIRKS:
5201                 kvm->arch.disabled_quirks = cap->args[0];
5202                 r = 0;
5203                 break;
5204         case KVM_CAP_SPLIT_IRQCHIP: {
5205                 mutex_lock(&kvm->lock);
5206                 r = -EINVAL;
5207                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5208                         goto split_irqchip_unlock;
5209                 r = -EEXIST;
5210                 if (irqchip_in_kernel(kvm))
5211                         goto split_irqchip_unlock;
5212                 if (kvm->created_vcpus)
5213                         goto split_irqchip_unlock;
5214                 r = kvm_setup_empty_irq_routing(kvm);
5215                 if (r)
5216                         goto split_irqchip_unlock;
5217                 /* Pairs with irqchip_in_kernel. */
5218                 smp_wmb();
5219                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5220                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5221                 r = 0;
5222 split_irqchip_unlock:
5223                 mutex_unlock(&kvm->lock);
5224                 break;
5225         }
5226         case KVM_CAP_X2APIC_API:
5227                 r = -EINVAL;
5228                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5229                         break;
5230
5231                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5232                         kvm->arch.x2apic_format = true;
5233                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5234                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5235
5236                 r = 0;
5237                 break;
5238         case KVM_CAP_X86_DISABLE_EXITS:
5239                 r = -EINVAL;
5240                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5241                         break;
5242
5243                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5244                         kvm_can_mwait_in_guest())
5245                         kvm->arch.mwait_in_guest = true;
5246                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5247                         kvm->arch.hlt_in_guest = true;
5248                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5249                         kvm->arch.pause_in_guest = true;
5250                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5251                         kvm->arch.cstate_in_guest = true;
5252                 r = 0;
5253                 break;
5254         case KVM_CAP_MSR_PLATFORM_INFO:
5255                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5256                 r = 0;
5257                 break;
5258         case KVM_CAP_EXCEPTION_PAYLOAD:
5259                 kvm->arch.exception_payload_enabled = cap->args[0];
5260                 r = 0;
5261                 break;
5262         case KVM_CAP_X86_USER_SPACE_MSR:
5263                 kvm->arch.user_space_msr_mask = cap->args[0];
5264                 r = 0;
5265                 break;
5266         default:
5267                 r = -EINVAL;
5268                 break;
5269         }
5270         return r;
5271 }
5272
5273 static void kvm_clear_msr_filter(struct kvm *kvm)
5274 {
5275         u32 i;
5276         u32 count = kvm->arch.msr_filter.count;
5277         struct msr_bitmap_range ranges[16];
5278
5279         mutex_lock(&kvm->lock);
5280         kvm->arch.msr_filter.count = 0;
5281         memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5282         mutex_unlock(&kvm->lock);
5283         synchronize_srcu(&kvm->srcu);
5284
5285         for (i = 0; i < count; i++)
5286                 kfree(ranges[i].bitmap);
5287 }
5288
5289 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5290 {
5291         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5292         struct msr_bitmap_range range;
5293         unsigned long *bitmap = NULL;
5294         size_t bitmap_size;
5295         int r;
5296
5297         if (!user_range->nmsrs)
5298                 return 0;
5299
5300         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5301         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5302                 return -EINVAL;
5303
5304         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5305         if (IS_ERR(bitmap))
5306                 return PTR_ERR(bitmap);
5307
5308         range = (struct msr_bitmap_range) {
5309                 .flags = user_range->flags,
5310                 .base = user_range->base,
5311                 .nmsrs = user_range->nmsrs,
5312                 .bitmap = bitmap,
5313         };
5314
5315         if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5316                 r = -EINVAL;
5317                 goto err;
5318         }
5319
5320         if (!range.flags) {
5321                 r = -EINVAL;
5322                 goto err;
5323         }
5324
5325         /* Everything ok, add this range identifier to our global pool */
5326         ranges[kvm->arch.msr_filter.count] = range;
5327         /* Make sure we filled the array before we tell anyone to walk it */
5328         smp_wmb();
5329         kvm->arch.msr_filter.count++;
5330
5331         return 0;
5332 err:
5333         kfree(bitmap);
5334         return r;
5335 }
5336
5337 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5338 {
5339         struct kvm_msr_filter __user *user_msr_filter = argp;
5340         struct kvm_msr_filter filter;
5341         bool default_allow;
5342         int r = 0;
5343         bool empty = true;
5344         u32 i;
5345
5346         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5347                 return -EFAULT;
5348
5349         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5350                 empty &= !filter.ranges[i].nmsrs;
5351
5352         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5353         if (empty && !default_allow)
5354                 return -EINVAL;
5355
5356         kvm_clear_msr_filter(kvm);
5357
5358         kvm->arch.msr_filter.default_allow = default_allow;
5359
5360         /*
5361          * Protect from concurrent calls to this function that could trigger
5362          * a TOCTOU violation on kvm->arch.msr_filter.count.
5363          */
5364         mutex_lock(&kvm->lock);
5365         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5366                 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5367                 if (r)
5368                         break;
5369         }
5370
5371         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5372         mutex_unlock(&kvm->lock);
5373
5374         return r;
5375 }
5376
5377 long kvm_arch_vm_ioctl(struct file *filp,
5378                        unsigned int ioctl, unsigned long arg)
5379 {
5380         struct kvm *kvm = filp->private_data;
5381         void __user *argp = (void __user *)arg;
5382         int r = -ENOTTY;
5383         /*
5384          * This union makes it completely explicit to gcc-3.x
5385          * that these two variables' stack usage should be
5386          * combined, not added together.
5387          */
5388         union {
5389                 struct kvm_pit_state ps;
5390                 struct kvm_pit_state2 ps2;
5391                 struct kvm_pit_config pit_config;
5392         } u;
5393
5394         switch (ioctl) {
5395         case KVM_SET_TSS_ADDR:
5396                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5397                 break;
5398         case KVM_SET_IDENTITY_MAP_ADDR: {
5399                 u64 ident_addr;
5400
5401                 mutex_lock(&kvm->lock);
5402                 r = -EINVAL;
5403                 if (kvm->created_vcpus)
5404                         goto set_identity_unlock;
5405                 r = -EFAULT;
5406                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5407                         goto set_identity_unlock;
5408                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5409 set_identity_unlock:
5410                 mutex_unlock(&kvm->lock);
5411                 break;
5412         }
5413         case KVM_SET_NR_MMU_PAGES:
5414                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5415                 break;
5416         case KVM_GET_NR_MMU_PAGES:
5417                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5418                 break;
5419         case KVM_CREATE_IRQCHIP: {
5420                 mutex_lock(&kvm->lock);
5421
5422                 r = -EEXIST;
5423                 if (irqchip_in_kernel(kvm))
5424                         goto create_irqchip_unlock;
5425
5426                 r = -EINVAL;
5427                 if (kvm->created_vcpus)
5428                         goto create_irqchip_unlock;
5429
5430                 r = kvm_pic_init(kvm);
5431                 if (r)
5432                         goto create_irqchip_unlock;
5433
5434                 r = kvm_ioapic_init(kvm);
5435                 if (r) {
5436                         kvm_pic_destroy(kvm);
5437                         goto create_irqchip_unlock;
5438                 }
5439
5440                 r = kvm_setup_default_irq_routing(kvm);
5441                 if (r) {
5442                         kvm_ioapic_destroy(kvm);
5443                         kvm_pic_destroy(kvm);
5444                         goto create_irqchip_unlock;
5445                 }
5446                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5447                 smp_wmb();
5448                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5449         create_irqchip_unlock:
5450                 mutex_unlock(&kvm->lock);
5451                 break;
5452         }
5453         case KVM_CREATE_PIT:
5454                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5455                 goto create_pit;
5456         case KVM_CREATE_PIT2:
5457                 r = -EFAULT;
5458                 if (copy_from_user(&u.pit_config, argp,
5459                                    sizeof(struct kvm_pit_config)))
5460                         goto out;
5461         create_pit:
5462                 mutex_lock(&kvm->lock);
5463                 r = -EEXIST;
5464                 if (kvm->arch.vpit)
5465                         goto create_pit_unlock;
5466                 r = -ENOMEM;
5467                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5468                 if (kvm->arch.vpit)
5469                         r = 0;
5470         create_pit_unlock:
5471                 mutex_unlock(&kvm->lock);
5472                 break;
5473         case KVM_GET_IRQCHIP: {
5474                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5475                 struct kvm_irqchip *chip;
5476
5477                 chip = memdup_user(argp, sizeof(*chip));
5478                 if (IS_ERR(chip)) {
5479                         r = PTR_ERR(chip);
5480                         goto out;
5481                 }
5482
5483                 r = -ENXIO;
5484                 if (!irqchip_kernel(kvm))
5485                         goto get_irqchip_out;
5486                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5487                 if (r)
5488                         goto get_irqchip_out;
5489                 r = -EFAULT;
5490                 if (copy_to_user(argp, chip, sizeof(*chip)))
5491                         goto get_irqchip_out;
5492                 r = 0;
5493         get_irqchip_out:
5494                 kfree(chip);
5495                 break;
5496         }
5497         case KVM_SET_IRQCHIP: {
5498                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5499                 struct kvm_irqchip *chip;
5500
5501                 chip = memdup_user(argp, sizeof(*chip));
5502                 if (IS_ERR(chip)) {
5503                         r = PTR_ERR(chip);
5504                         goto out;
5505                 }
5506
5507                 r = -ENXIO;
5508                 if (!irqchip_kernel(kvm))
5509                         goto set_irqchip_out;
5510                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5511         set_irqchip_out:
5512                 kfree(chip);
5513                 break;
5514         }
5515         case KVM_GET_PIT: {
5516                 r = -EFAULT;
5517                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5518                         goto out;
5519                 r = -ENXIO;
5520                 if (!kvm->arch.vpit)
5521                         goto out;
5522                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5523                 if (r)
5524                         goto out;
5525                 r = -EFAULT;
5526                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5527                         goto out;
5528                 r = 0;
5529                 break;
5530         }
5531         case KVM_SET_PIT: {
5532                 r = -EFAULT;
5533                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5534                         goto out;
5535                 mutex_lock(&kvm->lock);
5536                 r = -ENXIO;
5537                 if (!kvm->arch.vpit)
5538                         goto set_pit_out;
5539                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5540 set_pit_out:
5541                 mutex_unlock(&kvm->lock);
5542                 break;
5543         }
5544         case KVM_GET_PIT2: {
5545                 r = -ENXIO;
5546                 if (!kvm->arch.vpit)
5547                         goto out;
5548                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5549                 if (r)
5550                         goto out;
5551                 r = -EFAULT;
5552                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5553                         goto out;
5554                 r = 0;
5555                 break;
5556         }
5557         case KVM_SET_PIT2: {
5558                 r = -EFAULT;
5559                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5560                         goto out;
5561                 mutex_lock(&kvm->lock);
5562                 r = -ENXIO;
5563                 if (!kvm->arch.vpit)
5564                         goto set_pit2_out;
5565                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5566 set_pit2_out:
5567                 mutex_unlock(&kvm->lock);
5568                 break;
5569         }
5570         case KVM_REINJECT_CONTROL: {
5571                 struct kvm_reinject_control control;
5572                 r =  -EFAULT;
5573                 if (copy_from_user(&control, argp, sizeof(control)))
5574                         goto out;
5575                 r = -ENXIO;
5576                 if (!kvm->arch.vpit)
5577                         goto out;
5578                 r = kvm_vm_ioctl_reinject(kvm, &control);
5579                 break;
5580         }
5581         case KVM_SET_BOOT_CPU_ID:
5582                 r = 0;
5583                 mutex_lock(&kvm->lock);
5584                 if (kvm->created_vcpus)
5585                         r = -EBUSY;
5586                 else
5587                         kvm->arch.bsp_vcpu_id = arg;
5588                 mutex_unlock(&kvm->lock);
5589                 break;
5590         case KVM_XEN_HVM_CONFIG: {
5591                 struct kvm_xen_hvm_config xhc;
5592                 r = -EFAULT;
5593                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5594                         goto out;
5595                 r = -EINVAL;
5596                 if (xhc.flags)
5597                         goto out;
5598                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5599                 r = 0;
5600                 break;
5601         }
5602         case KVM_SET_CLOCK: {
5603                 struct kvm_clock_data user_ns;
5604                 u64 now_ns;
5605
5606                 r = -EFAULT;
5607                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5608                         goto out;
5609
5610                 r = -EINVAL;
5611                 if (user_ns.flags)
5612                         goto out;
5613
5614                 r = 0;
5615                 /*
5616                  * TODO: userspace has to take care of races with VCPU_RUN, so
5617                  * kvm_gen_update_masterclock() can be cut down to locked
5618                  * pvclock_update_vm_gtod_copy().
5619                  */
5620                 kvm_gen_update_masterclock(kvm);
5621                 now_ns = get_kvmclock_ns(kvm);
5622                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5623                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5624                 break;
5625         }
5626         case KVM_GET_CLOCK: {
5627                 struct kvm_clock_data user_ns;
5628                 u64 now_ns;
5629
5630                 now_ns = get_kvmclock_ns(kvm);
5631                 user_ns.clock = now_ns;
5632                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5633                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5634
5635                 r = -EFAULT;
5636                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5637                         goto out;
5638                 r = 0;
5639                 break;
5640         }
5641         case KVM_MEMORY_ENCRYPT_OP: {
5642                 r = -ENOTTY;
5643                 if (kvm_x86_ops.mem_enc_op)
5644                         r = kvm_x86_ops.mem_enc_op(kvm, argp);
5645                 break;
5646         }
5647         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5648                 struct kvm_enc_region region;
5649
5650                 r = -EFAULT;
5651                 if (copy_from_user(&region, argp, sizeof(region)))
5652                         goto out;
5653
5654                 r = -ENOTTY;
5655                 if (kvm_x86_ops.mem_enc_reg_region)
5656                         r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5657                 break;
5658         }
5659         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5660                 struct kvm_enc_region region;
5661
5662                 r = -EFAULT;
5663                 if (copy_from_user(&region, argp, sizeof(region)))
5664                         goto out;
5665
5666                 r = -ENOTTY;
5667                 if (kvm_x86_ops.mem_enc_unreg_region)
5668                         r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5669                 break;
5670         }
5671         case KVM_HYPERV_EVENTFD: {
5672                 struct kvm_hyperv_eventfd hvevfd;
5673
5674                 r = -EFAULT;
5675                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5676                         goto out;
5677                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5678                 break;
5679         }
5680         case KVM_SET_PMU_EVENT_FILTER:
5681                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5682                 break;
5683         case KVM_X86_SET_MSR_FILTER:
5684                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5685                 break;
5686         default:
5687                 r = -ENOTTY;
5688         }
5689 out:
5690         return r;
5691 }
5692
5693 static void kvm_init_msr_list(void)
5694 {
5695         struct x86_pmu_capability x86_pmu;
5696         u32 dummy[2];
5697         unsigned i;
5698
5699         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5700                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5701
5702         perf_get_x86_pmu_capability(&x86_pmu);
5703
5704         num_msrs_to_save = 0;
5705         num_emulated_msrs = 0;
5706         num_msr_based_features = 0;
5707
5708         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5709                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5710                         continue;
5711
5712                 /*
5713                  * Even MSRs that are valid in the host may not be exposed
5714                  * to the guests in some cases.
5715                  */
5716                 switch (msrs_to_save_all[i]) {
5717                 case MSR_IA32_BNDCFGS:
5718                         if (!kvm_mpx_supported())
5719                                 continue;
5720                         break;
5721                 case MSR_TSC_AUX:
5722                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5723                                 continue;
5724                         break;
5725                 case MSR_IA32_UMWAIT_CONTROL:
5726                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5727                                 continue;
5728                         break;
5729                 case MSR_IA32_RTIT_CTL:
5730                 case MSR_IA32_RTIT_STATUS:
5731                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5732                                 continue;
5733                         break;
5734                 case MSR_IA32_RTIT_CR3_MATCH:
5735                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5736                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5737                                 continue;
5738                         break;
5739                 case MSR_IA32_RTIT_OUTPUT_BASE:
5740                 case MSR_IA32_RTIT_OUTPUT_MASK:
5741                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5742                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5743                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5744                                 continue;
5745                         break;
5746                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5747                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5748                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5749                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5750                                 continue;
5751                         break;
5752                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5753                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5754                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5755                                 continue;
5756                         break;
5757                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5758                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5759                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5760                                 continue;
5761                         break;
5762                 default:
5763                         break;
5764                 }
5765
5766                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5767         }
5768
5769         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5770                 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5771                         continue;
5772
5773                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5774         }
5775
5776         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5777                 struct kvm_msr_entry msr;
5778
5779                 msr.index = msr_based_features_all[i];
5780                 if (kvm_get_msr_feature(&msr))
5781                         continue;
5782
5783                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5784         }
5785 }
5786
5787 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5788                            const void *v)
5789 {
5790         int handled = 0;
5791         int n;
5792
5793         do {
5794                 n = min(len, 8);
5795                 if (!(lapic_in_kernel(vcpu) &&
5796                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5797                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5798                         break;
5799                 handled += n;
5800                 addr += n;
5801                 len -= n;
5802                 v += n;
5803         } while (len);
5804
5805         return handled;
5806 }
5807
5808 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5809 {
5810         int handled = 0;
5811         int n;
5812
5813         do {
5814                 n = min(len, 8);
5815                 if (!(lapic_in_kernel(vcpu) &&
5816                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5817                                          addr, n, v))
5818                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5819                         break;
5820                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5821                 handled += n;
5822                 addr += n;
5823                 len -= n;
5824                 v += n;
5825         } while (len);
5826
5827         return handled;
5828 }
5829
5830 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5831                         struct kvm_segment *var, int seg)
5832 {
5833         kvm_x86_ops.set_segment(vcpu, var, seg);
5834 }
5835
5836 void kvm_get_segment(struct kvm_vcpu *vcpu,
5837                      struct kvm_segment *var, int seg)
5838 {
5839         kvm_x86_ops.get_segment(vcpu, var, seg);
5840 }
5841
5842 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5843                            struct x86_exception *exception)
5844 {
5845         gpa_t t_gpa;
5846
5847         BUG_ON(!mmu_is_nested(vcpu));
5848
5849         /* NPT walks are always user-walks */
5850         access |= PFERR_USER_MASK;
5851         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5852
5853         return t_gpa;
5854 }
5855
5856 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5857                               struct x86_exception *exception)
5858 {
5859         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5860         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5861 }
5862
5863  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5864                                 struct x86_exception *exception)
5865 {
5866         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5867         access |= PFERR_FETCH_MASK;
5868         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5869 }
5870
5871 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5872                                struct x86_exception *exception)
5873 {
5874         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5875         access |= PFERR_WRITE_MASK;
5876         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5877 }
5878
5879 /* uses this to access any guest's mapped memory without checking CPL */
5880 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5881                                 struct x86_exception *exception)
5882 {
5883         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5884 }
5885
5886 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5887                                       struct kvm_vcpu *vcpu, u32 access,
5888                                       struct x86_exception *exception)
5889 {
5890         void *data = val;
5891         int r = X86EMUL_CONTINUE;
5892
5893         while (bytes) {
5894                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5895                                                             exception);
5896                 unsigned offset = addr & (PAGE_SIZE-1);
5897                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5898                 int ret;
5899
5900                 if (gpa == UNMAPPED_GVA)
5901                         return X86EMUL_PROPAGATE_FAULT;
5902                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5903                                                offset, toread);
5904                 if (ret < 0) {
5905                         r = X86EMUL_IO_NEEDED;
5906                         goto out;
5907                 }
5908
5909                 bytes -= toread;
5910                 data += toread;
5911                 addr += toread;
5912         }
5913 out:
5914         return r;
5915 }
5916
5917 /* used for instruction fetching */
5918 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5919                                 gva_t addr, void *val, unsigned int bytes,
5920                                 struct x86_exception *exception)
5921 {
5922         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5923         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5924         unsigned offset;
5925         int ret;
5926
5927         /* Inline kvm_read_guest_virt_helper for speed.  */
5928         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5929                                                     exception);
5930         if (unlikely(gpa == UNMAPPED_GVA))
5931                 return X86EMUL_PROPAGATE_FAULT;
5932
5933         offset = addr & (PAGE_SIZE-1);
5934         if (WARN_ON(offset + bytes > PAGE_SIZE))
5935                 bytes = (unsigned)PAGE_SIZE - offset;
5936         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5937                                        offset, bytes);
5938         if (unlikely(ret < 0))
5939                 return X86EMUL_IO_NEEDED;
5940
5941         return X86EMUL_CONTINUE;
5942 }
5943
5944 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5945                                gva_t addr, void *val, unsigned int bytes,
5946                                struct x86_exception *exception)
5947 {
5948         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5949
5950         /*
5951          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5952          * is returned, but our callers are not ready for that and they blindly
5953          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5954          * uninitialized kernel stack memory into cr2 and error code.
