KVM: x86: Move vendor CR4 validity check to dedicated kvm_x86_ops hook
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88         ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
165 /*
166  * Restoring the host value for MSRs that are only consumed when running in
167  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
168  * returns to userspace, i.e. the kernel can run with the guest's value.
169  */
170 #define KVM_MAX_NR_USER_RETURN_MSRS 16
171
172 struct kvm_user_return_msrs_global {
173         int nr;
174         u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
175 };
176
177 struct kvm_user_return_msrs {
178         struct user_return_notifier urn;
179         bool registered;
180         struct kvm_user_return_msr_values {
181                 u64 host;
182                 u64 curr;
183         } values[KVM_MAX_NR_USER_RETURN_MSRS];
184 };
185
186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
187 static struct kvm_user_return_msrs __percpu *user_return_msrs;
188
189 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
190                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
191                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
192                                 | XFEATURE_MASK_PKRU)
193
194 u64 __read_mostly host_efer;
195 EXPORT_SYMBOL_GPL(host_efer);
196
197 bool __read_mostly allow_smaller_maxphyaddr = 0;
198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
199
200 static u64 __read_mostly host_xss;
201 u64 __read_mostly supported_xss;
202 EXPORT_SYMBOL_GPL(supported_xss);
203
204 struct kvm_stats_debugfs_item debugfs_entries[] = {
205         VCPU_STAT("pf_fixed", pf_fixed),
206         VCPU_STAT("pf_guest", pf_guest),
207         VCPU_STAT("tlb_flush", tlb_flush),
208         VCPU_STAT("invlpg", invlpg),
209         VCPU_STAT("exits", exits),
210         VCPU_STAT("io_exits", io_exits),
211         VCPU_STAT("mmio_exits", mmio_exits),
212         VCPU_STAT("signal_exits", signal_exits),
213         VCPU_STAT("irq_window", irq_window_exits),
214         VCPU_STAT("nmi_window", nmi_window_exits),
215         VCPU_STAT("halt_exits", halt_exits),
216         VCPU_STAT("halt_successful_poll", halt_successful_poll),
217         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
218         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
219         VCPU_STAT("halt_wakeup", halt_wakeup),
220         VCPU_STAT("hypercalls", hypercalls),
221         VCPU_STAT("request_irq", request_irq_exits),
222         VCPU_STAT("irq_exits", irq_exits),
223         VCPU_STAT("host_state_reload", host_state_reload),
224         VCPU_STAT("fpu_reload", fpu_reload),
225         VCPU_STAT("insn_emulation", insn_emulation),
226         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
227         VCPU_STAT("irq_injections", irq_injections),
228         VCPU_STAT("nmi_injections", nmi_injections),
229         VCPU_STAT("req_event", req_event),
230         VCPU_STAT("l1d_flush", l1d_flush),
231         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
232         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
233         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
234         VM_STAT("mmu_pte_write", mmu_pte_write),
235         VM_STAT("mmu_pte_updated", mmu_pte_updated),
236         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
237         VM_STAT("mmu_flooded", mmu_flooded),
238         VM_STAT("mmu_recycled", mmu_recycled),
239         VM_STAT("mmu_cache_miss", mmu_cache_miss),
240         VM_STAT("mmu_unsync", mmu_unsync),
241         VM_STAT("remote_tlb_flush", remote_tlb_flush),
242         VM_STAT("largepages", lpages, .mode = 0444),
243         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
244         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
245         { NULL }
246 };
247
248 u64 __read_mostly host_xcr0;
249 u64 __read_mostly supported_xcr0;
250 EXPORT_SYMBOL_GPL(supported_xcr0);
251
252 static struct kmem_cache *x86_fpu_cache;
253
254 static struct kmem_cache *x86_emulator_cache;
255
256 /*
257  * When called, it means the previous get/set msr reached an invalid msr.
258  * Return true if we want to ignore/silent this failed msr access.
259  */
260 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
261                                   u64 data, bool write)
262 {
263         const char *op = write ? "wrmsr" : "rdmsr";
264
265         if (ignore_msrs) {
266                 if (report_ignored_msrs)
267                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
268                                       op, msr, data);
269                 /* Mask the error */
270                 return true;
271         } else {
272                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
273                                       op, msr, data);
274                 return false;
275         }
276 }
277
278 static struct kmem_cache *kvm_alloc_emulator_cache(void)
279 {
280         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
281         unsigned int size = sizeof(struct x86_emulate_ctxt);
282
283         return kmem_cache_create_usercopy("x86_emulator", size,
284                                           __alignof__(struct x86_emulate_ctxt),
285                                           SLAB_ACCOUNT, useroffset,
286                                           size - useroffset, NULL);
287 }
288
289 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
290
291 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
292 {
293         int i;
294         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
295                 vcpu->arch.apf.gfns[i] = ~0;
296 }
297
298 static void kvm_on_user_return(struct user_return_notifier *urn)
299 {
300         unsigned slot;
301         struct kvm_user_return_msrs *msrs
302                 = container_of(urn, struct kvm_user_return_msrs, urn);
303         struct kvm_user_return_msr_values *values;
304         unsigned long flags;
305
306         /*
307          * Disabling irqs at this point since the following code could be
308          * interrupted and executed through kvm_arch_hardware_disable()
309          */
310         local_irq_save(flags);
311         if (msrs->registered) {
312                 msrs->registered = false;
313                 user_return_notifier_unregister(urn);
314         }
315         local_irq_restore(flags);
316         for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
317                 values = &msrs->values[slot];
318                 if (values->host != values->curr) {
319                         wrmsrl(user_return_msrs_global.msrs[slot], values->host);
320                         values->curr = values->host;
321                 }
322         }
323 }
324
325 void kvm_define_user_return_msr(unsigned slot, u32 msr)
326 {
327         BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
328         user_return_msrs_global.msrs[slot] = msr;
329         if (slot >= user_return_msrs_global.nr)
330                 user_return_msrs_global.nr = slot + 1;
331 }
332 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
333
334 static void kvm_user_return_msr_cpu_online(void)
335 {
336         unsigned int cpu = smp_processor_id();
337         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
338         u64 value;
339         int i;
340
341         for (i = 0; i < user_return_msrs_global.nr; ++i) {
342                 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
343                 msrs->values[i].host = value;
344                 msrs->values[i].curr = value;
345         }
346 }
347
348 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
349 {
350         unsigned int cpu = smp_processor_id();
351         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352         int err;
353
354         value = (value & mask) | (msrs->values[slot].host & ~mask);
355         if (value == msrs->values[slot].curr)
356                 return 0;
357         err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
358         if (err)
359                 return 1;
360
361         msrs->values[slot].curr = value;
362         if (!msrs->registered) {
363                 msrs->urn.on_user_return = kvm_on_user_return;
364                 user_return_notifier_register(&msrs->urn);
365                 msrs->registered = true;
366         }
367         return 0;
368 }
369 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
370
371 static void drop_user_return_notifiers(void)
372 {
373         unsigned int cpu = smp_processor_id();
374         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
375
376         if (msrs->registered)
377                 kvm_on_user_return(&msrs->urn);
378 }
379
380 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
381 {
382         return vcpu->arch.apic_base;
383 }
384 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
385
386 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
387 {
388         return kvm_apic_mode(kvm_get_apic_base(vcpu));
389 }
390 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
391
392 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
393 {
394         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
395         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
396         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
397                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
398
399         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
400                 return 1;
401         if (!msr_info->host_initiated) {
402                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
403                         return 1;
404                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
405                         return 1;
406         }
407
408         kvm_lapic_set_base(vcpu, msr_info->data);
409         kvm_recalculate_apic_map(vcpu->kvm);
410         return 0;
411 }
412 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
413
414 asmlinkage __visible noinstr void kvm_spurious_fault(void)
415 {
416         /* Fault while not rebooting.  We want the trace. */
417         BUG_ON(!kvm_rebooting);
418 }
419 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
420
421 #define EXCPT_BENIGN            0
422 #define EXCPT_CONTRIBUTORY      1
423 #define EXCPT_PF                2
424
425 static int exception_class(int vector)
426 {
427         switch (vector) {
428         case PF_VECTOR:
429                 return EXCPT_PF;
430         case DE_VECTOR:
431         case TS_VECTOR:
432         case NP_VECTOR:
433         case SS_VECTOR:
434         case GP_VECTOR:
435                 return EXCPT_CONTRIBUTORY;
436         default:
437                 break;
438         }
439         return EXCPT_BENIGN;
440 }
441
442 #define EXCPT_FAULT             0
443 #define EXCPT_TRAP              1
444 #define EXCPT_ABORT             2
445 #define EXCPT_INTERRUPT         3
446
447 static int exception_type(int vector)
448 {
449         unsigned int mask;
450
451         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
452                 return EXCPT_INTERRUPT;
453
454         mask = 1 << vector;
455
456         /* #DB is trap, as instruction watchpoints are handled elsewhere */
457         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
458                 return EXCPT_TRAP;
459
460         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
461                 return EXCPT_ABORT;
462
463         /* Reserved exceptions will result in fault */
464         return EXCPT_FAULT;
465 }
466
467 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
468 {
469         unsigned nr = vcpu->arch.exception.nr;
470         bool has_payload = vcpu->arch.exception.has_payload;
471         unsigned long payload = vcpu->arch.exception.payload;
472
473         if (!has_payload)
474                 return;
475
476         switch (nr) {
477         case DB_VECTOR:
478                 /*
479                  * "Certain debug exceptions may clear bit 0-3.  The
480                  * remaining contents of the DR6 register are never
481                  * cleared by the processor".
482                  */
483                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
484                 /*
485                  * DR6.RTM is set by all #DB exceptions that don't clear it.
486                  */
487                 vcpu->arch.dr6 |= DR6_RTM;
488                 vcpu->arch.dr6 |= payload;
489                 /*
490                  * Bit 16 should be set in the payload whenever the #DB
491                  * exception should clear DR6.RTM. This makes the payload
492                  * compatible with the pending debug exceptions under VMX.
493                  * Though not currently documented in the SDM, this also
494                  * makes the payload compatible with the exit qualification
495                  * for #DB exceptions under VMX.
496                  */
497                 vcpu->arch.dr6 ^= payload & DR6_RTM;
498
499                 /*
500                  * The #DB payload is defined as compatible with the 'pending
501                  * debug exceptions' field under VMX, not DR6. While bit 12 is
502                  * defined in the 'pending debug exceptions' field (enabled
503                  * breakpoint), it is reserved and must be zero in DR6.
504                  */
505                 vcpu->arch.dr6 &= ~BIT(12);
506                 break;
507         case PF_VECTOR:
508                 vcpu->arch.cr2 = payload;
509                 break;
510         }
511
512         vcpu->arch.exception.has_payload = false;
513         vcpu->arch.exception.payload = 0;
514 }
515 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
516
517 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
518                 unsigned nr, bool has_error, u32 error_code,
519                 bool has_payload, unsigned long payload, bool reinject)
520 {
521         u32 prev_nr;
522         int class1, class2;
523
524         kvm_make_request(KVM_REQ_EVENT, vcpu);
525
526         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
527         queue:
528                 if (has_error && !is_protmode(vcpu))
529                         has_error = false;
530                 if (reinject) {
531                         /*
532                          * On vmentry, vcpu->arch.exception.pending is only
533                          * true if an event injection was blocked by
534                          * nested_run_pending.  In that case, however,
535                          * vcpu_enter_guest requests an immediate exit,
536                          * and the guest shouldn't proceed far enough to
537                          * need reinjection.
538                          */
539                         WARN_ON_ONCE(vcpu->arch.exception.pending);
540                         vcpu->arch.exception.injected = true;
541                         if (WARN_ON_ONCE(has_payload)) {
542                                 /*
543                                  * A reinjected event has already
544                                  * delivered its payload.
545                                  */
546                                 has_payload = false;
547                                 payload = 0;
548                         }
549                 } else {
550                         vcpu->arch.exception.pending = true;
551                         vcpu->arch.exception.injected = false;
552                 }
553                 vcpu->arch.exception.has_error_code = has_error;
554                 vcpu->arch.exception.nr = nr;
555                 vcpu->arch.exception.error_code = error_code;
556                 vcpu->arch.exception.has_payload = has_payload;
557                 vcpu->arch.exception.payload = payload;
558                 if (!is_guest_mode(vcpu))
559                         kvm_deliver_exception_payload(vcpu);
560                 return;
561         }
562
563         /* to check exception */
564         prev_nr = vcpu->arch.exception.nr;
565         if (prev_nr == DF_VECTOR) {
566                 /* triple fault -> shutdown */
567                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
568                 return;
569         }
570         class1 = exception_class(prev_nr);
571         class2 = exception_class(nr);
572         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
573                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
574                 /*
575                  * Generate double fault per SDM Table 5-5.  Set
576                  * exception.pending = true so that the double fault
577                  * can trigger a nested vmexit.
578                  */
579                 vcpu->arch.exception.pending = true;
580                 vcpu->arch.exception.injected = false;
581                 vcpu->arch.exception.has_error_code = true;
582                 vcpu->arch.exception.nr = DF_VECTOR;
583                 vcpu->arch.exception.error_code = 0;
584                 vcpu->arch.exception.has_payload = false;
585                 vcpu->arch.exception.payload = 0;
586         } else
587                 /* replace previous exception with a new one in a hope
588                    that instruction re-execution will regenerate lost
589                    exception */
590                 goto queue;
591 }
592
593 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
594 {
595         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
596 }
597 EXPORT_SYMBOL_GPL(kvm_queue_exception);
598
599 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
600 {
601         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
602 }
603 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
604
605 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
606                            unsigned long payload)
607 {
608         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
609 }
610 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
611
612 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
613                                     u32 error_code, unsigned long payload)
614 {
615         kvm_multiple_exception(vcpu, nr, true, error_code,
616                                true, payload, false);
617 }
618
619 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
620 {
621         if (err)
622                 kvm_inject_gp(vcpu, 0);
623         else
624                 return kvm_skip_emulated_instruction(vcpu);
625
626         return 1;
627 }
628 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
629
630 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
631 {
632         ++vcpu->stat.pf_guest;
633         vcpu->arch.exception.nested_apf =
634                 is_guest_mode(vcpu) && fault->async_page_fault;
635         if (vcpu->arch.exception.nested_apf) {
636                 vcpu->arch.apf.nested_apf_token = fault->address;
637                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
638         } else {
639                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
640                                         fault->address);
641         }
642 }
643 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
644
645 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
646                                     struct x86_exception *fault)
647 {
648         struct kvm_mmu *fault_mmu;
649         WARN_ON_ONCE(fault->vector != PF_VECTOR);
650
651         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
652                                                vcpu->arch.walk_mmu;
653
654         /*
655          * Invalidate the TLB entry for the faulting address, if it exists,
656          * else the access will fault indefinitely (and to emulate hardware).
657          */
658         if ((fault->error_code & PFERR_PRESENT_MASK) &&
659             !(fault->error_code & PFERR_RSVD_MASK))
660                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
661                                        fault_mmu->root_hpa);
662
663         fault_mmu->inject_page_fault(vcpu, fault);
664         return fault->nested_page_fault;
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
667
668 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
669 {
670         atomic_inc(&vcpu->arch.nmi_queued);
671         kvm_make_request(KVM_REQ_NMI, vcpu);
672 }
673 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
674
675 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
676 {
677         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
678 }
679 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
680
681 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
682 {
683         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
684 }
685 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
686
687 /*
688  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
689  * a #GP and return false.
690  */
691 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
692 {
693         if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
694                 return true;
695         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
696         return false;
697 }
698 EXPORT_SYMBOL_GPL(kvm_require_cpl);
699
700 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
701 {
702         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703                 return true;
704
705         kvm_queue_exception(vcpu, UD_VECTOR);
706         return false;
707 }
708 EXPORT_SYMBOL_GPL(kvm_require_dr);
709
710 /*
711  * This function will be used to read from the physical memory of the currently
712  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
713  * can read from guest physical or from the guest's guest physical memory.
714  */
715 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
716                             gfn_t ngfn, void *data, int offset, int len,
717                             u32 access)
718 {
719         struct x86_exception exception;
720         gfn_t real_gfn;
721         gpa_t ngpa;
722
723         ngpa     = gfn_to_gpa(ngfn);
724         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
725         if (real_gfn == UNMAPPED_GVA)
726                 return -EFAULT;
727
728         real_gfn = gpa_to_gfn(real_gfn);
729
730         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
731 }
732 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
733
734 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
735                                void *data, int offset, int len, u32 access)
736 {
737         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
738                                        data, offset, len, access);
739 }
740
741 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
742 {
743         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
744                rsvd_bits(1, 2);
745 }
746
747 /*
748  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
749  */
750 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
751 {
752         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
753         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
754         int i;
755         int ret;
756         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
757
758         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
759                                       offset * sizeof(u64), sizeof(pdpte),
760                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
761         if (ret < 0) {
762                 ret = 0;
763                 goto out;
764         }
765         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
766                 if ((pdpte[i] & PT_PRESENT_MASK) &&
767                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
768                         ret = 0;
769                         goto out;
770                 }
771         }
772         ret = 1;
773
774         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
775         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
776
777 out:
778
779         return ret;
780 }
781 EXPORT_SYMBOL_GPL(load_pdptrs);
782
783 bool pdptrs_changed(struct kvm_vcpu *vcpu)
784 {
785         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
786         int offset;
787         gfn_t gfn;
788         int r;
789
790         if (!is_pae_paging(vcpu))
791                 return false;
792
793         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
794                 return true;
795
796         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
797         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
798         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
799                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
800         if (r < 0)
801                 return true;
802
803         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
804 }
805 EXPORT_SYMBOL_GPL(pdptrs_changed);
806
807 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
808 {
809         unsigned long old_cr0 = kvm_read_cr0(vcpu);
810         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
811         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
812
813         cr0 |= X86_CR0_ET;
814
815 #ifdef CONFIG_X86_64
816         if (cr0 & 0xffffffff00000000UL)
817                 return 1;
818 #endif
819
820         cr0 &= ~CR0_RESERVED_BITS;
821
822         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
823                 return 1;
824
825         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
826                 return 1;
827
828 #ifdef CONFIG_X86_64
829         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
830             (cr0 & X86_CR0_PG)) {
831                 int cs_db, cs_l;
832
833                 if (!is_pae(vcpu))
834                         return 1;
835                 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
836                 if (cs_l)
837                         return 1;
838         }
839 #endif
840         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
841             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
842             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
843                 return 1;
844
845         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
846                 return 1;
847
848         kvm_x86_ops.set_cr0(vcpu, cr0);
849
850         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
851                 kvm_clear_async_pf_completion_queue(vcpu);
852                 kvm_async_pf_hash_reset(vcpu);
853         }
854
855         if ((cr0 ^ old_cr0) & update_bits)
856                 kvm_mmu_reset_context(vcpu);
857
858         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
859             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
860             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
861                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
862
863         return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_cr0);
866
867 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
868 {
869         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
870 }
871 EXPORT_SYMBOL_GPL(kvm_lmsw);
872
873 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
874 {
875         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
876
877                 if (vcpu->arch.xcr0 != host_xcr0)
878                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
879
880                 if (vcpu->arch.xsaves_enabled &&
881                     vcpu->arch.ia32_xss != host_xss)
882                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
883         }
884
885         if (static_cpu_has(X86_FEATURE_PKU) &&
886             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
887              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
888             vcpu->arch.pkru != vcpu->arch.host_pkru)
889                 __write_pkru(vcpu->arch.pkru);
890 }
891 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
892
893 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
894 {
895         if (static_cpu_has(X86_FEATURE_PKU) &&
896             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
897              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
898                 vcpu->arch.pkru = rdpkru();
899                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
900                         __write_pkru(vcpu->arch.host_pkru);
901         }
902
903         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904
905                 if (vcpu->arch.xcr0 != host_xcr0)
906                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
907
908                 if (vcpu->arch.xsaves_enabled &&
909                     vcpu->arch.ia32_xss != host_xss)
910                         wrmsrl(MSR_IA32_XSS, host_xss);
911         }
912
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
915
916 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
917 {
918         u64 xcr0 = xcr;
919         u64 old_xcr0 = vcpu->arch.xcr0;
920         u64 valid_bits;
921
922         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
923         if (index != XCR_XFEATURE_ENABLED_MASK)
924                 return 1;
925         if (!(xcr0 & XFEATURE_MASK_FP))
926                 return 1;
927         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
928                 return 1;
929
930         /*
931          * Do not allow the guest to set bits that we do not support
932          * saving.  However, xcr0 bit 0 is always set, even if the
933          * emulated CPU does not support XSAVE (see fx_init).
934          */
935         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
936         if (xcr0 & ~valid_bits)
937                 return 1;
938
939         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
940             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
941                 return 1;
942
943         if (xcr0 & XFEATURE_MASK_AVX512) {
944                 if (!(xcr0 & XFEATURE_MASK_YMM))
945                         return 1;
946                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
947                         return 1;
948         }
949         vcpu->arch.xcr0 = xcr0;
950
951         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
952                 kvm_update_cpuid_runtime(vcpu);
953         return 0;
954 }
955
956 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
957 {
958         if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
959             __kvm_set_xcr(vcpu, index, xcr)) {
960                 kvm_inject_gp(vcpu, 0);
961                 return 1;
962         }
963         return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_xcr);
966
967 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
968 {
969         if (cr4 & cr4_reserved_bits)
970                 return -EINVAL;
971
972         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
973                 return -EINVAL;
974
975         if (!kvm_x86_ops.is_valid_cr4(vcpu, cr4))
976                 return -EINVAL;
977
978         return 0;
979 }
980 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
981
982 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
983 {
984         unsigned long old_cr4 = kvm_read_cr4(vcpu);
985         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
986                                    X86_CR4_SMEP;
987         unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
988
989         if (kvm_valid_cr4(vcpu, cr4))
990                 return 1;
991
992         if (is_long_mode(vcpu)) {
993                 if (!(cr4 & X86_CR4_PAE))
994                         return 1;
995                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
996                         return 1;
997         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
998                    && ((cr4 ^ old_cr4) & pdptr_bits)
999                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1000                                    kvm_read_cr3(vcpu)))
1001                 return 1;
1002
1003         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1004                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1005                         return 1;
1006
1007                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1008                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1009                         return 1;
1010         }
1011
1012         kvm_x86_ops.set_cr4(vcpu, cr4);
1013
1014         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1015             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1016                 kvm_mmu_reset_context(vcpu);
1017
1018         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1019                 kvm_update_cpuid_runtime(vcpu);
1020
1021         return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1024
1025 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1026 {
1027         bool skip_tlb_flush = false;
1028 #ifdef CONFIG_X86_64
1029         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1030
1031         if (pcid_enabled) {
1032                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1033                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1034         }
1035 #endif
1036
1037         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1038                 if (!skip_tlb_flush) {
1039                         kvm_mmu_sync_roots(vcpu);
1040                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1041                 }
1042                 return 0;
1043         }
1044
1045         if (is_long_mode(vcpu) &&
1046             (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1047                 return 1;
1048         else if (is_pae_paging(vcpu) &&
1049                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1050                 return 1;
1051
1052         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1053         vcpu->arch.cr3 = cr3;
1054         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1055
1056         return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1059
1060 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1061 {
1062         if (cr8 & CR8_RESERVED_BITS)
1063                 return 1;
1064         if (lapic_in_kernel(vcpu))
1065                 kvm_lapic_set_tpr(vcpu, cr8);
1066         else
1067                 vcpu->arch.cr8 = cr8;
1068         return 0;
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1071
1072 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1073 {
1074         if (lapic_in_kernel(vcpu))
1075                 return kvm_lapic_get_cr8(vcpu);
1076         else
1077                 return vcpu->arch.cr8;
1078 }
1079 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1080
1081 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1082 {
1083         int i;
1084
1085         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1086                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1087                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1088                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1089         }
1090 }
1091
1092 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1093 {
1094         unsigned long dr7;
1095
1096         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1097                 dr7 = vcpu->arch.guest_debug_dr7;
1098         else
1099                 dr7 = vcpu->arch.dr7;
1100         kvm_x86_ops.set_dr7(vcpu, dr7);
1101         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1102         if (dr7 & DR7_BP_EN_MASK)
1103                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1104 }
1105 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1106
1107 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1108 {
1109         u64 fixed = DR6_FIXED_1;
1110
1111         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1112                 fixed |= DR6_RTM;
1113         return fixed;
1114 }
1115
1116 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1117 {
1118         size_t size = ARRAY_SIZE(vcpu->arch.db);
1119
1120         switch (dr) {
1121         case 0 ... 3:
1122                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1123                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1124                         vcpu->arch.eff_db[dr] = val;
1125                 break;
1126         case 4:
1127         case 6:
1128                 if (!kvm_dr6_valid(val))
1129                         return -1; /* #GP */
1130                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1131                 break;
1132         case 5:
1133         default: /* 7 */
1134                 if (!kvm_dr7_valid(val))
1135                         return -1; /* #GP */
1136                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1137                 kvm_update_dr7(vcpu);
1138                 break;
1139         }
1140
1141         return 0;
1142 }
1143
1144 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1145 {
1146         if (__kvm_set_dr(vcpu, dr, val)) {
1147                 kvm_inject_gp(vcpu, 0);
1148                 return 1;
1149         }
1150         return 0;
1151 }
1152 EXPORT_SYMBOL_GPL(kvm_set_dr);
1153
1154 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1155 {
1156         size_t size = ARRAY_SIZE(vcpu->arch.db);
1157
1158         switch (dr) {
1159         case 0 ... 3:
1160                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1161                 break;
1162         case 4:
1163         case 6:
1164                 *val = vcpu->arch.dr6;
1165                 break;
1166         case 5:
1167         default: /* 7 */
1168                 *val = vcpu->arch.dr7;
1169                 break;
1170         }
1171         return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(kvm_get_dr);
1174
1175 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1176 {
1177         u32 ecx = kvm_rcx_read(vcpu);
1178         u64 data;
1179         int err;
1180
1181         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1182         if (err)
1183                 return err;
1184         kvm_rax_write(vcpu, (u32)data);
1185         kvm_rdx_write(vcpu, data >> 32);
1186         return err;
1187 }
1188 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1189
1190 /*
1191  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1192  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1193  *
1194  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1195  * extract the supported MSRs from the related const lists.
1196  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1197  * capabilities of the host cpu. This capabilities test skips MSRs that are
1198  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1199  * may depend on host virtualization features rather than host cpu features.
1200  */
1201
1202 static const u32 msrs_to_save_all[] = {
1203         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1204         MSR_STAR,
1205 #ifdef CONFIG_X86_64
1206         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1207 #endif
1208         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1209         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1210         MSR_IA32_SPEC_CTRL,
1211         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1212         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1213         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1214         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1215         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1216         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1217         MSR_IA32_UMWAIT_CONTROL,
1218
1219         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1220         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1221         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1222         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1223         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1224         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1225         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1226         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1227         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1228         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1229         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1230         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1231         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1232         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1233         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1234         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1235         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1236         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1237         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1238         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1239         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1240         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1241 };
1242
1243 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1244 static unsigned num_msrs_to_save;
1245
1246 static const u32 emulated_msrs_all[] = {
1247         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1248         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1249         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1250         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1251         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1252         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1253         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1254         HV_X64_MSR_RESET,
1255         HV_X64_MSR_VP_INDEX,
1256         HV_X64_MSR_VP_RUNTIME,
1257         HV_X64_MSR_SCONTROL,
1258         HV_X64_MSR_STIMER0_CONFIG,
1259         HV_X64_MSR_VP_ASSIST_PAGE,
1260         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1261         HV_X64_MSR_TSC_EMULATION_STATUS,
1262         HV_X64_MSR_SYNDBG_OPTIONS,
1263         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1264         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1265         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1266
1267         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1268         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1269
1270         MSR_IA32_TSC_ADJUST,
1271         MSR_IA32_TSCDEADLINE,
1272         MSR_IA32_ARCH_CAPABILITIES,
1273         MSR_IA32_PERF_CAPABILITIES,
1274         MSR_IA32_MISC_ENABLE,
1275         MSR_IA32_MCG_STATUS,
1276         MSR_IA32_MCG_CTL,
1277         MSR_IA32_MCG_EXT_CTL,
1278         MSR_IA32_SMBASE,
1279         MSR_SMI_COUNT,
1280         MSR_PLATFORM_INFO,
1281         MSR_MISC_FEATURES_ENABLES,
1282         MSR_AMD64_VIRT_SPEC_CTRL,
1283         MSR_IA32_POWER_CTL,
1284         MSR_IA32_UCODE_REV,
1285
1286         /*
1287          * The following list leaves out MSRs whose values are determined
1288          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1289          * We always support the "true" VMX control MSRs, even if the host
1290          * processor does not, so I am putting these registers here rather
1291          * than in msrs_to_save_all.
1292          */
1293         MSR_IA32_VMX_BASIC,
1294         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1295         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1296         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1297         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1298         MSR_IA32_VMX_MISC,
1299         MSR_IA32_VMX_CR0_FIXED0,
1300         MSR_IA32_VMX_CR4_FIXED0,
1301         MSR_IA32_VMX_VMCS_ENUM,
1302         MSR_IA32_VMX_PROCBASED_CTLS2,
1303         MSR_IA32_VMX_EPT_VPID_CAP,
1304         MSR_IA32_VMX_VMFUNC,
1305
1306         MSR_K7_HWCR,
1307         MSR_KVM_POLL_CONTROL,
1308 };
1309
1310 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1311 static unsigned num_emulated_msrs;
1312
1313 /*
1314  * List of msr numbers which are used to expose MSR-based features that
1315  * can be used by a hypervisor to validate requested CPU features.
1316  */
1317 static const u32 msr_based_features_all[] = {
1318         MSR_IA32_VMX_BASIC,
1319         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1320         MSR_IA32_VMX_PINBASED_CTLS,
1321         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1322         MSR_IA32_VMX_PROCBASED_CTLS,
1323         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1324         MSR_IA32_VMX_EXIT_CTLS,
1325         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1326         MSR_IA32_VMX_ENTRY_CTLS,
1327         MSR_IA32_VMX_MISC,
1328         MSR_IA32_VMX_CR0_FIXED0,
1329         MSR_IA32_VMX_CR0_FIXED1,
1330         MSR_IA32_VMX_CR4_FIXED0,
1331         MSR_IA32_VMX_CR4_FIXED1,
1332         MSR_IA32_VMX_VMCS_ENUM,
1333         MSR_IA32_VMX_PROCBASED_CTLS2,
1334         MSR_IA32_VMX_EPT_VPID_CAP,
1335         MSR_IA32_VMX_VMFUNC,
1336
1337         MSR_F10H_DECFG,
1338         MSR_IA32_UCODE_REV,
1339         MSR_IA32_ARCH_CAPABILITIES,
1340         MSR_IA32_PERF_CAPABILITIES,
1341 };
1342
1343 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1344 static unsigned int num_msr_based_features;
1345
1346 static u64 kvm_get_arch_capabilities(void)
1347 {
1348         u64 data = 0;
1349
1350         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1351                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1352
1353         /*
1354          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1355          * the nested hypervisor runs with NX huge pages.  If it is not,
1356          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1357          * L1 guests, so it need not worry about its own (L2) guests.
1358          */
1359         data |= ARCH_CAP_PSCHANGE_MC_NO;
1360
1361         /*
1362          * If we're doing cache flushes (either "always" or "cond")
1363          * we will do one whenever the guest does a vmlaunch/vmresume.
1364          * If an outer hypervisor is doing the cache flush for us
1365          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1366          * capability to the guest too, and if EPT is disabled we're not
1367          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1368          * require a nested hypervisor to do a flush of its own.
1369          */
1370         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1371                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1372
1373         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1374                 data |= ARCH_CAP_RDCL_NO;
1375         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1376                 data |= ARCH_CAP_SSB_NO;
1377         if (!boot_cpu_has_bug(X86_BUG_MDS))
1378                 data |= ARCH_CAP_MDS_NO;
1379
1380         /*
1381          * On TAA affected systems:
1382          *      - nothing to do if TSX is disabled on the host.
1383          *      - we emulate TSX_CTRL if present on the host.
1384          *        This lets the guest use VERW to clear CPU buffers.
1385          */
1386         if (!boot_cpu_has(X86_FEATURE_RTM))
1387                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1388         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1389                 data |= ARCH_CAP_TAA_NO;
1390
1391         return data;
1392 }
1393
1394 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1395 {
1396         switch (msr->index) {
1397         case MSR_IA32_ARCH_CAPABILITIES:
1398                 msr->data = kvm_get_arch_capabilities();
1399                 break;
1400         case MSR_IA32_UCODE_REV:
1401                 rdmsrl_safe(msr->index, &msr->data);
1402                 break;
1403         default:
1404                 return kvm_x86_ops.get_msr_feature(msr);
1405         }
1406         return 0;
1407 }
1408
1409 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1410 {
1411         struct kvm_msr_entry msr;
1412         int r;
1413
1414         msr.index = index;
1415         r = kvm_get_msr_feature(&msr);
1416
1417         if (r == KVM_MSR_RET_INVALID) {
1418                 /* Unconditionally clear the output for simplicity */
1419                 *data = 0;
1420                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1421                         r = 0;
1422         }
1423
1424         if (r)
1425                 return r;
1426
1427         *data = msr.data;
1428
1429         return 0;
1430 }
1431
1432 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1433 {
1434         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1435                 return false;
1436
1437         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1438                 return false;
1439
1440         if (efer & (EFER_LME | EFER_LMA) &&
1441             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1442                 return false;
1443
1444         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1445                 return false;
1446
1447         return true;
1448
1449 }
1450 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1451 {
1452         if (efer & efer_reserved_bits)
1453                 return false;
1454
1455         return __kvm_valid_efer(vcpu, efer);
1456 }
1457 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1458
1459 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1460 {
1461         u64 old_efer = vcpu->arch.efer;
1462         u64 efer = msr_info->data;
1463         int r;
1464
1465         if (efer & efer_reserved_bits)
1466                 return 1;
1467
1468         if (!msr_info->host_initiated) {
1469                 if (!__kvm_valid_efer(vcpu, efer))
1470                         return 1;
1471
1472                 if (is_paging(vcpu) &&
1473                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1474                         return 1;
1475         }
1476
1477         efer &= ~EFER_LMA;
1478         efer |= vcpu->arch.efer & EFER_LMA;
1479
1480         r = kvm_x86_ops.set_efer(vcpu, efer);
1481         if (r) {
1482                 WARN_ON(r > 0);
1483                 return r;
1484         }
1485
1486         /* Update reserved bits */
1487         if ((efer ^ old_efer) & EFER_NX)
1488                 kvm_mmu_reset_context(vcpu);
1489
1490         return 0;
1491 }
1492
1493 void kvm_enable_efer_bits(u64 mask)
1494 {
1495        efer_reserved_bits &= ~mask;
1496 }
1497 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1498
1499 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1500 {
1501         struct kvm *kvm = vcpu->kvm;
1502         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1503         u32 count = kvm->arch.msr_filter.count;
1504         u32 i;
1505         bool r = kvm->arch.msr_filter.default_allow;
1506         int idx;
1507
1508         /* MSR filtering not set up or x2APIC enabled, allow everything */
1509         if (!count || (index >= 0x800 && index <= 0x8ff))
1510                 return true;
1511
1512         /* Prevent collision with set_msr_filter */
1513         idx = srcu_read_lock(&kvm->srcu);
1514
1515         for (i = 0; i < count; i++) {
1516                 u32 start = ranges[i].base;
1517                 u32 end = start + ranges[i].nmsrs;
1518                 u32 flags = ranges[i].flags;
1519                 unsigned long *bitmap = ranges[i].bitmap;
1520
1521                 if ((index >= start) && (index < end) && (flags & type)) {
1522                         r = !!test_bit(index - start, bitmap);
1523                         break;
1524                 }
1525         }
1526
1527         srcu_read_unlock(&kvm->srcu, idx);
1528
1529         return r;
1530 }
1531 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1532
1533 /*
1534  * Write @data into the MSR specified by @index.  Select MSR specific fault
1535  * checks are bypassed if @host_initiated is %true.
1536  * Returns 0 on success, non-0 otherwise.
1537  * Assumes vcpu_load() was already called.
1538  */
1539 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1540                          bool host_initiated)
1541 {
1542         struct msr_data msr;
1543
1544         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1545                 return KVM_MSR_RET_FILTERED;
1546
1547         switch (index) {
1548         case MSR_FS_BASE:
1549         case MSR_GS_BASE:
1550         case MSR_KERNEL_GS_BASE:
1551         case MSR_CSTAR:
1552         case MSR_LSTAR:
1553                 if (is_noncanonical_address(data, vcpu))
1554                         return 1;
1555                 break;
1556         case MSR_IA32_SYSENTER_EIP:
1557         case MSR_IA32_SYSENTER_ESP:
1558                 /*
1559                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1560                  * non-canonical address is written on Intel but not on
1561                  * AMD (which ignores the top 32-bits, because it does
1562                  * not implement 64-bit SYSENTER).
1563                  *
1564                  * 64-bit code should hence be able to write a non-canonical
1565                  * value on AMD.  Making the address canonical ensures that
1566                  * vmentry does not fail on Intel after writing a non-canonical
1567                  * value, and that something deterministic happens if the guest
1568                  * invokes 64-bit SYSENTER.
1569                  */
1570                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1571         }
1572
1573         msr.data = data;
1574         msr.index = index;
1575         msr.host_initiated = host_initiated;
1576
1577         return kvm_x86_ops.set_msr(vcpu, &msr);
1578 }
1579
1580 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1581                                      u32 index, u64 data, bool host_initiated)
1582 {
1583         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1584
1585         if (ret == KVM_MSR_RET_INVALID)
1586                 if (kvm_msr_ignored_check(vcpu, index, data, true))
1587                         ret = 0;
1588
1589         return ret;
1590 }
1591
1592 /*
1593  * Read the MSR specified by @index into @data.  Select MSR specific fault
1594  * checks are bypassed if @host_initiated is %true.
1595  * Returns 0 on success, non-0 otherwise.
1596  * Assumes vcpu_load() was already called.
