Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88         ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
165 /*
166  * Restoring the host value for MSRs that are only consumed when running in
167  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
168  * returns to userspace, i.e. the kernel can run with the guest's value.
169  */
170 #define KVM_MAX_NR_USER_RETURN_MSRS 16
171
172 struct kvm_user_return_msrs_global {
173         int nr;
174         u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
175 };
176
177 struct kvm_user_return_msrs {
178         struct user_return_notifier urn;
179         bool registered;
180         struct kvm_user_return_msr_values {
181                 u64 host;
182                 u64 curr;
183         } values[KVM_MAX_NR_USER_RETURN_MSRS];
184 };
185
186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
187 static struct kvm_user_return_msrs __percpu *user_return_msrs;
188
189 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
190                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
191                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
192                                 | XFEATURE_MASK_PKRU)
193
194 u64 __read_mostly host_efer;
195 EXPORT_SYMBOL_GPL(host_efer);
196
197 bool __read_mostly allow_smaller_maxphyaddr = 0;
198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
199
200 static u64 __read_mostly host_xss;
201 u64 __read_mostly supported_xss;
202 EXPORT_SYMBOL_GPL(supported_xss);
203
204 struct kvm_stats_debugfs_item debugfs_entries[] = {
205         VCPU_STAT("pf_fixed", pf_fixed),
206         VCPU_STAT("pf_guest", pf_guest),
207         VCPU_STAT("tlb_flush", tlb_flush),
208         VCPU_STAT("invlpg", invlpg),
209         VCPU_STAT("exits", exits),
210         VCPU_STAT("io_exits", io_exits),
211         VCPU_STAT("mmio_exits", mmio_exits),
212         VCPU_STAT("signal_exits", signal_exits),
213         VCPU_STAT("irq_window", irq_window_exits),
214         VCPU_STAT("nmi_window", nmi_window_exits),
215         VCPU_STAT("halt_exits", halt_exits),
216         VCPU_STAT("halt_successful_poll", halt_successful_poll),
217         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
218         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
219         VCPU_STAT("halt_wakeup", halt_wakeup),
220         VCPU_STAT("hypercalls", hypercalls),
221         VCPU_STAT("request_irq", request_irq_exits),
222         VCPU_STAT("irq_exits", irq_exits),
223         VCPU_STAT("host_state_reload", host_state_reload),
224         VCPU_STAT("fpu_reload", fpu_reload),
225         VCPU_STAT("insn_emulation", insn_emulation),
226         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
227         VCPU_STAT("irq_injections", irq_injections),
228         VCPU_STAT("nmi_injections", nmi_injections),
229         VCPU_STAT("req_event", req_event),
230         VCPU_STAT("l1d_flush", l1d_flush),
231         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
232         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
233         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
234         VM_STAT("mmu_pte_write", mmu_pte_write),
235         VM_STAT("mmu_pte_updated", mmu_pte_updated),
236         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
237         VM_STAT("mmu_flooded", mmu_flooded),
238         VM_STAT("mmu_recycled", mmu_recycled),
239         VM_STAT("mmu_cache_miss", mmu_cache_miss),
240         VM_STAT("mmu_unsync", mmu_unsync),
241         VM_STAT("remote_tlb_flush", remote_tlb_flush),
242         VM_STAT("largepages", lpages, .mode = 0444),
243         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
244         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
245         { NULL }
246 };
247
248 u64 __read_mostly host_xcr0;
249 u64 __read_mostly supported_xcr0;
250 EXPORT_SYMBOL_GPL(supported_xcr0);
251
252 static struct kmem_cache *x86_fpu_cache;
253
254 static struct kmem_cache *x86_emulator_cache;
255
256 /*
257  * When called, it means the previous get/set msr reached an invalid msr.
258  * Return true if we want to ignore/silent this failed msr access.
259  */
260 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
261                                   u64 data, bool write)
262 {
263         const char *op = write ? "wrmsr" : "rdmsr";
264
265         if (ignore_msrs) {
266                 if (report_ignored_msrs)
267                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
268                                       op, msr, data);
269                 /* Mask the error */
270                 return true;
271         } else {
272                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
273                                       op, msr, data);
274                 return false;
275         }
276 }
277
278 static struct kmem_cache *kvm_alloc_emulator_cache(void)
279 {
280         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
281         unsigned int size = sizeof(struct x86_emulate_ctxt);
282
283         return kmem_cache_create_usercopy("x86_emulator", size,
284                                           __alignof__(struct x86_emulate_ctxt),
285                                           SLAB_ACCOUNT, useroffset,
286                                           size - useroffset, NULL);
287 }
288
289 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
290
291 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
292 {
293         int i;
294         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
295                 vcpu->arch.apf.gfns[i] = ~0;
296 }
297
298 static void kvm_on_user_return(struct user_return_notifier *urn)
299 {
300         unsigned slot;
301         struct kvm_user_return_msrs *msrs
302                 = container_of(urn, struct kvm_user_return_msrs, urn);
303         struct kvm_user_return_msr_values *values;
304         unsigned long flags;
305
306         /*
307          * Disabling irqs at this point since the following code could be
308          * interrupted and executed through kvm_arch_hardware_disable()
309          */
310         local_irq_save(flags);
311         if (msrs->registered) {
312                 msrs->registered = false;
313                 user_return_notifier_unregister(urn);
314         }
315         local_irq_restore(flags);
316         for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
317                 values = &msrs->values[slot];
318                 if (values->host != values->curr) {
319                         wrmsrl(user_return_msrs_global.msrs[slot], values->host);
320                         values->curr = values->host;
321                 }
322         }
323 }
324
325 void kvm_define_user_return_msr(unsigned slot, u32 msr)
326 {
327         BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
328         user_return_msrs_global.msrs[slot] = msr;
329         if (slot >= user_return_msrs_global.nr)
330                 user_return_msrs_global.nr = slot + 1;
331 }
332 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
333
334 static void kvm_user_return_msr_cpu_online(void)
335 {
336         unsigned int cpu = smp_processor_id();
337         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
338         u64 value;
339         int i;
340
341         for (i = 0; i < user_return_msrs_global.nr; ++i) {
342                 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
343                 msrs->values[i].host = value;
344                 msrs->values[i].curr = value;
345         }
346 }
347
348 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
349 {
350         unsigned int cpu = smp_processor_id();
351         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352         int err;
353
354         value = (value & mask) | (msrs->values[slot].host & ~mask);
355         if (value == msrs->values[slot].curr)
356                 return 0;
357         err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
358         if (err)
359                 return 1;
360
361         msrs->values[slot].curr = value;
362         if (!msrs->registered) {
363                 msrs->urn.on_user_return = kvm_on_user_return;
364                 user_return_notifier_register(&msrs->urn);
365                 msrs->registered = true;
366         }
367         return 0;
368 }
369 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
370
371 static void drop_user_return_notifiers(void)
372 {
373         unsigned int cpu = smp_processor_id();
374         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
375
376         if (msrs->registered)
377                 kvm_on_user_return(&msrs->urn);
378 }
379
380 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
381 {
382         return vcpu->arch.apic_base;
383 }
384 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
385
386 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
387 {
388         return kvm_apic_mode(kvm_get_apic_base(vcpu));
389 }
390 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
391
392 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
393 {
394         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
395         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
396         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
397                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
398
399         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
400                 return 1;
401         if (!msr_info->host_initiated) {
402                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
403                         return 1;
404                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
405                         return 1;
406         }
407
408         kvm_lapic_set_base(vcpu, msr_info->data);
409         kvm_recalculate_apic_map(vcpu->kvm);
410         return 0;
411 }
412 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
413
414 asmlinkage __visible noinstr void kvm_spurious_fault(void)
415 {
416         /* Fault while not rebooting.  We want the trace. */
417         BUG_ON(!kvm_rebooting);
418 }
419 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
420
421 #define EXCPT_BENIGN            0
422 #define EXCPT_CONTRIBUTORY      1
423 #define EXCPT_PF                2
424
425 static int exception_class(int vector)
426 {
427         switch (vector) {
428         case PF_VECTOR:
429                 return EXCPT_PF;
430         case DE_VECTOR:
431         case TS_VECTOR:
432         case NP_VECTOR:
433         case SS_VECTOR:
434         case GP_VECTOR:
435                 return EXCPT_CONTRIBUTORY;
436         default:
437                 break;
438         }
439         return EXCPT_BENIGN;
440 }
441
442 #define EXCPT_FAULT             0
443 #define EXCPT_TRAP              1
444 #define EXCPT_ABORT             2
445 #define EXCPT_INTERRUPT         3
446
447 static int exception_type(int vector)
448 {
449         unsigned int mask;
450
451         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
452                 return EXCPT_INTERRUPT;
453
454         mask = 1 << vector;
455
456         /* #DB is trap, as instruction watchpoints are handled elsewhere */
457         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
458                 return EXCPT_TRAP;
459
460         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
461                 return EXCPT_ABORT;
462
463         /* Reserved exceptions will result in fault */
464         return EXCPT_FAULT;
465 }
466
467 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
468 {
469         unsigned nr = vcpu->arch.exception.nr;
470         bool has_payload = vcpu->arch.exception.has_payload;
471         unsigned long payload = vcpu->arch.exception.payload;
472
473         if (!has_payload)
474                 return;
475
476         switch (nr) {
477         case DB_VECTOR:
478                 /*
479                  * "Certain debug exceptions may clear bit 0-3.  The
480                  * remaining contents of the DR6 register are never
481                  * cleared by the processor".
482                  */
483                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
484                 /*
485                  * DR6.RTM is set by all #DB exceptions that don't clear it.
486                  */
487                 vcpu->arch.dr6 |= DR6_RTM;
488                 vcpu->arch.dr6 |= payload;
489                 /*
490                  * Bit 16 should be set in the payload whenever the #DB
491                  * exception should clear DR6.RTM. This makes the payload
492                  * compatible with the pending debug exceptions under VMX.
493                  * Though not currently documented in the SDM, this also
494                  * makes the payload compatible with the exit qualification
495                  * for #DB exceptions under VMX.
496                  */
497                 vcpu->arch.dr6 ^= payload & DR6_RTM;
498
499                 /*
500                  * The #DB payload is defined as compatible with the 'pending
501                  * debug exceptions' field under VMX, not DR6. While bit 12 is
502                  * defined in the 'pending debug exceptions' field (enabled
503                  * breakpoint), it is reserved and must be zero in DR6.
504                  */
505                 vcpu->arch.dr6 &= ~BIT(12);
506                 break;
507         case PF_VECTOR:
508                 vcpu->arch.cr2 = payload;
509                 break;
510         }
511
512         vcpu->arch.exception.has_payload = false;
513         vcpu->arch.exception.payload = 0;
514 }
515 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
516
517 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
518                 unsigned nr, bool has_error, u32 error_code,
519                 bool has_payload, unsigned long payload, bool reinject)
520 {
521         u32 prev_nr;
522         int class1, class2;
523
524         kvm_make_request(KVM_REQ_EVENT, vcpu);
525
526         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
527         queue:
528                 if (has_error && !is_protmode(vcpu))
529                         has_error = false;
530                 if (reinject) {
531                         /*
532                          * On vmentry, vcpu->arch.exception.pending is only
533                          * true if an event injection was blocked by
534                          * nested_run_pending.  In that case, however,
535                          * vcpu_enter_guest requests an immediate exit,
536                          * and the guest shouldn't proceed far enough to
537                          * need reinjection.
538                          */
539                         WARN_ON_ONCE(vcpu->arch.exception.pending);
540                         vcpu->arch.exception.injected = true;
541                         if (WARN_ON_ONCE(has_payload)) {
542                                 /*
543                                  * A reinjected event has already
544                                  * delivered its payload.
545                                  */
546                                 has_payload = false;
547                                 payload = 0;
548                         }
549                 } else {
550                         vcpu->arch.exception.pending = true;
551                         vcpu->arch.exception.injected = false;
552                 }
553                 vcpu->arch.exception.has_error_code = has_error;
554                 vcpu->arch.exception.nr = nr;
555                 vcpu->arch.exception.error_code = error_code;
556                 vcpu->arch.exception.has_payload = has_payload;
557                 vcpu->arch.exception.payload = payload;
558                 if (!is_guest_mode(vcpu))
559                         kvm_deliver_exception_payload(vcpu);
560                 return;
561         }
562
563         /* to check exception */
564         prev_nr = vcpu->arch.exception.nr;
565         if (prev_nr == DF_VECTOR) {
566                 /* triple fault -> shutdown */
567                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
568                 return;
569         }
570         class1 = exception_class(prev_nr);
571         class2 = exception_class(nr);
572         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
573                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
574                 /*
575                  * Generate double fault per SDM Table 5-5.  Set
576                  * exception.pending = true so that the double fault
577                  * can trigger a nested vmexit.
578                  */
579                 vcpu->arch.exception.pending = true;
580                 vcpu->arch.exception.injected = false;
581                 vcpu->arch.exception.has_error_code = true;
582                 vcpu->arch.exception.nr = DF_VECTOR;
583                 vcpu->arch.exception.error_code = 0;
584                 vcpu->arch.exception.has_payload = false;
585                 vcpu->arch.exception.payload = 0;
586         } else
587                 /* replace previous exception with a new one in a hope
588                    that instruction re-execution will regenerate lost
589                    exception */
590                 goto queue;
591 }
592
593 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
594 {
595         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
596 }
597 EXPORT_SYMBOL_GPL(kvm_queue_exception);
598
599 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
600 {
601         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
602 }
603 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
604
605 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
606                            unsigned long payload)
607 {
608         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
609 }
610 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
611
612 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
613                                     u32 error_code, unsigned long payload)
614 {
615         kvm_multiple_exception(vcpu, nr, true, error_code,
616                                true, payload, false);
617 }
618
619 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
620 {
621         if (err)
622                 kvm_inject_gp(vcpu, 0);
623         else
624                 return kvm_skip_emulated_instruction(vcpu);
625
626         return 1;
627 }
628 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
629
630 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
631 {
632         ++vcpu->stat.pf_guest;
633         vcpu->arch.exception.nested_apf =
634                 is_guest_mode(vcpu) && fault->async_page_fault;
635         if (vcpu->arch.exception.nested_apf) {
636                 vcpu->arch.apf.nested_apf_token = fault->address;
637                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
638         } else {
639                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
640                                         fault->address);
641         }
642 }
643 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
644
645 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
646                                     struct x86_exception *fault)
647 {
648         struct kvm_mmu *fault_mmu;
649         WARN_ON_ONCE(fault->vector != PF_VECTOR);
650
651         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
652                                                vcpu->arch.walk_mmu;
653
654         /*
655          * Invalidate the TLB entry for the faulting address, if it exists,
656          * else the access will fault indefinitely (and to emulate hardware).
657          */
658         if ((fault->error_code & PFERR_PRESENT_MASK) &&
659             !(fault->error_code & PFERR_RSVD_MASK))
660                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
661                                        fault_mmu->root_hpa);
662
663         fault_mmu->inject_page_fault(vcpu, fault);
664         return fault->nested_page_fault;
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
667
668 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
669 {
670         atomic_inc(&vcpu->arch.nmi_queued);
671         kvm_make_request(KVM_REQ_NMI, vcpu);
672 }
673 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
674
675 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
676 {
677         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
678 }
679 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
680
681 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
682 {
683         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
684 }
685 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
686
687 /*
688  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
689  * a #GP and return false.
690  */
691 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
692 {
693         if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
694                 return true;
695         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
696         return false;
697 }
698 EXPORT_SYMBOL_GPL(kvm_require_cpl);
699
700 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
701 {
702         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703                 return true;
704
705         kvm_queue_exception(vcpu, UD_VECTOR);
706         return false;
707 }
708 EXPORT_SYMBOL_GPL(kvm_require_dr);
709
710 /*
711  * This function will be used to read from the physical memory of the currently
712  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
713  * can read from guest physical or from the guest's guest physical memory.
714  */
715 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
716                             gfn_t ngfn, void *data, int offset, int len,
717                             u32 access)
718 {
719         struct x86_exception exception;
720         gfn_t real_gfn;
721         gpa_t ngpa;
722
723         ngpa     = gfn_to_gpa(ngfn);
724         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
725         if (real_gfn == UNMAPPED_GVA)
726                 return -EFAULT;
727
728         real_gfn = gpa_to_gfn(real_gfn);
729
730         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
731 }
732 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
733
734 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
735                                void *data, int offset, int len, u32 access)
736 {
737         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
738                                        data, offset, len, access);
739 }
740
741 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
742 {
743         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
744                rsvd_bits(1, 2);
745 }
746
747 /*
748  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
749  */
750 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
751 {
752         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
753         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
754         int i;
755         int ret;
756         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
757
758         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
759                                       offset * sizeof(u64), sizeof(pdpte),
760                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
761         if (ret < 0) {
762                 ret = 0;
763                 goto out;
764         }
765         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
766                 if ((pdpte[i] & PT_PRESENT_MASK) &&
767                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
768                         ret = 0;
769                         goto out;
770                 }
771         }
772         ret = 1;
773
774         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
775         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
776
777 out:
778
779         return ret;
780 }
781 EXPORT_SYMBOL_GPL(load_pdptrs);
782
783 bool pdptrs_changed(struct kvm_vcpu *vcpu)
784 {
785         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
786         int offset;
787         gfn_t gfn;
788         int r;
789
790         if (!is_pae_paging(vcpu))
791                 return false;
792
793         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
794                 return true;
795
796         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
797         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
798         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
799                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
800         if (r < 0)
801                 return true;
802
803         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
804 }
805 EXPORT_SYMBOL_GPL(pdptrs_changed);
806
807 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
808 {
809         unsigned long old_cr0 = kvm_read_cr0(vcpu);
810         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
811         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
812
813         cr0 |= X86_CR0_ET;
814
815 #ifdef CONFIG_X86_64
816         if (cr0 & 0xffffffff00000000UL)
817                 return 1;
818 #endif
819
820         cr0 &= ~CR0_RESERVED_BITS;
821
822         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
823                 return 1;
824
825         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
826                 return 1;
827
828 #ifdef CONFIG_X86_64
829         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
830             (cr0 & X86_CR0_PG)) {
831                 int cs_db, cs_l;
832
833                 if (!is_pae(vcpu))
834                         return 1;
835                 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
836                 if (cs_l)
837                         return 1;
838         }
839 #endif
840         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
841             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
842             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
843                 return 1;
844
845         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
846                 return 1;
847
848         kvm_x86_ops.set_cr0(vcpu, cr0);
849
850         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
851                 kvm_clear_async_pf_completion_queue(vcpu);
852                 kvm_async_pf_hash_reset(vcpu);
853         }
854
855         if ((cr0 ^ old_cr0) & update_bits)
856                 kvm_mmu_reset_context(vcpu);
857
858         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
859             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
860             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
861                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
862
863         return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_cr0);
866
867 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
868 {
869         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
870 }
871 EXPORT_SYMBOL_GPL(kvm_lmsw);
872
873 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
874 {
875         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
876
877                 if (vcpu->arch.xcr0 != host_xcr0)
878                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
879
880                 if (vcpu->arch.xsaves_enabled &&
881                     vcpu->arch.ia32_xss != host_xss)
882                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
883         }
884
885         if (static_cpu_has(X86_FEATURE_PKU) &&
886             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
887              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
888             vcpu->arch.pkru != vcpu->arch.host_pkru)
889                 __write_pkru(vcpu->arch.pkru);
890 }
891 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
892
893 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
894 {
895         if (static_cpu_has(X86_FEATURE_PKU) &&
896             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
897              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
898                 vcpu->arch.pkru = rdpkru();
899                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
900                         __write_pkru(vcpu->arch.host_pkru);
901         }
902
903         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904
905                 if (vcpu->arch.xcr0 != host_xcr0)
906                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
907
908                 if (vcpu->arch.xsaves_enabled &&
909                     vcpu->arch.ia32_xss != host_xss)
910                         wrmsrl(MSR_IA32_XSS, host_xss);
911         }
912
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
915
916 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
917 {
918         u64 xcr0 = xcr;
919         u64 old_xcr0 = vcpu->arch.xcr0;
920         u64 valid_bits;
921
922         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
923         if (index != XCR_XFEATURE_ENABLED_MASK)
924                 return 1;
925         if (!(xcr0 & XFEATURE_MASK_FP))
926                 return 1;
927         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
928                 return 1;
929
930         /*
931          * Do not allow the guest to set bits that we do not support
932          * saving.  However, xcr0 bit 0 is always set, even if the
933          * emulated CPU does not support XSAVE (see fx_init).
934          */
935         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
936         if (xcr0 & ~valid_bits)
937                 return 1;
938
939         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
940             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
941                 return 1;
942
943         if (xcr0 & XFEATURE_MASK_AVX512) {
944                 if (!(xcr0 & XFEATURE_MASK_YMM))
945                         return 1;
946                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
947                         return 1;
948         }
949         vcpu->arch.xcr0 = xcr0;
950
951         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
952                 kvm_update_cpuid_runtime(vcpu);
953         return 0;
954 }
955
956 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
957 {
958         if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
959             __kvm_set_xcr(vcpu, index, xcr)) {
960                 kvm_inject_gp(vcpu, 0);
961                 return 1;
962         }
963         return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_xcr);
966
967 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
968 {
969         if (cr4 & cr4_reserved_bits)
970                 return -EINVAL;
971
972         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
973                 return -EINVAL;
974
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
978
979 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
980 {
981         unsigned long old_cr4 = kvm_read_cr4(vcpu);
982         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
983                                    X86_CR4_SMEP;
984         unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
985
986         if (kvm_valid_cr4(vcpu, cr4))
987                 return 1;
988
989         if (is_long_mode(vcpu)) {
990                 if (!(cr4 & X86_CR4_PAE))
991                         return 1;
992                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
993                         return 1;
994         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
995                    && ((cr4 ^ old_cr4) & pdptr_bits)
996                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
997                                    kvm_read_cr3(vcpu)))
998                 return 1;
999
1000         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1001                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1002                         return 1;
1003
1004                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1005                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1006                         return 1;
1007         }
1008
1009         if (kvm_x86_ops.set_cr4(vcpu, cr4))
1010                 return 1;
1011
1012         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1013             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1014                 kvm_mmu_reset_context(vcpu);
1015
1016         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1017                 kvm_update_cpuid_runtime(vcpu);
1018
1019         return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1022
1023 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1024 {
1025         bool skip_tlb_flush = false;
1026 #ifdef CONFIG_X86_64
1027         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1028
1029         if (pcid_enabled) {
1030                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1031                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1032         }
1033 #endif
1034
1035         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1036                 if (!skip_tlb_flush) {
1037                         kvm_mmu_sync_roots(vcpu);
1038                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1039                 }
1040                 return 0;
1041         }
1042
1043         if (is_long_mode(vcpu) &&
1044             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1045                 return 1;
1046         else if (is_pae_paging(vcpu) &&
1047                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1048                 return 1;
1049
1050         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1051         vcpu->arch.cr3 = cr3;
1052         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1053
1054         return 0;
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1057
1058 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1059 {
1060         if (cr8 & CR8_RESERVED_BITS)
1061                 return 1;
1062         if (lapic_in_kernel(vcpu))
1063                 kvm_lapic_set_tpr(vcpu, cr8);
1064         else
1065                 vcpu->arch.cr8 = cr8;
1066         return 0;
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1069
1070 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1071 {
1072         if (lapic_in_kernel(vcpu))
1073                 return kvm_lapic_get_cr8(vcpu);
1074         else
1075                 return vcpu->arch.cr8;
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1078
1079 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1080 {
1081         int i;
1082
1083         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1084                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1085                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1086                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1087         }
1088 }
1089
1090 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1091 {
1092         unsigned long dr7;
1093
1094         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1095                 dr7 = vcpu->arch.guest_debug_dr7;
1096         else
1097                 dr7 = vcpu->arch.dr7;
1098         kvm_x86_ops.set_dr7(vcpu, dr7);
1099         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1100         if (dr7 & DR7_BP_EN_MASK)
1101                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1104
1105 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1106 {
1107         u64 fixed = DR6_FIXED_1;
1108
1109         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1110                 fixed |= DR6_RTM;
1111         return fixed;
1112 }
1113
1114 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1115 {
1116         size_t size = ARRAY_SIZE(vcpu->arch.db);
1117
1118         switch (dr) {
1119         case 0 ... 3:
1120                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1121                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1122                         vcpu->arch.eff_db[dr] = val;
1123                 break;
1124         case 4:
1125         case 6:
1126                 if (!kvm_dr6_valid(val))
1127                         return -1; /* #GP */
1128                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1129                 break;
1130         case 5:
1131         default: /* 7 */
1132                 if (!kvm_dr7_valid(val))
1133                         return -1; /* #GP */
1134                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1135                 kvm_update_dr7(vcpu);
1136                 break;
1137         }
1138
1139         return 0;
1140 }
1141
1142 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1143 {
1144         if (__kvm_set_dr(vcpu, dr, val)) {
1145                 kvm_inject_gp(vcpu, 0);
1146                 return 1;
1147         }
1148         return 0;
1149 }
1150 EXPORT_SYMBOL_GPL(kvm_set_dr);
1151
1152 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1153 {
1154         size_t size = ARRAY_SIZE(vcpu->arch.db);
1155
1156         switch (dr) {
1157         case 0 ... 3:
1158                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1159                 break;
1160         case 4:
1161         case 6:
1162                 *val = vcpu->arch.dr6;
1163                 break;
1164         case 5:
1165         default: /* 7 */
1166                 *val = vcpu->arch.dr7;
1167                 break;
1168         }
1169         return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_get_dr);
1172
1173 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1174 {
1175         u32 ecx = kvm_rcx_read(vcpu);
1176         u64 data;
1177         int err;
1178
1179         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1180         if (err)
1181                 return err;
1182         kvm_rax_write(vcpu, (u32)data);
1183         kvm_rdx_write(vcpu, data >> 32);
1184         return err;
1185 }
1186 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1187
1188 /*
1189  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1190  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1191  *
1192  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1193  * extract the supported MSRs from the related const lists.
1194  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1195  * capabilities of the host cpu. This capabilities test skips MSRs that are
1196  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1197  * may depend on host virtualization features rather than host cpu features.
1198  */
1199
1200 static const u32 msrs_to_save_all[] = {
1201         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1202         MSR_STAR,
1203 #ifdef CONFIG_X86_64
1204         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1205 #endif
1206         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1207         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1208         MSR_IA32_SPEC_CTRL,
1209         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1210         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1211         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1212         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1213         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1214         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1215         MSR_IA32_UMWAIT_CONTROL,
1216
1217         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1218         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1219         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1220         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1221         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1222         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1223         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1224         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1225         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1226         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1227         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1228         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1229         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1230         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1231         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1232         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1233         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1234         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1235         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1236         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1237         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1238         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1239 };
1240
1241 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1242 static unsigned num_msrs_to_save;
1243
1244 static const u32 emulated_msrs_all[] = {
1245         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1246         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1247         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1248         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1249         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1250         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1251         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1252         HV_X64_MSR_RESET,
1253         HV_X64_MSR_VP_INDEX,
1254         HV_X64_MSR_VP_RUNTIME,
1255         HV_X64_MSR_SCONTROL,
1256         HV_X64_MSR_STIMER0_CONFIG,
1257         HV_X64_MSR_VP_ASSIST_PAGE,
1258         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1259         HV_X64_MSR_TSC_EMULATION_STATUS,
1260         HV_X64_MSR_SYNDBG_OPTIONS,
1261         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1262         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1263         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1264
1265         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1266         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1267
1268         MSR_IA32_TSC_ADJUST,
1269         MSR_IA32_TSCDEADLINE,
1270         MSR_IA32_ARCH_CAPABILITIES,
1271         MSR_IA32_PERF_CAPABILITIES,
1272         MSR_IA32_MISC_ENABLE,
1273         MSR_IA32_MCG_STATUS,
1274         MSR_IA32_MCG_CTL,
1275         MSR_IA32_MCG_EXT_CTL,
1276         MSR_IA32_SMBASE,
1277         MSR_SMI_COUNT,
1278         MSR_PLATFORM_INFO,
1279         MSR_MISC_FEATURES_ENABLES,
1280         MSR_AMD64_VIRT_SPEC_CTRL,
1281         MSR_IA32_POWER_CTL,
1282         MSR_IA32_UCODE_REV,
1283
1284         /*
1285          * The following list leaves out MSRs whose values are determined
1286          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1287          * We always support the "true" VMX control MSRs, even if the host
1288          * processor does not, so I am putting these registers here rather
1289          * than in msrs_to_save_all.
1290          */
1291         MSR_IA32_VMX_BASIC,
1292         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1293         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1294         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1295         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1296         MSR_IA32_VMX_MISC,
1297         MSR_IA32_VMX_CR0_FIXED0,
1298         MSR_IA32_VMX_CR4_FIXED0,
1299         MSR_IA32_VMX_VMCS_ENUM,
1300         MSR_IA32_VMX_PROCBASED_CTLS2,
1301         MSR_IA32_VMX_EPT_VPID_CAP,
1302         MSR_IA32_VMX_VMFUNC,
1303
1304         MSR_K7_HWCR,
1305         MSR_KVM_POLL_CONTROL,
1306 };
1307
1308 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1309 static unsigned num_emulated_msrs;
1310
1311 /*
1312  * List of msr numbers which are used to expose MSR-based features that
1313  * can be used by a hypervisor to validate requested CPU features.