5955          */
5956         memset(exception, 0, sizeof(*exception));
5957         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5958                                           exception);
5959 }
5960 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5961
5962 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5963                              gva_t addr, void *val, unsigned int bytes,
5964                              struct x86_exception *exception, bool system)
5965 {
5966         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5967         u32 access = 0;
5968
5969         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5970                 access |= PFERR_USER_MASK;
5971
5972         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5973 }
5974
5975 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5976                 unsigned long addr, void *val, unsigned int bytes)
5977 {
5978         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5979         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5980
5981         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5982 }
5983
5984 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5985                                       struct kvm_vcpu *vcpu, u32 access,
5986                                       struct x86_exception *exception)
5987 {
5988         void *data = val;
5989         int r = X86EMUL_CONTINUE;
5990
5991         while (bytes) {
5992                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5993                                                              access,
5994                                                              exception);
5995                 unsigned offset = addr & (PAGE_SIZE-1);
5996                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5997                 int ret;
5998
5999                 if (gpa == UNMAPPED_GVA)
6000                         return X86EMUL_PROPAGATE_FAULT;
6001                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6002                 if (ret < 0) {
6003                         r = X86EMUL_IO_NEEDED;
6004                         goto out;
6005                 }
6006
6007                 bytes -= towrite;
6008                 data += towrite;
6009                 addr += towrite;
6010         }
6011 out:
6012         return r;
6013 }
6014
6015 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6016                               unsigned int bytes, struct x86_exception *exception,
6017                               bool system)
6018 {
6019         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6020         u32 access = PFERR_WRITE_MASK;
6021
6022         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6023                 access |= PFERR_USER_MASK;
6024
6025         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6026                                            access, exception);
6027 }
6028
6029 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6030                                 unsigned int bytes, struct x86_exception *exception)
6031 {
6032         /* kvm_write_guest_virt_system can pull in tons of pages. */
6033         vcpu->arch.l1tf_flush_l1d = true;
6034
6035         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6036                                            PFERR_WRITE_MASK, exception);
6037 }
6038 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6039
6040 int handle_ud(struct kvm_vcpu *vcpu)
6041 {
6042         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6043         int emul_type = EMULTYPE_TRAP_UD;
6044         char sig[5]; /* ud2; .ascii "kvm" */
6045         struct x86_exception e;
6046
6047         if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6048                 return 1;
6049
6050         if (force_emulation_prefix &&
6051             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6052                                 sig, sizeof(sig), &e) == 0 &&
6053             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6054                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6055                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6056         }
6057
6058         return kvm_emulate_instruction(vcpu, emul_type);
6059 }
6060 EXPORT_SYMBOL_GPL(handle_ud);
6061
6062 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6063                             gpa_t gpa, bool write)
6064 {
6065         /* For APIC access vmexit */
6066         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6067                 return 1;
6068
6069         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6070                 trace_vcpu_match_mmio(gva, gpa, write, true);
6071                 return 1;
6072         }
6073
6074         return 0;
6075 }
6076
6077 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6078                                 gpa_t *gpa, struct x86_exception *exception,
6079                                 bool write)
6080 {
6081         u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6082                 | (write ? PFERR_WRITE_MASK : 0);
6083
6084         /*
6085          * currently PKRU is only applied to ept enabled guest so
6086          * there is no pkey in EPT page table for L1 guest or EPT
6087          * shadow page table for L2 guest.
6088          */
6089         if (vcpu_match_mmio_gva(vcpu, gva)
6090             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6091                                  vcpu->arch.mmio_access, 0, access)) {
6092                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6093                                         (gva & (PAGE_SIZE - 1));
6094                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6095                 return 1;
6096         }
6097
6098         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6099
6100         if (*gpa == UNMAPPED_GVA)
6101                 return -1;
6102
6103         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6104 }
6105
6106 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6107                         const void *val, int bytes)
6108 {
6109         int ret;
6110
6111         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6112         if (ret < 0)
6113                 return 0;
6114         kvm_page_track_write(vcpu, gpa, val, bytes);
6115         return 1;
6116 }
6117
6118 struct read_write_emulator_ops {
6119         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6120                                   int bytes);
6121         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6122                                   void *val, int bytes);
6123         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6124                                int bytes, void *val);
6125         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6126                                     void *val, int bytes);
6127         bool write;
6128 };
6129
6130 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6131 {
6132         if (vcpu->mmio_read_completed) {
6133                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6134                                vcpu->mmio_fragments[0].gpa, val);
6135                 vcpu->mmio_read_completed = 0;
6136                 return 1;
6137         }
6138
6139         return 0;
6140 }
6141
6142 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6143                         void *val, int bytes)
6144 {
6145         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6146 }
6147
6148 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6149                          void *val, int bytes)
6150 {
6151         return emulator_write_phys(vcpu, gpa, val, bytes);
6152 }
6153
6154 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6155 {
6156         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6157         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6158 }
6159
6160 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6161                           void *val, int bytes)
6162 {
6163         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6164         return X86EMUL_IO_NEEDED;
6165 }
6166
6167 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6168                            void *val, int bytes)
6169 {
6170         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6171
6172         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6173         return X86EMUL_CONTINUE;
6174 }
6175
6176 static const struct read_write_emulator_ops read_emultor = {
6177         .read_write_prepare = read_prepare,
6178         .read_write_emulate = read_emulate,
6179         .read_write_mmio = vcpu_mmio_read,
6180         .read_write_exit_mmio = read_exit_mmio,
6181 };
6182
6183 static const struct read_write_emulator_ops write_emultor = {
6184         .read_write_emulate = write_emulate,
6185         .read_write_mmio = write_mmio,
6186         .read_write_exit_mmio = write_exit_mmio,
6187         .write = true,
6188 };
6189
6190 static int emulator_read_write_onepage(unsigned long addr, void *val,
6191                                        unsigned int bytes,
6192                                        struct x86_exception *exception,
6193                                        struct kvm_vcpu *vcpu,
6194                                        const struct read_write_emulator_ops *ops)
6195 {
6196         gpa_t gpa;
6197         int handled, ret;
6198         bool write = ops->write;
6199         struct kvm_mmio_fragment *frag;
6200         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6201
6202         /*
6203          * If the exit was due to a NPF we may already have a GPA.
6204          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6205          * Note, this cannot be used on string operations since string
6206          * operation using rep will only have the initial GPA from the NPF
6207          * occurred.
6208          */
6209         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6210             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6211                 gpa = ctxt->gpa_val;
6212                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6213         } else {
6214                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6215                 if (ret < 0)
6216                         return X86EMUL_PROPAGATE_FAULT;
6217         }
6218
6219         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6220                 return X86EMUL_CONTINUE;
6221
6222         /*
6223          * Is this MMIO handled locally?
6224          */
6225         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6226         if (handled == bytes)
6227                 return X86EMUL_CONTINUE;
6228
6229         gpa += handled;
6230         bytes -= handled;
6231         val += handled;
6232
6233         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6234         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6235         frag->gpa = gpa;
6236         frag->data = val;
6237         frag->len = bytes;
6238         return X86EMUL_CONTINUE;
6239 }
6240
6241 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6242                         unsigned long addr,
6243                         void *val, unsigned int bytes,
6244                         struct x86_exception *exception,
6245                         const struct read_write_emulator_ops *ops)
6246 {
6247         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6248         gpa_t gpa;
6249         int rc;
6250
6251         if (ops->read_write_prepare &&
6252                   ops->read_write_prepare(vcpu, val, bytes))
6253                 return X86EMUL_CONTINUE;
6254
6255         vcpu->mmio_nr_fragments = 0;
6256
6257         /* Crossing a page boundary? */
6258         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6259                 int now;
6260
6261                 now = -addr & ~PAGE_MASK;
6262                 rc = emulator_read_write_onepage(addr, val, now, exception,
6263                                                  vcpu, ops);
6264
6265                 if (rc != X86EMUL_CONTINUE)
6266                         return rc;
6267                 addr += now;
6268                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6269                         addr = (u32)addr;
6270                 val += now;
6271                 bytes -= now;
6272         }
6273
6274         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6275                                          vcpu, ops);
6276         if (rc != X86EMUL_CONTINUE)
6277                 return rc;
6278
6279         if (!vcpu->mmio_nr_fragments)
6280                 return rc;
6281
6282         gpa = vcpu->mmio_fragments[0].gpa;
6283
6284         vcpu->mmio_needed = 1;
6285         vcpu->mmio_cur_fragment = 0;
6286
6287         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6288         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6289         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6290         vcpu->run->mmio.phys_addr = gpa;
6291
6292         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6293 }
6294
6295 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6296                                   unsigned long addr,
6297                                   void *val,
6298                                   unsigned int bytes,
6299                                   struct x86_exception *exception)
6300 {
6301         return emulator_read_write(ctxt, addr, val, bytes,
6302                                    exception, &read_emultor);
6303 }
6304
6305 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6306                             unsigned long addr,
6307                             const void *val,
6308                             unsigned int bytes,
6309                             struct x86_exception *exception)
6310 {
6311         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6312                                    exception, &write_emultor);
6313 }
6314
6315 #define CMPXCHG_TYPE(t, ptr, old, new) \
6316         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6317
6318 #ifdef CONFIG_X86_64
6319 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6320 #else
6321 #  define CMPXCHG64(ptr, old, new) \
6322         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6323 #endif
6324
6325 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6326                                      unsigned long addr,
6327                                      const void *old,
6328                                      const void *new,
6329                                      unsigned int bytes,
6330                                      struct x86_exception *exception)
6331 {
6332         struct kvm_host_map map;
6333         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6334         u64 page_line_mask;
6335         gpa_t gpa;
6336         char *kaddr;
6337         bool exchanged;
6338
6339         /* guests cmpxchg8b have to be emulated atomically */
6340         if (bytes > 8 || (bytes & (bytes - 1)))
6341                 goto emul_write;
6342
6343         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6344
6345         if (gpa == UNMAPPED_GVA ||
6346             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6347                 goto emul_write;
6348
6349         /*
6350          * Emulate the atomic as a straight write to avoid #AC if SLD is
6351          * enabled in the host and the access splits a cache line.
6352          */
6353         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6354                 page_line_mask = ~(cache_line_size() - 1);
6355         else
6356                 page_line_mask = PAGE_MASK;
6357
6358         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6359                 goto emul_write;
6360
6361         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6362                 goto emul_write;
6363
6364         kaddr = map.hva + offset_in_page(gpa);
6365
6366         switch (bytes) {
6367         case 1:
6368                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6369                 break;
6370         case 2:
6371                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6372                 break;
6373         case 4:
6374                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6375                 break;
6376         case 8:
6377                 exchanged = CMPXCHG64(kaddr, old, new);
6378                 break;
6379         default:
6380                 BUG();
6381         }
6382
6383         kvm_vcpu_unmap(vcpu, &map, true);
6384
6385         if (!exchanged)
6386                 return X86EMUL_CMPXCHG_FAILED;
6387
6388         kvm_page_track_write(vcpu, gpa, new, bytes);
6389
6390         return X86EMUL_CONTINUE;
6391
6392 emul_write:
6393         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6394
6395         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6396 }
6397
6398 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6399 {
6400         int r = 0, i;
6401
6402         for (i = 0; i < vcpu->arch.pio.count; i++) {
6403                 if (vcpu->arch.pio.in)
6404                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6405                                             vcpu->arch.pio.size, pd);
6406                 else
6407                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6408                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6409                                              pd);
6410                 if (r)
6411                         break;
6412                 pd += vcpu->arch.pio.size;
6413         }
6414         return r;
6415 }
6416
6417 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6418                                unsigned short port, void *val,
6419                                unsigned int count, bool in)
6420 {
6421         vcpu->arch.pio.port = port;
6422         vcpu->arch.pio.in = in;
6423         vcpu->arch.pio.count  = count;
6424         vcpu->arch.pio.size = size;
6425
6426         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6427                 vcpu->arch.pio.count = 0;
6428                 return 1;
6429         }
6430
6431         vcpu->run->exit_reason = KVM_EXIT_IO;
6432         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6433         vcpu->run->io.size = size;
6434         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6435         vcpu->run->io.count = count;
6436         vcpu->run->io.port = port;
6437
6438         return 0;
6439 }
6440
6441 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6442                            unsigned short port, void *val, unsigned int count)
6443 {
6444         int ret;
6445
6446         if (vcpu->arch.pio.count)
6447                 goto data_avail;
6448
6449         memset(vcpu->arch.pio_data, 0, size * count);
6450
6451         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6452         if (ret) {
6453 data_avail:
6454                 memcpy(val, vcpu->arch.pio_data, size * count);
6455                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6456                 vcpu->arch.pio.count = 0;
6457                 return 1;
6458         }
6459
6460         return 0;
6461 }
6462
6463 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6464                                     int size, unsigned short port, void *val,
6465                                     unsigned int count)
6466 {
6467         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6468
6469 }
6470
6471 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6472                             unsigned short port, const void *val,
6473                             unsigned int count)
6474 {
6475         memcpy(vcpu->arch.pio_data, val, size * count);
6476         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6477         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6478 }
6479
6480 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6481                                      int size, unsigned short port,
6482                                      const void *val, unsigned int count)
6483 {
6484         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6485 }
6486
6487 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6488 {
6489         return kvm_x86_ops.get_segment_base(vcpu, seg);
6490 }
6491
6492 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6493 {
6494         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6495 }
6496
6497 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6498 {
6499         if (!need_emulate_wbinvd(vcpu))
6500                 return X86EMUL_CONTINUE;
6501
6502         if (kvm_x86_ops.has_wbinvd_exit()) {
6503                 int cpu = get_cpu();
6504
6505                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6506                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6507                                 wbinvd_ipi, NULL, 1);
6508                 put_cpu();
6509                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6510         } else
6511                 wbinvd();
6512         return X86EMUL_CONTINUE;
6513 }
6514
6515 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6516 {
6517         kvm_emulate_wbinvd_noskip(vcpu);
6518         return kvm_skip_emulated_instruction(vcpu);
6519 }
6520 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6521
6522
6523
6524 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6525 {
6526         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6527 }
6528
6529 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6530                            unsigned long *dest)
6531 {
6532         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6533 }
6534
6535 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6536                            unsigned long value)
6537 {
6538
6539         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6540 }
6541
6542 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6543 {
6544         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6545 }
6546
6547 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6548 {
6549         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6550         unsigned long value;
6551
6552         switch (cr) {
6553         case 0:
6554                 value = kvm_read_cr0(vcpu);
6555                 break;
6556         case 2:
6557                 value = vcpu->arch.cr2;
6558                 break;
6559         case 3:
6560                 value = kvm_read_cr3(vcpu);
6561                 break;
6562         case 4:
6563                 value = kvm_read_cr4(vcpu);
6564                 break;
6565         case 8:
6566                 value = kvm_get_cr8(vcpu);
6567                 break;
6568         default:
6569                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6570                 return 0;
6571         }
6572
6573         return value;
6574 }
6575
6576 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6577 {
6578         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6579         int res = 0;
6580
6581         switch (cr) {
6582         case 0:
6583                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6584                 break;
6585         case 2:
6586                 vcpu->arch.cr2 = val;
6587                 break;
6588         case 3:
6589                 res = kvm_set_cr3(vcpu, val);
6590                 break;
6591         case 4:
6592                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6593                 break;
6594         case 8:
6595                 res = kvm_set_cr8(vcpu, val);
6596                 break;
6597         default:
6598                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6599                 res = -1;
6600         }
6601
6602         return res;
6603 }
6604
6605 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6606 {
6607         return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6608 }
6609
6610 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6611 {
6612         kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6613 }
6614
6615 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6616 {
6617         kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6618 }
6619
6620 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6621 {
6622         kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6623 }
6624
6625 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6626 {
6627         kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6628 }
6629
6630 static unsigned long emulator_get_cached_segment_base(
6631         struct x86_emulate_ctxt *ctxt, int seg)
6632 {
6633         return get_segment_base(emul_to_vcpu(ctxt), seg);
6634 }
6635
6636 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6637                                  struct desc_struct *desc, u32 *base3,
6638                                  int seg)
6639 {
6640         struct kvm_segment var;
6641
6642         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6643         *selector = var.selector;
6644
6645         if (var.unusable) {
6646                 memset(desc, 0, sizeof(*desc));
6647                 if (base3)
6648                         *base3 = 0;
6649                 return false;
6650         }
6651
6652         if (var.g)
6653                 var.limit >>= 12;
6654         set_desc_limit(desc, var.limit);
6655         set_desc_base(desc, (unsigned long)var.base);
6656 #ifdef CONFIG_X86_64
6657         if (base3)
6658                 *base3 = var.base >> 32;
6659 #endif
6660         desc->type = var.type;
6661         desc->s = var.s;
6662         desc->dpl = var.dpl;
6663         desc->p = var.present;
6664         desc->avl = var.avl;
6665         desc->l = var.l;
6666         desc->d = var.db;
6667         desc->g = var.g;
6668
6669         return true;
6670 }
6671
6672 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6673                                  struct desc_struct *desc, u32 base3,
6674                                  int seg)
6675 {
6676         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6677         struct kvm_segment var;
6678
6679         var.selector = selector;
6680         var.base = get_desc_base(desc);
6681 #ifdef CONFIG_X86_64
6682         var.base |= ((u64)base3) << 32;
6683 #endif
6684         var.limit = get_desc_limit(desc);
6685         if (desc->g)
6686                 var.limit = (var.limit << 12) | 0xfff;
6687         var.type = desc->type;
6688         var.dpl = desc->dpl;
6689         var.db = desc->d;
6690         var.s = desc->s;
6691         var.l = desc->l;
6692         var.g = desc->g;
6693         var.avl = desc->avl;
6694         var.present = desc->p;
6695         var.unusable = !var.present;
6696         var.padding = 0;
6697
6698         kvm_set_segment(vcpu, &var, seg);
6699         return;
6700 }
6701
6702 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6703                             u32 msr_index, u64 *pdata)
6704 {
6705         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6706         int r;
6707
6708         r = kvm_get_msr(vcpu, msr_index, pdata);
6709
6710         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6711                 /* Bounce to user space */
6712                 return X86EMUL_IO_NEEDED;
6713         }
6714
6715         return r;
6716 }
6717
6718 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6719                             u32 msr_index, u64 data)
6720 {
6721         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6722         int r;
6723
6724         r = kvm_set_msr(vcpu, msr_index, data);
6725
6726         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6727                 /* Bounce to user space */
6728                 return X86EMUL_IO_NEEDED;
6729         }
6730
6731         return r;
6732 }
6733
6734 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6735 {
6736         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6737
6738         return vcpu->arch.smbase;
6739 }
6740
6741 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6742 {
6743         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6744
6745         vcpu->arch.smbase = smbase;
6746 }
6747
6748 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6749                               u32 pmc)
6750 {
6751         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6752 }
6753
6754 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6755                              u32 pmc, u64 *pdata)
6756 {
6757         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6758 }
6759
6760 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6761 {
6762         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6763 }
6764
6765 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6766                               struct x86_instruction_info *info,
6767                               enum x86_intercept_stage stage)
6768 {
6769         return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6770                                             &ctxt->exception);
6771 }
6772
6773 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6774                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6775                               bool exact_only)
6776 {
6777         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6778 }
6779
6780 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6781 {
6782         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6783 }
6784
6785 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6786 {
6787         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6788 }
6789
6790 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6791 {
6792         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6793 }
6794
6795 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6796 {
6797         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6798 }
6799
6800 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6801 {
6802         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6803 }
6804
6805 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6806 {
6807         kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6808 }
6809
6810 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6811 {
6812         return emul_to_vcpu(ctxt)->arch.hflags;
6813 }
6814
6815 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6816 {
6817         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6818 }
6819
6820 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6821                                   const char *smstate)
6822 {
6823         return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6824 }
6825
6826 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6827 {
6828         kvm_smm_changed(emul_to_vcpu(ctxt));
6829 }
6830
6831 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6832 {
6833         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6834 }
6835
6836 static const struct x86_emulate_ops emulate_ops = {
6837         .read_gpr            = emulator_read_gpr,
6838         .write_gpr           = emulator_write_gpr,
6839         .read_std            = emulator_read_std,
6840         .write_std           = emulator_write_std,
6841         .read_phys           = kvm_read_guest_phys_system,
6842         .fetch               = kvm_fetch_guest_virt,
6843         .read_emulated       = emulator_read_emulated,
6844         .write_emulated      = emulator_write_emulated,
6845         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6846         .invlpg              = emulator_invlpg,
6847         .pio_in_emulated     = emulator_pio_in_emulated,
6848         .pio_out_emulated    = emulator_pio_out_emulated,
6849         .get_segment         = emulator_get_segment,
6850         .set_segment         = emulator_set_segment,
6851         .get_cached_segment_base = emulator_get_cached_segment_base,
6852         .get_gdt             = emulator_get_gdt,
6853         .get_idt             = emulator_get_idt,
6854         .set_gdt             = emulator_set_gdt,
6855         .set_idt             = emulator_set_idt,
6856         .get_cr              = emulator_get_cr,
6857         .set_cr              = emulator_set_cr,
6858         .cpl                 = emulator_get_cpl,
6859         .get_dr              = emulator_get_dr,
6860         .set_dr              = emulator_set_dr,
6861         .get_smbase          = emulator_get_smbase,
6862         .set_smbase          = emulator_set_smbase,
6863         .set_msr             = emulator_set_msr,
6864         .get_msr             = emulator_get_msr,
6865         .check_pmc           = emulator_check_pmc,
6866         .read_pmc            = emulator_read_pmc,
6867         .halt                = emulator_halt,
6868         .wbinvd              = emulator_wbinvd,
6869         .fix_hypercall       = emulator_fix_hypercall,
6870         .intercept           = emulator_intercept,
6871         .get_cpuid           = emulator_get_cpuid,
6872         .guest_has_long_mode = emulator_guest_has_long_mode,
6873         .guest_has_movbe     = emulator_guest_has_movbe,
6874         .guest_has_fxsr      = emulator_guest_has_fxsr,
6875         .set_nmi_mask        = emulator_set_nmi_mask,
6876         .get_hflags          = emulator_get_hflags,
6877         .set_hflags          = emulator_set_hflags,
6878         .pre_leave_smm       = emulator_pre_leave_smm,
6879         .post_leave_smm      = emulator_post_leave_smm,
6880         .set_xcr             = emulator_set_xcr,
6881 };
6882
6883 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6884 {
6885         u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6886         /*
6887          * an sti; sti; sequence only disable interrupts for the first
6888          * instruction. So, if the last instruction, be it emulated or
6889          * not, left the system with the INT_STI flag enabled, it
6890          * means that the last instruction is an sti. We should not
6891          * leave the flag on in this case. The same goes for mov ss
6892          */
6893         if (int_shadow & mask)
6894                 mask = 0;
6895         if (unlikely(int_shadow || mask)) {
6896                 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6897                 if (!mask)
6898                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6899         }
6900 }
6901
6902 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6903 {
6904         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6905         if (ctxt->exception.vector == PF_VECTOR)
6906                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6907
6908         if (ctxt->exception.error_code_valid)
6909                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6910                                       ctxt->exception.error_code);
6911         else
6912                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6913         return false;
6914 }
6915
6916 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6917 {
6918         struct x86_emulate_ctxt *ctxt;
6919
6920         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6921         if (!ctxt) {
6922                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6923                 return NULL;
6924         }
6925
6926         ctxt->vcpu = vcpu;
6927         ctxt->ops = &emulate_ops;
6928         vcpu->arch.emulate_ctxt = ctxt;
6929
6930         return ctxt;
6931 }
6932
6933 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6934 {
6935         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6936         int cs_db, cs_l;
6937
6938         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6939
6940         ctxt->gpa_available = false;
6941         ctxt->eflags = kvm_get_rflags(vcpu);
6942         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6943
6944         ctxt->eip = kvm_rip_read(vcpu);
6945         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6946                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6947                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6948                      cs_db                              ? X86EMUL_MODE_PROT32 :
6949                                                           X86EMUL_MODE_PROT16;
6950         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6951         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6952         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6953
6954         init_decode_cache(ctxt);
6955         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6956 }
6957
6958 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6959 {
6960         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6961         int ret;
6962
6963         init_emulate_ctxt(vcpu);
6964
6965         ctxt->op_bytes = 2;
6966         ctxt->ad_bytes = 2;
6967         ctxt->_eip = ctxt->eip + inc_eip;
6968         ret = emulate_int_real(ctxt, irq);
6969
6970         if (ret != X86EMUL_CONTINUE) {
6971                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6972         } else {
6973                 ctxt->eip = ctxt->_eip;
6974                 kvm_rip_write(vcpu, ctxt->eip);
6975                 kvm_set_rflags(vcpu, ctxt->eflags);
6976         }
6977 }
6978 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6979
6980 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6981 {
6982         ++vcpu->stat.insn_emulation_fail;
6983         trace_kvm_emulate_insn_failed(vcpu);
6984
6985         if (emulation_type & EMULTYPE_VMWARE_GP) {
6986                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6987                 return 1;
6988         }
6989
6990         if (emulation_type & EMULTYPE_SKIP) {
6991                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6992                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6993                 vcpu->run->internal.ndata = 0;
6994                 return 0;
6995         }
6996
6997         kvm_queue_exception(vcpu, UD_VECTOR);
6998
6999         if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7000                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7001                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7002                 vcpu->run->internal.ndata = 0;
7003                 return 0;
7004         }
7005
7006         return 1;
7007 }
7008
7009 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7010                                   bool write_fault_to_shadow_pgtable,
7011                                   int emulation_type)
7012 {
7013         gpa_t gpa = cr2_or_gpa;
7014         kvm_pfn_t pfn;
7015
7016         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7017                 return false;
7018
7019         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7020             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7021                 return false;
7022
7023         if (!vcpu->arch.mmu->direct_map) {
7024                 /*
7025                  * Write permission should be allowed since only
7026                  * write access need to be emulated.