1597  */
1598 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1599                   bool host_initiated)
1600 {
1601         struct msr_data msr;
1602         int ret;
1603
1604         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1605                 return KVM_MSR_RET_FILTERED;
1606
1607         msr.index = index;
1608         msr.host_initiated = host_initiated;
1609
1610         ret = kvm_x86_ops.get_msr(vcpu, &msr);
1611         if (!ret)
1612                 *data = msr.data;
1613         return ret;
1614 }
1615
1616 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1617                                      u32 index, u64 *data, bool host_initiated)
1618 {
1619         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1620
1621         if (ret == KVM_MSR_RET_INVALID) {
1622                 /* Unconditionally clear *data for simplicity */
1623                 *data = 0;
1624                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1625                         ret = 0;
1626         }
1627
1628         return ret;
1629 }
1630
1631 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1632 {
1633         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1634 }
1635 EXPORT_SYMBOL_GPL(kvm_get_msr);
1636
1637 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1638 {
1639         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_set_msr);
1642
1643 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1644 {
1645         if (vcpu->run->msr.error) {
1646                 kvm_inject_gp(vcpu, 0);
1647                 return 1;
1648         } else if (is_read) {
1649                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1650                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1651         }
1652
1653         return kvm_skip_emulated_instruction(vcpu);
1654 }
1655
1656 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1657 {
1658         return complete_emulated_msr(vcpu, true);
1659 }
1660
1661 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1662 {
1663         return complete_emulated_msr(vcpu, false);
1664 }
1665
1666 static u64 kvm_msr_reason(int r)
1667 {
1668         switch (r) {
1669         case KVM_MSR_RET_INVALID:
1670                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1671         case KVM_MSR_RET_FILTERED:
1672                 return KVM_MSR_EXIT_REASON_FILTER;
1673         default:
1674                 return KVM_MSR_EXIT_REASON_INVAL;
1675         }
1676 }
1677
1678 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1679                               u32 exit_reason, u64 data,
1680                               int (*completion)(struct kvm_vcpu *vcpu),
1681                               int r)
1682 {
1683         u64 msr_reason = kvm_msr_reason(r);
1684
1685         /* Check if the user wanted to know about this MSR fault */
1686         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1687                 return 0;
1688
1689         vcpu->run->exit_reason = exit_reason;
1690         vcpu->run->msr.error = 0;
1691         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1692         vcpu->run->msr.reason = msr_reason;
1693         vcpu->run->msr.index = index;
1694         vcpu->run->msr.data = data;
1695         vcpu->arch.complete_userspace_io = completion;
1696
1697         return 1;
1698 }
1699
1700 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1701 {
1702         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1703                                    complete_emulated_rdmsr, r);
1704 }
1705
1706 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1707 {
1708         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1709                                    complete_emulated_wrmsr, r);
1710 }
1711
1712 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1713 {
1714         u32 ecx = kvm_rcx_read(vcpu);
1715         u64 data;
1716         int r;
1717
1718         r = kvm_get_msr(vcpu, ecx, &data);
1719
1720         /* MSR read failed? See if we should ask user space */
1721         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1722                 /* Bounce to user space */
1723                 return 0;
1724         }
1725
1726         /* MSR read failed? Inject a #GP */
1727         if (r) {
1728                 trace_kvm_msr_read_ex(ecx);
1729                 kvm_inject_gp(vcpu, 0);
1730                 return 1;
1731         }
1732
1733         trace_kvm_msr_read(ecx, data);
1734
1735         kvm_rax_write(vcpu, data & -1u);
1736         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1737         return kvm_skip_emulated_instruction(vcpu);
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1740
1741 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1742 {
1743         u32 ecx = kvm_rcx_read(vcpu);
1744         u64 data = kvm_read_edx_eax(vcpu);
1745         int r;
1746
1747         r = kvm_set_msr(vcpu, ecx, data);
1748
1749         /* MSR write failed? See if we should ask user space */
1750         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1751                 /* Bounce to user space */
1752                 return 0;
1753
1754         /* Signal all other negative errors to userspace */
1755         if (r < 0)
1756                 return r;
1757
1758         /* MSR write failed? Inject a #GP */
1759         if (r > 0) {
1760                 trace_kvm_msr_write_ex(ecx, data);
1761                 kvm_inject_gp(vcpu, 0);
1762                 return 1;
1763         }
1764
1765         trace_kvm_msr_write(ecx, data);
1766         return kvm_skip_emulated_instruction(vcpu);
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1769
1770 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1771 {
1772         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1773                 xfer_to_guest_mode_work_pending();
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1776
1777 /*
1778  * The fast path for frequent and performance sensitive wrmsr emulation,
1779  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1780  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1781  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1782  * other cases which must be called after interrupts are enabled on the host.
1783  */
1784 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1785 {
1786         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1787                 return 1;
1788
1789         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1790                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1791                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1792                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1793
1794                 data &= ~(1 << 12);
1795                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1796                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1797                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1798                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1799                 return 0;
1800         }
1801
1802         return 1;
1803 }
1804
1805 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1806 {
1807         if (!kvm_can_use_hv_timer(vcpu))
1808                 return 1;
1809
1810         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1811         return 0;
1812 }
1813
1814 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1815 {
1816         u32 msr = kvm_rcx_read(vcpu);
1817         u64 data;
1818         fastpath_t ret = EXIT_FASTPATH_NONE;
1819
1820         switch (msr) {
1821         case APIC_BASE_MSR + (APIC_ICR >> 4):
1822                 data = kvm_read_edx_eax(vcpu);
1823                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1824                         kvm_skip_emulated_instruction(vcpu);
1825                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1826                 }
1827                 break;
1828         case MSR_IA32_TSCDEADLINE:
1829                 data = kvm_read_edx_eax(vcpu);
1830                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1831                         kvm_skip_emulated_instruction(vcpu);
1832                         ret = EXIT_FASTPATH_REENTER_GUEST;
1833                 }
1834                 break;
1835         default:
1836                 break;
1837         }
1838
1839         if (ret != EXIT_FASTPATH_NONE)
1840                 trace_kvm_msr_write(msr, data);
1841
1842         return ret;
1843 }
1844 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1845
1846 /*
1847  * Adapt set_msr() to msr_io()'s calling convention
1848  */
1849 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1850 {
1851         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1852 }
1853
1854 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1855 {
1856         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1857 }
1858
1859 #ifdef CONFIG_X86_64
1860 struct pvclock_clock {
1861         int vclock_mode;
1862         u64 cycle_last;
1863         u64 mask;
1864         u32 mult;
1865         u32 shift;
1866         u64 base_cycles;
1867         u64 offset;
1868 };
1869
1870 struct pvclock_gtod_data {
1871         seqcount_t      seq;
1872
1873         struct pvclock_clock clock; /* extract of a clocksource struct */
1874         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1875
1876         ktime_t         offs_boot;
1877         u64             wall_time_sec;
1878 };
1879
1880 static struct pvclock_gtod_data pvclock_gtod_data;
1881
1882 static void update_pvclock_gtod(struct timekeeper *tk)
1883 {
1884         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1885
1886         write_seqcount_begin(&vdata->seq);
1887
1888         /* copy pvclock gtod data */
1889         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1890         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1891         vdata->clock.mask               = tk->tkr_mono.mask;
1892         vdata->clock.mult               = tk->tkr_mono.mult;
1893         vdata->clock.shift              = tk->tkr_mono.shift;
1894         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1895         vdata->clock.offset             = tk->tkr_mono.base;
1896
1897         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1898         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1899         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1900         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1901         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1902         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1903         vdata->raw_clock.offset         = tk->tkr_raw.base;
1904
1905         vdata->wall_time_sec            = tk->xtime_sec;
1906
1907         vdata->offs_boot                = tk->offs_boot;
1908
1909         write_seqcount_end(&vdata->seq);
1910 }
1911
1912 static s64 get_kvmclock_base_ns(void)
1913 {
1914         /* Count up from boot time, but with the frequency of the raw clock.  */
1915         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1916 }
1917 #else
1918 static s64 get_kvmclock_base_ns(void)
1919 {
1920         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1921         return ktime_get_boottime_ns();
1922 }
1923 #endif
1924
1925 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1926 {
1927         int version;
1928         int r;
1929         struct pvclock_wall_clock wc;
1930         u64 wall_nsec;
1931
1932         kvm->arch.wall_clock = wall_clock;
1933
1934         if (!wall_clock)
1935                 return;
1936
1937         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1938         if (r)
1939                 return;
1940
1941         if (version & 1)
1942                 ++version;  /* first time write, random junk */
1943
1944         ++version;
1945
1946         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1947                 return;
1948
1949         /*
1950          * The guest calculates current wall clock time by adding
1951          * system time (updated by kvm_guest_time_update below) to the
1952          * wall clock specified here.  We do the reverse here.
1953          */
1954         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1955
1956         wc.nsec = do_div(wall_nsec, 1000000000);
1957         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1958         wc.version = version;
1959
1960         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1961
1962         version++;
1963         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1964 }
1965
1966 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1967                                   bool old_msr, bool host_initiated)
1968 {
1969         struct kvm_arch *ka = &vcpu->kvm->arch;
1970
1971         if (vcpu->vcpu_id == 0 && !host_initiated) {
1972                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1973                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1974
1975                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1976         }
1977
1978         vcpu->arch.time = system_time;
1979         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1980
1981         /* we verify if the enable bit is set... */
1982         vcpu->arch.pv_time_enabled = false;
1983         if (!(system_time & 1))
1984                 return;
1985
1986         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1987                                        &vcpu->arch.pv_time, system_time & ~1ULL,
1988                                        sizeof(struct pvclock_vcpu_time_info)))
1989                 vcpu->arch.pv_time_enabled = true;
1990
1991         return;
1992 }
1993
1994 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1995 {
1996         do_shl32_div32(dividend, divisor);
1997         return dividend;
1998 }
1999
2000 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2001                                s8 *pshift, u32 *pmultiplier)
2002 {
2003         uint64_t scaled64;
2004         int32_t  shift = 0;
2005         uint64_t tps64;
2006         uint32_t tps32;
2007
2008         tps64 = base_hz;
2009         scaled64 = scaled_hz;
2010         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2011                 tps64 >>= 1;
2012                 shift--;
2013         }
2014
2015         tps32 = (uint32_t)tps64;
2016         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2017                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2018                         scaled64 >>= 1;
2019                 else
2020                         tps32 <<= 1;
2021                 shift++;
2022         }
2023
2024         *pshift = shift;
2025         *pmultiplier = div_frac(scaled64, tps32);
2026 }
2027
2028 #ifdef CONFIG_X86_64
2029 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2030 #endif
2031
2032 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2033 static unsigned long max_tsc_khz;
2034
2035 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2036 {
2037         u64 v = (u64)khz * (1000000 + ppm);
2038         do_div(v, 1000000);
2039         return v;
2040 }
2041
2042 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2043 {
2044         u64 ratio;
2045
2046         /* Guest TSC same frequency as host TSC? */
2047         if (!scale) {
2048                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2049                 return 0;
2050         }
2051
2052         /* TSC scaling supported? */
2053         if (!kvm_has_tsc_control) {
2054                 if (user_tsc_khz > tsc_khz) {
2055                         vcpu->arch.tsc_catchup = 1;
2056                         vcpu->arch.tsc_always_catchup = 1;
2057                         return 0;
2058                 } else {
2059                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2060                         return -1;
2061                 }
2062         }
2063
2064         /* TSC scaling required  - calculate ratio */
2065         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2066                                 user_tsc_khz, tsc_khz);
2067
2068         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2069                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2070                                     user_tsc_khz);
2071                 return -1;
2072         }
2073
2074         vcpu->arch.tsc_scaling_ratio = ratio;
2075         return 0;
2076 }
2077
2078 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2079 {
2080         u32 thresh_lo, thresh_hi;
2081         int use_scaling = 0;
2082
2083         /* tsc_khz can be zero if TSC calibration fails */
2084         if (user_tsc_khz == 0) {
2085                 /* set tsc_scaling_ratio to a safe value */
2086                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2087                 return -1;
2088         }
2089
2090         /* Compute a scale to convert nanoseconds in TSC cycles */
2091         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2092                            &vcpu->arch.virtual_tsc_shift,
2093                            &vcpu->arch.virtual_tsc_mult);
2094         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2095
2096         /*
2097          * Compute the variation in TSC rate which is acceptable
2098          * within the range of tolerance and decide if the
2099          * rate being applied is within that bounds of the hardware
2100          * rate.  If so, no scaling or compensation need be done.
2101          */
2102         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2103         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2104         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2105                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2106                 use_scaling = 1;
2107         }
2108         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2109 }
2110
2111 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2112 {
2113         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2114                                       vcpu->arch.virtual_tsc_mult,
2115                                       vcpu->arch.virtual_tsc_shift);
2116         tsc += vcpu->arch.this_tsc_write;
2117         return tsc;
2118 }
2119
2120 static inline int gtod_is_based_on_tsc(int mode)
2121 {
2122         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2123 }
2124
2125 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2126 {
2127 #ifdef CONFIG_X86_64
2128         bool vcpus_matched;
2129         struct kvm_arch *ka = &vcpu->kvm->arch;
2130         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2131
2132         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2133                          atomic_read(&vcpu->kvm->online_vcpus));
2134
2135         /*
2136          * Once the masterclock is enabled, always perform request in
2137          * order to update it.
2138          *
2139          * In order to enable masterclock, the host clocksource must be TSC
2140          * and the vcpus need to have matched TSCs.  When that happens,
2141          * perform request to enable masterclock.
2142          */
2143         if (ka->use_master_clock ||
2144             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2145                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2146
2147         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2148                             atomic_read(&vcpu->kvm->online_vcpus),
2149                             ka->use_master_clock, gtod->clock.vclock_mode);
2150 #endif
2151 }
2152
2153 /*
2154  * Multiply tsc by a fixed point number represented by ratio.
2155  *
2156  * The most significant 64-N bits (mult) of ratio represent the
2157  * integral part of the fixed point number; the remaining N bits
2158  * (frac) represent the fractional part, ie. ratio represents a fixed
2159  * point number (mult + frac * 2^(-N)).
2160  *
2161  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2162  */
2163 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2164 {
2165         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2166 }
2167
2168 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2169 {
2170         u64 _tsc = tsc;
2171         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2172
2173         if (ratio != kvm_default_tsc_scaling_ratio)
2174                 _tsc = __scale_tsc(ratio, tsc);
2175
2176         return _tsc;
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2179
2180 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2181 {
2182         u64 tsc;
2183
2184         tsc = kvm_scale_tsc(vcpu, rdtsc());
2185
2186         return target_tsc - tsc;
2187 }
2188
2189 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2190 {
2191         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2194
2195 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2196 {
2197         vcpu->arch.l1_tsc_offset = offset;
2198         vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2199 }
2200
2201 static inline bool kvm_check_tsc_unstable(void)
2202 {
2203 #ifdef CONFIG_X86_64
2204         /*
2205          * TSC is marked unstable when we're running on Hyper-V,
2206          * 'TSC page' clocksource is good.
2207          */
2208         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2209                 return false;
2210 #endif
2211         return check_tsc_unstable();
2212 }
2213
2214 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2215 {
2216         struct kvm *kvm = vcpu->kvm;
2217         u64 offset, ns, elapsed;
2218         unsigned long flags;
2219         bool matched;
2220         bool already_matched;
2221         bool synchronizing = false;
2222
2223         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2224         offset = kvm_compute_tsc_offset(vcpu, data);
2225         ns = get_kvmclock_base_ns();
2226         elapsed = ns - kvm->arch.last_tsc_nsec;
2227
2228         if (vcpu->arch.virtual_tsc_khz) {
2229                 if (data == 0) {
2230                         /*
2231                          * detection of vcpu initialization -- need to sync
2232                          * with other vCPUs. This particularly helps to keep
2233                          * kvm_clock stable after CPU hotplug
2234                          */
2235                         synchronizing = true;
2236                 } else {
2237                         u64 tsc_exp = kvm->arch.last_tsc_write +
2238                                                 nsec_to_cycles(vcpu, elapsed);
2239                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2240                         /*
2241                          * Special case: TSC write with a small delta (1 second)
2242                          * of virtual cycle time against real time is
2243                          * interpreted as an attempt to synchronize the CPU.
2244                          */
2245                         synchronizing = data < tsc_exp + tsc_hz &&
2246                                         data + tsc_hz > tsc_exp;
2247                 }
2248         }
2249
2250         /*
2251          * For a reliable TSC, we can match TSC offsets, and for an unstable
2252          * TSC, we add elapsed time in this computation.  We could let the
2253          * compensation code attempt to catch up if we fall behind, but
2254          * it's better to try to match offsets from the beginning.
2255          */
2256         if (synchronizing &&
2257             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2258                 if (!kvm_check_tsc_unstable()) {
2259                         offset = kvm->arch.cur_tsc_offset;
2260                 } else {
2261                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2262                         data += delta;
2263                         offset = kvm_compute_tsc_offset(vcpu, data);
2264                 }
2265                 matched = true;
2266                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2267         } else {
2268                 /*
2269                  * We split periods of matched TSC writes into generations.
2270                  * For each generation, we track the original measured
2271                  * nanosecond time, offset, and write, so if TSCs are in
2272                  * sync, we can match exact offset, and if not, we can match
2273                  * exact software computation in compute_guest_tsc()
2274                  *
2275                  * These values are tracked in kvm->arch.cur_xxx variables.
2276                  */
2277                 kvm->arch.cur_tsc_generation++;
2278                 kvm->arch.cur_tsc_nsec = ns;
2279                 kvm->arch.cur_tsc_write = data;
2280                 kvm->arch.cur_tsc_offset = offset;
2281                 matched = false;
2282         }
2283
2284         /*
2285          * We also track th most recent recorded KHZ, write and time to
2286          * allow the matching interval to be extended at each write.
2287          */
2288         kvm->arch.last_tsc_nsec = ns;
2289         kvm->arch.last_tsc_write = data;
2290         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2291
2292         vcpu->arch.last_guest_tsc = data;
2293
2294         /* Keep track of which generation this VCPU has synchronized to */
2295         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2296         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2297         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2298
2299         kvm_vcpu_write_tsc_offset(vcpu, offset);
2300         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2301
2302         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2303         if (!matched) {
2304                 kvm->arch.nr_vcpus_matched_tsc = 0;
2305         } else if (!already_matched) {
2306                 kvm->arch.nr_vcpus_matched_tsc++;
2307         }
2308
2309         kvm_track_tsc_matching(vcpu);
2310         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2311 }
2312
2313 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2314                                            s64 adjustment)
2315 {
2316         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2317         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2318 }
2319
2320 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2321 {
2322         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2323                 WARN_ON(adjustment < 0);
2324         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2325         adjust_tsc_offset_guest(vcpu, adjustment);
2326 }
2327
2328 #ifdef CONFIG_X86_64
2329
2330 static u64 read_tsc(void)
2331 {
2332         u64 ret = (u64)rdtsc_ordered();
2333         u64 last = pvclock_gtod_data.clock.cycle_last;
2334
2335         if (likely(ret >= last))
2336                 return ret;
2337
2338         /*
2339          * GCC likes to generate cmov here, but this branch is extremely
2340          * predictable (it's just a function of time and the likely is
2341          * very likely) and there's a data dependence, so force GCC
2342          * to generate a branch instead.  I don't barrier() because
2343          * we don't actually need a barrier, and if this function
2344          * ever gets inlined it will generate worse code.
2345          */
2346         asm volatile ("");
2347         return last;
2348 }
2349
2350 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2351                           int *mode)
2352 {
2353         long v;
2354         u64 tsc_pg_val;
2355
2356         switch (clock->vclock_mode) {
2357         case VDSO_CLOCKMODE_HVCLOCK:
2358                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2359                                                   tsc_timestamp);
2360                 if (tsc_pg_val != U64_MAX) {
2361                         /* TSC page valid */
2362                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2363                         v = (tsc_pg_val - clock->cycle_last) &
2364                                 clock->mask;
2365                 } else {
2366                         /* TSC page invalid */
2367                         *mode = VDSO_CLOCKMODE_NONE;
2368                 }
2369                 break;
2370         case VDSO_CLOCKMODE_TSC:
2371                 *mode = VDSO_CLOCKMODE_TSC;
2372                 *tsc_timestamp = read_tsc();
2373                 v = (*tsc_timestamp - clock->cycle_last) &
2374                         clock->mask;
2375                 break;
2376         default:
2377                 *mode = VDSO_CLOCKMODE_NONE;
2378         }
2379
2380         if (*mode == VDSO_CLOCKMODE_NONE)
2381                 *tsc_timestamp = v = 0;
2382
2383         return v * clock->mult;
2384 }
2385
2386 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2387 {
2388         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2389         unsigned long seq;
2390         int mode;
2391         u64 ns;
2392
2393         do {
2394                 seq = read_seqcount_begin(&gtod->seq);
2395                 ns = gtod->raw_clock.base_cycles;
2396                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2397                 ns >>= gtod->raw_clock.shift;
2398                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2399         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2400         *t = ns;
2401
2402         return mode;
2403 }
2404
2405 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2406 {
2407         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2408         unsigned long seq;
2409         int mode;
2410         u64 ns;
2411
2412         do {
2413                 seq = read_seqcount_begin(&gtod->seq);
2414                 ts->tv_sec = gtod->wall_time_sec;
2415                 ns = gtod->clock.base_cycles;
2416                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2417                 ns >>= gtod->clock.shift;
2418         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2419
2420         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2421         ts->tv_nsec = ns;
2422
2423         return mode;
2424 }
2425
2426 /* returns true if host is using TSC based clocksource */
2427 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2428 {
2429         /* checked again under seqlock below */
2430         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2431                 return false;
2432
2433         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2434                                                       tsc_timestamp));
2435 }
2436
2437 /* returns true if host is using TSC based clocksource */
2438 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2439                                            u64 *tsc_timestamp)
2440 {
2441         /* checked again under seqlock below */
2442         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2443                 return false;
2444
2445         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2446 }
2447 #endif
2448
2449 /*
2450  *
2451  * Assuming a stable TSC across physical CPUS, and a stable TSC
2452  * across virtual CPUs, the following condition is possible.
2453  * Each numbered line represents an event visible to both
2454  * CPUs at the next numbered event.
2455  *
2456  * "timespecX" represents host monotonic time. "tscX" represents
2457  * RDTSC value.
2458  *
2459  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2460  *
2461  * 1.  read timespec0,tsc0
2462  * 2.                                   | timespec1 = timespec0 + N
2463  *                                      | tsc1 = tsc0 + M
2464  * 3. transition to guest               | transition to guest
2465  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2466  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2467  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2468  *
2469  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2470  *
2471  *      - ret0 < ret1
2472  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2473  *              ...
2474  *      - 0 < N - M => M < N
2475  *
2476  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2477  * always the case (the difference between two distinct xtime instances
2478  * might be smaller then the difference between corresponding TSC reads,
2479  * when updating guest vcpus pvclock areas).
2480  *
2481  * To avoid that problem, do not allow visibility of distinct
2482  * system_timestamp/tsc_timestamp values simultaneously: use a master
2483  * copy of host monotonic time values. Update that master copy
2484  * in lockstep.
2485  *
2486  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2487  *
2488  */
2489
2490 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2491 {
2492 #ifdef CONFIG_X86_64
2493         struct kvm_arch *ka = &kvm->arch;
2494         int vclock_mode;
2495         bool host_tsc_clocksource, vcpus_matched;
2496
2497         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2498                         atomic_read(&kvm->online_vcpus));
2499
2500         /*
2501          * If the host uses TSC clock, then passthrough TSC as stable
2502          * to the guest.
2503          */
2504         host_tsc_clocksource = kvm_get_time_and_clockread(
2505                                         &ka->master_kernel_ns,
2506                                         &ka->master_cycle_now);
2507
2508         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2509                                 && !ka->backwards_tsc_observed
2510                                 && !ka->boot_vcpu_runs_old_kvmclock;
2511
2512         if (ka->use_master_clock)
2513                 atomic_set(&kvm_guest_has_master_clock, 1);
2514
2515         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2516         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2517                                         vcpus_matched);
2518 #endif
2519 }
2520
2521 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2522 {
2523         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2524 }
2525
2526 static void kvm_gen_update_masterclock(struct kvm *kvm)
2527 {
2528 #ifdef CONFIG_X86_64
2529         int i;
2530         struct kvm_vcpu *vcpu;
2531         struct kvm_arch *ka = &kvm->arch;
2532
2533         spin_lock(&ka->pvclock_gtod_sync_lock);
2534         kvm_make_mclock_inprogress_request(kvm);
2535         /* no guest entries from this point */
2536         pvclock_update_vm_gtod_copy(kvm);
2537
2538         kvm_for_each_vcpu(i, vcpu, kvm)
2539                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2540
2541         /* guest entries allowed */
2542         kvm_for_each_vcpu(i, vcpu, kvm)
2543                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2544
2545         spin_unlock(&ka->pvclock_gtod_sync_lock);
2546 #endif
2547 }
2548
2549 u64 get_kvmclock_ns(struct kvm *kvm)
2550 {
2551         struct kvm_arch *ka = &kvm->arch;
2552         struct pvclock_vcpu_time_info hv_clock;
2553         u64 ret;
2554
2555         spin_lock(&ka->pvclock_gtod_sync_lock);
2556         if (!ka->use_master_clock) {
2557                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2558                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2559         }
2560
2561         hv_clock.tsc_timestamp = ka->master_cycle_now;
2562         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2563         spin_unlock(&ka->pvclock_gtod_sync_lock);
2564
2565         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2566         get_cpu();
2567
2568         if (__this_cpu_read(cpu_tsc_khz)) {
2569                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2570                                    &hv_clock.tsc_shift,
2571                                    &hv_clock.tsc_to_system_mul);
2572                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2573         } else
2574                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2575
2576         put_cpu();
2577
2578         return ret;
2579 }
2580
2581 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2582 {
2583         struct kvm_vcpu_arch *vcpu = &v->arch;
2584         struct pvclock_vcpu_time_info guest_hv_clock;
2585
2586         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2587                 &guest_hv_clock, sizeof(guest_hv_clock))))
2588                 return;
2589
2590         /* This VCPU is paused, but it's legal for a guest to read another
2591          * VCPU's kvmclock, so we really have to follow the specification where
2592          * it says that version is odd if data is being modified, and even after
2593          * it is consistent.
2594          *
2595          * Version field updates must be kept separate.  This is because
2596          * kvm_write_guest_cached might use a "rep movs" instruction, and
2597          * writes within a string instruction are weakly ordered.  So there
2598          * are three writes overall.
2599          *
2600          * As a small optimization, only write the version field in the first
2601          * and third write.  The vcpu->pv_time cache is still valid, because the
2602          * version field is the first in the struct.
2603          */
2604         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2605
2606         if (guest_hv_clock.version & 1)
2607                 ++guest_hv_clock.version;  /* first time write, random junk */
2608
2609         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2610         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2611                                 &vcpu->hv_clock,
2612                                 sizeof(vcpu->hv_clock.version));
2613
2614         smp_wmb();
2615
2616         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2617         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2618
2619         if (vcpu->pvclock_set_guest_stopped_request) {
2620                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2621                 vcpu->pvclock_set_guest_stopped_request = false;
2622         }
2623
2624         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2625
2626         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2627                                 &vcpu->hv_clock,
2628                                 sizeof(vcpu->hv_clock));
2629
2630         smp_wmb();
2631
2632         vcpu->hv_clock.version++;
2633         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2634                                 &vcpu->hv_clock,
2635                                 sizeof(vcpu->hv_clock.version));
2636 }
2637
2638 static int kvm_guest_time_update(struct kvm_vcpu *v)
2639 {
2640         unsigned long flags, tgt_tsc_khz;
2641         struct kvm_vcpu_arch *vcpu = &v->arch;
2642         struct kvm_arch *ka = &v->kvm->arch;
2643         s64 kernel_ns;
2644         u64 tsc_timestamp, host_tsc;
2645         u8 pvclock_flags;
2646         bool use_master_clock;
2647
2648         kernel_ns = 0;
2649         host_tsc = 0;
2650
2651         /*
2652          * If the host uses TSC clock, then passthrough TSC as stable
2653          * to the guest.
2654          */
2655         spin_lock(&ka->pvclock_gtod_sync_lock);
2656         use_master_clock = ka->use_master_clock;
2657         if (use_master_clock) {
2658                 host_tsc = ka->master_cycle_now;
2659                 kernel_ns = ka->master_kernel_ns;
2660         }
2661         spin_unlock(&ka->pvclock_gtod_sync_lock);
2662
2663         /* Keep irq disabled to prevent changes to the clock */
2664         local_irq_save(flags);
2665         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2666         if (unlikely(tgt_tsc_khz == 0)) {
2667                 local_irq_restore(flags);
2668                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2669                 return 1;
2670         }
2671         if (!use_master_clock) {
2672                 host_tsc = rdtsc();
2673                 kernel_ns = get_kvmclock_base_ns();
2674         }
2675
2676         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2677
2678         /*
2679          * We may have to catch up the TSC to match elapsed wall clock
2680          * time for two reasons, even if kvmclock is used.
2681          *   1) CPU could have been running below the maximum TSC rate
2682          *   2) Broken TSC compensation resets the base at each VCPU
2683          *      entry to avoid unknown leaps of TSC even when running
2684          *      again on the same CPU.  This may cause apparent elapsed
2685          *      time to disappear, and the guest to stand still or run
2686          *      very slowly.
2687          */
2688         if (vcpu->tsc_catchup) {
2689                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2690                 if (tsc > tsc_timestamp) {
2691                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2692                         tsc_timestamp = tsc;
2693                 }
2694         }
2695
2696         local_irq_restore(flags);
2697
2698         /* With all the info we got, fill in the values */
2699
2700         if (kvm_has_tsc_control)
2701                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2702
2703         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2704                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2705                                    &vcpu->hv_clock.tsc_shift,
2706                                    &vcpu->hv_clock.tsc_to_system_mul);
2707                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2708         }
2709
2710         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2711         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2712         vcpu->last_guest_tsc = tsc_timestamp;
2713
2714         /* If the host uses TSC clocksource, then it is stable */
2715         pvclock_flags = 0;
2716         if (use_master_clock)
2717                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2718
2719         vcpu->hv_clock.flags = pvclock_flags;
2720
2721         if (vcpu->pv_time_enabled)
2722                 kvm_setup_pvclock_page(v);
2723         if (v == kvm_get_vcpu(v->kvm, 0))
2724                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2725         return 0;
2726 }
2727
2728 /*
2729  * kvmclock updates which are isolated to a given vcpu, such as
2730  * vcpu->cpu migration, should not allow system_timestamp from
2731  * the rest of the vcpus to remain static. Otherwise ntp frequency
2732  * correction applies to one vcpu's system_timestamp but not
2733  * the others.
2734  *
2735  * So in those cases, request a kvmclock update for all vcpus.
2736  * We need to rate-limit these requests though, as they can
2737  * considerably slow guests that have a large number of vcpus.
2738  * The time for a remote vcpu to update its kvmclock is bound
2739  * by the delay we use to rate-limit the updates.
2740  */
2741
2742 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2743
2744 static void kvmclock_update_fn(struct work_struct *work)
2745 {
2746         int i;
2747         struct delayed_work *dwork = to_delayed_work(work);
2748         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2749                                            kvmclock_update_work);
2750         struct kvm *kvm = container_of(ka, struct kvm, arch);
2751         struct kvm_vcpu *vcpu;
2752
2753         kvm_for_each_vcpu(i, vcpu, kvm) {
2754                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2755                 kvm_vcpu_kick(vcpu);
2756         }
2757 }
2758
2759 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2760 {
2761         struct kvm *kvm = v->kvm;
2762
2763         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2764         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2765                                         KVMCLOCK_UPDATE_DELAY);
2766 }
2767
2768 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2769
2770 static void kvmclock_sync_fn(struct work_struct *work)
2771 {
2772         struct delayed_work *dwork = to_delayed_work(work);
2773         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2774                                            kvmclock_sync_work);
2775         struct kvm *kvm = container_of(ka, struct kvm, arch);
2776
2777         if (!kvmclock_periodic_sync)
2778                 return;
2779
2780         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2781         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2782                                         KVMCLOCK_SYNC_PERIOD);
2783 }
2784
2785 /*
2786  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2787  */
2788 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2789 {
2790         /* McStatusWrEn enabled? */
2791         if (guest_cpuid_is_amd_or_hygon(vcpu))
2792                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2793
2794         return false;
2795 }
2796
2797 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2798 {
2799         u64 mcg_cap = vcpu->arch.mcg_cap;
2800         unsigned bank_num = mcg_cap & 0xff;
2801         u32 msr = msr_info->index;
2802         u64 data = msr_info->data;
2803
2804         switch (msr) {
2805         case MSR_IA32_MCG_STATUS:
2806                 vcpu->arch.mcg_status = data;
2807                 break;
2808         case MSR_IA32_MCG_CTL:
2809                 if (!(mcg_cap & MCG_CTL_P) &&
2810                     (data || !msr_info->host_initiated))
2811                         return 1;
2812                 if (data != 0 && data != ~(u64)0)
2813                         return 1;
2814                 vcpu->arch.mcg_ctl = data;
2815                 break;
2816         default:
2817                 if (msr >= MSR_IA32_MC0_CTL &&
2818                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2819                         u32 offset = array_index_nospec(
2820                                 msr - MSR_IA32_MC0_CTL,
2821                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2822
2823                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2824                          * some Linux kernels though clear bit 10 in bank 4 to
2825                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2826                          * this to avoid an uncatched #GP in the guest
2827                          */
2828                         if ((offset & 0x3) == 0 &&
2829                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2830                                 return -1;
2831
2832                         /* MCi_STATUS */
2833                         if (!msr_info->host_initiated &&
2834                             (offset & 0x3) == 1 && data != 0) {
2835                                 if (!can_set_mci_status(vcpu))
2836                                         return -1;
2837                         }
2838
2839                         vcpu->arch.mce_banks[offset] = data;
2840                         break;
2841                 }
2842                 return 1;
2843         }
2844         return 0;
2845 }
2846
2847 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2848 {
2849         struct kvm *kvm = vcpu->kvm;
2850         int lm = is_long_mode(vcpu);
2851         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2852                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2853         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2854                 : kvm->arch.xen_hvm_config.blob_size_32;
2855         u32 page_num = data & ~PAGE_MASK;
2856         u64 page_addr = data & PAGE_MASK;
2857         u8 *page;
2858
2859         if (page_num >= blob_size)
2860                 return 1;
2861
2862         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2863         if (IS_ERR(page))
2864                 return PTR_ERR(page);
2865
2866         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2867                 kfree(page);
2868                 return 1;
2869         }
2870         return 0;
2871 }
2872
2873 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2874 {
2875         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2876
2877         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2878 }
2879
2880 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2881 {
2882         gpa_t gpa = data & ~0x3f;
2883
2884         /* Bits 4:5 are reserved, Should be zero */
2885         if (data & 0x30)
2886                 return 1;
2887
2888         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2889             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2890                 return 1;
2891
2892         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2893             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2894                 return 1;
2895
2896         if (!lapic_in_kernel(vcpu))
2897                 return data ? 1 : 0;
2898
2899         vcpu->arch.apf.msr_en_val = data;
2900
2901         if (!kvm_pv_async_pf_enabled(vcpu)) {
2902                 kvm_clear_async_pf_completion_queue(vcpu);
2903                 kvm_async_pf_hash_reset(vcpu);
2904                 return 0;
2905         }
2906
2907         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2908                                         sizeof(u64)))
2909                 return 1;
2910
2911         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2912         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2913
2914         kvm_async_pf_wakeup_all(vcpu);
2915
2916         return 0;
2917 }
2918
2919 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2920 {
2921         /* Bits 8-63 are reserved */
2922         if (data >> 8)
2923                 return 1;
2924
2925         if (!lapic_in_kernel(vcpu))
2926                 return 1;
2927
2928         vcpu->arch.apf.msr_int_val = data;
2929
2930         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2931
2932         return 0;
2933 }
2934
2935 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2936 {
2937         vcpu->arch.pv_time_enabled = false;
2938         vcpu->arch.time = 0;
2939 }
2940
2941 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2942 {
2943         ++vcpu->stat.tlb_flush;
2944         kvm_x86_ops.tlb_flush_all(vcpu);
2945 }
2946
2947 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2948 {
2949         ++vcpu->stat.tlb_flush;
2950         kvm_x86_ops.tlb_flush_guest(vcpu);
2951 }
2952
2953 static void record_steal_time(struct kvm_vcpu *vcpu)
2954 {
2955         struct kvm_host_map map;
2956         struct kvm_steal_time *st;
2957
2958         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2959                 return;
2960
2961         /* -EAGAIN is returned in atomic context so we can just return. */
2962         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2963                         &map, &vcpu->arch.st.cache, false))
2964                 return;
2965
2966         st = map.hva +
2967                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2968
2969         /*
2970          * Doing a TLB flush here, on the guest's behalf, can avoid
2971          * expensive IPIs.