1314  */
1315 static const u32 msr_based_features_all[] = {
1316         MSR_IA32_VMX_BASIC,
1317         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1318         MSR_IA32_VMX_PINBASED_CTLS,
1319         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1320         MSR_IA32_VMX_PROCBASED_CTLS,
1321         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1322         MSR_IA32_VMX_EXIT_CTLS,
1323         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1324         MSR_IA32_VMX_ENTRY_CTLS,
1325         MSR_IA32_VMX_MISC,
1326         MSR_IA32_VMX_CR0_FIXED0,
1327         MSR_IA32_VMX_CR0_FIXED1,
1328         MSR_IA32_VMX_CR4_FIXED0,
1329         MSR_IA32_VMX_CR4_FIXED1,
1330         MSR_IA32_VMX_VMCS_ENUM,
1331         MSR_IA32_VMX_PROCBASED_CTLS2,
1332         MSR_IA32_VMX_EPT_VPID_CAP,
1333         MSR_IA32_VMX_VMFUNC,
1334
1335         MSR_F10H_DECFG,
1336         MSR_IA32_UCODE_REV,
1337         MSR_IA32_ARCH_CAPABILITIES,
1338         MSR_IA32_PERF_CAPABILITIES,
1339 };
1340
1341 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1342 static unsigned int num_msr_based_features;
1343
1344 static u64 kvm_get_arch_capabilities(void)
1345 {
1346         u64 data = 0;
1347
1348         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1349                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1350
1351         /*
1352          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1353          * the nested hypervisor runs with NX huge pages.  If it is not,
1354          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1355          * L1 guests, so it need not worry about its own (L2) guests.
1356          */
1357         data |= ARCH_CAP_PSCHANGE_MC_NO;
1358
1359         /*
1360          * If we're doing cache flushes (either "always" or "cond")
1361          * we will do one whenever the guest does a vmlaunch/vmresume.
1362          * If an outer hypervisor is doing the cache flush for us
1363          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1364          * capability to the guest too, and if EPT is disabled we're not
1365          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1366          * require a nested hypervisor to do a flush of its own.
1367          */
1368         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1369                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1370
1371         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1372                 data |= ARCH_CAP_RDCL_NO;
1373         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1374                 data |= ARCH_CAP_SSB_NO;
1375         if (!boot_cpu_has_bug(X86_BUG_MDS))
1376                 data |= ARCH_CAP_MDS_NO;
1377
1378         /*
1379          * On TAA affected systems:
1380          *      - nothing to do if TSX is disabled on the host.
1381          *      - we emulate TSX_CTRL if present on the host.
1382          *        This lets the guest use VERW to clear CPU buffers.
1383          */
1384         if (!boot_cpu_has(X86_FEATURE_RTM))
1385                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1386         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1387                 data |= ARCH_CAP_TAA_NO;
1388
1389         return data;
1390 }
1391
1392 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1393 {
1394         switch (msr->index) {
1395         case MSR_IA32_ARCH_CAPABILITIES:
1396                 msr->data = kvm_get_arch_capabilities();
1397                 break;
1398         case MSR_IA32_UCODE_REV:
1399                 rdmsrl_safe(msr->index, &msr->data);
1400                 break;
1401         default:
1402                 return kvm_x86_ops.get_msr_feature(msr);
1403         }
1404         return 0;
1405 }
1406
1407 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1408 {
1409         struct kvm_msr_entry msr;
1410         int r;
1411
1412         msr.index = index;
1413         r = kvm_get_msr_feature(&msr);
1414
1415         if (r == KVM_MSR_RET_INVALID) {
1416                 /* Unconditionally clear the output for simplicity */
1417                 *data = 0;
1418                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1419                         r = 0;
1420         }
1421
1422         if (r)
1423                 return r;
1424
1425         *data = msr.data;
1426
1427         return 0;
1428 }
1429
1430 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1431 {
1432         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1433                 return false;
1434
1435         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1436                 return false;
1437
1438         if (efer & (EFER_LME | EFER_LMA) &&
1439             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1440                 return false;
1441
1442         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1443                 return false;
1444
1445         return true;
1446
1447 }
1448 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1449 {
1450         if (efer & efer_reserved_bits)
1451                 return false;
1452
1453         return __kvm_valid_efer(vcpu, efer);
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1456
1457 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1458 {
1459         u64 old_efer = vcpu->arch.efer;
1460         u64 efer = msr_info->data;
1461         int r;
1462
1463         if (efer & efer_reserved_bits)
1464                 return 1;
1465
1466         if (!msr_info->host_initiated) {
1467                 if (!__kvm_valid_efer(vcpu, efer))
1468                         return 1;
1469
1470                 if (is_paging(vcpu) &&
1471                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1472                         return 1;
1473         }
1474
1475         efer &= ~EFER_LMA;
1476         efer |= vcpu->arch.efer & EFER_LMA;
1477
1478         r = kvm_x86_ops.set_efer(vcpu, efer);
1479         if (r) {
1480                 WARN_ON(r > 0);
1481                 return r;
1482         }
1483
1484         /* Update reserved bits */
1485         if ((efer ^ old_efer) & EFER_NX)
1486                 kvm_mmu_reset_context(vcpu);
1487
1488         return 0;
1489 }
1490
1491 void kvm_enable_efer_bits(u64 mask)
1492 {
1493        efer_reserved_bits &= ~mask;
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1496
1497 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1498 {
1499         struct kvm *kvm = vcpu->kvm;
1500         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1501         u32 count = kvm->arch.msr_filter.count;
1502         u32 i;
1503         bool r = kvm->arch.msr_filter.default_allow;
1504         int idx;
1505
1506         /* MSR filtering not set up or x2APIC enabled, allow everything */
1507         if (!count || (index >= 0x800 && index <= 0x8ff))
1508                 return true;
1509
1510         /* Prevent collision with set_msr_filter */
1511         idx = srcu_read_lock(&kvm->srcu);
1512
1513         for (i = 0; i < count; i++) {
1514                 u32 start = ranges[i].base;
1515                 u32 end = start + ranges[i].nmsrs;
1516                 u32 flags = ranges[i].flags;
1517                 unsigned long *bitmap = ranges[i].bitmap;
1518
1519                 if ((index >= start) && (index < end) && (flags & type)) {
1520                         r = !!test_bit(index - start, bitmap);
1521                         break;
1522                 }
1523         }
1524
1525         srcu_read_unlock(&kvm->srcu, idx);
1526
1527         return r;
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1530
1531 /*
1532  * Write @data into the MSR specified by @index.  Select MSR specific fault
1533  * checks are bypassed if @host_initiated is %true.
1534  * Returns 0 on success, non-0 otherwise.
1535  * Assumes vcpu_load() was already called.
1536  */
1537 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1538                          bool host_initiated)
1539 {
1540         struct msr_data msr;
1541
1542         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1543                 return KVM_MSR_RET_FILTERED;
1544
1545         switch (index) {
1546         case MSR_FS_BASE:
1547         case MSR_GS_BASE:
1548         case MSR_KERNEL_GS_BASE:
1549         case MSR_CSTAR:
1550         case MSR_LSTAR:
1551                 if (is_noncanonical_address(data, vcpu))
1552                         return 1;
1553                 break;
1554         case MSR_IA32_SYSENTER_EIP:
1555         case MSR_IA32_SYSENTER_ESP:
1556                 /*
1557                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1558                  * non-canonical address is written on Intel but not on
1559                  * AMD (which ignores the top 32-bits, because it does
1560                  * not implement 64-bit SYSENTER).
1561                  *
1562                  * 64-bit code should hence be able to write a non-canonical
1563                  * value on AMD.  Making the address canonical ensures that
1564                  * vmentry does not fail on Intel after writing a non-canonical
1565                  * value, and that something deterministic happens if the guest
1566                  * invokes 64-bit SYSENTER.
1567                  */
1568                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1569         }
1570
1571         msr.data = data;
1572         msr.index = index;
1573         msr.host_initiated = host_initiated;
1574
1575         return kvm_x86_ops.set_msr(vcpu, &msr);
1576 }
1577
1578 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1579                                      u32 index, u64 data, bool host_initiated)
1580 {
1581         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1582
1583         if (ret == KVM_MSR_RET_INVALID)
1584                 if (kvm_msr_ignored_check(vcpu, index, data, true))
1585                         ret = 0;
1586
1587         return ret;
1588 }
1589
1590 /*
1591  * Read the MSR specified by @index into @data.  Select MSR specific fault
1592  * checks are bypassed if @host_initiated is %true.
1593  * Returns 0 on success, non-0 otherwise.
1594  * Assumes vcpu_load() was already called.
1595  */
1596 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1597                   bool host_initiated)
1598 {
1599         struct msr_data msr;
1600         int ret;
1601
1602         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1603                 return KVM_MSR_RET_FILTERED;
1604
1605         msr.index = index;
1606         msr.host_initiated = host_initiated;
1607
1608         ret = kvm_x86_ops.get_msr(vcpu, &msr);
1609         if (!ret)
1610                 *data = msr.data;
1611         return ret;
1612 }
1613
1614 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1615                                      u32 index, u64 *data, bool host_initiated)
1616 {
1617         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1618
1619         if (ret == KVM_MSR_RET_INVALID) {
1620                 /* Unconditionally clear *data for simplicity */
1621                 *data = 0;
1622                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1623                         ret = 0;
1624         }
1625
1626         return ret;
1627 }
1628
1629 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1630 {
1631         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_get_msr);
1634
1635 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1636 {
1637         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_set_msr);
1640
1641 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1642 {
1643         if (vcpu->run->msr.error) {
1644                 kvm_inject_gp(vcpu, 0);
1645                 return 1;
1646         } else if (is_read) {
1647                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1648                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1649         }
1650
1651         return kvm_skip_emulated_instruction(vcpu);
1652 }
1653
1654 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1655 {
1656         return complete_emulated_msr(vcpu, true);
1657 }
1658
1659 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1660 {
1661         return complete_emulated_msr(vcpu, false);
1662 }
1663
1664 static u64 kvm_msr_reason(int r)
1665 {
1666         switch (r) {
1667         case KVM_MSR_RET_INVALID:
1668                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1669         case KVM_MSR_RET_FILTERED:
1670                 return KVM_MSR_EXIT_REASON_FILTER;
1671         default:
1672                 return KVM_MSR_EXIT_REASON_INVAL;
1673         }
1674 }
1675
1676 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1677                               u32 exit_reason, u64 data,
1678                               int (*completion)(struct kvm_vcpu *vcpu),
1679                               int r)
1680 {
1681         u64 msr_reason = kvm_msr_reason(r);
1682
1683         /* Check if the user wanted to know about this MSR fault */
1684         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1685                 return 0;
1686
1687         vcpu->run->exit_reason = exit_reason;
1688         vcpu->run->msr.error = 0;
1689         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1690         vcpu->run->msr.reason = msr_reason;
1691         vcpu->run->msr.index = index;
1692         vcpu->run->msr.data = data;
1693         vcpu->arch.complete_userspace_io = completion;
1694
1695         return 1;
1696 }
1697
1698 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1699 {
1700         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1701                                    complete_emulated_rdmsr, r);
1702 }
1703
1704 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1705 {
1706         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1707                                    complete_emulated_wrmsr, r);
1708 }
1709
1710 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1711 {
1712         u32 ecx = kvm_rcx_read(vcpu);
1713         u64 data;
1714         int r;
1715
1716         r = kvm_get_msr(vcpu, ecx, &data);
1717
1718         /* MSR read failed? See if we should ask user space */
1719         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1720                 /* Bounce to user space */
1721                 return 0;
1722         }
1723
1724         /* MSR read failed? Inject a #GP */
1725         if (r) {
1726                 trace_kvm_msr_read_ex(ecx);
1727                 kvm_inject_gp(vcpu, 0);
1728                 return 1;
1729         }
1730
1731         trace_kvm_msr_read(ecx, data);
1732
1733         kvm_rax_write(vcpu, data & -1u);
1734         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1735         return kvm_skip_emulated_instruction(vcpu);
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1738
1739 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1740 {
1741         u32 ecx = kvm_rcx_read(vcpu);
1742         u64 data = kvm_read_edx_eax(vcpu);
1743         int r;
1744
1745         r = kvm_set_msr(vcpu, ecx, data);
1746
1747         /* MSR write failed? See if we should ask user space */
1748         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1749                 /* Bounce to user space */
1750                 return 0;
1751
1752         /* Signal all other negative errors to userspace */
1753         if (r < 0)
1754                 return r;
1755
1756         /* MSR write failed? Inject a #GP */
1757         if (r > 0) {
1758                 trace_kvm_msr_write_ex(ecx, data);
1759                 kvm_inject_gp(vcpu, 0);
1760                 return 1;
1761         }
1762
1763         trace_kvm_msr_write(ecx, data);
1764         return kvm_skip_emulated_instruction(vcpu);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1767
1768 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1769 {
1770         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1771                 xfer_to_guest_mode_work_pending();
1772 }
1773 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1774
1775 /*
1776  * The fast path for frequent and performance sensitive wrmsr emulation,
1777  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1778  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1779  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1780  * other cases which must be called after interrupts are enabled on the host.
1781  */
1782 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1783 {
1784         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1785                 return 1;
1786
1787         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1788                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1789                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1790                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1791
1792                 data &= ~(1 << 12);
1793                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1794                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1795                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1796                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1797                 return 0;
1798         }
1799
1800         return 1;
1801 }
1802
1803 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1804 {
1805         if (!kvm_can_use_hv_timer(vcpu))
1806                 return 1;
1807
1808         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1809         return 0;
1810 }
1811
1812 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1813 {
1814         u32 msr = kvm_rcx_read(vcpu);
1815         u64 data;
1816         fastpath_t ret = EXIT_FASTPATH_NONE;
1817
1818         switch (msr) {
1819         case APIC_BASE_MSR + (APIC_ICR >> 4):
1820                 data = kvm_read_edx_eax(vcpu);
1821                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1822                         kvm_skip_emulated_instruction(vcpu);
1823                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1824                 }
1825                 break;
1826         case MSR_IA32_TSCDEADLINE:
1827                 data = kvm_read_edx_eax(vcpu);
1828                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1829                         kvm_skip_emulated_instruction(vcpu);
1830                         ret = EXIT_FASTPATH_REENTER_GUEST;
1831                 }
1832                 break;
1833         default:
1834                 break;
1835         }
1836
1837         if (ret != EXIT_FASTPATH_NONE)
1838                 trace_kvm_msr_write(msr, data);
1839
1840         return ret;
1841 }
1842 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1843
1844 /*
1845  * Adapt set_msr() to msr_io()'s calling convention
1846  */
1847 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1848 {
1849         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1850 }
1851
1852 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1853 {
1854         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1855 }
1856
1857 #ifdef CONFIG_X86_64
1858 struct pvclock_clock {
1859         int vclock_mode;
1860         u64 cycle_last;
1861         u64 mask;
1862         u32 mult;
1863         u32 shift;
1864         u64 base_cycles;
1865         u64 offset;
1866 };
1867
1868 struct pvclock_gtod_data {
1869         seqcount_t      seq;
1870
1871         struct pvclock_clock clock; /* extract of a clocksource struct */
1872         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1873
1874         ktime_t         offs_boot;
1875         u64             wall_time_sec;
1876 };
1877
1878 static struct pvclock_gtod_data pvclock_gtod_data;
1879
1880 static void update_pvclock_gtod(struct timekeeper *tk)
1881 {
1882         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1883
1884         write_seqcount_begin(&vdata->seq);
1885
1886         /* copy pvclock gtod data */
1887         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1888         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1889         vdata->clock.mask               = tk->tkr_mono.mask;
1890         vdata->clock.mult               = tk->tkr_mono.mult;
1891         vdata->clock.shift              = tk->tkr_mono.shift;
1892         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1893         vdata->clock.offset             = tk->tkr_mono.base;
1894
1895         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1896         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1897         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1898         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1899         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1900         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1901         vdata->raw_clock.offset         = tk->tkr_raw.base;
1902
1903         vdata->wall_time_sec            = tk->xtime_sec;
1904
1905         vdata->offs_boot                = tk->offs_boot;
1906
1907         write_seqcount_end(&vdata->seq);
1908 }
1909
1910 static s64 get_kvmclock_base_ns(void)
1911 {
1912         /* Count up from boot time, but with the frequency of the raw clock.  */
1913         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1914 }
1915 #else
1916 static s64 get_kvmclock_base_ns(void)
1917 {
1918         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1919         return ktime_get_boottime_ns();
1920 }
1921 #endif
1922
1923 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1924 {
1925         int version;
1926         int r;
1927         struct pvclock_wall_clock wc;
1928         u64 wall_nsec;
1929
1930         kvm->arch.wall_clock = wall_clock;
1931
1932         if (!wall_clock)
1933                 return;
1934
1935         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1936         if (r)
1937                 return;
1938
1939         if (version & 1)
1940                 ++version;  /* first time write, random junk */
1941
1942         ++version;
1943
1944         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1945                 return;
1946
1947         /*
1948          * The guest calculates current wall clock time by adding
1949          * system time (updated by kvm_guest_time_update below) to the
1950          * wall clock specified here.  We do the reverse here.
1951          */
1952         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1953
1954         wc.nsec = do_div(wall_nsec, 1000000000);
1955         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1956         wc.version = version;
1957
1958         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1959
1960         version++;
1961         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1962 }
1963
1964 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1965                                   bool old_msr, bool host_initiated)
1966 {
1967         struct kvm_arch *ka = &vcpu->kvm->arch;
1968
1969         if (vcpu->vcpu_id == 0 && !host_initiated) {
1970                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1971                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1972
1973                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1974         }
1975
1976         vcpu->arch.time = system_time;
1977         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1978
1979         /* we verify if the enable bit is set... */
1980         vcpu->arch.pv_time_enabled = false;
1981         if (!(system_time & 1))
1982                 return;
1983
1984         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1985                                        &vcpu->arch.pv_time, system_time & ~1ULL,
1986                                        sizeof(struct pvclock_vcpu_time_info)))
1987                 vcpu->arch.pv_time_enabled = true;
1988
1989         return;
1990 }
1991
1992 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1993 {
1994         do_shl32_div32(dividend, divisor);
1995         return dividend;
1996 }
1997
1998 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1999                                s8 *pshift, u32 *pmultiplier)
2000 {
2001         uint64_t scaled64;
2002         int32_t  shift = 0;
2003         uint64_t tps64;
2004         uint32_t tps32;
2005
2006         tps64 = base_hz;
2007         scaled64 = scaled_hz;
2008         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2009                 tps64 >>= 1;
2010                 shift--;
2011         }
2012
2013         tps32 = (uint32_t)tps64;
2014         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2015                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2016                         scaled64 >>= 1;
2017                 else
2018                         tps32 <<= 1;
2019                 shift++;
2020         }
2021
2022         *pshift = shift;
2023         *pmultiplier = div_frac(scaled64, tps32);
2024 }
2025
2026 #ifdef CONFIG_X86_64
2027 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2028 #endif
2029
2030 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2031 static unsigned long max_tsc_khz;
2032
2033 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2034 {
2035         u64 v = (u64)khz * (1000000 + ppm);
2036         do_div(v, 1000000);
2037         return v;
2038 }
2039
2040 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2041 {
2042         u64 ratio;
2043
2044         /* Guest TSC same frequency as host TSC? */
2045         if (!scale) {
2046                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2047                 return 0;
2048         }
2049
2050         /* TSC scaling supported? */
2051         if (!kvm_has_tsc_control) {
2052                 if (user_tsc_khz > tsc_khz) {
2053                         vcpu->arch.tsc_catchup = 1;
2054                         vcpu->arch.tsc_always_catchup = 1;
2055                         return 0;
2056                 } else {
2057                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2058                         return -1;
2059                 }
2060         }
2061
2062         /* TSC scaling required  - calculate ratio */
2063         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2064                                 user_tsc_khz, tsc_khz);
2065
2066         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2067                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2068                                     user_tsc_khz);
2069                 return -1;
2070         }
2071
2072         vcpu->arch.tsc_scaling_ratio = ratio;
2073         return 0;
2074 }
2075
2076 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2077 {
2078         u32 thresh_lo, thresh_hi;
2079         int use_scaling = 0;
2080
2081         /* tsc_khz can be zero if TSC calibration fails */
2082         if (user_tsc_khz == 0) {
2083                 /* set tsc_scaling_ratio to a safe value */
2084                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2085                 return -1;
2086         }
2087
2088         /* Compute a scale to convert nanoseconds in TSC cycles */
2089         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2090                            &vcpu->arch.virtual_tsc_shift,
2091                            &vcpu->arch.virtual_tsc_mult);
2092         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2093
2094         /*
2095          * Compute the variation in TSC rate which is acceptable
2096          * within the range of tolerance and decide if the
2097          * rate being applied is within that bounds of the hardware
2098          * rate.  If so, no scaling or compensation need be done.
2099          */
2100         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2101         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2102         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2103                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2104                 use_scaling = 1;
2105         }
2106         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2107 }
2108
2109 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2110 {
2111         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2112                                       vcpu->arch.virtual_tsc_mult,
2113                                       vcpu->arch.virtual_tsc_shift);
2114         tsc += vcpu->arch.this_tsc_write;
2115         return tsc;
2116 }
2117
2118 static inline int gtod_is_based_on_tsc(int mode)
2119 {
2120         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2121 }
2122
2123 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2124 {
2125 #ifdef CONFIG_X86_64
2126         bool vcpus_matched;
2127         struct kvm_arch *ka = &vcpu->kvm->arch;
2128         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2129
2130         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2131                          atomic_read(&vcpu->kvm->online_vcpus));
2132
2133         /*
2134          * Once the masterclock is enabled, always perform request in
2135          * order to update it.
2136          *
2137          * In order to enable masterclock, the host clocksource must be TSC
2138          * and the vcpus need to have matched TSCs.  When that happens,
2139          * perform request to enable masterclock.
2140          */
2141         if (ka->use_master_clock ||
2142             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2143                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2144
2145         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2146                             atomic_read(&vcpu->kvm->online_vcpus),
2147                             ka->use_master_clock, gtod->clock.vclock_mode);
2148 #endif
2149 }
2150
2151 /*
2152  * Multiply tsc by a fixed point number represented by ratio.
2153  *
2154  * The most significant 64-N bits (mult) of ratio represent the
2155  * integral part of the fixed point number; the remaining N bits
2156  * (frac) represent the fractional part, ie. ratio represents a fixed
2157  * point number (mult + frac * 2^(-N)).
2158  *
2159  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2160  */
2161 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2162 {
2163         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2164 }
2165
2166 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2167 {
2168         u64 _tsc = tsc;
2169         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2170
2171         if (ratio != kvm_default_tsc_scaling_ratio)
2172                 _tsc = __scale_tsc(ratio, tsc);
2173
2174         return _tsc;
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2177
2178 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2179 {
2180         u64 tsc;
2181
2182         tsc = kvm_scale_tsc(vcpu, rdtsc());
2183
2184         return target_tsc - tsc;
2185 }
2186
2187 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2188 {
2189         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2192
2193 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2194 {
2195         vcpu->arch.l1_tsc_offset = offset;
2196         vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2197 }
2198
2199 static inline bool kvm_check_tsc_unstable(void)
2200 {
2201 #ifdef CONFIG_X86_64
2202         /*
2203          * TSC is marked unstable when we're running on Hyper-V,
2204          * 'TSC page' clocksource is good.
2205          */
2206         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2207                 return false;
2208 #endif
2209         return check_tsc_unstable();
2210 }
2211
2212 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2213 {
2214         struct kvm *kvm = vcpu->kvm;
2215         u64 offset, ns, elapsed;
2216         unsigned long flags;
2217         bool matched;
2218         bool already_matched;
2219         bool synchronizing = false;
2220
2221         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2222         offset = kvm_compute_tsc_offset(vcpu, data);
2223         ns = get_kvmclock_base_ns();
2224         elapsed = ns - kvm->arch.last_tsc_nsec;
2225
2226         if (vcpu->arch.virtual_tsc_khz) {
2227                 if (data == 0) {
2228                         /*
2229                          * detection of vcpu initialization -- need to sync
2230                          * with other vCPUs. This particularly helps to keep
2231                          * kvm_clock stable after CPU hotplug
2232                          */
2233                         synchronizing = true;
2234                 } else {
2235                         u64 tsc_exp = kvm->arch.last_tsc_write +
2236                                                 nsec_to_cycles(vcpu, elapsed);
2237                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2238                         /*
2239                          * Special case: TSC write with a small delta (1 second)
2240                          * of virtual cycle time against real time is
2241                          * interpreted as an attempt to synchronize the CPU.
2242                          */
2243                         synchronizing = data < tsc_exp + tsc_hz &&
2244                                         data + tsc_hz > tsc_exp;
2245                 }
2246         }
2247
2248         /*
2249          * For a reliable TSC, we can match TSC offsets, and for an unstable
2250          * TSC, we add elapsed time in this computation.  We could let the
2251          * compensation code attempt to catch up if we fall behind, but
2252          * it's better to try to match offsets from the beginning.
2253          */
2254         if (synchronizing &&
2255             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2256                 if (!kvm_check_tsc_unstable()) {
2257                         offset = kvm->arch.cur_tsc_offset;
2258                 } else {
2259                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2260                         data += delta;
2261                         offset = kvm_compute_tsc_offset(vcpu, data);
2262                 }
2263                 matched = true;
2264                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2265         } else {
2266                 /*
2267                  * We split periods of matched TSC writes into generations.
2268                  * For each generation, we track the original measured
2269                  * nanosecond time, offset, and write, so if TSCs are in
2270                  * sync, we can match exact offset, and if not, we can match
2271                  * exact software computation in compute_guest_tsc()
2272                  *
2273                  * These values are tracked in kvm->arch.cur_xxx variables.
2274                  */
2275                 kvm->arch.cur_tsc_generation++;
2276                 kvm->arch.cur_tsc_nsec = ns;
2277                 kvm->arch.cur_tsc_write = data;
2278                 kvm->arch.cur_tsc_offset = offset;
2279                 matched = false;
2280         }
2281
2282         /*
2283          * We also track th most recent recorded KHZ, write and time to
2284          * allow the matching interval to be extended at each write.
2285          */
2286         kvm->arch.last_tsc_nsec = ns;
2287         kvm->arch.last_tsc_write = data;
2288         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2289
2290         vcpu->arch.last_guest_tsc = data;
2291
2292         /* Keep track of which generation this VCPU has synchronized to */
2293         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2294         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2295         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2296
2297         kvm_vcpu_write_tsc_offset(vcpu, offset);
2298         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2299
2300         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2301         if (!matched) {
2302                 kvm->arch.nr_vcpus_matched_tsc = 0;
2303         } else if (!already_matched) {
2304                 kvm->arch.nr_vcpus_matched_tsc++;
2305         }
2306
2307         kvm_track_tsc_matching(vcpu);
2308         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2309 }
2310
2311 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2312                                            s64 adjustment)
2313 {
2314         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2315         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2316 }
2317
2318 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2319 {
2320         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2321                 WARN_ON(adjustment < 0);
2322         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2323         adjust_tsc_offset_guest(vcpu, adjustment);
2324 }
2325
2326 #ifdef CONFIG_X86_64
2327
2328 static u64 read_tsc(void)
2329 {
2330         u64 ret = (u64)rdtsc_ordered();
2331         u64 last = pvclock_gtod_data.clock.cycle_last;
2332
2333         if (likely(ret >= last))
2334                 return ret;
2335
2336         /*
2337          * GCC likes to generate cmov here, but this branch is extremely
2338          * predictable (it's just a function of time and the likely is
2339          * very likely) and there's a data dependence, so force GCC
2340          * to generate a branch instead.  I don't barrier() because
2341          * we don't actually need a barrier, and if this function
2342          * ever gets inlined it will generate worse code.
2343          */
2344         asm volatile ("");
2345         return last;
2346 }
2347
2348 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2349                           int *mode)
2350 {
2351         long v;
2352         u64 tsc_pg_val;
2353
2354         switch (clock->vclock_mode) {
2355         case VDSO_CLOCKMODE_HVCLOCK:
2356                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2357                                                   tsc_timestamp);
2358                 if (tsc_pg_val != U64_MAX) {
2359                         /* TSC page valid */
2360                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2361                         v = (tsc_pg_val - clock->cycle_last) &
2362                                 clock->mask;
2363                 } else {
2364                         /* TSC page invalid */
2365                         *mode = VDSO_CLOCKMODE_NONE;
2366                 }
2367                 break;
2368         case VDSO_CLOCKMODE_TSC:
2369                 *mode = VDSO_CLOCKMODE_TSC;
2370                 *tsc_timestamp = read_tsc();
2371                 v = (*tsc_timestamp - clock->cycle_last) &
2372                         clock->mask;
2373                 break;
2374         default:
2375                 *mode = VDSO_CLOCKMODE_NONE;
2376         }
2377
2378         if (*mode == VDSO_CLOCKMODE_NONE)
2379                 *tsc_timestamp = v = 0;
2380
2381         return v * clock->mult;
2382 }
2383
2384 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2385 {
2386         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2387         unsigned long seq;
2388         int mode;
2389         u64 ns;
2390
2391         do {
2392                 seq = read_seqcount_begin(&gtod->seq);
2393                 ns = gtod->raw_clock.base_cycles;
2394                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2395                 ns >>= gtod->raw_clock.shift;
2396                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2397         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2398         *t = ns;
2399
2400         return mode;
2401 }
2402
2403 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2404 {
2405         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2406         unsigned long seq;
2407         int mode;
2408         u64 ns;
2409
2410         do {
2411                 seq = read_seqcount_begin(&gtod->seq);
2412                 ts->tv_sec = gtod->wall_time_sec;
2413                 ns = gtod->clock.base_cycles;
2414                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2415                 ns >>= gtod->clock.shift;
2416         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2417
2418         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2419         ts->tv_nsec = ns;
2420
2421         return mode;
2422 }
2423
2424 /* returns true if host is using TSC based clocksource */
2425 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2426 {
2427         /* checked again under seqlock below */
2428         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2429                 return false;
2430
2431         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2432                                                       tsc_timestamp));
2433 }
2434
2435 /* returns true if host is using TSC based clocksource */
2436 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2437                                            u64 *tsc_timestamp)
2438 {
2439         /* checked again under seqlock below */
2440         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2441                 return false;
2442
2443         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2444 }
2445 #endif
2446
2447 /*
2448  *
2449  * Assuming a stable TSC across physical CPUS, and a stable TSC
2450  * across virtual CPUs, the following condition is possible.
2451  * Each numbered line represents an event visible to both
2452  * CPUs at the next numbered event.