7027                  */
7028                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7029
7030                 /*
7031                  * If the mapping is invalid in guest, let cpu retry
7032                  * it to generate fault.
7033                  */
7034                 if (gpa == UNMAPPED_GVA)
7035                         return true;
7036         }
7037
7038         /*
7039          * Do not retry the unhandleable instruction if it faults on the
7040          * readonly host memory, otherwise it will goto a infinite loop:
7041          * retry instruction -> write #PF -> emulation fail -> retry
7042          * instruction -> ...
7043          */
7044         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7045
7046         /*
7047          * If the instruction failed on the error pfn, it can not be fixed,
7048          * report the error to userspace.
7049          */
7050         if (is_error_noslot_pfn(pfn))
7051                 return false;
7052
7053         kvm_release_pfn_clean(pfn);
7054
7055         /* The instructions are well-emulated on direct mmu. */
7056         if (vcpu->arch.mmu->direct_map) {
7057                 unsigned int indirect_shadow_pages;
7058
7059                 spin_lock(&vcpu->kvm->mmu_lock);
7060                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7061                 spin_unlock(&vcpu->kvm->mmu_lock);
7062
7063                 if (indirect_shadow_pages)
7064                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7065
7066                 return true;
7067         }
7068
7069         /*
7070          * if emulation was due to access to shadowed page table
7071          * and it failed try to unshadow page and re-enter the
7072          * guest to let CPU execute the instruction.
7073          */
7074         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7075
7076         /*
7077          * If the access faults on its page table, it can not
7078          * be fixed by unprotecting shadow page and it should
7079          * be reported to userspace.
7080          */
7081         return !write_fault_to_shadow_pgtable;
7082 }
7083
7084 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7085                               gpa_t cr2_or_gpa,  int emulation_type)
7086 {
7087         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7088         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7089
7090         last_retry_eip = vcpu->arch.last_retry_eip;
7091         last_retry_addr = vcpu->arch.last_retry_addr;
7092
7093         /*
7094          * If the emulation is caused by #PF and it is non-page_table
7095          * writing instruction, it means the VM-EXIT is caused by shadow
7096          * page protected, we can zap the shadow page and retry this
7097          * instruction directly.
7098          *
7099          * Note: if the guest uses a non-page-table modifying instruction
7100          * on the PDE that points to the instruction, then we will unmap
7101          * the instruction and go to an infinite loop. So, we cache the
7102          * last retried eip and the last fault address, if we meet the eip
7103          * and the address again, we can break out of the potential infinite
7104          * loop.
7105          */
7106         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7107
7108         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7109                 return false;
7110
7111         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7112             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7113                 return false;
7114
7115         if (x86_page_table_writing_insn(ctxt))
7116                 return false;
7117
7118         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7119                 return false;
7120
7121         vcpu->arch.last_retry_eip = ctxt->eip;
7122         vcpu->arch.last_retry_addr = cr2_or_gpa;
7123
7124         if (!vcpu->arch.mmu->direct_map)
7125                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7126
7127         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7128
7129         return true;
7130 }
7131
7132 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7133 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7134
7135 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7136 {
7137         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7138                 /* This is a good place to trace that we are exiting SMM.  */
7139                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7140
7141                 /* Process a latched INIT or SMI, if any.  */
7142                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7143         }
7144
7145         kvm_mmu_reset_context(vcpu);
7146 }
7147
7148 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7149                                 unsigned long *db)
7150 {
7151         u32 dr6 = 0;
7152         int i;
7153         u32 enable, rwlen;
7154
7155         enable = dr7;
7156         rwlen = dr7 >> 16;
7157         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7158                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7159                         dr6 |= (1 << i);
7160         return dr6;
7161 }
7162
7163 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7164 {
7165         struct kvm_run *kvm_run = vcpu->run;
7166
7167         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7168                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7169                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7170                 kvm_run->debug.arch.exception = DB_VECTOR;
7171                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7172                 return 0;
7173         }
7174         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7175         return 1;
7176 }
7177
7178 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7179 {
7180         unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7181         int r;
7182
7183         r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7184         if (unlikely(!r))
7185                 return 0;
7186
7187         /*
7188          * rflags is the old, "raw" value of the flags.  The new value has
7189          * not been saved yet.
7190          *
7191          * This is correct even for TF set by the guest, because "the
7192          * processor will not generate this exception after the instruction
7193          * that sets the TF flag".
7194          */
7195         if (unlikely(rflags & X86_EFLAGS_TF))
7196                 r = kvm_vcpu_do_singlestep(vcpu);
7197         return r;
7198 }
7199 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7200
7201 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7202 {
7203         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7204             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7205                 struct kvm_run *kvm_run = vcpu->run;
7206                 unsigned long eip = kvm_get_linear_rip(vcpu);
7207                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7208                                            vcpu->arch.guest_debug_dr7,
7209                                            vcpu->arch.eff_db);
7210
7211                 if (dr6 != 0) {
7212                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7213                         kvm_run->debug.arch.pc = eip;
7214                         kvm_run->debug.arch.exception = DB_VECTOR;
7215                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7216                         *r = 0;
7217                         return true;
7218                 }
7219         }
7220
7221         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7222             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7223                 unsigned long eip = kvm_get_linear_rip(vcpu);
7224                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7225                                            vcpu->arch.dr7,
7226                                            vcpu->arch.db);
7227
7228                 if (dr6 != 0) {
7229                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7230                         *r = 1;
7231                         return true;
7232                 }
7233         }
7234
7235         return false;
7236 }
7237
7238 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7239 {
7240         switch (ctxt->opcode_len) {
7241         case 1:
7242                 switch (ctxt->b) {
7243                 case 0xe4:      /* IN */
7244                 case 0xe5:
7245                 case 0xec:
7246                 case 0xed:
7247                 case 0xe6:      /* OUT */
7248                 case 0xe7:
7249                 case 0xee:
7250                 case 0xef:
7251                 case 0x6c:      /* INS */
7252                 case 0x6d:
7253                 case 0x6e:      /* OUTS */
7254                 case 0x6f:
7255                         return true;
7256                 }
7257                 break;
7258         case 2:
7259                 switch (ctxt->b) {
7260                 case 0x33:      /* RDPMC */
7261                         return true;
7262                 }
7263                 break;
7264         }
7265
7266         return false;
7267 }
7268
7269 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7270                             int emulation_type, void *insn, int insn_len)
7271 {
7272         int r;
7273         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7274         bool writeback = true;
7275         bool write_fault_to_spt;
7276
7277         if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7278                 return 1;
7279
7280         vcpu->arch.l1tf_flush_l1d = true;
7281
7282         /*
7283          * Clear write_fault_to_shadow_pgtable here to ensure it is
7284          * never reused.
7285          */
7286         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7287         vcpu->arch.write_fault_to_shadow_pgtable = false;
7288         kvm_clear_exception_queue(vcpu);
7289
7290         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7291                 init_emulate_ctxt(vcpu);
7292
7293                 /*
7294                  * We will reenter on the same instruction since
7295                  * we do not set complete_userspace_io.  This does not
7296                  * handle watchpoints yet, those would be handled in
7297                  * the emulate_ops.
7298                  */
7299                 if (!(emulation_type & EMULTYPE_SKIP) &&
7300                     kvm_vcpu_check_breakpoint(vcpu, &r))
7301                         return r;
7302
7303                 ctxt->interruptibility = 0;
7304                 ctxt->have_exception = false;
7305                 ctxt->exception.vector = -1;
7306                 ctxt->perm_ok = false;
7307
7308                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7309
7310                 r = x86_decode_insn(ctxt, insn, insn_len);
7311
7312                 trace_kvm_emulate_insn_start(vcpu);
7313                 ++vcpu->stat.insn_emulation;
7314                 if (r != EMULATION_OK)  {
7315                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7316                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7317                                 kvm_queue_exception(vcpu, UD_VECTOR);
7318                                 return 1;
7319                         }
7320                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7321                                                   write_fault_to_spt,
7322                                                   emulation_type))
7323                                 return 1;
7324                         if (ctxt->have_exception) {
7325                                 /*
7326                                  * #UD should result in just EMULATION_FAILED, and trap-like
7327                                  * exception should not be encountered during decode.
7328                                  */
7329                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7330                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7331                                 inject_emulated_exception(vcpu);
7332                                 return 1;
7333                         }
7334                         return handle_emulation_failure(vcpu, emulation_type);
7335                 }
7336         }
7337
7338         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7339             !is_vmware_backdoor_opcode(ctxt)) {
7340                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7341                 return 1;
7342         }
7343
7344         /*
7345          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7346          * for kvm_skip_emulated_instruction().  The caller is responsible for
7347          * updating interruptibility state and injecting single-step #DBs.
7348          */
7349         if (emulation_type & EMULTYPE_SKIP) {
7350                 kvm_rip_write(vcpu, ctxt->_eip);
7351                 if (ctxt->eflags & X86_EFLAGS_RF)
7352                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7353                 return 1;
7354         }
7355
7356         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7357                 return 1;
7358
7359         /* this is needed for vmware backdoor interface to work since it
7360            changes registers values  during IO operation */
7361         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7362                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7363                 emulator_invalidate_register_cache(ctxt);
7364         }
7365
7366 restart:
7367         if (emulation_type & EMULTYPE_PF) {
7368                 /* Save the faulting GPA (cr2) in the address field */
7369                 ctxt->exception.address = cr2_or_gpa;
7370
7371                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7372                 if (vcpu->arch.mmu->direct_map) {
7373                         ctxt->gpa_available = true;
7374                         ctxt->gpa_val = cr2_or_gpa;
7375                 }
7376         } else {
7377                 /* Sanitize the address out of an abundance of paranoia. */
7378                 ctxt->exception.address = 0;
7379         }
7380
7381         r = x86_emulate_insn(ctxt);
7382
7383         if (r == EMULATION_INTERCEPTED)
7384                 return 1;
7385
7386         if (r == EMULATION_FAILED) {
7387                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7388                                         emulation_type))
7389                         return 1;
7390
7391                 return handle_emulation_failure(vcpu, emulation_type);
7392         }
7393
7394         if (ctxt->have_exception) {
7395                 r = 1;
7396                 if (inject_emulated_exception(vcpu))
7397                         return r;
7398         } else if (vcpu->arch.pio.count) {
7399                 if (!vcpu->arch.pio.in) {
7400                         /* FIXME: return into emulator if single-stepping.  */
7401                         vcpu->arch.pio.count = 0;
7402                 } else {
7403                         writeback = false;
7404                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7405                 }
7406                 r = 0;
7407         } else if (vcpu->mmio_needed) {
7408                 ++vcpu->stat.mmio_exits;
7409
7410                 if (!vcpu->mmio_is_write)
7411                         writeback = false;
7412                 r = 0;
7413                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7414         } else if (r == EMULATION_RESTART)
7415                 goto restart;
7416         else
7417                 r = 1;
7418
7419         if (writeback) {
7420                 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7421                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7422                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7423                 if (!ctxt->have_exception ||
7424                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7425                         kvm_rip_write(vcpu, ctxt->eip);
7426                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7427                                 r = kvm_vcpu_do_singlestep(vcpu);
7428                         if (kvm_x86_ops.update_emulated_instruction)
7429                                 kvm_x86_ops.update_emulated_instruction(vcpu);
7430                         __kvm_set_rflags(vcpu, ctxt->eflags);
7431                 }
7432
7433                 /*
7434                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7435                  * do nothing, and it will be requested again as soon as
7436                  * the shadow expires.  But we still need to check here,
7437                  * because POPF has no interrupt shadow.
7438                  */
7439                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7440                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7441         } else
7442                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7443
7444         return r;
7445 }
7446
7447 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7448 {
7449         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7450 }
7451 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7452
7453 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7454                                         void *insn, int insn_len)
7455 {
7456         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7457 }
7458 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7459
7460 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7461 {
7462         vcpu->arch.pio.count = 0;
7463         return 1;
7464 }
7465
7466 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7467 {
7468         vcpu->arch.pio.count = 0;
7469
7470         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7471                 return 1;
7472
7473         return kvm_skip_emulated_instruction(vcpu);
7474 }
7475
7476 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7477                             unsigned short port)
7478 {
7479         unsigned long val = kvm_rax_read(vcpu);
7480         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7481
7482         if (ret)
7483                 return ret;
7484
7485         /*
7486          * Workaround userspace that relies on old KVM behavior of %rip being
7487          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7488          */
7489         if (port == 0x7e &&
7490             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7491                 vcpu->arch.complete_userspace_io =
7492                         complete_fast_pio_out_port_0x7e;
7493                 kvm_skip_emulated_instruction(vcpu);
7494         } else {
7495                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7496                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7497         }
7498         return 0;
7499 }
7500
7501 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7502 {
7503         unsigned long val;
7504
7505         /* We should only ever be called with arch.pio.count equal to 1 */
7506         BUG_ON(vcpu->arch.pio.count != 1);
7507
7508         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7509                 vcpu->arch.pio.count = 0;
7510                 return 1;
7511         }
7512
7513         /* For size less than 4 we merge, else we zero extend */
7514         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7515
7516         /*
7517          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7518          * the copy and tracing
7519          */
7520         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7521         kvm_rax_write(vcpu, val);
7522
7523         return kvm_skip_emulated_instruction(vcpu);
7524 }
7525
7526 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7527                            unsigned short port)
7528 {
7529         unsigned long val;
7530         int ret;
7531
7532         /* For size less than 4 we merge, else we zero extend */
7533         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7534
7535         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7536         if (ret) {
7537                 kvm_rax_write(vcpu, val);
7538                 return ret;
7539         }
7540
7541         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7542         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7543
7544         return 0;
7545 }
7546
7547 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7548 {
7549         int ret;
7550
7551         if (in)
7552                 ret = kvm_fast_pio_in(vcpu, size, port);
7553         else
7554                 ret = kvm_fast_pio_out(vcpu, size, port);
7555         return ret && kvm_skip_emulated_instruction(vcpu);
7556 }
7557 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7558
7559 static int kvmclock_cpu_down_prep(unsigned int cpu)
7560 {
7561         __this_cpu_write(cpu_tsc_khz, 0);
7562         return 0;
7563 }
7564
7565 static void tsc_khz_changed(void *data)
7566 {
7567         struct cpufreq_freqs *freq = data;
7568         unsigned long khz = 0;
7569
7570         if (data)
7571                 khz = freq->new;
7572         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7573                 khz = cpufreq_quick_get(raw_smp_processor_id());
7574         if (!khz)
7575                 khz = tsc_khz;
7576         __this_cpu_write(cpu_tsc_khz, khz);
7577 }
7578
7579 #ifdef CONFIG_X86_64
7580 static void kvm_hyperv_tsc_notifier(void)
7581 {
7582         struct kvm *kvm;
7583         struct kvm_vcpu *vcpu;
7584         int cpu;
7585
7586         mutex_lock(&kvm_lock);
7587         list_for_each_entry(kvm, &vm_list, vm_list)
7588                 kvm_make_mclock_inprogress_request(kvm);
7589
7590         hyperv_stop_tsc_emulation();
7591
7592         /* TSC frequency always matches when on Hyper-V */
7593         for_each_present_cpu(cpu)
7594                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7595         kvm_max_guest_tsc_khz = tsc_khz;
7596
7597         list_for_each_entry(kvm, &vm_list, vm_list) {
7598                 struct kvm_arch *ka = &kvm->arch;
7599
7600                 spin_lock(&ka->pvclock_gtod_sync_lock);
7601
7602                 pvclock_update_vm_gtod_copy(kvm);
7603
7604                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7605                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7606
7607                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7608                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7609
7610                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7611         }
7612         mutex_unlock(&kvm_lock);
7613 }
7614 #endif
7615
7616 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7617 {
7618         struct kvm *kvm;
7619         struct kvm_vcpu *vcpu;
7620         int i, send_ipi = 0;
7621
7622         /*
7623          * We allow guests to temporarily run on slowing clocks,
7624          * provided we notify them after, or to run on accelerating
7625          * clocks, provided we notify them before.  Thus time never
7626          * goes backwards.
7627          *
7628          * However, we have a problem.  We can't atomically update
7629          * the frequency of a given CPU from this function; it is
7630          * merely a notifier, which can be called from any CPU.