2972          */
2973         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2974                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2975                                        st->preempted & KVM_VCPU_FLUSH_TLB);
2976                 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2977                         kvm_vcpu_flush_tlb_guest(vcpu);
2978         }
2979
2980         vcpu->arch.st.preempted = 0;
2981
2982         if (st->version & 1)
2983                 st->version += 1;  /* first time write, random junk */
2984
2985         st->version += 1;
2986
2987         smp_wmb();
2988
2989         st->steal += current->sched_info.run_delay -
2990                 vcpu->arch.st.last_steal;
2991         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2992
2993         smp_wmb();
2994
2995         st->version += 1;
2996
2997         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2998 }
2999
3000 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3001 {
3002         bool pr = false;
3003         u32 msr = msr_info->index;
3004         u64 data = msr_info->data;
3005
3006         switch (msr) {
3007         case MSR_AMD64_NB_CFG:
3008         case MSR_IA32_UCODE_WRITE:
3009         case MSR_VM_HSAVE_PA:
3010         case MSR_AMD64_PATCH_LOADER:
3011         case MSR_AMD64_BU_CFG2:
3012         case MSR_AMD64_DC_CFG:
3013         case MSR_F15H_EX_CFG:
3014                 break;
3015
3016         case MSR_IA32_UCODE_REV:
3017                 if (msr_info->host_initiated)
3018                         vcpu->arch.microcode_version = data;
3019                 break;
3020         case MSR_IA32_ARCH_CAPABILITIES:
3021                 if (!msr_info->host_initiated)
3022                         return 1;
3023                 vcpu->arch.arch_capabilities = data;
3024                 break;
3025         case MSR_IA32_PERF_CAPABILITIES: {
3026                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3027
3028                 if (!msr_info->host_initiated)
3029                         return 1;
3030                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3031                         return 1;
3032                 if (data & ~msr_ent.data)
3033                         return 1;
3034
3035                 vcpu->arch.perf_capabilities = data;
3036
3037                 return 0;
3038                 }
3039         case MSR_EFER:
3040                 return set_efer(vcpu, msr_info);
3041         case MSR_K7_HWCR:
3042                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3043                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3044                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3045
3046                 /* Handle McStatusWrEn */
3047                 if (data == BIT_ULL(18)) {
3048                         vcpu->arch.msr_hwcr = data;
3049                 } else if (data != 0) {
3050                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3051                                     data);
3052                         return 1;
3053                 }
3054                 break;
3055         case MSR_FAM10H_MMIO_CONF_BASE:
3056                 if (data != 0) {
3057                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3058                                     "0x%llx\n", data);
3059                         return 1;
3060                 }
3061                 break;
3062         case MSR_IA32_DEBUGCTLMSR:
3063                 if (!data) {
3064                         /* We support the non-activated case already */
3065                         break;
3066                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3067                         /* Values other than LBR and BTF are vendor-specific,
3068                            thus reserved and should throw a #GP */
3069                         return 1;
3070                 } else if (report_ignored_msrs)
3071                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3072                                     __func__, data);
3073                 break;
3074         case 0x200 ... 0x2ff:
3075                 return kvm_mtrr_set_msr(vcpu, msr, data);
3076         case MSR_IA32_APICBASE:
3077                 return kvm_set_apic_base(vcpu, msr_info);
3078         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3079                 return kvm_x2apic_msr_write(vcpu, msr, data);
3080         case MSR_IA32_TSCDEADLINE:
3081                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3082                 break;
3083         case MSR_IA32_TSC_ADJUST:
3084                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3085                         if (!msr_info->host_initiated) {
3086                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3087                                 adjust_tsc_offset_guest(vcpu, adj);
3088                         }
3089                         vcpu->arch.ia32_tsc_adjust_msr = data;
3090                 }
3091                 break;
3092         case MSR_IA32_MISC_ENABLE:
3093                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3094                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3095                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3096                                 return 1;
3097                         vcpu->arch.ia32_misc_enable_msr = data;
3098                         kvm_update_cpuid_runtime(vcpu);
3099                 } else {
3100                         vcpu->arch.ia32_misc_enable_msr = data;
3101                 }
3102                 break;
3103         case MSR_IA32_SMBASE:
3104                 if (!msr_info->host_initiated)
3105                         return 1;
3106                 vcpu->arch.smbase = data;
3107                 break;
3108         case MSR_IA32_POWER_CTL:
3109                 vcpu->arch.msr_ia32_power_ctl = data;
3110                 break;
3111         case MSR_IA32_TSC:
3112                 if (msr_info->host_initiated) {
3113                         kvm_synchronize_tsc(vcpu, data);
3114                 } else {
3115                         u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3116                         adjust_tsc_offset_guest(vcpu, adj);
3117                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3118                 }
3119                 break;
3120         case MSR_IA32_XSS:
3121                 if (!msr_info->host_initiated &&
3122                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3123                         return 1;
3124                 /*
3125                  * KVM supports exposing PT to the guest, but does not support
3126                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3127                  * XSAVES/XRSTORS to save/restore PT MSRs.
3128                  */
3129                 if (data & ~supported_xss)
3130                         return 1;
3131                 vcpu->arch.ia32_xss = data;
3132                 break;
3133         case MSR_SMI_COUNT:
3134                 if (!msr_info->host_initiated)
3135                         return 1;
3136                 vcpu->arch.smi_count = data;
3137                 break;
3138         case MSR_KVM_WALL_CLOCK_NEW:
3139                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3140                         return 1;
3141
3142                 kvm_write_wall_clock(vcpu->kvm, data);
3143                 break;
3144         case MSR_KVM_WALL_CLOCK:
3145                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3146                         return 1;
3147
3148                 kvm_write_wall_clock(vcpu->kvm, data);
3149                 break;
3150         case MSR_KVM_SYSTEM_TIME_NEW:
3151                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3152                         return 1;
3153
3154                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3155                 break;
3156         case MSR_KVM_SYSTEM_TIME:
3157                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3158                         return 1;
3159
3160                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3161                 break;
3162         case MSR_KVM_ASYNC_PF_EN:
3163                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3164                         return 1;
3165
3166                 if (kvm_pv_enable_async_pf(vcpu, data))
3167                         return 1;
3168                 break;
3169         case MSR_KVM_ASYNC_PF_INT:
3170                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3171                         return 1;
3172
3173                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3174                         return 1;
3175                 break;
3176         case MSR_KVM_ASYNC_PF_ACK:
3177                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3178                         return 1;
3179                 if (data & 0x1) {
3180                         vcpu->arch.apf.pageready_pending = false;
3181                         kvm_check_async_pf_completion(vcpu);
3182                 }
3183                 break;
3184         case MSR_KVM_STEAL_TIME:
3185                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3186                         return 1;
3187
3188                 if (unlikely(!sched_info_on()))
3189                         return 1;
3190
3191                 if (data & KVM_STEAL_RESERVED_MASK)
3192                         return 1;
3193
3194                 vcpu->arch.st.msr_val = data;
3195
3196                 if (!(data & KVM_MSR_ENABLED))
3197                         break;
3198
3199                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3200
3201                 break;
3202         case MSR_KVM_PV_EOI_EN:
3203                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3204                         return 1;
3205
3206                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3207                         return 1;
3208                 break;
3209
3210         case MSR_KVM_POLL_CONTROL:
3211                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3212                         return 1;
3213
3214                 /* only enable bit supported */
3215                 if (data & (-1ULL << 1))
3216                         return 1;
3217
3218                 vcpu->arch.msr_kvm_poll_control = data;
3219                 break;
3220
3221         case MSR_IA32_MCG_CTL:
3222         case MSR_IA32_MCG_STATUS:
3223         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3224                 return set_msr_mce(vcpu, msr_info);
3225
3226         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3227         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3228                 pr = true;
3229                 fallthrough;
3230         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3231         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3232                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3233                         return kvm_pmu_set_msr(vcpu, msr_info);
3234
3235                 if (pr || data != 0)
3236                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3237                                     "0x%x data 0x%llx\n", msr, data);
3238                 break;
3239         case MSR_K7_CLK_CTL:
3240                 /*
3241                  * Ignore all writes to this no longer documented MSR.
3242                  * Writes are only relevant for old K7 processors,
3243                  * all pre-dating SVM, but a recommended workaround from
3244                  * AMD for these chips. It is possible to specify the
3245                  * affected processor models on the command line, hence
3246                  * the need to ignore the workaround.
3247                  */
3248                 break;
3249         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3250         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3251         case HV_X64_MSR_SYNDBG_OPTIONS:
3252         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3253         case HV_X64_MSR_CRASH_CTL:
3254         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3255         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3256         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3257         case HV_X64_MSR_TSC_EMULATION_STATUS:
3258                 return kvm_hv_set_msr_common(vcpu, msr, data,
3259                                              msr_info->host_initiated);
3260         case MSR_IA32_BBL_CR_CTL3:
3261                 /* Drop writes to this legacy MSR -- see rdmsr
3262                  * counterpart for further detail.
3263                  */
3264                 if (report_ignored_msrs)
3265                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3266                                 msr, data);
3267                 break;
3268         case MSR_AMD64_OSVW_ID_LENGTH:
3269                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3270                         return 1;
3271                 vcpu->arch.osvw.length = data;
3272                 break;
3273         case MSR_AMD64_OSVW_STATUS:
3274                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3275                         return 1;
3276                 vcpu->arch.osvw.status = data;
3277                 break;
3278         case MSR_PLATFORM_INFO:
3279                 if (!msr_info->host_initiated ||
3280                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3281                      cpuid_fault_enabled(vcpu)))
3282                         return 1;
3283                 vcpu->arch.msr_platform_info = data;
3284                 break;
3285         case MSR_MISC_FEATURES_ENABLES:
3286                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3287                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3288                      !supports_cpuid_fault(vcpu)))
3289                         return 1;
3290                 vcpu->arch.msr_misc_features_enables = data;
3291                 break;
3292         default:
3293                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3294                         return xen_hvm_config(vcpu, data);
3295                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3296                         return kvm_pmu_set_msr(vcpu, msr_info);
3297                 return KVM_MSR_RET_INVALID;
3298         }
3299         return 0;
3300 }
3301 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3302
3303 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3304 {
3305         u64 data;
3306         u64 mcg_cap = vcpu->arch.mcg_cap;
3307         unsigned bank_num = mcg_cap & 0xff;
3308
3309         switch (msr) {
3310         case MSR_IA32_P5_MC_ADDR:
3311         case MSR_IA32_P5_MC_TYPE:
3312                 data = 0;
3313                 break;
3314         case MSR_IA32_MCG_CAP:
3315                 data = vcpu->arch.mcg_cap;
3316                 break;
3317         case MSR_IA32_MCG_CTL:
3318                 if (!(mcg_cap & MCG_CTL_P) && !host)
3319                         return 1;
3320                 data = vcpu->arch.mcg_ctl;
3321                 break;
3322         case MSR_IA32_MCG_STATUS:
3323                 data = vcpu->arch.mcg_status;
3324                 break;
3325         default:
3326                 if (msr >= MSR_IA32_MC0_CTL &&
3327                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3328                         u32 offset = array_index_nospec(
3329                                 msr - MSR_IA32_MC0_CTL,
3330                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3331
3332                         data = vcpu->arch.mce_banks[offset];
3333                         break;
3334                 }
3335                 return 1;
3336         }
3337         *pdata = data;
3338         return 0;
3339 }
3340
3341 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3342 {
3343         switch (msr_info->index) {
3344         case MSR_IA32_PLATFORM_ID:
3345         case MSR_IA32_EBL_CR_POWERON:
3346         case MSR_IA32_DEBUGCTLMSR:
3347         case MSR_IA32_LASTBRANCHFROMIP:
3348         case MSR_IA32_LASTBRANCHTOIP:
3349         case MSR_IA32_LASTINTFROMIP:
3350         case MSR_IA32_LASTINTTOIP:
3351         case MSR_K8_SYSCFG:
3352         case MSR_K8_TSEG_ADDR:
3353         case MSR_K8_TSEG_MASK:
3354         case MSR_VM_HSAVE_PA:
3355         case MSR_K8_INT_PENDING_MSG:
3356         case MSR_AMD64_NB_CFG:
3357         case MSR_FAM10H_MMIO_CONF_BASE:
3358         case MSR_AMD64_BU_CFG2:
3359         case MSR_IA32_PERF_CTL:
3360         case MSR_AMD64_DC_CFG:
3361         case MSR_F15H_EX_CFG:
3362         /*
3363          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3364          * limit) MSRs. Just return 0, as we do not want to expose the host
3365          * data here. Do not conditionalize this on CPUID, as KVM does not do
3366          * so for existing CPU-specific MSRs.
3367          */
3368         case MSR_RAPL_POWER_UNIT:
3369         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3370         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3371         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3372         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3373                 msr_info->data = 0;
3374                 break;
3375         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3376         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3377         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3378         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3379         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3380                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3381                         return kvm_pmu_get_msr(vcpu, msr_info);
3382                 msr_info->data = 0;
3383                 break;
3384         case MSR_IA32_UCODE_REV:
3385                 msr_info->data = vcpu->arch.microcode_version;
3386                 break;
3387         case MSR_IA32_ARCH_CAPABILITIES:
3388                 if (!msr_info->host_initiated &&
3389                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3390                         return 1;
3391                 msr_info->data = vcpu->arch.arch_capabilities;
3392                 break;
3393         case MSR_IA32_PERF_CAPABILITIES:
3394                 if (!msr_info->host_initiated &&
3395                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3396                         return 1;
3397                 msr_info->data = vcpu->arch.perf_capabilities;
3398                 break;
3399         case MSR_IA32_POWER_CTL:
3400                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3401                 break;
3402         case MSR_IA32_TSC: {
3403                 /*
3404                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3405                  * even when not intercepted. AMD manual doesn't explicitly
3406                  * state this but appears to behave the same.
3407                  *
3408                  * On userspace reads and writes, however, we unconditionally
3409                  * return L1's TSC value to ensure backwards-compatible
3410                  * behavior for migration.
3411                  */
3412                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3413                                                             vcpu->arch.tsc_offset;
3414
3415                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3416                 break;
3417         }
3418         case MSR_MTRRcap:
3419         case 0x200 ... 0x2ff:
3420                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3421         case 0xcd: /* fsb frequency */
3422                 msr_info->data = 3;
3423                 break;
3424                 /*
3425                  * MSR_EBC_FREQUENCY_ID
3426                  * Conservative value valid for even the basic CPU models.
3427                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3428                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3429                  * and 266MHz for model 3, or 4. Set Core Clock
3430                  * Frequency to System Bus Frequency Ratio to 1 (bits
3431                  * 31:24) even though these are only valid for CPU
3432                  * models > 2, however guests may end up dividing or
3433                  * multiplying by zero otherwise.
3434                  */
3435         case MSR_EBC_FREQUENCY_ID:
3436                 msr_info->data = 1 << 24;
3437                 break;
3438         case MSR_IA32_APICBASE:
3439                 msr_info->data = kvm_get_apic_base(vcpu);
3440                 break;
3441         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3442                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3443         case MSR_IA32_TSCDEADLINE:
3444                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3445                 break;
3446         case MSR_IA32_TSC_ADJUST:
3447                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3448                 break;
3449         case MSR_IA32_MISC_ENABLE:
3450                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3451                 break;
3452         case MSR_IA32_SMBASE:
3453                 if (!msr_info->host_initiated)
3454                         return 1;
3455                 msr_info->data = vcpu->arch.smbase;
3456                 break;
3457         case MSR_SMI_COUNT:
3458                 msr_info->data = vcpu->arch.smi_count;
3459                 break;
3460         case MSR_IA32_PERF_STATUS:
3461                 /* TSC increment by tick */
3462                 msr_info->data = 1000ULL;
3463                 /* CPU multiplier */
3464                 msr_info->data |= (((uint64_t)4ULL) << 40);
3465                 break;
3466         case MSR_EFER:
3467                 msr_info->data = vcpu->arch.efer;
3468                 break;
3469         case MSR_KVM_WALL_CLOCK:
3470                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3471                         return 1;
3472
3473                 msr_info->data = vcpu->kvm->arch.wall_clock;
3474                 break;
3475         case MSR_KVM_WALL_CLOCK_NEW:
3476                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3477                         return 1;
3478
3479                 msr_info->data = vcpu->kvm->arch.wall_clock;
3480                 break;
3481         case MSR_KVM_SYSTEM_TIME:
3482                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3483                         return 1;
3484
3485                 msr_info->data = vcpu->arch.time;
3486                 break;
3487         case MSR_KVM_SYSTEM_TIME_NEW:
3488                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3489                         return 1;
3490
3491                 msr_info->data = vcpu->arch.time;
3492                 break;
3493         case MSR_KVM_ASYNC_PF_EN:
3494                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3495                         return 1;
3496
3497                 msr_info->data = vcpu->arch.apf.msr_en_val;
3498                 break;
3499         case MSR_KVM_ASYNC_PF_INT:
3500                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3501                         return 1;
3502
3503                 msr_info->data = vcpu->arch.apf.msr_int_val;
3504                 break;
3505         case MSR_KVM_ASYNC_PF_ACK:
3506                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3507                         return 1;
3508
3509                 msr_info->data = 0;
3510                 break;
3511         case MSR_KVM_STEAL_TIME:
3512                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3513                         return 1;
3514
3515                 msr_info->data = vcpu->arch.st.msr_val;
3516                 break;
3517         case MSR_KVM_PV_EOI_EN:
3518                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3519                         return 1;
3520
3521                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3522                 break;
3523         case MSR_KVM_POLL_CONTROL:
3524                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3525                         return 1;
3526
3527                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3528                 break;
3529         case MSR_IA32_P5_MC_ADDR:
3530         case MSR_IA32_P5_MC_TYPE:
3531         case MSR_IA32_MCG_CAP:
3532         case MSR_IA32_MCG_CTL:
3533         case MSR_IA32_MCG_STATUS:
3534         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3535                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3536                                    msr_info->host_initiated);
3537         case MSR_IA32_XSS:
3538                 if (!msr_info->host_initiated &&
3539                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3540                         return 1;
3541                 msr_info->data = vcpu->arch.ia32_xss;
3542                 break;
3543         case MSR_K7_CLK_CTL:
3544                 /*
3545                  * Provide expected ramp-up count for K7. All other
3546                  * are set to zero, indicating minimum divisors for
3547                  * every field.
3548                  *
3549                  * This prevents guest kernels on AMD host with CPU
3550                  * type 6, model 8 and higher from exploding due to
3551                  * the rdmsr failing.
3552                  */
3553                 msr_info->data = 0x20000000;
3554                 break;
3555         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3556         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3557         case HV_X64_MSR_SYNDBG_OPTIONS:
3558         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3559         case HV_X64_MSR_CRASH_CTL:
3560         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3561         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3562         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3563         case HV_X64_MSR_TSC_EMULATION_STATUS:
3564                 return kvm_hv_get_msr_common(vcpu,
3565                                              msr_info->index, &msr_info->data,
3566                                              msr_info->host_initiated);
3567         case MSR_IA32_BBL_CR_CTL3:
3568                 /* This legacy MSR exists but isn't fully documented in current
3569                  * silicon.  It is however accessed by winxp in very narrow
3570                  * scenarios where it sets bit #19, itself documented as
3571                  * a "reserved" bit.  Best effort attempt to source coherent
3572                  * read data here should the balance of the register be
3573                  * interpreted by the guest:
3574                  *
3575                  * L2 cache control register 3: 64GB range, 256KB size,
3576                  * enabled, latency 0x1, configured
3577                  */
3578                 msr_info->data = 0xbe702111;
3579                 break;
3580         case MSR_AMD64_OSVW_ID_LENGTH:
3581                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3582                         return 1;
3583                 msr_info->data = vcpu->arch.osvw.length;
3584                 break;
3585         case MSR_AMD64_OSVW_STATUS:
3586                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3587                         return 1;
3588                 msr_info->data = vcpu->arch.osvw.status;
3589                 break;
3590         case MSR_PLATFORM_INFO:
3591                 if (!msr_info->host_initiated &&
3592                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3593                         return 1;
3594                 msr_info->data = vcpu->arch.msr_platform_info;
3595                 break;
3596         case MSR_MISC_FEATURES_ENABLES:
3597                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3598                 break;
3599         case MSR_K7_HWCR:
3600                 msr_info->data = vcpu->arch.msr_hwcr;
3601                 break;
3602         default:
3603                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3604                         return kvm_pmu_get_msr(vcpu, msr_info);
3605                 return KVM_MSR_RET_INVALID;
3606         }
3607         return 0;
3608 }
3609 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3610
3611 /*
3612  * Read or write a bunch of msrs. All parameters are kernel addresses.
3613  *
3614  * @return number of msrs set successfully.
3615  */
3616 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3617                     struct kvm_msr_entry *entries,
3618                     int (*do_msr)(struct kvm_vcpu *vcpu,
3619                                   unsigned index, u64 *data))
3620 {
3621         int i;
3622
3623         for (i = 0; i < msrs->nmsrs; ++i)
3624                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3625                         break;
3626
3627         return i;
3628 }
3629
3630 /*
3631  * Read or write a bunch of msrs. Parameters are user addresses.
3632  *
3633  * @return number of msrs set successfully.
3634  */
3635 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3636                   int (*do_msr)(struct kvm_vcpu *vcpu,
3637                                 unsigned index, u64 *data),
3638                   int writeback)
3639 {
3640         struct kvm_msrs msrs;
3641         struct kvm_msr_entry *entries;
3642         int r, n;
3643         unsigned size;
3644
3645         r = -EFAULT;
3646         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3647                 goto out;
3648
3649         r = -E2BIG;
3650         if (msrs.nmsrs >= MAX_IO_MSRS)
3651                 goto out;
3652
3653         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3654         entries = memdup_user(user_msrs->entries, size);
3655         if (IS_ERR(entries)) {
3656                 r = PTR_ERR(entries);
3657                 goto out;
3658         }
3659
3660         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3661         if (r < 0)
3662                 goto out_free;
3663
3664         r = -EFAULT;
3665         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3666                 goto out_free;
3667
3668         r = n;
3669
3670 out_free:
3671         kfree(entries);
3672 out:
3673         return r;
3674 }
3675
3676 static inline bool kvm_can_mwait_in_guest(void)
3677 {
3678         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3679                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3680                 boot_cpu_has(X86_FEATURE_ARAT);
3681 }
3682
3683 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3684 {
3685         int r = 0;
3686
3687         switch (ext) {
3688         case KVM_CAP_IRQCHIP:
3689         case KVM_CAP_HLT:
3690         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3691         case KVM_CAP_SET_TSS_ADDR:
3692         case KVM_CAP_EXT_CPUID:
3693         case KVM_CAP_EXT_EMUL_CPUID:
3694         case KVM_CAP_CLOCKSOURCE:
3695         case KVM_CAP_PIT:
3696         case KVM_CAP_NOP_IO_DELAY:
3697         case KVM_CAP_MP_STATE:
3698         case KVM_CAP_SYNC_MMU:
3699         case KVM_CAP_USER_NMI:
3700         case KVM_CAP_REINJECT_CONTROL:
3701         case KVM_CAP_IRQ_INJECT_STATUS:
3702         case KVM_CAP_IOEVENTFD:
3703         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3704         case KVM_CAP_PIT2:
3705         case KVM_CAP_PIT_STATE2:
3706         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3707         case KVM_CAP_XEN_HVM:
3708         case KVM_CAP_VCPU_EVENTS:
3709         case KVM_CAP_HYPERV:
3710         case KVM_CAP_HYPERV_VAPIC:
3711         case KVM_CAP_HYPERV_SPIN:
3712         case KVM_CAP_HYPERV_SYNIC:
3713         case KVM_CAP_HYPERV_SYNIC2:
3714         case KVM_CAP_HYPERV_VP_INDEX:
3715         case KVM_CAP_HYPERV_EVENTFD:
3716         case KVM_CAP_HYPERV_TLBFLUSH:
3717         case KVM_CAP_HYPERV_SEND_IPI:
3718         case KVM_CAP_HYPERV_CPUID:
3719         case KVM_CAP_PCI_SEGMENT:
3720         case KVM_CAP_DEBUGREGS:
3721         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3722         case KVM_CAP_XSAVE:
3723         case KVM_CAP_ASYNC_PF:
3724         case KVM_CAP_ASYNC_PF_INT:
3725         case KVM_CAP_GET_TSC_KHZ:
3726         case KVM_CAP_KVMCLOCK_CTRL:
3727         case KVM_CAP_READONLY_MEM:
3728         case KVM_CAP_HYPERV_TIME:
3729         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3730         case KVM_CAP_TSC_DEADLINE_TIMER:
3731         case KVM_CAP_DISABLE_QUIRKS:
3732         case KVM_CAP_SET_BOOT_CPU_ID:
3733         case KVM_CAP_SPLIT_IRQCHIP:
3734         case KVM_CAP_IMMEDIATE_EXIT:
3735         case KVM_CAP_PMU_EVENT_FILTER:
3736         case KVM_CAP_GET_MSR_FEATURES:
3737         case KVM_CAP_MSR_PLATFORM_INFO:
3738         case KVM_CAP_EXCEPTION_PAYLOAD:
3739         case KVM_CAP_SET_GUEST_DEBUG:
3740         case KVM_CAP_LAST_CPU:
3741         case KVM_CAP_X86_USER_SPACE_MSR:
3742         case KVM_CAP_X86_MSR_FILTER:
3743         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3744                 r = 1;
3745                 break;
3746         case KVM_CAP_SYNC_REGS:
3747                 r = KVM_SYNC_X86_VALID_FIELDS;
3748                 break;
3749         case KVM_CAP_ADJUST_CLOCK:
3750                 r = KVM_CLOCK_TSC_STABLE;
3751                 break;
3752         case KVM_CAP_X86_DISABLE_EXITS:
3753                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3754                       KVM_X86_DISABLE_EXITS_CSTATE;
3755                 if(kvm_can_mwait_in_guest())
3756                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3757                 break;
3758         case KVM_CAP_X86_SMM:
3759                 /* SMBASE is usually relocated above 1M on modern chipsets,
3760                  * and SMM handlers might indeed rely on 4G segment limits,
3761                  * so do not report SMM to be available if real mode is
3762                  * emulated via vm86 mode.  Still, do not go to great lengths
3763                  * to avoid userspace's usage of the feature, because it is a
3764                  * fringe case that is not enabled except via specific settings
3765                  * of the module parameters.
3766                  */
3767                 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3768                 break;
3769         case KVM_CAP_VAPIC:
3770                 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3771                 break;
3772         case KVM_CAP_NR_VCPUS:
3773                 r = KVM_SOFT_MAX_VCPUS;
3774                 break;
3775         case KVM_CAP_MAX_VCPUS:
3776                 r = KVM_MAX_VCPUS;
3777                 break;
3778         case KVM_CAP_MAX_VCPU_ID:
3779                 r = KVM_MAX_VCPU_ID;
3780                 break;
3781         case KVM_CAP_PV_MMU:    /* obsolete */
3782                 r = 0;
3783                 break;
3784         case KVM_CAP_MCE:
3785                 r = KVM_MAX_MCE_BANKS;
3786                 break;
3787         case KVM_CAP_XCRS:
3788                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3789                 break;
3790         case KVM_CAP_TSC_CONTROL:
3791                 r = kvm_has_tsc_control;
3792                 break;
3793         case KVM_CAP_X2APIC_API:
3794                 r = KVM_X2APIC_API_VALID_FLAGS;
3795                 break;
3796         case KVM_CAP_NESTED_STATE:
3797                 r = kvm_x86_ops.nested_ops->get_state ?
3798                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3799                 break;
3800         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3801                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3802                 break;
3803         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3804                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3805                 break;
3806         case KVM_CAP_SMALLER_MAXPHYADDR:
3807                 r = (int) allow_smaller_maxphyaddr;
3808                 break;
3809         case KVM_CAP_STEAL_TIME:
3810                 r = sched_info_on();
3811                 break;
3812         default:
3813                 break;
3814         }
3815         return r;
3816
3817 }
3818
3819 long kvm_arch_dev_ioctl(struct file *filp,
3820                         unsigned int ioctl, unsigned long arg)
3821 {
3822         void __user *argp = (void __user *)arg;
3823         long r;
3824
3825         switch (ioctl) {
3826         case KVM_GET_MSR_INDEX_LIST: {
3827                 struct kvm_msr_list __user *user_msr_list = argp;
3828                 struct kvm_msr_list msr_list;
3829                 unsigned n;
3830
3831                 r = -EFAULT;
3832                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3833                         goto out;
3834                 n = msr_list.nmsrs;
3835                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3836                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3837                         goto out;
3838                 r = -E2BIG;
3839                 if (n < msr_list.nmsrs)
3840                         goto out;
3841                 r = -EFAULT;
3842                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3843                                  num_msrs_to_save * sizeof(u32)))
3844                         goto out;
3845                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3846                                  &emulated_msrs,
3847                                  num_emulated_msrs * sizeof(u32)))
3848                         goto out;
3849                 r = 0;
3850                 break;
3851         }
3852         case KVM_GET_SUPPORTED_CPUID:
3853         case KVM_GET_EMULATED_CPUID: {
3854                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3855                 struct kvm_cpuid2 cpuid;
3856
3857                 r = -EFAULT;
3858                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3859                         goto out;
3860
3861                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3862                                             ioctl);
3863                 if (r)
3864                         goto out;
3865
3866                 r = -EFAULT;
3867                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3868                         goto out;
3869                 r = 0;
3870                 break;
3871         }
3872         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3873                 r = -EFAULT;
3874                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3875                                  sizeof(kvm_mce_cap_supported)))
3876                         goto out;
3877                 r = 0;
3878                 break;
3879         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3880                 struct kvm_msr_list __user *user_msr_list = argp;
3881                 struct kvm_msr_list msr_list;
3882                 unsigned int n;
3883
3884                 r = -EFAULT;
3885                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3886                         goto out;
3887                 n = msr_list.nmsrs;
3888                 msr_list.nmsrs = num_msr_based_features;
3889                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3890                         goto out;
3891                 r = -E2BIG;
3892                 if (n < msr_list.nmsrs)
3893                         goto out;
3894                 r = -EFAULT;
3895                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3896                                  num_msr_based_features * sizeof(u32)))
3897                         goto out;
3898                 r = 0;
3899                 break;
3900         }
3901         case KVM_GET_MSRS:
3902                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3903                 break;
3904         default:
3905                 r = -EINVAL;
3906                 break;
3907         }
3908 out:
3909         return r;
3910 }
3911
3912 static void wbinvd_ipi(void *garbage)
3913 {
3914         wbinvd();
3915 }
3916
3917 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3918 {
3919         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3920 }
3921
3922 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3923 {
3924         /* Address WBINVD may be executed by guest */
3925         if (need_emulate_wbinvd(vcpu)) {
3926                 if (kvm_x86_ops.has_wbinvd_exit())
3927                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3928                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3929                         smp_call_function_single(vcpu->cpu,
3930                                         wbinvd_ipi, NULL, 1);
3931         }
3932
3933         kvm_x86_ops.vcpu_load(vcpu, cpu);
3934
3935         /* Save host pkru register if supported */
3936         vcpu->arch.host_pkru = read_pkru();
3937
3938         /* Apply any externally detected TSC adjustments (due to suspend) */
3939         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3940                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3941                 vcpu->arch.tsc_offset_adjustment = 0;
3942                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3943         }
3944
3945         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3946                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3947                                 rdtsc() - vcpu->arch.last_host_tsc;
3948                 if (tsc_delta < 0)
3949                         mark_tsc_unstable("KVM discovered backwards TSC");
3950
3951                 if (kvm_check_tsc_unstable()) {
3952                         u64 offset = kvm_compute_tsc_offset(vcpu,
3953                                                 vcpu->arch.last_guest_tsc);
3954                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3955                         vcpu->arch.tsc_catchup = 1;
3956                 }
3957
3958                 if (kvm_lapic_hv_timer_in_use(vcpu))
3959                         kvm_lapic_restart_hv_timer(vcpu);
3960
3961                 /*
3962                  * On a host with synchronized TSC, there is no need to update
3963                  * kvmclock on vcpu->cpu migration
3964                  */
3965                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3966                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3967                 if (vcpu->cpu != cpu)
3968                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3969                 vcpu->cpu = cpu;
3970         }
3971
3972         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3973 }
3974
3975 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3976 {
3977         struct kvm_host_map map;
3978         struct kvm_steal_time *st;
3979
3980         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3981                 return;
3982
3983         if (vcpu->arch.st.preempted)
3984                 return;
3985
3986         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3987                         &vcpu->arch.st.cache, true))
3988                 return;
3989
3990         st = map.hva +
3991                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3992
3993         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3994
3995         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3996 }
3997
3998 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3999 {
4000         int idx;
4001
4002         if (vcpu->preempted)
4003                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4004
4005         /*
4006          * Disable page faults because we're in atomic context here.
4007          * kvm_write_guest_offset_cached() would call might_fault()
4008          * that relies on pagefault_disable() to tell if there's a
4009          * bug. NOTE: the write to guest memory may not go through if
4010          * during postcopy live migration or if there's heavy guest
4011          * paging.
4012          */
4013         pagefault_disable();
4014         /*
4015          * kvm_memslots() will be called by
4016          * kvm_write_guest_offset_cached() so take the srcu lock.
4017          */
4018         idx = srcu_read_lock(&vcpu->kvm->srcu);
4019         kvm_steal_time_set_preempted(vcpu);
4020         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4021         pagefault_enable();
4022         kvm_x86_ops.vcpu_put(vcpu);
4023         vcpu->arch.last_host_tsc = rdtsc();
4024         /*
4025          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4026          * on every vmexit, but if not, we might have a stale dr6 from the
4027          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4028          */
4029         set_debugreg(0, 6);
4030 }
4031
4032 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4033                                     struct kvm_lapic_state *s)
4034 {
4035         if (vcpu->arch.apicv_active)
4036                 kvm_x86_ops.sync_pir_to_irr(vcpu);
4037
4038         return kvm_apic_get_state(vcpu, s);
4039 }
4040
4041 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4042                                     struct kvm_lapic_state *s)
4043 {
4044         int r;
4045
4046         r = kvm_apic_set_state(vcpu, s);
4047         if (r)
4048                 return r;
4049         update_cr8_intercept(vcpu);
4050
4051         return 0;
4052 }
4053
4054 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4055 {
4056         return (!lapic_in_kernel(vcpu) ||
4057                 kvm_apic_accept_pic_intr(vcpu));
4058 }
4059
4060 /*
4061  * if userspace requested an interrupt window, check that the
4062  * interrupt window is open.
4063  *
4064  * No need to exit to userspace if we already have an interrupt queued.
4065  */
4066 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4067 {
4068         return kvm_arch_interrupt_allowed(vcpu) &&
4069                 !kvm_cpu_has_interrupt(vcpu) &&
4070                 !kvm_event_needs_reinjection(vcpu) &&
4071                 kvm_cpu_accept_dm_intr(vcpu);
4072 }
4073
4074 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4075                                     struct kvm_interrupt *irq)
4076 {
4077         if (irq->irq >= KVM_NR_INTERRUPTS)
4078                 return -EINVAL;
4079
4080         if (!irqchip_in_kernel(vcpu->kvm)) {
4081                 kvm_queue_interrupt(vcpu, irq->irq, false);
4082                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4083                 return 0;
4084         }
4085
4086         /*
4087          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4088          * fail for in-kernel 8259.
4089          */
4090         if (pic_in_kernel(vcpu->kvm))
4091                 return -ENXIO;
4092
4093         if (vcpu->arch.pending_external_vector != -1)
4094                 return -EEXIST;
4095
4096         vcpu->arch.pending_external_vector = irq->irq;
4097         kvm_make_request(KVM_REQ_EVENT, vcpu);
4098         return 0;
4099 }
4100
4101 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4102 {
4103         kvm_inject_nmi(vcpu);
4104
4105         return 0;
4106 }
4107
4108 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4109 {
4110         kvm_make_request(KVM_REQ_SMI, vcpu);
4111
4112         return 0;
4113 }
4114
4115 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4116                                            struct kvm_tpr_access_ctl *tac)
4117 {
4118         if (tac->flags)
4119                 return -EINVAL;
4120         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4121         return 0;
4122 }
4123
4124 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4125                                         u64 mcg_cap)
4126 {
4127         int r;
4128         unsigned bank_num = mcg_cap & 0xff, bank;
4129
4130         r = -EINVAL;
4131         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4132                 goto out;
4133         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4134                 goto out;
4135         r = 0;
4136         vcpu->arch.mcg_cap = mcg_cap;
4137         /* Init IA32_MCG_CTL to all 1s */
4138         if (mcg_cap & MCG_CTL_P)
4139                 vcpu->arch.mcg_ctl = ~(u64)0;
4140         /* Init IA32_MCi_CTL to all 1s */
4141         for (bank = 0; bank < bank_num; bank++)
4142                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4143
4144         kvm_x86_ops.setup_mce(vcpu);
4145 out:
4146         return r;
4147 }
4148
4149 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4150                                       struct kvm_x86_mce *mce)
4151 {
4152         u64 mcg_cap = vcpu->arch.mcg_cap;
4153         unsigned bank_num = mcg_cap & 0xff;
4154         u64 *banks = vcpu->arch.mce_banks;
4155
4156         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4157                 return -EINVAL;
4158         /*
4159          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4160          * reporting is disabled
4161          */
4162         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4163             vcpu->arch.mcg_ctl != ~(u64)0)
4164                 return 0;
4165         banks += 4 * mce->bank;
4166         /*
4167          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4168          * reporting is disabled for the bank
4169          */
4170         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4171                 return 0;
4172         if (mce->status & MCI_STATUS_UC) {
4173                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4174                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4175                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4176                         return 0;
4177                 }
4178                 if (banks[1] & MCI_STATUS_VAL)
4179                         mce->status |= MCI_STATUS_OVER;
4180                 banks[2] = mce->addr;
4181                 banks[3] = mce->misc;
4182                 vcpu->arch.mcg_status = mce->mcg_status;
4183                 banks[1] = mce->status;
4184                 kvm_queue_exception(vcpu, MC_VECTOR);
4185         } else if (!(banks[1] & MCI_STATUS_VAL)
4186                    || !(banks[1] & MCI_STATUS_UC)) {
4187                 if (banks[1] & MCI_STATUS_VAL)
4188                         mce->status |= MCI_STATUS_OVER;
4189                 banks[2] = mce->addr;
4190                 banks[3] = mce->misc;
4191                 banks[1] = mce->status;
4192         } else
4193                 banks[1] |= MCI_STATUS_OVER;
4194         return 0;
4195 }
4196
4197 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4198                                                struct kvm_vcpu_events *events)
4199 {
4200         process_nmi(vcpu);
4201
4202         /*
4203          * In guest mode, payload delivery should be deferred,
4204          * so that the L1 hypervisor can intercept #PF before
4205          * CR2 is modified (or intercept #DB before DR6 is
4206          * modified under nVMX). Unless the per-VM capability,
4207          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4208          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4209          * opportunistically defer the exception payload, deliver it if the
4210          * capability hasn't been requested before processing a
4211          * KVM_GET_VCPU_EVENTS.
4212          */
4213         if (!vcpu->kvm->arch.exception_payload_enabled &&
4214             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4215                 kvm_deliver_exception_payload(vcpu);
4216
4217         /*
4218          * The API doesn't provide the instruction length for software
4219          * exceptions, so don't report them. As long as the guest RIP
4220          * isn't advanced, we should expect to encounter the exception
4221          * again.