2453  *
2454  * "timespecX" represents host monotonic time. "tscX" represents
2455  * RDTSC value.
2456  *
2457  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2458  *
2459  * 1.  read timespec0,tsc0
2460  * 2.                                   | timespec1 = timespec0 + N
2461  *                                      | tsc1 = tsc0 + M
2462  * 3. transition to guest               | transition to guest
2463  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2464  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2465  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2466  *
2467  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2468  *
2469  *      - ret0 < ret1
2470  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2471  *              ...
2472  *      - 0 < N - M => M < N
2473  *
2474  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2475  * always the case (the difference between two distinct xtime instances
2476  * might be smaller then the difference between corresponding TSC reads,
2477  * when updating guest vcpus pvclock areas).
2478  *
2479  * To avoid that problem, do not allow visibility of distinct
2480  * system_timestamp/tsc_timestamp values simultaneously: use a master
2481  * copy of host monotonic time values. Update that master copy
2482  * in lockstep.
2483  *
2484  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2485  *
2486  */
2487
2488 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2489 {
2490 #ifdef CONFIG_X86_64
2491         struct kvm_arch *ka = &kvm->arch;
2492         int vclock_mode;
2493         bool host_tsc_clocksource, vcpus_matched;
2494
2495         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2496                         atomic_read(&kvm->online_vcpus));
2497
2498         /*
2499          * If the host uses TSC clock, then passthrough TSC as stable
2500          * to the guest.
2501          */
2502         host_tsc_clocksource = kvm_get_time_and_clockread(
2503                                         &ka->master_kernel_ns,
2504                                         &ka->master_cycle_now);
2505
2506         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2507                                 && !ka->backwards_tsc_observed
2508                                 && !ka->boot_vcpu_runs_old_kvmclock;
2509
2510         if (ka->use_master_clock)
2511                 atomic_set(&kvm_guest_has_master_clock, 1);
2512
2513         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2514         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2515                                         vcpus_matched);
2516 #endif
2517 }
2518
2519 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2520 {
2521         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2522 }
2523
2524 static void kvm_gen_update_masterclock(struct kvm *kvm)
2525 {
2526 #ifdef CONFIG_X86_64
2527         int i;
2528         struct kvm_vcpu *vcpu;
2529         struct kvm_arch *ka = &kvm->arch;
2530
2531         spin_lock(&ka->pvclock_gtod_sync_lock);
2532         kvm_make_mclock_inprogress_request(kvm);
2533         /* no guest entries from this point */
2534         pvclock_update_vm_gtod_copy(kvm);
2535
2536         kvm_for_each_vcpu(i, vcpu, kvm)
2537                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2538
2539         /* guest entries allowed */
2540         kvm_for_each_vcpu(i, vcpu, kvm)
2541                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2542
2543         spin_unlock(&ka->pvclock_gtod_sync_lock);
2544 #endif
2545 }
2546
2547 u64 get_kvmclock_ns(struct kvm *kvm)
2548 {
2549         struct kvm_arch *ka = &kvm->arch;
2550         struct pvclock_vcpu_time_info hv_clock;
2551         u64 ret;
2552
2553         spin_lock(&ka->pvclock_gtod_sync_lock);
2554         if (!ka->use_master_clock) {
2555                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2556                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2557         }
2558
2559         hv_clock.tsc_timestamp = ka->master_cycle_now;
2560         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2561         spin_unlock(&ka->pvclock_gtod_sync_lock);
2562
2563         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2564         get_cpu();
2565
2566         if (__this_cpu_read(cpu_tsc_khz)) {
2567                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2568                                    &hv_clock.tsc_shift,
2569                                    &hv_clock.tsc_to_system_mul);
2570                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2571         } else
2572                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2573
2574         put_cpu();
2575
2576         return ret;
2577 }
2578
2579 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2580 {
2581         struct kvm_vcpu_arch *vcpu = &v->arch;
2582         struct pvclock_vcpu_time_info guest_hv_clock;
2583
2584         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2585                 &guest_hv_clock, sizeof(guest_hv_clock))))
2586                 return;
2587
2588         /* This VCPU is paused, but it's legal for a guest to read another
2589          * VCPU's kvmclock, so we really have to follow the specification where
2590          * it says that version is odd if data is being modified, and even after
2591          * it is consistent.
2592          *
2593          * Version field updates must be kept separate.  This is because
2594          * kvm_write_guest_cached might use a "rep movs" instruction, and
2595          * writes within a string instruction are weakly ordered.  So there
2596          * are three writes overall.
2597          *
2598          * As a small optimization, only write the version field in the first
2599          * and third write.  The vcpu->pv_time cache is still valid, because the
2600          * version field is the first in the struct.
2601          */
2602         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2603
2604         if (guest_hv_clock.version & 1)
2605                 ++guest_hv_clock.version;  /* first time write, random junk */
2606
2607         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2608         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2609                                 &vcpu->hv_clock,
2610                                 sizeof(vcpu->hv_clock.version));
2611
2612         smp_wmb();
2613
2614         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2615         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2616
2617         if (vcpu->pvclock_set_guest_stopped_request) {
2618                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2619                 vcpu->pvclock_set_guest_stopped_request = false;
2620         }
2621
2622         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2623
2624         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2625                                 &vcpu->hv_clock,
2626                                 sizeof(vcpu->hv_clock));
2627
2628         smp_wmb();
2629
2630         vcpu->hv_clock.version++;
2631         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2632                                 &vcpu->hv_clock,
2633                                 sizeof(vcpu->hv_clock.version));
2634 }
2635
2636 static int kvm_guest_time_update(struct kvm_vcpu *v)
2637 {
2638         unsigned long flags, tgt_tsc_khz;
2639         struct kvm_vcpu_arch *vcpu = &v->arch;
2640         struct kvm_arch *ka = &v->kvm->arch;
2641         s64 kernel_ns;
2642         u64 tsc_timestamp, host_tsc;
2643         u8 pvclock_flags;
2644         bool use_master_clock;
2645
2646         kernel_ns = 0;
2647         host_tsc = 0;
2648
2649         /*
2650          * If the host uses TSC clock, then passthrough TSC as stable
2651          * to the guest.
2652          */
2653         spin_lock(&ka->pvclock_gtod_sync_lock);
2654         use_master_clock = ka->use_master_clock;
2655         if (use_master_clock) {
2656                 host_tsc = ka->master_cycle_now;
2657                 kernel_ns = ka->master_kernel_ns;
2658         }
2659         spin_unlock(&ka->pvclock_gtod_sync_lock);
2660
2661         /* Keep irq disabled to prevent changes to the clock */
2662         local_irq_save(flags);
2663         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2664         if (unlikely(tgt_tsc_khz == 0)) {
2665                 local_irq_restore(flags);
2666                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2667                 return 1;
2668         }
2669         if (!use_master_clock) {
2670                 host_tsc = rdtsc();
2671                 kernel_ns = get_kvmclock_base_ns();
2672         }
2673
2674         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2675
2676         /*
2677          * We may have to catch up the TSC to match elapsed wall clock
2678          * time for two reasons, even if kvmclock is used.
2679          *   1) CPU could have been running below the maximum TSC rate
2680          *   2) Broken TSC compensation resets the base at each VCPU
2681          *      entry to avoid unknown leaps of TSC even when running
2682          *      again on the same CPU.  This may cause apparent elapsed
2683          *      time to disappear, and the guest to stand still or run
2684          *      very slowly.
2685          */
2686         if (vcpu->tsc_catchup) {
2687                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2688                 if (tsc > tsc_timestamp) {
2689                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2690                         tsc_timestamp = tsc;
2691                 }
2692         }
2693
2694         local_irq_restore(flags);
2695
2696         /* With all the info we got, fill in the values */
2697
2698         if (kvm_has_tsc_control)
2699                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2700
2701         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2702                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2703                                    &vcpu->hv_clock.tsc_shift,
2704                                    &vcpu->hv_clock.tsc_to_system_mul);
2705                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2706         }
2707
2708         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2709         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2710         vcpu->last_guest_tsc = tsc_timestamp;
2711
2712         /* If the host uses TSC clocksource, then it is stable */
2713         pvclock_flags = 0;
2714         if (use_master_clock)
2715                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2716
2717         vcpu->hv_clock.flags = pvclock_flags;
2718
2719         if (vcpu->pv_time_enabled)
2720                 kvm_setup_pvclock_page(v);
2721         if (v == kvm_get_vcpu(v->kvm, 0))
2722                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2723         return 0;
2724 }
2725
2726 /*
2727  * kvmclock updates which are isolated to a given vcpu, such as
2728  * vcpu->cpu migration, should not allow system_timestamp from
2729  * the rest of the vcpus to remain static. Otherwise ntp frequency
2730  * correction applies to one vcpu's system_timestamp but not
2731  * the others.
2732  *
2733  * So in those cases, request a kvmclock update for all vcpus.
2734  * We need to rate-limit these requests though, as they can
2735  * considerably slow guests that have a large number of vcpus.
2736  * The time for a remote vcpu to update its kvmclock is bound
2737  * by the delay we use to rate-limit the updates.
2738  */
2739
2740 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2741
2742 static void kvmclock_update_fn(struct work_struct *work)
2743 {
2744         int i;
2745         struct delayed_work *dwork = to_delayed_work(work);
2746         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2747                                            kvmclock_update_work);
2748         struct kvm *kvm = container_of(ka, struct kvm, arch);
2749         struct kvm_vcpu *vcpu;
2750
2751         kvm_for_each_vcpu(i, vcpu, kvm) {
2752                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2753                 kvm_vcpu_kick(vcpu);
2754         }
2755 }
2756
2757 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2758 {
2759         struct kvm *kvm = v->kvm;
2760
2761         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2762         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2763                                         KVMCLOCK_UPDATE_DELAY);
2764 }
2765
2766 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2767
2768 static void kvmclock_sync_fn(struct work_struct *work)
2769 {
2770         struct delayed_work *dwork = to_delayed_work(work);
2771         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2772                                            kvmclock_sync_work);
2773         struct kvm *kvm = container_of(ka, struct kvm, arch);
2774
2775         if (!kvmclock_periodic_sync)
2776                 return;
2777
2778         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2779         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2780                                         KVMCLOCK_SYNC_PERIOD);
2781 }
2782
2783 /*
2784  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2785  */
2786 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2787 {
2788         /* McStatusWrEn enabled? */
2789         if (guest_cpuid_is_amd_or_hygon(vcpu))
2790                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2791
2792         return false;
2793 }
2794
2795 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2796 {
2797         u64 mcg_cap = vcpu->arch.mcg_cap;
2798         unsigned bank_num = mcg_cap & 0xff;
2799         u32 msr = msr_info->index;
2800         u64 data = msr_info->data;
2801
2802         switch (msr) {
2803         case MSR_IA32_MCG_STATUS:
2804                 vcpu->arch.mcg_status = data;
2805                 break;
2806         case MSR_IA32_MCG_CTL:
2807                 if (!(mcg_cap & MCG_CTL_P) &&
2808                     (data || !msr_info->host_initiated))
2809                         return 1;
2810                 if (data != 0 && data != ~(u64)0)
2811                         return 1;
2812                 vcpu->arch.mcg_ctl = data;
2813                 break;
2814         default:
2815                 if (msr >= MSR_IA32_MC0_CTL &&
2816                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2817                         u32 offset = array_index_nospec(
2818                                 msr - MSR_IA32_MC0_CTL,
2819                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2820
2821                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2822                          * some Linux kernels though clear bit 10 in bank 4 to
2823                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2824                          * this to avoid an uncatched #GP in the guest
2825                          */
2826                         if ((offset & 0x3) == 0 &&
2827                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2828                                 return -1;
2829
2830                         /* MCi_STATUS */
2831                         if (!msr_info->host_initiated &&
2832                             (offset & 0x3) == 1 && data != 0) {
2833                                 if (!can_set_mci_status(vcpu))
2834                                         return -1;
2835                         }
2836
2837                         vcpu->arch.mce_banks[offset] = data;
2838                         break;
2839                 }
2840                 return 1;
2841         }
2842         return 0;
2843 }
2844
2845 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2846 {
2847         struct kvm *kvm = vcpu->kvm;
2848         int lm = is_long_mode(vcpu);
2849         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2850                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2851         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2852                 : kvm->arch.xen_hvm_config.blob_size_32;
2853         u32 page_num = data & ~PAGE_MASK;
2854         u64 page_addr = data & PAGE_MASK;
2855         u8 *page;
2856
2857         if (page_num >= blob_size)
2858                 return 1;
2859
2860         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2861         if (IS_ERR(page))
2862                 return PTR_ERR(page);
2863
2864         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2865                 kfree(page);
2866                 return 1;
2867         }
2868         return 0;
2869 }
2870
2871 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2872 {
2873         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2874
2875         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2876 }
2877
2878 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2879 {
2880         gpa_t gpa = data & ~0x3f;
2881
2882         /* Bits 4:5 are reserved, Should be zero */
2883         if (data & 0x30)
2884                 return 1;
2885
2886         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2887             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2888                 return 1;
2889
2890         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2891             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2892                 return 1;
2893
2894         if (!lapic_in_kernel(vcpu))
2895                 return data ? 1 : 0;
2896
2897         vcpu->arch.apf.msr_en_val = data;
2898
2899         if (!kvm_pv_async_pf_enabled(vcpu)) {
2900                 kvm_clear_async_pf_completion_queue(vcpu);
2901                 kvm_async_pf_hash_reset(vcpu);
2902                 return 0;
2903         }
2904
2905         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2906                                         sizeof(u64)))
2907                 return 1;
2908
2909         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2910         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2911
2912         kvm_async_pf_wakeup_all(vcpu);
2913
2914         return 0;
2915 }
2916
2917 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2918 {
2919         /* Bits 8-63 are reserved */
2920         if (data >> 8)
2921                 return 1;
2922
2923         if (!lapic_in_kernel(vcpu))
2924                 return 1;
2925
2926         vcpu->arch.apf.msr_int_val = data;
2927
2928         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2929
2930         return 0;
2931 }
2932
2933 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2934 {
2935         vcpu->arch.pv_time_enabled = false;
2936         vcpu->arch.time = 0;
2937 }
2938
2939 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2940 {
2941         ++vcpu->stat.tlb_flush;
2942         kvm_x86_ops.tlb_flush_all(vcpu);
2943 }
2944
2945 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2946 {
2947         ++vcpu->stat.tlb_flush;
2948         kvm_x86_ops.tlb_flush_guest(vcpu);
2949 }
2950
2951 static void record_steal_time(struct kvm_vcpu *vcpu)
2952 {
2953         struct kvm_host_map map;
2954         struct kvm_steal_time *st;
2955
2956         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2957                 return;
2958
2959         /* -EAGAIN is returned in atomic context so we can just return. */
2960         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2961                         &map, &vcpu->arch.st.cache, false))
2962                 return;
2963
2964         st = map.hva +
2965                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2966
2967         /*
2968          * Doing a TLB flush here, on the guest's behalf, can avoid
2969          * expensive IPIs.
2970          */
2971         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2972                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2973                                        st->preempted & KVM_VCPU_FLUSH_TLB);
2974                 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2975                         kvm_vcpu_flush_tlb_guest(vcpu);
2976         }
2977
2978         vcpu->arch.st.preempted = 0;
2979
2980         if (st->version & 1)
2981                 st->version += 1;  /* first time write, random junk */
2982
2983         st->version += 1;
2984
2985         smp_wmb();
2986
2987         st->steal += current->sched_info.run_delay -
2988                 vcpu->arch.st.last_steal;
2989         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2990
2991         smp_wmb();
2992
2993         st->version += 1;
2994
2995         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2996 }
2997
2998 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2999 {
3000         bool pr = false;
3001         u32 msr = msr_info->index;
3002         u64 data = msr_info->data;
3003
3004         switch (msr) {
3005         case MSR_AMD64_NB_CFG:
3006         case MSR_IA32_UCODE_WRITE:
3007         case MSR_VM_HSAVE_PA:
3008         case MSR_AMD64_PATCH_LOADER:
3009         case MSR_AMD64_BU_CFG2:
3010         case MSR_AMD64_DC_CFG:
3011         case MSR_F15H_EX_CFG:
3012                 break;
3013
3014         case MSR_IA32_UCODE_REV:
3015                 if (msr_info->host_initiated)
3016                         vcpu->arch.microcode_version = data;
3017                 break;
3018         case MSR_IA32_ARCH_CAPABILITIES:
3019                 if (!msr_info->host_initiated)
3020                         return 1;
3021                 vcpu->arch.arch_capabilities = data;
3022                 break;
3023         case MSR_IA32_PERF_CAPABILITIES: {
3024                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3025
3026                 if (!msr_info->host_initiated)
3027                         return 1;
3028                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3029                         return 1;
3030                 if (data & ~msr_ent.data)
3031                         return 1;
3032
3033                 vcpu->arch.perf_capabilities = data;
3034
3035                 return 0;
3036                 }
3037         case MSR_EFER:
3038                 return set_efer(vcpu, msr_info);
3039         case MSR_K7_HWCR:
3040                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3041                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3042                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3043
3044                 /* Handle McStatusWrEn */
3045                 if (data == BIT_ULL(18)) {
3046                         vcpu->arch.msr_hwcr = data;
3047                 } else if (data != 0) {
3048                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3049                                     data);
3050                         return 1;
3051                 }
3052                 break;
3053         case MSR_FAM10H_MMIO_CONF_BASE:
3054                 if (data != 0) {
3055                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3056                                     "0x%llx\n", data);
3057                         return 1;
3058                 }
3059                 break;
3060         case MSR_IA32_DEBUGCTLMSR:
3061                 if (!data) {
3062                         /* We support the non-activated case already */
3063                         break;
3064                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3065                         /* Values other than LBR and BTF are vendor-specific,
3066                            thus reserved and should throw a #GP */
3067                         return 1;
3068                 } else if (report_ignored_msrs)
3069                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3070                                     __func__, data);
3071                 break;
3072         case 0x200 ... 0x2ff:
3073                 return kvm_mtrr_set_msr(vcpu, msr, data);
3074         case MSR_IA32_APICBASE:
3075                 return kvm_set_apic_base(vcpu, msr_info);
3076         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3077                 return kvm_x2apic_msr_write(vcpu, msr, data);
3078         case MSR_IA32_TSCDEADLINE:
3079                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3080                 break;
3081         case MSR_IA32_TSC_ADJUST:
3082                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3083                         if (!msr_info->host_initiated) {
3084                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3085                                 adjust_tsc_offset_guest(vcpu, adj);
3086                         }
3087                         vcpu->arch.ia32_tsc_adjust_msr = data;
3088                 }
3089                 break;
3090         case MSR_IA32_MISC_ENABLE:
3091                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3092                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3093                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3094                                 return 1;
3095                         vcpu->arch.ia32_misc_enable_msr = data;
3096                         kvm_update_cpuid_runtime(vcpu);
3097                 } else {
3098                         vcpu->arch.ia32_misc_enable_msr = data;
3099                 }
3100                 break;
3101         case MSR_IA32_SMBASE:
3102                 if (!msr_info->host_initiated)
3103                         return 1;
3104                 vcpu->arch.smbase = data;
3105                 break;
3106         case MSR_IA32_POWER_CTL:
3107                 vcpu->arch.msr_ia32_power_ctl = data;
3108                 break;
3109         case MSR_IA32_TSC:
3110                 if (msr_info->host_initiated) {
3111                         kvm_synchronize_tsc(vcpu, data);
3112                 } else {
3113                         u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3114                         adjust_tsc_offset_guest(vcpu, adj);
3115                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3116                 }
3117                 break;
3118         case MSR_IA32_XSS:
3119                 if (!msr_info->host_initiated &&
3120                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3121                         return 1;
3122                 /*
3123                  * KVM supports exposing PT to the guest, but does not support
3124                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3125                  * XSAVES/XRSTORS to save/restore PT MSRs.
3126                  */
3127                 if (data & ~supported_xss)
3128                         return 1;
3129                 vcpu->arch.ia32_xss = data;
3130                 break;
3131         case MSR_SMI_COUNT:
3132                 if (!msr_info->host_initiated)
3133                         return 1;
3134                 vcpu->arch.smi_count = data;
3135                 break;
3136         case MSR_KVM_WALL_CLOCK_NEW:
3137                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3138                         return 1;
3139
3140                 kvm_write_wall_clock(vcpu->kvm, data);
3141                 break;
3142         case MSR_KVM_WALL_CLOCK:
3143                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3144                         return 1;
3145
3146                 kvm_write_wall_clock(vcpu->kvm, data);
3147                 break;
3148         case MSR_KVM_SYSTEM_TIME_NEW:
3149                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3150                         return 1;
3151
3152                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3153                 break;
3154         case MSR_KVM_SYSTEM_TIME:
3155                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3156                         return 1;
3157
3158                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3159                 break;
3160         case MSR_KVM_ASYNC_PF_EN:
3161                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3162                         return 1;
3163
3164                 if (kvm_pv_enable_async_pf(vcpu, data))
3165                         return 1;
3166                 break;
3167         case MSR_KVM_ASYNC_PF_INT:
3168                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3169                         return 1;
3170
3171                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3172                         return 1;
3173                 break;
3174         case MSR_KVM_ASYNC_PF_ACK:
3175                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3176                         return 1;
3177                 if (data & 0x1) {
3178                         vcpu->arch.apf.pageready_pending = false;
3179                         kvm_check_async_pf_completion(vcpu);
3180                 }
3181                 break;
3182         case MSR_KVM_STEAL_TIME:
3183                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3184                         return 1;
3185
3186                 if (unlikely(!sched_info_on()))
3187                         return 1;
3188
3189                 if (data & KVM_STEAL_RESERVED_MASK)
3190                         return 1;
3191
3192                 vcpu->arch.st.msr_val = data;
3193
3194                 if (!(data & KVM_MSR_ENABLED))
3195                         break;
3196
3197                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3198
3199                 break;
3200         case MSR_KVM_PV_EOI_EN:
3201                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3202                         return 1;
3203
3204                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3205                         return 1;
3206                 break;
3207
3208         case MSR_KVM_POLL_CONTROL:
3209                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3210                         return 1;
3211
3212                 /* only enable bit supported */
3213                 if (data & (-1ULL << 1))
3214                         return 1;
3215
3216                 vcpu->arch.msr_kvm_poll_control = data;
3217                 break;
3218
3219         case MSR_IA32_MCG_CTL:
3220         case MSR_IA32_MCG_STATUS:
3221         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3222                 return set_msr_mce(vcpu, msr_info);
3223
3224         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3225         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3226                 pr = true;
3227                 fallthrough;
3228         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3229         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3230                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3231                         return kvm_pmu_set_msr(vcpu, msr_info);
3232
3233                 if (pr || data != 0)
3234                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3235                                     "0x%x data 0x%llx\n", msr, data);
3236                 break;
3237         case MSR_K7_CLK_CTL:
3238                 /*
3239                  * Ignore all writes to this no longer documented MSR.
3240                  * Writes are only relevant for old K7 processors,
3241                  * all pre-dating SVM, but a recommended workaround from
3242                  * AMD for these chips. It is possible to specify the
3243                  * affected processor models on the command line, hence
3244                  * the need to ignore the workaround.
3245                  */
3246                 break;
3247         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3248         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3249         case HV_X64_MSR_SYNDBG_OPTIONS:
3250         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3251         case HV_X64_MSR_CRASH_CTL:
3252         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3253         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3254         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3255         case HV_X64_MSR_TSC_EMULATION_STATUS:
3256                 return kvm_hv_set_msr_common(vcpu, msr, data,
3257                                              msr_info->host_initiated);
3258         case MSR_IA32_BBL_CR_CTL3:
3259                 /* Drop writes to this legacy MSR -- see rdmsr
3260                  * counterpart for further detail.
3261                  */
3262                 if (report_ignored_msrs)
3263                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3264                                 msr, data);
3265                 break;
3266         case MSR_AMD64_OSVW_ID_LENGTH:
3267                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3268                         return 1;
3269                 vcpu->arch.osvw.length = data;
3270                 break;
3271         case MSR_AMD64_OSVW_STATUS:
3272                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3273                         return 1;
3274                 vcpu->arch.osvw.status = data;
3275                 break;
3276         case MSR_PLATFORM_INFO:
3277                 if (!msr_info->host_initiated ||
3278                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3279                      cpuid_fault_enabled(vcpu)))
3280                         return 1;
3281                 vcpu->arch.msr_platform_info = data;
3282                 break;
3283         case MSR_MISC_FEATURES_ENABLES:
3284                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3285                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3286                      !supports_cpuid_fault(vcpu)))
3287                         return 1;
3288                 vcpu->arch.msr_misc_features_enables = data;
3289                 break;
3290         default:
3291                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3292                         return xen_hvm_config(vcpu, data);
3293                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3294                         return kvm_pmu_set_msr(vcpu, msr_info);
3295                 return KVM_MSR_RET_INVALID;
3296         }
3297         return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3300
3301 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3302 {
3303         u64 data;
3304         u64 mcg_cap = vcpu->arch.mcg_cap;
3305         unsigned bank_num = mcg_cap & 0xff;
3306
3307         switch (msr) {
3308         case MSR_IA32_P5_MC_ADDR:
3309         case MSR_IA32_P5_MC_TYPE:
3310                 data = 0;
3311                 break;
3312         case MSR_IA32_MCG_CAP:
3313                 data = vcpu->arch.mcg_cap;
3314                 break;
3315         case MSR_IA32_MCG_CTL:
3316                 if (!(mcg_cap & MCG_CTL_P) && !host)
3317                         return 1;
3318                 data = vcpu->arch.mcg_ctl;
3319                 break;
3320         case MSR_IA32_MCG_STATUS:
3321                 data = vcpu->arch.mcg_status;
3322                 break;
3323         default:
3324                 if (msr >= MSR_IA32_MC0_CTL &&
3325                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3326                         u32 offset = array_index_nospec(
3327                                 msr - MSR_IA32_MC0_CTL,
3328                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3329
3330                         data = vcpu->arch.mce_banks[offset];
3331                         break;
3332                 }
3333                 return 1;
3334         }
3335         *pdata = data;
3336         return 0;
3337 }
3338
3339 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3340 {
3341         switch (msr_info->index) {
3342         case MSR_IA32_PLATFORM_ID:
3343         case MSR_IA32_EBL_CR_POWERON:
3344         case MSR_IA32_DEBUGCTLMSR:
3345         case MSR_IA32_LASTBRANCHFROMIP:
3346         case MSR_IA32_LASTBRANCHTOIP:
3347         case MSR_IA32_LASTINTFROMIP:
3348         case MSR_IA32_LASTINTTOIP:
3349         case MSR_K8_SYSCFG:
3350         case MSR_K8_TSEG_ADDR:
3351         case MSR_K8_TSEG_MASK:
3352         case MSR_VM_HSAVE_PA:
3353         case MSR_K8_INT_PENDING_MSG:
3354         case MSR_AMD64_NB_CFG:
3355         case MSR_FAM10H_MMIO_CONF_BASE:
3356         case MSR_AMD64_BU_CFG2:
3357         case MSR_IA32_PERF_CTL:
3358         case MSR_AMD64_DC_CFG:
3359         case MSR_F15H_EX_CFG:
3360         /*
3361          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3362          * limit) MSRs. Just return 0, as we do not want to expose the host
3363          * data here. Do not conditionalize this on CPUID, as KVM does not do
3364          * so for existing CPU-specific MSRs.
3365          */
3366         case MSR_RAPL_POWER_UNIT:
3367         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3368         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3369         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3370         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3371                 msr_info->data = 0;
3372                 break;
3373         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3374         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3375         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3376         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3377         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3378                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3379                         return kvm_pmu_get_msr(vcpu, msr_info);
3380                 msr_info->data = 0;
3381                 break;
3382         case MSR_IA32_UCODE_REV:
3383                 msr_info->data = vcpu->arch.microcode_version;
3384                 break;
3385         case MSR_IA32_ARCH_CAPABILITIES:
3386                 if (!msr_info->host_initiated &&
3387                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3388                         return 1;
3389                 msr_info->data = vcpu->arch.arch_capabilities;
3390                 break;
3391         case MSR_IA32_PERF_CAPABILITIES:
3392                 if (!msr_info->host_initiated &&
3393                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3394                         return 1;
3395                 msr_info->data = vcpu->arch.perf_capabilities;
3396                 break;
3397         case MSR_IA32_POWER_CTL:
3398                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3399                 break;
3400         case MSR_IA32_TSC: {
3401                 /*
3402                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3403                  * even when not intercepted. AMD manual doesn't explicitly
3404                  * state this but appears to behave the same.
3405                  *
3406                  * On userspace reads and writes, however, we unconditionally
3407                  * return L1's TSC value to ensure backwards-compatible
3408                  * behavior for migration.
3409                  */
3410                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3411                                                             vcpu->arch.tsc_offset;
3412
3413                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3414                 break;
3415         }
3416         case MSR_MTRRcap:
3417         case 0x200 ... 0x2ff:
3418                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3419         case 0xcd: /* fsb frequency */
3420                 msr_info->data = 3;
3421                 break;
3422                 /*
3423                  * MSR_EBC_FREQUENCY_ID
3424                  * Conservative value valid for even the basic CPU models.
3425                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3426                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3427                  * and 266MHz for model 3, or 4. Set Core Clock
3428                  * Frequency to System Bus Frequency Ratio to 1 (bits
3429                  * 31:24) even though these are only valid for CPU
3430                  * models > 2, however guests may end up dividing or
3431                  * multiplying by zero otherwise.