7631          * Changing the TSC frequency at arbitrary points in time
7632          * requires a recomputation of local variables related to
7633          * the TSC for each VCPU.  We must flag these local variables
7634          * to be updated and be sure the update takes place with the
7635          * new frequency before any guests proceed.
7636          *
7637          * Unfortunately, the combination of hotplug CPU and frequency
7638          * change creates an intractable locking scenario; the order
7639          * of when these callouts happen is undefined with respect to
7640          * CPU hotplug, and they can race with each other.  As such,
7641          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7642          * undefined; you can actually have a CPU frequency change take
7643          * place in between the computation of X and the setting of the
7644          * variable.  To protect against this problem, all updates of
7645          * the per_cpu tsc_khz variable are done in an interrupt
7646          * protected IPI, and all callers wishing to update the value
7647          * must wait for a synchronous IPI to complete (which is trivial
7648          * if the caller is on the CPU already).  This establishes the
7649          * necessary total order on variable updates.
7650          *
7651          * Note that because a guest time update may take place
7652          * anytime after the setting of the VCPU's request bit, the
7653          * correct TSC value must be set before the request.  However,
7654          * to ensure the update actually makes it to any guest which
7655          * starts running in hardware virtualization between the set
7656          * and the acquisition of the spinlock, we must also ping the
7657          * CPU after setting the request bit.
7658          *
7659          */
7660
7661         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7662
7663         mutex_lock(&kvm_lock);
7664         list_for_each_entry(kvm, &vm_list, vm_list) {
7665                 kvm_for_each_vcpu(i, vcpu, kvm) {
7666                         if (vcpu->cpu != cpu)
7667                                 continue;
7668                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7669                         if (vcpu->cpu != raw_smp_processor_id())
7670                                 send_ipi = 1;
7671                 }
7672         }
7673         mutex_unlock(&kvm_lock);
7674
7675         if (freq->old < freq->new && send_ipi) {
7676                 /*
7677                  * We upscale the frequency.  Must make the guest
7678                  * doesn't see old kvmclock values while running with
7679                  * the new frequency, otherwise we risk the guest sees
7680                  * time go backwards.
7681                  *
7682                  * In case we update the frequency for another cpu
7683                  * (which might be in guest context) send an interrupt
7684                  * to kick the cpu out of guest context.  Next time
7685                  * guest context is entered kvmclock will be updated,
7686                  * so the guest will not see stale values.
7687                  */
7688                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7689         }
7690 }
7691
7692 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7693                                      void *data)
7694 {
7695         struct cpufreq_freqs *freq = data;
7696         int cpu;
7697
7698         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7699                 return 0;
7700         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7701                 return 0;
7702
7703         for_each_cpu(cpu, freq->policy->cpus)
7704                 __kvmclock_cpufreq_notifier(freq, cpu);
7705
7706         return 0;
7707 }
7708
7709 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7710         .notifier_call  = kvmclock_cpufreq_notifier
7711 };
7712
7713 static int kvmclock_cpu_online(unsigned int cpu)
7714 {
7715         tsc_khz_changed(NULL);
7716         return 0;
7717 }
7718
7719 static void kvm_timer_init(void)
7720 {
7721         max_tsc_khz = tsc_khz;
7722
7723         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7724 #ifdef CONFIG_CPU_FREQ
7725                 struct cpufreq_policy *policy;
7726                 int cpu;
7727
7728                 cpu = get_cpu();
7729                 policy = cpufreq_cpu_get(cpu);
7730                 if (policy) {
7731                         if (policy->cpuinfo.max_freq)
7732                                 max_tsc_khz = policy->cpuinfo.max_freq;
7733                         cpufreq_cpu_put(policy);
7734                 }
7735                 put_cpu();
7736 #endif
7737                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7738                                           CPUFREQ_TRANSITION_NOTIFIER);
7739         }
7740
7741         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7742                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7743 }
7744
7745 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7746 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7747
7748 int kvm_is_in_guest(void)
7749 {
7750         return __this_cpu_read(current_vcpu) != NULL;
7751 }
7752
7753 static int kvm_is_user_mode(void)
7754 {
7755         int user_mode = 3;
7756
7757         if (__this_cpu_read(current_vcpu))
7758                 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7759
7760         return user_mode != 0;
7761 }
7762
7763 static unsigned long kvm_get_guest_ip(void)
7764 {
7765         unsigned long ip = 0;
7766
7767         if (__this_cpu_read(current_vcpu))
7768                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7769
7770         return ip;
7771 }
7772
7773 static void kvm_handle_intel_pt_intr(void)
7774 {
7775         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7776
7777         kvm_make_request(KVM_REQ_PMI, vcpu);
7778         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7779                         (unsigned long *)&vcpu->arch.pmu.global_status);
7780 }
7781
7782 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7783         .is_in_guest            = kvm_is_in_guest,
7784         .is_user_mode           = kvm_is_user_mode,
7785         .get_guest_ip           = kvm_get_guest_ip,
7786         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7787 };
7788
7789 #ifdef CONFIG_X86_64
7790 static void pvclock_gtod_update_fn(struct work_struct *work)
7791 {
7792         struct kvm *kvm;
7793
7794         struct kvm_vcpu *vcpu;
7795         int i;
7796
7797         mutex_lock(&kvm_lock);
7798         list_for_each_entry(kvm, &vm_list, vm_list)
7799                 kvm_for_each_vcpu(i, vcpu, kvm)
7800                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7801         atomic_set(&kvm_guest_has_master_clock, 0);
7802         mutex_unlock(&kvm_lock);
7803 }
7804
7805 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7806
7807 /*
7808  * Notification about pvclock gtod data update.
7809  */
7810 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7811                                void *priv)
7812 {
7813         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7814         struct timekeeper *tk = priv;
7815
7816         update_pvclock_gtod(tk);
7817
7818         /* disable master clock if host does not trust, or does not
7819          * use, TSC based clocksource.
7820          */
7821         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7822             atomic_read(&kvm_guest_has_master_clock) != 0)
7823                 queue_work(system_long_wq, &pvclock_gtod_work);
7824
7825         return 0;
7826 }
7827
7828 static struct notifier_block pvclock_gtod_notifier = {
7829         .notifier_call = pvclock_gtod_notify,
7830 };
7831 #endif
7832
7833 int kvm_arch_init(void *opaque)
7834 {
7835         struct kvm_x86_init_ops *ops = opaque;
7836         int r;
7837
7838         if (kvm_x86_ops.hardware_enable) {
7839                 printk(KERN_ERR "kvm: already loaded the other module\n");
7840                 r = -EEXIST;
7841                 goto out;
7842         }
7843
7844         if (!ops->cpu_has_kvm_support()) {
7845                 pr_err_ratelimited("kvm: no hardware support\n");
7846                 r = -EOPNOTSUPP;
7847                 goto out;
7848         }
7849         if (ops->disabled_by_bios()) {
7850                 pr_err_ratelimited("kvm: disabled by bios\n");
7851                 r = -EOPNOTSUPP;
7852                 goto out;
7853         }
7854
7855         /*
7856          * KVM explicitly assumes that the guest has an FPU and
7857          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7858          * vCPU's FPU state as a fxregs_state struct.
7859          */
7860         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7861                 printk(KERN_ERR "kvm: inadequate fpu\n");
7862                 r = -EOPNOTSUPP;
7863                 goto out;
7864         }
7865
7866         r = -ENOMEM;
7867         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7868                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7869                                           NULL);
7870         if (!x86_fpu_cache) {
7871                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7872                 goto out;
7873         }
7874
7875         x86_emulator_cache = kvm_alloc_emulator_cache();
7876         if (!x86_emulator_cache) {
7877                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7878                 goto out_free_x86_fpu_cache;
7879         }
7880
7881         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7882         if (!user_return_msrs) {
7883                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7884                 goto out_free_x86_emulator_cache;
7885         }
7886
7887         r = kvm_mmu_module_init();
7888         if (r)
7889                 goto out_free_percpu;
7890
7891         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7892                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7893                         PT_PRESENT_MASK, 0, sme_me_mask);
7894         kvm_timer_init();
7895
7896         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7897
7898         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7899                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7900                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7901         }
7902
7903         kvm_lapic_init();
7904         if (pi_inject_timer == -1)
7905                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7906 #ifdef CONFIG_X86_64
7907         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7908
7909         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7910                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7911 #endif
7912
7913         return 0;
7914
7915 out_free_percpu:
7916         free_percpu(user_return_msrs);
7917 out_free_x86_emulator_cache:
7918         kmem_cache_destroy(x86_emulator_cache);
7919 out_free_x86_fpu_cache:
7920         kmem_cache_destroy(x86_fpu_cache);
7921 out:
7922         return r;
7923 }
7924
7925 void kvm_arch_exit(void)
7926 {
7927 #ifdef CONFIG_X86_64
7928         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7929                 clear_hv_tscchange_cb();
7930 #endif
7931         kvm_lapic_exit();
7932         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7933
7934         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7935                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7936                                             CPUFREQ_TRANSITION_NOTIFIER);
7937         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7938 #ifdef CONFIG_X86_64
7939         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7940 #endif
7941         kvm_x86_ops.hardware_enable = NULL;
7942         kvm_mmu_module_exit();
7943         free_percpu(user_return_msrs);
7944         kmem_cache_destroy(x86_fpu_cache);
7945 }
7946
7947 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7948 {
7949         ++vcpu->stat.halt_exits;
7950         if (lapic_in_kernel(vcpu)) {
7951                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7952                 return 1;
7953         } else {
7954                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7955                 return 0;
7956         }
7957 }
7958 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7959
7960 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7961 {
7962         int ret = kvm_skip_emulated_instruction(vcpu);
7963         /*
7964          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7965          * KVM_EXIT_DEBUG here.
7966          */
7967         return kvm_vcpu_halt(vcpu) && ret;
7968 }
7969 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7970
7971 #ifdef CONFIG_X86_64
7972 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7973                                 unsigned long clock_type)
7974 {
7975         struct kvm_clock_pairing clock_pairing;
7976         struct timespec64 ts;
7977         u64 cycle;
7978         int ret;
7979
7980         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7981                 return -KVM_EOPNOTSUPP;
7982
7983         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7984                 return -KVM_EOPNOTSUPP;
7985
7986         clock_pairing.sec = ts.tv_sec;
7987         clock_pairing.nsec = ts.tv_nsec;
7988         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7989         clock_pairing.flags = 0;
7990         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7991
7992         ret = 0;
7993         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7994                             sizeof(struct kvm_clock_pairing)))
7995                 ret = -KVM_EFAULT;
7996
7997         return ret;
7998 }
7999 #endif
8000
8001 /*
8002  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8003  *
8004  * @apicid - apicid of vcpu to be kicked.
8005  */
8006 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8007 {
8008         struct kvm_lapic_irq lapic_irq;
8009
8010         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8011         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8012         lapic_irq.level = 0;
8013         lapic_irq.dest_id = apicid;
8014         lapic_irq.msi_redir_hint = false;
8015
8016         lapic_irq.delivery_mode = APIC_DM_REMRD;
8017         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8018 }
8019
8020 bool kvm_apicv_activated(struct kvm *kvm)
8021 {
8022         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8023 }
8024 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8025
8026 void kvm_apicv_init(struct kvm *kvm, bool enable)
8027 {
8028         if (enable)
8029                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8030                           &kvm->arch.apicv_inhibit_reasons);
8031         else
8032                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8033                         &kvm->arch.apicv_inhibit_reasons);
8034 }
8035 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8036
8037 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8038 {
8039         struct kvm_vcpu *target = NULL;
8040         struct kvm_apic_map *map;
8041
8042         rcu_read_lock();
8043         map = rcu_dereference(kvm->arch.apic_map);
8044
8045         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8046                 target = map->phys_map[dest_id]->vcpu;
8047
8048         rcu_read_unlock();
8049
8050         if (target && READ_ONCE(target->ready))
8051                 kvm_vcpu_yield_to(target);
8052 }
8053
8054 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8055 {
8056         unsigned long nr, a0, a1, a2, a3, ret;
8057         int op_64_bit;
8058
8059         if (kvm_hv_hypercall_enabled(vcpu->kvm))
8060                 return kvm_hv_hypercall(vcpu);
8061
8062         nr = kvm_rax_read(vcpu);
8063         a0 = kvm_rbx_read(vcpu);
8064         a1 = kvm_rcx_read(vcpu);
8065         a2 = kvm_rdx_read(vcpu);
8066         a3 = kvm_rsi_read(vcpu);
8067
8068         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8069
8070         op_64_bit = is_64_bit_mode(vcpu);
8071         if (!op_64_bit) {
8072                 nr &= 0xFFFFFFFF;
8073                 a0 &= 0xFFFFFFFF;
8074                 a1 &= 0xFFFFFFFF;
8075                 a2 &= 0xFFFFFFFF;
8076                 a3 &= 0xFFFFFFFF;
8077         }
8078
8079         if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8080                 ret = -KVM_EPERM;
8081                 goto out;
8082         }
8083
8084         ret = -KVM_ENOSYS;
8085
8086         switch (nr) {
8087         case KVM_HC_VAPIC_POLL_IRQ:
8088                 ret = 0;
8089                 break;
8090         case KVM_HC_KICK_CPU:
8091                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8092                         break;
8093
8094                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8095                 kvm_sched_yield(vcpu->kvm, a1);
8096                 ret = 0;
8097                 break;
8098 #ifdef CONFIG_X86_64
8099         case KVM_HC_CLOCK_PAIRING:
8100                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8101                 break;
8102 #endif
8103         case KVM_HC_SEND_IPI:
8104                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8105                         break;
8106
8107                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8108                 break;
8109         case KVM_HC_SCHED_YIELD:
8110                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8111                         break;
8112
8113                 kvm_sched_yield(vcpu->kvm, a0);
8114                 ret = 0;
8115                 break;
8116         default:
8117                 ret = -KVM_ENOSYS;
8118                 break;
8119         }
8120 out:
8121         if (!op_64_bit)
8122                 ret = (u32)ret;
8123         kvm_rax_write(vcpu, ret);
8124
8125         ++vcpu->stat.hypercalls;
8126         return kvm_skip_emulated_instruction(vcpu);
8127 }
8128 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8129
8130 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8131 {
8132         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8133         char instruction[3];
8134         unsigned long rip = kvm_rip_read(vcpu);
8135
8136         kvm_x86_ops.patch_hypercall(vcpu, instruction);
8137
8138         return emulator_write_emulated(ctxt, rip, instruction, 3,
8139                 &ctxt->exception);
8140 }
8141
8142 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8143 {
8144         return vcpu->run->request_interrupt_window &&
8145                 likely(!pic_in_kernel(vcpu->kvm));
8146 }
8147
8148 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8149 {
8150         struct kvm_run *kvm_run = vcpu->run;
8151
8152         /*
8153          * if_flag is obsolete and useless, so do not bother
8154          * setting it for SEV-ES guests.  Userspace can just
8155          * use kvm_run->ready_for_interrupt_injection.
8156          */
8157         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8158                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8159
8160         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8161         kvm_run->cr8 = kvm_get_cr8(vcpu);
8162         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8163         kvm_run->ready_for_interrupt_injection =
8164                 pic_in_kernel(vcpu->kvm) ||
8165                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8166 }
8167
8168 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8169 {
8170         int max_irr, tpr;
8171
8172         if (!kvm_x86_ops.update_cr8_intercept)
8173                 return;
8174
8175         if (!lapic_in_kernel(vcpu))
8176                 return;
8177
8178         if (vcpu->arch.apicv_active)
8179                 return;
8180
8181         if (!vcpu->arch.apic->vapic_addr)
8182                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8183         else
8184                 max_irr = -1;
8185
8186         if (max_irr != -1)
8187                 max_irr >>= 4;
8188
8189         tpr = kvm_lapic_get_cr8(vcpu);
8190
8191         kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8192 }
8193
8194 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8195 {
8196         int r;
8197         bool can_inject = true;
8198
8199         /* try to reinject previous events if any */
8200
8201         if (vcpu->arch.exception.injected) {
8202                 kvm_x86_ops.queue_exception(vcpu);
8203                 can_inject = false;
8204         }
8205         /*
8206          * Do not inject an NMI or interrupt if there is a pending
8207          * exception.  Exceptions and interrupts are recognized at
8208          * instruction boundaries, i.e. the start of an instruction.
8209          * Trap-like exceptions, e.g. #DB, have higher priority than
8210          * NMIs and interrupts, i.e. traps are recognized before an
8211          * NMI/interrupt that's pending on the same instruction.
8212          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8213          * priority, but are only generated (pended) during instruction
8214          * execution, i.e. a pending fault-like exception means the
8215          * fault occurred on the *previous* instruction and must be
8216          * serviced prior to recognizing any new events in order to
8217          * fully complete the previous instruction.
8218          */
8219         else if (!vcpu->arch.exception.pending) {
8220                 if (vcpu->arch.nmi_injected) {
8221                         kvm_x86_ops.set_nmi(vcpu);
8222                         can_inject = false;
8223                 } else if (vcpu->arch.interrupt.injected) {
8224                         kvm_x86_ops.set_irq(vcpu);
8225                         can_inject = false;
8226                 }
8227         }
8228
8229         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8230                      vcpu->arch.exception.pending);
8231
8232         /*
8233          * Call check_nested_events() even if we reinjected a previous event
8234          * in order for caller to determine if it should require immediate-exit
8235          * from L2 to L1 due to pending L1 events which require exit
8236          * from L2 to L1.
8237          */
8238         if (is_guest_mode(vcpu)) {
8239                 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8240                 if (r < 0)
8241                         goto busy;
8242         }
8243
8244         /* try to inject new event if pending */
8245         if (vcpu->arch.exception.pending) {
8246                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8247                                         vcpu->arch.exception.has_error_code,
8248                                         vcpu->arch.exception.error_code);
8249
8250                 vcpu->arch.exception.pending = false;
8251                 vcpu->arch.exception.injected = true;
8252
8253                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8254                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8255                                              X86_EFLAGS_RF);
8256
8257                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8258                         kvm_deliver_exception_payload(vcpu);
8259                         if (vcpu->arch.dr7 & DR7_GD) {
8260                                 vcpu->arch.dr7 &= ~DR7_GD;
8261                                 kvm_update_dr7(vcpu);
8262                         }
8263                 }
8264
8265                 kvm_x86_ops.queue_exception(vcpu);
8266                 can_inject = false;
8267         }
8268
8269         /*
8270          * Finally, inject interrupt events.  If an event cannot be injected
8271          * due to architectural conditions (e.g. IF=0) a window-open exit
8272          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8273          * and can architecturally be injected, but we cannot do it right now:
8274          * an interrupt could have arrived just now and we have to inject it
8275          * as a vmexit, or there could already an event in the queue, which is
8276          * indicated by can_inject.  In that case we request an immediate exit
8277          * in order to make progress and get back here for another iteration.
8278          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8279          */
8280         if (vcpu->arch.smi_pending) {
8281                 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8282                 if (r < 0)
8283                         goto busy;
8284                 if (r) {
8285                         vcpu->arch.smi_pending = false;
8286                         ++vcpu->arch.smi_count;
8287                         enter_smm(vcpu);
8288                         can_inject = false;
8289                 } else
8290                         kvm_x86_ops.enable_smi_window(vcpu);
8291         }
8292
8293         if (vcpu->arch.nmi_pending) {
8294                 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8295                 if (r < 0)
8296                         goto busy;
8297                 if (r) {
8298                         --vcpu->arch.nmi_pending;
8299                         vcpu->arch.nmi_injected = true;
8300                         kvm_x86_ops.set_nmi(vcpu);
8301                         can_inject = false;
8302                         WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8303                 }
8304                 if (vcpu->arch.nmi_pending)
8305                         kvm_x86_ops.enable_nmi_window(vcpu);
8306         }
8307
8308         if (kvm_cpu_has_injectable_intr(vcpu)) {
8309                 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8310                 if (r < 0)
8311                         goto busy;
8312                 if (r) {
8313                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8314                         kvm_x86_ops.set_irq(vcpu);
8315                         WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8316                 }
8317                 if (kvm_cpu_has_injectable_intr(vcpu))
8318                         kvm_x86_ops.enable_irq_window(vcpu);
8319         }
8320
8321         if (is_guest_mode(vcpu) &&
8322             kvm_x86_ops.nested_ops->hv_timer_pending &&
8323             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8324                 *req_immediate_exit = true;
8325
8326         WARN_ON(vcpu->arch.exception.pending);
8327         return;
8328
8329 busy:
8330         *req_immediate_exit = true;
8331         return;
8332 }
8333
8334 static void process_nmi(struct kvm_vcpu *vcpu)
8335 {
8336         unsigned limit = 2;
8337
8338         /*
8339          * x86 is limited to one NMI running, and one NMI pending after it.
8340          * If an NMI is already in progress, limit further NMIs to just one.
8341          * Otherwise, allow two (and we'll inject the first one immediately).