4222          */
4223         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4224                 events->exception.injected = 0;
4225                 events->exception.pending = 0;
4226         } else {
4227                 events->exception.injected = vcpu->arch.exception.injected;
4228                 events->exception.pending = vcpu->arch.exception.pending;
4229                 /*
4230                  * For ABI compatibility, deliberately conflate
4231                  * pending and injected exceptions when
4232                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4233                  */
4234                 if (!vcpu->kvm->arch.exception_payload_enabled)
4235                         events->exception.injected |=
4236                                 vcpu->arch.exception.pending;
4237         }
4238         events->exception.nr = vcpu->arch.exception.nr;
4239         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4240         events->exception.error_code = vcpu->arch.exception.error_code;
4241         events->exception_has_payload = vcpu->arch.exception.has_payload;
4242         events->exception_payload = vcpu->arch.exception.payload;
4243
4244         events->interrupt.injected =
4245                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4246         events->interrupt.nr = vcpu->arch.interrupt.nr;
4247         events->interrupt.soft = 0;
4248         events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4249
4250         events->nmi.injected = vcpu->arch.nmi_injected;
4251         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4252         events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4253         events->nmi.pad = 0;
4254
4255         events->sipi_vector = 0; /* never valid when reporting to user space */
4256
4257         events->smi.smm = is_smm(vcpu);
4258         events->smi.pending = vcpu->arch.smi_pending;
4259         events->smi.smm_inside_nmi =
4260                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4261         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4262
4263         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4264                          | KVM_VCPUEVENT_VALID_SHADOW
4265                          | KVM_VCPUEVENT_VALID_SMM);
4266         if (vcpu->kvm->arch.exception_payload_enabled)
4267                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4268
4269         memset(&events->reserved, 0, sizeof(events->reserved));
4270 }
4271
4272 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4273
4274 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4275                                               struct kvm_vcpu_events *events)
4276 {
4277         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4278                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4279                               | KVM_VCPUEVENT_VALID_SHADOW
4280                               | KVM_VCPUEVENT_VALID_SMM
4281                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4282                 return -EINVAL;
4283
4284         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4285                 if (!vcpu->kvm->arch.exception_payload_enabled)
4286                         return -EINVAL;
4287                 if (events->exception.pending)
4288                         events->exception.injected = 0;
4289                 else
4290                         events->exception_has_payload = 0;
4291         } else {
4292                 events->exception.pending = 0;
4293                 events->exception_has_payload = 0;
4294         }
4295
4296         if ((events->exception.injected || events->exception.pending) &&
4297             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4298                 return -EINVAL;
4299
4300         /* INITs are latched while in SMM */
4301         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4302             (events->smi.smm || events->smi.pending) &&
4303             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4304                 return -EINVAL;
4305
4306         process_nmi(vcpu);
4307         vcpu->arch.exception.injected = events->exception.injected;
4308         vcpu->arch.exception.pending = events->exception.pending;
4309         vcpu->arch.exception.nr = events->exception.nr;
4310         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4311         vcpu->arch.exception.error_code = events->exception.error_code;
4312         vcpu->arch.exception.has_payload = events->exception_has_payload;
4313         vcpu->arch.exception.payload = events->exception_payload;
4314
4315         vcpu->arch.interrupt.injected = events->interrupt.injected;
4316         vcpu->arch.interrupt.nr = events->interrupt.nr;
4317         vcpu->arch.interrupt.soft = events->interrupt.soft;
4318         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4319                 kvm_x86_ops.set_interrupt_shadow(vcpu,
4320                                                   events->interrupt.shadow);
4321
4322         vcpu->arch.nmi_injected = events->nmi.injected;
4323         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4324                 vcpu->arch.nmi_pending = events->nmi.pending;
4325         kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4326
4327         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4328             lapic_in_kernel(vcpu))
4329                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4330
4331         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4332                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4333                         if (events->smi.smm)
4334                                 vcpu->arch.hflags |= HF_SMM_MASK;
4335                         else
4336                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4337                         kvm_smm_changed(vcpu);
4338                 }
4339
4340                 vcpu->arch.smi_pending = events->smi.pending;
4341
4342                 if (events->smi.smm) {
4343                         if (events->smi.smm_inside_nmi)
4344                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4345                         else
4346                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4347                 }
4348
4349                 if (lapic_in_kernel(vcpu)) {
4350                         if (events->smi.latched_init)
4351                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4352                         else
4353                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4354                 }
4355         }
4356
4357         kvm_make_request(KVM_REQ_EVENT, vcpu);
4358
4359         return 0;
4360 }
4361
4362 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4363                                              struct kvm_debugregs *dbgregs)
4364 {
4365         unsigned long val;
4366
4367         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4368         kvm_get_dr(vcpu, 6, &val);
4369         dbgregs->dr6 = val;
4370         dbgregs->dr7 = vcpu->arch.dr7;
4371         dbgregs->flags = 0;
4372         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4373 }
4374
4375 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4376                                             struct kvm_debugregs *dbgregs)
4377 {
4378         if (dbgregs->flags)
4379                 return -EINVAL;
4380
4381         if (dbgregs->dr6 & ~0xffffffffull)
4382                 return -EINVAL;
4383         if (dbgregs->dr7 & ~0xffffffffull)
4384                 return -EINVAL;
4385
4386         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4387         kvm_update_dr0123(vcpu);
4388         vcpu->arch.dr6 = dbgregs->dr6;
4389         vcpu->arch.dr7 = dbgregs->dr7;
4390         kvm_update_dr7(vcpu);
4391
4392         return 0;
4393 }
4394
4395 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4396
4397 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4398 {
4399         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4400         u64 xstate_bv = xsave->header.xfeatures;
4401         u64 valid;
4402
4403         /*
4404          * Copy legacy XSAVE area, to avoid complications with CPUID
4405          * leaves 0 and 1 in the loop below.
4406          */
4407         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4408
4409         /* Set XSTATE_BV */
4410         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4411         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4412
4413         /*
4414          * Copy each region from the possibly compacted offset to the
4415          * non-compacted offset.
4416          */
4417         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4418         while (valid) {
4419                 u64 xfeature_mask = valid & -valid;
4420                 int xfeature_nr = fls64(xfeature_mask) - 1;
4421                 void *src = get_xsave_addr(xsave, xfeature_nr);
4422
4423                 if (src) {
4424                         u32 size, offset, ecx, edx;
4425                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4426                                     &size, &offset, &ecx, &edx);
4427                         if (xfeature_nr == XFEATURE_PKRU)
4428                                 memcpy(dest + offset, &vcpu->arch.pkru,
4429                                        sizeof(vcpu->arch.pkru));
4430                         else
4431                                 memcpy(dest + offset, src, size);
4432
4433                 }
4434
4435                 valid -= xfeature_mask;
4436         }
4437 }
4438
4439 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4440 {
4441         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4442         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4443         u64 valid;
4444
4445         /*
4446          * Copy legacy XSAVE area, to avoid complications with CPUID
4447          * leaves 0 and 1 in the loop below.
4448          */
4449         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4450
4451         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4452         xsave->header.xfeatures = xstate_bv;
4453         if (boot_cpu_has(X86_FEATURE_XSAVES))
4454                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4455
4456         /*
4457          * Copy each region from the non-compacted offset to the
4458          * possibly compacted offset.
4459          */
4460         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4461         while (valid) {
4462                 u64 xfeature_mask = valid & -valid;
4463                 int xfeature_nr = fls64(xfeature_mask) - 1;
4464                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4465
4466                 if (dest) {
4467                         u32 size, offset, ecx, edx;
4468                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4469                                     &size, &offset, &ecx, &edx);
4470                         if (xfeature_nr == XFEATURE_PKRU)
4471                                 memcpy(&vcpu->arch.pkru, src + offset,
4472                                        sizeof(vcpu->arch.pkru));
4473                         else
4474                                 memcpy(dest, src + offset, size);
4475                 }
4476
4477                 valid -= xfeature_mask;
4478         }
4479 }
4480
4481 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4482                                          struct kvm_xsave *guest_xsave)
4483 {
4484         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4485                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4486                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4487         } else {
4488                 memcpy(guest_xsave->region,
4489                         &vcpu->arch.guest_fpu->state.fxsave,
4490                         sizeof(struct fxregs_state));
4491                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4492                         XFEATURE_MASK_FPSSE;
4493         }
4494 }
4495
4496 #define XSAVE_MXCSR_OFFSET 24
4497
4498 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4499                                         struct kvm_xsave *guest_xsave)
4500 {
4501         u64 xstate_bv =
4502                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4503         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4504
4505         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4506                 /*
4507                  * Here we allow setting states that are not present in
4508                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4509                  * with old userspace.
4510                  */
4511                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4512                         return -EINVAL;
4513                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4514         } else {
4515                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4516                         mxcsr & ~mxcsr_feature_mask)
4517                         return -EINVAL;
4518                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4519                         guest_xsave->region, sizeof(struct fxregs_state));
4520         }
4521         return 0;
4522 }
4523
4524 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4525                                         struct kvm_xcrs *guest_xcrs)
4526 {
4527         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4528                 guest_xcrs->nr_xcrs = 0;
4529                 return;
4530         }
4531
4532         guest_xcrs->nr_xcrs = 1;
4533         guest_xcrs->flags = 0;
4534         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4535         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4536 }
4537
4538 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4539                                        struct kvm_xcrs *guest_xcrs)
4540 {
4541         int i, r = 0;
4542
4543         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4544                 return -EINVAL;
4545
4546         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4547                 return -EINVAL;
4548
4549         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4550                 /* Only support XCR0 currently */
4551                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4552                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4553                                 guest_xcrs->xcrs[i].value);
4554                         break;
4555                 }
4556         if (r)
4557                 r = -EINVAL;
4558         return r;
4559 }
4560
4561 /*
4562  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4563  * stopped by the hypervisor.  This function will be called from the host only.
4564  * EINVAL is returned when the host attempts to set the flag for a guest that
4565  * does not support pv clocks.
4566  */
4567 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4568 {
4569         if (!vcpu->arch.pv_time_enabled)
4570                 return -EINVAL;
4571         vcpu->arch.pvclock_set_guest_stopped_request = true;
4572         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4573         return 0;
4574 }
4575
4576 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4577                                      struct kvm_enable_cap *cap)
4578 {
4579         int r;
4580         uint16_t vmcs_version;
4581         void __user *user_ptr;
4582
4583         if (cap->flags)
4584                 return -EINVAL;
4585
4586         switch (cap->cap) {
4587         case KVM_CAP_HYPERV_SYNIC2:
4588                 if (cap->args[0])
4589                         return -EINVAL;
4590                 fallthrough;
4591
4592         case KVM_CAP_HYPERV_SYNIC:
4593                 if (!irqchip_in_kernel(vcpu->kvm))
4594                         return -EINVAL;
4595                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4596                                              KVM_CAP_HYPERV_SYNIC2);
4597         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4598                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4599                         return -ENOTTY;
4600                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4601                 if (!r) {
4602                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4603                         if (copy_to_user(user_ptr, &vmcs_version,
4604                                          sizeof(vmcs_version)))
4605                                 r = -EFAULT;
4606                 }
4607                 return r;
4608         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4609                 if (!kvm_x86_ops.enable_direct_tlbflush)
4610                         return -ENOTTY;
4611
4612                 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4613
4614         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4615                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4616                 if (vcpu->arch.pv_cpuid.enforce)
4617                         kvm_update_pv_runtime(vcpu);
4618
4619                 return 0;
4620
4621         default:
4622                 return -EINVAL;
4623         }
4624 }
4625
4626 long kvm_arch_vcpu_ioctl(struct file *filp,
4627                          unsigned int ioctl, unsigned long arg)
4628 {
4629         struct kvm_vcpu *vcpu = filp->private_data;
4630         void __user *argp = (void __user *)arg;
4631         int r;
4632         union {
4633                 struct kvm_lapic_state *lapic;
4634                 struct kvm_xsave *xsave;
4635                 struct kvm_xcrs *xcrs;
4636                 void *buffer;
4637         } u;
4638
4639         vcpu_load(vcpu);
4640
4641         u.buffer = NULL;
4642         switch (ioctl) {
4643         case KVM_GET_LAPIC: {
4644                 r = -EINVAL;
4645                 if (!lapic_in_kernel(vcpu))
4646                         goto out;
4647                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4648                                 GFP_KERNEL_ACCOUNT);
4649
4650                 r = -ENOMEM;
4651                 if (!u.lapic)
4652                         goto out;
4653                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4654                 if (r)
4655                         goto out;
4656                 r = -EFAULT;
4657                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4658                         goto out;
4659                 r = 0;
4660                 break;
4661         }
4662         case KVM_SET_LAPIC: {
4663                 r = -EINVAL;
4664                 if (!lapic_in_kernel(vcpu))
4665                         goto out;
4666                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4667                 if (IS_ERR(u.lapic)) {
4668                         r = PTR_ERR(u.lapic);
4669                         goto out_nofree;
4670                 }
4671
4672                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4673                 break;
4674         }
4675         case KVM_INTERRUPT: {
4676                 struct kvm_interrupt irq;
4677
4678                 r = -EFAULT;
4679                 if (copy_from_user(&irq, argp, sizeof(irq)))
4680                         goto out;
4681                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4682                 break;
4683         }
4684         case KVM_NMI: {
4685                 r = kvm_vcpu_ioctl_nmi(vcpu);
4686                 break;
4687         }
4688         case KVM_SMI: {
4689                 r = kvm_vcpu_ioctl_smi(vcpu);
4690                 break;
4691         }
4692         case KVM_SET_CPUID: {
4693                 struct kvm_cpuid __user *cpuid_arg = argp;
4694                 struct kvm_cpuid cpuid;
4695
4696                 r = -EFAULT;
4697                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4698                         goto out;
4699                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4700                 break;
4701         }
4702         case KVM_SET_CPUID2: {
4703                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4704                 struct kvm_cpuid2 cpuid;
4705
4706                 r = -EFAULT;
4707                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4708                         goto out;
4709                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4710                                               cpuid_arg->entries);
4711                 break;
4712         }
4713         case KVM_GET_CPUID2: {
4714                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4715                 struct kvm_cpuid2 cpuid;
4716
4717                 r = -EFAULT;
4718                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4719                         goto out;
4720                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4721                                               cpuid_arg->entries);
4722                 if (r)
4723                         goto out;
4724                 r = -EFAULT;
4725                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4726                         goto out;
4727                 r = 0;
4728                 break;
4729         }
4730         case KVM_GET_MSRS: {
4731                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4732                 r = msr_io(vcpu, argp, do_get_msr, 1);
4733                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4734                 break;
4735         }
4736         case KVM_SET_MSRS: {
4737                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4738                 r = msr_io(vcpu, argp, do_set_msr, 0);
4739                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4740                 break;
4741         }
4742         case KVM_TPR_ACCESS_REPORTING: {
4743                 struct kvm_tpr_access_ctl tac;
4744
4745                 r = -EFAULT;
4746                 if (copy_from_user(&tac, argp, sizeof(tac)))
4747                         goto out;
4748                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4749                 if (r)
4750                         goto out;
4751                 r = -EFAULT;
4752                 if (copy_to_user(argp, &tac, sizeof(tac)))
4753                         goto out;
4754                 r = 0;
4755                 break;
4756         };
4757         case KVM_SET_VAPIC_ADDR: {
4758                 struct kvm_vapic_addr va;
4759                 int idx;
4760
4761                 r = -EINVAL;
4762                 if (!lapic_in_kernel(vcpu))
4763                         goto out;
4764                 r = -EFAULT;
4765                 if (copy_from_user(&va, argp, sizeof(va)))
4766                         goto out;
4767                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4768                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4769                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4770                 break;
4771         }
4772         case KVM_X86_SETUP_MCE: {
4773                 u64 mcg_cap;
4774
4775                 r = -EFAULT;
4776                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4777                         goto out;
4778                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4779                 break;
4780         }
4781         case KVM_X86_SET_MCE: {
4782                 struct kvm_x86_mce mce;
4783
4784                 r = -EFAULT;
4785                 if (copy_from_user(&mce, argp, sizeof(mce)))
4786                         goto out;
4787                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4788                 break;
4789         }
4790         case KVM_GET_VCPU_EVENTS: {
4791                 struct kvm_vcpu_events events;
4792
4793                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4794
4795                 r = -EFAULT;
4796                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4797                         break;
4798                 r = 0;
4799                 break;
4800         }
4801         case KVM_SET_VCPU_EVENTS: {
4802                 struct kvm_vcpu_events events;
4803
4804                 r = -EFAULT;
4805                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4806                         break;
4807
4808                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4809                 break;
4810         }
4811         case KVM_GET_DEBUGREGS: {
4812                 struct kvm_debugregs dbgregs;
4813
4814                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4815
4816                 r = -EFAULT;
4817                 if (copy_to_user(argp, &dbgregs,
4818                                  sizeof(struct kvm_debugregs)))
4819                         break;
4820                 r = 0;
4821                 break;
4822         }
4823         case KVM_SET_DEBUGREGS: {
4824                 struct kvm_debugregs dbgregs;
4825
4826                 r = -EFAULT;
4827                 if (copy_from_user(&dbgregs, argp,
4828                                    sizeof(struct kvm_debugregs)))
4829                         break;
4830
4831                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4832                 break;
4833         }
4834         case KVM_GET_XSAVE: {
4835                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4836                 r = -ENOMEM;
4837                 if (!u.xsave)
4838                         break;
4839
4840                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4841
4842                 r = -EFAULT;
4843                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4844                         break;
4845                 r = 0;
4846                 break;
4847         }
4848         case KVM_SET_XSAVE: {
4849                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4850                 if (IS_ERR(u.xsave)) {
4851                         r = PTR_ERR(u.xsave);
4852                         goto out_nofree;
4853                 }
4854
4855                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4856                 break;
4857         }
4858         case KVM_GET_XCRS: {
4859                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4860                 r = -ENOMEM;
4861                 if (!u.xcrs)
4862                         break;
4863
4864                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4865
4866                 r = -EFAULT;
4867                 if (copy_to_user(argp, u.xcrs,
4868                                  sizeof(struct kvm_xcrs)))
4869                         break;
4870                 r = 0;
4871                 break;
4872         }
4873         case KVM_SET_XCRS: {
4874                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4875                 if (IS_ERR(u.xcrs)) {
4876                         r = PTR_ERR(u.xcrs);
4877                         goto out_nofree;
4878                 }
4879
4880                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4881                 break;
4882         }
4883         case KVM_SET_TSC_KHZ: {
4884                 u32 user_tsc_khz;
4885
4886                 r = -EINVAL;
4887                 user_tsc_khz = (u32)arg;
4888
4889                 if (kvm_has_tsc_control &&
4890                     user_tsc_khz >= kvm_max_guest_tsc_khz)
4891                         goto out;
4892
4893                 if (user_tsc_khz == 0)
4894                         user_tsc_khz = tsc_khz;
4895
4896                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4897                         r = 0;
4898
4899                 goto out;
4900         }
4901         case KVM_GET_TSC_KHZ: {
4902                 r = vcpu->arch.virtual_tsc_khz;
4903                 goto out;
4904         }
4905         case KVM_KVMCLOCK_CTRL: {
4906                 r = kvm_set_guest_paused(vcpu);
4907                 goto out;
4908         }
4909         case KVM_ENABLE_CAP: {
4910                 struct kvm_enable_cap cap;
4911
4912                 r = -EFAULT;
4913                 if (copy_from_user(&cap, argp, sizeof(cap)))
4914                         goto out;
4915                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4916                 break;
4917         }
4918         case KVM_GET_NESTED_STATE: {
4919                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4920                 u32 user_data_size;
4921
4922                 r = -EINVAL;
4923                 if (!kvm_x86_ops.nested_ops->get_state)
4924                         break;
4925
4926                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4927                 r = -EFAULT;
4928                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4929                         break;
4930
4931                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4932                                                      user_data_size);
4933                 if (r < 0)
4934                         break;
4935
4936                 if (r > user_data_size) {
4937                         if (put_user(r, &user_kvm_nested_state->size))
4938                                 r = -EFAULT;
4939                         else
4940                                 r = -E2BIG;
4941                         break;
4942                 }
4943
4944                 r = 0;
4945                 break;
4946         }
4947         case KVM_SET_NESTED_STATE: {
4948                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4949                 struct kvm_nested_state kvm_state;
4950                 int idx;
4951
4952                 r = -EINVAL;
4953                 if (!kvm_x86_ops.nested_ops->set_state)
4954                         break;
4955
4956                 r = -EFAULT;
4957                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4958                         break;
4959
4960                 r = -EINVAL;
4961                 if (kvm_state.size < sizeof(kvm_state))
4962                         break;
4963
4964                 if (kvm_state.flags &
4965                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4966                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4967                       | KVM_STATE_NESTED_GIF_SET))
4968                         break;
4969
4970                 /* nested_run_pending implies guest_mode.  */
4971                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4972                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4973                         break;
4974
4975                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4976                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4977                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4978                 break;
4979         }
4980         case KVM_GET_SUPPORTED_HV_CPUID: {
4981                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4982                 struct kvm_cpuid2 cpuid;
4983
4984                 r = -EFAULT;
4985                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4986                         goto out;
4987
4988                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4989                                                 cpuid_arg->entries);
4990                 if (r)
4991                         goto out;
4992
4993                 r = -EFAULT;
4994                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4995                         goto out;
4996                 r = 0;
4997                 break;
4998         }
4999         default:
5000                 r = -EINVAL;
5001         }
5002 out:
5003         kfree(u.buffer);
5004 out_nofree:
5005         vcpu_put(vcpu);
5006         return r;
5007 }
5008
5009 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5010 {
5011         return VM_FAULT_SIGBUS;
5012 }
5013
5014 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5015 {
5016         int ret;
5017
5018         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5019                 return -EINVAL;
5020         ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5021         return ret;
5022 }
5023
5024 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5025                                               u64 ident_addr)
5026 {
5027         return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5028 }
5029
5030 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5031                                          unsigned long kvm_nr_mmu_pages)
5032 {
5033         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5034                 return -EINVAL;
5035
5036         mutex_lock(&kvm->slots_lock);
5037
5038         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5039         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5040
5041         mutex_unlock(&kvm->slots_lock);
5042         return 0;
5043 }
5044
5045 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5046 {
5047         return kvm->arch.n_max_mmu_pages;
5048 }
5049
5050 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5051 {
5052         struct kvm_pic *pic = kvm->arch.vpic;
5053         int r;
5054
5055         r = 0;
5056         switch (chip->chip_id) {
5057         case KVM_IRQCHIP_PIC_MASTER:
5058                 memcpy(&chip->chip.pic, &pic->pics[0],
5059                         sizeof(struct kvm_pic_state));
5060                 break;
5061         case KVM_IRQCHIP_PIC_SLAVE:
5062                 memcpy(&chip->chip.pic, &pic->pics[1],
5063                         sizeof(struct kvm_pic_state));
5064                 break;
5065         case KVM_IRQCHIP_IOAPIC:
5066                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5067                 break;
5068         default:
5069                 r = -EINVAL;
5070                 break;
5071         }
5072         return r;
5073 }
5074
5075 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5076 {
5077         struct kvm_pic *pic = kvm->arch.vpic;
5078         int r;
5079
5080         r = 0;
5081         switch (chip->chip_id) {
5082         case KVM_IRQCHIP_PIC_MASTER:
5083                 spin_lock(&pic->lock);
5084                 memcpy(&pic->pics[0], &chip->chip.pic,
5085                         sizeof(struct kvm_pic_state));
5086                 spin_unlock(&pic->lock);
5087                 break;
5088         case KVM_IRQCHIP_PIC_SLAVE:
5089                 spin_lock(&pic->lock);
5090                 memcpy(&pic->pics[1], &chip->chip.pic,
5091                         sizeof(struct kvm_pic_state));
5092                 spin_unlock(&pic->lock);
5093                 break;
5094         case KVM_IRQCHIP_IOAPIC:
5095                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5096                 break;
5097         default:
5098                 r = -EINVAL;
5099                 break;
5100         }
5101         kvm_pic_update_irq(pic);
5102         return r;
5103 }
5104
5105 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5106 {
5107         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5108
5109         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5110
5111         mutex_lock(&kps->lock);
5112         memcpy(ps, &kps->channels, sizeof(*ps));
5113         mutex_unlock(&kps->lock);
5114         return 0;
5115 }
5116
5117 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5118 {
5119         int i;
5120         struct kvm_pit *pit = kvm->arch.vpit;
5121
5122         mutex_lock(&pit->pit_state.lock);
5123         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5124         for (i = 0; i < 3; i++)
5125                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5126         mutex_unlock(&pit->pit_state.lock);
5127         return 0;
5128 }
5129
5130 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5131 {
5132         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5133         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5134                 sizeof(ps->channels));
5135         ps->flags = kvm->arch.vpit->pit_state.flags;
5136         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5137         memset(&ps->reserved, 0, sizeof(ps->reserved));
5138         return 0;
5139 }
5140
5141 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5142 {
5143         int start = 0;
5144         int i;
5145         u32 prev_legacy, cur_legacy;
5146         struct kvm_pit *pit = kvm->arch.vpit;
5147
5148         mutex_lock(&pit->pit_state.lock);
5149         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5150         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5151         if (!prev_legacy && cur_legacy)
5152                 start = 1;
5153         memcpy(&pit->pit_state.channels, &ps->channels,
5154                sizeof(pit->pit_state.channels));
5155         pit->pit_state.flags = ps->flags;
5156         for (i = 0; i < 3; i++)
5157                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5158                                    start && i == 0);
5159         mutex_unlock(&pit->pit_state.lock);
5160         return 0;
5161 }
5162
5163 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5164                                  struct kvm_reinject_control *control)
5165 {
5166         struct kvm_pit *pit = kvm->arch.vpit;
5167
5168         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5169          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5170          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5171          */
5172         mutex_lock(&pit->pit_state.lock);
5173         kvm_pit_set_reinject(pit, control->pit_reinject);
5174         mutex_unlock(&pit->pit_state.lock);
5175
5176         return 0;
5177 }
5178
5179 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5180 {
5181         /*
5182          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5183          */
5184         if (kvm_x86_ops.flush_log_dirty)
5185                 kvm_x86_ops.flush_log_dirty(kvm);
5186 }
5187
5188 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5189                         bool line_status)
5190 {
5191         if (!irqchip_in_kernel(kvm))
5192                 return -ENXIO;
5193
5194         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5195                                         irq_event->irq, irq_event->level,
5196                                         line_status);
5197         return 0;
5198 }
5199
5200 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5201                             struct kvm_enable_cap *cap)
5202 {
5203         int r;
5204
5205         if (cap->flags)
5206                 return -EINVAL;
5207
5208         switch (cap->cap) {
5209         case KVM_CAP_DISABLE_QUIRKS:
5210                 kvm->arch.disabled_quirks = cap->args[0];
5211                 r = 0;
5212                 break;
5213         case KVM_CAP_SPLIT_IRQCHIP: {
5214                 mutex_lock(&kvm->lock);
5215                 r = -EINVAL;
5216                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5217                         goto split_irqchip_unlock;
5218                 r = -EEXIST;
5219                 if (irqchip_in_kernel(kvm))
5220                         goto split_irqchip_unlock;
5221                 if (kvm->created_vcpus)
5222                         goto split_irqchip_unlock;
5223                 r = kvm_setup_empty_irq_routing(kvm);
5224                 if (r)
5225                         goto split_irqchip_unlock;
5226                 /* Pairs with irqchip_in_kernel. */
5227                 smp_wmb();
5228                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5229                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5230                 r = 0;
5231 split_irqchip_unlock:
5232                 mutex_unlock(&kvm->lock);
5233                 break;
5234         }
5235         case KVM_CAP_X2APIC_API:
5236                 r = -EINVAL;
5237                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5238                         break;
5239
5240                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5241                         kvm->arch.x2apic_format = true;
5242                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5243                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5244
5245                 r = 0;
5246                 break;
5247         case KVM_CAP_X86_DISABLE_EXITS:
5248                 r = -EINVAL;
5249                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5250                         break;
5251
5252                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5253                         kvm_can_mwait_in_guest())
5254                         kvm->arch.mwait_in_guest = true;
5255                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5256                         kvm->arch.hlt_in_guest = true;
5257                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5258                         kvm->arch.pause_in_guest = true;
5259                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5260                         kvm->arch.cstate_in_guest = true;
5261                 r = 0;
5262                 break;
5263         case KVM_CAP_MSR_PLATFORM_INFO:
5264                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5265                 r = 0;
5266                 break;
5267         case KVM_CAP_EXCEPTION_PAYLOAD:
5268                 kvm->arch.exception_payload_enabled = cap->args[0];
5269                 r = 0;
5270                 break;
5271         case KVM_CAP_X86_USER_SPACE_MSR:
5272                 kvm->arch.user_space_msr_mask = cap->args[0];
5273                 r = 0;
5274                 break;
5275         default:
5276                 r = -EINVAL;
5277                 break;
5278         }
5279         return r;
5280 }
5281
5282 static void kvm_clear_msr_filter(struct kvm *kvm)
5283 {
5284         u32 i;
5285         u32 count = kvm->arch.msr_filter.count;
5286         struct msr_bitmap_range ranges[16];
5287
5288         mutex_lock(&kvm->lock);
5289         kvm->arch.msr_filter.count = 0;
5290         memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5291         mutex_unlock(&kvm->lock);
5292         synchronize_srcu(&kvm->srcu);
5293
5294         for (i = 0; i < count; i++)
5295                 kfree(ranges[i].bitmap);
5296 }
5297
5298 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5299 {
5300         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5301         struct msr_bitmap_range range;
5302         unsigned long *bitmap = NULL;
5303         size_t bitmap_size;
5304         int r;
5305
5306         if (!user_range->nmsrs)
5307                 return 0;
5308
5309         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5310         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5311                 return -EINVAL;
5312
5313         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5314         if (IS_ERR(bitmap))
5315                 return PTR_ERR(bitmap);
5316
5317         range = (struct msr_bitmap_range) {
5318                 .flags = user_range->flags,
5319                 .base = user_range->base,
5320                 .nmsrs = user_range->nmsrs,
5321                 .bitmap = bitmap,
5322         };
5323
5324         if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5325                 r = -EINVAL;
5326                 goto err;
5327         }
5328
5329         if (!range.flags) {
5330                 r = -EINVAL;
5331                 goto err;
5332         }
5333
5334         /* Everything ok, add this range identifier to our global pool */
5335         ranges[kvm->arch.msr_filter.count] = range;
5336         /* Make sure we filled the array before we tell anyone to walk it */
5337         smp_wmb();
5338         kvm->arch.msr_filter.count++;
5339
5340         return 0;
5341 err:
5342         kfree(bitmap);
5343         return r;
5344 }
5345
5346 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5347 {
5348         struct kvm_msr_filter __user *user_msr_filter = argp;
5349         struct kvm_msr_filter filter;
5350         bool default_allow;
5351         int r = 0;
5352         bool empty = true;
5353         u32 i;
5354
5355         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5356                 return -EFAULT;
5357
5358         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5359                 empty &= !filter.ranges[i].nmsrs;
5360
5361         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5362         if (empty && !default_allow)
5363                 return -EINVAL;
5364
5365         kvm_clear_msr_filter(kvm);
5366
5367         kvm->arch.msr_filter.default_allow = default_allow;
5368
5369         /*
5370          * Protect from concurrent calls to this function that could trigger
5371          * a TOCTOU violation on kvm->arch.msr_filter.count.
5372          */
5373         mutex_lock(&kvm->lock);
5374         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5375                 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5376                 if (r)
5377                         break;
5378         }
5379
5380         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5381         mutex_unlock(&kvm->lock);
5382
5383         return r;
5384 }
5385
5386 long kvm_arch_vm_ioctl(struct file *filp,
5387                        unsigned int ioctl, unsigned long arg)
5388 {
5389         struct kvm *kvm = filp->private_data;
5390         void __user *argp = (void __user *)arg;
5391         int r = -ENOTTY;
5392         /*
5393          * This union makes it completely explicit to gcc-3.x
5394          * that these two variables' stack usage should be
5395          * combined, not added together.
5396          */
5397         union {
5398                 struct kvm_pit_state ps;
5399                 struct kvm_pit_state2 ps2;
5400                 struct kvm_pit_config pit_config;
5401         } u;
5402
5403         switch (ioctl) {
5404         case KVM_SET_TSS_ADDR:
5405                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5406                 break;
5407         case KVM_SET_IDENTITY_MAP_ADDR: {
5408                 u64 ident_addr;
5409
5410                 mutex_lock(&kvm->lock);
5411                 r = -EINVAL;
5412                 if (kvm->created_vcpus)
5413                         goto set_identity_unlock;
5414                 r = -EFAULT;
5415                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5416                         goto set_identity_unlock;
5417                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5418 set_identity_unlock:
5419                 mutex_unlock(&kvm->lock);
5420                 break;
5421         }
5422         case KVM_SET_NR_MMU_PAGES:
5423                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5424                 break;
5425         case KVM_GET_NR_MMU_PAGES:
5426                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5427                 break;
5428         case KVM_CREATE_IRQCHIP: {
5429                 mutex_lock(&kvm->lock);
5430
5431                 r = -EEXIST;
5432                 if (irqchip_in_kernel(kvm))
5433                         goto create_irqchip_unlock;
5434
5435                 r = -EINVAL;
5436                 if (kvm->created_vcpus)
5437                         goto create_irqchip_unlock;
5438
5439                 r = kvm_pic_init(kvm);
5440                 if (r)
5441                         goto create_irqchip_unlock;
5442
5443                 r = kvm_ioapic_init(kvm);
5444                 if (r) {
5445                         kvm_pic_destroy(kvm);
5446                         goto create_irqchip_unlock;
5447                 }
5448
5449                 r = kvm_setup_default_irq_routing(kvm);
5450                 if (r) {
5451                         kvm_ioapic_destroy(kvm);
5452                         kvm_pic_destroy(kvm);
5453                         goto create_irqchip_unlock;
5454                 }
5455                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5456                 smp_wmb();
5457                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5458         create_irqchip_unlock:
5459                 mutex_unlock(&kvm->lock);
5460                 break;
5461         }
5462         case KVM_CREATE_PIT:
5463                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5464                 goto create_pit;
5465         case KVM_CREATE_PIT2:
5466                 r = -EFAULT;
5467                 if (copy_from_user(&u.pit_config, argp,
5468                                    sizeof(struct kvm_pit_config)))
5469                         goto out;
5470         create_pit:
5471                 mutex_lock(&kvm->lock);
5472                 r = -EEXIST;
5473                 if (kvm->arch.vpit)
5474                         goto create_pit_unlock;
5475                 r = -ENOMEM;
5476                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5477                 if (kvm->arch.vpit)
5478                         r = 0;
5479         create_pit_unlock:
5480                 mutex_unlock(&kvm->lock);
5481                 break;
5482         case KVM_GET_IRQCHIP: {
5483                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5484                 struct kvm_irqchip *chip;
5485
5486                 chip = memdup_user(argp, sizeof(*chip));
5487                 if (IS_ERR(chip)) {
5488                         r = PTR_ERR(chip);
5489                         goto out;
5490                 }
5491
5492                 r = -ENXIO;
5493                 if (!irqchip_kernel(kvm))
5494                         goto get_irqchip_out;
5495                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5496                 if (r)
5497                         goto get_irqchip_out;
5498                 r = -EFAULT;
5499                 if (copy_to_user(argp, chip, sizeof(*chip)))
5500                         goto get_irqchip_out;
5501                 r = 0;
5502         get_irqchip_out:
5503                 kfree(chip);
5504                 break;
5505         }
5506         case KVM_SET_IRQCHIP: {
5507                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5508                 struct kvm_irqchip *chip;
5509
5510                 chip = memdup_user(argp, sizeof(*chip));
5511                 if (IS_ERR(chip)) {
5512                         r = PTR_ERR(chip);
5513                         goto out;
5514                 }
5515
5516                 r = -ENXIO;
5517                 if (!irqchip_kernel(kvm))
5518                         goto set_irqchip_out;
5519                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5520         set_irqchip_out:
5521                 kfree(chip);
5522                 break;
5523         }
5524         case KVM_GET_PIT: {
5525                 r = -EFAULT;
5526                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5527                         goto out;
5528                 r = -ENXIO;
5529                 if (!kvm->arch.vpit)
5530                         goto out;
5531                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5532                 if (r)
5533                         goto out;
5534                 r = -EFAULT;
5535                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5536                         goto out;
5537                 r = 0;
5538                 break;
5539         }
5540         case KVM_SET_PIT: {
5541                 r = -EFAULT;
5542                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5543                         goto out;
5544                 mutex_lock(&kvm->lock);
5545                 r = -ENXIO;
5546                 if (!kvm->arch.vpit)
5547                         goto set_pit_out;
5548                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5549 set_pit_out:
5550                 mutex_unlock(&kvm->lock);
5551                 break;
5552         }
5553         case KVM_GET_PIT2: {
5554                 r = -ENXIO;
5555                 if (!kvm->arch.vpit)
5556                         goto out;
5557                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5558                 if (r)
5559                         goto out;
5560                 r = -EFAULT;
5561                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5562                         goto out;
5563                 r = 0;
5564                 break;
5565         }
5566         case KVM_SET_PIT2: {
5567                 r = -EFAULT;
5568                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5569                         goto out;
5570                 mutex_lock(&kvm->lock);
5571                 r = -ENXIO;
5572                 if (!kvm->arch.vpit)
5573                         goto set_pit2_out;
5574                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5575 set_pit2_out:
5576                 mutex_unlock(&kvm->lock);
5577                 break;
5578         }
5579         case KVM_REINJECT_CONTROL: {
5580                 struct kvm_reinject_control control;
5581                 r =  -EFAULT;
5582                 if (copy_from_user(&control, argp, sizeof(control)))
5583                         goto out;
5584                 r = -ENXIO;
5585                 if (!kvm->arch.vpit)
5586                         goto out;
5587                 r = kvm_vm_ioctl_reinject(kvm, &control);
5588                 break;
5589         }
5590         case KVM_SET_BOOT_CPU_ID:
5591                 r = 0;
5592                 mutex_lock(&kvm->lock);
5593                 if (kvm->created_vcpus)
5594                         r = -EBUSY;
5595                 else
5596                         kvm->arch.bsp_vcpu_id = arg;
5597                 mutex_unlock(&kvm->lock);
5598                 break;
5599         case KVM_XEN_HVM_CONFIG: {
5600                 struct kvm_xen_hvm_config xhc;
5601                 r = -EFAULT;
5602                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5603                         goto out;
5604                 r = -EINVAL;
5605                 if (xhc.flags)
5606                         goto out;
5607                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5608                 r = 0;
5609                 break;
5610         }
5611         case KVM_SET_CLOCK: {
5612                 struct kvm_clock_data user_ns;
5613                 u64 now_ns;
5614
5615                 r = -EFAULT;
5616                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5617                         goto out;
5618
5619                 r = -EINVAL;
5620                 if (user_ns.flags)
5621                         goto out;
5622
5623                 r = 0;
5624                 /*
5625                  * TODO: userspace has to take care of races with VCPU_RUN, so
5626                  * kvm_gen_update_masterclock() can be cut down to locked
5627                  * pvclock_update_vm_gtod_copy().