3432                  */
3433         case MSR_EBC_FREQUENCY_ID:
3434                 msr_info->data = 1 << 24;
3435                 break;
3436         case MSR_IA32_APICBASE:
3437                 msr_info->data = kvm_get_apic_base(vcpu);
3438                 break;
3439         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3440                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3441         case MSR_IA32_TSCDEADLINE:
3442                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3443                 break;
3444         case MSR_IA32_TSC_ADJUST:
3445                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3446                 break;
3447         case MSR_IA32_MISC_ENABLE:
3448                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3449                 break;
3450         case MSR_IA32_SMBASE:
3451                 if (!msr_info->host_initiated)
3452                         return 1;
3453                 msr_info->data = vcpu->arch.smbase;
3454                 break;
3455         case MSR_SMI_COUNT:
3456                 msr_info->data = vcpu->arch.smi_count;
3457                 break;
3458         case MSR_IA32_PERF_STATUS:
3459                 /* TSC increment by tick */
3460                 msr_info->data = 1000ULL;
3461                 /* CPU multiplier */
3462                 msr_info->data |= (((uint64_t)4ULL) << 40);
3463                 break;
3464         case MSR_EFER:
3465                 msr_info->data = vcpu->arch.efer;
3466                 break;
3467         case MSR_KVM_WALL_CLOCK:
3468                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3469                         return 1;
3470
3471                 msr_info->data = vcpu->kvm->arch.wall_clock;
3472                 break;
3473         case MSR_KVM_WALL_CLOCK_NEW:
3474                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3475                         return 1;
3476
3477                 msr_info->data = vcpu->kvm->arch.wall_clock;
3478                 break;
3479         case MSR_KVM_SYSTEM_TIME:
3480                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3481                         return 1;
3482
3483                 msr_info->data = vcpu->arch.time;
3484                 break;
3485         case MSR_KVM_SYSTEM_TIME_NEW:
3486                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3487                         return 1;
3488
3489                 msr_info->data = vcpu->arch.time;
3490                 break;
3491         case MSR_KVM_ASYNC_PF_EN:
3492                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3493                         return 1;
3494
3495                 msr_info->data = vcpu->arch.apf.msr_en_val;
3496                 break;
3497         case MSR_KVM_ASYNC_PF_INT:
3498                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3499                         return 1;
3500
3501                 msr_info->data = vcpu->arch.apf.msr_int_val;
3502                 break;
3503         case MSR_KVM_ASYNC_PF_ACK:
3504                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3505                         return 1;
3506
3507                 msr_info->data = 0;
3508                 break;
3509         case MSR_KVM_STEAL_TIME:
3510                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3511                         return 1;
3512
3513                 msr_info->data = vcpu->arch.st.msr_val;
3514                 break;
3515         case MSR_KVM_PV_EOI_EN:
3516                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3517                         return 1;
3518
3519                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3520                 break;
3521         case MSR_KVM_POLL_CONTROL:
3522                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3523                         return 1;
3524
3525                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3526                 break;
3527         case MSR_IA32_P5_MC_ADDR:
3528         case MSR_IA32_P5_MC_TYPE:
3529         case MSR_IA32_MCG_CAP:
3530         case MSR_IA32_MCG_CTL:
3531         case MSR_IA32_MCG_STATUS:
3532         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3533                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3534                                    msr_info->host_initiated);
3535         case MSR_IA32_XSS:
3536                 if (!msr_info->host_initiated &&
3537                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3538                         return 1;
3539                 msr_info->data = vcpu->arch.ia32_xss;
3540                 break;
3541         case MSR_K7_CLK_CTL:
3542                 /*
3543                  * Provide expected ramp-up count for K7. All other
3544                  * are set to zero, indicating minimum divisors for
3545                  * every field.
3546                  *
3547                  * This prevents guest kernels on AMD host with CPU
3548                  * type 6, model 8 and higher from exploding due to
3549                  * the rdmsr failing.
3550                  */
3551                 msr_info->data = 0x20000000;
3552                 break;
3553         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3554         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3555         case HV_X64_MSR_SYNDBG_OPTIONS:
3556         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3557         case HV_X64_MSR_CRASH_CTL:
3558         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3559         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3560         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3561         case HV_X64_MSR_TSC_EMULATION_STATUS:
3562                 return kvm_hv_get_msr_common(vcpu,
3563                                              msr_info->index, &msr_info->data,
3564                                              msr_info->host_initiated);
3565         case MSR_IA32_BBL_CR_CTL3:
3566                 /* This legacy MSR exists but isn't fully documented in current
3567                  * silicon.  It is however accessed by winxp in very narrow
3568                  * scenarios where it sets bit #19, itself documented as
3569                  * a "reserved" bit.  Best effort attempt to source coherent
3570                  * read data here should the balance of the register be
3571                  * interpreted by the guest:
3572                  *
3573                  * L2 cache control register 3: 64GB range, 256KB size,
3574                  * enabled, latency 0x1, configured
3575                  */
3576                 msr_info->data = 0xbe702111;
3577                 break;
3578         case MSR_AMD64_OSVW_ID_LENGTH:
3579                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3580                         return 1;
3581                 msr_info->data = vcpu->arch.osvw.length;
3582                 break;
3583         case MSR_AMD64_OSVW_STATUS:
3584                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3585                         return 1;
3586                 msr_info->data = vcpu->arch.osvw.status;
3587                 break;
3588         case MSR_PLATFORM_INFO:
3589                 if (!msr_info->host_initiated &&
3590                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3591                         return 1;
3592                 msr_info->data = vcpu->arch.msr_platform_info;
3593                 break;
3594         case MSR_MISC_FEATURES_ENABLES:
3595                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3596                 break;
3597         case MSR_K7_HWCR:
3598                 msr_info->data = vcpu->arch.msr_hwcr;
3599                 break;
3600         default:
3601                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3602                         return kvm_pmu_get_msr(vcpu, msr_info);
3603                 return KVM_MSR_RET_INVALID;
3604         }
3605         return 0;
3606 }
3607 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3608
3609 /*
3610  * Read or write a bunch of msrs. All parameters are kernel addresses.
3611  *
3612  * @return number of msrs set successfully.
3613  */
3614 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3615                     struct kvm_msr_entry *entries,
3616                     int (*do_msr)(struct kvm_vcpu *vcpu,
3617                                   unsigned index, u64 *data))
3618 {
3619         int i;
3620
3621         for (i = 0; i < msrs->nmsrs; ++i)
3622                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3623                         break;
3624
3625         return i;
3626 }
3627
3628 /*
3629  * Read or write a bunch of msrs. Parameters are user addresses.
3630  *
3631  * @return number of msrs set successfully.
3632  */
3633 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3634                   int (*do_msr)(struct kvm_vcpu *vcpu,
3635                                 unsigned index, u64 *data),
3636                   int writeback)
3637 {
3638         struct kvm_msrs msrs;
3639         struct kvm_msr_entry *entries;
3640         int r, n;
3641         unsigned size;
3642
3643         r = -EFAULT;
3644         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3645                 goto out;
3646
3647         r = -E2BIG;
3648         if (msrs.nmsrs >= MAX_IO_MSRS)
3649                 goto out;
3650
3651         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3652         entries = memdup_user(user_msrs->entries, size);
3653         if (IS_ERR(entries)) {
3654                 r = PTR_ERR(entries);
3655                 goto out;
3656         }
3657
3658         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3659         if (r < 0)
3660                 goto out_free;
3661
3662         r = -EFAULT;
3663         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3664                 goto out_free;
3665
3666         r = n;
3667
3668 out_free:
3669         kfree(entries);
3670 out:
3671         return r;
3672 }
3673
3674 static inline bool kvm_can_mwait_in_guest(void)
3675 {
3676         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3677                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3678                 boot_cpu_has(X86_FEATURE_ARAT);
3679 }
3680
3681 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3682 {
3683         int r = 0;
3684
3685         switch (ext) {
3686         case KVM_CAP_IRQCHIP:
3687         case KVM_CAP_HLT:
3688         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3689         case KVM_CAP_SET_TSS_ADDR:
3690         case KVM_CAP_EXT_CPUID:
3691         case KVM_CAP_EXT_EMUL_CPUID:
3692         case KVM_CAP_CLOCKSOURCE:
3693         case KVM_CAP_PIT:
3694         case KVM_CAP_NOP_IO_DELAY:
3695         case KVM_CAP_MP_STATE:
3696         case KVM_CAP_SYNC_MMU:
3697         case KVM_CAP_USER_NMI:
3698         case KVM_CAP_REINJECT_CONTROL:
3699         case KVM_CAP_IRQ_INJECT_STATUS:
3700         case KVM_CAP_IOEVENTFD:
3701         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3702         case KVM_CAP_PIT2:
3703         case KVM_CAP_PIT_STATE2:
3704         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3705         case KVM_CAP_XEN_HVM:
3706         case KVM_CAP_VCPU_EVENTS:
3707         case KVM_CAP_HYPERV:
3708         case KVM_CAP_HYPERV_VAPIC:
3709         case KVM_CAP_HYPERV_SPIN:
3710         case KVM_CAP_HYPERV_SYNIC:
3711         case KVM_CAP_HYPERV_SYNIC2:
3712         case KVM_CAP_HYPERV_VP_INDEX:
3713         case KVM_CAP_HYPERV_EVENTFD:
3714         case KVM_CAP_HYPERV_TLBFLUSH:
3715         case KVM_CAP_HYPERV_SEND_IPI:
3716         case KVM_CAP_HYPERV_CPUID:
3717         case KVM_CAP_PCI_SEGMENT:
3718         case KVM_CAP_DEBUGREGS:
3719         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3720         case KVM_CAP_XSAVE:
3721         case KVM_CAP_ASYNC_PF:
3722         case KVM_CAP_ASYNC_PF_INT:
3723         case KVM_CAP_GET_TSC_KHZ:
3724         case KVM_CAP_KVMCLOCK_CTRL:
3725         case KVM_CAP_READONLY_MEM:
3726         case KVM_CAP_HYPERV_TIME:
3727         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3728         case KVM_CAP_TSC_DEADLINE_TIMER:
3729         case KVM_CAP_DISABLE_QUIRKS:
3730         case KVM_CAP_SET_BOOT_CPU_ID:
3731         case KVM_CAP_SPLIT_IRQCHIP:
3732         case KVM_CAP_IMMEDIATE_EXIT:
3733         case KVM_CAP_PMU_EVENT_FILTER:
3734         case KVM_CAP_GET_MSR_FEATURES:
3735         case KVM_CAP_MSR_PLATFORM_INFO:
3736         case KVM_CAP_EXCEPTION_PAYLOAD:
3737         case KVM_CAP_SET_GUEST_DEBUG:
3738         case KVM_CAP_LAST_CPU:
3739         case KVM_CAP_X86_USER_SPACE_MSR:
3740         case KVM_CAP_X86_MSR_FILTER:
3741         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3742                 r = 1;
3743                 break;
3744         case KVM_CAP_SYNC_REGS:
3745                 r = KVM_SYNC_X86_VALID_FIELDS;
3746                 break;
3747         case KVM_CAP_ADJUST_CLOCK:
3748                 r = KVM_CLOCK_TSC_STABLE;
3749                 break;
3750         case KVM_CAP_X86_DISABLE_EXITS:
3751                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3752                       KVM_X86_DISABLE_EXITS_CSTATE;
3753                 if(kvm_can_mwait_in_guest())
3754                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3755                 break;
3756         case KVM_CAP_X86_SMM:
3757                 /* SMBASE is usually relocated above 1M on modern chipsets,
3758                  * and SMM handlers might indeed rely on 4G segment limits,
3759                  * so do not report SMM to be available if real mode is
3760                  * emulated via vm86 mode.  Still, do not go to great lengths
3761                  * to avoid userspace's usage of the feature, because it is a
3762                  * fringe case that is not enabled except via specific settings
3763                  * of the module parameters.
3764                  */
3765                 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3766                 break;
3767         case KVM_CAP_VAPIC:
3768                 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3769                 break;
3770         case KVM_CAP_NR_VCPUS:
3771                 r = KVM_SOFT_MAX_VCPUS;
3772                 break;
3773         case KVM_CAP_MAX_VCPUS:
3774                 r = KVM_MAX_VCPUS;
3775                 break;
3776         case KVM_CAP_MAX_VCPU_ID:
3777                 r = KVM_MAX_VCPU_ID;
3778                 break;
3779         case KVM_CAP_PV_MMU:    /* obsolete */
3780                 r = 0;
3781                 break;
3782         case KVM_CAP_MCE:
3783                 r = KVM_MAX_MCE_BANKS;
3784                 break;
3785         case KVM_CAP_XCRS:
3786                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3787                 break;
3788         case KVM_CAP_TSC_CONTROL:
3789                 r = kvm_has_tsc_control;
3790                 break;
3791         case KVM_CAP_X2APIC_API:
3792                 r = KVM_X2APIC_API_VALID_FLAGS;
3793                 break;
3794         case KVM_CAP_NESTED_STATE:
3795                 r = kvm_x86_ops.nested_ops->get_state ?
3796                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3797                 break;
3798         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3799                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3800                 break;
3801         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3802                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3803                 break;
3804         case KVM_CAP_SMALLER_MAXPHYADDR:
3805                 r = (int) allow_smaller_maxphyaddr;
3806                 break;
3807         case KVM_CAP_STEAL_TIME:
3808                 r = sched_info_on();
3809                 break;
3810         default:
3811                 break;
3812         }
3813         return r;
3814
3815 }
3816
3817 long kvm_arch_dev_ioctl(struct file *filp,
3818                         unsigned int ioctl, unsigned long arg)
3819 {
3820         void __user *argp = (void __user *)arg;
3821         long r;
3822
3823         switch (ioctl) {
3824         case KVM_GET_MSR_INDEX_LIST: {
3825                 struct kvm_msr_list __user *user_msr_list = argp;
3826                 struct kvm_msr_list msr_list;
3827                 unsigned n;
3828
3829                 r = -EFAULT;
3830                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3831                         goto out;
3832                 n = msr_list.nmsrs;
3833                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3834                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3835                         goto out;
3836                 r = -E2BIG;
3837                 if (n < msr_list.nmsrs)
3838                         goto out;
3839                 r = -EFAULT;
3840                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3841                                  num_msrs_to_save * sizeof(u32)))
3842                         goto out;
3843                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3844                                  &emulated_msrs,
3845                                  num_emulated_msrs * sizeof(u32)))
3846                         goto out;
3847                 r = 0;
3848                 break;
3849         }
3850         case KVM_GET_SUPPORTED_CPUID:
3851         case KVM_GET_EMULATED_CPUID: {
3852                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3853                 struct kvm_cpuid2 cpuid;
3854
3855                 r = -EFAULT;
3856                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3857                         goto out;
3858
3859                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3860                                             ioctl);
3861                 if (r)
3862                         goto out;
3863
3864                 r = -EFAULT;
3865                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3866                         goto out;
3867                 r = 0;
3868                 break;
3869         }
3870         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3871                 r = -EFAULT;
3872                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3873                                  sizeof(kvm_mce_cap_supported)))
3874                         goto out;
3875                 r = 0;
3876                 break;
3877         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3878                 struct kvm_msr_list __user *user_msr_list = argp;
3879                 struct kvm_msr_list msr_list;
3880                 unsigned int n;
3881
3882                 r = -EFAULT;
3883                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3884                         goto out;
3885                 n = msr_list.nmsrs;
3886                 msr_list.nmsrs = num_msr_based_features;
3887                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3888                         goto out;
3889                 r = -E2BIG;
3890                 if (n < msr_list.nmsrs)
3891                         goto out;
3892                 r = -EFAULT;
3893                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3894                                  num_msr_based_features * sizeof(u32)))
3895                         goto out;
3896                 r = 0;
3897                 break;
3898         }
3899         case KVM_GET_MSRS:
3900                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3901                 break;
3902         default:
3903                 r = -EINVAL;
3904                 break;
3905         }
3906 out:
3907         return r;
3908 }
3909
3910 static void wbinvd_ipi(void *garbage)
3911 {
3912         wbinvd();
3913 }
3914
3915 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3916 {
3917         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3918 }
3919
3920 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3921 {
3922         /* Address WBINVD may be executed by guest */
3923         if (need_emulate_wbinvd(vcpu)) {
3924                 if (kvm_x86_ops.has_wbinvd_exit())
3925                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3926                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3927                         smp_call_function_single(vcpu->cpu,
3928                                         wbinvd_ipi, NULL, 1);
3929         }
3930
3931         kvm_x86_ops.vcpu_load(vcpu, cpu);
3932
3933         /* Save host pkru register if supported */
3934         vcpu->arch.host_pkru = read_pkru();
3935
3936         /* Apply any externally detected TSC adjustments (due to suspend) */
3937         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3938                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3939                 vcpu->arch.tsc_offset_adjustment = 0;
3940                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3941         }
3942
3943         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3944                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3945                                 rdtsc() - vcpu->arch.last_host_tsc;
3946                 if (tsc_delta < 0)
3947                         mark_tsc_unstable("KVM discovered backwards TSC");
3948
3949                 if (kvm_check_tsc_unstable()) {
3950                         u64 offset = kvm_compute_tsc_offset(vcpu,
3951                                                 vcpu->arch.last_guest_tsc);
3952                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3953                         vcpu->arch.tsc_catchup = 1;
3954                 }
3955
3956                 if (kvm_lapic_hv_timer_in_use(vcpu))
3957                         kvm_lapic_restart_hv_timer(vcpu);
3958
3959                 /*
3960                  * On a host with synchronized TSC, there is no need to update
3961                  * kvmclock on vcpu->cpu migration
3962                  */
3963                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3964                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3965                 if (vcpu->cpu != cpu)
3966                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3967                 vcpu->cpu = cpu;
3968         }
3969
3970         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3971 }
3972
3973 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3974 {
3975         struct kvm_host_map map;
3976         struct kvm_steal_time *st;
3977
3978         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3979                 return;
3980
3981         if (vcpu->arch.st.preempted)
3982                 return;
3983
3984         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3985                         &vcpu->arch.st.cache, true))
3986                 return;
3987
3988         st = map.hva +
3989                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3990
3991         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3992
3993         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3994 }
3995
3996 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3997 {
3998         int idx;
3999
4000         if (vcpu->preempted)
4001                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4002
4003         /*
4004          * Disable page faults because we're in atomic context here.
4005          * kvm_write_guest_offset_cached() would call might_fault()
4006          * that relies on pagefault_disable() to tell if there's a
4007          * bug. NOTE: the write to guest memory may not go through if
4008          * during postcopy live migration or if there's heavy guest
4009          * paging.
4010          */
4011         pagefault_disable();
4012         /*
4013          * kvm_memslots() will be called by
4014          * kvm_write_guest_offset_cached() so take the srcu lock.
4015          */
4016         idx = srcu_read_lock(&vcpu->kvm->srcu);
4017         kvm_steal_time_set_preempted(vcpu);
4018         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4019         pagefault_enable();
4020         kvm_x86_ops.vcpu_put(vcpu);
4021         vcpu->arch.last_host_tsc = rdtsc();
4022         /*
4023          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4024          * on every vmexit, but if not, we might have a stale dr6 from the
4025          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4026          */
4027         set_debugreg(0, 6);
4028 }
4029
4030 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4031                                     struct kvm_lapic_state *s)
4032 {
4033         if (vcpu->arch.apicv_active)
4034                 kvm_x86_ops.sync_pir_to_irr(vcpu);
4035
4036         return kvm_apic_get_state(vcpu, s);
4037 }
4038
4039 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4040                                     struct kvm_lapic_state *s)
4041 {
4042         int r;
4043
4044         r = kvm_apic_set_state(vcpu, s);
4045         if (r)
4046                 return r;
4047         update_cr8_intercept(vcpu);
4048
4049         return 0;
4050 }
4051
4052 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4053 {
4054         return (!lapic_in_kernel(vcpu) ||
4055                 kvm_apic_accept_pic_intr(vcpu));
4056 }
4057
4058 /*
4059  * if userspace requested an interrupt window, check that the
4060  * interrupt window is open.
4061  *
4062  * No need to exit to userspace if we already have an interrupt queued.
4063  */
4064 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4065 {
4066         return kvm_arch_interrupt_allowed(vcpu) &&
4067                 !kvm_cpu_has_interrupt(vcpu) &&
4068                 !kvm_event_needs_reinjection(vcpu) &&
4069                 kvm_cpu_accept_dm_intr(vcpu);
4070 }
4071
4072 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4073                                     struct kvm_interrupt *irq)
4074 {
4075         if (irq->irq >= KVM_NR_INTERRUPTS)
4076                 return -EINVAL;
4077
4078         if (!irqchip_in_kernel(vcpu->kvm)) {
4079                 kvm_queue_interrupt(vcpu, irq->irq, false);
4080                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4081                 return 0;
4082         }
4083
4084         /*
4085          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4086          * fail for in-kernel 8259.
4087          */
4088         if (pic_in_kernel(vcpu->kvm))
4089                 return -ENXIO;
4090
4091         if (vcpu->arch.pending_external_vector != -1)
4092                 return -EEXIST;
4093
4094         vcpu->arch.pending_external_vector = irq->irq;
4095         kvm_make_request(KVM_REQ_EVENT, vcpu);
4096         return 0;
4097 }
4098
4099 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4100 {
4101         kvm_inject_nmi(vcpu);
4102
4103         return 0;
4104 }
4105
4106 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4107 {
4108         kvm_make_request(KVM_REQ_SMI, vcpu);
4109
4110         return 0;
4111 }
4112
4113 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4114                                            struct kvm_tpr_access_ctl *tac)
4115 {
4116         if (tac->flags)
4117                 return -EINVAL;
4118         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4119         return 0;
4120 }
4121
4122 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4123                                         u64 mcg_cap)
4124 {
4125         int r;
4126         unsigned bank_num = mcg_cap & 0xff, bank;
4127
4128         r = -EINVAL;
4129         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4130                 goto out;
4131         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4132                 goto out;
4133         r = 0;
4134         vcpu->arch.mcg_cap = mcg_cap;
4135         /* Init IA32_MCG_CTL to all 1s */
4136         if (mcg_cap & MCG_CTL_P)
4137                 vcpu->arch.mcg_ctl = ~(u64)0;
4138         /* Init IA32_MCi_CTL to all 1s */
4139         for (bank = 0; bank < bank_num; bank++)
4140                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4141
4142         kvm_x86_ops.setup_mce(vcpu);
4143 out:
4144         return r;
4145 }
4146
4147 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4148                                       struct kvm_x86_mce *mce)
4149 {
4150         u64 mcg_cap = vcpu->arch.mcg_cap;
4151         unsigned bank_num = mcg_cap & 0xff;
4152         u64 *banks = vcpu->arch.mce_banks;
4153
4154         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4155                 return -EINVAL;
4156         /*
4157          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4158          * reporting is disabled
4159          */
4160         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4161             vcpu->arch.mcg_ctl != ~(u64)0)
4162                 return 0;
4163         banks += 4 * mce->bank;
4164         /*
4165          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4166          * reporting is disabled for the bank
4167          */
4168         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4169                 return 0;
4170         if (mce->status & MCI_STATUS_UC) {
4171                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4172                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4173                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4174                         return 0;
4175                 }
4176                 if (banks[1] & MCI_STATUS_VAL)
4177                         mce->status |= MCI_STATUS_OVER;
4178                 banks[2] = mce->addr;
4179                 banks[3] = mce->misc;
4180                 vcpu->arch.mcg_status = mce->mcg_status;
4181                 banks[1] = mce->status;
4182                 kvm_queue_exception(vcpu, MC_VECTOR);
4183         } else if (!(banks[1] & MCI_STATUS_VAL)
4184                    || !(banks[1] & MCI_STATUS_UC)) {
4185                 if (banks[1] & MCI_STATUS_VAL)
4186                         mce->status |= MCI_STATUS_OVER;
4187                 banks[2] = mce->addr;
4188                 banks[3] = mce->misc;
4189                 banks[1] = mce->status;
4190         } else
4191                 banks[1] |= MCI_STATUS_OVER;
4192         return 0;
4193 }
4194
4195 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4196                                                struct kvm_vcpu_events *events)
4197 {
4198         process_nmi(vcpu);
4199
4200         /*
4201          * In guest mode, payload delivery should be deferred,
4202          * so that the L1 hypervisor can intercept #PF before
4203          * CR2 is modified (or intercept #DB before DR6 is
4204          * modified under nVMX). Unless the per-VM capability,
4205          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4206          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4207          * opportunistically defer the exception payload, deliver it if the
4208          * capability hasn't been requested before processing a
4209          * KVM_GET_VCPU_EVENTS.
4210          */
4211         if (!vcpu->kvm->arch.exception_payload_enabled &&
4212             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4213                 kvm_deliver_exception_payload(vcpu);
4214
4215         /*
4216          * The API doesn't provide the instruction length for software
4217          * exceptions, so don't report them. As long as the guest RIP
4218          * isn't advanced, we should expect to encounter the exception
4219          * again.
4220          */
4221         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4222                 events->exception.injected = 0;
4223                 events->exception.pending = 0;
4224         } else {
4225                 events->exception.injected = vcpu->arch.exception.injected;
4226                 events->exception.pending = vcpu->arch.exception.pending;
4227                 /*
4228                  * For ABI compatibility, deliberately conflate
4229                  * pending and injected exceptions when
4230                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4231                  */
4232                 if (!vcpu->kvm->arch.exception_payload_enabled)
4233                         events->exception.injected |=
4234                                 vcpu->arch.exception.pending;
4235         }
4236         events->exception.nr = vcpu->arch.exception.nr;
4237         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4238         events->exception.error_code = vcpu->arch.exception.error_code;
4239         events->exception_has_payload = vcpu->arch.exception.has_payload;
4240         events->exception_payload = vcpu->arch.exception.payload;
4241
4242         events->interrupt.injected =
4243                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4244         events->interrupt.nr = vcpu->arch.interrupt.nr;
4245         events->interrupt.soft = 0;
4246         events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4247
4248         events->nmi.injected = vcpu->arch.nmi_injected;
4249         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4250         events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4251         events->nmi.pad = 0;
4252
4253         events->sipi_vector = 0; /* never valid when reporting to user space */
4254
4255         events->smi.smm = is_smm(vcpu);
4256         events->smi.pending = vcpu->arch.smi_pending;
4257         events->smi.smm_inside_nmi =
4258                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4259         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4260
4261         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4262                          | KVM_VCPUEVENT_VALID_SHADOW
4263                          | KVM_VCPUEVENT_VALID_SMM);
4264         if (vcpu->kvm->arch.exception_payload_enabled)
4265                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4266
4267         memset(&events->reserved, 0, sizeof(events->reserved));
4268 }
4269
4270 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4271
4272 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4273                                               struct kvm_vcpu_events *events)
4274 {
4275         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4276                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4277                               | KVM_VCPUEVENT_VALID_SHADOW
4278                               | KVM_VCPUEVENT_VALID_SMM
4279                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4280                 return -EINVAL;
4281
4282         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4283                 if (!vcpu->kvm->arch.exception_payload_enabled)
4284                         return -EINVAL;
4285                 if (events->exception.pending)
4286                         events->exception.injected = 0;
4287                 else
4288                         events->exception_has_payload = 0;
4289         } else {
4290                 events->exception.pending = 0;
4291                 events->exception_has_payload = 0;
4292         }
4293
4294         if ((events->exception.injected || events->exception.pending) &&
4295             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4296                 return -EINVAL;
4297
4298         /* INITs are latched while in SMM */
4299         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4300             (events->smi.smm || events->smi.pending) &&
4301             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4302                 return -EINVAL;
4303
4304         process_nmi(vcpu);
4305         vcpu->arch.exception.injected = events->exception.injected;
4306         vcpu->arch.exception.pending = events->exception.pending;
4307         vcpu->arch.exception.nr = events->exception.nr;
4308         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4309         vcpu->arch.exception.error_code = events->exception.error_code;
4310         vcpu->arch.exception.has_payload = events->exception_has_payload;
4311         vcpu->arch.exception.payload = events->exception_payload;
4312
4313         vcpu->arch.interrupt.injected = events->interrupt.injected;
4314         vcpu->arch.interrupt.nr = events->interrupt.nr;
4315         vcpu->arch.interrupt.soft = events->interrupt.soft;
4316         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4317                 kvm_x86_ops.set_interrupt_shadow(vcpu,
4318                                                   events->interrupt.shadow);
4319
4320         vcpu->arch.nmi_injected = events->nmi.injected;
4321         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4322                 vcpu->arch.nmi_pending = events->nmi.pending;
4323         kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4324
4325         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4326             lapic_in_kernel(vcpu))
4327                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4328
4329         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4330                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4331                         if (events->smi.smm)
4332                                 vcpu->arch.hflags |= HF_SMM_MASK;
4333                         else
4334                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4335                         kvm_smm_changed(vcpu);
4336                 }
4337
4338                 vcpu->arch.smi_pending = events->smi.pending;
4339
4340                 if (events->smi.smm) {
4341                         if (events->smi.smm_inside_nmi)
4342                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4343                         else
4344                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4345                 }
4346
4347                 if (lapic_in_kernel(vcpu)) {
4348                         if (events->smi.latched_init)
4349                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4350                         else
4351                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4352                 }
4353         }
4354
4355         kvm_make_request(KVM_REQ_EVENT, vcpu);
4356
4357         return 0;
4358 }
4359
4360 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4361                                              struct kvm_debugregs *dbgregs)
4362 {
4363         unsigned long val;
4364
4365         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4366         kvm_get_dr(vcpu, 6, &val);
4367         dbgregs->dr6 = val;
4368         dbgregs->dr7 = vcpu->arch.dr7;
4369         dbgregs->flags = 0;
4370         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4371 }
4372
4373 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4374                                             struct kvm_debugregs *dbgregs)
4375 {
4376         if (dbgregs->flags)
4377                 return -EINVAL;
4378
4379         if (dbgregs->dr6 & ~0xffffffffull)
4380                 return -EINVAL;
4381         if (dbgregs->dr7 & ~0xffffffffull)
4382                 return -EINVAL;
4383
4384         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4385         kvm_update_dr0123(vcpu);
4386         vcpu->arch.dr6 = dbgregs->dr6;
4387         vcpu->arch.dr7 = dbgregs->dr7;
4388         kvm_update_dr7(vcpu);
4389
4390         return 0;
4391 }
4392
4393 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4394
4395 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4396 {
4397         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4398         u64 xstate_bv = xsave->header.xfeatures;
4399         u64 valid;
4400
4401         /*
4402          * Copy legacy XSAVE area, to avoid complications with CPUID
4403          * leaves 0 and 1 in the loop below.