8342          */
8343         if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8344                 limit = 1;
8345
8346         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8347         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8348         kvm_make_request(KVM_REQ_EVENT, vcpu);
8349 }
8350
8351 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8352 {
8353         u32 flags = 0;
8354         flags |= seg->g       << 23;
8355         flags |= seg->db      << 22;
8356         flags |= seg->l       << 21;
8357         flags |= seg->avl     << 20;
8358         flags |= seg->present << 15;
8359         flags |= seg->dpl     << 13;
8360         flags |= seg->s       << 12;
8361         flags |= seg->type    << 8;
8362         return flags;
8363 }
8364
8365 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8366 {
8367         struct kvm_segment seg;
8368         int offset;
8369
8370         kvm_get_segment(vcpu, &seg, n);
8371         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8372
8373         if (n < 3)
8374                 offset = 0x7f84 + n * 12;
8375         else
8376                 offset = 0x7f2c + (n - 3) * 12;
8377
8378         put_smstate(u32, buf, offset + 8, seg.base);
8379         put_smstate(u32, buf, offset + 4, seg.limit);
8380         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8381 }
8382
8383 #ifdef CONFIG_X86_64
8384 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8385 {
8386         struct kvm_segment seg;
8387         int offset;
8388         u16 flags;
8389
8390         kvm_get_segment(vcpu, &seg, n);
8391         offset = 0x7e00 + n * 16;
8392
8393         flags = enter_smm_get_segment_flags(&seg) >> 8;
8394         put_smstate(u16, buf, offset, seg.selector);
8395         put_smstate(u16, buf, offset + 2, flags);
8396         put_smstate(u32, buf, offset + 4, seg.limit);
8397         put_smstate(u64, buf, offset + 8, seg.base);
8398 }
8399 #endif
8400
8401 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8402 {
8403         struct desc_ptr dt;
8404         struct kvm_segment seg;
8405         unsigned long val;
8406         int i;
8407
8408         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8409         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8410         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8411         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8412
8413         for (i = 0; i < 8; i++)
8414                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8415
8416         kvm_get_dr(vcpu, 6, &val);
8417         put_smstate(u32, buf, 0x7fcc, (u32)val);
8418         kvm_get_dr(vcpu, 7, &val);
8419         put_smstate(u32, buf, 0x7fc8, (u32)val);
8420
8421         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8422         put_smstate(u32, buf, 0x7fc4, seg.selector);
8423         put_smstate(u32, buf, 0x7f64, seg.base);
8424         put_smstate(u32, buf, 0x7f60, seg.limit);
8425         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8426
8427         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8428         put_smstate(u32, buf, 0x7fc0, seg.selector);
8429         put_smstate(u32, buf, 0x7f80, seg.base);
8430         put_smstate(u32, buf, 0x7f7c, seg.limit);
8431         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8432
8433         kvm_x86_ops.get_gdt(vcpu, &dt);
8434         put_smstate(u32, buf, 0x7f74, dt.address);
8435         put_smstate(u32, buf, 0x7f70, dt.size);
8436
8437         kvm_x86_ops.get_idt(vcpu, &dt);
8438         put_smstate(u32, buf, 0x7f58, dt.address);
8439         put_smstate(u32, buf, 0x7f54, dt.size);
8440
8441         for (i = 0; i < 6; i++)
8442                 enter_smm_save_seg_32(vcpu, buf, i);
8443
8444         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8445
8446         /* revision id */
8447         put_smstate(u32, buf, 0x7efc, 0x00020000);
8448         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8449 }
8450
8451 #ifdef CONFIG_X86_64
8452 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8453 {
8454         struct desc_ptr dt;
8455         struct kvm_segment seg;
8456         unsigned long val;
8457         int i;
8458
8459         for (i = 0; i < 16; i++)
8460                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8461
8462         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8463         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8464
8465         kvm_get_dr(vcpu, 6, &val);
8466         put_smstate(u64, buf, 0x7f68, val);
8467         kvm_get_dr(vcpu, 7, &val);
8468         put_smstate(u64, buf, 0x7f60, val);
8469
8470         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8471         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8472         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8473
8474         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8475
8476         /* revision id */
8477         put_smstate(u32, buf, 0x7efc, 0x00020064);
8478
8479         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8480
8481         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8482         put_smstate(u16, buf, 0x7e90, seg.selector);
8483         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8484         put_smstate(u32, buf, 0x7e94, seg.limit);
8485         put_smstate(u64, buf, 0x7e98, seg.base);
8486
8487         kvm_x86_ops.get_idt(vcpu, &dt);
8488         put_smstate(u32, buf, 0x7e84, dt.size);
8489         put_smstate(u64, buf, 0x7e88, dt.address);
8490
8491         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8492         put_smstate(u16, buf, 0x7e70, seg.selector);
8493         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8494         put_smstate(u32, buf, 0x7e74, seg.limit);
8495         put_smstate(u64, buf, 0x7e78, seg.base);
8496
8497         kvm_x86_ops.get_gdt(vcpu, &dt);
8498         put_smstate(u32, buf, 0x7e64, dt.size);
8499         put_smstate(u64, buf, 0x7e68, dt.address);
8500
8501         for (i = 0; i < 6; i++)
8502                 enter_smm_save_seg_64(vcpu, buf, i);
8503 }
8504 #endif
8505
8506 static void enter_smm(struct kvm_vcpu *vcpu)
8507 {
8508         struct kvm_segment cs, ds;
8509         struct desc_ptr dt;
8510         char buf[512];
8511         u32 cr0;
8512
8513         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8514         memset(buf, 0, 512);
8515 #ifdef CONFIG_X86_64
8516         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8517                 enter_smm_save_state_64(vcpu, buf);
8518         else
8519 #endif
8520                 enter_smm_save_state_32(vcpu, buf);
8521
8522         /*
8523          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8524          * vCPU state (e.g. leave guest mode) after we've saved the state into
8525          * the SMM state-save area.
8526          */
8527         kvm_x86_ops.pre_enter_smm(vcpu, buf);
8528
8529         vcpu->arch.hflags |= HF_SMM_MASK;
8530         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8531
8532         if (kvm_x86_ops.get_nmi_mask(vcpu))
8533                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8534         else
8535                 kvm_x86_ops.set_nmi_mask(vcpu, true);
8536
8537         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8538         kvm_rip_write(vcpu, 0x8000);
8539
8540         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8541         kvm_x86_ops.set_cr0(vcpu, cr0);
8542         vcpu->arch.cr0 = cr0;
8543
8544         kvm_x86_ops.set_cr4(vcpu, 0);
8545
8546         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8547         dt.address = dt.size = 0;
8548         kvm_x86_ops.set_idt(vcpu, &dt);
8549
8550         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8551
8552         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8553         cs.base = vcpu->arch.smbase;
8554
8555         ds.selector = 0;
8556         ds.base = 0;
8557
8558         cs.limit    = ds.limit = 0xffffffff;
8559         cs.type     = ds.type = 0x3;
8560         cs.dpl      = ds.dpl = 0;
8561         cs.db       = ds.db = 0;
8562         cs.s        = ds.s = 1;
8563         cs.l        = ds.l = 0;
8564         cs.g        = ds.g = 1;
8565         cs.avl      = ds.avl = 0;
8566         cs.present  = ds.present = 1;
8567         cs.unusable = ds.unusable = 0;
8568         cs.padding  = ds.padding = 0;
8569
8570         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8571         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8572         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8573         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8574         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8575         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8576
8577 #ifdef CONFIG_X86_64
8578         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8579                 kvm_x86_ops.set_efer(vcpu, 0);
8580 #endif
8581
8582         kvm_update_cpuid_runtime(vcpu);
8583         kvm_mmu_reset_context(vcpu);
8584 }
8585
8586 static void process_smi(struct kvm_vcpu *vcpu)
8587 {
8588         vcpu->arch.smi_pending = true;
8589         kvm_make_request(KVM_REQ_EVENT, vcpu);
8590 }
8591
8592 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8593                                        unsigned long *vcpu_bitmap)
8594 {
8595         cpumask_var_t cpus;
8596
8597         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8598
8599         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8600                                     NULL, vcpu_bitmap, cpus);
8601
8602         free_cpumask_var(cpus);
8603 }
8604
8605 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8606 {
8607         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8608 }
8609
8610 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8611 {
8612         if (!lapic_in_kernel(vcpu))
8613                 return;
8614
8615         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8616         kvm_apic_update_apicv(vcpu);
8617         kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8618 }
8619 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8620
8621 /*
8622  * NOTE: Do not hold any lock prior to calling this.
8623  *
8624  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8625  * locked, because it calls __x86_set_memory_region() which does
8626  * synchronize_srcu(&kvm->srcu).
8627  */
8628 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8629 {
8630         struct kvm_vcpu *except;
8631         unsigned long old, new, expected;
8632
8633         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8634             !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8635                 return;
8636
8637         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8638         do {
8639                 expected = new = old;
8640                 if (activate)
8641                         __clear_bit(bit, &new);
8642                 else
8643                         __set_bit(bit, &new);
8644                 if (new == old)
8645                         break;
8646                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8647         } while (old != expected);
8648
8649         if (!!old == !!new)
8650                 return;
8651
8652         trace_kvm_apicv_update_request(activate, bit);
8653         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8654                 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8655
8656         /*
8657          * Sending request to update APICV for all other vcpus,
8658          * while update the calling vcpu immediately instead of
8659          * waiting for another #VMEXIT to handle the request.
8660          */
8661         except = kvm_get_running_vcpu();
8662         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8663                                          except);
8664         if (except)
8665                 kvm_vcpu_update_apicv(except);
8666 }
8667 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8668
8669 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8670 {
8671         if (!kvm_apic_present(vcpu))
8672                 return;
8673
8674         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8675
8676         if (irqchip_split(vcpu->kvm))
8677                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8678         else {
8679                 if (vcpu->arch.apicv_active)
8680                         kvm_x86_ops.sync_pir_to_irr(vcpu);
8681                 if (ioapic_in_kernel(vcpu->kvm))
8682                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8683         }
8684
8685         if (is_guest_mode(vcpu))
8686                 vcpu->arch.load_eoi_exitmap_pending = true;
8687         else
8688                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8689 }
8690
8691 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8692 {
8693         u64 eoi_exit_bitmap[4];
8694
8695         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8696                 return;
8697
8698         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8699                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8700         kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8701 }
8702
8703 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8704                                             unsigned long start, unsigned long end)
8705 {
8706         unsigned long apic_address;
8707
8708         /*
8709          * The physical address of apic access page is stored in the VMCS.
8710          * Update it when it becomes invalid.
8711          */
8712         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8713         if (start <= apic_address && apic_address < end)
8714                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8715 }
8716
8717 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8718 {
8719         if (!lapic_in_kernel(vcpu))
8720                 return;
8721
8722         if (!kvm_x86_ops.set_apic_access_page_addr)
8723                 return;
8724
8725         kvm_x86_ops.set_apic_access_page_addr(vcpu);
8726 }
8727
8728 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8729 {
8730         smp_send_reschedule(vcpu->cpu);
8731 }
8732 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8733
8734 /*
8735  * Returns 1 to let vcpu_run() continue the guest execution loop without
8736  * exiting to the userspace.  Otherwise, the value will be returned to the
8737  * userspace.
8738  */
8739 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8740 {
8741         int r;
8742         bool req_int_win =
8743                 dm_request_for_irq_injection(vcpu) &&
8744                 kvm_cpu_accept_dm_intr(vcpu);
8745         fastpath_t exit_fastpath;
8746
8747         bool req_immediate_exit = false;
8748
8749         /* Forbid vmenter if vcpu dirty ring is soft-full */
8750         if (unlikely(vcpu->kvm->dirty_ring_size &&
8751                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8752                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8753                 trace_kvm_dirty_ring_exit(vcpu);
8754                 r = 0;
8755                 goto out;
8756         }
8757
8758         if (kvm_request_pending(vcpu)) {
8759                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8760                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8761                                 r = 0;
8762                                 goto out;
8763                         }
8764                 }
8765                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8766                         kvm_mmu_unload(vcpu);
8767                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8768                         __kvm_migrate_timers(vcpu);
8769                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8770                         kvm_gen_update_masterclock(vcpu->kvm);
8771                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8772                         kvm_gen_kvmclock_update(vcpu);
8773                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8774                         r = kvm_guest_time_update(vcpu);
8775                         if (unlikely(r))
8776                                 goto out;
8777                 }
8778                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8779                         kvm_mmu_sync_roots(vcpu);
8780                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8781                         kvm_mmu_load_pgd(vcpu);
8782                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8783                         kvm_vcpu_flush_tlb_all(vcpu);
8784
8785                         /* Flushing all ASIDs flushes the current ASID... */
8786                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8787                 }
8788                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8789                         kvm_vcpu_flush_tlb_current(vcpu);
8790                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8791                         kvm_vcpu_flush_tlb_guest(vcpu);
8792
8793                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8794                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8795                         r = 0;
8796                         goto out;
8797                 }
8798                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8799                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8800                         vcpu->mmio_needed = 0;
8801                         r = 0;
8802                         goto out;
8803                 }
8804                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8805                         /* Page is swapped out. Do synthetic halt */
8806                         vcpu->arch.apf.halted = true;
8807                         r = 1;
8808                         goto out;
8809                 }
8810                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8811                         record_steal_time(vcpu);
8812                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8813                         process_smi(vcpu);
8814                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8815                         process_nmi(vcpu);
8816                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8817                         kvm_pmu_handle_event(vcpu);
8818                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8819                         kvm_pmu_deliver_pmi(vcpu);
8820                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8821                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8822                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8823                                      vcpu->arch.ioapic_handled_vectors)) {
8824                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8825                                 vcpu->run->eoi.vector =
8826                                                 vcpu->arch.pending_ioapic_eoi;
8827                                 r = 0;
8828                                 goto out;
8829                         }
8830                 }
8831                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8832                         vcpu_scan_ioapic(vcpu);
8833                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8834                         vcpu_load_eoi_exitmap(vcpu);
8835                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8836                         kvm_vcpu_reload_apic_access_page(vcpu);
8837                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8838                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8839                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8840                         r = 0;
8841                         goto out;
8842                 }
8843                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8844                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8845                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8846                         r = 0;
8847                         goto out;
8848                 }
8849                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8850                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8851                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8852                         r = 0;
8853                         goto out;
8854                 }
8855
8856                 /*
8857                  * KVM_REQ_HV_STIMER has to be processed after
8858                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8859                  * depend on the guest clock being up-to-date
8860                  */
8861                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8862                         kvm_hv_process_stimers(vcpu);
8863                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8864                         kvm_vcpu_update_apicv(vcpu);
8865                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8866                         kvm_check_async_pf_completion(vcpu);
8867                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8868                         kvm_x86_ops.msr_filter_changed(vcpu);
8869         }
8870
8871         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8872                 ++vcpu->stat.req_event;
8873                 kvm_apic_accept_events(vcpu);
8874                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8875                         r = 1;
8876                         goto out;
8877                 }
8878
8879                 inject_pending_event(vcpu, &req_immediate_exit);
8880                 if (req_int_win)
8881                         kvm_x86_ops.enable_irq_window(vcpu);
8882
8883                 if (kvm_lapic_enabled(vcpu)) {
8884                         update_cr8_intercept(vcpu);
8885                         kvm_lapic_sync_to_vapic(vcpu);
8886                 }
8887         }
8888
8889         r = kvm_mmu_reload(vcpu);
8890         if (unlikely(r)) {
8891                 goto cancel_injection;
8892         }
8893
8894         preempt_disable();
8895
8896         kvm_x86_ops.prepare_guest_switch(vcpu);
8897
8898         /*
8899          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8900          * IPI are then delayed after guest entry, which ensures that they
8901          * result in virtual interrupt delivery.
8902          */
8903         local_irq_disable();
8904         vcpu->mode = IN_GUEST_MODE;
8905
8906         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8907
8908         /*
8909          * 1) We should set ->mode before checking ->requests.  Please see
8910          * the comment in kvm_vcpu_exiting_guest_mode().
8911          *
8912          * 2) For APICv, we should set ->mode before checking PID.ON. This
8913          * pairs with the memory barrier implicit in pi_test_and_set_on
8914          * (see vmx_deliver_posted_interrupt).
8915          *
8916          * 3) This also orders the write to mode from any reads to the page
8917          * tables done while the VCPU is running.  Please see the comment
8918          * in kvm_flush_remote_tlbs.
8919          */
8920         smp_mb__after_srcu_read_unlock();
8921
8922         /*
8923          * This handles the case where a posted interrupt was
8924          * notified with kvm_vcpu_kick.
8925          */
8926         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8927                 kvm_x86_ops.sync_pir_to_irr(vcpu);
8928
8929         if (kvm_vcpu_exit_request(vcpu)) {
8930                 vcpu->mode = OUTSIDE_GUEST_MODE;
8931                 smp_wmb();
8932                 local_irq_enable();
8933                 preempt_enable();
8934                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8935                 r = 1;
8936                 goto cancel_injection;
8937         }
8938
8939         if (req_immediate_exit) {
8940                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8941                 kvm_x86_ops.request_immediate_exit(vcpu);
8942         }
8943
8944         trace_kvm_entry(vcpu);
8945
8946         fpregs_assert_state_consistent();
8947         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8948                 switch_fpu_return();
8949
8950         if (unlikely(vcpu->arch.switch_db_regs)) {
8951                 set_debugreg(0, 7);
8952                 set_debugreg(vcpu->arch.eff_db[0], 0);
8953                 set_debugreg(vcpu->arch.eff_db[1], 1);
8954                 set_debugreg(vcpu->arch.eff_db[2], 2);
8955                 set_debugreg(vcpu->arch.eff_db[3], 3);
8956                 set_debugreg(vcpu->arch.dr6, 6);
8957                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8958         }
8959
8960         exit_fastpath = kvm_x86_ops.run(vcpu);
8961
8962         /*
8963          * Do this here before restoring debug registers on the host.  And
8964          * since we do this before handling the vmexit, a DR access vmexit
8965          * can (a) read the correct value of the debug registers, (b) set
8966          * KVM_DEBUGREG_WONT_EXIT again.
8967          */
8968         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8969                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8970                 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8971                 kvm_update_dr0123(vcpu);
8972                 kvm_update_dr7(vcpu);
8973                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8974         }
8975
8976         /*
8977          * If the guest has used debug registers, at least dr7
8978          * will be disabled while returning to the host.
8979          * If we don't have active breakpoints in the host, we don't
8980          * care about the messed up debug address registers. But if
8981          * we have some of them active, restore the old state.
8982          */
8983         if (hw_breakpoint_active())
8984                 hw_breakpoint_restore();
8985
8986         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8987         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8988
8989         vcpu->mode = OUTSIDE_GUEST_MODE;
8990         smp_wmb();
8991
8992         kvm_x86_ops.handle_exit_irqoff(vcpu);
8993
8994         /*
8995          * Consume any pending interrupts, including the possible source of
8996          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8997          * An instruction is required after local_irq_enable() to fully unblock
8998          * interrupts on processors that implement an interrupt shadow, the
8999          * stat.exits increment will do nicely.