5628                  */
5629                 kvm_gen_update_masterclock(kvm);
5630                 now_ns = get_kvmclock_ns(kvm);
5631                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5632                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5633                 break;
5634         }
5635         case KVM_GET_CLOCK: {
5636                 struct kvm_clock_data user_ns;
5637                 u64 now_ns;
5638
5639                 now_ns = get_kvmclock_ns(kvm);
5640                 user_ns.clock = now_ns;
5641                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5642                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5643
5644                 r = -EFAULT;
5645                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5646                         goto out;
5647                 r = 0;
5648                 break;
5649         }
5650         case KVM_MEMORY_ENCRYPT_OP: {
5651                 r = -ENOTTY;
5652                 if (kvm_x86_ops.mem_enc_op)
5653                         r = kvm_x86_ops.mem_enc_op(kvm, argp);
5654                 break;
5655         }
5656         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5657                 struct kvm_enc_region region;
5658
5659                 r = -EFAULT;
5660                 if (copy_from_user(&region, argp, sizeof(region)))
5661                         goto out;
5662
5663                 r = -ENOTTY;
5664                 if (kvm_x86_ops.mem_enc_reg_region)
5665                         r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5666                 break;
5667         }
5668         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5669                 struct kvm_enc_region region;
5670
5671                 r = -EFAULT;
5672                 if (copy_from_user(&region, argp, sizeof(region)))
5673                         goto out;
5674
5675                 r = -ENOTTY;
5676                 if (kvm_x86_ops.mem_enc_unreg_region)
5677                         r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5678                 break;
5679         }
5680         case KVM_HYPERV_EVENTFD: {
5681                 struct kvm_hyperv_eventfd hvevfd;
5682
5683                 r = -EFAULT;
5684                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5685                         goto out;
5686                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5687                 break;
5688         }
5689         case KVM_SET_PMU_EVENT_FILTER:
5690                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5691                 break;
5692         case KVM_X86_SET_MSR_FILTER:
5693                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5694                 break;
5695         default:
5696                 r = -ENOTTY;
5697         }
5698 out:
5699         return r;
5700 }
5701
5702 static void kvm_init_msr_list(void)
5703 {
5704         struct x86_pmu_capability x86_pmu;
5705         u32 dummy[2];
5706         unsigned i;
5707
5708         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5709                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5710
5711         perf_get_x86_pmu_capability(&x86_pmu);
5712
5713         num_msrs_to_save = 0;
5714         num_emulated_msrs = 0;
5715         num_msr_based_features = 0;
5716
5717         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5718                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5719                         continue;
5720
5721                 /*
5722                  * Even MSRs that are valid in the host may not be exposed
5723                  * to the guests in some cases.
5724                  */
5725                 switch (msrs_to_save_all[i]) {
5726                 case MSR_IA32_BNDCFGS:
5727                         if (!kvm_mpx_supported())
5728                                 continue;
5729                         break;
5730                 case MSR_TSC_AUX:
5731                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5732                                 continue;
5733                         break;
5734                 case MSR_IA32_UMWAIT_CONTROL:
5735                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5736                                 continue;
5737                         break;
5738                 case MSR_IA32_RTIT_CTL:
5739                 case MSR_IA32_RTIT_STATUS:
5740                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5741                                 continue;
5742                         break;
5743                 case MSR_IA32_RTIT_CR3_MATCH:
5744                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5745                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5746                                 continue;
5747                         break;
5748                 case MSR_IA32_RTIT_OUTPUT_BASE:
5749                 case MSR_IA32_RTIT_OUTPUT_MASK:
5750                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5751                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5752                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5753                                 continue;
5754                         break;
5755                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5756                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5757                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5758                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5759                                 continue;
5760                         break;
5761                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5762                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5763                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5764                                 continue;
5765                         break;
5766                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5767                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5768                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5769                                 continue;
5770                         break;
5771                 default:
5772                         break;
5773                 }
5774
5775                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5776         }
5777
5778         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5779                 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5780                         continue;
5781
5782                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5783         }
5784
5785         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5786                 struct kvm_msr_entry msr;
5787
5788                 msr.index = msr_based_features_all[i];
5789                 if (kvm_get_msr_feature(&msr))
5790                         continue;
5791
5792                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5793         }
5794 }
5795
5796 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5797                            const void *v)
5798 {
5799         int handled = 0;
5800         int n;
5801
5802         do {
5803                 n = min(len, 8);
5804                 if (!(lapic_in_kernel(vcpu) &&
5805                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5806                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5807                         break;
5808                 handled += n;
5809                 addr += n;
5810                 len -= n;
5811                 v += n;
5812         } while (len);
5813
5814         return handled;
5815 }
5816
5817 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5818 {
5819         int handled = 0;
5820         int n;
5821
5822         do {
5823                 n = min(len, 8);
5824                 if (!(lapic_in_kernel(vcpu) &&
5825                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5826                                          addr, n, v))
5827                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5828                         break;
5829                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5830                 handled += n;
5831                 addr += n;
5832                 len -= n;
5833                 v += n;
5834         } while (len);
5835
5836         return handled;
5837 }
5838
5839 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5840                         struct kvm_segment *var, int seg)
5841 {
5842         kvm_x86_ops.set_segment(vcpu, var, seg);
5843 }
5844
5845 void kvm_get_segment(struct kvm_vcpu *vcpu,
5846                      struct kvm_segment *var, int seg)
5847 {
5848         kvm_x86_ops.get_segment(vcpu, var, seg);
5849 }
5850
5851 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5852                            struct x86_exception *exception)
5853 {
5854         gpa_t t_gpa;
5855
5856         BUG_ON(!mmu_is_nested(vcpu));
5857
5858         /* NPT walks are always user-walks */
5859         access |= PFERR_USER_MASK;
5860         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5861
5862         return t_gpa;
5863 }
5864
5865 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5866                               struct x86_exception *exception)
5867 {
5868         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5869         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5870 }
5871
5872  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5873                                 struct x86_exception *exception)
5874 {
5875         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5876         access |= PFERR_FETCH_MASK;
5877         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5878 }
5879
5880 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5881                                struct x86_exception *exception)
5882 {
5883         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5884         access |= PFERR_WRITE_MASK;
5885         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5886 }
5887
5888 /* uses this to access any guest's mapped memory without checking CPL */
5889 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5890                                 struct x86_exception *exception)
5891 {
5892         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5893 }
5894
5895 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5896                                       struct kvm_vcpu *vcpu, u32 access,
5897                                       struct x86_exception *exception)
5898 {
5899         void *data = val;
5900         int r = X86EMUL_CONTINUE;
5901
5902         while (bytes) {
5903                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5904                                                             exception);
5905                 unsigned offset = addr & (PAGE_SIZE-1);
5906                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5907                 int ret;
5908
5909                 if (gpa == UNMAPPED_GVA)
5910                         return X86EMUL_PROPAGATE_FAULT;
5911                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5912                                                offset, toread);
5913                 if (ret < 0) {
5914                         r = X86EMUL_IO_NEEDED;
5915                         goto out;
5916                 }
5917
5918                 bytes -= toread;
5919                 data += toread;
5920                 addr += toread;
5921         }
5922 out:
5923         return r;
5924 }
5925
5926 /* used for instruction fetching */
5927 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5928                                 gva_t addr, void *val, unsigned int bytes,
5929                                 struct x86_exception *exception)
5930 {
5931         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5932         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5933         unsigned offset;
5934         int ret;
5935
5936         /* Inline kvm_read_guest_virt_helper for speed.  */
5937         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5938                                                     exception);
5939         if (unlikely(gpa == UNMAPPED_GVA))
5940                 return X86EMUL_PROPAGATE_FAULT;
5941
5942         offset = addr & (PAGE_SIZE-1);
5943         if (WARN_ON(offset + bytes > PAGE_SIZE))
5944                 bytes = (unsigned)PAGE_SIZE - offset;
5945         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5946                                        offset, bytes);
5947         if (unlikely(ret < 0))
5948                 return X86EMUL_IO_NEEDED;
5949
5950         return X86EMUL_CONTINUE;
5951 }
5952
5953 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5954                                gva_t addr, void *val, unsigned int bytes,
5955                                struct x86_exception *exception)
5956 {
5957         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5958
5959         /*
5960          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5961          * is returned, but our callers are not ready for that and they blindly
5962          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5963          * uninitialized kernel stack memory into cr2 and error code.
5964          */
5965         memset(exception, 0, sizeof(*exception));
5966         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5967                                           exception);
5968 }
5969 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5970
5971 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5972                              gva_t addr, void *val, unsigned int bytes,
5973                              struct x86_exception *exception, bool system)
5974 {
5975         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5976         u32 access = 0;
5977
5978         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5979                 access |= PFERR_USER_MASK;
5980
5981         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5982 }
5983
5984 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5985                 unsigned long addr, void *val, unsigned int bytes)
5986 {
5987         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5988         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5989
5990         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5991 }
5992
5993 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5994                                       struct kvm_vcpu *vcpu, u32 access,
5995                                       struct x86_exception *exception)
5996 {
5997         void *data = val;
5998         int r = X86EMUL_CONTINUE;
5999
6000         while (bytes) {
6001                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6002                                                              access,
6003                                                              exception);
6004                 unsigned offset = addr & (PAGE_SIZE-1);
6005                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6006                 int ret;
6007
6008                 if (gpa == UNMAPPED_GVA)
6009                         return X86EMUL_PROPAGATE_FAULT;
6010                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6011                 if (ret < 0) {
6012                         r = X86EMUL_IO_NEEDED;
6013                         goto out;
6014                 }
6015
6016                 bytes -= towrite;
6017                 data += towrite;
6018                 addr += towrite;
6019         }
6020 out:
6021         return r;
6022 }
6023
6024 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6025                               unsigned int bytes, struct x86_exception *exception,
6026                               bool system)
6027 {
6028         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6029         u32 access = PFERR_WRITE_MASK;
6030
6031         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6032                 access |= PFERR_USER_MASK;
6033
6034         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6035                                            access, exception);
6036 }
6037
6038 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6039                                 unsigned int bytes, struct x86_exception *exception)
6040 {
6041         /* kvm_write_guest_virt_system can pull in tons of pages. */
6042         vcpu->arch.l1tf_flush_l1d = true;
6043
6044         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6045                                            PFERR_WRITE_MASK, exception);
6046 }
6047 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6048
6049 int handle_ud(struct kvm_vcpu *vcpu)
6050 {
6051         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6052         int emul_type = EMULTYPE_TRAP_UD;
6053         char sig[5]; /* ud2; .ascii "kvm" */
6054         struct x86_exception e;
6055
6056         if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6057                 return 1;
6058
6059         if (force_emulation_prefix &&
6060             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6061                                 sig, sizeof(sig), &e) == 0 &&
6062             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6063                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6064                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6065         }
6066
6067         return kvm_emulate_instruction(vcpu, emul_type);
6068 }
6069 EXPORT_SYMBOL_GPL(handle_ud);
6070
6071 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6072                             gpa_t gpa, bool write)
6073 {
6074         /* For APIC access vmexit */
6075         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6076                 return 1;
6077
6078         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6079                 trace_vcpu_match_mmio(gva, gpa, write, true);
6080                 return 1;
6081         }
6082
6083         return 0;
6084 }
6085
6086 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6087                                 gpa_t *gpa, struct x86_exception *exception,
6088                                 bool write)
6089 {
6090         u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6091                 | (write ? PFERR_WRITE_MASK : 0);
6092
6093         /*
6094          * currently PKRU is only applied to ept enabled guest so
6095          * there is no pkey in EPT page table for L1 guest or EPT
6096          * shadow page table for L2 guest.
6097          */
6098         if (vcpu_match_mmio_gva(vcpu, gva)
6099             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6100                                  vcpu->arch.mmio_access, 0, access)) {
6101                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6102                                         (gva & (PAGE_SIZE - 1));
6103                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6104                 return 1;
6105         }
6106
6107         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6108
6109         if (*gpa == UNMAPPED_GVA)
6110                 return -1;
6111
6112         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6113 }
6114
6115 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6116                         const void *val, int bytes)
6117 {
6118         int ret;
6119
6120         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6121         if (ret < 0)
6122                 return 0;
6123         kvm_page_track_write(vcpu, gpa, val, bytes);
6124         return 1;
6125 }
6126
6127 struct read_write_emulator_ops {
6128         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6129                                   int bytes);
6130         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6131                                   void *val, int bytes);
6132         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6133                                int bytes, void *val);
6134         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6135                                     void *val, int bytes);
6136         bool write;
6137 };
6138
6139 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6140 {
6141         if (vcpu->mmio_read_completed) {
6142                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6143                                vcpu->mmio_fragments[0].gpa, val);
6144                 vcpu->mmio_read_completed = 0;
6145                 return 1;
6146         }
6147
6148         return 0;
6149 }
6150
6151 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6152                         void *val, int bytes)
6153 {
6154         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6155 }
6156
6157 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6158                          void *val, int bytes)
6159 {
6160         return emulator_write_phys(vcpu, gpa, val, bytes);
6161 }
6162
6163 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6164 {
6165         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6166         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6167 }
6168
6169 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6170                           void *val, int bytes)
6171 {
6172         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6173         return X86EMUL_IO_NEEDED;
6174 }
6175
6176 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6177                            void *val, int bytes)
6178 {
6179         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6180
6181         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6182         return X86EMUL_CONTINUE;
6183 }
6184
6185 static const struct read_write_emulator_ops read_emultor = {
6186         .read_write_prepare = read_prepare,
6187         .read_write_emulate = read_emulate,
6188         .read_write_mmio = vcpu_mmio_read,
6189         .read_write_exit_mmio = read_exit_mmio,
6190 };
6191
6192 static const struct read_write_emulator_ops write_emultor = {
6193         .read_write_emulate = write_emulate,
6194         .read_write_mmio = write_mmio,
6195         .read_write_exit_mmio = write_exit_mmio,
6196         .write = true,
6197 };
6198
6199 static int emulator_read_write_onepage(unsigned long addr, void *val,
6200                                        unsigned int bytes,
6201                                        struct x86_exception *exception,
6202                                        struct kvm_vcpu *vcpu,
6203                                        const struct read_write_emulator_ops *ops)
6204 {
6205         gpa_t gpa;
6206         int handled, ret;
6207         bool write = ops->write;
6208         struct kvm_mmio_fragment *frag;
6209         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6210
6211         /*
6212          * If the exit was due to a NPF we may already have a GPA.
6213          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6214          * Note, this cannot be used on string operations since string
6215          * operation using rep will only have the initial GPA from the NPF
6216          * occurred.
6217          */
6218         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6219             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6220                 gpa = ctxt->gpa_val;
6221                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6222         } else {
6223                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6224                 if (ret < 0)
6225                         return X86EMUL_PROPAGATE_FAULT;
6226         }
6227
6228         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6229                 return X86EMUL_CONTINUE;
6230
6231         /*
6232          * Is this MMIO handled locally?
6233          */
6234         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6235         if (handled == bytes)
6236                 return X86EMUL_CONTINUE;
6237
6238         gpa += handled;
6239         bytes -= handled;
6240         val += handled;
6241
6242         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6243         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6244         frag->gpa = gpa;
6245         frag->data = val;
6246         frag->len = bytes;
6247         return X86EMUL_CONTINUE;
6248 }
6249
6250 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6251                         unsigned long addr,
6252                         void *val, unsigned int bytes,
6253                         struct x86_exception *exception,
6254                         const struct read_write_emulator_ops *ops)
6255 {
6256         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6257         gpa_t gpa;
6258         int rc;
6259
6260         if (ops->read_write_prepare &&
6261                   ops->read_write_prepare(vcpu, val, bytes))
6262                 return X86EMUL_CONTINUE;
6263
6264         vcpu->mmio_nr_fragments = 0;
6265
6266         /* Crossing a page boundary? */
6267         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6268                 int now;
6269
6270                 now = -addr & ~PAGE_MASK;
6271                 rc = emulator_read_write_onepage(addr, val, now, exception,
6272                                                  vcpu, ops);
6273
6274                 if (rc != X86EMUL_CONTINUE)
6275                         return rc;
6276                 addr += now;
6277                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6278                         addr = (u32)addr;
6279                 val += now;
6280                 bytes -= now;
6281         }
6282
6283         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6284                                          vcpu, ops);
6285         if (rc != X86EMUL_CONTINUE)
6286                 return rc;
6287
6288         if (!vcpu->mmio_nr_fragments)
6289                 return rc;
6290
6291         gpa = vcpu->mmio_fragments[0].gpa;
6292
6293         vcpu->mmio_needed = 1;
6294         vcpu->mmio_cur_fragment = 0;
6295
6296         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6297         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6298         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6299         vcpu->run->mmio.phys_addr = gpa;
6300
6301         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6302 }
6303
6304 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6305                                   unsigned long addr,
6306                                   void *val,
6307                                   unsigned int bytes,
6308                                   struct x86_exception *exception)
6309 {
6310         return emulator_read_write(ctxt, addr, val, bytes,
6311                                    exception, &read_emultor);
6312 }
6313
6314 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6315                             unsigned long addr,
6316                             const void *val,
6317                             unsigned int bytes,
6318                             struct x86_exception *exception)
6319 {
6320         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6321                                    exception, &write_emultor);
6322 }
6323
6324 #define CMPXCHG_TYPE(t, ptr, old, new) \
6325         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6326
6327 #ifdef CONFIG_X86_64
6328 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6329 #else
6330 #  define CMPXCHG64(ptr, old, new) \
6331         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6332 #endif
6333
6334 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6335                                      unsigned long addr,
6336                                      const void *old,
6337                                      const void *new,
6338                                      unsigned int bytes,
6339                                      struct x86_exception *exception)
6340 {
6341         struct kvm_host_map map;
6342         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6343         u64 page_line_mask;
6344         gpa_t gpa;
6345         char *kaddr;
6346         bool exchanged;
6347
6348         /* guests cmpxchg8b have to be emulated atomically */
6349         if (bytes > 8 || (bytes & (bytes - 1)))
6350                 goto emul_write;
6351
6352         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6353
6354         if (gpa == UNMAPPED_GVA ||
6355             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6356                 goto emul_write;
6357
6358         /*
6359          * Emulate the atomic as a straight write to avoid #AC if SLD is
6360          * enabled in the host and the access splits a cache line.
6361          */
6362         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6363                 page_line_mask = ~(cache_line_size() - 1);
6364         else
6365                 page_line_mask = PAGE_MASK;
6366
6367         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6368                 goto emul_write;
6369
6370         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6371                 goto emul_write;
6372
6373         kaddr = map.hva + offset_in_page(gpa);
6374
6375         switch (bytes) {
6376         case 1:
6377                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6378                 break;
6379         case 2:
6380                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6381                 break;
6382         case 4:
6383                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6384                 break;
6385         case 8:
6386                 exchanged = CMPXCHG64(kaddr, old, new);
6387                 break;
6388         default:
6389                 BUG();
6390         }
6391
6392         kvm_vcpu_unmap(vcpu, &map, true);
6393
6394         if (!exchanged)
6395                 return X86EMUL_CMPXCHG_FAILED;
6396
6397         kvm_page_track_write(vcpu, gpa, new, bytes);
6398
6399         return X86EMUL_CONTINUE;
6400
6401 emul_write:
6402         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6403
6404         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6405 }
6406
6407 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6408 {
6409         int r = 0, i;
6410
6411         for (i = 0; i < vcpu->arch.pio.count; i++) {
6412                 if (vcpu->arch.pio.in)
6413                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6414                                             vcpu->arch.pio.size, pd);
6415                 else
6416                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6417                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6418                                              pd);
6419                 if (r)
6420                         break;
6421                 pd += vcpu->arch.pio.size;
6422         }
6423         return r;
6424 }
6425
6426 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6427                                unsigned short port, void *val,
6428                                unsigned int count, bool in)
6429 {
6430         vcpu->arch.pio.port = port;
6431         vcpu->arch.pio.in = in;
6432         vcpu->arch.pio.count  = count;
6433         vcpu->arch.pio.size = size;
6434
6435         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6436                 vcpu->arch.pio.count = 0;
6437                 return 1;
6438         }
6439
6440         vcpu->run->exit_reason = KVM_EXIT_IO;
6441         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6442         vcpu->run->io.size = size;
6443         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6444         vcpu->run->io.count = count;
6445         vcpu->run->io.port = port;
6446
6447         return 0;
6448 }
6449
6450 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6451                            unsigned short port, void *val, unsigned int count)
6452 {
6453         int ret;
6454
6455         if (vcpu->arch.pio.count)
6456                 goto data_avail;
6457
6458         memset(vcpu->arch.pio_data, 0, size * count);
6459
6460         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6461         if (ret) {
6462 data_avail:
6463                 memcpy(val, vcpu->arch.pio_data, size * count);
6464                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6465                 vcpu->arch.pio.count = 0;
6466                 return 1;
6467         }
6468
6469         return 0;
6470 }
6471
6472 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6473                                     int size, unsigned short port, void *val,
6474                                     unsigned int count)
6475 {
6476         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6477
6478 }
6479
6480 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6481                             unsigned short port, const void *val,
6482                             unsigned int count)
6483 {
6484         memcpy(vcpu->arch.pio_data, val, size * count);
6485         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6486         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6487 }
6488
6489 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6490                                      int size, unsigned short port,
6491                                      const void *val, unsigned int count)
6492 {
6493         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6494 }
6495
6496 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6497 {
6498         return kvm_x86_ops.get_segment_base(vcpu, seg);
6499 }
6500
6501 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6502 {
6503         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6504 }
6505
6506 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6507 {
6508         if (!need_emulate_wbinvd(vcpu))
6509                 return X86EMUL_CONTINUE;
6510
6511         if (kvm_x86_ops.has_wbinvd_exit()) {
6512                 int cpu = get_cpu();
6513
6514                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6515                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6516                                 wbinvd_ipi, NULL, 1);
6517                 put_cpu();
6518                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6519         } else
6520                 wbinvd();
6521         return X86EMUL_CONTINUE;
6522 }
6523
6524 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6525 {
6526         kvm_emulate_wbinvd_noskip(vcpu);
6527         return kvm_skip_emulated_instruction(vcpu);
6528 }
6529 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6530
6531
6532
6533 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6534 {
6535         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6536 }
6537
6538 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6539                            unsigned long *dest)
6540 {
6541         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6542 }
6543
6544 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6545                            unsigned long value)
6546 {
6547
6548         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6549 }
6550
6551 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6552 {
6553         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6554 }
6555
6556 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6557 {
6558         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6559         unsigned long value;
6560
6561         switch (cr) {
6562         case 0:
6563                 value = kvm_read_cr0(vcpu);
6564                 break;
6565         case 2:
6566                 value = vcpu->arch.cr2;
6567                 break;
6568         case 3:
6569                 value = kvm_read_cr3(vcpu);
6570                 break;
6571         case 4:
6572                 value = kvm_read_cr4(vcpu);
6573                 break;
6574         case 8:
6575                 value = kvm_get_cr8(vcpu);
6576                 break;
6577         default:
6578                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6579                 return 0;
6580         }
6581
6582         return value;
6583 }
6584
6585 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6586 {
6587         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6588         int res = 0;
6589
6590         switch (cr) {
6591         case 0:
6592                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6593                 break;
6594         case 2:
6595                 vcpu->arch.cr2 = val;
6596                 break;
6597         case 3:
6598                 res = kvm_set_cr3(vcpu, val);
6599                 break;
6600         case 4:
6601                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6602                 break;
6603         case 8:
6604                 res = kvm_set_cr8(vcpu, val);
6605                 break;
6606         default:
6607                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6608                 res = -1;
6609         }
6610
6611         return res;
6612 }
6613
6614 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6615 {
6616         return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6617 }
6618
6619 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6620 {
6621         kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6622 }
6623
6624 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6625 {
6626         kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6627 }
6628
6629 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6630 {
6631         kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6632 }
6633
6634 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6635 {
6636         kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6637 }
6638
6639 static unsigned long emulator_get_cached_segment_base(
6640         struct x86_emulate_ctxt *ctxt, int seg)
6641 {
6642         return get_segment_base(emul_to_vcpu(ctxt), seg);
6643 }
6644
6645 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6646                                  struct desc_struct *desc, u32 *base3,
6647                                  int seg)
6648 {
6649         struct kvm_segment var;
6650
6651         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6652         *selector = var.selector;
6653
6654         if (var.unusable) {
6655                 memset(desc, 0, sizeof(*desc));
6656                 if (base3)
6657                         *base3 = 0;
6658                 return false;
6659         }
6660
6661         if (var.g)
6662                 var.limit >>= 12;
6663         set_desc_limit(desc, var.limit);
6664         set_desc_base(desc, (unsigned long)var.base);
6665 #ifdef CONFIG_X86_64
6666         if (base3)
6667                 *base3 = var.base >> 32;
6668 #endif
6669         desc->type = var.type;
6670         desc->s = var.s;
6671         desc->dpl = var.dpl;
6672         desc->p = var.present;
6673         desc->avl = var.avl;
6674         desc->l = var.l;
6675         desc->d = var.db;
6676         desc->g = var.g;
6677
6678         return true;
6679 }
6680
6681 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6682                                  struct desc_struct *desc, u32 base3,
6683                                  int seg)
6684 {
6685         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6686         struct kvm_segment var;
6687
6688         var.selector = selector;
6689         var.base = get_desc_base(desc);
6690 #ifdef CONFIG_X86_64
6691         var.base |= ((u64)base3) << 32;
6692 #endif
6693         var.limit = get_desc_limit(desc);
6694         if (desc->g)
6695                 var.limit = (var.limit << 12) | 0xfff;
6696         var.type = desc->type;
6697         var.dpl = desc->dpl;
6698         var.db = desc->d;
6699         var.s = desc->s;
6700         var.l = desc->l;
6701         var.g = desc->g;
6702         var.avl = desc->avl;
6703         var.present = desc->p;
6704         var.unusable = !var.present;
6705         var.padding = 0;
6706
6707         kvm_set_segment(vcpu, &var, seg);
6708         return;
6709 }
6710
6711 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6712                             u32 msr_index, u64 *pdata)
6713 {
6714         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6715         int r;
6716
6717         r = kvm_get_msr(vcpu, msr_index, pdata);
6718
6719         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6720                 /* Bounce to user space */
6721                 return X86EMUL_IO_NEEDED;
6722         }
6723
6724         return r;
6725 }
6726
6727 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6728                             u32 msr_index, u64 data)
6729 {
6730         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6731         int r;
6732
6733         r = kvm_set_msr(vcpu, msr_index, data);
6734
6735         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6736                 /* Bounce to user space */
6737                 return X86EMUL_IO_NEEDED;
6738         }
6739
6740         return r;
6741 }
6742
6743 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6744 {
6745         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6746
6747         return vcpu->arch.smbase;
6748 }
6749
6750 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6751 {
6752         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6753
6754         vcpu->arch.smbase = smbase;
6755 }
6756
6757 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6758                               u32 pmc)
6759 {
6760         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6761 }
6762
6763 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6764                              u32 pmc, u64 *pdata)
6765 {
6766         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6767 }
6768
6769 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6770 {
6771         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6772 }
6773
6774 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6775                               struct x86_instruction_info *info,
6776                               enum x86_intercept_stage stage)
6777 {
6778         return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6779                                             &ctxt->exception);
6780 }
6781
6782 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6783                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6784                               bool exact_only)
6785 {
6786         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6787 }
6788
6789 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6790 {
6791         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6792 }
6793
6794 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6795 {
6796         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6797 }
6798
6799 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6800 {
6801         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6802 }
6803
6804 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6805 {
6806         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6807 }
6808
6809 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6810 {
6811         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6812 }
6813
6814 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6815 {
6816         kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6817 }
6818
6819 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6820 {
6821         return emul_to_vcpu(ctxt)->arch.hflags;
6822 }
6823
6824 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6825 {
6826         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6827 }
6828
6829 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6830                                   const char *smstate)
6831 {
6832         return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6833 }
6834
6835 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6836 {
6837         kvm_smm_changed(emul_to_vcpu(ctxt));
6838 }
6839
6840 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6841 {
6842         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6843 }
6844
6845 static const struct x86_emulate_ops emulate_ops = {
6846         .read_gpr            = emulator_read_gpr,
6847         .write_gpr           = emulator_write_gpr,
6848         .read_std            = emulator_read_std,
6849         .write_std           = emulator_write_std,
6850         .read_phys           = kvm_read_guest_phys_system,
6851         .fetch               = kvm_fetch_guest_virt,
6852         .read_emulated       = emulator_read_emulated,
6853         .write_emulated      = emulator_write_emulated,
6854         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6855         .invlpg              = emulator_invlpg,
6856         .pio_in_emulated     = emulator_pio_in_emulated,
6857         .pio_out_emulated    = emulator_pio_out_emulated,
6858         .get_segment         = emulator_get_segment,
6859         .set_segment         = emulator_set_segment,
6860         .get_cached_segment_base = emulator_get_cached_segment_base,
6861         .get_gdt             = emulator_get_gdt,
6862         .get_idt             = emulator_get_idt,
6863         .set_gdt             = emulator_set_gdt,
6864         .set_idt             = emulator_set_idt,
6865         .get_cr              = emulator_get_cr,
6866         .set_cr              = emulator_set_cr,
6867         .cpl                 = emulator_get_cpl,
6868         .get_dr              = emulator_get_dr,
6869         .set_dr              = emulator_set_dr,
6870         .get_smbase          = emulator_get_smbase,
6871         .set_smbase          = emulator_set_smbase,
6872         .set_msr             = emulator_set_msr,
6873         .get_msr             = emulator_get_msr,
6874         .check_pmc           = emulator_check_pmc,
6875         .read_pmc            = emulator_read_pmc,
6876         .halt                = emulator_halt,
6877         .wbinvd              = emulator_wbinvd,
6878         .fix_hypercall       = emulator_fix_hypercall,
6879         .intercept           = emulator_intercept,
6880         .get_cpuid           = emulator_get_cpuid,
6881         .guest_has_long_mode = emulator_guest_has_long_mode,
6882         .guest_has_movbe     = emulator_guest_has_movbe,
6883         .guest_has_fxsr      = emulator_guest_has_fxsr,
6884         .set_nmi_mask        = emulator_set_nmi_mask,
6885         .get_hflags          = emulator_get_hflags,
6886         .set_hflags          = emulator_set_hflags,
6887         .pre_leave_smm       = emulator_pre_leave_smm,
6888         .post_leave_smm      = emulator_post_leave_smm,
6889         .set_xcr             = emulator_set_xcr,
6890 };
6891
6892 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6893 {
6894         u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6895         /*
6896          * an sti; sti; sequence only disable interrupts for the first
6897          * instruction. So, if the last instruction, be it emulated or
6898          * not, left the system with the INT_STI flag enabled, it
6899          * means that the last instruction is an sti. We should not
6900          * leave the flag on in this case. The same goes for mov ss
6901          */
6902         if (int_shadow & mask)
6903                 mask = 0;
6904         if (unlikely(int_shadow || mask)) {
6905                 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6906                 if (!mask)
6907                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6908         }
6909 }
6910
6911 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6912 {
6913         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6914         if (ctxt->exception.vector == PF_VECTOR)
6915                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6916
6917         if (ctxt->exception.error_code_valid)
6918                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6919                                       ctxt->exception.error_code);
6920         else
6921                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6922         return false;
6923 }
6924
6925 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6926 {
6927         struct x86_emulate_ctxt *ctxt;
6928
6929         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6930         if (!ctxt) {
6931                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6932                 return NULL;
6933         }
6934
6935         ctxt->vcpu = vcpu;
6936         ctxt->ops = &emulate_ops;
6937         vcpu->arch.emulate_ctxt = ctxt;
6938
6939         return ctxt;
6940 }
6941
6942 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6943 {
6944         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6945         int cs_db, cs_l;
6946
6947         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6948
6949         ctxt->gpa_available = false;
6950         ctxt->eflags = kvm_get_rflags(vcpu);
6951         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6952
6953         ctxt->eip = kvm_rip_read(vcpu);
6954         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6955                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6956                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6957                      cs_db                              ? X86EMUL_MODE_PROT32 :
6958                                                           X86EMUL_MODE_PROT16;
6959         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6960         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6961         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6962
6963         init_decode_cache(ctxt);
6964         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6965 }
6966
6967 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6968 {
6969         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6970         int ret;
6971
6972         init_emulate_ctxt(vcpu);
6973
6974         ctxt->op_bytes = 2;
6975         ctxt->ad_bytes = 2;
6976         ctxt->_eip = ctxt->eip + inc_eip;
6977         ret = emulate_int_real(ctxt, irq);
6978
6979         if (ret != X86EMUL_CONTINUE) {
6980                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6981         } else {
6982                 ctxt->eip = ctxt->_eip;
6983                 kvm_rip_write(vcpu, ctxt->eip);
6984                 kvm_set_rflags(vcpu, ctxt->eflags);
6985         }
6986 }
6987 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6988
6989 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6990 {
6991         ++vcpu->stat.insn_emulation_fail;
6992         trace_kvm_emulate_insn_failed(vcpu);
6993
6994         if (emulation_type & EMULTYPE_VMWARE_GP) {
6995                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6996                 return 1;
6997         }
6998
6999         if (emulation_type & EMULTYPE_SKIP) {
7000                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7001                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7002                 vcpu->run->internal.ndata = 0;
7003                 return 0;
7004         }
7005
7006         kvm_queue_exception(vcpu, UD_VECTOR);
7007
7008         if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7009                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7010                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7011                 vcpu->run->internal.ndata = 0;
7012                 return 0;
7013         }
7014
7015         return 1;
7016 }
7017
7018 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7019                                   bool write_fault_to_shadow_pgtable,
7020                                   int emulation_type)
7021 {
7022         gpa_t gpa = cr2_or_gpa;
7023         kvm_pfn_t pfn;
7024
7025         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7026                 return false;
7027
7028         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7029             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7030                 return false;
7031
7032         if (!vcpu->arch.mmu->direct_map) {
7033                 /*
7034                  * Write permission should be allowed since only
7035                  * write access need to be emulated.
7036                  */
7037                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7038
7039                 /*
7040                  * If the mapping is invalid in guest, let cpu retry
7041                  * it to generate fault.
7042                  */
7043                 if (gpa == UNMAPPED_GVA)
7044                         return true;
7045         }
7046
7047         /*
7048          * Do not retry the unhandleable instruction if it faults on the
7049          * readonly host memory, otherwise it will goto a infinite loop:
7050          * retry instruction -> write #PF -> emulation fail -> retry
7051          * instruction -> ...
7052          */
7053         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7054
7055         /*
7056          * If the instruction failed on the error pfn, it can not be fixed,
7057          * report the error to userspace.
7058          */
7059         if (is_error_noslot_pfn(pfn))
7060                 return false;
7061
7062         kvm_release_pfn_clean(pfn);
7063
7064         /* The instructions are well-emulated on direct mmu. */
7065         if (vcpu->arch.mmu->direct_map) {
7066                 unsigned int indirect_shadow_pages;
7067
7068                 spin_lock(&vcpu->kvm->mmu_lock);
7069                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7070                 spin_unlock(&vcpu->kvm->mmu_lock);
7071
7072                 if (indirect_shadow_pages)
7073                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7074
7075                 return true;
7076         }
7077
7078         /*
7079          * if emulation was due to access to shadowed page table
7080          * and it failed try to unshadow page and re-enter the
7081          * guest to let CPU execute the instruction.
7082          */
7083         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7084
7085         /*
7086          * If the access faults on its page table, it can not
7087          * be fixed by unprotecting shadow page and it should
7088          * be reported to userspace.
7089          */
7090         return !write_fault_to_shadow_pgtable;
7091 }
7092
7093 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7094                               gpa_t cr2_or_gpa,  int emulation_type)
7095 {
7096         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7097         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7098
7099         last_retry_eip = vcpu->arch.last_retry_eip;
7100         last_retry_addr = vcpu->arch.last_retry_addr;
7101
7102         /*
7103          * If the emulation is caused by #PF and it is non-page_table
7104          * writing instruction, it means the VM-EXIT is caused by shadow
7105          * page protected, we can zap the shadow page and retry this
7106          * instruction directly.
7107          *
7108          * Note: if the guest uses a non-page-table modifying instruction
7109          * on the PDE that points to the instruction, then we will unmap
7110          * the instruction and go to an infinite loop. So, we cache the
7111          * last retried eip and the last fault address, if we meet the eip
7112          * and the address again, we can break out of the potential infinite
7113          * loop.
7114          */
7115         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7116
7117         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7118                 return false;
7119
7120         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7121             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7122                 return false;
7123
7124         if (x86_page_table_writing_insn(ctxt))
7125                 return false;
7126
7127         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7128                 return false;
7129
7130         vcpu->arch.last_retry_eip = ctxt->eip;
7131         vcpu->arch.last_retry_addr = cr2_or_gpa;
7132
7133         if (!vcpu->arch.mmu->direct_map)
7134                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7135
7136         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7137
7138         return true;
7139 }
7140
7141 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7142 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7143
7144 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7145 {
7146         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7147                 /* This is a good place to trace that we are exiting SMM.  */
7148                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7149
7150                 /* Process a latched INIT or SMI, if any.  */
7151                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7152         }
7153
7154         kvm_mmu_reset_context(vcpu);
7155 }
7156
7157 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7158                                 unsigned long *db)
7159 {
7160         u32 dr6 = 0;
7161         int i;
7162         u32 enable, rwlen;
7163
7164         enable = dr7;
7165         rwlen = dr7 >> 16;
7166         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7167                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7168                         dr6 |= (1 << i);
7169         return dr6;
7170 }
7171
7172 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7173 {
7174         struct kvm_run *kvm_run = vcpu->run;
7175
7176         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7177                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7178                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7179                 kvm_run->debug.arch.exception = DB_VECTOR;
7180                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7181                 return 0;
7182         }
7183         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7184         return 1;
7185 }
7186
7187 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7188 {
7189         unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7190         int r;
7191
7192         r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7193         if (unlikely(!r))
7194                 return 0;
7195
7196         /*
7197          * rflags is the old, "raw" value of the flags.  The new value has
7198          * not been saved yet.
7199          *
7200          * This is correct even for TF set by the guest, because "the
7201          * processor will not generate this exception after the instruction
7202          * that sets the TF flag".