4404          */
4405         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4406
4407         /* Set XSTATE_BV */
4408         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4409         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4410
4411         /*
4412          * Copy each region from the possibly compacted offset to the
4413          * non-compacted offset.
4414          */
4415         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4416         while (valid) {
4417                 u64 xfeature_mask = valid & -valid;
4418                 int xfeature_nr = fls64(xfeature_mask) - 1;
4419                 void *src = get_xsave_addr(xsave, xfeature_nr);
4420
4421                 if (src) {
4422                         u32 size, offset, ecx, edx;
4423                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4424                                     &size, &offset, &ecx, &edx);
4425                         if (xfeature_nr == XFEATURE_PKRU)
4426                                 memcpy(dest + offset, &vcpu->arch.pkru,
4427                                        sizeof(vcpu->arch.pkru));
4428                         else
4429                                 memcpy(dest + offset, src, size);
4430
4431                 }
4432
4433                 valid -= xfeature_mask;
4434         }
4435 }
4436
4437 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4438 {
4439         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4440         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4441         u64 valid;
4442
4443         /*
4444          * Copy legacy XSAVE area, to avoid complications with CPUID
4445          * leaves 0 and 1 in the loop below.
4446          */
4447         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4448
4449         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4450         xsave->header.xfeatures = xstate_bv;
4451         if (boot_cpu_has(X86_FEATURE_XSAVES))
4452                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4453
4454         /*
4455          * Copy each region from the non-compacted offset to the
4456          * possibly compacted offset.
4457          */
4458         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4459         while (valid) {
4460                 u64 xfeature_mask = valid & -valid;
4461                 int xfeature_nr = fls64(xfeature_mask) - 1;
4462                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4463
4464                 if (dest) {
4465                         u32 size, offset, ecx, edx;
4466                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4467                                     &size, &offset, &ecx, &edx);
4468                         if (xfeature_nr == XFEATURE_PKRU)
4469                                 memcpy(&vcpu->arch.pkru, src + offset,
4470                                        sizeof(vcpu->arch.pkru));
4471                         else
4472                                 memcpy(dest, src + offset, size);
4473                 }
4474
4475                 valid -= xfeature_mask;
4476         }
4477 }
4478
4479 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4480                                          struct kvm_xsave *guest_xsave)
4481 {
4482         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4483                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4484                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4485         } else {
4486                 memcpy(guest_xsave->region,
4487                         &vcpu->arch.guest_fpu->state.fxsave,
4488                         sizeof(struct fxregs_state));
4489                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4490                         XFEATURE_MASK_FPSSE;
4491         }
4492 }
4493
4494 #define XSAVE_MXCSR_OFFSET 24
4495
4496 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4497                                         struct kvm_xsave *guest_xsave)
4498 {
4499         u64 xstate_bv =
4500                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4501         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4502
4503         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4504                 /*
4505                  * Here we allow setting states that are not present in
4506                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4507                  * with old userspace.
4508                  */
4509                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4510                         return -EINVAL;
4511                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4512         } else {
4513                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4514                         mxcsr & ~mxcsr_feature_mask)
4515                         return -EINVAL;
4516                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4517                         guest_xsave->region, sizeof(struct fxregs_state));
4518         }
4519         return 0;
4520 }
4521
4522 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4523                                         struct kvm_xcrs *guest_xcrs)
4524 {
4525         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4526                 guest_xcrs->nr_xcrs = 0;
4527                 return;
4528         }
4529
4530         guest_xcrs->nr_xcrs = 1;
4531         guest_xcrs->flags = 0;
4532         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4533         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4534 }
4535
4536 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4537                                        struct kvm_xcrs *guest_xcrs)
4538 {
4539         int i, r = 0;
4540
4541         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4542                 return -EINVAL;
4543
4544         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4545                 return -EINVAL;
4546
4547         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4548                 /* Only support XCR0 currently */
4549                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4550                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4551                                 guest_xcrs->xcrs[i].value);
4552                         break;
4553                 }
4554         if (r)
4555                 r = -EINVAL;
4556         return r;
4557 }
4558
4559 /*
4560  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4561  * stopped by the hypervisor.  This function will be called from the host only.
4562  * EINVAL is returned when the host attempts to set the flag for a guest that
4563  * does not support pv clocks.
4564  */
4565 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4566 {
4567         if (!vcpu->arch.pv_time_enabled)
4568                 return -EINVAL;
4569         vcpu->arch.pvclock_set_guest_stopped_request = true;
4570         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4571         return 0;
4572 }
4573
4574 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4575                                      struct kvm_enable_cap *cap)
4576 {
4577         int r;
4578         uint16_t vmcs_version;
4579         void __user *user_ptr;
4580
4581         if (cap->flags)
4582                 return -EINVAL;
4583
4584         switch (cap->cap) {
4585         case KVM_CAP_HYPERV_SYNIC2:
4586                 if (cap->args[0])
4587                         return -EINVAL;
4588                 fallthrough;
4589
4590         case KVM_CAP_HYPERV_SYNIC:
4591                 if (!irqchip_in_kernel(vcpu->kvm))
4592                         return -EINVAL;
4593                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4594                                              KVM_CAP_HYPERV_SYNIC2);
4595         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4596                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4597                         return -ENOTTY;
4598                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4599                 if (!r) {
4600                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4601                         if (copy_to_user(user_ptr, &vmcs_version,
4602                                          sizeof(vmcs_version)))
4603                                 r = -EFAULT;
4604                 }
4605                 return r;
4606         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4607                 if (!kvm_x86_ops.enable_direct_tlbflush)
4608                         return -ENOTTY;
4609
4610                 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4611
4612         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4613                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4614                 if (vcpu->arch.pv_cpuid.enforce)
4615                         kvm_update_pv_runtime(vcpu);
4616
4617                 return 0;
4618
4619         default:
4620                 return -EINVAL;
4621         }
4622 }
4623
4624 long kvm_arch_vcpu_ioctl(struct file *filp,
4625                          unsigned int ioctl, unsigned long arg)
4626 {
4627         struct kvm_vcpu *vcpu = filp->private_data;
4628         void __user *argp = (void __user *)arg;
4629         int r;
4630         union {
4631                 struct kvm_lapic_state *lapic;
4632                 struct kvm_xsave *xsave;
4633                 struct kvm_xcrs *xcrs;
4634                 void *buffer;
4635         } u;
4636
4637         vcpu_load(vcpu);
4638
4639         u.buffer = NULL;
4640         switch (ioctl) {
4641         case KVM_GET_LAPIC: {
4642                 r = -EINVAL;
4643                 if (!lapic_in_kernel(vcpu))
4644                         goto out;
4645                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4646                                 GFP_KERNEL_ACCOUNT);
4647
4648                 r = -ENOMEM;
4649                 if (!u.lapic)
4650                         goto out;
4651                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4652                 if (r)
4653                         goto out;
4654                 r = -EFAULT;
4655                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4656                         goto out;
4657                 r = 0;
4658                 break;
4659         }
4660         case KVM_SET_LAPIC: {
4661                 r = -EINVAL;
4662                 if (!lapic_in_kernel(vcpu))
4663                         goto out;
4664                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4665                 if (IS_ERR(u.lapic)) {
4666                         r = PTR_ERR(u.lapic);
4667                         goto out_nofree;
4668                 }
4669
4670                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4671                 break;
4672         }
4673         case KVM_INTERRUPT: {
4674                 struct kvm_interrupt irq;
4675
4676                 r = -EFAULT;
4677                 if (copy_from_user(&irq, argp, sizeof(irq)))
4678                         goto out;
4679                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4680                 break;
4681         }
4682         case KVM_NMI: {
4683                 r = kvm_vcpu_ioctl_nmi(vcpu);
4684                 break;
4685         }
4686         case KVM_SMI: {
4687                 r = kvm_vcpu_ioctl_smi(vcpu);
4688                 break;
4689         }
4690         case KVM_SET_CPUID: {
4691                 struct kvm_cpuid __user *cpuid_arg = argp;
4692                 struct kvm_cpuid cpuid;
4693
4694                 r = -EFAULT;
4695                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4696                         goto out;
4697                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4698                 break;
4699         }
4700         case KVM_SET_CPUID2: {
4701                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4702                 struct kvm_cpuid2 cpuid;
4703
4704                 r = -EFAULT;
4705                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4706                         goto out;
4707                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4708                                               cpuid_arg->entries);
4709                 break;
4710         }
4711         case KVM_GET_CPUID2: {
4712                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4713                 struct kvm_cpuid2 cpuid;
4714
4715                 r = -EFAULT;
4716                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4717                         goto out;
4718                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4719                                               cpuid_arg->entries);
4720                 if (r)
4721                         goto out;
4722                 r = -EFAULT;
4723                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4724                         goto out;
4725                 r = 0;
4726                 break;
4727         }
4728         case KVM_GET_MSRS: {
4729                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4730                 r = msr_io(vcpu, argp, do_get_msr, 1);
4731                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4732                 break;
4733         }
4734         case KVM_SET_MSRS: {
4735                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4736                 r = msr_io(vcpu, argp, do_set_msr, 0);
4737                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4738                 break;
4739         }
4740         case KVM_TPR_ACCESS_REPORTING: {
4741                 struct kvm_tpr_access_ctl tac;
4742
4743                 r = -EFAULT;
4744                 if (copy_from_user(&tac, argp, sizeof(tac)))
4745                         goto out;
4746                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4747                 if (r)
4748                         goto out;
4749                 r = -EFAULT;
4750                 if (copy_to_user(argp, &tac, sizeof(tac)))
4751                         goto out;
4752                 r = 0;
4753                 break;
4754         };
4755         case KVM_SET_VAPIC_ADDR: {
4756                 struct kvm_vapic_addr va;
4757                 int idx;
4758
4759                 r = -EINVAL;
4760                 if (!lapic_in_kernel(vcpu))
4761                         goto out;
4762                 r = -EFAULT;
4763                 if (copy_from_user(&va, argp, sizeof(va)))
4764                         goto out;
4765                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4766                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4767                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4768                 break;
4769         }
4770         case KVM_X86_SETUP_MCE: {
4771                 u64 mcg_cap;
4772
4773                 r = -EFAULT;
4774                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4775                         goto out;
4776                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4777                 break;
4778         }
4779         case KVM_X86_SET_MCE: {
4780                 struct kvm_x86_mce mce;
4781
4782                 r = -EFAULT;
4783                 if (copy_from_user(&mce, argp, sizeof(mce)))
4784                         goto out;
4785                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4786                 break;
4787         }
4788         case KVM_GET_VCPU_EVENTS: {
4789                 struct kvm_vcpu_events events;
4790
4791                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4792
4793                 r = -EFAULT;
4794                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4795                         break;
4796                 r = 0;
4797                 break;
4798         }
4799         case KVM_SET_VCPU_EVENTS: {
4800                 struct kvm_vcpu_events events;
4801
4802                 r = -EFAULT;
4803                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4804                         break;
4805
4806                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4807                 break;
4808         }
4809         case KVM_GET_DEBUGREGS: {
4810                 struct kvm_debugregs dbgregs;
4811
4812                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4813
4814                 r = -EFAULT;
4815                 if (copy_to_user(argp, &dbgregs,
4816                                  sizeof(struct kvm_debugregs)))
4817                         break;
4818                 r = 0;
4819                 break;
4820         }
4821         case KVM_SET_DEBUGREGS: {
4822                 struct kvm_debugregs dbgregs;
4823
4824                 r = -EFAULT;
4825                 if (copy_from_user(&dbgregs, argp,
4826                                    sizeof(struct kvm_debugregs)))
4827                         break;
4828
4829                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4830                 break;
4831         }
4832         case KVM_GET_XSAVE: {
4833                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4834                 r = -ENOMEM;
4835                 if (!u.xsave)
4836                         break;
4837
4838                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4839
4840                 r = -EFAULT;
4841                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4842                         break;
4843                 r = 0;
4844                 break;
4845         }
4846         case KVM_SET_XSAVE: {
4847                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4848                 if (IS_ERR(u.xsave)) {
4849                         r = PTR_ERR(u.xsave);
4850                         goto out_nofree;
4851                 }
4852
4853                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4854                 break;
4855         }
4856         case KVM_GET_XCRS: {
4857                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4858                 r = -ENOMEM;
4859                 if (!u.xcrs)
4860                         break;
4861
4862                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4863
4864                 r = -EFAULT;
4865                 if (copy_to_user(argp, u.xcrs,
4866                                  sizeof(struct kvm_xcrs)))
4867                         break;
4868                 r = 0;
4869                 break;
4870         }
4871         case KVM_SET_XCRS: {
4872                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4873                 if (IS_ERR(u.xcrs)) {
4874                         r = PTR_ERR(u.xcrs);
4875                         goto out_nofree;
4876                 }
4877
4878                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4879                 break;
4880         }
4881         case KVM_SET_TSC_KHZ: {
4882                 u32 user_tsc_khz;
4883
4884                 r = -EINVAL;
4885                 user_tsc_khz = (u32)arg;
4886
4887                 if (kvm_has_tsc_control &&
4888                     user_tsc_khz >= kvm_max_guest_tsc_khz)
4889                         goto out;
4890
4891                 if (user_tsc_khz == 0)
4892                         user_tsc_khz = tsc_khz;
4893
4894                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4895                         r = 0;
4896
4897                 goto out;
4898         }
4899         case KVM_GET_TSC_KHZ: {
4900                 r = vcpu->arch.virtual_tsc_khz;
4901                 goto out;
4902         }
4903         case KVM_KVMCLOCK_CTRL: {
4904                 r = kvm_set_guest_paused(vcpu);
4905                 goto out;
4906         }
4907         case KVM_ENABLE_CAP: {
4908                 struct kvm_enable_cap cap;
4909
4910                 r = -EFAULT;
4911                 if (copy_from_user(&cap, argp, sizeof(cap)))
4912                         goto out;
4913                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4914                 break;
4915         }
4916         case KVM_GET_NESTED_STATE: {
4917                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4918                 u32 user_data_size;
4919
4920                 r = -EINVAL;
4921                 if (!kvm_x86_ops.nested_ops->get_state)
4922                         break;
4923
4924                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4925                 r = -EFAULT;
4926                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4927                         break;
4928
4929                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4930                                                      user_data_size);
4931                 if (r < 0)
4932                         break;
4933
4934                 if (r > user_data_size) {
4935                         if (put_user(r, &user_kvm_nested_state->size))
4936                                 r = -EFAULT;
4937                         else
4938                                 r = -E2BIG;
4939                         break;
4940                 }
4941
4942                 r = 0;
4943                 break;
4944         }
4945         case KVM_SET_NESTED_STATE: {
4946                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4947                 struct kvm_nested_state kvm_state;
4948                 int idx;
4949
4950                 r = -EINVAL;
4951                 if (!kvm_x86_ops.nested_ops->set_state)
4952                         break;
4953
4954                 r = -EFAULT;
4955                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4956                         break;
4957
4958                 r = -EINVAL;
4959                 if (kvm_state.size < sizeof(kvm_state))
4960                         break;
4961
4962                 if (kvm_state.flags &
4963                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4964                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4965                       | KVM_STATE_NESTED_GIF_SET))
4966                         break;
4967
4968                 /* nested_run_pending implies guest_mode.  */
4969                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4970                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4971                         break;
4972
4973                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4974                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4975                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4976                 break;
4977         }
4978         case KVM_GET_SUPPORTED_HV_CPUID: {
4979                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4980                 struct kvm_cpuid2 cpuid;
4981
4982                 r = -EFAULT;
4983                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4984                         goto out;
4985
4986                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4987                                                 cpuid_arg->entries);
4988                 if (r)
4989                         goto out;
4990
4991                 r = -EFAULT;
4992                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4993                         goto out;
4994                 r = 0;
4995                 break;
4996         }
4997         default:
4998                 r = -EINVAL;
4999         }
5000 out:
5001         kfree(u.buffer);
5002 out_nofree:
5003         vcpu_put(vcpu);
5004         return r;
5005 }
5006
5007 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5008 {
5009         return VM_FAULT_SIGBUS;
5010 }
5011
5012 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5013 {
5014         int ret;
5015
5016         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5017                 return -EINVAL;
5018         ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5019         return ret;
5020 }
5021
5022 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5023                                               u64 ident_addr)
5024 {
5025         return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5026 }
5027
5028 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5029                                          unsigned long kvm_nr_mmu_pages)
5030 {
5031         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5032                 return -EINVAL;
5033
5034         mutex_lock(&kvm->slots_lock);
5035
5036         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5037         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5038
5039         mutex_unlock(&kvm->slots_lock);
5040         return 0;
5041 }
5042
5043 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5044 {
5045         return kvm->arch.n_max_mmu_pages;
5046 }
5047
5048 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5049 {
5050         struct kvm_pic *pic = kvm->arch.vpic;
5051         int r;
5052
5053         r = 0;
5054         switch (chip->chip_id) {
5055         case KVM_IRQCHIP_PIC_MASTER:
5056                 memcpy(&chip->chip.pic, &pic->pics[0],
5057                         sizeof(struct kvm_pic_state));
5058                 break;
5059         case KVM_IRQCHIP_PIC_SLAVE:
5060                 memcpy(&chip->chip.pic, &pic->pics[1],
5061                         sizeof(struct kvm_pic_state));
5062                 break;
5063         case KVM_IRQCHIP_IOAPIC:
5064                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5065                 break;
5066         default:
5067                 r = -EINVAL;
5068                 break;
5069         }
5070         return r;
5071 }
5072
5073 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5074 {
5075         struct kvm_pic *pic = kvm->arch.vpic;
5076         int r;
5077
5078         r = 0;
5079         switch (chip->chip_id) {
5080         case KVM_IRQCHIP_PIC_MASTER:
5081                 spin_lock(&pic->lock);
5082                 memcpy(&pic->pics[0], &chip->chip.pic,
5083                         sizeof(struct kvm_pic_state));
5084                 spin_unlock(&pic->lock);
5085                 break;
5086         case KVM_IRQCHIP_PIC_SLAVE:
5087                 spin_lock(&pic->lock);
5088                 memcpy(&pic->pics[1], &chip->chip.pic,
5089                         sizeof(struct kvm_pic_state));
5090                 spin_unlock(&pic->lock);
5091                 break;
5092         case KVM_IRQCHIP_IOAPIC:
5093                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5094                 break;
5095         default:
5096                 r = -EINVAL;
5097                 break;
5098         }
5099         kvm_pic_update_irq(pic);
5100         return r;
5101 }
5102
5103 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5104 {
5105         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5106
5107         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5108
5109         mutex_lock(&kps->lock);
5110         memcpy(ps, &kps->channels, sizeof(*ps));
5111         mutex_unlock(&kps->lock);
5112         return 0;
5113 }
5114
5115 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5116 {
5117         int i;
5118         struct kvm_pit *pit = kvm->arch.vpit;
5119
5120         mutex_lock(&pit->pit_state.lock);
5121         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5122         for (i = 0; i < 3; i++)
5123                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5124         mutex_unlock(&pit->pit_state.lock);
5125         return 0;
5126 }
5127
5128 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5129 {
5130         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5131         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5132                 sizeof(ps->channels));
5133         ps->flags = kvm->arch.vpit->pit_state.flags;
5134         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5135         memset(&ps->reserved, 0, sizeof(ps->reserved));
5136         return 0;
5137 }
5138
5139 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5140 {
5141         int start = 0;
5142         int i;
5143         u32 prev_legacy, cur_legacy;
5144         struct kvm_pit *pit = kvm->arch.vpit;
5145
5146         mutex_lock(&pit->pit_state.lock);
5147         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5148         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5149         if (!prev_legacy && cur_legacy)
5150                 start = 1;
5151         memcpy(&pit->pit_state.channels, &ps->channels,
5152                sizeof(pit->pit_state.channels));
5153         pit->pit_state.flags = ps->flags;
5154         for (i = 0; i < 3; i++)
5155                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5156                                    start && i == 0);
5157         mutex_unlock(&pit->pit_state.lock);
5158         return 0;
5159 }
5160
5161 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5162                                  struct kvm_reinject_control *control)
5163 {
5164         struct kvm_pit *pit = kvm->arch.vpit;
5165
5166         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5167          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5168          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5169          */
5170         mutex_lock(&pit->pit_state.lock);
5171         kvm_pit_set_reinject(pit, control->pit_reinject);
5172         mutex_unlock(&pit->pit_state.lock);
5173
5174         return 0;
5175 }
5176
5177 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5178 {
5179         /*
5180          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5181          */
5182         if (kvm_x86_ops.flush_log_dirty)
5183                 kvm_x86_ops.flush_log_dirty(kvm);
5184 }
5185
5186 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5187                         bool line_status)
5188 {
5189         if (!irqchip_in_kernel(kvm))
5190                 return -ENXIO;
5191
5192         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5193                                         irq_event->irq, irq_event->level,
5194                                         line_status);
5195         return 0;
5196 }
5197
5198 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5199                             struct kvm_enable_cap *cap)
5200 {
5201         int r;
5202
5203         if (cap->flags)
5204                 return -EINVAL;
5205
5206         switch (cap->cap) {
5207         case KVM_CAP_DISABLE_QUIRKS:
5208                 kvm->arch.disabled_quirks = cap->args[0];
5209                 r = 0;
5210                 break;
5211         case KVM_CAP_SPLIT_IRQCHIP: {
5212                 mutex_lock(&kvm->lock);
5213                 r = -EINVAL;
5214                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5215                         goto split_irqchip_unlock;
5216                 r = -EEXIST;
5217                 if (irqchip_in_kernel(kvm))
5218                         goto split_irqchip_unlock;
5219                 if (kvm->created_vcpus)
5220                         goto split_irqchip_unlock;
5221                 r = kvm_setup_empty_irq_routing(kvm);
5222                 if (r)
5223                         goto split_irqchip_unlock;
5224                 /* Pairs with irqchip_in_kernel. */
5225                 smp_wmb();
5226                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5227                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5228                 r = 0;
5229 split_irqchip_unlock:
5230                 mutex_unlock(&kvm->lock);
5231                 break;
5232         }
5233         case KVM_CAP_X2APIC_API:
5234                 r = -EINVAL;
5235                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5236                         break;
5237
5238                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5239                         kvm->arch.x2apic_format = true;
5240                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5241                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5242
5243                 r = 0;
5244                 break;
5245         case KVM_CAP_X86_DISABLE_EXITS:
5246                 r = -EINVAL;
5247                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5248                         break;
5249
5250                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5251                         kvm_can_mwait_in_guest())
5252                         kvm->arch.mwait_in_guest = true;
5253                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5254                         kvm->arch.hlt_in_guest = true;
5255                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5256                         kvm->arch.pause_in_guest = true;
5257                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5258                         kvm->arch.cstate_in_guest = true;
5259                 r = 0;
5260                 break;
5261         case KVM_CAP_MSR_PLATFORM_INFO:
5262                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5263                 r = 0;
5264                 break;
5265         case KVM_CAP_EXCEPTION_PAYLOAD:
5266                 kvm->arch.exception_payload_enabled = cap->args[0];
5267                 r = 0;
5268                 break;
5269         case KVM_CAP_X86_USER_SPACE_MSR:
5270                 kvm->arch.user_space_msr_mask = cap->args[0];
5271                 r = 0;
5272                 break;
5273         default:
5274                 r = -EINVAL;
5275                 break;
5276         }
5277         return r;
5278 }
5279
5280 static void kvm_clear_msr_filter(struct kvm *kvm)
5281 {
5282         u32 i;
5283         u32 count = kvm->arch.msr_filter.count;
5284         struct msr_bitmap_range ranges[16];
5285
5286         mutex_lock(&kvm->lock);
5287         kvm->arch.msr_filter.count = 0;
5288         memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5289         mutex_unlock(&kvm->lock);
5290         synchronize_srcu(&kvm->srcu);
5291
5292         for (i = 0; i < count; i++)
5293                 kfree(ranges[i].bitmap);
5294 }
5295
5296 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5297 {
5298         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5299         struct msr_bitmap_range range;
5300         unsigned long *bitmap = NULL;
5301         size_t bitmap_size;
5302         int r;
5303
5304         if (!user_range->nmsrs)
5305                 return 0;
5306
5307         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5308         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5309                 return -EINVAL;
5310
5311         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5312         if (IS_ERR(bitmap))
5313                 return PTR_ERR(bitmap);
5314
5315         range = (struct msr_bitmap_range) {
5316                 .flags = user_range->flags,
5317                 .base = user_range->base,
5318                 .nmsrs = user_range->nmsrs,
5319                 .bitmap = bitmap,
5320         };
5321
5322         if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5323                 r = -EINVAL;
5324                 goto err;
5325         }
5326
5327         if (!range.flags) {
5328                 r = -EINVAL;
5329                 goto err;
5330         }
5331
5332         /* Everything ok, add this range identifier to our global pool */
5333         ranges[kvm->arch.msr_filter.count] = range;
5334         /* Make sure we filled the array before we tell anyone to walk it */
5335         smp_wmb();
5336         kvm->arch.msr_filter.count++;
5337
5338         return 0;
5339 err:
5340         kfree(bitmap);
5341         return r;
5342 }
5343
5344 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5345 {
5346         struct kvm_msr_filter __user *user_msr_filter = argp;
5347         struct kvm_msr_filter filter;
5348         bool default_allow;
5349         int r = 0;
5350         bool empty = true;
5351         u32 i;
5352
5353         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5354                 return -EFAULT;
5355
5356         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5357                 empty &= !filter.ranges[i].nmsrs;
5358
5359         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5360         if (empty && !default_allow)
5361                 return -EINVAL;
5362
5363         kvm_clear_msr_filter(kvm);
5364
5365         kvm->arch.msr_filter.default_allow = default_allow;
5366
5367         /*
5368          * Protect from concurrent calls to this function that could trigger
5369          * a TOCTOU violation on kvm->arch.msr_filter.count.
5370          */
5371         mutex_lock(&kvm->lock);
5372         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5373                 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5374                 if (r)
5375                         break;
5376         }
5377
5378         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5379         mutex_unlock(&kvm->lock);
5380
5381         return r;
5382 }
5383
5384 long kvm_arch_vm_ioctl(struct file *filp,
5385                        unsigned int ioctl, unsigned long arg)
5386 {
5387         struct kvm *kvm = filp->private_data;
5388         void __user *argp = (void __user *)arg;
5389         int r = -ENOTTY;
5390         /*
5391          * This union makes it completely explicit to gcc-3.x
5392          * that these two variables' stack usage should be
5393          * combined, not added together.