9000          */
9001         kvm_before_interrupt(vcpu);
9002         local_irq_enable();
9003         ++vcpu->stat.exits;
9004         local_irq_disable();
9005         kvm_after_interrupt(vcpu);
9006
9007         if (lapic_in_kernel(vcpu)) {
9008                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9009                 if (delta != S64_MIN) {
9010                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9011                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9012                 }
9013         }
9014
9015         local_irq_enable();
9016         preempt_enable();
9017
9018         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9019
9020         /*
9021          * Profile KVM exit RIPs:
9022          */
9023         if (unlikely(prof_on == KVM_PROFILING)) {
9024                 unsigned long rip = kvm_rip_read(vcpu);
9025                 profile_hit(KVM_PROFILING, (void *)rip);
9026         }
9027
9028         if (unlikely(vcpu->arch.tsc_always_catchup))
9029                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9030
9031         if (vcpu->arch.apic_attention)
9032                 kvm_lapic_sync_from_vapic(vcpu);
9033
9034         r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9035         return r;
9036
9037 cancel_injection:
9038         if (req_immediate_exit)
9039                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9040         kvm_x86_ops.cancel_injection(vcpu);
9041         if (unlikely(vcpu->arch.apic_attention))
9042                 kvm_lapic_sync_from_vapic(vcpu);
9043 out:
9044         return r;
9045 }
9046
9047 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9048 {
9049         if (!kvm_arch_vcpu_runnable(vcpu) &&
9050             (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9051                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9052                 kvm_vcpu_block(vcpu);
9053                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9054
9055                 if (kvm_x86_ops.post_block)
9056                         kvm_x86_ops.post_block(vcpu);
9057
9058                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9059                         return 1;
9060         }
9061
9062         kvm_apic_accept_events(vcpu);
9063         switch(vcpu->arch.mp_state) {
9064         case KVM_MP_STATE_HALTED:
9065                 vcpu->arch.pv.pv_unhalted = false;
9066                 vcpu->arch.mp_state =
9067                         KVM_MP_STATE_RUNNABLE;
9068                 fallthrough;
9069         case KVM_MP_STATE_RUNNABLE:
9070                 vcpu->arch.apf.halted = false;
9071                 break;
9072         case KVM_MP_STATE_INIT_RECEIVED:
9073                 break;
9074         default:
9075                 return -EINTR;
9076         }
9077         return 1;
9078 }
9079
9080 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9081 {
9082         if (is_guest_mode(vcpu))
9083                 kvm_x86_ops.nested_ops->check_events(vcpu);
9084
9085         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9086                 !vcpu->arch.apf.halted);
9087 }
9088
9089 static int vcpu_run(struct kvm_vcpu *vcpu)
9090 {
9091         int r;
9092         struct kvm *kvm = vcpu->kvm;
9093
9094         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9095         vcpu->arch.l1tf_flush_l1d = true;
9096
9097         for (;;) {
9098                 if (kvm_vcpu_running(vcpu)) {
9099                         r = vcpu_enter_guest(vcpu);
9100                 } else {
9101                         r = vcpu_block(kvm, vcpu);
9102                 }
9103
9104                 if (r <= 0)
9105                         break;
9106
9107                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9108                 if (kvm_cpu_has_pending_timer(vcpu))
9109                         kvm_inject_pending_timer_irqs(vcpu);
9110
9111                 if (dm_request_for_irq_injection(vcpu) &&
9112                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9113                         r = 0;
9114                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9115                         ++vcpu->stat.request_irq_exits;
9116                         break;
9117                 }
9118
9119                 if (__xfer_to_guest_mode_work_pending()) {
9120                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9121                         r = xfer_to_guest_mode_handle_work(vcpu);
9122                         if (r)
9123                                 return r;
9124                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9125                 }
9126         }
9127
9128         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9129
9130         return r;
9131 }
9132
9133 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9134 {
9135         int r;
9136
9137         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9138         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9139         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9140         return r;
9141 }
9142
9143 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9144 {
9145         BUG_ON(!vcpu->arch.pio.count);
9146
9147         return complete_emulated_io(vcpu);
9148 }
9149
9150 /*
9151  * Implements the following, as a state machine:
9152  *
9153  * read:
9154  *   for each fragment
9155  *     for each mmio piece in the fragment
9156  *       write gpa, len
9157  *       exit
9158  *       copy data
9159  *   execute insn
9160  *
9161  * write:
9162  *   for each fragment
9163  *     for each mmio piece in the fragment
9164  *       write gpa, len
9165  *       copy data
9166  *       exit
9167  */
9168 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9169 {
9170         struct kvm_run *run = vcpu->run;
9171         struct kvm_mmio_fragment *frag;
9172         unsigned len;
9173
9174         BUG_ON(!vcpu->mmio_needed);
9175
9176         /* Complete previous fragment */
9177         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9178         len = min(8u, frag->len);
9179         if (!vcpu->mmio_is_write)
9180                 memcpy(frag->data, run->mmio.data, len);
9181
9182         if (frag->len <= 8) {
9183                 /* Switch to the next fragment. */
9184                 frag++;
9185                 vcpu->mmio_cur_fragment++;
9186         } else {
9187                 /* Go forward to the next mmio piece. */
9188                 frag->data += len;
9189                 frag->gpa += len;
9190                 frag->len -= len;
9191         }
9192
9193         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9194                 vcpu->mmio_needed = 0;
9195
9196                 /* FIXME: return into emulator if single-stepping.  */
9197                 if (vcpu->mmio_is_write)
9198                         return 1;
9199                 vcpu->mmio_read_completed = 1;
9200                 return complete_emulated_io(vcpu);
9201         }
9202
9203         run->exit_reason = KVM_EXIT_MMIO;
9204         run->mmio.phys_addr = frag->gpa;
9205         if (vcpu->mmio_is_write)
9206                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9207         run->mmio.len = min(8u, frag->len);
9208         run->mmio.is_write = vcpu->mmio_is_write;
9209         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9210         return 0;
9211 }
9212
9213 static void kvm_save_current_fpu(struct fpu *fpu)
9214 {
9215         /*
9216          * If the target FPU state is not resident in the CPU registers, just
9217          * memcpy() from current, else save CPU state directly to the target.
9218          */
9219         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9220                 memcpy(&fpu->state, &current->thread.fpu.state,
9221                        fpu_kernel_xstate_size);
9222         else
9223                 copy_fpregs_to_fpstate(fpu);
9224 }
9225
9226 /* Swap (qemu) user FPU context for the guest FPU context. */
9227 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9228 {
9229         fpregs_lock();
9230
9231         kvm_save_current_fpu(vcpu->arch.user_fpu);
9232
9233         /* PKRU is separately restored in kvm_x86_ops.run.  */
9234         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9235                                 ~XFEATURE_MASK_PKRU);
9236
9237         fpregs_mark_activate();
9238         fpregs_unlock();
9239
9240         trace_kvm_fpu(1);
9241 }
9242
9243 /* When vcpu_run ends, restore user space FPU context. */
9244 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9245 {
9246         fpregs_lock();
9247
9248         kvm_save_current_fpu(vcpu->arch.guest_fpu);
9249
9250         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9251
9252         fpregs_mark_activate();
9253         fpregs_unlock();
9254
9255         ++vcpu->stat.fpu_reload;
9256         trace_kvm_fpu(0);
9257 }
9258
9259 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9260 {
9261         struct kvm_run *kvm_run = vcpu->run;
9262         int r;
9263
9264         vcpu_load(vcpu);
9265         kvm_sigset_activate(vcpu);
9266         kvm_load_guest_fpu(vcpu);
9267
9268         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9269                 if (kvm_run->immediate_exit) {
9270                         r = -EINTR;
9271                         goto out;
9272                 }
9273                 kvm_vcpu_block(vcpu);
9274                 kvm_apic_accept_events(vcpu);
9275                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9276                 r = -EAGAIN;
9277                 if (signal_pending(current)) {
9278                         r = -EINTR;
9279                         kvm_run->exit_reason = KVM_EXIT_INTR;
9280                         ++vcpu->stat.signal_exits;
9281                 }
9282                 goto out;
9283         }
9284
9285         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9286                 r = -EINVAL;
9287                 goto out;
9288         }
9289
9290         if (kvm_run->kvm_dirty_regs) {
9291                 r = sync_regs(vcpu);
9292                 if (r != 0)
9293                         goto out;
9294         }
9295
9296         /* re-sync apic's tpr */
9297         if (!lapic_in_kernel(vcpu)) {
9298                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9299                         r = -EINVAL;
9300                         goto out;
9301                 }
9302         }
9303
9304         if (unlikely(vcpu->arch.complete_userspace_io)) {
9305                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9306                 vcpu->arch.complete_userspace_io = NULL;
9307                 r = cui(vcpu);
9308                 if (r <= 0)
9309                         goto out;
9310         } else
9311                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9312
9313         if (kvm_run->immediate_exit)
9314                 r = -EINTR;
9315         else
9316                 r = vcpu_run(vcpu);
9317
9318 out:
9319         kvm_put_guest_fpu(vcpu);
9320         if (kvm_run->kvm_valid_regs)
9321                 store_regs(vcpu);
9322         post_kvm_run_save(vcpu);
9323         kvm_sigset_deactivate(vcpu);
9324
9325         vcpu_put(vcpu);
9326         return r;
9327 }
9328
9329 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9330 {
9331         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9332                 /*
9333                  * We are here if userspace calls get_regs() in the middle of
9334                  * instruction emulation. Registers state needs to be copied
9335                  * back from emulation context to vcpu. Userspace shouldn't do
9336                  * that usually, but some bad designed PV devices (vmware
9337                  * backdoor interface) need this to work
9338                  */
9339                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9340                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9341         }
9342         regs->rax = kvm_rax_read(vcpu);
9343         regs->rbx = kvm_rbx_read(vcpu);
9344         regs->rcx = kvm_rcx_read(vcpu);
9345         regs->rdx = kvm_rdx_read(vcpu);
9346         regs->rsi = kvm_rsi_read(vcpu);
9347         regs->rdi = kvm_rdi_read(vcpu);
9348         regs->rsp = kvm_rsp_read(vcpu);
9349         regs->rbp = kvm_rbp_read(vcpu);
9350 #ifdef CONFIG_X86_64
9351         regs->r8 = kvm_r8_read(vcpu);
9352         regs->r9 = kvm_r9_read(vcpu);
9353         regs->r10 = kvm_r10_read(vcpu);
9354         regs->r11 = kvm_r11_read(vcpu);
9355         regs->r12 = kvm_r12_read(vcpu);
9356         regs->r13 = kvm_r13_read(vcpu);
9357         regs->r14 = kvm_r14_read(vcpu);
9358         regs->r15 = kvm_r15_read(vcpu);
9359 #endif
9360
9361         regs->rip = kvm_rip_read(vcpu);
9362         regs->rflags = kvm_get_rflags(vcpu);
9363 }
9364
9365 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9366 {
9367         vcpu_load(vcpu);
9368         __get_regs(vcpu, regs);
9369         vcpu_put(vcpu);
9370         return 0;
9371 }
9372
9373 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9374 {
9375         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9376         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9377
9378         kvm_rax_write(vcpu, regs->rax);
9379         kvm_rbx_write(vcpu, regs->rbx);
9380         kvm_rcx_write(vcpu, regs->rcx);
9381         kvm_rdx_write(vcpu, regs->rdx);
9382         kvm_rsi_write(vcpu, regs->rsi);
9383         kvm_rdi_write(vcpu, regs->rdi);
9384         kvm_rsp_write(vcpu, regs->rsp);
9385         kvm_rbp_write(vcpu, regs->rbp);
9386 #ifdef CONFIG_X86_64
9387         kvm_r8_write(vcpu, regs->r8);
9388         kvm_r9_write(vcpu, regs->r9);
9389         kvm_r10_write(vcpu, regs->r10);
9390         kvm_r11_write(vcpu, regs->r11);
9391         kvm_r12_write(vcpu, regs->r12);
9392         kvm_r13_write(vcpu, regs->r13);
9393         kvm_r14_write(vcpu, regs->r14);
9394         kvm_r15_write(vcpu, regs->r15);
9395 #endif
9396
9397         kvm_rip_write(vcpu, regs->rip);
9398         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9399
9400         vcpu->arch.exception.pending = false;
9401
9402         kvm_make_request(KVM_REQ_EVENT, vcpu);
9403 }
9404
9405 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9406 {
9407         vcpu_load(vcpu);
9408         __set_regs(vcpu, regs);
9409         vcpu_put(vcpu);
9410         return 0;
9411 }
9412
9413 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9414 {
9415         struct kvm_segment cs;
9416
9417         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9418         *db = cs.db;
9419         *l = cs.l;
9420 }
9421 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9422
9423 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9424 {
9425         struct desc_ptr dt;
9426
9427         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9428         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9429         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9430         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9431         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9432         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9433
9434         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9435         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9436
9437         kvm_x86_ops.get_idt(vcpu, &dt);
9438         sregs->idt.limit = dt.size;
9439         sregs->idt.base = dt.address;
9440         kvm_x86_ops.get_gdt(vcpu, &dt);
9441         sregs->gdt.limit = dt.size;
9442         sregs->gdt.base = dt.address;
9443
9444         sregs->cr0 = kvm_read_cr0(vcpu);
9445         sregs->cr2 = vcpu->arch.cr2;
9446         sregs->cr3 = kvm_read_cr3(vcpu);
9447         sregs->cr4 = kvm_read_cr4(vcpu);
9448         sregs->cr8 = kvm_get_cr8(vcpu);
9449         sregs->efer = vcpu->arch.efer;
9450         sregs->apic_base = kvm_get_apic_base(vcpu);
9451
9452         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9453
9454         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9455                 set_bit(vcpu->arch.interrupt.nr,
9456                         (unsigned long *)sregs->interrupt_bitmap);
9457 }
9458
9459 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9460                                   struct kvm_sregs *sregs)
9461 {
9462         vcpu_load(vcpu);
9463         __get_sregs(vcpu, sregs);
9464         vcpu_put(vcpu);
9465         return 0;
9466 }
9467
9468 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9469                                     struct kvm_mp_state *mp_state)
9470 {
9471         vcpu_load(vcpu);
9472         if (kvm_mpx_supported())
9473                 kvm_load_guest_fpu(vcpu);
9474
9475         kvm_apic_accept_events(vcpu);
9476         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9477                                         vcpu->arch.pv.pv_unhalted)
9478                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9479         else
9480                 mp_state->mp_state = vcpu->arch.mp_state;
9481
9482         if (kvm_mpx_supported())
9483                 kvm_put_guest_fpu(vcpu);
9484         vcpu_put(vcpu);
9485         return 0;
9486 }
9487
9488 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9489                                     struct kvm_mp_state *mp_state)
9490 {
9491         int ret = -EINVAL;
9492
9493         vcpu_load(vcpu);
9494
9495         if (!lapic_in_kernel(vcpu) &&
9496             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9497                 goto out;
9498
9499         /*
9500          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9501          * INIT state; latched init should be reported using
9502          * KVM_SET_VCPU_EVENTS, so reject it here.
9503          */
9504         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9505             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9506              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9507                 goto out;
9508
9509         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9510                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9511                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9512         } else
9513                 vcpu->arch.mp_state = mp_state->mp_state;
9514         kvm_make_request(KVM_REQ_EVENT, vcpu);
9515
9516         ret = 0;
9517 out:
9518         vcpu_put(vcpu);
9519         return ret;
9520 }
9521
9522 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9523                     int reason, bool has_error_code, u32 error_code)
9524 {
9525         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9526         int ret;
9527
9528         init_emulate_ctxt(vcpu);
9529
9530         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9531                                    has_error_code, error_code);
9532         if (ret) {
9533                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9534                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9535                 vcpu->run->internal.ndata = 0;
9536                 return 0;
9537         }
9538
9539         kvm_rip_write(vcpu, ctxt->eip);
9540         kvm_set_rflags(vcpu, ctxt->eflags);
9541         return 1;
9542 }
9543 EXPORT_SYMBOL_GPL(kvm_task_switch);
9544
9545 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9546 {
9547         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9548                 /*
9549                  * When EFER.LME and CR0.PG are set, the processor is in
9550                  * 64-bit mode (though maybe in a 32-bit code segment).
9551                  * CR4.PAE and EFER.LMA must be set.
9552                  */
9553                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9554                         return false;
9555         } else {
9556                 /*
9557                  * Not in 64-bit mode: EFER.LMA is clear and the code
9558                  * segment cannot be 64-bit.
9559                  */
9560                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9561                         return false;
9562         }
9563
9564         return kvm_is_valid_cr4(vcpu, sregs->cr4);
9565 }
9566
9567 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9568 {
9569         struct msr_data apic_base_msr;
9570         int mmu_reset_needed = 0;
9571         int pending_vec, max_bits, idx;
9572         struct desc_ptr dt;
9573         int ret = -EINVAL;
9574
9575         if (!kvm_is_valid_sregs(vcpu, sregs))
9576                 goto out;
9577
9578         apic_base_msr.data = sregs->apic_base;
9579         apic_base_msr.host_initiated = true;
9580         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9581                 goto out;
9582
9583         dt.size = sregs->idt.limit;
9584         dt.address = sregs->idt.base;
9585         kvm_x86_ops.set_idt(vcpu, &dt);
9586         dt.size = sregs->gdt.limit;
9587         dt.address = sregs->gdt.base;
9588         kvm_x86_ops.set_gdt(vcpu, &dt);
9589
9590         vcpu->arch.cr2 = sregs->cr2;
9591         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9592         vcpu->arch.cr3 = sregs->cr3;
9593         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9594
9595         kvm_set_cr8(vcpu, sregs->cr8);
9596
9597         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9598         kvm_x86_ops.set_efer(vcpu, sregs->efer);
9599
9600         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9601         kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9602         vcpu->arch.cr0 = sregs->cr0;
9603
9604         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9605         kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9606
9607         idx = srcu_read_lock(&vcpu->kvm->srcu);
9608         if (is_pae_paging(vcpu)) {
9609                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9610                 mmu_reset_needed = 1;
9611         }
9612         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9613
9614         if (mmu_reset_needed)
9615                 kvm_mmu_reset_context(vcpu);
9616
9617         max_bits = KVM_NR_INTERRUPTS;
9618         pending_vec = find_first_bit(
9619                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9620         if (pending_vec < max_bits) {
9621                 kvm_queue_interrupt(vcpu, pending_vec, false);
9622                 pr_debug("Set back pending irq %d\n", pending_vec);
9623         }
9624
9625         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9626         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9627         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9628         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9629         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9630         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9631
9632         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9633         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9634
9635         update_cr8_intercept(vcpu);
9636
9637         /* Older userspace won't unhalt the vcpu on reset. */
9638         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9639             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9640             !is_protmode(vcpu))
9641                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9642
9643         kvm_make_request(KVM_REQ_EVENT, vcpu);
9644
9645         ret = 0;
9646 out:
9647         return ret;
9648 }
9649
9650 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9651                                   struct kvm_sregs *sregs)
9652 {
9653         int ret;
9654
9655         vcpu_load(vcpu);
9656         ret = __set_sregs(vcpu, sregs);
9657         vcpu_put(vcpu);
9658         return ret;
9659 }
9660
9661 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9662                                         struct kvm_guest_debug *dbg)
9663 {
9664         unsigned long rflags;
9665         int i, r;
9666
9667         vcpu_load(vcpu);
9668
9669         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9670                 r = -EBUSY;
9671                 if (vcpu->arch.exception.pending)
9672                         goto out;
9673                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9674                         kvm_queue_exception(vcpu, DB_VECTOR);
9675                 else
9676                         kvm_queue_exception(vcpu, BP_VECTOR);
9677         }
9678
9679         /*
9680          * Read rflags as long as potentially injected trace flags are still
9681          * filtered out.
9682          */
9683         rflags = kvm_get_rflags(vcpu);
9684
9685         vcpu->guest_debug = dbg->control;
9686         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9687                 vcpu->guest_debug = 0;
9688
9689         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9690                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9691                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9692                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9693         } else {
9694                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9695                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9696         }
9697         kvm_update_dr7(vcpu);
9698
9699         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9700                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9701                         get_segment_base(vcpu, VCPU_SREG_CS);
9702
9703         /*
9704          * Trigger an rflags update that will inject or remove the trace
9705          * flags.
9706          */
9707         kvm_set_rflags(vcpu, rflags);
9708
9709         kvm_x86_ops.update_exception_bitmap(vcpu);
9710
9711         r = 0;
9712
9713 out:
9714         vcpu_put(vcpu);
9715         return r;
9716 }
9717
9718 /*
9719  * Translate a guest virtual address to a guest physical address.