7203          */
7204         if (unlikely(rflags & X86_EFLAGS_TF))
7205                 r = kvm_vcpu_do_singlestep(vcpu);
7206         return r;
7207 }
7208 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7209
7210 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7211 {
7212         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7213             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7214                 struct kvm_run *kvm_run = vcpu->run;
7215                 unsigned long eip = kvm_get_linear_rip(vcpu);
7216                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7217                                            vcpu->arch.guest_debug_dr7,
7218                                            vcpu->arch.eff_db);
7219
7220                 if (dr6 != 0) {
7221                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7222                         kvm_run->debug.arch.pc = eip;
7223                         kvm_run->debug.arch.exception = DB_VECTOR;
7224                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7225                         *r = 0;
7226                         return true;
7227                 }
7228         }
7229
7230         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7231             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7232                 unsigned long eip = kvm_get_linear_rip(vcpu);
7233                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7234                                            vcpu->arch.dr7,
7235                                            vcpu->arch.db);
7236
7237                 if (dr6 != 0) {
7238                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7239                         *r = 1;
7240                         return true;
7241                 }
7242         }
7243
7244         return false;
7245 }
7246
7247 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7248 {
7249         switch (ctxt->opcode_len) {
7250         case 1:
7251                 switch (ctxt->b) {
7252                 case 0xe4:      /* IN */
7253                 case 0xe5:
7254                 case 0xec:
7255                 case 0xed:
7256                 case 0xe6:      /* OUT */
7257                 case 0xe7:
7258                 case 0xee:
7259                 case 0xef:
7260                 case 0x6c:      /* INS */
7261                 case 0x6d:
7262                 case 0x6e:      /* OUTS */
7263                 case 0x6f:
7264                         return true;
7265                 }
7266                 break;
7267         case 2:
7268                 switch (ctxt->b) {
7269                 case 0x33:      /* RDPMC */
7270                         return true;
7271                 }
7272                 break;
7273         }
7274
7275         return false;
7276 }
7277
7278 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7279                             int emulation_type, void *insn, int insn_len)
7280 {
7281         int r;
7282         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7283         bool writeback = true;
7284         bool write_fault_to_spt;
7285
7286         if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7287                 return 1;
7288
7289         vcpu->arch.l1tf_flush_l1d = true;
7290
7291         /*
7292          * Clear write_fault_to_shadow_pgtable here to ensure it is
7293          * never reused.
7294          */
7295         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7296         vcpu->arch.write_fault_to_shadow_pgtable = false;
7297         kvm_clear_exception_queue(vcpu);
7298
7299         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7300                 init_emulate_ctxt(vcpu);
7301
7302                 /*
7303                  * We will reenter on the same instruction since
7304                  * we do not set complete_userspace_io.  This does not
7305                  * handle watchpoints yet, those would be handled in
7306                  * the emulate_ops.
7307                  */
7308                 if (!(emulation_type & EMULTYPE_SKIP) &&
7309                     kvm_vcpu_check_breakpoint(vcpu, &r))
7310                         return r;
7311
7312                 ctxt->interruptibility = 0;
7313                 ctxt->have_exception = false;
7314                 ctxt->exception.vector = -1;
7315                 ctxt->perm_ok = false;
7316
7317                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7318
7319                 r = x86_decode_insn(ctxt, insn, insn_len);
7320
7321                 trace_kvm_emulate_insn_start(vcpu);
7322                 ++vcpu->stat.insn_emulation;
7323                 if (r != EMULATION_OK)  {
7324                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7325                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7326                                 kvm_queue_exception(vcpu, UD_VECTOR);
7327                                 return 1;
7328                         }
7329                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7330                                                   write_fault_to_spt,
7331                                                   emulation_type))
7332                                 return 1;
7333                         if (ctxt->have_exception) {
7334                                 /*
7335                                  * #UD should result in just EMULATION_FAILED, and trap-like
7336                                  * exception should not be encountered during decode.
7337                                  */
7338                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7339                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7340                                 inject_emulated_exception(vcpu);
7341                                 return 1;
7342                         }
7343                         return handle_emulation_failure(vcpu, emulation_type);
7344                 }
7345         }
7346
7347         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7348             !is_vmware_backdoor_opcode(ctxt)) {
7349                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7350                 return 1;
7351         }
7352
7353         /*
7354          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7355          * for kvm_skip_emulated_instruction().  The caller is responsible for
7356          * updating interruptibility state and injecting single-step #DBs.
7357          */
7358         if (emulation_type & EMULTYPE_SKIP) {
7359                 kvm_rip_write(vcpu, ctxt->_eip);
7360                 if (ctxt->eflags & X86_EFLAGS_RF)
7361                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7362                 return 1;
7363         }
7364
7365         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7366                 return 1;
7367
7368         /* this is needed for vmware backdoor interface to work since it
7369            changes registers values  during IO operation */
7370         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7371                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7372                 emulator_invalidate_register_cache(ctxt);
7373         }
7374
7375 restart:
7376         if (emulation_type & EMULTYPE_PF) {
7377                 /* Save the faulting GPA (cr2) in the address field */
7378                 ctxt->exception.address = cr2_or_gpa;
7379
7380                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7381                 if (vcpu->arch.mmu->direct_map) {
7382                         ctxt->gpa_available = true;
7383                         ctxt->gpa_val = cr2_or_gpa;
7384                 }
7385         } else {
7386                 /* Sanitize the address out of an abundance of paranoia. */
7387                 ctxt->exception.address = 0;
7388         }
7389
7390         r = x86_emulate_insn(ctxt);
7391
7392         if (r == EMULATION_INTERCEPTED)
7393                 return 1;
7394
7395         if (r == EMULATION_FAILED) {
7396                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7397                                         emulation_type))
7398                         return 1;
7399
7400                 return handle_emulation_failure(vcpu, emulation_type);
7401         }
7402
7403         if (ctxt->have_exception) {
7404                 r = 1;
7405                 if (inject_emulated_exception(vcpu))
7406                         return r;
7407         } else if (vcpu->arch.pio.count) {
7408                 if (!vcpu->arch.pio.in) {
7409                         /* FIXME: return into emulator if single-stepping.  */
7410                         vcpu->arch.pio.count = 0;
7411                 } else {
7412                         writeback = false;
7413                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7414                 }
7415                 r = 0;
7416         } else if (vcpu->mmio_needed) {
7417                 ++vcpu->stat.mmio_exits;
7418
7419                 if (!vcpu->mmio_is_write)
7420                         writeback = false;
7421                 r = 0;
7422                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7423         } else if (r == EMULATION_RESTART)
7424                 goto restart;
7425         else
7426                 r = 1;
7427
7428         if (writeback) {
7429                 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7430                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7431                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7432                 if (!ctxt->have_exception ||
7433                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7434                         kvm_rip_write(vcpu, ctxt->eip);
7435                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7436                                 r = kvm_vcpu_do_singlestep(vcpu);
7437                         if (kvm_x86_ops.update_emulated_instruction)
7438                                 kvm_x86_ops.update_emulated_instruction(vcpu);
7439                         __kvm_set_rflags(vcpu, ctxt->eflags);
7440                 }
7441
7442                 /*
7443                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7444                  * do nothing, and it will be requested again as soon as
7445                  * the shadow expires.  But we still need to check here,
7446                  * because POPF has no interrupt shadow.
7447                  */
7448                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7449                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7450         } else
7451                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7452
7453         return r;
7454 }
7455
7456 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7457 {
7458         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7459 }
7460 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7461
7462 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7463                                         void *insn, int insn_len)
7464 {
7465         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7466 }
7467 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7468
7469 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7470 {
7471         vcpu->arch.pio.count = 0;
7472         return 1;
7473 }
7474
7475 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7476 {
7477         vcpu->arch.pio.count = 0;
7478
7479         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7480                 return 1;
7481
7482         return kvm_skip_emulated_instruction(vcpu);
7483 }
7484
7485 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7486                             unsigned short port)
7487 {
7488         unsigned long val = kvm_rax_read(vcpu);
7489         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7490
7491         if (ret)
7492                 return ret;
7493
7494         /*
7495          * Workaround userspace that relies on old KVM behavior of %rip being
7496          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7497          */
7498         if (port == 0x7e &&
7499             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7500                 vcpu->arch.complete_userspace_io =
7501                         complete_fast_pio_out_port_0x7e;
7502                 kvm_skip_emulated_instruction(vcpu);
7503         } else {
7504                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7505                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7506         }
7507         return 0;
7508 }
7509
7510 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7511 {
7512         unsigned long val;
7513
7514         /* We should only ever be called with arch.pio.count equal to 1 */
7515         BUG_ON(vcpu->arch.pio.count != 1);
7516
7517         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7518                 vcpu->arch.pio.count = 0;
7519                 return 1;
7520         }
7521
7522         /* For size less than 4 we merge, else we zero extend */
7523         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7524
7525         /*
7526          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7527          * the copy and tracing
7528          */
7529         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7530         kvm_rax_write(vcpu, val);
7531
7532         return kvm_skip_emulated_instruction(vcpu);
7533 }
7534
7535 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7536                            unsigned short port)
7537 {
7538         unsigned long val;
7539         int ret;
7540
7541         /* For size less than 4 we merge, else we zero extend */
7542         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7543
7544         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7545         if (ret) {
7546                 kvm_rax_write(vcpu, val);
7547                 return ret;
7548         }
7549
7550         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7551         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7552
7553         return 0;
7554 }
7555
7556 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7557 {
7558         int ret;
7559
7560         if (in)
7561                 ret = kvm_fast_pio_in(vcpu, size, port);
7562         else
7563                 ret = kvm_fast_pio_out(vcpu, size, port);
7564         return ret && kvm_skip_emulated_instruction(vcpu);
7565 }
7566 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7567
7568 static int kvmclock_cpu_down_prep(unsigned int cpu)
7569 {
7570         __this_cpu_write(cpu_tsc_khz, 0);
7571         return 0;
7572 }
7573
7574 static void tsc_khz_changed(void *data)
7575 {
7576         struct cpufreq_freqs *freq = data;
7577         unsigned long khz = 0;
7578
7579         if (data)
7580                 khz = freq->new;
7581         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7582                 khz = cpufreq_quick_get(raw_smp_processor_id());
7583         if (!khz)
7584                 khz = tsc_khz;
7585         __this_cpu_write(cpu_tsc_khz, khz);
7586 }
7587
7588 #ifdef CONFIG_X86_64
7589 static void kvm_hyperv_tsc_notifier(void)
7590 {
7591         struct kvm *kvm;
7592         struct kvm_vcpu *vcpu;
7593         int cpu;
7594
7595         mutex_lock(&kvm_lock);
7596         list_for_each_entry(kvm, &vm_list, vm_list)
7597                 kvm_make_mclock_inprogress_request(kvm);
7598
7599         hyperv_stop_tsc_emulation();
7600
7601         /* TSC frequency always matches when on Hyper-V */
7602         for_each_present_cpu(cpu)
7603                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7604         kvm_max_guest_tsc_khz = tsc_khz;
7605
7606         list_for_each_entry(kvm, &vm_list, vm_list) {
7607                 struct kvm_arch *ka = &kvm->arch;
7608
7609                 spin_lock(&ka->pvclock_gtod_sync_lock);
7610
7611                 pvclock_update_vm_gtod_copy(kvm);
7612
7613                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7614                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7615
7616                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7617                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7618
7619                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7620         }
7621         mutex_unlock(&kvm_lock);
7622 }
7623 #endif
7624
7625 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7626 {
7627         struct kvm *kvm;
7628         struct kvm_vcpu *vcpu;
7629         int i, send_ipi = 0;
7630
7631         /*
7632          * We allow guests to temporarily run on slowing clocks,
7633          * provided we notify them after, or to run on accelerating
7634          * clocks, provided we notify them before.  Thus time never
7635          * goes backwards.
7636          *
7637          * However, we have a problem.  We can't atomically update
7638          * the frequency of a given CPU from this function; it is
7639          * merely a notifier, which can be called from any CPU.
7640          * Changing the TSC frequency at arbitrary points in time
7641          * requires a recomputation of local variables related to
7642          * the TSC for each VCPU.  We must flag these local variables
7643          * to be updated and be sure the update takes place with the
7644          * new frequency before any guests proceed.
7645          *
7646          * Unfortunately, the combination of hotplug CPU and frequency
7647          * change creates an intractable locking scenario; the order
7648          * of when these callouts happen is undefined with respect to
7649          * CPU hotplug, and they can race with each other.  As such,
7650          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7651          * undefined; you can actually have a CPU frequency change take
7652          * place in between the computation of X and the setting of the
7653          * variable.  To protect against this problem, all updates of
7654          * the per_cpu tsc_khz variable are done in an interrupt
7655          * protected IPI, and all callers wishing to update the value
7656          * must wait for a synchronous IPI to complete (which is trivial
7657          * if the caller is on the CPU already).  This establishes the
7658          * necessary total order on variable updates.
7659          *
7660          * Note that because a guest time update may take place
7661          * anytime after the setting of the VCPU's request bit, the
7662          * correct TSC value must be set before the request.  However,
7663          * to ensure the update actually makes it to any guest which
7664          * starts running in hardware virtualization between the set
7665          * and the acquisition of the spinlock, we must also ping the
7666          * CPU after setting the request bit.
7667          *
7668          */
7669
7670         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7671
7672         mutex_lock(&kvm_lock);
7673         list_for_each_entry(kvm, &vm_list, vm_list) {
7674                 kvm_for_each_vcpu(i, vcpu, kvm) {
7675                         if (vcpu->cpu != cpu)
7676                                 continue;
7677                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7678                         if (vcpu->cpu != raw_smp_processor_id())
7679                                 send_ipi = 1;
7680                 }
7681         }
7682         mutex_unlock(&kvm_lock);
7683
7684         if (freq->old < freq->new && send_ipi) {
7685                 /*
7686                  * We upscale the frequency.  Must make the guest
7687                  * doesn't see old kvmclock values while running with
7688                  * the new frequency, otherwise we risk the guest sees
7689                  * time go backwards.
7690                  *
7691                  * In case we update the frequency for another cpu
7692                  * (which might be in guest context) send an interrupt
7693                  * to kick the cpu out of guest context.  Next time
7694                  * guest context is entered kvmclock will be updated,
7695                  * so the guest will not see stale values.
7696                  */
7697                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7698         }
7699 }
7700
7701 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7702                                      void *data)
7703 {
7704         struct cpufreq_freqs *freq = data;
7705         int cpu;
7706
7707         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7708                 return 0;
7709         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7710                 return 0;
7711
7712         for_each_cpu(cpu, freq->policy->cpus)
7713                 __kvmclock_cpufreq_notifier(freq, cpu);
7714
7715         return 0;
7716 }
7717
7718 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7719         .notifier_call  = kvmclock_cpufreq_notifier
7720 };
7721
7722 static int kvmclock_cpu_online(unsigned int cpu)
7723 {
7724         tsc_khz_changed(NULL);
7725         return 0;
7726 }
7727
7728 static void kvm_timer_init(void)
7729 {
7730         max_tsc_khz = tsc_khz;
7731
7732         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7733 #ifdef CONFIG_CPU_FREQ
7734                 struct cpufreq_policy *policy;
7735                 int cpu;
7736
7737                 cpu = get_cpu();
7738                 policy = cpufreq_cpu_get(cpu);
7739                 if (policy) {
7740                         if (policy->cpuinfo.max_freq)
7741                                 max_tsc_khz = policy->cpuinfo.max_freq;
7742                         cpufreq_cpu_put(policy);
7743                 }
7744                 put_cpu();
7745 #endif
7746                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7747                                           CPUFREQ_TRANSITION_NOTIFIER);
7748         }
7749
7750         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7751                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7752 }
7753
7754 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7755 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7756
7757 int kvm_is_in_guest(void)
7758 {
7759         return __this_cpu_read(current_vcpu) != NULL;
7760 }
7761
7762 static int kvm_is_user_mode(void)
7763 {
7764         int user_mode = 3;
7765
7766         if (__this_cpu_read(current_vcpu))
7767                 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7768
7769         return user_mode != 0;
7770 }
7771
7772 static unsigned long kvm_get_guest_ip(void)
7773 {
7774         unsigned long ip = 0;
7775
7776         if (__this_cpu_read(current_vcpu))
7777                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7778
7779         return ip;
7780 }
7781
7782 static void kvm_handle_intel_pt_intr(void)
7783 {
7784         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7785
7786         kvm_make_request(KVM_REQ_PMI, vcpu);
7787         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7788                         (unsigned long *)&vcpu->arch.pmu.global_status);
7789 }
7790
7791 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7792         .is_in_guest            = kvm_is_in_guest,
7793         .is_user_mode           = kvm_is_user_mode,
7794         .get_guest_ip           = kvm_get_guest_ip,
7795         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7796 };
7797
7798 #ifdef CONFIG_X86_64
7799 static void pvclock_gtod_update_fn(struct work_struct *work)
7800 {
7801         struct kvm *kvm;
7802
7803         struct kvm_vcpu *vcpu;
7804         int i;
7805
7806         mutex_lock(&kvm_lock);
7807         list_for_each_entry(kvm, &vm_list, vm_list)
7808                 kvm_for_each_vcpu(i, vcpu, kvm)
7809                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7810         atomic_set(&kvm_guest_has_master_clock, 0);
7811         mutex_unlock(&kvm_lock);
7812 }
7813
7814 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7815
7816 /*
7817  * Notification about pvclock gtod data update.
7818  */
7819 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7820                                void *priv)
7821 {
7822         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7823         struct timekeeper *tk = priv;
7824
7825         update_pvclock_gtod(tk);
7826
7827         /* disable master clock if host does not trust, or does not
7828          * use, TSC based clocksource.
7829          */
7830         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7831             atomic_read(&kvm_guest_has_master_clock) != 0)
7832                 queue_work(system_long_wq, &pvclock_gtod_work);
7833
7834         return 0;
7835 }
7836
7837 static struct notifier_block pvclock_gtod_notifier = {
7838         .notifier_call = pvclock_gtod_notify,
7839 };
7840 #endif
7841
7842 int kvm_arch_init(void *opaque)
7843 {
7844         struct kvm_x86_init_ops *ops = opaque;
7845         int r;
7846
7847         if (kvm_x86_ops.hardware_enable) {
7848                 printk(KERN_ERR "kvm: already loaded the other module\n");
7849                 r = -EEXIST;
7850                 goto out;
7851         }
7852
7853         if (!ops->cpu_has_kvm_support()) {
7854                 pr_err_ratelimited("kvm: no hardware support\n");
7855                 r = -EOPNOTSUPP;
7856                 goto out;
7857         }
7858         if (ops->disabled_by_bios()) {
7859                 pr_err_ratelimited("kvm: disabled by bios\n");
7860                 r = -EOPNOTSUPP;
7861                 goto out;
7862         }
7863
7864         /*
7865          * KVM explicitly assumes that the guest has an FPU and
7866          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7867          * vCPU's FPU state as a fxregs_state struct.
7868          */
7869         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7870                 printk(KERN_ERR "kvm: inadequate fpu\n");
7871                 r = -EOPNOTSUPP;
7872                 goto out;
7873         }
7874
7875         r = -ENOMEM;
7876         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7877                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7878                                           NULL);
7879         if (!x86_fpu_cache) {
7880                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7881                 goto out;
7882         }
7883
7884         x86_emulator_cache = kvm_alloc_emulator_cache();
7885         if (!x86_emulator_cache) {
7886                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7887                 goto out_free_x86_fpu_cache;
7888         }
7889
7890         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7891         if (!user_return_msrs) {
7892                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7893                 goto out_free_x86_emulator_cache;
7894         }
7895
7896         r = kvm_mmu_module_init();
7897         if (r)
7898                 goto out_free_percpu;
7899
7900         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7901                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7902                         PT_PRESENT_MASK, 0, sme_me_mask);
7903         kvm_timer_init();
7904
7905         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7906
7907         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7908                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7909                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7910         }
7911
7912         kvm_lapic_init();
7913         if (pi_inject_timer == -1)
7914                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7915 #ifdef CONFIG_X86_64
7916         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7917
7918         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7919                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7920 #endif
7921
7922         return 0;
7923
7924 out_free_percpu:
7925         free_percpu(user_return_msrs);
7926 out_free_x86_emulator_cache:
7927         kmem_cache_destroy(x86_emulator_cache);
7928 out_free_x86_fpu_cache:
7929         kmem_cache_destroy(x86_fpu_cache);
7930 out:
7931         return r;
7932 }
7933
7934 void kvm_arch_exit(void)
7935 {
7936 #ifdef CONFIG_X86_64
7937         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7938                 clear_hv_tscchange_cb();
7939 #endif
7940         kvm_lapic_exit();
7941         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7942
7943         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7944                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7945                                             CPUFREQ_TRANSITION_NOTIFIER);
7946         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7947 #ifdef CONFIG_X86_64
7948         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7949 #endif
7950         kvm_x86_ops.hardware_enable = NULL;
7951         kvm_mmu_module_exit();
7952         free_percpu(user_return_msrs);
7953         kmem_cache_destroy(x86_fpu_cache);
7954 }
7955
7956 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7957 {
7958         ++vcpu->stat.halt_exits;
7959         if (lapic_in_kernel(vcpu)) {
7960                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7961                 return 1;
7962         } else {
7963                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7964                 return 0;
7965         }
7966 }
7967 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7968
7969 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7970 {
7971         int ret = kvm_skip_emulated_instruction(vcpu);
7972         /*
7973          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7974          * KVM_EXIT_DEBUG here.
7975          */
7976         return kvm_vcpu_halt(vcpu) && ret;
7977 }
7978 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7979
7980 #ifdef CONFIG_X86_64
7981 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7982                                 unsigned long clock_type)
7983 {
7984         struct kvm_clock_pairing clock_pairing;
7985         struct timespec64 ts;
7986         u64 cycle;
7987         int ret;
7988
7989         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7990                 return -KVM_EOPNOTSUPP;
7991
7992         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7993                 return -KVM_EOPNOTSUPP;
7994
7995         clock_pairing.sec = ts.tv_sec;
7996         clock_pairing.nsec = ts.tv_nsec;
7997         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7998         clock_pairing.flags = 0;
7999         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8000
8001         ret = 0;
8002         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8003                             sizeof(struct kvm_clock_pairing)))
8004                 ret = -KVM_EFAULT;
8005
8006         return ret;
8007 }
8008 #endif
8009
8010 /*
8011  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8012  *
8013  * @apicid - apicid of vcpu to be kicked.
8014  */
8015 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8016 {
8017         struct kvm_lapic_irq lapic_irq;
8018
8019         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8020         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8021         lapic_irq.level = 0;
8022         lapic_irq.dest_id = apicid;
8023         lapic_irq.msi_redir_hint = false;
8024
8025         lapic_irq.delivery_mode = APIC_DM_REMRD;
8026         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8027 }
8028
8029 bool kvm_apicv_activated(struct kvm *kvm)
8030 {
8031         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8032 }
8033 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8034
8035 void kvm_apicv_init(struct kvm *kvm, bool enable)
8036 {
8037         if (enable)
8038                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8039                           &kvm->arch.apicv_inhibit_reasons);
8040         else
8041                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8042                         &kvm->arch.apicv_inhibit_reasons);
8043 }
8044 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8045
8046 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8047 {
8048         struct kvm_vcpu *target = NULL;
8049         struct kvm_apic_map *map;
8050
8051         rcu_read_lock();
8052         map = rcu_dereference(kvm->arch.apic_map);
8053
8054         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8055                 target = map->phys_map[dest_id]->vcpu;
8056
8057         rcu_read_unlock();
8058
8059         if (target && READ_ONCE(target->ready))
8060                 kvm_vcpu_yield_to(target);
8061 }
8062
8063 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8064 {
8065         unsigned long nr, a0, a1, a2, a3, ret;
8066         int op_64_bit;
8067
8068         if (kvm_hv_hypercall_enabled(vcpu->kvm))
8069                 return kvm_hv_hypercall(vcpu);
8070
8071         nr = kvm_rax_read(vcpu);
8072         a0 = kvm_rbx_read(vcpu);
8073         a1 = kvm_rcx_read(vcpu);
8074         a2 = kvm_rdx_read(vcpu);
8075         a3 = kvm_rsi_read(vcpu);
8076
8077         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8078
8079         op_64_bit = is_64_bit_mode(vcpu);
8080         if (!op_64_bit) {
8081                 nr &= 0xFFFFFFFF;
8082                 a0 &= 0xFFFFFFFF;
8083                 a1 &= 0xFFFFFFFF;
8084                 a2 &= 0xFFFFFFFF;
8085                 a3 &= 0xFFFFFFFF;
8086         }
8087
8088         if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8089                 ret = -KVM_EPERM;
8090                 goto out;
8091         }
8092
8093         ret = -KVM_ENOSYS;
8094
8095         switch (nr) {
8096         case KVM_HC_VAPIC_POLL_IRQ:
8097                 ret = 0;
8098                 break;
8099         case KVM_HC_KICK_CPU:
8100                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8101                         break;
8102
8103                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8104                 kvm_sched_yield(vcpu->kvm, a1);
8105                 ret = 0;
8106                 break;
8107 #ifdef CONFIG_X86_64
8108         case KVM_HC_CLOCK_PAIRING:
8109                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8110                 break;
8111 #endif
8112         case KVM_HC_SEND_IPI:
8113                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8114                         break;
8115
8116                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8117                 break;
8118         case KVM_HC_SCHED_YIELD:
8119                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8120                         break;
8121
8122                 kvm_sched_yield(vcpu->kvm, a0);
8123                 ret = 0;
8124                 break;
8125         default:
8126                 ret = -KVM_ENOSYS;
8127                 break;
8128         }
8129 out:
8130         if (!op_64_bit)
8131                 ret = (u32)ret;
8132         kvm_rax_write(vcpu, ret);
8133
8134         ++vcpu->stat.hypercalls;
8135         return kvm_skip_emulated_instruction(vcpu);
8136 }
8137 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8138
8139 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8140 {
8141         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8142         char instruction[3];
8143         unsigned long rip = kvm_rip_read(vcpu);
8144
8145         kvm_x86_ops.patch_hypercall(vcpu, instruction);
8146
8147         return emulator_write_emulated(ctxt, rip, instruction, 3,
8148                 &ctxt->exception);
8149 }
8150
8151 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8152 {
8153         return vcpu->run->request_interrupt_window &&
8154                 likely(!pic_in_kernel(vcpu->kvm));
8155 }
8156
8157 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8158 {
8159         struct kvm_run *kvm_run = vcpu->run;
8160
8161         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8162         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8163         kvm_run->cr8 = kvm_get_cr8(vcpu);
8164         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8165         kvm_run->ready_for_interrupt_injection =
8166                 pic_in_kernel(vcpu->kvm) ||
8167                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8168 }
8169
8170 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8171 {
8172         int max_irr, tpr;
8173
8174         if (!kvm_x86_ops.update_cr8_intercept)
8175                 return;
8176
8177         if (!lapic_in_kernel(vcpu))
8178                 return;
8179
8180         if (vcpu->arch.apicv_active)
8181                 return;
8182
8183         if (!vcpu->arch.apic->vapic_addr)
8184                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8185         else
8186                 max_irr = -1;
8187
8188         if (max_irr != -1)
8189                 max_irr >>= 4;
8190
8191         tpr = kvm_lapic_get_cr8(vcpu);
8192
8193         kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8194 }
8195
8196 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8197 {
8198         int r;
8199         bool can_inject = true;
8200
8201         /* try to reinject previous events if any */
8202
8203         if (vcpu->arch.exception.injected) {
8204                 kvm_x86_ops.queue_exception(vcpu);
8205                 can_inject = false;
8206         }
8207         /*
8208          * Do not inject an NMI or interrupt if there is a pending
8209          * exception.  Exceptions and interrupts are recognized at
8210          * instruction boundaries, i.e. the start of an instruction.
8211          * Trap-like exceptions, e.g. #DB, have higher priority than
8212          * NMIs and interrupts, i.e. traps are recognized before an
8213          * NMI/interrupt that's pending on the same instruction.
8214          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8215          * priority, but are only generated (pended) during instruction
8216          * execution, i.e. a pending fault-like exception means the
8217          * fault occurred on the *previous* instruction and must be
8218          * serviced prior to recognizing any new events in order to
8219          * fully complete the previous instruction.
8220          */
8221         else if (!vcpu->arch.exception.pending) {
8222                 if (vcpu->arch.nmi_injected) {
8223                         kvm_x86_ops.set_nmi(vcpu);
8224                         can_inject = false;
8225                 } else if (vcpu->arch.interrupt.injected) {
8226                         kvm_x86_ops.set_irq(vcpu);
8227                         can_inject = false;
8228                 }
8229         }
8230
8231         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8232                      vcpu->arch.exception.pending);
8233
8234         /*
8235          * Call check_nested_events() even if we reinjected a previous event
8236          * in order for caller to determine if it should require immediate-exit
8237          * from L2 to L1 due to pending L1 events which require exit
8238          * from L2 to L1.
8239          */
8240         if (is_guest_mode(vcpu)) {
8241                 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8242                 if (r < 0)
8243                         goto busy;
8244         }
8245
8246         /* try to inject new event if pending */
8247         if (vcpu->arch.exception.pending) {
8248                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8249                                         vcpu->arch.exception.has_error_code,
8250                                         vcpu->arch.exception.error_code);
8251
8252                 vcpu->arch.exception.pending = false;
8253                 vcpu->arch.exception.injected = true;
8254
8255                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8256                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8257                                              X86_EFLAGS_RF);
8258
8259                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8260                         kvm_deliver_exception_payload(vcpu);
8261                         if (vcpu->arch.dr7 & DR7_GD) {
8262                                 vcpu->arch.dr7 &= ~DR7_GD;
8263                                 kvm_update_dr7(vcpu);
8264                         }
8265                 }
8266
8267                 kvm_x86_ops.queue_exception(vcpu);
8268                 can_inject = false;
8269         }
8270
8271         /*
8272          * Finally, inject interrupt events.  If an event cannot be injected
8273          * due to architectural conditions (e.g. IF=0) a window-open exit
8274          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8275          * and can architecturally be injected, but we cannot do it right now:
8276          * an interrupt could have arrived just now and we have to inject it
8277          * as a vmexit, or there could already an event in the queue, which is
8278          * indicated by can_inject.  In that case we request an immediate exit
8279          * in order to make progress and get back here for another iteration.
8280          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8281          */
8282         if (vcpu->arch.smi_pending) {
8283                 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8284                 if (r < 0)
8285                         goto busy;
8286                 if (r) {
8287                         vcpu->arch.smi_pending = false;
8288                         ++vcpu->arch.smi_count;
8289                         enter_smm(vcpu);
8290                         can_inject = false;
8291                 } else
8292                         kvm_x86_ops.enable_smi_window(vcpu);
8293         }
8294
8295         if (vcpu->arch.nmi_pending) {
8296                 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8297                 if (r < 0)
8298                         goto busy;
8299                 if (r) {
8300                         --vcpu->arch.nmi_pending;
8301                         vcpu->arch.nmi_injected = true;
8302                         kvm_x86_ops.set_nmi(vcpu);
8303                         can_inject = false;
8304                         WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8305                 }
8306                 if (vcpu->arch.nmi_pending)
8307                         kvm_x86_ops.enable_nmi_window(vcpu);
8308         }
8309
8310         if (kvm_cpu_has_injectable_intr(vcpu)) {
8311                 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8312                 if (r < 0)
8313                         goto busy;
8314                 if (r) {
8315                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8316                         kvm_x86_ops.set_irq(vcpu);
8317                         WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8318                 }
8319                 if (kvm_cpu_has_injectable_intr(vcpu))
8320                         kvm_x86_ops.enable_irq_window(vcpu);
8321         }
8322
8323         if (is_guest_mode(vcpu) &&
8324             kvm_x86_ops.nested_ops->hv_timer_pending &&
8325             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8326                 *req_immediate_exit = true;
8327
8328         WARN_ON(vcpu->arch.exception.pending);
8329         return;
8330
8331 busy:
8332         *req_immediate_exit = true;
8333         return;
8334 }
8335
8336 static void process_nmi(struct kvm_vcpu *vcpu)
8337 {
8338         unsigned limit = 2;
8339
8340         /*
8341          * x86 is limited to one NMI running, and one NMI pending after it.
8342          * If an NMI is already in progress, limit further NMIs to just one.
8343          * Otherwise, allow two (and we'll inject the first one immediately).
8344          */
8345         if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8346                 limit = 1;
8347
8348         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8349         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8350         kvm_make_request(KVM_REQ_EVENT, vcpu);
8351 }
8352
8353 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8354 {
8355         u32 flags = 0;
8356         flags |= seg->g       << 23;
8357         flags |= seg->db      << 22;
8358         flags |= seg->l       << 21;
8359         flags |= seg->avl     << 20;
8360         flags |= seg->present << 15;
8361         flags |= seg->dpl     << 13;
8362         flags |= seg->s       << 12;
8363         flags |= seg->type    << 8;
8364         return flags;
8365 }
8366
8367 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8368 {
8369         struct kvm_segment seg;
8370         int offset;
8371
8372         kvm_get_segment(vcpu, &seg, n);
8373         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8374
8375         if (n < 3)
8376                 offset = 0x7f84 + n * 12;
8377         else
8378                 offset = 0x7f2c + (n - 3) * 12;
8379
8380         put_smstate(u32, buf, offset + 8, seg.base);
8381         put_smstate(u32, buf, offset + 4, seg.limit);
8382         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8383 }
8384
8385 #ifdef CONFIG_X86_64
8386 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8387 {
8388         struct kvm_segment seg;
8389         int offset;
8390         u16 flags;
8391
8392         kvm_get_segment(vcpu, &seg, n);
8393         offset = 0x7e00 + n * 16;
8394
8395         flags = enter_smm_get_segment_flags(&seg) >> 8;
8396         put_smstate(u16, buf, offset, seg.selector);
8397         put_smstate(u16, buf, offset + 2, flags);
8398         put_smstate(u32, buf, offset + 4, seg.limit);
8399         put_smstate(u64, buf, offset + 8, seg.base);
8400 }
8401 #endif
8402
8403 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8404 {
8405         struct desc_ptr dt;
8406         struct kvm_segment seg;
8407         unsigned long val;
8408         int i;
8409
8410         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8411         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8412         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8413         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8414
8415         for (i = 0; i < 8; i++)
8416                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8417
8418         kvm_get_dr(vcpu, 6, &val);
8419         put_smstate(u32, buf, 0x7fcc, (u32)val);
8420         kvm_get_dr(vcpu, 7, &val);
8421         put_smstate(u32, buf, 0x7fc8, (u32)val);
8422
8423         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8424         put_smstate(u32, buf, 0x7fc4, seg.selector);
8425         put_smstate(u32, buf, 0x7f64, seg.base);
8426         put_smstate(u32, buf, 0x7f60, seg.limit);
8427         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8428
8429         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8430         put_smstate(u32, buf, 0x7fc0, seg.selector);
8431         put_smstate(u32, buf, 0x7f80, seg.base);
8432         put_smstate(u32, buf, 0x7f7c, seg.limit);
8433         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8434
8435         kvm_x86_ops.get_gdt(vcpu, &dt);
8436         put_smstate(u32, buf, 0x7f74, dt.address);
8437         put_smstate(u32, buf, 0x7f70, dt.size);
8438
8439         kvm_x86_ops.get_idt(vcpu, &dt);
8440         put_smstate(u32, buf, 0x7f58, dt.address);
8441         put_smstate(u32, buf, 0x7f54, dt.size);
8442
8443         for (i = 0; i < 6; i++)
8444                 enter_smm_save_seg_32(vcpu, buf, i);
8445
8446         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8447
8448         /* revision id */
8449         put_smstate(u32, buf, 0x7efc, 0x00020000);
8450         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8451 }
8452
8453 #ifdef CONFIG_X86_64
8454 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8455 {
8456         struct desc_ptr dt;
8457         struct kvm_segment seg;
8458         unsigned long val;
8459         int i;
8460
8461         for (i = 0; i < 16; i++)
8462                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8463
8464         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8465         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8466
8467         kvm_get_dr(vcpu, 6, &val);
8468         put_smstate(u64, buf, 0x7f68, val);
8469         kvm_get_dr(vcpu, 7, &val);
8470         put_smstate(u64, buf, 0x7f60, val);
8471
8472         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8473         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8474         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8475
8476         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8477
8478         /* revision id */
8479         put_smstate(u32, buf, 0x7efc, 0x00020064);
8480
8481         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8482
8483         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8484         put_smstate(u16, buf, 0x7e90, seg.selector);
8485         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8486         put_smstate(u32, buf, 0x7e94, seg.limit);
8487         put_smstate(u64, buf, 0x7e98, seg.base);
8488
8489         kvm_x86_ops.get_idt(vcpu, &dt);
8490         put_smstate(u32, buf, 0x7e84, dt.size);
8491         put_smstate(u64, buf, 0x7e88, dt.address);
8492
8493         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8494         put_smstate(u16, buf, 0x7e70, seg.selector);
8495         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8496         put_smstate(u32, buf, 0x7e74, seg.limit);
8497         put_smstate(u64, buf, 0x7e78, seg.base);
8498
8499         kvm_x86_ops.get_gdt(vcpu, &dt);
8500         put_smstate(u32, buf, 0x7e64, dt.size);
8501         put_smstate(u64, buf, 0x7e68, dt.address);
8502
8503         for (i = 0; i < 6; i++)
8504                 enter_smm_save_seg_64(vcpu, buf, i);
8505 }
8506 #endif
8507
8508 static void enter_smm(struct kvm_vcpu *vcpu)
8509 {
8510         struct kvm_segment cs, ds;
8511         struct desc_ptr dt;
8512         char buf[512];
8513         u32 cr0;
8514
8515         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8516         memset(buf, 0, 512);
8517 #ifdef CONFIG_X86_64
8518         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8519                 enter_smm_save_state_64(vcpu, buf);
8520         else
8521 #endif
8522                 enter_smm_save_state_32(vcpu, buf);
8523
8524         /*
8525          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8526          * vCPU state (e.g. leave guest mode) after we've saved the state into
8527          * the SMM state-save area.