5394          */
5395         union {
5396                 struct kvm_pit_state ps;
5397                 struct kvm_pit_state2 ps2;
5398                 struct kvm_pit_config pit_config;
5399         } u;
5400
5401         switch (ioctl) {
5402         case KVM_SET_TSS_ADDR:
5403                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5404                 break;
5405         case KVM_SET_IDENTITY_MAP_ADDR: {
5406                 u64 ident_addr;
5407
5408                 mutex_lock(&kvm->lock);
5409                 r = -EINVAL;
5410                 if (kvm->created_vcpus)
5411                         goto set_identity_unlock;
5412                 r = -EFAULT;
5413                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5414                         goto set_identity_unlock;
5415                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5416 set_identity_unlock:
5417                 mutex_unlock(&kvm->lock);
5418                 break;
5419         }
5420         case KVM_SET_NR_MMU_PAGES:
5421                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5422                 break;
5423         case KVM_GET_NR_MMU_PAGES:
5424                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5425                 break;
5426         case KVM_CREATE_IRQCHIP: {
5427                 mutex_lock(&kvm->lock);
5428
5429                 r = -EEXIST;
5430                 if (irqchip_in_kernel(kvm))
5431                         goto create_irqchip_unlock;
5432
5433                 r = -EINVAL;
5434                 if (kvm->created_vcpus)
5435                         goto create_irqchip_unlock;
5436
5437                 r = kvm_pic_init(kvm);
5438                 if (r)
5439                         goto create_irqchip_unlock;
5440
5441                 r = kvm_ioapic_init(kvm);
5442                 if (r) {
5443                         kvm_pic_destroy(kvm);
5444                         goto create_irqchip_unlock;
5445                 }
5446
5447                 r = kvm_setup_default_irq_routing(kvm);
5448                 if (r) {
5449                         kvm_ioapic_destroy(kvm);
5450                         kvm_pic_destroy(kvm);
5451                         goto create_irqchip_unlock;
5452                 }
5453                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5454                 smp_wmb();
5455                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5456         create_irqchip_unlock:
5457                 mutex_unlock(&kvm->lock);
5458                 break;
5459         }
5460         case KVM_CREATE_PIT:
5461                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5462                 goto create_pit;
5463         case KVM_CREATE_PIT2:
5464                 r = -EFAULT;
5465                 if (copy_from_user(&u.pit_config, argp,
5466                                    sizeof(struct kvm_pit_config)))
5467                         goto out;
5468         create_pit:
5469                 mutex_lock(&kvm->lock);
5470                 r = -EEXIST;
5471                 if (kvm->arch.vpit)
5472                         goto create_pit_unlock;
5473                 r = -ENOMEM;
5474                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5475                 if (kvm->arch.vpit)
5476                         r = 0;
5477         create_pit_unlock:
5478                 mutex_unlock(&kvm->lock);
5479                 break;
5480         case KVM_GET_IRQCHIP: {
5481                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5482                 struct kvm_irqchip *chip;
5483
5484                 chip = memdup_user(argp, sizeof(*chip));
5485                 if (IS_ERR(chip)) {
5486                         r = PTR_ERR(chip);
5487                         goto out;
5488                 }
5489
5490                 r = -ENXIO;
5491                 if (!irqchip_kernel(kvm))
5492                         goto get_irqchip_out;
5493                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5494                 if (r)
5495                         goto get_irqchip_out;
5496                 r = -EFAULT;
5497                 if (copy_to_user(argp, chip, sizeof(*chip)))
5498                         goto get_irqchip_out;
5499                 r = 0;
5500         get_irqchip_out:
5501                 kfree(chip);
5502                 break;
5503         }
5504         case KVM_SET_IRQCHIP: {
5505                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5506                 struct kvm_irqchip *chip;
5507
5508                 chip = memdup_user(argp, sizeof(*chip));
5509                 if (IS_ERR(chip)) {
5510                         r = PTR_ERR(chip);
5511                         goto out;
5512                 }
5513
5514                 r = -ENXIO;
5515                 if (!irqchip_kernel(kvm))
5516                         goto set_irqchip_out;
5517                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5518         set_irqchip_out:
5519                 kfree(chip);
5520                 break;
5521         }
5522         case KVM_GET_PIT: {
5523                 r = -EFAULT;
5524                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5525                         goto out;
5526                 r = -ENXIO;
5527                 if (!kvm->arch.vpit)
5528                         goto out;
5529                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5530                 if (r)
5531                         goto out;
5532                 r = -EFAULT;
5533                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5534                         goto out;
5535                 r = 0;
5536                 break;
5537         }
5538         case KVM_SET_PIT: {
5539                 r = -EFAULT;
5540                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5541                         goto out;
5542                 mutex_lock(&kvm->lock);
5543                 r = -ENXIO;
5544                 if (!kvm->arch.vpit)
5545                         goto set_pit_out;
5546                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5547 set_pit_out:
5548                 mutex_unlock(&kvm->lock);
5549                 break;
5550         }
5551         case KVM_GET_PIT2: {
5552                 r = -ENXIO;
5553                 if (!kvm->arch.vpit)
5554                         goto out;
5555                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5556                 if (r)
5557                         goto out;
5558                 r = -EFAULT;
5559                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5560                         goto out;
5561                 r = 0;
5562                 break;
5563         }
5564         case KVM_SET_PIT2: {
5565                 r = -EFAULT;
5566                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5567                         goto out;
5568                 mutex_lock(&kvm->lock);
5569                 r = -ENXIO;
5570                 if (!kvm->arch.vpit)
5571                         goto set_pit2_out;
5572                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5573 set_pit2_out:
5574                 mutex_unlock(&kvm->lock);
5575                 break;
5576         }
5577         case KVM_REINJECT_CONTROL: {
5578                 struct kvm_reinject_control control;
5579                 r =  -EFAULT;
5580                 if (copy_from_user(&control, argp, sizeof(control)))
5581                         goto out;
5582                 r = -ENXIO;
5583                 if (!kvm->arch.vpit)
5584                         goto out;
5585                 r = kvm_vm_ioctl_reinject(kvm, &control);
5586                 break;
5587         }
5588         case KVM_SET_BOOT_CPU_ID:
5589                 r = 0;
5590                 mutex_lock(&kvm->lock);
5591                 if (kvm->created_vcpus)
5592                         r = -EBUSY;
5593                 else
5594                         kvm->arch.bsp_vcpu_id = arg;
5595                 mutex_unlock(&kvm->lock);
5596                 break;
5597         case KVM_XEN_HVM_CONFIG: {
5598                 struct kvm_xen_hvm_config xhc;
5599                 r = -EFAULT;
5600                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5601                         goto out;
5602                 r = -EINVAL;
5603                 if (xhc.flags)
5604                         goto out;
5605                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5606                 r = 0;
5607                 break;
5608         }
5609         case KVM_SET_CLOCK: {
5610                 struct kvm_clock_data user_ns;
5611                 u64 now_ns;
5612
5613                 r = -EFAULT;
5614                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5615                         goto out;
5616
5617                 r = -EINVAL;
5618                 if (user_ns.flags)
5619                         goto out;
5620
5621                 r = 0;
5622                 /*
5623                  * TODO: userspace has to take care of races with VCPU_RUN, so
5624                  * kvm_gen_update_masterclock() can be cut down to locked
5625                  * pvclock_update_vm_gtod_copy().
5626                  */
5627                 kvm_gen_update_masterclock(kvm);
5628                 now_ns = get_kvmclock_ns(kvm);
5629                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5630                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5631                 break;
5632         }
5633         case KVM_GET_CLOCK: {
5634                 struct kvm_clock_data user_ns;
5635                 u64 now_ns;
5636
5637                 now_ns = get_kvmclock_ns(kvm);
5638                 user_ns.clock = now_ns;
5639                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5640                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5641
5642                 r = -EFAULT;
5643                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5644                         goto out;
5645                 r = 0;
5646                 break;
5647         }
5648         case KVM_MEMORY_ENCRYPT_OP: {
5649                 r = -ENOTTY;
5650                 if (kvm_x86_ops.mem_enc_op)
5651                         r = kvm_x86_ops.mem_enc_op(kvm, argp);
5652                 break;
5653         }
5654         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5655                 struct kvm_enc_region region;
5656
5657                 r = -EFAULT;
5658                 if (copy_from_user(&region, argp, sizeof(region)))
5659                         goto out;
5660
5661                 r = -ENOTTY;
5662                 if (kvm_x86_ops.mem_enc_reg_region)
5663                         r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5664                 break;
5665         }
5666         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5667                 struct kvm_enc_region region;
5668
5669                 r = -EFAULT;
5670                 if (copy_from_user(&region, argp, sizeof(region)))
5671                         goto out;
5672
5673                 r = -ENOTTY;
5674                 if (kvm_x86_ops.mem_enc_unreg_region)
5675                         r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5676                 break;
5677         }
5678         case KVM_HYPERV_EVENTFD: {
5679                 struct kvm_hyperv_eventfd hvevfd;
5680
5681                 r = -EFAULT;
5682                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5683                         goto out;
5684                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5685                 break;
5686         }
5687         case KVM_SET_PMU_EVENT_FILTER:
5688                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5689                 break;
5690         case KVM_X86_SET_MSR_FILTER:
5691                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5692                 break;
5693         default:
5694                 r = -ENOTTY;
5695         }
5696 out:
5697         return r;
5698 }
5699
5700 static void kvm_init_msr_list(void)
5701 {
5702         struct x86_pmu_capability x86_pmu;
5703         u32 dummy[2];
5704         unsigned i;
5705
5706         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5707                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5708
5709         perf_get_x86_pmu_capability(&x86_pmu);
5710
5711         num_msrs_to_save = 0;
5712         num_emulated_msrs = 0;
5713         num_msr_based_features = 0;
5714
5715         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5716                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5717                         continue;
5718
5719                 /*
5720                  * Even MSRs that are valid in the host may not be exposed
5721                  * to the guests in some cases.
5722                  */
5723                 switch (msrs_to_save_all[i]) {
5724                 case MSR_IA32_BNDCFGS:
5725                         if (!kvm_mpx_supported())
5726                                 continue;
5727                         break;
5728                 case MSR_TSC_AUX:
5729                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5730                                 continue;
5731                         break;
5732                 case MSR_IA32_UMWAIT_CONTROL:
5733                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5734                                 continue;
5735                         break;
5736                 case MSR_IA32_RTIT_CTL:
5737                 case MSR_IA32_RTIT_STATUS:
5738                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5739                                 continue;
5740                         break;
5741                 case MSR_IA32_RTIT_CR3_MATCH:
5742                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5743                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5744                                 continue;
5745                         break;
5746                 case MSR_IA32_RTIT_OUTPUT_BASE:
5747                 case MSR_IA32_RTIT_OUTPUT_MASK:
5748                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5749                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5750                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5751                                 continue;
5752                         break;
5753                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5754                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5755                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5756                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5757                                 continue;
5758                         break;
5759                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5760                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5761                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5762                                 continue;
5763                         break;
5764                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5765                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5766                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5767                                 continue;
5768                         break;
5769                 default:
5770                         break;
5771                 }
5772
5773                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5774         }
5775
5776         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5777                 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5778                         continue;
5779
5780                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5781         }
5782
5783         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5784                 struct kvm_msr_entry msr;
5785
5786                 msr.index = msr_based_features_all[i];
5787                 if (kvm_get_msr_feature(&msr))
5788                         continue;
5789
5790                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5791         }
5792 }
5793
5794 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5795                            const void *v)
5796 {
5797         int handled = 0;
5798         int n;
5799
5800         do {
5801                 n = min(len, 8);
5802                 if (!(lapic_in_kernel(vcpu) &&
5803                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5804                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5805                         break;
5806                 handled += n;
5807                 addr += n;
5808                 len -= n;
5809                 v += n;
5810         } while (len);
5811
5812         return handled;
5813 }
5814
5815 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5816 {
5817         int handled = 0;
5818         int n;
5819
5820         do {
5821                 n = min(len, 8);
5822                 if (!(lapic_in_kernel(vcpu) &&
5823                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5824                                          addr, n, v))
5825                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5826                         break;
5827                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5828                 handled += n;
5829                 addr += n;
5830                 len -= n;
5831                 v += n;
5832         } while (len);
5833
5834         return handled;
5835 }
5836
5837 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5838                         struct kvm_segment *var, int seg)
5839 {
5840         kvm_x86_ops.set_segment(vcpu, var, seg);
5841 }
5842
5843 void kvm_get_segment(struct kvm_vcpu *vcpu,
5844                      struct kvm_segment *var, int seg)
5845 {
5846         kvm_x86_ops.get_segment(vcpu, var, seg);
5847 }
5848
5849 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5850                            struct x86_exception *exception)
5851 {
5852         gpa_t t_gpa;
5853
5854         BUG_ON(!mmu_is_nested(vcpu));
5855
5856         /* NPT walks are always user-walks */
5857         access |= PFERR_USER_MASK;
5858         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5859
5860         return t_gpa;
5861 }
5862
5863 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5864                               struct x86_exception *exception)
5865 {
5866         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5867         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5868 }
5869
5870  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5871                                 struct x86_exception *exception)
5872 {
5873         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5874         access |= PFERR_FETCH_MASK;
5875         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5876 }
5877
5878 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5879                                struct x86_exception *exception)
5880 {
5881         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5882         access |= PFERR_WRITE_MASK;
5883         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5884 }
5885
5886 /* uses this to access any guest's mapped memory without checking CPL */
5887 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5888                                 struct x86_exception *exception)
5889 {
5890         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5891 }
5892
5893 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5894                                       struct kvm_vcpu *vcpu, u32 access,
5895                                       struct x86_exception *exception)
5896 {
5897         void *data = val;
5898         int r = X86EMUL_CONTINUE;
5899
5900         while (bytes) {
5901                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5902                                                             exception);
5903                 unsigned offset = addr & (PAGE_SIZE-1);
5904                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5905                 int ret;
5906
5907                 if (gpa == UNMAPPED_GVA)
5908                         return X86EMUL_PROPAGATE_FAULT;
5909                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5910                                                offset, toread);
5911                 if (ret < 0) {
5912                         r = X86EMUL_IO_NEEDED;
5913                         goto out;
5914                 }
5915
5916                 bytes -= toread;
5917                 data += toread;
5918                 addr += toread;
5919         }
5920 out:
5921         return r;
5922 }
5923
5924 /* used for instruction fetching */
5925 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5926                                 gva_t addr, void *val, unsigned int bytes,
5927                                 struct x86_exception *exception)
5928 {
5929         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5930         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5931         unsigned offset;
5932         int ret;
5933
5934         /* Inline kvm_read_guest_virt_helper for speed.  */
5935         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5936                                                     exception);
5937         if (unlikely(gpa == UNMAPPED_GVA))
5938                 return X86EMUL_PROPAGATE_FAULT;
5939
5940         offset = addr & (PAGE_SIZE-1);
5941         if (WARN_ON(offset + bytes > PAGE_SIZE))
5942                 bytes = (unsigned)PAGE_SIZE - offset;
5943         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5944                                        offset, bytes);
5945         if (unlikely(ret < 0))
5946                 return X86EMUL_IO_NEEDED;
5947
5948         return X86EMUL_CONTINUE;
5949 }
5950
5951 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5952                                gva_t addr, void *val, unsigned int bytes,
5953                                struct x86_exception *exception)
5954 {
5955         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5956
5957         /*
5958          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5959          * is returned, but our callers are not ready for that and they blindly
5960          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5961          * uninitialized kernel stack memory into cr2 and error code.
5962          */
5963         memset(exception, 0, sizeof(*exception));
5964         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5965                                           exception);
5966 }
5967 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5968
5969 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5970                              gva_t addr, void *val, unsigned int bytes,
5971                              struct x86_exception *exception, bool system)
5972 {
5973         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5974         u32 access = 0;
5975
5976         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5977                 access |= PFERR_USER_MASK;
5978
5979         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5980 }
5981
5982 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5983                 unsigned long addr, void *val, unsigned int bytes)
5984 {
5985         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5986         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5987
5988         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5989 }
5990
5991 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5992                                       struct kvm_vcpu *vcpu, u32 access,
5993                                       struct x86_exception *exception)
5994 {
5995         void *data = val;
5996         int r = X86EMUL_CONTINUE;
5997
5998         while (bytes) {
5999                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6000                                                              access,
6001                                                              exception);
6002                 unsigned offset = addr & (PAGE_SIZE-1);
6003                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6004                 int ret;
6005
6006                 if (gpa == UNMAPPED_GVA)
6007                         return X86EMUL_PROPAGATE_FAULT;
6008                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6009                 if (ret < 0) {
6010                         r = X86EMUL_IO_NEEDED;
6011                         goto out;
6012                 }
6013
6014                 bytes -= towrite;
6015                 data += towrite;
6016                 addr += towrite;
6017         }
6018 out:
6019         return r;
6020 }
6021
6022 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6023                               unsigned int bytes, struct x86_exception *exception,
6024                               bool system)
6025 {
6026         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6027         u32 access = PFERR_WRITE_MASK;
6028
6029         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6030                 access |= PFERR_USER_MASK;
6031
6032         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6033                                            access, exception);
6034 }
6035
6036 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6037                                 unsigned int bytes, struct x86_exception *exception)
6038 {
6039         /* kvm_write_guest_virt_system can pull in tons of pages. */
6040         vcpu->arch.l1tf_flush_l1d = true;
6041
6042         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6043                                            PFERR_WRITE_MASK, exception);
6044 }
6045 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6046
6047 int handle_ud(struct kvm_vcpu *vcpu)
6048 {
6049         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6050         int emul_type = EMULTYPE_TRAP_UD;
6051         char sig[5]; /* ud2; .ascii "kvm" */
6052         struct x86_exception e;
6053
6054         if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6055                 return 1;
6056
6057         if (force_emulation_prefix &&
6058             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6059                                 sig, sizeof(sig), &e) == 0 &&
6060             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6061                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6062                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6063         }
6064
6065         return kvm_emulate_instruction(vcpu, emul_type);
6066 }
6067 EXPORT_SYMBOL_GPL(handle_ud);
6068
6069 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6070                             gpa_t gpa, bool write)
6071 {
6072         /* For APIC access vmexit */
6073         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6074                 return 1;
6075
6076         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6077                 trace_vcpu_match_mmio(gva, gpa, write, true);
6078                 return 1;
6079         }
6080
6081         return 0;
6082 }
6083
6084 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6085                                 gpa_t *gpa, struct x86_exception *exception,
6086                                 bool write)
6087 {
6088         u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6089                 | (write ? PFERR_WRITE_MASK : 0);
6090
6091         /*
6092          * currently PKRU is only applied to ept enabled guest so
6093          * there is no pkey in EPT page table for L1 guest or EPT
6094          * shadow page table for L2 guest.
6095          */
6096         if (vcpu_match_mmio_gva(vcpu, gva)
6097             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6098                                  vcpu->arch.mmio_access, 0, access)) {
6099                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6100                                         (gva & (PAGE_SIZE - 1));
6101                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6102                 return 1;
6103         }
6104
6105         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6106
6107         if (*gpa == UNMAPPED_GVA)
6108                 return -1;
6109
6110         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6111 }
6112
6113 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6114                         const void *val, int bytes)
6115 {
6116         int ret;
6117
6118         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6119         if (ret < 0)
6120                 return 0;
6121         kvm_page_track_write(vcpu, gpa, val, bytes);
6122         return 1;
6123 }
6124
6125 struct read_write_emulator_ops {
6126         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6127                                   int bytes);
6128         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6129                                   void *val, int bytes);
6130         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6131                                int bytes, void *val);
6132         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6133                                     void *val, int bytes);
6134         bool write;
6135 };
6136
6137 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6138 {
6139         if (vcpu->mmio_read_completed) {
6140                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6141                                vcpu->mmio_fragments[0].gpa, val);
6142                 vcpu->mmio_read_completed = 0;
6143                 return 1;
6144         }
6145
6146         return 0;
6147 }
6148
6149 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6150                         void *val, int bytes)
6151 {
6152         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6153 }
6154
6155 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6156                          void *val, int bytes)
6157 {
6158         return emulator_write_phys(vcpu, gpa, val, bytes);
6159 }
6160
6161 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6162 {
6163         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6164         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6165 }
6166
6167 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6168                           void *val, int bytes)
6169 {
6170         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6171         return X86EMUL_IO_NEEDED;
6172 }
6173
6174 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6175                            void *val, int bytes)
6176 {
6177         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6178
6179         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6180         return X86EMUL_CONTINUE;
6181 }
6182
6183 static const struct read_write_emulator_ops read_emultor = {
6184         .read_write_prepare = read_prepare,
6185         .read_write_emulate = read_emulate,
6186         .read_write_mmio = vcpu_mmio_read,
6187         .read_write_exit_mmio = read_exit_mmio,
6188 };
6189
6190 static const struct read_write_emulator_ops write_emultor = {
6191         .read_write_emulate = write_emulate,
6192         .read_write_mmio = write_mmio,
6193         .read_write_exit_mmio = write_exit_mmio,
6194         .write = true,
6195 };
6196
6197 static int emulator_read_write_onepage(unsigned long addr, void *val,
6198                                        unsigned int bytes,
6199                                        struct x86_exception *exception,
6200                                        struct kvm_vcpu *vcpu,
6201                                        const struct read_write_emulator_ops *ops)
6202 {
6203         gpa_t gpa;
6204         int handled, ret;
6205         bool write = ops->write;
6206         struct kvm_mmio_fragment *frag;
6207         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6208
6209         /*
6210          * If the exit was due to a NPF we may already have a GPA.
6211          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6212          * Note, this cannot be used on string operations since string
6213          * operation using rep will only have the initial GPA from the NPF
6214          * occurred.
6215          */
6216         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6217             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6218                 gpa = ctxt->gpa_val;
6219                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6220         } else {
6221                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6222                 if (ret < 0)
6223                         return X86EMUL_PROPAGATE_FAULT;
6224         }
6225
6226         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6227                 return X86EMUL_CONTINUE;
6228
6229         /*
6230          * Is this MMIO handled locally?
6231          */
6232         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6233         if (handled == bytes)
6234                 return X86EMUL_CONTINUE;
6235
6236         gpa += handled;
6237         bytes -= handled;
6238         val += handled;
6239
6240         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6241         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6242         frag->gpa = gpa;
6243         frag->data = val;
6244         frag->len = bytes;
6245         return X86EMUL_CONTINUE;
6246 }
6247
6248 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6249                         unsigned long addr,
6250                         void *val, unsigned int bytes,
6251                         struct x86_exception *exception,
6252                         const struct read_write_emulator_ops *ops)
6253 {
6254         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6255         gpa_t gpa;
6256         int rc;
6257
6258         if (ops->read_write_prepare &&
6259                   ops->read_write_prepare(vcpu, val, bytes))
6260                 return X86EMUL_CONTINUE;
6261
6262         vcpu->mmio_nr_fragments = 0;
6263
6264         /* Crossing a page boundary? */
6265         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6266                 int now;
6267
6268                 now = -addr & ~PAGE_MASK;
6269                 rc = emulator_read_write_onepage(addr, val, now, exception,
6270                                                  vcpu, ops);
6271
6272                 if (rc != X86EMUL_CONTINUE)
6273                         return rc;
6274                 addr += now;
6275                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6276                         addr = (u32)addr;
6277                 val += now;
6278                 bytes -= now;
6279         }
6280
6281         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6282                                          vcpu, ops);
6283         if (rc != X86EMUL_CONTINUE)
6284                 return rc;
6285
6286         if (!vcpu->mmio_nr_fragments)
6287                 return rc;
6288
6289         gpa = vcpu->mmio_fragments[0].gpa;
6290
6291         vcpu->mmio_needed = 1;
6292         vcpu->mmio_cur_fragment = 0;
6293
6294         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6295         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6296         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6297         vcpu->run->mmio.phys_addr = gpa;
6298
6299         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6300 }
6301
6302 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6303                                   unsigned long addr,
6304                                   void *val,
6305                                   unsigned int bytes,
6306                                   struct x86_exception *exception)
6307 {
6308         return emulator_read_write(ctxt, addr, val, bytes,
6309                                    exception, &read_emultor);
6310 }
6311
6312 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6313                             unsigned long addr,
6314                             const void *val,
6315                             unsigned int bytes,
6316                             struct x86_exception *exception)
6317 {
6318         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6319                                    exception, &write_emultor);
6320 }
6321
6322 #define CMPXCHG_TYPE(t, ptr, old, new) \
6323         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6324
6325 #ifdef CONFIG_X86_64
6326 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6327 #else
6328 #  define CMPXCHG64(ptr, old, new) \
6329         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6330 #endif
6331
6332 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6333                                      unsigned long addr,
6334                                      const void *old,
6335                                      const void *new,
6336                                      unsigned int bytes,
6337                                      struct x86_exception *exception)
6338 {
6339         struct kvm_host_map map;
6340         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6341         u64 page_line_mask;
6342         gpa_t gpa;
6343         char *kaddr;
6344         bool exchanged;
6345
6346         /* guests cmpxchg8b have to be emulated atomically */
6347         if (bytes > 8 || (bytes & (bytes - 1)))
6348                 goto emul_write;
6349
6350         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6351
6352         if (gpa == UNMAPPED_GVA ||
6353             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6354                 goto emul_write;
6355
6356         /*
6357          * Emulate the atomic as a straight write to avoid #AC if SLD is
6358          * enabled in the host and the access splits a cache line.