9720  */
9721 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9722                                     struct kvm_translation *tr)
9723 {
9724         unsigned long vaddr = tr->linear_address;
9725         gpa_t gpa;
9726         int idx;
9727
9728         vcpu_load(vcpu);
9729
9730         idx = srcu_read_lock(&vcpu->kvm->srcu);
9731         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9732         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9733         tr->physical_address = gpa;
9734         tr->valid = gpa != UNMAPPED_GVA;
9735         tr->writeable = 1;
9736         tr->usermode = 0;
9737
9738         vcpu_put(vcpu);
9739         return 0;
9740 }
9741
9742 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9743 {
9744         struct fxregs_state *fxsave;
9745
9746         vcpu_load(vcpu);
9747
9748         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9749         memcpy(fpu->fpr, fxsave->st_space, 128);
9750         fpu->fcw = fxsave->cwd;
9751         fpu->fsw = fxsave->swd;
9752         fpu->ftwx = fxsave->twd;
9753         fpu->last_opcode = fxsave->fop;
9754         fpu->last_ip = fxsave->rip;
9755         fpu->last_dp = fxsave->rdp;
9756         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9757
9758         vcpu_put(vcpu);
9759         return 0;
9760 }
9761
9762 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9763 {
9764         struct fxregs_state *fxsave;
9765
9766         vcpu_load(vcpu);
9767
9768         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9769
9770         memcpy(fxsave->st_space, fpu->fpr, 128);
9771         fxsave->cwd = fpu->fcw;
9772         fxsave->swd = fpu->fsw;
9773         fxsave->twd = fpu->ftwx;
9774         fxsave->fop = fpu->last_opcode;
9775         fxsave->rip = fpu->last_ip;
9776         fxsave->rdp = fpu->last_dp;
9777         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9778
9779         vcpu_put(vcpu);
9780         return 0;
9781 }
9782
9783 static void store_regs(struct kvm_vcpu *vcpu)
9784 {
9785         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9786
9787         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9788                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9789
9790         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9791                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9792
9793         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9794                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9795                                 vcpu, &vcpu->run->s.regs.events);
9796 }
9797
9798 static int sync_regs(struct kvm_vcpu *vcpu)
9799 {
9800         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9801                 return -EINVAL;
9802
9803         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9804                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9805                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9806         }
9807         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9808                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9809                         return -EINVAL;
9810                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9811         }
9812         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9813                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9814                                 vcpu, &vcpu->run->s.regs.events))
9815                         return -EINVAL;
9816                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9817         }
9818
9819         return 0;
9820 }
9821
9822 static void fx_init(struct kvm_vcpu *vcpu)
9823 {
9824         fpstate_init(&vcpu->arch.guest_fpu->state);
9825         if (boot_cpu_has(X86_FEATURE_XSAVES))
9826                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9827                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9828
9829         /*
9830          * Ensure guest xcr0 is valid for loading
9831          */
9832         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9833
9834         vcpu->arch.cr0 |= X86_CR0_ET;
9835 }
9836
9837 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9838 {
9839         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9840                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9841                              "guest TSC will not be reliable\n");
9842
9843         return 0;
9844 }
9845
9846 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9847 {
9848         struct page *page;
9849         int r;
9850
9851         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9852                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9853         else
9854                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9855
9856         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9857
9858         r = kvm_mmu_create(vcpu);
9859         if (r < 0)
9860                 return r;
9861
9862         if (irqchip_in_kernel(vcpu->kvm)) {
9863                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9864                 if (r < 0)
9865                         goto fail_mmu_destroy;
9866                 if (kvm_apicv_activated(vcpu->kvm))
9867                         vcpu->arch.apicv_active = true;
9868         } else
9869                 static_key_slow_inc(&kvm_no_apic_vcpu);
9870
9871         r = -ENOMEM;
9872
9873         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9874         if (!page)
9875                 goto fail_free_lapic;
9876         vcpu->arch.pio_data = page_address(page);
9877
9878         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9879                                        GFP_KERNEL_ACCOUNT);
9880         if (!vcpu->arch.mce_banks)
9881                 goto fail_free_pio_data;
9882         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9883
9884         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9885                                 GFP_KERNEL_ACCOUNT))
9886                 goto fail_free_mce_banks;
9887
9888         if (!alloc_emulate_ctxt(vcpu))
9889                 goto free_wbinvd_dirty_mask;
9890
9891         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9892                                                 GFP_KERNEL_ACCOUNT);
9893         if (!vcpu->arch.user_fpu) {
9894                 pr_err("kvm: failed to allocate userspace's fpu\n");
9895                 goto free_emulate_ctxt;
9896         }
9897
9898         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9899                                                  GFP_KERNEL_ACCOUNT);
9900         if (!vcpu->arch.guest_fpu) {
9901                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9902                 goto free_user_fpu;
9903         }
9904         fx_init(vcpu);
9905
9906         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9907
9908         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9909
9910         kvm_async_pf_hash_reset(vcpu);
9911         kvm_pmu_init(vcpu);
9912
9913         vcpu->arch.pending_external_vector = -1;
9914         vcpu->arch.preempted_in_kernel = false;
9915
9916         kvm_hv_vcpu_init(vcpu);
9917
9918         r = kvm_x86_ops.vcpu_create(vcpu);
9919         if (r)
9920                 goto free_guest_fpu;
9921
9922         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9923         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9924         kvm_vcpu_mtrr_init(vcpu);
9925         vcpu_load(vcpu);
9926         kvm_vcpu_reset(vcpu, false);
9927         kvm_init_mmu(vcpu, false);
9928         vcpu_put(vcpu);
9929         return 0;
9930
9931 free_guest_fpu:
9932         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9933 free_user_fpu:
9934         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9935 free_emulate_ctxt:
9936         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9937 free_wbinvd_dirty_mask:
9938         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9939 fail_free_mce_banks:
9940         kfree(vcpu->arch.mce_banks);
9941 fail_free_pio_data:
9942         free_page((unsigned long)vcpu->arch.pio_data);
9943 fail_free_lapic:
9944         kvm_free_lapic(vcpu);
9945 fail_mmu_destroy:
9946         kvm_mmu_destroy(vcpu);
9947         return r;
9948 }
9949
9950 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9951 {
9952         struct kvm *kvm = vcpu->kvm;
9953
9954         kvm_hv_vcpu_postcreate(vcpu);
9955
9956         if (mutex_lock_killable(&vcpu->mutex))
9957                 return;
9958         vcpu_load(vcpu);
9959         kvm_synchronize_tsc(vcpu, 0);
9960         vcpu_put(vcpu);
9961
9962         /* poll control enabled by default */
9963         vcpu->arch.msr_kvm_poll_control = 1;
9964
9965         mutex_unlock(&vcpu->mutex);
9966
9967         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9968                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9969                                                 KVMCLOCK_SYNC_PERIOD);
9970 }
9971
9972 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9973 {
9974         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9975         int idx;
9976
9977         kvm_release_pfn(cache->pfn, cache->dirty, cache);
9978
9979         kvmclock_reset(vcpu);
9980
9981         kvm_x86_ops.vcpu_free(vcpu);
9982
9983         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9984         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9985         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9986         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9987
9988         kvm_hv_vcpu_uninit(vcpu);
9989         kvm_pmu_destroy(vcpu);
9990         kfree(vcpu->arch.mce_banks);
9991         kvm_free_lapic(vcpu);
9992         idx = srcu_read_lock(&vcpu->kvm->srcu);
9993         kvm_mmu_destroy(vcpu);
9994         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9995         free_page((unsigned long)vcpu->arch.pio_data);
9996         kvfree(vcpu->arch.cpuid_entries);
9997         if (!lapic_in_kernel(vcpu))
9998                 static_key_slow_dec(&kvm_no_apic_vcpu);
9999 }
10000
10001 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10002 {
10003         kvm_lapic_reset(vcpu, init_event);
10004
10005         vcpu->arch.hflags = 0;
10006
10007         vcpu->arch.smi_pending = 0;
10008         vcpu->arch.smi_count = 0;
10009         atomic_set(&vcpu->arch.nmi_queued, 0);
10010         vcpu->arch.nmi_pending = 0;
10011         vcpu->arch.nmi_injected = false;
10012         kvm_clear_interrupt_queue(vcpu);
10013         kvm_clear_exception_queue(vcpu);
10014
10015         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10016         kvm_update_dr0123(vcpu);
10017         vcpu->arch.dr6 = DR6_INIT;
10018         vcpu->arch.dr7 = DR7_FIXED_1;
10019         kvm_update_dr7(vcpu);
10020
10021         vcpu->arch.cr2 = 0;
10022
10023         kvm_make_request(KVM_REQ_EVENT, vcpu);
10024         vcpu->arch.apf.msr_en_val = 0;
10025         vcpu->arch.apf.msr_int_val = 0;
10026         vcpu->arch.st.msr_val = 0;
10027
10028         kvmclock_reset(vcpu);
10029
10030         kvm_clear_async_pf_completion_queue(vcpu);
10031         kvm_async_pf_hash_reset(vcpu);
10032         vcpu->arch.apf.halted = false;
10033
10034         if (kvm_mpx_supported()) {
10035                 void *mpx_state_buffer;
10036
10037                 /*
10038                  * To avoid have the INIT path from kvm_apic_has_events() that be
10039                  * called with loaded FPU and does not let userspace fix the state.
10040                  */
10041                 if (init_event)
10042                         kvm_put_guest_fpu(vcpu);
10043                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10044                                         XFEATURE_BNDREGS);
10045                 if (mpx_state_buffer)
10046                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10047                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10048                                         XFEATURE_BNDCSR);
10049                 if (mpx_state_buffer)
10050                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10051                 if (init_event)
10052                         kvm_load_guest_fpu(vcpu);
10053         }
10054
10055         if (!init_event) {
10056                 kvm_pmu_reset(vcpu);
10057                 vcpu->arch.smbase = 0x30000;
10058
10059                 vcpu->arch.msr_misc_features_enables = 0;
10060
10061                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10062         }
10063
10064         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10065         vcpu->arch.regs_avail = ~0;
10066         vcpu->arch.regs_dirty = ~0;
10067
10068         vcpu->arch.ia32_xss = 0;
10069
10070         kvm_x86_ops.vcpu_reset(vcpu, init_event);
10071 }
10072
10073 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10074 {
10075         struct kvm_segment cs;
10076
10077         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10078         cs.selector = vector << 8;
10079         cs.base = vector << 12;
10080         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10081         kvm_rip_write(vcpu, 0);
10082 }
10083
10084 int kvm_arch_hardware_enable(void)
10085 {
10086         struct kvm *kvm;
10087         struct kvm_vcpu *vcpu;
10088         int i;
10089         int ret;
10090         u64 local_tsc;
10091         u64 max_tsc = 0;
10092         bool stable, backwards_tsc = false;
10093
10094         kvm_user_return_msr_cpu_online();
10095         ret = kvm_x86_ops.hardware_enable();
10096         if (ret != 0)
10097                 return ret;
10098
10099         local_tsc = rdtsc();
10100         stable = !kvm_check_tsc_unstable();
10101         list_for_each_entry(kvm, &vm_list, vm_list) {
10102                 kvm_for_each_vcpu(i, vcpu, kvm) {
10103                         if (!stable && vcpu->cpu == smp_processor_id())
10104                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10105                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10106                                 backwards_tsc = true;
10107                                 if (vcpu->arch.last_host_tsc > max_tsc)
10108                                         max_tsc = vcpu->arch.last_host_tsc;
10109                         }
10110                 }
10111         }
10112
10113         /*
10114          * Sometimes, even reliable TSCs go backwards.  This happens on
10115          * platforms that reset TSC during suspend or hibernate actions, but
10116          * maintain synchronization.  We must compensate.  Fortunately, we can
10117          * detect that condition here, which happens early in CPU bringup,
10118          * before any KVM threads can be running.  Unfortunately, we can't
10119          * bring the TSCs fully up to date with real time, as we aren't yet far
10120          * enough into CPU bringup that we know how much real time has actually
10121          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10122          * variables that haven't been updated yet.
10123          *
10124          * So we simply find the maximum observed TSC above, then record the
10125          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10126          * the adjustment will be applied.  Note that we accumulate
10127          * adjustments, in case multiple suspend cycles happen before some VCPU
10128          * gets a chance to run again.  In the event that no KVM threads get a
10129          * chance to run, we will miss the entire elapsed period, as we'll have
10130          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10131          * loose cycle time.  This isn't too big a deal, since the loss will be
10132          * uniform across all VCPUs (not to mention the scenario is extremely
10133          * unlikely). It is possible that a second hibernate recovery happens
10134          * much faster than a first, causing the observed TSC here to be
10135          * smaller; this would require additional padding adjustment, which is
10136          * why we set last_host_tsc to the local tsc observed here.
10137          *
10138          * N.B. - this code below runs only on platforms with reliable TSC,
10139          * as that is the only way backwards_tsc is set above.  Also note
10140          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10141          * have the same delta_cyc adjustment applied if backwards_tsc
10142          * is detected.  Note further, this adjustment is only done once,
10143          * as we reset last_host_tsc on all VCPUs to stop this from being
10144          * called multiple times (one for each physical CPU bringup).
10145          *
10146          * Platforms with unreliable TSCs don't have to deal with this, they
10147          * will be compensated by the logic in vcpu_load, which sets the TSC to
10148          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10149          * guarantee that they stay in perfect synchronization.
10150          */
10151         if (backwards_tsc) {
10152                 u64 delta_cyc = max_tsc - local_tsc;
10153                 list_for_each_entry(kvm, &vm_list, vm_list) {
10154                         kvm->arch.backwards_tsc_observed = true;
10155                         kvm_for_each_vcpu(i, vcpu, kvm) {
10156                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10157                                 vcpu->arch.last_host_tsc = local_tsc;
10158                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10159                         }
10160
10161                         /*
10162                          * We have to disable TSC offset matching.. if you were
10163                          * booting a VM while issuing an S4 host suspend....
10164                          * you may have some problem.  Solving this issue is
10165                          * left as an exercise to the reader.
10166                          */
10167                         kvm->arch.last_tsc_nsec = 0;
10168                         kvm->arch.last_tsc_write = 0;
10169                 }
10170
10171         }
10172         return 0;
10173 }
10174
10175 void kvm_arch_hardware_disable(void)
10176 {
10177         kvm_x86_ops.hardware_disable();
10178         drop_user_return_notifiers();
10179 }
10180
10181 int kvm_arch_hardware_setup(void *opaque)
10182 {
10183         struct kvm_x86_init_ops *ops = opaque;
10184         int r;
10185
10186         rdmsrl_safe(MSR_EFER, &host_efer);
10187
10188         if (boot_cpu_has(X86_FEATURE_XSAVES))
10189                 rdmsrl(MSR_IA32_XSS, host_xss);
10190
10191         r = ops->hardware_setup();
10192         if (r != 0)
10193                 return r;
10194
10195         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10196
10197         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10198                 supported_xss = 0;
10199
10200 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10201         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10202 #undef __kvm_cpu_cap_has
10203
10204         if (kvm_has_tsc_control) {
10205                 /*
10206                  * Make sure the user can only configure tsc_khz values that
10207                  * fit into a signed integer.
10208                  * A min value is not calculated because it will always
10209                  * be 1 on all machines.
10210                  */
10211                 u64 max = min(0x7fffffffULL,
10212                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10213                 kvm_max_guest_tsc_khz = max;
10214
10215                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10216         }
10217
10218         kvm_init_msr_list();
10219         return 0;
10220 }
10221
10222 void kvm_arch_hardware_unsetup(void)
10223 {
10224         kvm_x86_ops.hardware_unsetup();
10225 }
10226
10227 int kvm_arch_check_processor_compat(void *opaque)
10228 {
10229         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10230         struct kvm_x86_init_ops *ops = opaque;
10231
10232         WARN_ON(!irqs_disabled());
10233
10234         if (__cr4_reserved_bits(cpu_has, c) !=
10235             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10236                 return -EIO;
10237
10238         return ops->check_processor_compatibility();
10239 }
10240
10241 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10242 {
10243         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10244 }
10245 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10246
10247 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10248 {
10249         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10250 }
10251
10252 struct static_key kvm_no_apic_vcpu __read_mostly;
10253 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10254
10255 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10256 {
10257         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10258
10259         vcpu->arch.l1tf_flush_l1d = true;
10260         if (pmu->version && unlikely(pmu->event_count)) {
10261                 pmu->need_cleanup = true;
10262                 kvm_make_request(KVM_REQ_PMU, vcpu);
10263         }
10264         kvm_x86_ops.sched_in(vcpu, cpu);
10265 }
10266
10267 void kvm_arch_free_vm(struct kvm *kvm)
10268 {
10269         kfree(kvm->arch.hyperv.hv_pa_pg);
10270         vfree(kvm);
10271 }
10272
10273
10274 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10275 {
10276         if (type)
10277                 return -EINVAL;
10278
10279         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10280         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10281         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10282         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10283         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10284         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10285
10286         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10287         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10288         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10289         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10290                 &kvm->arch.irq_sources_bitmap);
10291
10292         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10293         mutex_init(&kvm->arch.apic_map_lock);
10294         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10295
10296         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10297         pvclock_update_vm_gtod_copy(kvm);
10298
10299         kvm->arch.guest_can_read_msr_platform_info = true;
10300
10301         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10302         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10303
10304         kvm_hv_init_vm(kvm);
10305         kvm_page_track_init(kvm);
10306         kvm_mmu_init_vm(kvm);
10307
10308         return kvm_x86_ops.vm_init(kvm);
10309 }
10310
10311 int kvm_arch_post_init_vm(struct kvm *kvm)
10312 {
10313         return kvm_mmu_post_init_vm(kvm);
10314 }
10315
10316 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10317 {
10318         vcpu_load(vcpu);
10319         kvm_mmu_unload(vcpu);
10320         vcpu_put(vcpu);
10321 }
10322
10323 static void kvm_free_vcpus(struct kvm *kvm)
10324 {
10325         unsigned int i;
10326         struct kvm_vcpu *vcpu;
10327
10328         /*
10329          * Unpin any mmu pages first.
10330          */
10331         kvm_for_each_vcpu(i, vcpu, kvm) {
10332                 kvm_clear_async_pf_completion_queue(vcpu);
10333                 kvm_unload_vcpu_mmu(vcpu);
10334         }
10335         kvm_for_each_vcpu(i, vcpu, kvm)
10336                 kvm_vcpu_destroy(vcpu);
10337
10338         mutex_lock(&kvm->lock);
10339         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10340                 kvm->vcpus[i] = NULL;
10341
10342         atomic_set(&kvm->online_vcpus, 0);
10343         mutex_unlock(&kvm->lock);
10344 }
10345
10346 void kvm_arch_sync_events(struct kvm *kvm)
10347 {
10348         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10349         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10350         kvm_free_pit(kvm);
10351 }
10352
10353 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10354
10355 /**
10356  * __x86_set_memory_region: Setup KVM internal memory slot
10357  *
10358  * @kvm: the kvm pointer to the VM.
10359  * @id: the slot ID to setup.
10360  * @gpa: the GPA to install the slot (unused when @size == 0).
10361  * @size: the size of the slot. Set to zero to uninstall a slot.
10362  *
10363  * This function helps to setup a KVM internal memory slot.  Specify
10364  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10365  * slot.  The return code can be one of the following:
10366  *
10367  *   HVA:           on success (uninstall will return a bogus HVA)
10368  *   -errno:        on error
10369  *
10370  * The caller should always use IS_ERR() to check the return value
10371  * before use.  Note, the KVM internal memory slots are guaranteed to
10372  * remain valid and unchanged until the VM is destroyed, i.e., the
10373  * GPA->HVA translation will not change.  However, the HVA is a user
10374  * address, i.e. its accessibility is not guaranteed, and must be
10375  * accessed via __copy_{to,from}_user().
10376  */
10377 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10378                                       u32 size)
10379 {
10380         int i, r;
10381         unsigned long hva, old_npages;
10382         struct kvm_memslots *slots = kvm_memslots(kvm);
10383         struct kvm_memory_slot *slot;
10384
10385         /* Called with kvm->slots_lock held.  */
10386         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10387                 return ERR_PTR_USR(-EINVAL);
10388
10389         slot = id_to_memslot(slots, id);
10390         if (size) {
10391                 if (slot && slot->npages)
10392                         return ERR_PTR_USR(-EEXIST);
10393
10394                 /*
10395                  * MAP_SHARED to prevent internal slot pages from being moved
10396                  * by fork()/COW.
10397                  */
10398                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10399                               MAP_SHARED | MAP_ANONYMOUS, 0);
10400                 if (IS_ERR((void *)hva))
10401                         return (void __user *)hva;
10402         } else {
10403                 if (!slot || !slot->npages)
10404                         return 0;
10405
10406                 old_npages = slot->npages;
10407                 hva = 0;
10408         }
10409
10410         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10411                 struct kvm_userspace_memory_region m;
10412
10413                 m.slot = id | (i << 16);
10414                 m.flags = 0;
10415                 m.guest_phys_addr = gpa;
10416                 m.userspace_addr = hva;
10417                 m.memory_size = size;
10418                 r = __kvm_set_memory_region(kvm, &m);
10419                 if (r < 0)
10420                         return ERR_PTR_USR(r);
10421         }
10422
10423         if (!size)
10424                 vm_munmap(hva, old_npages * PAGE_SIZE);
10425
10426         return (void __user *)hva;
10427 }
10428 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10429
10430 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10431 {
10432         kvm_mmu_pre_destroy_vm(kvm);
10433 }
10434
10435 void kvm_arch_destroy_vm(struct kvm *kvm)
10436 {
10437         u32 i;
10438
10439         if (current->mm == kvm->mm) {
10440                 /*
10441                  * Free memory regions allocated on behalf of userspace,
10442                  * unless the the memory map has changed due to process exit
10443                  * or fd copying.
10444                  */
10445                 mutex_lock(&kvm->slots_lock);
10446                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10447                                         0, 0);
10448                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10449                                         0, 0);
10450                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10451                 mutex_unlock(&kvm->slots_lock);
10452         }
10453         if (kvm_x86_ops.vm_destroy)
10454                 kvm_x86_ops.vm_destroy(kvm);
10455         for (i = 0; i < kvm->arch.msr_filter.count; i++)
10456                 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10457         kvm_pic_destroy(kvm);
10458         kvm_ioapic_destroy(kvm);
10459         kvm_free_vcpus(kvm);
10460         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10461         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10462         kvm_mmu_uninit_vm(kvm);
10463         kvm_page_track_cleanup(kvm);
10464         kvm_hv_destroy_vm(kvm);
10465 }
10466
10467 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10468 {
10469         int i;
10470
10471         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10472                 kvfree(slot->arch.rmap[i]);
10473                 slot->arch.rmap[i] = NULL;
10474
10475                 if (i == 0)
10476                         continue;
10477
10478                 kvfree(slot->arch.lpage_info[i - 1]);
10479                 slot->arch.lpage_info[i - 1] = NULL;
10480         }
10481
10482         kvm_page_track_free_memslot(slot);
10483 }
10484
10485 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10486                                       unsigned long npages)
10487 {
10488         int i;
10489
10490         /*
10491          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10492          * old arrays will be freed by __kvm_set_memory_region() if installing
10493          * the new memslot is successful.