8528          */
8529         kvm_x86_ops.pre_enter_smm(vcpu, buf);
8530
8531         vcpu->arch.hflags |= HF_SMM_MASK;
8532         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8533
8534         if (kvm_x86_ops.get_nmi_mask(vcpu))
8535                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8536         else
8537                 kvm_x86_ops.set_nmi_mask(vcpu, true);
8538
8539         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8540         kvm_rip_write(vcpu, 0x8000);
8541
8542         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8543         kvm_x86_ops.set_cr0(vcpu, cr0);
8544         vcpu->arch.cr0 = cr0;
8545
8546         kvm_x86_ops.set_cr4(vcpu, 0);
8547
8548         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8549         dt.address = dt.size = 0;
8550         kvm_x86_ops.set_idt(vcpu, &dt);
8551
8552         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8553
8554         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8555         cs.base = vcpu->arch.smbase;
8556
8557         ds.selector = 0;
8558         ds.base = 0;
8559
8560         cs.limit    = ds.limit = 0xffffffff;
8561         cs.type     = ds.type = 0x3;
8562         cs.dpl      = ds.dpl = 0;
8563         cs.db       = ds.db = 0;
8564         cs.s        = ds.s = 1;
8565         cs.l        = ds.l = 0;
8566         cs.g        = ds.g = 1;
8567         cs.avl      = ds.avl = 0;
8568         cs.present  = ds.present = 1;
8569         cs.unusable = ds.unusable = 0;
8570         cs.padding  = ds.padding = 0;
8571
8572         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8573         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8574         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8575         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8576         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8577         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8578
8579 #ifdef CONFIG_X86_64
8580         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8581                 kvm_x86_ops.set_efer(vcpu, 0);
8582 #endif
8583
8584         kvm_update_cpuid_runtime(vcpu);
8585         kvm_mmu_reset_context(vcpu);
8586 }
8587
8588 static void process_smi(struct kvm_vcpu *vcpu)
8589 {
8590         vcpu->arch.smi_pending = true;
8591         kvm_make_request(KVM_REQ_EVENT, vcpu);
8592 }
8593
8594 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8595                                        unsigned long *vcpu_bitmap)
8596 {
8597         cpumask_var_t cpus;
8598
8599         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8600
8601         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8602                                     NULL, vcpu_bitmap, cpus);
8603
8604         free_cpumask_var(cpus);
8605 }
8606
8607 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8608 {
8609         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8610 }
8611
8612 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8613 {
8614         if (!lapic_in_kernel(vcpu))
8615                 return;
8616
8617         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8618         kvm_apic_update_apicv(vcpu);
8619         kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8620 }
8621 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8622
8623 /*
8624  * NOTE: Do not hold any lock prior to calling this.
8625  *
8626  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8627  * locked, because it calls __x86_set_memory_region() which does
8628  * synchronize_srcu(&kvm->srcu).
8629  */
8630 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8631 {
8632         struct kvm_vcpu *except;
8633         unsigned long old, new, expected;
8634
8635         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8636             !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8637                 return;
8638
8639         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8640         do {
8641                 expected = new = old;
8642                 if (activate)
8643                         __clear_bit(bit, &new);
8644                 else
8645                         __set_bit(bit, &new);
8646                 if (new == old)
8647                         break;
8648                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8649         } while (old != expected);
8650
8651         if (!!old == !!new)
8652                 return;
8653
8654         trace_kvm_apicv_update_request(activate, bit);
8655         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8656                 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8657
8658         /*
8659          * Sending request to update APICV for all other vcpus,
8660          * while update the calling vcpu immediately instead of
8661          * waiting for another #VMEXIT to handle the request.
8662          */
8663         except = kvm_get_running_vcpu();
8664         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8665                                          except);
8666         if (except)
8667                 kvm_vcpu_update_apicv(except);
8668 }
8669 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8670
8671 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8672 {
8673         if (!kvm_apic_present(vcpu))
8674                 return;
8675
8676         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8677
8678         if (irqchip_split(vcpu->kvm))
8679                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8680         else {
8681                 if (vcpu->arch.apicv_active)
8682                         kvm_x86_ops.sync_pir_to_irr(vcpu);
8683                 if (ioapic_in_kernel(vcpu->kvm))
8684                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8685         }
8686
8687         if (is_guest_mode(vcpu))
8688                 vcpu->arch.load_eoi_exitmap_pending = true;
8689         else
8690                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8691 }
8692
8693 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8694 {
8695         u64 eoi_exit_bitmap[4];
8696
8697         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8698                 return;
8699
8700         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8701                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8702         kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8703 }
8704
8705 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8706                                             unsigned long start, unsigned long end)
8707 {
8708         unsigned long apic_address;
8709
8710         /*
8711          * The physical address of apic access page is stored in the VMCS.
8712          * Update it when it becomes invalid.
8713          */
8714         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8715         if (start <= apic_address && apic_address < end)
8716                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8717 }
8718
8719 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8720 {
8721         if (!lapic_in_kernel(vcpu))
8722                 return;
8723
8724         if (!kvm_x86_ops.set_apic_access_page_addr)
8725                 return;
8726
8727         kvm_x86_ops.set_apic_access_page_addr(vcpu);
8728 }
8729
8730 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8731 {
8732         smp_send_reschedule(vcpu->cpu);
8733 }
8734 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8735
8736 /*
8737  * Returns 1 to let vcpu_run() continue the guest execution loop without
8738  * exiting to the userspace.  Otherwise, the value will be returned to the
8739  * userspace.
8740  */
8741 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8742 {
8743         int r;
8744         bool req_int_win =
8745                 dm_request_for_irq_injection(vcpu) &&
8746                 kvm_cpu_accept_dm_intr(vcpu);
8747         fastpath_t exit_fastpath;
8748
8749         bool req_immediate_exit = false;
8750
8751         if (kvm_request_pending(vcpu)) {
8752                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8753                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8754                                 r = 0;
8755                                 goto out;
8756                         }
8757                 }
8758                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8759                         kvm_mmu_unload(vcpu);
8760                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8761                         __kvm_migrate_timers(vcpu);
8762                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8763                         kvm_gen_update_masterclock(vcpu->kvm);
8764                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8765                         kvm_gen_kvmclock_update(vcpu);
8766                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8767                         r = kvm_guest_time_update(vcpu);
8768                         if (unlikely(r))
8769                                 goto out;
8770                 }
8771                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8772                         kvm_mmu_sync_roots(vcpu);
8773                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8774                         kvm_mmu_load_pgd(vcpu);
8775                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8776                         kvm_vcpu_flush_tlb_all(vcpu);
8777
8778                         /* Flushing all ASIDs flushes the current ASID... */
8779                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8780                 }
8781                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8782                         kvm_vcpu_flush_tlb_current(vcpu);
8783                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8784                         kvm_vcpu_flush_tlb_guest(vcpu);
8785
8786                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8787                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8788                         r = 0;
8789                         goto out;
8790                 }
8791                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8792                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8793                         vcpu->mmio_needed = 0;
8794                         r = 0;
8795                         goto out;
8796                 }
8797                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8798                         /* Page is swapped out. Do synthetic halt */
8799                         vcpu->arch.apf.halted = true;
8800                         r = 1;
8801                         goto out;
8802                 }
8803                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8804                         record_steal_time(vcpu);
8805                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8806                         process_smi(vcpu);
8807                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8808                         process_nmi(vcpu);
8809                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8810                         kvm_pmu_handle_event(vcpu);
8811                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8812                         kvm_pmu_deliver_pmi(vcpu);
8813                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8814                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8815                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8816                                      vcpu->arch.ioapic_handled_vectors)) {
8817                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8818                                 vcpu->run->eoi.vector =
8819                                                 vcpu->arch.pending_ioapic_eoi;
8820                                 r = 0;
8821                                 goto out;
8822                         }
8823                 }
8824                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8825                         vcpu_scan_ioapic(vcpu);
8826                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8827                         vcpu_load_eoi_exitmap(vcpu);
8828                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8829                         kvm_vcpu_reload_apic_access_page(vcpu);
8830                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8831                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8832                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8833                         r = 0;
8834                         goto out;
8835                 }
8836                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8837                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8838                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8839                         r = 0;
8840                         goto out;
8841                 }
8842                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8843                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8844                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8845                         r = 0;
8846                         goto out;
8847                 }
8848
8849                 /*
8850                  * KVM_REQ_HV_STIMER has to be processed after
8851                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8852                  * depend on the guest clock being up-to-date
8853                  */
8854                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8855                         kvm_hv_process_stimers(vcpu);
8856                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8857                         kvm_vcpu_update_apicv(vcpu);
8858                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8859                         kvm_check_async_pf_completion(vcpu);
8860                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8861                         kvm_x86_ops.msr_filter_changed(vcpu);
8862         }
8863
8864         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8865                 ++vcpu->stat.req_event;
8866                 kvm_apic_accept_events(vcpu);
8867                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8868                         r = 1;
8869                         goto out;
8870                 }
8871
8872                 inject_pending_event(vcpu, &req_immediate_exit);
8873                 if (req_int_win)
8874                         kvm_x86_ops.enable_irq_window(vcpu);
8875
8876                 if (kvm_lapic_enabled(vcpu)) {
8877                         update_cr8_intercept(vcpu);
8878                         kvm_lapic_sync_to_vapic(vcpu);
8879                 }
8880         }
8881
8882         r = kvm_mmu_reload(vcpu);
8883         if (unlikely(r)) {
8884                 goto cancel_injection;
8885         }
8886
8887         preempt_disable();
8888
8889         kvm_x86_ops.prepare_guest_switch(vcpu);
8890
8891         /*
8892          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8893          * IPI are then delayed after guest entry, which ensures that they
8894          * result in virtual interrupt delivery.
8895          */
8896         local_irq_disable();
8897         vcpu->mode = IN_GUEST_MODE;
8898
8899         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8900
8901         /*
8902          * 1) We should set ->mode before checking ->requests.  Please see
8903          * the comment in kvm_vcpu_exiting_guest_mode().
8904          *
8905          * 2) For APICv, we should set ->mode before checking PID.ON. This
8906          * pairs with the memory barrier implicit in pi_test_and_set_on
8907          * (see vmx_deliver_posted_interrupt).
8908          *
8909          * 3) This also orders the write to mode from any reads to the page
8910          * tables done while the VCPU is running.  Please see the comment
8911          * in kvm_flush_remote_tlbs.
8912          */
8913         smp_mb__after_srcu_read_unlock();
8914
8915         /*
8916          * This handles the case where a posted interrupt was
8917          * notified with kvm_vcpu_kick.
8918          */
8919         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8920                 kvm_x86_ops.sync_pir_to_irr(vcpu);
8921
8922         if (kvm_vcpu_exit_request(vcpu)) {
8923                 vcpu->mode = OUTSIDE_GUEST_MODE;
8924                 smp_wmb();
8925                 local_irq_enable();
8926                 preempt_enable();
8927                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8928                 r = 1;
8929                 goto cancel_injection;
8930         }
8931
8932         if (req_immediate_exit) {
8933                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8934                 kvm_x86_ops.request_immediate_exit(vcpu);
8935         }
8936
8937         trace_kvm_entry(vcpu);
8938
8939         fpregs_assert_state_consistent();
8940         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8941                 switch_fpu_return();
8942
8943         if (unlikely(vcpu->arch.switch_db_regs)) {
8944                 set_debugreg(0, 7);
8945                 set_debugreg(vcpu->arch.eff_db[0], 0);
8946                 set_debugreg(vcpu->arch.eff_db[1], 1);
8947                 set_debugreg(vcpu->arch.eff_db[2], 2);
8948                 set_debugreg(vcpu->arch.eff_db[3], 3);
8949                 set_debugreg(vcpu->arch.dr6, 6);
8950                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8951         }
8952
8953         exit_fastpath = kvm_x86_ops.run(vcpu);
8954
8955         /*
8956          * Do this here before restoring debug registers on the host.  And
8957          * since we do this before handling the vmexit, a DR access vmexit
8958          * can (a) read the correct value of the debug registers, (b) set
8959          * KVM_DEBUGREG_WONT_EXIT again.
8960          */
8961         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8962                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8963                 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8964                 kvm_update_dr0123(vcpu);
8965                 kvm_update_dr7(vcpu);
8966                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8967         }
8968
8969         /*
8970          * If the guest has used debug registers, at least dr7
8971          * will be disabled while returning to the host.
8972          * If we don't have active breakpoints in the host, we don't
8973          * care about the messed up debug address registers. But if
8974          * we have some of them active, restore the old state.
8975          */
8976         if (hw_breakpoint_active())
8977                 hw_breakpoint_restore();
8978
8979         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8980         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8981
8982         vcpu->mode = OUTSIDE_GUEST_MODE;
8983         smp_wmb();
8984
8985         kvm_x86_ops.handle_exit_irqoff(vcpu);
8986
8987         /*
8988          * Consume any pending interrupts, including the possible source of
8989          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8990          * An instruction is required after local_irq_enable() to fully unblock
8991          * interrupts on processors that implement an interrupt shadow, the
8992          * stat.exits increment will do nicely.
8993          */
8994         kvm_before_interrupt(vcpu);
8995         local_irq_enable();
8996         ++vcpu->stat.exits;
8997         local_irq_disable();
8998         kvm_after_interrupt(vcpu);
8999
9000         if (lapic_in_kernel(vcpu)) {
9001                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9002                 if (delta != S64_MIN) {
9003                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9004                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9005                 }
9006         }
9007
9008         local_irq_enable();
9009         preempt_enable();
9010
9011         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9012
9013         /*
9014          * Profile KVM exit RIPs:
9015          */
9016         if (unlikely(prof_on == KVM_PROFILING)) {
9017                 unsigned long rip = kvm_rip_read(vcpu);
9018                 profile_hit(KVM_PROFILING, (void *)rip);
9019         }
9020
9021         if (unlikely(vcpu->arch.tsc_always_catchup))
9022                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9023
9024         if (vcpu->arch.apic_attention)
9025                 kvm_lapic_sync_from_vapic(vcpu);
9026
9027         r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9028         return r;
9029
9030 cancel_injection:
9031         if (req_immediate_exit)
9032                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9033         kvm_x86_ops.cancel_injection(vcpu);
9034         if (unlikely(vcpu->arch.apic_attention))
9035                 kvm_lapic_sync_from_vapic(vcpu);
9036 out:
9037         return r;
9038 }
9039
9040 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9041 {
9042         if (!kvm_arch_vcpu_runnable(vcpu) &&
9043             (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9044                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9045                 kvm_vcpu_block(vcpu);
9046                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9047
9048                 if (kvm_x86_ops.post_block)
9049                         kvm_x86_ops.post_block(vcpu);
9050
9051                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9052                         return 1;
9053         }
9054
9055         kvm_apic_accept_events(vcpu);
9056         switch(vcpu->arch.mp_state) {
9057         case KVM_MP_STATE_HALTED:
9058                 vcpu->arch.pv.pv_unhalted = false;
9059                 vcpu->arch.mp_state =
9060                         KVM_MP_STATE_RUNNABLE;
9061                 fallthrough;
9062         case KVM_MP_STATE_RUNNABLE:
9063                 vcpu->arch.apf.halted = false;
9064                 break;
9065         case KVM_MP_STATE_INIT_RECEIVED:
9066                 break;
9067         default:
9068                 return -EINTR;
9069         }
9070         return 1;
9071 }
9072
9073 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9074 {
9075         if (is_guest_mode(vcpu))
9076                 kvm_x86_ops.nested_ops->check_events(vcpu);
9077
9078         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9079                 !vcpu->arch.apf.halted);
9080 }
9081
9082 static int vcpu_run(struct kvm_vcpu *vcpu)
9083 {
9084         int r;
9085         struct kvm *kvm = vcpu->kvm;
9086
9087         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9088         vcpu->arch.l1tf_flush_l1d = true;
9089
9090         for (;;) {
9091                 if (kvm_vcpu_running(vcpu)) {
9092                         r = vcpu_enter_guest(vcpu);
9093                 } else {
9094                         r = vcpu_block(kvm, vcpu);
9095                 }
9096
9097                 if (r <= 0)
9098                         break;
9099
9100                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9101                 if (kvm_cpu_has_pending_timer(vcpu))
9102                         kvm_inject_pending_timer_irqs(vcpu);
9103
9104                 if (dm_request_for_irq_injection(vcpu) &&
9105                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9106                         r = 0;
9107                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9108                         ++vcpu->stat.request_irq_exits;
9109                         break;
9110                 }
9111
9112                 if (__xfer_to_guest_mode_work_pending()) {
9113                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9114                         r = xfer_to_guest_mode_handle_work(vcpu);
9115                         if (r)
9116                                 return r;
9117                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9118                 }
9119         }
9120
9121         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9122
9123         return r;
9124 }
9125
9126 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9127 {
9128         int r;
9129
9130         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9131         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9132         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9133         return r;
9134 }
9135
9136 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9137 {
9138         BUG_ON(!vcpu->arch.pio.count);
9139
9140         return complete_emulated_io(vcpu);
9141 }
9142
9143 /*
9144  * Implements the following, as a state machine:
9145  *
9146  * read:
9147  *   for each fragment
9148  *     for each mmio piece in the fragment
9149  *       write gpa, len
9150  *       exit
9151  *       copy data
9152  *   execute insn
9153  *
9154  * write:
9155  *   for each fragment
9156  *     for each mmio piece in the fragment
9157  *       write gpa, len
9158  *       copy data
9159  *       exit
9160  */
9161 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9162 {
9163         struct kvm_run *run = vcpu->run;
9164         struct kvm_mmio_fragment *frag;
9165         unsigned len;
9166
9167         BUG_ON(!vcpu->mmio_needed);
9168
9169         /* Complete previous fragment */
9170         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9171         len = min(8u, frag->len);
9172         if (!vcpu->mmio_is_write)
9173                 memcpy(frag->data, run->mmio.data, len);
9174
9175         if (frag->len <= 8) {
9176                 /* Switch to the next fragment. */
9177                 frag++;
9178                 vcpu->mmio_cur_fragment++;
9179         } else {
9180                 /* Go forward to the next mmio piece. */
9181                 frag->data += len;
9182                 frag->gpa += len;
9183                 frag->len -= len;
9184         }
9185
9186         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9187                 vcpu->mmio_needed = 0;
9188
9189                 /* FIXME: return into emulator if single-stepping.  */
9190                 if (vcpu->mmio_is_write)
9191                         return 1;
9192                 vcpu->mmio_read_completed = 1;
9193                 return complete_emulated_io(vcpu);
9194         }
9195
9196         run->exit_reason = KVM_EXIT_MMIO;
9197         run->mmio.phys_addr = frag->gpa;
9198         if (vcpu->mmio_is_write)
9199                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9200         run->mmio.len = min(8u, frag->len);
9201         run->mmio.is_write = vcpu->mmio_is_write;
9202         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9203         return 0;
9204 }
9205
9206 static void kvm_save_current_fpu(struct fpu *fpu)
9207 {
9208         /*
9209          * If the target FPU state is not resident in the CPU registers, just
9210          * memcpy() from current, else save CPU state directly to the target.
9211          */
9212         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9213                 memcpy(&fpu->state, &current->thread.fpu.state,
9214                        fpu_kernel_xstate_size);
9215         else
9216                 copy_fpregs_to_fpstate(fpu);
9217 }
9218
9219 /* Swap (qemu) user FPU context for the guest FPU context. */
9220 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9221 {
9222         fpregs_lock();
9223
9224         kvm_save_current_fpu(vcpu->arch.user_fpu);
9225
9226         /* PKRU is separately restored in kvm_x86_ops.run.  */
9227         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9228                                 ~XFEATURE_MASK_PKRU);
9229
9230         fpregs_mark_activate();
9231         fpregs_unlock();
9232
9233         trace_kvm_fpu(1);
9234 }
9235
9236 /* When vcpu_run ends, restore user space FPU context. */
9237 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9238 {
9239         fpregs_lock();
9240
9241         kvm_save_current_fpu(vcpu->arch.guest_fpu);
9242
9243         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9244
9245         fpregs_mark_activate();
9246         fpregs_unlock();
9247
9248         ++vcpu->stat.fpu_reload;
9249         trace_kvm_fpu(0);
9250 }
9251
9252 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9253 {
9254         struct kvm_run *kvm_run = vcpu->run;
9255         int r;
9256
9257         vcpu_load(vcpu);
9258         kvm_sigset_activate(vcpu);
9259         kvm_load_guest_fpu(vcpu);
9260
9261         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9262                 if (kvm_run->immediate_exit) {
9263                         r = -EINTR;
9264                         goto out;
9265                 }
9266                 kvm_vcpu_block(vcpu);
9267                 kvm_apic_accept_events(vcpu);
9268                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9269                 r = -EAGAIN;
9270                 if (signal_pending(current)) {
9271                         r = -EINTR;
9272                         kvm_run->exit_reason = KVM_EXIT_INTR;
9273                         ++vcpu->stat.signal_exits;
9274                 }
9275                 goto out;
9276         }
9277
9278         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9279                 r = -EINVAL;
9280                 goto out;
9281         }
9282
9283         if (kvm_run->kvm_dirty_regs) {
9284                 r = sync_regs(vcpu);
9285                 if (r != 0)
9286                         goto out;
9287         }
9288
9289         /* re-sync apic's tpr */
9290         if (!lapic_in_kernel(vcpu)) {
9291                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9292                         r = -EINVAL;
9293                         goto out;
9294                 }
9295         }
9296
9297         if (unlikely(vcpu->arch.complete_userspace_io)) {
9298                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9299                 vcpu->arch.complete_userspace_io = NULL;
9300                 r = cui(vcpu);
9301                 if (r <= 0)
9302                         goto out;
9303         } else
9304                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9305
9306         if (kvm_run->immediate_exit)
9307                 r = -EINTR;
9308         else
9309                 r = vcpu_run(vcpu);
9310
9311 out:
9312         kvm_put_guest_fpu(vcpu);
9313         if (kvm_run->kvm_valid_regs)
9314                 store_regs(vcpu);
9315         post_kvm_run_save(vcpu);
9316         kvm_sigset_deactivate(vcpu);
9317
9318         vcpu_put(vcpu);
9319         return r;
9320 }
9321
9322 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9323 {
9324         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9325                 /*
9326                  * We are here if userspace calls get_regs() in the middle of
9327                  * instruction emulation. Registers state needs to be copied
9328                  * back from emulation context to vcpu. Userspace shouldn't do
9329                  * that usually, but some bad designed PV devices (vmware
9330                  * backdoor interface) need this to work
9331                  */
9332                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9333                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9334         }
9335         regs->rax = kvm_rax_read(vcpu);
9336         regs->rbx = kvm_rbx_read(vcpu);
9337         regs->rcx = kvm_rcx_read(vcpu);
9338         regs->rdx = kvm_rdx_read(vcpu);
9339         regs->rsi = kvm_rsi_read(vcpu);
9340         regs->rdi = kvm_rdi_read(vcpu);
9341         regs->rsp = kvm_rsp_read(vcpu);
9342         regs->rbp = kvm_rbp_read(vcpu);
9343 #ifdef CONFIG_X86_64
9344         regs->r8 = kvm_r8_read(vcpu);
9345         regs->r9 = kvm_r9_read(vcpu);
9346         regs->r10 = kvm_r10_read(vcpu);
9347         regs->r11 = kvm_r11_read(vcpu);
9348         regs->r12 = kvm_r12_read(vcpu);
9349         regs->r13 = kvm_r13_read(vcpu);
9350         regs->r14 = kvm_r14_read(vcpu);
9351         regs->r15 = kvm_r15_read(vcpu);
9352 #endif
9353
9354         regs->rip = kvm_rip_read(vcpu);
9355         regs->rflags = kvm_get_rflags(vcpu);
9356 }
9357
9358 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9359 {
9360         vcpu_load(vcpu);
9361         __get_regs(vcpu, regs);
9362         vcpu_put(vcpu);
9363         return 0;
9364 }
9365
9366 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9367 {
9368         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9369         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9370
9371         kvm_rax_write(vcpu, regs->rax);
9372         kvm_rbx_write(vcpu, regs->rbx);
9373         kvm_rcx_write(vcpu, regs->rcx);
9374         kvm_rdx_write(vcpu, regs->rdx);
9375         kvm_rsi_write(vcpu, regs->rsi);
9376         kvm_rdi_write(vcpu, regs->rdi);
9377         kvm_rsp_write(vcpu, regs->rsp);
9378         kvm_rbp_write(vcpu, regs->rbp);
9379 #ifdef CONFIG_X86_64
9380         kvm_r8_write(vcpu, regs->r8);
9381         kvm_r9_write(vcpu, regs->r9);
9382         kvm_r10_write(vcpu, regs->r10);
9383         kvm_r11_write(vcpu, regs->r11);
9384         kvm_r12_write(vcpu, regs->r12);
9385         kvm_r13_write(vcpu, regs->r13);
9386         kvm_r14_write(vcpu, regs->r14);
9387         kvm_r15_write(vcpu, regs->r15);
9388 #endif
9389
9390         kvm_rip_write(vcpu, regs->rip);
9391         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9392
9393         vcpu->arch.exception.pending = false;
9394
9395         kvm_make_request(KVM_REQ_EVENT, vcpu);
9396 }
9397
9398 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9399 {
9400         vcpu_load(vcpu);
9401         __set_regs(vcpu, regs);
9402         vcpu_put(vcpu);
9403         return 0;
9404 }
9405
9406 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9407 {
9408         struct kvm_segment cs;
9409
9410         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9411         *db = cs.db;
9412         *l = cs.l;
9413 }
9414 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9415
9416 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9417 {
9418         struct desc_ptr dt;
9419
9420         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9421         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9422         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9423         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9424         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9425         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9426
9427         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9428         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9429
9430         kvm_x86_ops.get_idt(vcpu, &dt);
9431         sregs->idt.limit = dt.size;
9432         sregs->idt.base = dt.address;
9433         kvm_x86_ops.get_gdt(vcpu, &dt);
9434         sregs->gdt.limit = dt.size;
9435         sregs->gdt.base = dt.address;
9436
9437         sregs->cr0 = kvm_read_cr0(vcpu);
9438         sregs->cr2 = vcpu->arch.cr2;
9439         sregs->cr3 = kvm_read_cr3(vcpu);
9440         sregs->cr4 = kvm_read_cr4(vcpu);
9441         sregs->cr8 = kvm_get_cr8(vcpu);
9442         sregs->efer = vcpu->arch.efer;
9443         sregs->apic_base = kvm_get_apic_base(vcpu);
9444
9445         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9446
9447         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9448                 set_bit(vcpu->arch.interrupt.nr,
9449                         (unsigned long *)sregs->interrupt_bitmap);
9450 }
9451
9452 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9453                                   struct kvm_sregs *sregs)
9454 {
9455         vcpu_load(vcpu);
9456         __get_sregs(vcpu, sregs);
9457         vcpu_put(vcpu);
9458         return 0;
9459 }
9460
9461 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9462                                     struct kvm_mp_state *mp_state)
9463 {
9464         vcpu_load(vcpu);
9465         if (kvm_mpx_supported())
9466                 kvm_load_guest_fpu(vcpu);
9467
9468         kvm_apic_accept_events(vcpu);
9469         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9470                                         vcpu->arch.pv.pv_unhalted)
9471                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9472         else
9473                 mp_state->mp_state = vcpu->arch.mp_state;
9474
9475         if (kvm_mpx_supported())
9476                 kvm_put_guest_fpu(vcpu);
9477         vcpu_put(vcpu);
9478         return 0;
9479 }
9480
9481 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9482                                     struct kvm_mp_state *mp_state)
9483 {
9484         int ret = -EINVAL;
9485
9486         vcpu_load(vcpu);
9487
9488         if (!lapic_in_kernel(vcpu) &&
9489             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9490                 goto out;
9491
9492         /*
9493          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9494          * INIT state; latched init should be reported using
9495          * KVM_SET_VCPU_EVENTS, so reject it here.
9496          */
9497         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9498             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9499              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9500                 goto out;
9501
9502         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9503                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9504                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9505         } else
9506                 vcpu->arch.mp_state = mp_state->mp_state;
9507         kvm_make_request(KVM_REQ_EVENT, vcpu);
9508
9509         ret = 0;
9510 out:
9511         vcpu_put(vcpu);
9512         return ret;
9513 }
9514
9515 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9516                     int reason, bool has_error_code, u32 error_code)
9517 {
9518         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9519         int ret;
9520
9521         init_emulate_ctxt(vcpu);
9522
9523         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9524                                    has_error_code, error_code);
9525         if (ret) {
9526                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9527                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9528                 vcpu->run->internal.ndata = 0;
9529                 return 0;
9530         }
9531
9532         kvm_rip_write(vcpu, ctxt->eip);
9533         kvm_set_rflags(vcpu, ctxt->eflags);
9534         return 1;
9535 }
9536 EXPORT_SYMBOL_GPL(kvm_task_switch);
9537
9538 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9539 {
9540         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9541                 /*
9542                  * When EFER.LME and CR0.PG are set, the processor is in
9543                  * 64-bit mode (though maybe in a 32-bit code segment).
9544                  * CR4.PAE and EFER.LMA must be set.
9545                  */
9546                 if (!(sregs->cr4 & X86_CR4_PAE)
9547                     || !(sregs->efer & EFER_LMA))
9548                         return -EINVAL;
9549         } else {
9550                 /*
9551                  * Not in 64-bit mode: EFER.LMA is clear and the code
9552                  * segment cannot be 64-bit.
9553                  */
9554                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9555                         return -EINVAL;
9556         }
9557
9558         return kvm_valid_cr4(vcpu, sregs->cr4);
9559 }
9560
9561 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9562 {
9563         struct msr_data apic_base_msr;
9564         int mmu_reset_needed = 0;
9565         int cpuid_update_needed = 0;
9566         int pending_vec, max_bits, idx;
9567         struct desc_ptr dt;
9568         int ret = -EINVAL;
9569
9570         if (kvm_valid_sregs(vcpu, sregs))
9571                 goto out;
9572
9573         apic_base_msr.data = sregs->apic_base;
9574         apic_base_msr.host_initiated = true;
9575         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9576                 goto out;
9577
9578         dt.size = sregs->idt.limit;
9579         dt.address = sregs->idt.base;
9580         kvm_x86_ops.set_idt(vcpu, &dt);
9581         dt.size = sregs->gdt.limit;
9582         dt.address = sregs->gdt.base;
9583         kvm_x86_ops.set_gdt(vcpu, &dt);
9584
9585         vcpu->arch.cr2 = sregs->cr2;
9586         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9587         vcpu->arch.cr3 = sregs->cr3;
9588         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9589
9590         kvm_set_cr8(vcpu, sregs->cr8);
9591
9592         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9593         kvm_x86_ops.set_efer(vcpu, sregs->efer);
9594
9595         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9596         kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9597         vcpu->arch.cr0 = sregs->cr0;
9598
9599         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9600         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9601                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9602         kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9603         if (cpuid_update_needed)
9604                 kvm_update_cpuid_runtime(vcpu);
9605
9606         idx = srcu_read_lock(&vcpu->kvm->srcu);
9607         if (is_pae_paging(vcpu)) {
9608                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9609                 mmu_reset_needed = 1;
9610         }
9611         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9612
9613         if (mmu_reset_needed)
9614                 kvm_mmu_reset_context(vcpu);
9615
9616         max_bits = KVM_NR_INTERRUPTS;
9617         pending_vec = find_first_bit(
9618                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9619         if (pending_vec < max_bits) {
9620                 kvm_queue_interrupt(vcpu, pending_vec, false);
9621                 pr_debug("Set back pending irq %d\n", pending_vec);
9622         }
9623
9624         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9625         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9626         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9627         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9628         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9629         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9630
9631         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9632         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9633
9634         update_cr8_intercept(vcpu);
9635
9636         /* Older userspace won't unhalt the vcpu on reset. */
9637         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9638             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9639             !is_protmode(vcpu))
9640                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9641
9642         kvm_make_request(KVM_REQ_EVENT, vcpu);
9643
9644         ret = 0;
9645 out:
9646         return ret;
9647 }
9648
9649 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9650                                   struct kvm_sregs *sregs)
9651 {
9652         int ret;
9653
9654         vcpu_load(vcpu);
9655         ret = __set_sregs(vcpu, sregs);
9656         vcpu_put(vcpu);
9657         return ret;
9658 }
9659
9660 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9661                                         struct kvm_guest_debug *dbg)
9662 {
9663         unsigned long rflags;
9664         int i, r;
9665
9666         vcpu_load(vcpu);
9667
9668         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9669                 r = -EBUSY;
9670                 if (vcpu->arch.exception.pending)
9671                         goto out;
9672                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9673                         kvm_queue_exception(vcpu, DB_VECTOR);
9674                 else
9675                         kvm_queue_exception(vcpu, BP_VECTOR);
9676         }
9677
9678         /*
9679          * Read rflags as long as potentially injected trace flags are still
9680          * filtered out.
9681          */
9682         rflags = kvm_get_rflags(vcpu);
9683
9684         vcpu->guest_debug = dbg->control;
9685         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9686                 vcpu->guest_debug = 0;
9687
9688         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9689                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9690                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9691                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9692         } else {
9693                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9694                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9695         }
9696         kvm_update_dr7(vcpu);
9697
9698         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9699                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9700                         get_segment_base(vcpu, VCPU_SREG_CS);
9701
9702         /*
9703          * Trigger an rflags update that will inject or remove the trace
9704          * flags.
9705          */
9706         kvm_set_rflags(vcpu, rflags);
9707
9708         kvm_x86_ops.update_exception_bitmap(vcpu);
9709
9710         r = 0;
9711
9712 out:
9713         vcpu_put(vcpu);
9714         return r;
9715 }
9716
9717 /*
9718  * Translate a guest virtual address to a guest physical address.
9719  */
9720 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9721                                     struct kvm_translation *tr)
9722 {
9723         unsigned long vaddr = tr->linear_address;
9724         gpa_t gpa;
9725         int idx;
9726
9727         vcpu_load(vcpu);
9728
9729         idx = srcu_read_lock(&vcpu->kvm->srcu);
9730         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9731         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9732         tr->physical_address = gpa;
9733         tr->valid = gpa != UNMAPPED_GVA;
9734         tr->writeable = 1;
9735         tr->usermode = 0;
9736
9737         vcpu_put(vcpu);
9738         return 0;
9739 }
9740
9741 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9742 {
9743         struct fxregs_state *fxsave;
9744
9745         vcpu_load(vcpu);
9746
9747         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9748         memcpy(fpu->fpr, fxsave->st_space, 128);
9749         fpu->fcw = fxsave->cwd;
9750         fpu->fsw = fxsave->swd;
9751         fpu->ftwx = fxsave->twd;
9752         fpu->last_opcode = fxsave->fop;
9753         fpu->last_ip = fxsave->rip;
9754         fpu->last_dp = fxsave->rdp;
9755         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9756
9757         vcpu_put(vcpu);
9758         return 0;
9759 }
9760
9761 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9762 {
9763         struct fxregs_state *fxsave;
9764
9765         vcpu_load(vcpu);
9766
9767         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9768
9769         memcpy(fxsave->st_space, fpu->fpr, 128);
9770         fxsave->cwd = fpu->fcw;
9771         fxsave->swd = fpu->fsw;
9772         fxsave->twd = fpu->ftwx;
9773         fxsave->fop = fpu->last_opcode;
9774         fxsave->rip = fpu->last_ip;
9775         fxsave->rdp = fpu->last_dp;
9776         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9777
9778         vcpu_put(vcpu);
9779         return 0;
9780 }
9781
9782 static void store_regs(struct kvm_vcpu *vcpu)
9783 {
9784         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9785
9786         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9787                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9788
9789         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9790                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9791
9792         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9793                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9794                                 vcpu, &vcpu->run->s.regs.events);
9795 }
9796
9797 static int sync_regs(struct kvm_vcpu *vcpu)
9798 {
9799         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9800                 return -EINVAL;
9801
9802         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9803                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9804                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9805         }
9806         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9807                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9808                         return -EINVAL;
9809                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9810         }
9811         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9812                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9813                                 vcpu, &vcpu->run->s.regs.events))
9814                         return -EINVAL;
9815                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9816         }
9817
9818         return 0;
9819 }
9820
9821 static void fx_init(struct kvm_vcpu *vcpu)
9822 {
9823         fpstate_init(&vcpu->arch.guest_fpu->state);
9824         if (boot_cpu_has(X86_FEATURE_XSAVES))
9825                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9826                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9827
9828         /*
9829          * Ensure guest xcr0 is valid for loading
9830          */
9831         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9832
9833         vcpu->arch.cr0 |= X86_CR0_ET;
9834 }
9835
9836 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9837 {
9838         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9839                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9840                              "guest TSC will not be reliable\n");
9841
9842         return 0;
9843 }
9844
9845 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9846 {
9847         struct page *page;
9848         int r;
9849
9850         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9851                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9852         else
9853                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9854
9855         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9856
9857         r = kvm_mmu_create(vcpu);
9858         if (r < 0)
9859                 return r;
9860
9861         if (irqchip_in_kernel(vcpu->kvm)) {
9862                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9863                 if (r < 0)
9864                         goto fail_mmu_destroy;
9865                 if (kvm_apicv_activated(vcpu->kvm))
9866                         vcpu->arch.apicv_active = true;
9867         } else
9868                 static_key_slow_inc(&kvm_no_apic_vcpu);
9869
9870         r = -ENOMEM;
9871
9872         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9873         if (!page)
9874                 goto fail_free_lapic;
9875         vcpu->arch.pio_data = page_address(page);
9876
9877         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9878                                        GFP_KERNEL_ACCOUNT);
9879         if (!vcpu->arch.mce_banks)
9880                 goto fail_free_pio_data;
9881         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9882
9883         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9884                                 GFP_KERNEL_ACCOUNT))
9885                 goto fail_free_mce_banks;
9886
9887         if (!alloc_emulate_ctxt(vcpu))
9888                 goto free_wbinvd_dirty_mask;
9889
9890         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9891                                                 GFP_KERNEL_ACCOUNT);
9892         if (!vcpu->arch.user_fpu) {
9893                 pr_err("kvm: failed to allocate userspace's fpu\n");
9894                 goto free_emulate_ctxt;
9895         }
9896
9897         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9898                                                  GFP_KERNEL_ACCOUNT);
9899         if (!vcpu->arch.guest_fpu) {
9900                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9901                 goto free_user_fpu;
9902         }
9903         fx_init(vcpu);
9904
9905         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9906
9907         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9908
9909         kvm_async_pf_hash_reset(vcpu);
9910         kvm_pmu_init(vcpu);
9911
9912         vcpu->arch.pending_external_vector = -1;
9913         vcpu->arch.preempted_in_kernel = false;
9914
9915         kvm_hv_vcpu_init(vcpu);
9916
9917         r = kvm_x86_ops.vcpu_create(vcpu);
9918         if (r)
9919                 goto free_guest_fpu;
9920
9921         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9922         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9923         kvm_vcpu_mtrr_init(vcpu);
9924         vcpu_load(vcpu);
9925         kvm_vcpu_reset(vcpu, false);
9926         kvm_init_mmu(vcpu, false);
9927         vcpu_put(vcpu);
9928         return 0;
9929
9930 free_guest_fpu:
9931         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9932 free_user_fpu:
9933         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9934 free_emulate_ctxt:
9935         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9936 free_wbinvd_dirty_mask:
9937         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9938 fail_free_mce_banks:
9939         kfree(vcpu->arch.mce_banks);
9940 fail_free_pio_data:
9941         free_page((unsigned long)vcpu->arch.pio_data);
9942 fail_free_lapic:
9943         kvm_free_lapic(vcpu);
9944 fail_mmu_destroy:
9945         kvm_mmu_destroy(vcpu);
9946         return r;
9947 }
9948
9949 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9950 {
9951         struct kvm *kvm = vcpu->kvm;
9952
9953         kvm_hv_vcpu_postcreate(vcpu);
9954
9955         if (mutex_lock_killable(&vcpu->mutex))
9956                 return;
9957         vcpu_load(vcpu);
9958         kvm_synchronize_tsc(vcpu, 0);
9959         vcpu_put(vcpu);
9960
9961         /* poll control enabled by default */
9962         vcpu->arch.msr_kvm_poll_control = 1;
9963
9964         mutex_unlock(&vcpu->mutex);
9965
9966         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9967                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9968                                                 KVMCLOCK_SYNC_PERIOD);
9969 }
9970
9971 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9972 {
9973         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9974         int idx;
9975
9976         kvm_release_pfn(cache->pfn, cache->dirty, cache);
9977
9978         kvmclock_reset(vcpu);
9979
9980         kvm_x86_ops.vcpu_free(vcpu);
9981
9982         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9983         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9984         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9985         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9986
9987         kvm_hv_vcpu_uninit(vcpu);
9988         kvm_pmu_destroy(vcpu);
9989         kfree(vcpu->arch.mce_banks);
9990         kvm_free_lapic(vcpu);
9991         idx = srcu_read_lock(&vcpu->kvm->srcu);
9992         kvm_mmu_destroy(vcpu);
9993         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9994         free_page((unsigned long)vcpu->arch.pio_data);
9995         kvfree(vcpu->arch.cpuid_entries);
9996         if (!lapic_in_kernel(vcpu))
9997                 static_key_slow_dec(&kvm_no_apic_vcpu);
9998 }
9999
10000 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10001 {
10002         kvm_lapic_reset(vcpu, init_event);
10003
10004         vcpu->arch.hflags = 0;
10005
10006         vcpu->arch.smi_pending = 0;
10007         vcpu->arch.smi_count = 0;
10008         atomic_set(&vcpu->arch.nmi_queued, 0);
10009         vcpu->arch.nmi_pending = 0;
10010         vcpu->arch.nmi_injected = false;
10011         kvm_clear_interrupt_queue(vcpu);
10012         kvm_clear_exception_queue(vcpu);
10013
10014         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10015         kvm_update_dr0123(vcpu);
10016         vcpu->arch.dr6 = DR6_INIT;
10017         vcpu->arch.dr7 = DR7_FIXED_1;
10018         kvm_update_dr7(vcpu);
10019
10020         vcpu->arch.cr2 = 0;
10021
10022         kvm_make_request(KVM_REQ_EVENT, vcpu);
10023         vcpu->arch.apf.msr_en_val = 0;
10024         vcpu->arch.apf.msr_int_val = 0;
10025         vcpu->arch.st.msr_val = 0;
10026
10027         kvmclock_reset(vcpu);
10028
10029         kvm_clear_async_pf_completion_queue(vcpu);
10030         kvm_async_pf_hash_reset(vcpu);
10031         vcpu->arch.apf.halted = false;
10032
10033         if (kvm_mpx_supported()) {
10034                 void *mpx_state_buffer;
10035
10036                 /*
10037                  * To avoid have the INIT path from kvm_apic_has_events() that be
10038                  * called with loaded FPU and does not let userspace fix the state.