6359          */
6360         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6361                 page_line_mask = ~(cache_line_size() - 1);
6362         else
6363                 page_line_mask = PAGE_MASK;
6364
6365         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6366                 goto emul_write;
6367
6368         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6369                 goto emul_write;
6370
6371         kaddr = map.hva + offset_in_page(gpa);
6372
6373         switch (bytes) {
6374         case 1:
6375                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6376                 break;
6377         case 2:
6378                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6379                 break;
6380         case 4:
6381                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6382                 break;
6383         case 8:
6384                 exchanged = CMPXCHG64(kaddr, old, new);
6385                 break;
6386         default:
6387                 BUG();
6388         }
6389
6390         kvm_vcpu_unmap(vcpu, &map, true);
6391
6392         if (!exchanged)
6393                 return X86EMUL_CMPXCHG_FAILED;
6394
6395         kvm_page_track_write(vcpu, gpa, new, bytes);
6396
6397         return X86EMUL_CONTINUE;
6398
6399 emul_write:
6400         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6401
6402         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6403 }
6404
6405 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6406 {
6407         int r = 0, i;
6408
6409         for (i = 0; i < vcpu->arch.pio.count; i++) {
6410                 if (vcpu->arch.pio.in)
6411                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6412                                             vcpu->arch.pio.size, pd);
6413                 else
6414                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6415                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6416                                              pd);
6417                 if (r)
6418                         break;
6419                 pd += vcpu->arch.pio.size;
6420         }
6421         return r;
6422 }
6423
6424 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6425                                unsigned short port, void *val,
6426                                unsigned int count, bool in)
6427 {
6428         vcpu->arch.pio.port = port;
6429         vcpu->arch.pio.in = in;
6430         vcpu->arch.pio.count  = count;
6431         vcpu->arch.pio.size = size;
6432
6433         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6434                 vcpu->arch.pio.count = 0;
6435                 return 1;
6436         }
6437
6438         vcpu->run->exit_reason = KVM_EXIT_IO;
6439         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6440         vcpu->run->io.size = size;
6441         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6442         vcpu->run->io.count = count;
6443         vcpu->run->io.port = port;
6444
6445         return 0;
6446 }
6447
6448 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6449                            unsigned short port, void *val, unsigned int count)
6450 {
6451         int ret;
6452
6453         if (vcpu->arch.pio.count)
6454                 goto data_avail;
6455
6456         memset(vcpu->arch.pio_data, 0, size * count);
6457
6458         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6459         if (ret) {
6460 data_avail:
6461                 memcpy(val, vcpu->arch.pio_data, size * count);
6462                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6463                 vcpu->arch.pio.count = 0;
6464                 return 1;
6465         }
6466
6467         return 0;
6468 }
6469
6470 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6471                                     int size, unsigned short port, void *val,
6472                                     unsigned int count)
6473 {
6474         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6475
6476 }
6477
6478 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6479                             unsigned short port, const void *val,
6480                             unsigned int count)
6481 {
6482         memcpy(vcpu->arch.pio_data, val, size * count);
6483         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6484         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6485 }
6486
6487 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6488                                      int size, unsigned short port,
6489                                      const void *val, unsigned int count)
6490 {
6491         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6492 }
6493
6494 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6495 {
6496         return kvm_x86_ops.get_segment_base(vcpu, seg);
6497 }
6498
6499 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6500 {
6501         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6502 }
6503
6504 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6505 {
6506         if (!need_emulate_wbinvd(vcpu))
6507                 return X86EMUL_CONTINUE;
6508
6509         if (kvm_x86_ops.has_wbinvd_exit()) {
6510                 int cpu = get_cpu();
6511
6512                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6513                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6514                                 wbinvd_ipi, NULL, 1);
6515                 put_cpu();
6516                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6517         } else
6518                 wbinvd();
6519         return X86EMUL_CONTINUE;
6520 }
6521
6522 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6523 {
6524         kvm_emulate_wbinvd_noskip(vcpu);
6525         return kvm_skip_emulated_instruction(vcpu);
6526 }
6527 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6528
6529
6530
6531 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6532 {
6533         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6534 }
6535
6536 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6537                            unsigned long *dest)
6538 {
6539         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6540 }
6541
6542 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6543                            unsigned long value)
6544 {
6545
6546         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6547 }
6548
6549 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6550 {
6551         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6552 }
6553
6554 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6555 {
6556         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6557         unsigned long value;
6558
6559         switch (cr) {
6560         case 0:
6561                 value = kvm_read_cr0(vcpu);
6562                 break;
6563         case 2:
6564                 value = vcpu->arch.cr2;
6565                 break;
6566         case 3:
6567                 value = kvm_read_cr3(vcpu);
6568                 break;
6569         case 4:
6570                 value = kvm_read_cr4(vcpu);
6571                 break;
6572         case 8:
6573                 value = kvm_get_cr8(vcpu);
6574                 break;
6575         default:
6576                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6577                 return 0;
6578         }
6579
6580         return value;
6581 }
6582
6583 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6584 {
6585         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6586         int res = 0;
6587
6588         switch (cr) {
6589         case 0:
6590                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6591                 break;
6592         case 2:
6593                 vcpu->arch.cr2 = val;
6594                 break;
6595         case 3:
6596                 res = kvm_set_cr3(vcpu, val);
6597                 break;
6598         case 4:
6599                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6600                 break;
6601         case 8:
6602                 res = kvm_set_cr8(vcpu, val);
6603                 break;
6604         default:
6605                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6606                 res = -1;
6607         }
6608
6609         return res;
6610 }
6611
6612 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6613 {
6614         return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6615 }
6616
6617 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6618 {
6619         kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6620 }
6621
6622 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6623 {
6624         kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6625 }
6626
6627 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6628 {
6629         kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6630 }
6631
6632 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6633 {
6634         kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6635 }
6636
6637 static unsigned long emulator_get_cached_segment_base(
6638         struct x86_emulate_ctxt *ctxt, int seg)
6639 {
6640         return get_segment_base(emul_to_vcpu(ctxt), seg);
6641 }
6642
6643 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6644                                  struct desc_struct *desc, u32 *base3,
6645                                  int seg)
6646 {
6647         struct kvm_segment var;
6648
6649         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6650         *selector = var.selector;
6651
6652         if (var.unusable) {
6653                 memset(desc, 0, sizeof(*desc));
6654                 if (base3)
6655                         *base3 = 0;
6656                 return false;
6657         }
6658
6659         if (var.g)
6660                 var.limit >>= 12;
6661         set_desc_limit(desc, var.limit);
6662         set_desc_base(desc, (unsigned long)var.base);
6663 #ifdef CONFIG_X86_64
6664         if (base3)
6665                 *base3 = var.base >> 32;
6666 #endif
6667         desc->type = var.type;
6668         desc->s = var.s;
6669         desc->dpl = var.dpl;
6670         desc->p = var.present;
6671         desc->avl = var.avl;
6672         desc->l = var.l;
6673         desc->d = var.db;
6674         desc->g = var.g;
6675
6676         return true;
6677 }
6678
6679 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6680                                  struct desc_struct *desc, u32 base3,
6681                                  int seg)
6682 {
6683         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6684         struct kvm_segment var;
6685
6686         var.selector = selector;
6687         var.base = get_desc_base(desc);
6688 #ifdef CONFIG_X86_64
6689         var.base |= ((u64)base3) << 32;
6690 #endif
6691         var.limit = get_desc_limit(desc);
6692         if (desc->g)
6693                 var.limit = (var.limit << 12) | 0xfff;
6694         var.type = desc->type;
6695         var.dpl = desc->dpl;
6696         var.db = desc->d;
6697         var.s = desc->s;
6698         var.l = desc->l;
6699         var.g = desc->g;
6700         var.avl = desc->avl;
6701         var.present = desc->p;
6702         var.unusable = !var.present;
6703         var.padding = 0;
6704
6705         kvm_set_segment(vcpu, &var, seg);
6706         return;
6707 }
6708
6709 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6710                             u32 msr_index, u64 *pdata)
6711 {
6712         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6713         int r;
6714
6715         r = kvm_get_msr(vcpu, msr_index, pdata);
6716
6717         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6718                 /* Bounce to user space */
6719                 return X86EMUL_IO_NEEDED;
6720         }
6721
6722         return r;
6723 }
6724
6725 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6726                             u32 msr_index, u64 data)
6727 {
6728         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6729         int r;
6730
6731         r = kvm_set_msr(vcpu, msr_index, data);
6732
6733         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6734                 /* Bounce to user space */
6735                 return X86EMUL_IO_NEEDED;
6736         }
6737
6738         return r;
6739 }
6740
6741 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6742 {
6743         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6744
6745         return vcpu->arch.smbase;
6746 }
6747
6748 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6749 {
6750         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6751
6752         vcpu->arch.smbase = smbase;
6753 }
6754
6755 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6756                               u32 pmc)
6757 {
6758         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6759 }
6760
6761 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6762                              u32 pmc, u64 *pdata)
6763 {
6764         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6765 }
6766
6767 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6768 {
6769         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6770 }
6771
6772 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6773                               struct x86_instruction_info *info,
6774                               enum x86_intercept_stage stage)
6775 {
6776         return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6777                                             &ctxt->exception);
6778 }
6779
6780 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6781                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6782                               bool exact_only)
6783 {
6784         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6785 }
6786
6787 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6788 {
6789         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6790 }
6791
6792 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6793 {
6794         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6795 }
6796
6797 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6798 {
6799         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6800 }
6801
6802 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6803 {
6804         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6805 }
6806
6807 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6808 {
6809         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6810 }
6811
6812 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6813 {
6814         kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6815 }
6816
6817 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6818 {
6819         return emul_to_vcpu(ctxt)->arch.hflags;
6820 }
6821
6822 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6823 {
6824         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6825 }
6826
6827 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6828                                   const char *smstate)
6829 {
6830         return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6831 }
6832
6833 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6834 {
6835         kvm_smm_changed(emul_to_vcpu(ctxt));
6836 }
6837
6838 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6839 {
6840         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6841 }
6842
6843 static const struct x86_emulate_ops emulate_ops = {
6844         .read_gpr            = emulator_read_gpr,
6845         .write_gpr           = emulator_write_gpr,
6846         .read_std            = emulator_read_std,
6847         .write_std           = emulator_write_std,
6848         .read_phys           = kvm_read_guest_phys_system,
6849         .fetch               = kvm_fetch_guest_virt,
6850         .read_emulated       = emulator_read_emulated,
6851         .write_emulated      = emulator_write_emulated,
6852         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6853         .invlpg              = emulator_invlpg,
6854         .pio_in_emulated     = emulator_pio_in_emulated,
6855         .pio_out_emulated    = emulator_pio_out_emulated,
6856         .get_segment         = emulator_get_segment,
6857         .set_segment         = emulator_set_segment,
6858         .get_cached_segment_base = emulator_get_cached_segment_base,
6859         .get_gdt             = emulator_get_gdt,
6860         .get_idt             = emulator_get_idt,
6861         .set_gdt             = emulator_set_gdt,
6862         .set_idt             = emulator_set_idt,
6863         .get_cr              = emulator_get_cr,
6864         .set_cr              = emulator_set_cr,
6865         .cpl                 = emulator_get_cpl,
6866         .get_dr              = emulator_get_dr,
6867         .set_dr              = emulator_set_dr,
6868         .get_smbase          = emulator_get_smbase,
6869         .set_smbase          = emulator_set_smbase,
6870         .set_msr             = emulator_set_msr,
6871         .get_msr             = emulator_get_msr,
6872         .check_pmc           = emulator_check_pmc,
6873         .read_pmc            = emulator_read_pmc,
6874         .halt                = emulator_halt,
6875         .wbinvd              = emulator_wbinvd,
6876         .fix_hypercall       = emulator_fix_hypercall,
6877         .intercept           = emulator_intercept,
6878         .get_cpuid           = emulator_get_cpuid,
6879         .guest_has_long_mode = emulator_guest_has_long_mode,
6880         .guest_has_movbe     = emulator_guest_has_movbe,
6881         .guest_has_fxsr      = emulator_guest_has_fxsr,
6882         .set_nmi_mask        = emulator_set_nmi_mask,
6883         .get_hflags          = emulator_get_hflags,
6884         .set_hflags          = emulator_set_hflags,
6885         .pre_leave_smm       = emulator_pre_leave_smm,
6886         .post_leave_smm      = emulator_post_leave_smm,
6887         .set_xcr             = emulator_set_xcr,
6888 };
6889
6890 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6891 {
6892         u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6893         /*
6894          * an sti; sti; sequence only disable interrupts for the first
6895          * instruction. So, if the last instruction, be it emulated or
6896          * not, left the system with the INT_STI flag enabled, it
6897          * means that the last instruction is an sti. We should not
6898          * leave the flag on in this case. The same goes for mov ss
6899          */
6900         if (int_shadow & mask)
6901                 mask = 0;
6902         if (unlikely(int_shadow || mask)) {
6903                 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6904                 if (!mask)
6905                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6906         }
6907 }
6908
6909 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6910 {
6911         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6912         if (ctxt->exception.vector == PF_VECTOR)
6913                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6914
6915         if (ctxt->exception.error_code_valid)
6916                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6917                                       ctxt->exception.error_code);
6918         else
6919                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6920         return false;
6921 }
6922
6923 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6924 {
6925         struct x86_emulate_ctxt *ctxt;
6926
6927         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6928         if (!ctxt) {
6929                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6930                 return NULL;
6931         }
6932
6933         ctxt->vcpu = vcpu;
6934         ctxt->ops = &emulate_ops;
6935         vcpu->arch.emulate_ctxt = ctxt;
6936
6937         return ctxt;
6938 }
6939
6940 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6941 {
6942         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6943         int cs_db, cs_l;
6944
6945         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6946
6947         ctxt->gpa_available = false;
6948         ctxt->eflags = kvm_get_rflags(vcpu);
6949         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6950
6951         ctxt->eip = kvm_rip_read(vcpu);
6952         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6953                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6954                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6955                      cs_db                              ? X86EMUL_MODE_PROT32 :
6956                                                           X86EMUL_MODE_PROT16;
6957         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6958         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6959         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6960
6961         init_decode_cache(ctxt);
6962         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6963 }
6964
6965 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6966 {
6967         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6968         int ret;
6969
6970         init_emulate_ctxt(vcpu);
6971
6972         ctxt->op_bytes = 2;
6973         ctxt->ad_bytes = 2;
6974         ctxt->_eip = ctxt->eip + inc_eip;
6975         ret = emulate_int_real(ctxt, irq);
6976
6977         if (ret != X86EMUL_CONTINUE) {
6978                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6979         } else {
6980                 ctxt->eip = ctxt->_eip;
6981                 kvm_rip_write(vcpu, ctxt->eip);
6982                 kvm_set_rflags(vcpu, ctxt->eflags);
6983         }
6984 }
6985 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6986
6987 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6988 {
6989         ++vcpu->stat.insn_emulation_fail;
6990         trace_kvm_emulate_insn_failed(vcpu);
6991
6992         if (emulation_type & EMULTYPE_VMWARE_GP) {
6993                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6994                 return 1;
6995         }
6996
6997         if (emulation_type & EMULTYPE_SKIP) {
6998                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6999                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7000                 vcpu->run->internal.ndata = 0;
7001                 return 0;
7002         }
7003
7004         kvm_queue_exception(vcpu, UD_VECTOR);
7005
7006         if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7007                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7008                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7009                 vcpu->run->internal.ndata = 0;
7010                 return 0;
7011         }
7012
7013         return 1;
7014 }
7015
7016 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7017                                   bool write_fault_to_shadow_pgtable,
7018                                   int emulation_type)
7019 {
7020         gpa_t gpa = cr2_or_gpa;
7021         kvm_pfn_t pfn;
7022
7023         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7024                 return false;
7025
7026         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7027             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7028                 return false;
7029
7030         if (!vcpu->arch.mmu->direct_map) {
7031                 /*
7032                  * Write permission should be allowed since only
7033                  * write access need to be emulated.
7034                  */
7035                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7036
7037                 /*
7038                  * If the mapping is invalid in guest, let cpu retry
7039                  * it to generate fault.
7040                  */
7041                 if (gpa == UNMAPPED_GVA)
7042                         return true;
7043         }
7044
7045         /*
7046          * Do not retry the unhandleable instruction if it faults on the
7047          * readonly host memory, otherwise it will goto a infinite loop:
7048          * retry instruction -> write #PF -> emulation fail -> retry
7049          * instruction -> ...
7050          */
7051         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7052
7053         /*
7054          * If the instruction failed on the error pfn, it can not be fixed,
7055          * report the error to userspace.
7056          */
7057         if (is_error_noslot_pfn(pfn))
7058                 return false;
7059
7060         kvm_release_pfn_clean(pfn);
7061
7062         /* The instructions are well-emulated on direct mmu. */
7063         if (vcpu->arch.mmu->direct_map) {
7064                 unsigned int indirect_shadow_pages;
7065
7066                 spin_lock(&vcpu->kvm->mmu_lock);
7067                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7068                 spin_unlock(&vcpu->kvm->mmu_lock);
7069
7070                 if (indirect_shadow_pages)
7071                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7072
7073                 return true;
7074         }
7075
7076         /*
7077          * if emulation was due to access to shadowed page table
7078          * and it failed try to unshadow page and re-enter the
7079          * guest to let CPU execute the instruction.
7080          */
7081         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7082
7083         /*
7084          * If the access faults on its page table, it can not
7085          * be fixed by unprotecting shadow page and it should
7086          * be reported to userspace.
7087          */
7088         return !write_fault_to_shadow_pgtable;
7089 }
7090
7091 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7092                               gpa_t cr2_or_gpa,  int emulation_type)
7093 {
7094         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7095         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7096
7097         last_retry_eip = vcpu->arch.last_retry_eip;
7098         last_retry_addr = vcpu->arch.last_retry_addr;
7099
7100         /*
7101          * If the emulation is caused by #PF and it is non-page_table
7102          * writing instruction, it means the VM-EXIT is caused by shadow
7103          * page protected, we can zap the shadow page and retry this
7104          * instruction directly.
7105          *
7106          * Note: if the guest uses a non-page-table modifying instruction
7107          * on the PDE that points to the instruction, then we will unmap
7108          * the instruction and go to an infinite loop. So, we cache the
7109          * last retried eip and the last fault address, if we meet the eip
7110          * and the address again, we can break out of the potential infinite
7111          * loop.
7112          */
7113         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7114
7115         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7116                 return false;
7117
7118         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7119             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7120                 return false;
7121
7122         if (x86_page_table_writing_insn(ctxt))
7123                 return false;
7124
7125         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7126                 return false;
7127
7128         vcpu->arch.last_retry_eip = ctxt->eip;
7129         vcpu->arch.last_retry_addr = cr2_or_gpa;
7130
7131         if (!vcpu->arch.mmu->direct_map)
7132                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7133
7134         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7135
7136         return true;
7137 }
7138
7139 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7140 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7141
7142 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7143 {
7144         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7145                 /* This is a good place to trace that we are exiting SMM.  */
7146                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7147
7148                 /* Process a latched INIT or SMI, if any.  */
7149                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7150         }
7151
7152         kvm_mmu_reset_context(vcpu);
7153 }
7154
7155 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7156                                 unsigned long *db)
7157 {
7158         u32 dr6 = 0;
7159         int i;
7160         u32 enable, rwlen;
7161
7162         enable = dr7;
7163         rwlen = dr7 >> 16;
7164         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7165                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7166                         dr6 |= (1 << i);
7167         return dr6;
7168 }
7169
7170 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7171 {
7172         struct kvm_run *kvm_run = vcpu->run;
7173
7174         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7175                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7176                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7177                 kvm_run->debug.arch.exception = DB_VECTOR;
7178                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7179                 return 0;
7180         }
7181         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7182         return 1;
7183 }
7184
7185 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7186 {
7187         unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7188         int r;
7189
7190         r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7191         if (unlikely(!r))
7192                 return 0;
7193
7194         /*
7195          * rflags is the old, "raw" value of the flags.  The new value has
7196          * not been saved yet.
7197          *
7198          * This is correct even for TF set by the guest, because "the
7199          * processor will not generate this exception after the instruction
7200          * that sets the TF flag".
7201          */
7202         if (unlikely(rflags & X86_EFLAGS_TF))
7203                 r = kvm_vcpu_do_singlestep(vcpu);
7204         return r;
7205 }
7206 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7207
7208 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7209 {
7210         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7211             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7212                 struct kvm_run *kvm_run = vcpu->run;
7213                 unsigned long eip = kvm_get_linear_rip(vcpu);
7214                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7215                                            vcpu->arch.guest_debug_dr7,
7216                                            vcpu->arch.eff_db);
7217
7218                 if (dr6 != 0) {
7219                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7220                         kvm_run->debug.arch.pc = eip;
7221                         kvm_run->debug.arch.exception = DB_VECTOR;
7222                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7223                         *r = 0;
7224                         return true;
7225                 }
7226         }
7227
7228         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7229             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7230                 unsigned long eip = kvm_get_linear_rip(vcpu);
7231                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7232                                            vcpu->arch.dr7,
7233                                            vcpu->arch.db);
7234
7235                 if (dr6 != 0) {
7236                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7237                         *r = 1;
7238                         return true;
7239                 }
7240         }
7241
7242         return false;
7243 }
7244
7245 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7246 {
7247         switch (ctxt->opcode_len) {
7248         case 1:
7249                 switch (ctxt->b) {
7250                 case 0xe4:      /* IN */
7251                 case 0xe5:
7252                 case 0xec:
7253                 case 0xed:
7254                 case 0xe6:      /* OUT */
7255                 case 0xe7:
7256                 case 0xee:
7257                 case 0xef:
7258                 case 0x6c:      /* INS */
7259                 case 0x6d:
7260                 case 0x6e:      /* OUTS */
7261                 case 0x6f:
7262                         return true;
7263                 }
7264                 break;
7265         case 2:
7266                 switch (ctxt->b) {
7267                 case 0x33:      /* RDPMC */
7268                         return true;
7269                 }
7270                 break;
7271         }
7272
7273         return false;
7274 }
7275
7276 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7277                             int emulation_type, void *insn, int insn_len)
7278 {
7279         int r;
7280         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7281         bool writeback = true;
7282         bool write_fault_to_spt;
7283
7284         if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7285                 return 1;
7286
7287         vcpu->arch.l1tf_flush_l1d = true;
7288
7289         /*
7290          * Clear write_fault_to_shadow_pgtable here to ensure it is
7291          * never reused.
7292          */
7293         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7294         vcpu->arch.write_fault_to_shadow_pgtable = false;
7295         kvm_clear_exception_queue(vcpu);
7296
7297         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7298                 init_emulate_ctxt(vcpu);
7299
7300                 /*
7301                  * We will reenter on the same instruction since
7302                  * we do not set complete_userspace_io.  This does not
7303                  * handle watchpoints yet, those would be handled in
7304                  * the emulate_ops.
7305                  */
7306                 if (!(emulation_type & EMULTYPE_SKIP) &&
7307                     kvm_vcpu_check_breakpoint(vcpu, &r))
7308                         return r;
7309
7310                 ctxt->interruptibility = 0;
7311                 ctxt->have_exception = false;
7312                 ctxt->exception.vector = -1;
7313                 ctxt->perm_ok = false;
7314
7315                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7316
7317                 r = x86_decode_insn(ctxt, insn, insn_len);
7318
7319                 trace_kvm_emulate_insn_start(vcpu);
7320                 ++vcpu->stat.insn_emulation;
7321                 if (r != EMULATION_OK)  {
7322                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7323                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7324                                 kvm_queue_exception(vcpu, UD_VECTOR);
7325                                 return 1;
7326                         }
7327                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7328                                                   write_fault_to_spt,
7329                                                   emulation_type))
7330                                 return 1;
7331                         if (ctxt->have_exception) {
7332                                 /*
7333                                  * #UD should result in just EMULATION_FAILED, and trap-like
7334                                  * exception should not be encountered during decode.
7335                                  */
7336                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7337                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7338                                 inject_emulated_exception(vcpu);
7339                                 return 1;
7340                         }
7341                         return handle_emulation_failure(vcpu, emulation_type);
7342                 }
7343         }
7344
7345         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7346             !is_vmware_backdoor_opcode(ctxt)) {
7347                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7348                 return 1;
7349         }
7350
7351         /*
7352          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7353          * for kvm_skip_emulated_instruction().  The caller is responsible for
7354          * updating interruptibility state and injecting single-step #DBs.
7355          */
7356         if (emulation_type & EMULTYPE_SKIP) {
7357                 kvm_rip_write(vcpu, ctxt->_eip);
7358                 if (ctxt->eflags & X86_EFLAGS_RF)
7359                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7360                 return 1;
7361         }
7362
7363         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7364                 return 1;
7365
7366         /* this is needed for vmware backdoor interface to work since it
7367            changes registers values  during IO operation */
7368         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7369                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7370                 emulator_invalidate_register_cache(ctxt);
7371         }
7372
7373 restart:
7374         if (emulation_type & EMULTYPE_PF) {
7375                 /* Save the faulting GPA (cr2) in the address field */
7376                 ctxt->exception.address = cr2_or_gpa;
7377
7378                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7379                 if (vcpu->arch.mmu->direct_map) {
7380                         ctxt->gpa_available = true;
7381                         ctxt->gpa_val = cr2_or_gpa;
7382                 }
7383         } else {
7384                 /* Sanitize the address out of an abundance of paranoia. */
7385                 ctxt->exception.address = 0;
7386         }
7387
7388         r = x86_emulate_insn(ctxt);
7389
7390         if (r == EMULATION_INTERCEPTED)
7391                 return 1;
7392
7393         if (r == EMULATION_FAILED) {
7394                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7395                                         emulation_type))
7396                         return 1;
7397
7398                 return handle_emulation_failure(vcpu, emulation_type);
7399         }
7400
7401         if (ctxt->have_exception) {
7402                 r = 1;
7403                 if (inject_emulated_exception(vcpu))
7404                         return r;
7405         } else if (vcpu->arch.pio.count) {
7406                 if (!vcpu->arch.pio.in) {
7407                         /* FIXME: return into emulator if single-stepping.  */
7408                         vcpu->arch.pio.count = 0;
7409                 } else {
7410                         writeback = false;
7411                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7412                 }
7413                 r = 0;
7414         } else if (vcpu->mmio_needed) {
7415                 ++vcpu->stat.mmio_exits;
7416
7417                 if (!vcpu->mmio_is_write)
7418                         writeback = false;
7419                 r = 0;
7420                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7421         } else if (r == EMULATION_RESTART)
7422                 goto restart;
7423         else
7424                 r = 1;
7425
7426         if (writeback) {
7427                 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7428                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7429                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7430                 if (!ctxt->have_exception ||
7431                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7432                         kvm_rip_write(vcpu, ctxt->eip);
7433                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7434                                 r = kvm_vcpu_do_singlestep(vcpu);
7435                         if (kvm_x86_ops.update_emulated_instruction)
7436                                 kvm_x86_ops.update_emulated_instruction(vcpu);
7437                         __kvm_set_rflags(vcpu, ctxt->eflags);
7438                 }
7439
7440                 /*
7441                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7442                  * do nothing, and it will be requested again as soon as
7443                  * the shadow expires.  But we still need to check here,
7444                  * because POPF has no interrupt shadow.
7445                  */
7446                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7447                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7448         } else
7449                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7450
7451         return r;
7452 }
7453
7454 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7455 {
7456         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7457 }
7458 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7459
7460 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7461                                         void *insn, int insn_len)
7462 {
7463         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7464 }
7465 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7466
7467 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7468 {
7469         vcpu->arch.pio.count = 0;
7470         return 1;
7471 }
7472
7473 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7474 {
7475         vcpu->arch.pio.count = 0;
7476
7477         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7478                 return 1;
7479
7480         return kvm_skip_emulated_instruction(vcpu);
7481 }
7482
7483 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7484                             unsigned short port)
7485 {
7486         unsigned long val = kvm_rax_read(vcpu);
7487         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7488
7489         if (ret)
7490                 return ret;
7491
7492         /*
7493          * Workaround userspace that relies on old KVM behavior of %rip being
7494          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7495          */
7496         if (port == 0x7e &&
7497             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7498                 vcpu->arch.complete_userspace_io =
7499                         complete_fast_pio_out_port_0x7e;
7500                 kvm_skip_emulated_instruction(vcpu);
7501         } else {
7502                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7503                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7504         }
7505         return 0;
7506 }
7507
7508 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7509 {
7510         unsigned long val;
7511
7512         /* We should only ever be called with arch.pio.count equal to 1 */
7513         BUG_ON(vcpu->arch.pio.count != 1);
7514
7515         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7516                 vcpu->arch.pio.count = 0;
7517                 return 1;
7518         }
7519
7520         /* For size less than 4 we merge, else we zero extend */
7521         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7522
7523         /*
7524          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7525          * the copy and tracing
7526          */
7527         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7528         kvm_rax_write(vcpu, val);
7529
7530         return kvm_skip_emulated_instruction(vcpu);
7531 }
7532
7533 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7534                            unsigned short port)
7535 {
7536         unsigned long val;
7537         int ret;
7538
7539         /* For size less than 4 we merge, else we zero extend */
7540         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7541
7542         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7543         if (ret) {
7544                 kvm_rax_write(vcpu, val);
7545                 return ret;
7546         }
7547
7548         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7549         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7550
7551         return 0;
7552 }
7553
7554 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7555 {
7556         int ret;
7557
7558         if (in)
7559                 ret = kvm_fast_pio_in(vcpu, size, port);
7560         else
7561                 ret = kvm_fast_pio_out(vcpu, size, port);
7562         return ret && kvm_skip_emulated_instruction(vcpu);
7563 }
7564 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7565
7566 static int kvmclock_cpu_down_prep(unsigned int cpu)
7567 {
7568         __this_cpu_write(cpu_tsc_khz, 0);
7569         return 0;
7570 }
7571
7572 static void tsc_khz_changed(void *data)
7573 {
7574         struct cpufreq_freqs *freq = data;
7575         unsigned long khz = 0;
7576
7577         if (data)
7578                 khz = freq->new;
7579         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7580                 khz = cpufreq_quick_get(raw_smp_processor_id());
7581         if (!khz)
7582                 khz = tsc_khz;
7583         __this_cpu_write(cpu_tsc_khz, khz);
7584 }
7585
7586 #ifdef CONFIG_X86_64
7587 static void kvm_hyperv_tsc_notifier(void)
7588 {
7589         struct kvm *kvm;
7590         struct kvm_vcpu *vcpu;
7591         int cpu;
7592
7593         mutex_lock(&kvm_lock);
7594         list_for_each_entry(kvm, &vm_list, vm_list)
7595                 kvm_make_mclock_inprogress_request(kvm);
7596
7597         hyperv_stop_tsc_emulation();
7598
7599         /* TSC frequency always matches when on Hyper-V */
7600         for_each_present_cpu(cpu)
7601                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7602         kvm_max_guest_tsc_khz = tsc_khz;
7603
7604         list_for_each_entry(kvm, &vm_list, vm_list) {
7605                 struct kvm_arch *ka = &kvm->arch;
7606
7607                 spin_lock(&ka->pvclock_gtod_sync_lock);
7608
7609                 pvclock_update_vm_gtod_copy(kvm);
7610
7611                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7612                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7613
7614                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7615                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7616
7617                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7618         }
7619         mutex_unlock(&kvm_lock);
7620 }
7621 #endif
7622
7623 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7624 {
7625         struct kvm *kvm;
7626         struct kvm_vcpu *vcpu;
7627         int i, send_ipi = 0;
7628
7629         /*
7630          * We allow guests to temporarily run on slowing clocks,
7631          * provided we notify them after, or to run on accelerating
7632          * clocks, provided we notify them before.  Thus time never
7633          * goes backwards.
7634          *
7635          * However, we have a problem.  We can't atomically update
7636          * the frequency of a given CPU from this function; it is
7637          * merely a notifier, which can be called from any CPU.
7638          * Changing the TSC frequency at arbitrary points in time
7639          * requires a recomputation of local variables related to
7640          * the TSC for each VCPU.  We must flag these local variables
7641          * to be updated and be sure the update takes place with the
7642          * new frequency before any guests proceed.
7643          *
7644          * Unfortunately, the combination of hotplug CPU and frequency
7645          * change creates an intractable locking scenario; the order
7646          * of when these callouts happen is undefined with respect to
7647          * CPU hotplug, and they can race with each other.  As such,
7648          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7649          * undefined; you can actually have a CPU frequency change take
7650          * place in between the computation of X and the setting of the
7651          * variable.  To protect against this problem, all updates of
7652          * the per_cpu tsc_khz variable are done in an interrupt
7653          * protected IPI, and all callers wishing to update the value
7654          * must wait for a synchronous IPI to complete (which is trivial
7655          * if the caller is on the CPU already).  This establishes the
7656          * necessary total order on variable updates.
7657          *
7658          * Note that because a guest time update may take place
7659          * anytime after the setting of the VCPU's request bit, the
7660          * correct TSC value must be set before the request.  However,
7661          * to ensure the update actually makes it to any guest which
7662          * starts running in hardware virtualization between the set
7663          * and the acquisition of the spinlock, we must also ping the
7664          * CPU after setting the request bit.
7665          *
7666          */
7667
7668         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7669
7670         mutex_lock(&kvm_lock);
7671         list_for_each_entry(kvm, &vm_list, vm_list) {
7672                 kvm_for_each_vcpu(i, vcpu, kvm) {
7673                         if (vcpu->cpu != cpu)
7674                                 continue;
7675                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7676                         if (vcpu->cpu != raw_smp_processor_id())
7677                                 send_ipi = 1;
7678                 }
7679         }
7680         mutex_unlock(&kvm_lock);
7681
7682         if (freq->old < freq->new && send_ipi) {
7683                 /*
7684                  * We upscale the frequency.  Must make the guest
7685                  * doesn't see old kvmclock values while running with
7686                  * the new frequency, otherwise we risk the guest sees
7687                  * time go backwards.
7688                  *
7689                  * In case we update the frequency for another cpu
7690                  * (which might be in guest context) send an interrupt
7691                  * to kick the cpu out of guest context.  Next time
7692                  * guest context is entered kvmclock will be updated,
7693                  * so the guest will not see stale values.
7694                  */
7695                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7696         }
7697 }
7698
7699 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7700                                      void *data)
7701 {
7702         struct cpufreq_freqs *freq = data;
7703         int cpu;
7704
7705         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7706                 return 0;
7707         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7708                 return 0;
7709
7710         for_each_cpu(cpu, freq->policy->cpus)
7711                 __kvmclock_cpufreq_notifier(freq, cpu);
7712
7713         return 0;
7714 }
7715
7716 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7717         .notifier_call  = kvmclock_cpufreq_notifier
7718 };
7719
7720 static int kvmclock_cpu_online(unsigned int cpu)
7721 {
7722         tsc_khz_changed(NULL);
7723         return 0;
7724 }
7725
7726 static void kvm_timer_init(void)
7727 {
7728         max_tsc_khz = tsc_khz;
7729
7730         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7731 #ifdef CONFIG_CPU_FREQ
7732                 struct cpufreq_policy *policy;
7733                 int cpu;
7734
7735                 cpu = get_cpu();
7736                 policy = cpufreq_cpu_get(cpu);
7737                 if (policy) {
7738                         if (policy->cpuinfo.max_freq)
7739                                 max_tsc_khz = policy->cpuinfo.max_freq;
7740                         cpufreq_cpu_put(policy);
7741                 }
7742                 put_cpu();
7743 #endif
7744                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7745                                           CPUFREQ_TRANSITION_NOTIFIER);
7746         }
7747
7748         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7749                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7750 }
7751
7752 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7753 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7754
7755 int kvm_is_in_guest(void)
7756 {
7757         return __this_cpu_read(current_vcpu) != NULL;
7758 }
7759
7760 static int kvm_is_user_mode(void)
7761 {
7762         int user_mode = 3;
7763
7764         if (__this_cpu_read(current_vcpu))
7765                 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7766
7767         return user_mode != 0;
7768 }
7769
7770 static unsigned long kvm_get_guest_ip(void)
7771 {
7772         unsigned long ip = 0;
7773
7774         if (__this_cpu_read(current_vcpu))
7775                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7776
7777         return ip;
7778 }
7779
7780 static void kvm_handle_intel_pt_intr(void)
7781 {
7782         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7783
7784         kvm_make_request(KVM_REQ_PMI, vcpu);
7785         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7786                         (unsigned long *)&vcpu->arch.pmu.global_status);
7787 }
7788
7789 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7790         .is_in_guest            = kvm_is_in_guest,
7791         .is_user_mode           = kvm_is_user_mode,
7792         .get_guest_ip           = kvm_get_guest_ip,
7793         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7794 };
7795
7796 #ifdef CONFIG_X86_64
7797 static void pvclock_gtod_update_fn(struct work_struct *work)
7798 {
7799         struct kvm *kvm;
7800
7801         struct kvm_vcpu *vcpu;
7802         int i;
7803
7804         mutex_lock(&kvm_lock);
7805         list_for_each_entry(kvm, &vm_list, vm_list)
7806                 kvm_for_each_vcpu(i, vcpu, kvm)
7807                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7808         atomic_set(&kvm_guest_has_master_clock, 0);
7809         mutex_unlock(&kvm_lock);
7810 }
7811
7812 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7813
7814 /*
7815  * Notification about pvclock gtod data update.
7816  */
7817 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7818                                void *priv)
7819 {
7820         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7821         struct timekeeper *tk = priv;
7822
7823         update_pvclock_gtod(tk);
7824
7825         /* disable master clock if host does not trust, or does not
7826          * use, TSC based clocksource.