10494          */
10495         memset(&slot->arch, 0, sizeof(slot->arch));
10496
10497         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10498                 struct kvm_lpage_info *linfo;
10499                 unsigned long ugfn;
10500                 int lpages;
10501                 int level = i + 1;
10502
10503                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10504                                       slot->base_gfn, level) + 1;
10505
10506                 slot->arch.rmap[i] =
10507                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10508                                  GFP_KERNEL_ACCOUNT);
10509                 if (!slot->arch.rmap[i])
10510                         goto out_free;
10511                 if (i == 0)
10512                         continue;
10513
10514                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10515                 if (!linfo)
10516                         goto out_free;
10517
10518                 slot->arch.lpage_info[i - 1] = linfo;
10519
10520                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10521                         linfo[0].disallow_lpage = 1;
10522                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10523                         linfo[lpages - 1].disallow_lpage = 1;
10524                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10525                 /*
10526                  * If the gfn and userspace address are not aligned wrt each
10527                  * other, disable large page support for this slot.
10528                  */
10529                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10530                         unsigned long j;
10531
10532                         for (j = 0; j < lpages; ++j)
10533                                 linfo[j].disallow_lpage = 1;
10534                 }
10535         }
10536
10537         if (kvm_page_track_create_memslot(slot, npages))
10538                 goto out_free;
10539
10540         return 0;
10541
10542 out_free:
10543         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10544                 kvfree(slot->arch.rmap[i]);
10545                 slot->arch.rmap[i] = NULL;
10546                 if (i == 0)
10547                         continue;
10548
10549                 kvfree(slot->arch.lpage_info[i - 1]);
10550                 slot->arch.lpage_info[i - 1] = NULL;
10551         }
10552         return -ENOMEM;
10553 }
10554
10555 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10556 {
10557         struct kvm_vcpu *vcpu;
10558         int i;
10559
10560         /*
10561          * memslots->generation has been incremented.
10562          * mmio generation may have reached its maximum value.
10563          */
10564         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10565
10566         /* Force re-initialization of steal_time cache */
10567         kvm_for_each_vcpu(i, vcpu, kvm)
10568                 kvm_vcpu_kick(vcpu);
10569 }
10570
10571 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10572                                 struct kvm_memory_slot *memslot,
10573                                 const struct kvm_userspace_memory_region *mem,
10574                                 enum kvm_mr_change change)
10575 {
10576         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10577                 return kvm_alloc_memslot_metadata(memslot,
10578                                                   mem->memory_size >> PAGE_SHIFT);
10579         return 0;
10580 }
10581
10582 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10583                                      struct kvm_memory_slot *old,
10584                                      struct kvm_memory_slot *new,
10585                                      enum kvm_mr_change change)
10586 {
10587         /*
10588          * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10589          * See comments below.
10590          */
10591         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10592                 return;
10593
10594         /*
10595          * Dirty logging tracks sptes in 4k granularity, meaning that large
10596          * sptes have to be split.  If live migration is successful, the guest
10597          * in the source machine will be destroyed and large sptes will be
10598          * created in the destination. However, if the guest continues to run
10599          * in the source machine (for example if live migration fails), small
10600          * sptes will remain around and cause bad performance.
10601          *
10602          * Scan sptes if dirty logging has been stopped, dropping those
10603          * which can be collapsed into a single large-page spte.  Later
10604          * page faults will create the large-page sptes.
10605          *
10606          * There is no need to do this in any of the following cases:
10607          * CREATE:      No dirty mappings will already exist.
10608          * MOVE/DELETE: The old mappings will already have been cleaned up by
10609          *              kvm_arch_flush_shadow_memslot()
10610          */
10611         if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10612             !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10613                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10614
10615         /*
10616          * Enable or disable dirty logging for the slot.
10617          *
10618          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10619          * slot have been zapped so no dirty logging updates are needed for
10620          * the old slot.
10621          * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10622          * any mappings that might be created in it will consume the
10623          * properties of the new slot and do not need to be updated here.
10624          *
10625          * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10626          * called to enable/disable dirty logging.
10627          *
10628          * When disabling dirty logging with PML enabled, the D-bit is set
10629          * for sptes in the slot in order to prevent unnecessary GPA
10630          * logging in the PML buffer (and potential PML buffer full VMEXIT).
10631          * This guarantees leaving PML enabled for the guest's lifetime
10632          * won't have any additional overhead from PML when the guest is
10633          * running with dirty logging disabled.
10634          *
10635          * When enabling dirty logging, large sptes are write-protected
10636          * so they can be split on first write.  New large sptes cannot
10637          * be created for this slot until the end of the logging.
10638          * See the comments in fast_page_fault().
10639          * For small sptes, nothing is done if the dirty log is in the
10640          * initial-all-set state.  Otherwise, depending on whether pml
10641          * is enabled the D-bit or the W-bit will be cleared.
10642          */
10643         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10644                 if (kvm_x86_ops.slot_enable_log_dirty) {
10645                         kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10646                 } else {
10647                         int level =
10648                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10649                                 PG_LEVEL_2M : PG_LEVEL_4K;
10650
10651                         /*
10652                          * If we're with initial-all-set, we don't need
10653                          * to write protect any small page because
10654                          * they're reported as dirty already.  However
10655                          * we still need to write-protect huge pages
10656                          * so that the page split can happen lazily on
10657                          * the first write to the huge page.
10658                          */
10659                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10660                 }
10661         } else {
10662                 if (kvm_x86_ops.slot_disable_log_dirty)
10663                         kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10664         }
10665 }
10666
10667 void kvm_arch_commit_memory_region(struct kvm *kvm,
10668                                 const struct kvm_userspace_memory_region *mem,
10669                                 struct kvm_memory_slot *old,
10670                                 const struct kvm_memory_slot *new,
10671                                 enum kvm_mr_change change)
10672 {
10673         if (!kvm->arch.n_requested_mmu_pages)
10674                 kvm_mmu_change_mmu_pages(kvm,
10675                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10676
10677         /*
10678          * FIXME: const-ify all uses of struct kvm_memory_slot.
10679          */
10680         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10681
10682         /* Free the arrays associated with the old memslot. */
10683         if (change == KVM_MR_MOVE)
10684                 kvm_arch_free_memslot(kvm, old);
10685 }
10686
10687 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10688 {
10689         kvm_mmu_zap_all(kvm);
10690 }
10691
10692 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10693                                    struct kvm_memory_slot *slot)
10694 {
10695         kvm_page_track_flush_slot(kvm, slot);
10696 }
10697
10698 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10699 {
10700         return (is_guest_mode(vcpu) &&
10701                         kvm_x86_ops.guest_apic_has_interrupt &&
10702                         kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10703 }
10704
10705 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10706 {
10707         if (!list_empty_careful(&vcpu->async_pf.done))
10708                 return true;
10709
10710         if (kvm_apic_has_events(vcpu))
10711                 return true;
10712
10713         if (vcpu->arch.pv.pv_unhalted)
10714                 return true;
10715
10716         if (vcpu->arch.exception.pending)
10717                 return true;
10718
10719         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10720             (vcpu->arch.nmi_pending &&
10721              kvm_x86_ops.nmi_allowed(vcpu, false)))
10722                 return true;
10723
10724         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10725             (vcpu->arch.smi_pending &&
10726              kvm_x86_ops.smi_allowed(vcpu, false)))
10727                 return true;
10728
10729         if (kvm_arch_interrupt_allowed(vcpu) &&
10730             (kvm_cpu_has_interrupt(vcpu) ||
10731             kvm_guest_apic_has_interrupt(vcpu)))
10732                 return true;
10733
10734         if (kvm_hv_has_stimer_pending(vcpu))
10735                 return true;
10736
10737         if (is_guest_mode(vcpu) &&
10738             kvm_x86_ops.nested_ops->hv_timer_pending &&
10739             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10740                 return true;
10741
10742         return false;
10743 }
10744
10745 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10746 {
10747         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10748 }
10749
10750 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10751 {
10752         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10753                 return true;
10754
10755         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10756                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10757                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10758                 return true;
10759
10760         if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10761                 return true;
10762
10763         return false;
10764 }
10765
10766 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10767 {
10768         return vcpu->arch.preempted_in_kernel;
10769 }
10770
10771 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10772 {
10773         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10774 }
10775
10776 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10777 {
10778         return kvm_x86_ops.interrupt_allowed(vcpu, false);
10779 }
10780
10781 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10782 {
10783         if (is_64_bit_mode(vcpu))
10784                 return kvm_rip_read(vcpu);
10785         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10786                      kvm_rip_read(vcpu));
10787 }
10788 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10789
10790 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10791 {
10792         return kvm_get_linear_rip(vcpu) == linear_rip;
10793 }
10794 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10795
10796 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10797 {
10798         unsigned long rflags;
10799
10800         rflags = kvm_x86_ops.get_rflags(vcpu);
10801         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10802                 rflags &= ~X86_EFLAGS_TF;
10803         return rflags;
10804 }
10805 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10806
10807 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10808 {
10809         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10810             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10811                 rflags |= X86_EFLAGS_TF;
10812         kvm_x86_ops.set_rflags(vcpu, rflags);
10813 }
10814
10815 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10816 {
10817         __kvm_set_rflags(vcpu, rflags);
10818         kvm_make_request(KVM_REQ_EVENT, vcpu);
10819 }
10820 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10821
10822 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10823 {
10824         int r;
10825
10826         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10827               work->wakeup_all)
10828                 return;
10829
10830         r = kvm_mmu_reload(vcpu);
10831         if (unlikely(r))
10832                 return;
10833
10834         if (!vcpu->arch.mmu->direct_map &&
10835               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10836                 return;
10837
10838         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10839 }
10840
10841 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10842 {
10843         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10844
10845         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10846 }
10847
10848 static inline u32 kvm_async_pf_next_probe(u32 key)
10849 {
10850         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10851 }
10852
10853 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10854 {
10855         u32 key = kvm_async_pf_hash_fn(gfn);
10856
10857         while (vcpu->arch.apf.gfns[key] != ~0)
10858                 key = kvm_async_pf_next_probe(key);
10859
10860         vcpu->arch.apf.gfns[key] = gfn;
10861 }
10862
10863 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10864 {
10865         int i;
10866         u32 key = kvm_async_pf_hash_fn(gfn);
10867
10868         for (i = 0; i < ASYNC_PF_PER_VCPU &&
10869                      (vcpu->arch.apf.gfns[key] != gfn &&
10870                       vcpu->arch.apf.gfns[key] != ~0); i++)
10871                 key = kvm_async_pf_next_probe(key);
10872
10873         return key;
10874 }
10875
10876 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10877 {
10878         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10879 }
10880
10881 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10882 {
10883         u32 i, j, k;
10884
10885         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10886
10887         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10888                 return;
10889
10890         while (true) {
10891                 vcpu->arch.apf.gfns[i] = ~0;
10892                 do {
10893                         j = kvm_async_pf_next_probe(j);
10894                         if (vcpu->arch.apf.gfns[j] == ~0)
10895                                 return;
10896                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10897                         /*
10898                          * k lies cyclically in ]i,j]
10899                          * |    i.k.j |
10900                          * |....j i.k.| or  |.k..j i...|
10901                          */
10902                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10903                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10904                 i = j;
10905         }
10906 }
10907
10908 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10909 {
10910         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10911
10912         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10913                                       sizeof(reason));
10914 }
10915
10916 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10917 {
10918         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10919
10920         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10921                                              &token, offset, sizeof(token));
10922 }
10923
10924 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10925 {
10926         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10927         u32 val;
10928
10929         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10930                                          &val, offset, sizeof(val)))
10931                 return false;
10932
10933         return !val;
10934 }
10935
10936 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10937 {
10938         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10939                 return false;
10940
10941         if (!kvm_pv_async_pf_enabled(vcpu) ||
10942             (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10943                 return false;
10944
10945         return true;
10946 }
10947
10948 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10949 {
10950         if (unlikely(!lapic_in_kernel(vcpu) ||
10951                      kvm_event_needs_reinjection(vcpu) ||
10952                      vcpu->arch.exception.pending))
10953                 return false;
10954
10955         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10956                 return false;
10957
10958         /*
10959          * If interrupts are off we cannot even use an artificial
10960          * halt state.
10961          */
10962         return kvm_arch_interrupt_allowed(vcpu);
10963 }
10964
10965 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10966                                      struct kvm_async_pf *work)
10967 {
10968         struct x86_exception fault;
10969
10970         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10971         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10972
10973         if (kvm_can_deliver_async_pf(vcpu) &&
10974             !apf_put_user_notpresent(vcpu)) {
10975                 fault.vector = PF_VECTOR;
10976                 fault.error_code_valid = true;
10977                 fault.error_code = 0;
10978                 fault.nested_page_fault = false;
10979                 fault.address = work->arch.token;
10980                 fault.async_page_fault = true;
10981                 kvm_inject_page_fault(vcpu, &fault);
10982                 return true;
10983         } else {
10984                 /*
10985                  * It is not possible to deliver a paravirtualized asynchronous
10986                  * page fault, but putting the guest in an artificial halt state
10987                  * can be beneficial nevertheless: if an interrupt arrives, we
10988                  * can deliver it timely and perhaps the guest will schedule
10989                  * another process.  When the instruction that triggered a page
10990                  * fault is retried, hopefully the page will be ready in the host.
10991                  */
10992                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10993                 return false;
10994         }
10995 }
10996
10997 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10998                                  struct kvm_async_pf *work)
10999 {
11000         struct kvm_lapic_irq irq = {
11001                 .delivery_mode = APIC_DM_FIXED,
11002                 .vector = vcpu->arch.apf.vec
11003         };
11004
11005         if (work->wakeup_all)
11006                 work->arch.token = ~0; /* broadcast wakeup */
11007         else
11008                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11009         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11010
11011         if ((work->wakeup_all || work->notpresent_injected) &&
11012             kvm_pv_async_pf_enabled(vcpu) &&
11013             !apf_put_user_ready(vcpu, work->arch.token)) {
11014                 vcpu->arch.apf.pageready_pending = true;
11015                 kvm_apic_set_irq(vcpu, &irq, NULL);
11016         }
11017
11018         vcpu->arch.apf.halted = false;
11019         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11020 }
11021
11022 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11023 {
11024         kvm_make_request(KVM_REQ_APF_READY, vcpu);
11025         if (!vcpu->arch.apf.pageready_pending)
11026                 kvm_vcpu_kick(vcpu);
11027 }
11028
11029 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11030 {
11031         if (!kvm_pv_async_pf_enabled(vcpu))
11032                 return true;
11033         else
11034                 return apf_pageready_slot_free(vcpu);
11035 }
11036
11037 void kvm_arch_start_assignment(struct kvm *kvm)
11038 {
11039         atomic_inc(&kvm->arch.assigned_device_count);
11040 }
11041 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11042
11043 void kvm_arch_end_assignment(struct kvm *kvm)
11044 {
11045         atomic_dec(&kvm->arch.assigned_device_count);
11046 }
11047 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11048
11049 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11050 {
11051         return atomic_read(&kvm->arch.assigned_device_count);
11052 }
11053 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11054
11055 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11056 {
11057         atomic_inc(&kvm->arch.noncoherent_dma_count);
11058 }
11059 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11060
11061 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11062 {
11063         atomic_dec(&kvm->arch.noncoherent_dma_count);
11064 }
11065 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11066
11067 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11068 {
11069         return atomic_read(&kvm->arch.noncoherent_dma_count);
11070 }
11071 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11072
11073 bool kvm_arch_has_irq_bypass(void)
11074 {
11075         return true;
11076 }
11077
11078 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11079                                       struct irq_bypass_producer *prod)
11080 {
11081         struct kvm_kernel_irqfd *irqfd =
11082                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11083         int ret;
11084
11085         irqfd->producer = prod;
11086         kvm_arch_start_assignment(irqfd->kvm);
11087         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11088                                          prod->irq, irqfd->gsi, 1);
11089
11090         if (ret)
11091                 kvm_arch_end_assignment(irqfd->kvm);
11092
11093         return ret;
11094 }
11095
11096 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11097                                       struct irq_bypass_producer *prod)
11098 {
11099         int ret;
11100         struct kvm_kernel_irqfd *irqfd =
11101                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11102
11103         WARN_ON(irqfd->producer != prod);
11104         irqfd->producer = NULL;
11105
11106         /*
11107          * When producer of consumer is unregistered, we change back to
11108          * remapped mode, so we can re-use the current implementation
11109          * when the irq is masked/disabled or the consumer side (KVM
11110          * int this case doesn't want to receive the interrupts.
11111         */
11112         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11113         if (ret)
11114                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11115                        " fails: %d\n", irqfd->consumer.token, ret);
11116
11117         kvm_arch_end_assignment(irqfd->kvm);
11118 }
11119
11120 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11121                                    uint32_t guest_irq, bool set)
11122 {
11123         return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11124 }
11125
11126 bool kvm_vector_hashing_enabled(void)
11127 {
11128         return vector_hashing;
11129 }
11130
11131 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11132 {
11133         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11134 }
11135 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11136
11137
11138 int kvm_spec_ctrl_test_value(u64 value)
11139 {
11140         /*
11141          * test that setting IA32_SPEC_CTRL to given value
11142          * is allowed by the host processor
11143          */
11144
11145         u64 saved_value;
11146         unsigned long flags;
11147         int ret = 0;
11148
11149         local_irq_save(flags);
11150
11151         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11152                 ret = 1;
11153         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11154                 ret = 1;
11155         else
11156                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11157
11158         local_irq_restore(flags);
11159
11160         return ret;
11161 }
11162 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11163
11164 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11165 {
11166         struct x86_exception fault;
11167         u32 access = error_code &
11168                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11169
11170         if (!(error_code & PFERR_PRESENT_MASK) ||
11171             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11172                 /*
11173                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11174                  * tables probably do not match the TLB.  Just proceed
11175                  * with the error code that the processor gave.
11176                  */
11177                 fault.vector = PF_VECTOR;
11178                 fault.error_code_valid = true;
11179                 fault.error_code = error_code;
11180                 fault.nested_page_fault = false;
11181                 fault.address = gva;
11182         }
11183         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11184 }
11185 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11186
11187 /*
11188  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11189  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11190  * indicates whether exit to userspace is needed.
11191  */
11192 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11193                               struct x86_exception *e)
11194 {
11195         if (r == X86EMUL_PROPAGATE_FAULT) {
11196                 kvm_inject_emulated_page_fault(vcpu, e);
11197                 return 1;
11198         }
11199
11200         /*
11201          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11202          * while handling a VMX instruction KVM could've handled the request
11203          * correctly by exiting to userspace and performing I/O but there
11204          * doesn't seem to be a real use-case behind such requests, just return
11205          * KVM_EXIT_INTERNAL_ERROR for now.
11206          */
11207         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11208         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11209         vcpu->run->internal.ndata = 0;
11210
11211         return 0;
11212 }
11213 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11214
11215 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11216 {
11217         bool pcid_enabled;
11218         struct x86_exception e;
11219         unsigned i;
11220         unsigned long roots_to_free = 0;
11221         struct {
11222                 u64 pcid;
11223                 u64 gla;
11224         } operand;
11225         int r;
11226
11227         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11228         if (r != X86EMUL_CONTINUE)
11229                 return kvm_handle_memory_failure(vcpu, r, &e);
11230
11231         if (operand.pcid >> 12 != 0) {
11232                 kvm_inject_gp(vcpu, 0);
11233                 return 1;
11234         }
11235
11236         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11237
11238         switch (type) {
11239         case INVPCID_TYPE_INDIV_ADDR:
11240                 if ((!pcid_enabled && (operand.pcid != 0)) ||
11241                     is_noncanonical_address(operand.gla, vcpu)) {
11242                         kvm_inject_gp(vcpu, 0);
11243                         return 1;
11244                 }
11245                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11246                 return kvm_skip_emulated_instruction(vcpu);
11247
11248         case INVPCID_TYPE_SINGLE_CTXT:
11249                 if (!pcid_enabled && (operand.pcid != 0)) {
11250                         kvm_inject_gp(vcpu, 0);
11251                         return 1;
11252                 }
11253
11254                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11255                         kvm_mmu_sync_roots(vcpu);
11256                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11257                 }
11258
11259                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11260                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11261                             == operand.pcid)
11262                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11263
11264                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11265                 /*
11266                  * If neither the current cr3 nor any of the prev_roots use the
11267                  * given PCID, then nothing needs to be done here because a
11268                  * resync will happen anyway before switching to any other CR3.
11269                  */
11270
11271                 return kvm_skip_emulated_instruction(vcpu);
11272
11273         case INVPCID_TYPE_ALL_NON_GLOBAL:
11274                 /*
11275                  * Currently, KVM doesn't mark global entries in the shadow
11276                  * page tables, so a non-global flush just degenerates to a
11277                  * global flush. If needed, we could optimize this later by
11278                  * keeping track of global entries in shadow page tables.
11279                  */
11280
11281                 fallthrough;
11282         case INVPCID_TYPE_ALL_INCL_GLOBAL:
11283                 kvm_mmu_unload(vcpu);
11284                 return kvm_skip_emulated_instruction(vcpu);
11285
11286         default:
11287                 BUG(); /* We have already checked above that type <= 3 */
11288         }
11289 }
11290 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11291
11292 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11293 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11294 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11295 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11308 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11309 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11310 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11311 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11312 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11313 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);