10039                  */
10040                 if (init_event)
10041                         kvm_put_guest_fpu(vcpu);
10042                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10043                                         XFEATURE_BNDREGS);
10044                 if (mpx_state_buffer)
10045                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10046                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10047                                         XFEATURE_BNDCSR);
10048                 if (mpx_state_buffer)
10049                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10050                 if (init_event)
10051                         kvm_load_guest_fpu(vcpu);
10052         }
10053
10054         if (!init_event) {
10055                 kvm_pmu_reset(vcpu);
10056                 vcpu->arch.smbase = 0x30000;
10057
10058                 vcpu->arch.msr_misc_features_enables = 0;
10059
10060                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10061         }
10062
10063         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10064         vcpu->arch.regs_avail = ~0;
10065         vcpu->arch.regs_dirty = ~0;
10066
10067         vcpu->arch.ia32_xss = 0;
10068
10069         kvm_x86_ops.vcpu_reset(vcpu, init_event);
10070 }
10071
10072 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10073 {
10074         struct kvm_segment cs;
10075
10076         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10077         cs.selector = vector << 8;
10078         cs.base = vector << 12;
10079         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10080         kvm_rip_write(vcpu, 0);
10081 }
10082
10083 int kvm_arch_hardware_enable(void)
10084 {
10085         struct kvm *kvm;
10086         struct kvm_vcpu *vcpu;
10087         int i;
10088         int ret;
10089         u64 local_tsc;
10090         u64 max_tsc = 0;
10091         bool stable, backwards_tsc = false;
10092
10093         kvm_user_return_msr_cpu_online();
10094         ret = kvm_x86_ops.hardware_enable();
10095         if (ret != 0)
10096                 return ret;
10097
10098         local_tsc = rdtsc();
10099         stable = !kvm_check_tsc_unstable();
10100         list_for_each_entry(kvm, &vm_list, vm_list) {
10101                 kvm_for_each_vcpu(i, vcpu, kvm) {
10102                         if (!stable && vcpu->cpu == smp_processor_id())
10103                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10104                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10105                                 backwards_tsc = true;
10106                                 if (vcpu->arch.last_host_tsc > max_tsc)
10107                                         max_tsc = vcpu->arch.last_host_tsc;
10108                         }
10109                 }
10110         }
10111
10112         /*
10113          * Sometimes, even reliable TSCs go backwards.  This happens on
10114          * platforms that reset TSC during suspend or hibernate actions, but
10115          * maintain synchronization.  We must compensate.  Fortunately, we can
10116          * detect that condition here, which happens early in CPU bringup,
10117          * before any KVM threads can be running.  Unfortunately, we can't
10118          * bring the TSCs fully up to date with real time, as we aren't yet far
10119          * enough into CPU bringup that we know how much real time has actually
10120          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10121          * variables that haven't been updated yet.
10122          *
10123          * So we simply find the maximum observed TSC above, then record the
10124          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10125          * the adjustment will be applied.  Note that we accumulate
10126          * adjustments, in case multiple suspend cycles happen before some VCPU
10127          * gets a chance to run again.  In the event that no KVM threads get a
10128          * chance to run, we will miss the entire elapsed period, as we'll have
10129          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10130          * loose cycle time.  This isn't too big a deal, since the loss will be
10131          * uniform across all VCPUs (not to mention the scenario is extremely
10132          * unlikely). It is possible that a second hibernate recovery happens
10133          * much faster than a first, causing the observed TSC here to be
10134          * smaller; this would require additional padding adjustment, which is
10135          * why we set last_host_tsc to the local tsc observed here.
10136          *
10137          * N.B. - this code below runs only on platforms with reliable TSC,
10138          * as that is the only way backwards_tsc is set above.  Also note
10139          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10140          * have the same delta_cyc adjustment applied if backwards_tsc
10141          * is detected.  Note further, this adjustment is only done once,
10142          * as we reset last_host_tsc on all VCPUs to stop this from being
10143          * called multiple times (one for each physical CPU bringup).
10144          *
10145          * Platforms with unreliable TSCs don't have to deal with this, they
10146          * will be compensated by the logic in vcpu_load, which sets the TSC to
10147          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10148          * guarantee that they stay in perfect synchronization.
10149          */
10150         if (backwards_tsc) {
10151                 u64 delta_cyc = max_tsc - local_tsc;
10152                 list_for_each_entry(kvm, &vm_list, vm_list) {
10153                         kvm->arch.backwards_tsc_observed = true;
10154                         kvm_for_each_vcpu(i, vcpu, kvm) {
10155                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10156                                 vcpu->arch.last_host_tsc = local_tsc;
10157                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10158                         }
10159
10160                         /*
10161                          * We have to disable TSC offset matching.. if you were
10162                          * booting a VM while issuing an S4 host suspend....
10163                          * you may have some problem.  Solving this issue is
10164                          * left as an exercise to the reader.
10165                          */
10166                         kvm->arch.last_tsc_nsec = 0;
10167                         kvm->arch.last_tsc_write = 0;
10168                 }
10169
10170         }
10171         return 0;
10172 }
10173
10174 void kvm_arch_hardware_disable(void)
10175 {
10176         kvm_x86_ops.hardware_disable();
10177         drop_user_return_notifiers();
10178 }
10179
10180 int kvm_arch_hardware_setup(void *opaque)
10181 {
10182         struct kvm_x86_init_ops *ops = opaque;
10183         int r;
10184
10185         rdmsrl_safe(MSR_EFER, &host_efer);
10186
10187         if (boot_cpu_has(X86_FEATURE_XSAVES))
10188                 rdmsrl(MSR_IA32_XSS, host_xss);
10189
10190         r = ops->hardware_setup();
10191         if (r != 0)
10192                 return r;
10193
10194         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10195
10196         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10197                 supported_xss = 0;
10198
10199 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10200         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10201 #undef __kvm_cpu_cap_has
10202
10203         if (kvm_has_tsc_control) {
10204                 /*
10205                  * Make sure the user can only configure tsc_khz values that
10206                  * fit into a signed integer.
10207                  * A min value is not calculated because it will always
10208                  * be 1 on all machines.
10209                  */
10210                 u64 max = min(0x7fffffffULL,
10211                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10212                 kvm_max_guest_tsc_khz = max;
10213
10214                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10215         }
10216
10217         kvm_init_msr_list();
10218         return 0;
10219 }
10220
10221 void kvm_arch_hardware_unsetup(void)
10222 {
10223         kvm_x86_ops.hardware_unsetup();
10224 }
10225
10226 int kvm_arch_check_processor_compat(void *opaque)
10227 {
10228         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10229         struct kvm_x86_init_ops *ops = opaque;
10230
10231         WARN_ON(!irqs_disabled());
10232
10233         if (__cr4_reserved_bits(cpu_has, c) !=
10234             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10235                 return -EIO;
10236
10237         return ops->check_processor_compatibility();
10238 }
10239
10240 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10241 {
10242         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10243 }
10244 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10245
10246 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10247 {
10248         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10249 }
10250
10251 struct static_key kvm_no_apic_vcpu __read_mostly;
10252 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10253
10254 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10255 {
10256         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10257
10258         vcpu->arch.l1tf_flush_l1d = true;
10259         if (pmu->version && unlikely(pmu->event_count)) {
10260                 pmu->need_cleanup = true;
10261                 kvm_make_request(KVM_REQ_PMU, vcpu);
10262         }
10263         kvm_x86_ops.sched_in(vcpu, cpu);
10264 }
10265
10266 void kvm_arch_free_vm(struct kvm *kvm)
10267 {
10268         kfree(kvm->arch.hyperv.hv_pa_pg);
10269         vfree(kvm);
10270 }
10271
10272
10273 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10274 {
10275         if (type)
10276                 return -EINVAL;
10277
10278         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10279         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10280         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10281         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10282         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10283         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10284
10285         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10286         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10287         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10288         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10289                 &kvm->arch.irq_sources_bitmap);
10290
10291         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10292         mutex_init(&kvm->arch.apic_map_lock);
10293         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10294
10295         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10296         pvclock_update_vm_gtod_copy(kvm);
10297
10298         kvm->arch.guest_can_read_msr_platform_info = true;
10299
10300         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10301         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10302
10303         kvm_hv_init_vm(kvm);
10304         kvm_page_track_init(kvm);
10305         kvm_mmu_init_vm(kvm);
10306
10307         return kvm_x86_ops.vm_init(kvm);
10308 }
10309
10310 int kvm_arch_post_init_vm(struct kvm *kvm)
10311 {
10312         return kvm_mmu_post_init_vm(kvm);
10313 }
10314
10315 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10316 {
10317         vcpu_load(vcpu);
10318         kvm_mmu_unload(vcpu);
10319         vcpu_put(vcpu);
10320 }
10321
10322 static void kvm_free_vcpus(struct kvm *kvm)
10323 {
10324         unsigned int i;
10325         struct kvm_vcpu *vcpu;
10326
10327         /*
10328          * Unpin any mmu pages first.
10329          */
10330         kvm_for_each_vcpu(i, vcpu, kvm) {
10331                 kvm_clear_async_pf_completion_queue(vcpu);
10332                 kvm_unload_vcpu_mmu(vcpu);
10333         }
10334         kvm_for_each_vcpu(i, vcpu, kvm)
10335                 kvm_vcpu_destroy(vcpu);
10336
10337         mutex_lock(&kvm->lock);
10338         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10339                 kvm->vcpus[i] = NULL;
10340
10341         atomic_set(&kvm->online_vcpus, 0);
10342         mutex_unlock(&kvm->lock);
10343 }
10344
10345 void kvm_arch_sync_events(struct kvm *kvm)
10346 {
10347         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10348         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10349         kvm_free_pit(kvm);
10350 }
10351
10352 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10353 {
10354         int i, r;
10355         unsigned long hva, old_npages;
10356         struct kvm_memslots *slots = kvm_memslots(kvm);
10357         struct kvm_memory_slot *slot;
10358
10359         /* Called with kvm->slots_lock held.  */
10360         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10361                 return -EINVAL;
10362
10363         slot = id_to_memslot(slots, id);
10364         if (size) {
10365                 if (slot && slot->npages)
10366                         return -EEXIST;
10367
10368                 /*
10369                  * MAP_SHARED to prevent internal slot pages from being moved
10370                  * by fork()/COW.
10371                  */
10372                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10373                               MAP_SHARED | MAP_ANONYMOUS, 0);
10374                 if (IS_ERR((void *)hva))
10375                         return PTR_ERR((void *)hva);
10376         } else {
10377                 if (!slot || !slot->npages)
10378                         return 0;
10379
10380                 old_npages = slot->npages;
10381                 hva = 0;
10382         }
10383
10384         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10385                 struct kvm_userspace_memory_region m;
10386
10387                 m.slot = id | (i << 16);
10388                 m.flags = 0;
10389                 m.guest_phys_addr = gpa;
10390                 m.userspace_addr = hva;
10391                 m.memory_size = size;
10392                 r = __kvm_set_memory_region(kvm, &m);
10393                 if (r < 0)
10394                         return r;
10395         }
10396
10397         if (!size)
10398                 vm_munmap(hva, old_npages * PAGE_SIZE);
10399
10400         return 0;
10401 }
10402 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10403
10404 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10405 {
10406         kvm_mmu_pre_destroy_vm(kvm);
10407 }
10408
10409 void kvm_arch_destroy_vm(struct kvm *kvm)
10410 {
10411         u32 i;
10412
10413         if (current->mm == kvm->mm) {
10414                 /*
10415                  * Free memory regions allocated on behalf of userspace,
10416                  * unless the the memory map has changed due to process exit
10417                  * or fd copying.
10418                  */
10419                 mutex_lock(&kvm->slots_lock);
10420                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10421                                         0, 0);
10422                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10423                                         0, 0);
10424                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10425                 mutex_unlock(&kvm->slots_lock);
10426         }
10427         if (kvm_x86_ops.vm_destroy)
10428                 kvm_x86_ops.vm_destroy(kvm);
10429         for (i = 0; i < kvm->arch.msr_filter.count; i++)
10430                 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10431         kvm_pic_destroy(kvm);
10432         kvm_ioapic_destroy(kvm);
10433         kvm_free_vcpus(kvm);
10434         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10435         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10436         kvm_mmu_uninit_vm(kvm);
10437         kvm_page_track_cleanup(kvm);
10438         kvm_hv_destroy_vm(kvm);
10439 }
10440
10441 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10442 {
10443         int i;
10444
10445         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10446                 kvfree(slot->arch.rmap[i]);
10447                 slot->arch.rmap[i] = NULL;
10448
10449                 if (i == 0)
10450                         continue;
10451
10452                 kvfree(slot->arch.lpage_info[i - 1]);
10453                 slot->arch.lpage_info[i - 1] = NULL;
10454         }
10455
10456         kvm_page_track_free_memslot(slot);
10457 }
10458
10459 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10460                                       unsigned long npages)
10461 {
10462         int i;
10463
10464         /*
10465          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10466          * old arrays will be freed by __kvm_set_memory_region() if installing
10467          * the new memslot is successful.
10468          */
10469         memset(&slot->arch, 0, sizeof(slot->arch));
10470
10471         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10472                 struct kvm_lpage_info *linfo;
10473                 unsigned long ugfn;
10474                 int lpages;
10475                 int level = i + 1;
10476
10477                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10478                                       slot->base_gfn, level) + 1;
10479
10480                 slot->arch.rmap[i] =
10481                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10482                                  GFP_KERNEL_ACCOUNT);
10483                 if (!slot->arch.rmap[i])
10484                         goto out_free;
10485                 if (i == 0)
10486                         continue;
10487
10488                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10489                 if (!linfo)
10490                         goto out_free;
10491
10492                 slot->arch.lpage_info[i - 1] = linfo;
10493
10494                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10495                         linfo[0].disallow_lpage = 1;
10496                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10497                         linfo[lpages - 1].disallow_lpage = 1;
10498                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10499                 /*
10500                  * If the gfn and userspace address are not aligned wrt each
10501                  * other, disable large page support for this slot.
10502                  */
10503                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10504                         unsigned long j;
10505
10506                         for (j = 0; j < lpages; ++j)
10507                                 linfo[j].disallow_lpage = 1;
10508                 }
10509         }
10510
10511         if (kvm_page_track_create_memslot(slot, npages))
10512                 goto out_free;
10513
10514         return 0;
10515
10516 out_free:
10517         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10518                 kvfree(slot->arch.rmap[i]);
10519                 slot->arch.rmap[i] = NULL;
10520                 if (i == 0)
10521                         continue;
10522
10523                 kvfree(slot->arch.lpage_info[i - 1]);
10524                 slot->arch.lpage_info[i - 1] = NULL;
10525         }
10526         return -ENOMEM;
10527 }
10528
10529 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10530 {
10531         struct kvm_vcpu *vcpu;
10532         int i;
10533
10534         /*
10535          * memslots->generation has been incremented.
10536          * mmio generation may have reached its maximum value.
10537          */
10538         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10539
10540         /* Force re-initialization of steal_time cache */
10541         kvm_for_each_vcpu(i, vcpu, kvm)
10542                 kvm_vcpu_kick(vcpu);
10543 }
10544
10545 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10546                                 struct kvm_memory_slot *memslot,
10547                                 const struct kvm_userspace_memory_region *mem,
10548                                 enum kvm_mr_change change)
10549 {
10550         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10551                 return kvm_alloc_memslot_metadata(memslot,
10552                                                   mem->memory_size >> PAGE_SHIFT);
10553         return 0;
10554 }
10555
10556 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10557                                      struct kvm_memory_slot *old,
10558                                      struct kvm_memory_slot *new,
10559                                      enum kvm_mr_change change)
10560 {
10561         /*
10562          * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10563          * See comments below.
10564          */
10565         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10566                 return;
10567
10568         /*
10569          * Dirty logging tracks sptes in 4k granularity, meaning that large
10570          * sptes have to be split.  If live migration is successful, the guest
10571          * in the source machine will be destroyed and large sptes will be
10572          * created in the destination. However, if the guest continues to run
10573          * in the source machine (for example if live migration fails), small
10574          * sptes will remain around and cause bad performance.
10575          *
10576          * Scan sptes if dirty logging has been stopped, dropping those
10577          * which can be collapsed into a single large-page spte.  Later
10578          * page faults will create the large-page sptes.
10579          *
10580          * There is no need to do this in any of the following cases:
10581          * CREATE:      No dirty mappings will already exist.
10582          * MOVE/DELETE: The old mappings will already have been cleaned up by
10583          *              kvm_arch_flush_shadow_memslot()
10584          */
10585         if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10586             !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10587                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10588
10589         /*
10590          * Enable or disable dirty logging for the slot.
10591          *
10592          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10593          * slot have been zapped so no dirty logging updates are needed for
10594          * the old slot.
10595          * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10596          * any mappings that might be created in it will consume the
10597          * properties of the new slot and do not need to be updated here.
10598          *
10599          * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10600          * called to enable/disable dirty logging.
10601          *
10602          * When disabling dirty logging with PML enabled, the D-bit is set
10603          * for sptes in the slot in order to prevent unnecessary GPA
10604          * logging in the PML buffer (and potential PML buffer full VMEXIT).
10605          * This guarantees leaving PML enabled for the guest's lifetime
10606          * won't have any additional overhead from PML when the guest is
10607          * running with dirty logging disabled.
10608          *
10609          * When enabling dirty logging, large sptes are write-protected
10610          * so they can be split on first write.  New large sptes cannot
10611          * be created for this slot until the end of the logging.
10612          * See the comments in fast_page_fault().
10613          * For small sptes, nothing is done if the dirty log is in the
10614          * initial-all-set state.  Otherwise, depending on whether pml
10615          * is enabled the D-bit or the W-bit will be cleared.
10616          */
10617         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10618                 if (kvm_x86_ops.slot_enable_log_dirty) {
10619                         kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10620                 } else {
10621                         int level =
10622                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10623                                 PG_LEVEL_2M : PG_LEVEL_4K;
10624
10625                         /*
10626                          * If we're with initial-all-set, we don't need
10627                          * to write protect any small page because
10628                          * they're reported as dirty already.  However
10629                          * we still need to write-protect huge pages
10630                          * so that the page split can happen lazily on
10631                          * the first write to the huge page.
10632                          */
10633                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10634                 }
10635         } else {
10636                 if (kvm_x86_ops.slot_disable_log_dirty)
10637                         kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10638         }
10639 }
10640
10641 void kvm_arch_commit_memory_region(struct kvm *kvm,
10642                                 const struct kvm_userspace_memory_region *mem,
10643                                 struct kvm_memory_slot *old,
10644                                 const struct kvm_memory_slot *new,
10645                                 enum kvm_mr_change change)
10646 {
10647         if (!kvm->arch.n_requested_mmu_pages)
10648                 kvm_mmu_change_mmu_pages(kvm,
10649                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10650
10651         /*
10652          * FIXME: const-ify all uses of struct kvm_memory_slot.
10653          */
10654         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10655
10656         /* Free the arrays associated with the old memslot. */
10657         if (change == KVM_MR_MOVE)
10658                 kvm_arch_free_memslot(kvm, old);
10659 }
10660
10661 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10662 {
10663         kvm_mmu_zap_all(kvm);
10664 }
10665
10666 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10667                                    struct kvm_memory_slot *slot)
10668 {
10669         kvm_page_track_flush_slot(kvm, slot);
10670 }
10671
10672 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10673 {
10674         return (is_guest_mode(vcpu) &&
10675                         kvm_x86_ops.guest_apic_has_interrupt &&
10676                         kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10677 }
10678
10679 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10680 {
10681         if (!list_empty_careful(&vcpu->async_pf.done))
10682                 return true;
10683
10684         if (kvm_apic_has_events(vcpu))
10685                 return true;
10686
10687         if (vcpu->arch.pv.pv_unhalted)
10688                 return true;
10689
10690         if (vcpu->arch.exception.pending)
10691                 return true;
10692
10693         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10694             (vcpu->arch.nmi_pending &&
10695              kvm_x86_ops.nmi_allowed(vcpu, false)))
10696                 return true;
10697
10698         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10699             (vcpu->arch.smi_pending &&
10700              kvm_x86_ops.smi_allowed(vcpu, false)))
10701                 return true;
10702
10703         if (kvm_arch_interrupt_allowed(vcpu) &&
10704             (kvm_cpu_has_interrupt(vcpu) ||
10705             kvm_guest_apic_has_interrupt(vcpu)))
10706                 return true;
10707
10708         if (kvm_hv_has_stimer_pending(vcpu))
10709                 return true;
10710
10711         if (is_guest_mode(vcpu) &&
10712             kvm_x86_ops.nested_ops->hv_timer_pending &&
10713             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10714                 return true;
10715
10716         return false;
10717 }
10718
10719 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10720 {
10721         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10722 }
10723
10724 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10725 {
10726         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10727                 return true;
10728
10729         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10730                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10731                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10732                 return true;
10733
10734         if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10735                 return true;
10736
10737         return false;
10738 }
10739
10740 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10741 {
10742         return vcpu->arch.preempted_in_kernel;
10743 }
10744
10745 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10746 {
10747         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10748 }
10749
10750 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10751 {
10752         return kvm_x86_ops.interrupt_allowed(vcpu, false);
10753 }
10754
10755 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10756 {
10757         if (is_64_bit_mode(vcpu))
10758                 return kvm_rip_read(vcpu);
10759         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10760                      kvm_rip_read(vcpu));
10761 }
10762 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10763
10764 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10765 {
10766         return kvm_get_linear_rip(vcpu) == linear_rip;
10767 }
10768 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10769
10770 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10771 {
10772         unsigned long rflags;
10773
10774         rflags = kvm_x86_ops.get_rflags(vcpu);
10775         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10776                 rflags &= ~X86_EFLAGS_TF;
10777         return rflags;
10778 }
10779 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10780
10781 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10782 {
10783         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10784             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10785                 rflags |= X86_EFLAGS_TF;
10786         kvm_x86_ops.set_rflags(vcpu, rflags);
10787 }
10788
10789 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10790 {
10791         __kvm_set_rflags(vcpu, rflags);
10792         kvm_make_request(KVM_REQ_EVENT, vcpu);
10793 }
10794 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10795
10796 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10797 {
10798         int r;
10799
10800         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10801               work->wakeup_all)
10802                 return;
10803
10804         r = kvm_mmu_reload(vcpu);
10805         if (unlikely(r))
10806                 return;
10807
10808         if (!vcpu->arch.mmu->direct_map &&
10809               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10810                 return;
10811
10812         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10813 }
10814
10815 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10816 {
10817         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10818
10819         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10820 }
10821
10822 static inline u32 kvm_async_pf_next_probe(u32 key)
10823 {
10824         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10825 }
10826
10827 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10828 {
10829         u32 key = kvm_async_pf_hash_fn(gfn);
10830
10831         while (vcpu->arch.apf.gfns[key] != ~0)
10832                 key = kvm_async_pf_next_probe(key);
10833
10834         vcpu->arch.apf.gfns[key] = gfn;
10835 }
10836
10837 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10838 {
10839         int i;
10840         u32 key = kvm_async_pf_hash_fn(gfn);
10841
10842         for (i = 0; i < ASYNC_PF_PER_VCPU &&
10843                      (vcpu->arch.apf.gfns[key] != gfn &&
10844                       vcpu->arch.apf.gfns[key] != ~0); i++)
10845                 key = kvm_async_pf_next_probe(key);
10846
10847         return key;
10848 }
10849
10850 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10851 {
10852         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10853 }
10854
10855 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10856 {
10857         u32 i, j, k;
10858
10859         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10860
10861         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10862                 return;
10863
10864         while (true) {
10865                 vcpu->arch.apf.gfns[i] = ~0;
10866                 do {
10867                         j = kvm_async_pf_next_probe(j);
10868                         if (vcpu->arch.apf.gfns[j] == ~0)
10869                                 return;
10870                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10871                         /*
10872                          * k lies cyclically in ]i,j]
10873                          * |    i.k.j |
10874                          * |....j i.k.| or  |.k..j i...|
10875                          */
10876                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10877                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10878                 i = j;
10879         }
10880 }
10881
10882 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10883 {
10884         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10885
10886         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10887                                       sizeof(reason));
10888 }
10889
10890 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10891 {
10892         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10893
10894         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10895                                              &token, offset, sizeof(token));
10896 }
10897
10898 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10899 {
10900         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10901         u32 val;
10902
10903         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10904                                          &val, offset, sizeof(val)))
10905                 return false;
10906
10907         return !val;
10908 }
10909
10910 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10911 {
10912         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10913                 return false;
10914
10915         if (!kvm_pv_async_pf_enabled(vcpu) ||
10916             (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10917                 return false;
10918
10919         return true;
10920 }
10921
10922 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10923 {
10924         if (unlikely(!lapic_in_kernel(vcpu) ||
10925                      kvm_event_needs_reinjection(vcpu) ||
10926                      vcpu->arch.exception.pending))
10927                 return false;
10928
10929         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10930                 return false;
10931
10932         /*
10933          * If interrupts are off we cannot even use an artificial
10934          * halt state.
10935          */
10936         return kvm_arch_interrupt_allowed(vcpu);
10937 }
10938
10939 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10940                                      struct kvm_async_pf *work)
10941 {
10942         struct x86_exception fault;
10943
10944         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10945         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10946
10947         if (kvm_can_deliver_async_pf(vcpu) &&
10948             !apf_put_user_notpresent(vcpu)) {
10949                 fault.vector = PF_VECTOR;
10950                 fault.error_code_valid = true;
10951                 fault.error_code = 0;
10952                 fault.nested_page_fault = false;
10953                 fault.address = work->arch.token;
10954                 fault.async_page_fault = true;
10955                 kvm_inject_page_fault(vcpu, &fault);
10956                 return true;
10957         } else {
10958                 /*
10959                  * It is not possible to deliver a paravirtualized asynchronous
10960                  * page fault, but putting the guest in an artificial halt state
10961                  * can be beneficial nevertheless: if an interrupt arrives, we
10962                  * can deliver it timely and perhaps the guest will schedule
10963                  * another process.  When the instruction that triggered a page
10964                  * fault is retried, hopefully the page will be ready in the host.
10965                  */
10966                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10967                 return false;
10968         }
10969 }
10970
10971 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10972                                  struct kvm_async_pf *work)
10973 {
10974         struct kvm_lapic_irq irq = {
10975                 .delivery_mode = APIC_DM_FIXED,
10976                 .vector = vcpu->arch.apf.vec
10977         };
10978
10979         if (work->wakeup_all)
10980                 work->arch.token = ~0; /* broadcast wakeup */
10981         else
10982                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10983         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10984
10985         if ((work->wakeup_all || work->notpresent_injected) &&
10986             kvm_pv_async_pf_enabled(vcpu) &&
10987             !apf_put_user_ready(vcpu, work->arch.token)) {
10988                 vcpu->arch.apf.pageready_pending = true;
10989                 kvm_apic_set_irq(vcpu, &irq, NULL);
10990         }
10991
10992         vcpu->arch.apf.halted = false;
10993         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10994 }
10995
10996 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10997 {
10998         kvm_make_request(KVM_REQ_APF_READY, vcpu);
10999         if (!vcpu->arch.apf.pageready_pending)
11000                 kvm_vcpu_kick(vcpu);
11001 }
11002
11003 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11004 {
11005         if (!kvm_pv_async_pf_enabled(vcpu))
11006                 return true;
11007         else
11008                 return apf_pageready_slot_free(vcpu);
11009 }
11010
11011 void kvm_arch_start_assignment(struct kvm *kvm)
11012 {
11013         atomic_inc(&kvm->arch.assigned_device_count);
11014 }
11015 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11016
11017 void kvm_arch_end_assignment(struct kvm *kvm)
11018 {
11019         atomic_dec(&kvm->arch.assigned_device_count);
11020 }
11021 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11022
11023 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11024 {
11025         return atomic_read(&kvm->arch.assigned_device_count);
11026 }
11027 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11028
11029 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11030 {
11031         atomic_inc(&kvm->arch.noncoherent_dma_count);
11032 }
11033 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11034
11035 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11036 {
11037         atomic_dec(&kvm->arch.noncoherent_dma_count);
11038 }
11039 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11040
11041 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11042 {
11043         return atomic_read(&kvm->arch.noncoherent_dma_count);
11044 }
11045 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11046
11047 bool kvm_arch_has_irq_bypass(void)
11048 {
11049         return true;
11050 }
11051
11052 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11053                                       struct irq_bypass_producer *prod)
11054 {
11055         struct kvm_kernel_irqfd *irqfd =
11056                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11057         int ret;
11058
11059         irqfd->producer = prod;
11060         kvm_arch_start_assignment(irqfd->kvm);
11061         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11062                                          prod->irq, irqfd->gsi, 1);
11063
11064         if (ret)
11065                 kvm_arch_end_assignment(irqfd->kvm);
11066
11067         return ret;
11068 }
11069
11070 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11071                                       struct irq_bypass_producer *prod)
11072 {
11073         int ret;
11074         struct kvm_kernel_irqfd *irqfd =
11075                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11076
11077         WARN_ON(irqfd->producer != prod);
11078         irqfd->producer = NULL;
11079
11080         /*
11081          * When producer of consumer is unregistered, we change back to
11082          * remapped mode, so we can re-use the current implementation
11083          * when the irq is masked/disabled or the consumer side (KVM
11084          * int this case doesn't want to receive the interrupts.
11085         */
11086         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11087         if (ret)
11088                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11089                        " fails: %d\n", irqfd->consumer.token, ret);
11090
11091         kvm_arch_end_assignment(irqfd->kvm);
11092 }
11093
11094 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11095                                    uint32_t guest_irq, bool set)
11096 {
11097         return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11098 }
11099
11100 bool kvm_vector_hashing_enabled(void)
11101 {
11102         return vector_hashing;
11103 }
11104
11105 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11106 {
11107         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11108 }
11109 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11110
11111
11112 int kvm_spec_ctrl_test_value(u64 value)
11113 {
11114         /*
11115          * test that setting IA32_SPEC_CTRL to given value
11116          * is allowed by the host processor
11117          */
11118
11119         u64 saved_value;
11120         unsigned long flags;
11121         int ret = 0;
11122
11123         local_irq_save(flags);
11124
11125         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11126                 ret = 1;
11127         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11128                 ret = 1;
11129         else
11130                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11131
11132         local_irq_restore(flags);
11133
11134         return ret;
11135 }
11136 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11137
11138 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11139 {
11140         struct x86_exception fault;
11141         u32 access = error_code &
11142                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11143
11144         if (!(error_code & PFERR_PRESENT_MASK) ||
11145             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11146                 /*
11147                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11148                  * tables probably do not match the TLB.  Just proceed
11149                  * with the error code that the processor gave.
11150                  */
11151                 fault.vector = PF_VECTOR;
11152                 fault.error_code_valid = true;
11153                 fault.error_code = error_code;
11154                 fault.nested_page_fault = false;
11155                 fault.address = gva;
11156         }
11157         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11158 }
11159 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11160
11161 /*
11162  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11163  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11164  * indicates whether exit to userspace is needed.
11165  */
11166 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11167                               struct x86_exception *e)
11168 {
11169         if (r == X86EMUL_PROPAGATE_FAULT) {
11170                 kvm_inject_emulated_page_fault(vcpu, e);
11171                 return 1;
11172         }
11173
11174         /*
11175          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11176          * while handling a VMX instruction KVM could've handled the request
11177          * correctly by exiting to userspace and performing I/O but there
11178          * doesn't seem to be a real use-case behind such requests, just return
11179          * KVM_EXIT_INTERNAL_ERROR for now.
11180          */
11181         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11182         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11183         vcpu->run->internal.ndata = 0;
11184
11185         return 0;
11186 }
11187 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11188
11189 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11190 {
11191         bool pcid_enabled;
11192         struct x86_exception e;
11193         unsigned i;
11194         unsigned long roots_to_free = 0;
11195         struct {
11196                 u64 pcid;
11197                 u64 gla;
11198         } operand;
11199         int r;
11200
11201         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11202         if (r != X86EMUL_CONTINUE)
11203                 return kvm_handle_memory_failure(vcpu, r, &e);
11204
11205         if (operand.pcid >> 12 != 0) {
11206                 kvm_inject_gp(vcpu, 0);
11207                 return 1;
11208         }
11209
11210         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11211
11212         switch (type) {
11213         case INVPCID_TYPE_INDIV_ADDR:
11214                 if ((!pcid_enabled && (operand.pcid != 0)) ||
11215                     is_noncanonical_address(operand.gla, vcpu)) {
11216                         kvm_inject_gp(vcpu, 0);
11217                         return 1;
11218                 }
11219                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11220                 return kvm_skip_emulated_instruction(vcpu);
11221
11222         case INVPCID_TYPE_SINGLE_CTXT:
11223                 if (!pcid_enabled && (operand.pcid != 0)) {
11224                         kvm_inject_gp(vcpu, 0);
11225                         return 1;
11226                 }
11227
11228                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11229                         kvm_mmu_sync_roots(vcpu);
11230                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11231                 }
11232
11233                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11234                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11235                             == operand.pcid)
11236                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11237
11238                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11239                 /*
11240                  * If neither the current cr3 nor any of the prev_roots use the
11241                  * given PCID, then nothing needs to be done here because a
11242                  * resync will happen anyway before switching to any other CR3.
11243                  */
11244
11245                 return kvm_skip_emulated_instruction(vcpu);
11246
11247         case INVPCID_TYPE_ALL_NON_GLOBAL:
11248                 /*
11249                  * Currently, KVM doesn't mark global entries in the shadow
11250                  * page tables, so a non-global flush just degenerates to a
11251                  * global flush. If needed, we could optimize this later by
11252                  * keeping track of global entries in shadow page tables.
11253                  */
11254
11255                 fallthrough;
11256         case INVPCID_TYPE_ALL_INCL_GLOBAL:
11257                 kvm_mmu_unload(vcpu);
11258                 return kvm_skip_emulated_instruction(vcpu);
11259
11260         default:
11261                 BUG(); /* We have already checked above that type <= 3 */
11262         }
11263 }
11264 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11265
11266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11268 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11269 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11270 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11271 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11272 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11273 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11274 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11275 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11276 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11277 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11278 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11279 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11280 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11281 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11282 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11283 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11284 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11285 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11286 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11287 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);