7827          */
7828         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7829             atomic_read(&kvm_guest_has_master_clock) != 0)
7830                 queue_work(system_long_wq, &pvclock_gtod_work);
7831
7832         return 0;
7833 }
7834
7835 static struct notifier_block pvclock_gtod_notifier = {
7836         .notifier_call = pvclock_gtod_notify,
7837 };
7838 #endif
7839
7840 int kvm_arch_init(void *opaque)
7841 {
7842         struct kvm_x86_init_ops *ops = opaque;
7843         int r;
7844
7845         if (kvm_x86_ops.hardware_enable) {
7846                 printk(KERN_ERR "kvm: already loaded the other module\n");
7847                 r = -EEXIST;
7848                 goto out;
7849         }
7850
7851         if (!ops->cpu_has_kvm_support()) {
7852                 pr_err_ratelimited("kvm: no hardware support\n");
7853                 r = -EOPNOTSUPP;
7854                 goto out;
7855         }
7856         if (ops->disabled_by_bios()) {
7857                 pr_err_ratelimited("kvm: disabled by bios\n");
7858                 r = -EOPNOTSUPP;
7859                 goto out;
7860         }
7861
7862         /*
7863          * KVM explicitly assumes that the guest has an FPU and
7864          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7865          * vCPU's FPU state as a fxregs_state struct.
7866          */
7867         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7868                 printk(KERN_ERR "kvm: inadequate fpu\n");
7869                 r = -EOPNOTSUPP;
7870                 goto out;
7871         }
7872
7873         r = -ENOMEM;
7874         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7875                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7876                                           NULL);
7877         if (!x86_fpu_cache) {
7878                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7879                 goto out;
7880         }
7881
7882         x86_emulator_cache = kvm_alloc_emulator_cache();
7883         if (!x86_emulator_cache) {
7884                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7885                 goto out_free_x86_fpu_cache;
7886         }
7887
7888         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7889         if (!user_return_msrs) {
7890                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7891                 goto out_free_x86_emulator_cache;
7892         }
7893
7894         r = kvm_mmu_module_init();
7895         if (r)
7896                 goto out_free_percpu;
7897
7898         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7899                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7900                         PT_PRESENT_MASK, 0, sme_me_mask);
7901         kvm_timer_init();
7902
7903         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7904
7905         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7906                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7907                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7908         }
7909
7910         kvm_lapic_init();
7911         if (pi_inject_timer == -1)
7912                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7913 #ifdef CONFIG_X86_64
7914         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7915
7916         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7917                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7918 #endif
7919
7920         return 0;
7921
7922 out_free_percpu:
7923         free_percpu(user_return_msrs);
7924 out_free_x86_emulator_cache:
7925         kmem_cache_destroy(x86_emulator_cache);
7926 out_free_x86_fpu_cache:
7927         kmem_cache_destroy(x86_fpu_cache);
7928 out:
7929         return r;
7930 }
7931
7932 void kvm_arch_exit(void)
7933 {
7934 #ifdef CONFIG_X86_64
7935         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7936                 clear_hv_tscchange_cb();
7937 #endif
7938         kvm_lapic_exit();
7939         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7940
7941         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7942                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7943                                             CPUFREQ_TRANSITION_NOTIFIER);
7944         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7945 #ifdef CONFIG_X86_64
7946         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7947 #endif
7948         kvm_x86_ops.hardware_enable = NULL;
7949         kvm_mmu_module_exit();
7950         free_percpu(user_return_msrs);
7951         kmem_cache_destroy(x86_fpu_cache);
7952 }
7953
7954 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7955 {
7956         ++vcpu->stat.halt_exits;
7957         if (lapic_in_kernel(vcpu)) {
7958                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7959                 return 1;
7960         } else {
7961                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7962                 return 0;
7963         }
7964 }
7965 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7966
7967 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7968 {
7969         int ret = kvm_skip_emulated_instruction(vcpu);
7970         /*
7971          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7972          * KVM_EXIT_DEBUG here.
7973          */
7974         return kvm_vcpu_halt(vcpu) && ret;
7975 }
7976 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7977
7978 #ifdef CONFIG_X86_64
7979 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7980                                 unsigned long clock_type)
7981 {
7982         struct kvm_clock_pairing clock_pairing;
7983         struct timespec64 ts;
7984         u64 cycle;
7985         int ret;
7986
7987         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7988                 return -KVM_EOPNOTSUPP;
7989
7990         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7991                 return -KVM_EOPNOTSUPP;
7992
7993         clock_pairing.sec = ts.tv_sec;
7994         clock_pairing.nsec = ts.tv_nsec;
7995         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7996         clock_pairing.flags = 0;
7997         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7998
7999         ret = 0;
8000         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8001                             sizeof(struct kvm_clock_pairing)))
8002                 ret = -KVM_EFAULT;
8003
8004         return ret;
8005 }
8006 #endif
8007
8008 /*
8009  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8010  *
8011  * @apicid - apicid of vcpu to be kicked.
8012  */
8013 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8014 {
8015         struct kvm_lapic_irq lapic_irq;
8016
8017         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8018         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8019         lapic_irq.level = 0;
8020         lapic_irq.dest_id = apicid;
8021         lapic_irq.msi_redir_hint = false;
8022
8023         lapic_irq.delivery_mode = APIC_DM_REMRD;
8024         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8025 }
8026
8027 bool kvm_apicv_activated(struct kvm *kvm)
8028 {
8029         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8030 }
8031 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8032
8033 void kvm_apicv_init(struct kvm *kvm, bool enable)
8034 {
8035         if (enable)
8036                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8037                           &kvm->arch.apicv_inhibit_reasons);
8038         else
8039                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8040                         &kvm->arch.apicv_inhibit_reasons);
8041 }
8042 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8043
8044 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8045 {
8046         struct kvm_vcpu *target = NULL;
8047         struct kvm_apic_map *map;
8048
8049         rcu_read_lock();
8050         map = rcu_dereference(kvm->arch.apic_map);
8051
8052         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8053                 target = map->phys_map[dest_id]->vcpu;
8054
8055         rcu_read_unlock();
8056
8057         if (target && READ_ONCE(target->ready))
8058                 kvm_vcpu_yield_to(target);
8059 }
8060
8061 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8062 {
8063         unsigned long nr, a0, a1, a2, a3, ret;
8064         int op_64_bit;
8065
8066         if (kvm_hv_hypercall_enabled(vcpu->kvm))
8067                 return kvm_hv_hypercall(vcpu);
8068
8069         nr = kvm_rax_read(vcpu);
8070         a0 = kvm_rbx_read(vcpu);
8071         a1 = kvm_rcx_read(vcpu);
8072         a2 = kvm_rdx_read(vcpu);
8073         a3 = kvm_rsi_read(vcpu);
8074
8075         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8076
8077         op_64_bit = is_64_bit_mode(vcpu);
8078         if (!op_64_bit) {
8079                 nr &= 0xFFFFFFFF;
8080                 a0 &= 0xFFFFFFFF;
8081                 a1 &= 0xFFFFFFFF;
8082                 a2 &= 0xFFFFFFFF;
8083                 a3 &= 0xFFFFFFFF;
8084         }
8085
8086         if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8087                 ret = -KVM_EPERM;
8088                 goto out;
8089         }
8090
8091         ret = -KVM_ENOSYS;
8092
8093         switch (nr) {
8094         case KVM_HC_VAPIC_POLL_IRQ:
8095                 ret = 0;
8096                 break;
8097         case KVM_HC_KICK_CPU:
8098                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8099                         break;
8100
8101                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8102                 kvm_sched_yield(vcpu->kvm, a1);
8103                 ret = 0;
8104                 break;
8105 #ifdef CONFIG_X86_64
8106         case KVM_HC_CLOCK_PAIRING:
8107                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8108                 break;
8109 #endif
8110         case KVM_HC_SEND_IPI:
8111                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8112                         break;
8113
8114                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8115                 break;
8116         case KVM_HC_SCHED_YIELD:
8117                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8118                         break;
8119
8120                 kvm_sched_yield(vcpu->kvm, a0);
8121                 ret = 0;
8122                 break;
8123         default:
8124                 ret = -KVM_ENOSYS;
8125                 break;
8126         }
8127 out:
8128         if (!op_64_bit)
8129                 ret = (u32)ret;
8130         kvm_rax_write(vcpu, ret);
8131
8132         ++vcpu->stat.hypercalls;
8133         return kvm_skip_emulated_instruction(vcpu);
8134 }
8135 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8136
8137 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8138 {
8139         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8140         char instruction[3];
8141         unsigned long rip = kvm_rip_read(vcpu);
8142
8143         kvm_x86_ops.patch_hypercall(vcpu, instruction);
8144
8145         return emulator_write_emulated(ctxt, rip, instruction, 3,
8146                 &ctxt->exception);
8147 }
8148
8149 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8150 {
8151         return vcpu->run->request_interrupt_window &&
8152                 likely(!pic_in_kernel(vcpu->kvm));
8153 }
8154
8155 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8156 {
8157         struct kvm_run *kvm_run = vcpu->run;
8158
8159         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8160         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8161         kvm_run->cr8 = kvm_get_cr8(vcpu);
8162         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8163         kvm_run->ready_for_interrupt_injection =
8164                 pic_in_kernel(vcpu->kvm) ||
8165                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8166 }
8167
8168 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8169 {
8170         int max_irr, tpr;
8171
8172         if (!kvm_x86_ops.update_cr8_intercept)
8173                 return;
8174
8175         if (!lapic_in_kernel(vcpu))
8176                 return;
8177
8178         if (vcpu->arch.apicv_active)
8179                 return;
8180
8181         if (!vcpu->arch.apic->vapic_addr)
8182                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8183         else
8184                 max_irr = -1;
8185
8186         if (max_irr != -1)
8187                 max_irr >>= 4;
8188
8189         tpr = kvm_lapic_get_cr8(vcpu);
8190
8191         kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8192 }
8193
8194 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8195 {
8196         int r;
8197         bool can_inject = true;
8198
8199         /* try to reinject previous events if any */
8200
8201         if (vcpu->arch.exception.injected) {
8202                 kvm_x86_ops.queue_exception(vcpu);
8203                 can_inject = false;
8204         }
8205         /*
8206          * Do not inject an NMI or interrupt if there is a pending
8207          * exception.  Exceptions and interrupts are recognized at
8208          * instruction boundaries, i.e. the start of an instruction.
8209          * Trap-like exceptions, e.g. #DB, have higher priority than
8210          * NMIs and interrupts, i.e. traps are recognized before an
8211          * NMI/interrupt that's pending on the same instruction.
8212          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8213          * priority, but are only generated (pended) during instruction
8214          * execution, i.e. a pending fault-like exception means the
8215          * fault occurred on the *previous* instruction and must be
8216          * serviced prior to recognizing any new events in order to
8217          * fully complete the previous instruction.
8218          */
8219         else if (!vcpu->arch.exception.pending) {
8220                 if (vcpu->arch.nmi_injected) {
8221                         kvm_x86_ops.set_nmi(vcpu);
8222                         can_inject = false;
8223                 } else if (vcpu->arch.interrupt.injected) {
8224                         kvm_x86_ops.set_irq(vcpu);
8225                         can_inject = false;
8226                 }
8227         }
8228
8229         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8230                      vcpu->arch.exception.pending);
8231
8232         /*
8233          * Call check_nested_events() even if we reinjected a previous event
8234          * in order for caller to determine if it should require immediate-exit
8235          * from L2 to L1 due to pending L1 events which require exit
8236          * from L2 to L1.
8237          */
8238         if (is_guest_mode(vcpu)) {
8239                 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8240                 if (r < 0)
8241                         goto busy;
8242         }
8243
8244         /* try to inject new event if pending */
8245         if (vcpu->arch.exception.pending) {
8246                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8247                                         vcpu->arch.exception.has_error_code,
8248                                         vcpu->arch.exception.error_code);
8249
8250                 vcpu->arch.exception.pending = false;
8251                 vcpu->arch.exception.injected = true;
8252
8253                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8254                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8255                                              X86_EFLAGS_RF);
8256
8257                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8258                         kvm_deliver_exception_payload(vcpu);
8259                         if (vcpu->arch.dr7 & DR7_GD) {
8260                                 vcpu->arch.dr7 &= ~DR7_GD;
8261                                 kvm_update_dr7(vcpu);
8262                         }
8263                 }
8264
8265                 kvm_x86_ops.queue_exception(vcpu);
8266                 can_inject = false;
8267         }
8268
8269         /*
8270          * Finally, inject interrupt events.  If an event cannot be injected
8271          * due to architectural conditions (e.g. IF=0) a window-open exit
8272          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8273          * and can architecturally be injected, but we cannot do it right now:
8274          * an interrupt could have arrived just now and we have to inject it
8275          * as a vmexit, or there could already an event in the queue, which is
8276          * indicated by can_inject.  In that case we request an immediate exit
8277          * in order to make progress and get back here for another iteration.
8278          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8279          */
8280         if (vcpu->arch.smi_pending) {
8281                 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8282                 if (r < 0)
8283                         goto busy;
8284                 if (r) {
8285                         vcpu->arch.smi_pending = false;
8286                         ++vcpu->arch.smi_count;
8287                         enter_smm(vcpu);
8288                         can_inject = false;
8289                 } else
8290                         kvm_x86_ops.enable_smi_window(vcpu);
8291         }
8292
8293         if (vcpu->arch.nmi_pending) {
8294                 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8295                 if (r < 0)
8296                         goto busy;
8297                 if (r) {
8298                         --vcpu->arch.nmi_pending;
8299                         vcpu->arch.nmi_injected = true;
8300                         kvm_x86_ops.set_nmi(vcpu);
8301                         can_inject = false;
8302                         WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8303                 }
8304                 if (vcpu->arch.nmi_pending)
8305                         kvm_x86_ops.enable_nmi_window(vcpu);
8306         }
8307
8308         if (kvm_cpu_has_injectable_intr(vcpu)) {
8309                 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8310                 if (r < 0)
8311                         goto busy;
8312                 if (r) {
8313                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8314                         kvm_x86_ops.set_irq(vcpu);
8315                         WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8316                 }
8317                 if (kvm_cpu_has_injectable_intr(vcpu))
8318                         kvm_x86_ops.enable_irq_window(vcpu);
8319         }
8320
8321         if (is_guest_mode(vcpu) &&
8322             kvm_x86_ops.nested_ops->hv_timer_pending &&
8323             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8324                 *req_immediate_exit = true;
8325
8326         WARN_ON(vcpu->arch.exception.pending);
8327         return;
8328
8329 busy:
8330         *req_immediate_exit = true;
8331         return;
8332 }
8333
8334 static void process_nmi(struct kvm_vcpu *vcpu)
8335 {
8336         unsigned limit = 2;
8337
8338         /*
8339          * x86 is limited to one NMI running, and one NMI pending after it.
8340          * If an NMI is already in progress, limit further NMIs to just one.
8341          * Otherwise, allow two (and we'll inject the first one immediately).
8342          */
8343         if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8344                 limit = 1;
8345
8346         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8347         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8348         kvm_make_request(KVM_REQ_EVENT, vcpu);
8349 }
8350
8351 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8352 {
8353         u32 flags = 0;
8354         flags |= seg->g       << 23;
8355         flags |= seg->db      << 22;
8356         flags |= seg->l       << 21;
8357         flags |= seg->avl     << 20;
8358         flags |= seg->present << 15;
8359         flags |= seg->dpl     << 13;
8360         flags |= seg->s       << 12;
8361         flags |= seg->type    << 8;
8362         return flags;
8363 }
8364
8365 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8366 {
8367         struct kvm_segment seg;
8368         int offset;
8369
8370         kvm_get_segment(vcpu, &seg, n);
8371         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8372
8373         if (n < 3)
8374                 offset = 0x7f84 + n * 12;
8375         else
8376                 offset = 0x7f2c + (n - 3) * 12;
8377
8378         put_smstate(u32, buf, offset + 8, seg.base);
8379         put_smstate(u32, buf, offset + 4, seg.limit);
8380         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8381 }
8382
8383 #ifdef CONFIG_X86_64
8384 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8385 {
8386         struct kvm_segment seg;
8387         int offset;
8388         u16 flags;
8389
8390         kvm_get_segment(vcpu, &seg, n);
8391         offset = 0x7e00 + n * 16;
8392
8393         flags = enter_smm_get_segment_flags(&seg) >> 8;
8394         put_smstate(u16, buf, offset, seg.selector);
8395         put_smstate(u16, buf, offset + 2, flags);
8396         put_smstate(u32, buf, offset + 4, seg.limit);
8397         put_smstate(u64, buf, offset + 8, seg.base);
8398 }
8399 #endif
8400
8401 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8402 {
8403         struct desc_ptr dt;
8404         struct kvm_segment seg;
8405         unsigned long val;
8406         int i;
8407
8408         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8409         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8410         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8411         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8412
8413         for (i = 0; i < 8; i++)
8414                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8415
8416         kvm_get_dr(vcpu, 6, &val);
8417         put_smstate(u32, buf, 0x7fcc, (u32)val);
8418         kvm_get_dr(vcpu, 7, &val);
8419         put_smstate(u32, buf, 0x7fc8, (u32)val);
8420
8421         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8422         put_smstate(u32, buf, 0x7fc4, seg.selector);
8423         put_smstate(u32, buf, 0x7f64, seg.base);
8424         put_smstate(u32, buf, 0x7f60, seg.limit);
8425         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8426
8427         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8428         put_smstate(u32, buf, 0x7fc0, seg.selector);
8429         put_smstate(u32, buf, 0x7f80, seg.base);
8430         put_smstate(u32, buf, 0x7f7c, seg.limit);
8431         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8432
8433         kvm_x86_ops.get_gdt(vcpu, &dt);
8434         put_smstate(u32, buf, 0x7f74, dt.address);
8435         put_smstate(u32, buf, 0x7f70, dt.size);
8436
8437         kvm_x86_ops.get_idt(vcpu, &dt);
8438         put_smstate(u32, buf, 0x7f58, dt.address);
8439         put_smstate(u32, buf, 0x7f54, dt.size);
8440
8441         for (i = 0; i < 6; i++)
8442                 enter_smm_save_seg_32(vcpu, buf, i);
8443
8444         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8445
8446         /* revision id */
8447         put_smstate(u32, buf, 0x7efc, 0x00020000);
8448         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8449 }
8450
8451 #ifdef CONFIG_X86_64
8452 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8453 {
8454         struct desc_ptr dt;
8455         struct kvm_segment seg;
8456         unsigned long val;
8457         int i;
8458
8459         for (i = 0; i < 16; i++)
8460                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8461
8462         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8463         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8464
8465         kvm_get_dr(vcpu, 6, &val);
8466         put_smstate(u64, buf, 0x7f68, val);
8467         kvm_get_dr(vcpu, 7, &val);
8468         put_smstate(u64, buf, 0x7f60, val);
8469
8470         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8471         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8472         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8473
8474         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8475
8476         /* revision id */
8477         put_smstate(u32, buf, 0x7efc, 0x00020064);
8478
8479         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8480
8481         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8482         put_smstate(u16, buf, 0x7e90, seg.selector);
8483         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8484         put_smstate(u32, buf, 0x7e94, seg.limit);
8485         put_smstate(u64, buf, 0x7e98, seg.base);
8486
8487         kvm_x86_ops.get_idt(vcpu, &dt);
8488         put_smstate(u32, buf, 0x7e84, dt.size);
8489         put_smstate(u64, buf, 0x7e88, dt.address);
8490
8491         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8492         put_smstate(u16, buf, 0x7e70, seg.selector);
8493         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8494         put_smstate(u32, buf, 0x7e74, seg.limit);
8495         put_smstate(u64, buf, 0x7e78, seg.base);
8496
8497         kvm_x86_ops.get_gdt(vcpu, &dt);
8498         put_smstate(u32, buf, 0x7e64, dt.size);
8499         put_smstate(u64, buf, 0x7e68, dt.address);
8500
8501         for (i = 0; i < 6; i++)
8502                 enter_smm_save_seg_64(vcpu, buf, i);
8503 }
8504 #endif
8505
8506 static void enter_smm(struct kvm_vcpu *vcpu)
8507 {
8508         struct kvm_segment cs, ds;
8509         struct desc_ptr dt;
8510         char buf[512];
8511         u32 cr0;
8512
8513         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8514         memset(buf, 0, 512);
8515 #ifdef CONFIG_X86_64
8516         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8517                 enter_smm_save_state_64(vcpu, buf);
8518         else
8519 #endif
8520                 enter_smm_save_state_32(vcpu, buf);
8521
8522         /*
8523          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8524          * vCPU state (e.g. leave guest mode) after we've saved the state into
8525          * the SMM state-save area.
8526          */
8527         kvm_x86_ops.pre_enter_smm(vcpu, buf);
8528
8529         vcpu->arch.hflags |= HF_SMM_MASK;
8530         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8531
8532         if (kvm_x86_ops.get_nmi_mask(vcpu))
8533                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8534         else
8535                 kvm_x86_ops.set_nmi_mask(vcpu, true);
8536
8537         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8538         kvm_rip_write(vcpu, 0x8000);
8539
8540         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8541         kvm_x86_ops.set_cr0(vcpu, cr0);
8542         vcpu->arch.cr0 = cr0;
8543
8544         kvm_x86_ops.set_cr4(vcpu, 0);
8545
8546         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8547         dt.address = dt.size = 0;
8548         kvm_x86_ops.set_idt(vcpu, &dt);
8549
8550         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8551
8552         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8553         cs.base = vcpu->arch.smbase;
8554
8555         ds.selector = 0;
8556         ds.base = 0;
8557
8558         cs.limit    = ds.limit = 0xffffffff;
8559         cs.type     = ds.type = 0x3;
8560         cs.dpl      = ds.dpl = 0;
8561         cs.db       = ds.db = 0;
8562         cs.s        = ds.s = 1;
8563         cs.l        = ds.l = 0;
8564         cs.g        = ds.g = 1;
8565         cs.avl      = ds.avl = 0;
8566         cs.present  = ds.present = 1;
8567         cs.unusable = ds.unusable = 0;
8568         cs.padding  = ds.padding = 0;
8569
8570         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8571         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8572         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8573         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8574         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8575         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8576
8577 #ifdef CONFIG_X86_64
8578         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8579                 kvm_x86_ops.set_efer(vcpu, 0);
8580 #endif
8581
8582         kvm_update_cpuid_runtime(vcpu);
8583         kvm_mmu_reset_context(vcpu);
8584 }
8585
8586 static void process_smi(struct kvm_vcpu *vcpu)
8587 {
8588         vcpu->arch.smi_pending = true;
8589         kvm_make_request(KVM_REQ_EVENT, vcpu);
8590 }
8591
8592 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8593                                        unsigned long *vcpu_bitmap)
8594 {
8595         cpumask_var_t cpus;
8596
8597         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8598
8599         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8600                                     NULL, vcpu_bitmap, cpus);
8601
8602         free_cpumask_var(cpus);
8603 }
8604
8605 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8606 {
8607         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8608 }
8609
8610 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8611 {
8612         if (!lapic_in_kernel(vcpu))
8613                 return;
8614
8615         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8616         kvm_apic_update_apicv(vcpu);
8617         kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8618 }
8619 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8620
8621 /*
8622  * NOTE: Do not hold any lock prior to calling this.
8623  *
8624  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8625  * locked, because it calls __x86_set_memory_region() which does
8626  * synchronize_srcu(&kvm->srcu).
8627  */
8628 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8629 {
8630         struct kvm_vcpu *except;
8631         unsigned long old, new, expected;
8632
8633         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8634             !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8635                 return;
8636
8637         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8638         do {
8639                 expected = new = old;
8640                 if (activate)
8641                         __clear_bit(bit, &new);
8642                 else
8643                         __set_bit(bit, &new);
8644                 if (new == old)
8645                         break;
8646                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8647         } while (old != expected);
8648
8649         if (!!old == !!new)
8650                 return;
8651
8652         trace_kvm_apicv_update_request(activate, bit);
8653         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8654                 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8655
8656         /*
8657          * Sending request to update APICV for all other vcpus,
8658          * while update the calling vcpu immediately instead of
8659          * waiting for another #VMEXIT to handle the request.
8660          */
8661         except = kvm_get_running_vcpu();
8662         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8663                                          except);
8664         if (except)
8665                 kvm_vcpu_update_apicv(except);
8666 }
8667 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8668
8669 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8670 {
8671         if (!kvm_apic_present(vcpu))
8672                 return;
8673
8674         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8675
8676         if (irqchip_split(vcpu->kvm))
8677                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8678         else {
8679                 if (vcpu->arch.apicv_active)
8680                         kvm_x86_ops.sync_pir_to_irr(vcpu);
8681                 if (ioapic_in_kernel(vcpu->kvm))
8682                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8683         }
8684
8685         if (is_guest_mode(vcpu))
8686                 vcpu->arch.load_eoi_exitmap_pending = true;
8687         else
8688                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8689 }
8690
8691 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8692 {
8693         u64 eoi_exit_bitmap[4];
8694
8695         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8696                 return;
8697
8698         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8699                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8700         kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8701 }
8702
8703 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8704                                             unsigned long start, unsigned long end)
8705 {
8706         unsigned long apic_address;
8707
8708         /*
8709          * The physical address of apic access page is stored in the VMCS.
8710          * Update it when it becomes invalid.
8711          */
8712         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8713         if (start <= apic_address && apic_address < end)
8714                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8715 }
8716
8717 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8718 {
8719         if (!lapic_in_kernel(vcpu))
8720                 return;
8721
8722         if (!kvm_x86_ops.set_apic_access_page_addr)
8723                 return;
8724
8725         kvm_x86_ops.set_apic_access_page_addr(vcpu);
8726 }
8727
8728 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8729 {
8730         smp_send_reschedule(vcpu->cpu);
8731 }
8732 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8733
8734 /*
8735  * Returns 1 to let vcpu_run() continue the guest execution loop without
8736  * exiting to the userspace.  Otherwise, the value will be returned to the
8737  * userspace.
8738  */
8739 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8740 {
8741         int r;
8742         bool req_int_win =
8743                 dm_request_for_irq_injection(vcpu) &&
8744                 kvm_cpu_accept_dm_intr(vcpu);
8745         fastpath_t exit_fastpath;
8746
8747         bool req_immediate_exit = false;
8748
8749         if (kvm_request_pending(vcpu)) {
8750                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8751                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8752                                 r = 0;
8753                                 goto out;
8754                         }
8755                 }
8756                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8757                         kvm_mmu_unload(vcpu);
8758                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8759                         __kvm_migrate_timers(vcpu);
8760                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8761                         kvm_gen_update_masterclock(vcpu->kvm);
8762                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8763                         kvm_gen_kvmclock_update(vcpu);
8764                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8765                         r = kvm_guest_time_update(vcpu);
8766                         if (unlikely(r))
8767                                 goto out;
8768                 }
8769                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8770                         kvm_mmu_sync_roots(vcpu);
8771                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8772                         kvm_mmu_load_pgd(vcpu);
8773                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8774                         kvm_vcpu_flush_tlb_all(vcpu);
8775
8776                         /* Flushing all ASIDs flushes the current ASID... */
8777                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8778                 }
8779                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8780                         kvm_vcpu_flush_tlb_current(vcpu);
8781                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8782                         kvm_vcpu_flush_tlb_guest(vcpu);
8783
8784                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8785                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8786                         r = 0;
8787                         goto out;
8788                 }
8789                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8790                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8791                         vcpu->mmio_needed = 0;
8792                         r = 0;
8793                         goto out;
8794                 }
8795                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8796                         /* Page is swapped out. Do synthetic halt */
8797                         vcpu->arch.apf.halted = true;
8798                         r = 1;
8799                         goto out;
8800                 }
8801                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8802                         record_steal_time(vcpu);
8803                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8804                         process_smi(vcpu);
8805                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8806                         process_nmi(vcpu);
8807                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8808                         kvm_pmu_handle_event(vcpu);
8809                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8810                         kvm_pmu_deliver_pmi(vcpu);
8811                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8812                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8813                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8814                                      vcpu->arch.ioapic_handled_vectors)) {
8815                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8816                                 vcpu->run->eoi.vector =
8817                                                 vcpu->arch.pending_ioapic_eoi;
8818                                 r = 0;
8819                                 goto out;
8820                         }
8821                 }
8822                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8823                         vcpu_scan_ioapic(vcpu);
8824                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8825                         vcpu_load_eoi_exitmap(vcpu);
8826                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8827                         kvm_vcpu_reload_apic_access_page(vcpu);
8828                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8829                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8830                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8831                         r = 0;
8832                         goto out;
8833                 }
8834                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8835                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8836                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8837                         r = 0;
8838                         goto out;
8839                 }
8840                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8841                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8842                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8843                         r = 0;
8844                         goto out;
8845                 }
8846
8847                 /*
8848                  * KVM_REQ_HV_STIMER has to be processed after
8849                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8850                  * depend on the guest clock being up-to-date
8851                  */
8852                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8853                         kvm_hv_process_stimers(vcpu);
8854                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8855                         kvm_vcpu_update_apicv(vcpu);
8856                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8857                         kvm_check_async_pf_completion(vcpu);
8858                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8859                         kvm_x86_ops.msr_filter_changed(vcpu);
8860         }
8861
8862         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8863                 ++vcpu->stat.req_event;
8864                 kvm_apic_accept_events(vcpu);
8865                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8866                         r = 1;
8867                         goto out;
8868                 }
8869
8870                 inject_pending_event(vcpu, &req_immediate_exit);
8871                 if (req_int_win)
8872                         kvm_x86_ops.enable_irq_window(vcpu);
8873
8874                 if (kvm_lapic_enabled(vcpu)) {
8875                         update_cr8_intercept(vcpu);
8876                         kvm_lapic_sync_to_vapic(vcpu);
8877                 }
8878         }
8879
8880         r = kvm_mmu_reload(vcpu);
8881         if (unlikely(r)) {
8882                 goto cancel_injection;
8883         }
8884
8885         preempt_disable();
8886
8887         kvm_x86_ops.prepare_guest_switch(vcpu);
8888
8889         /*
8890          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8891          * IPI are then delayed after guest entry, which ensures that they
8892          * result in virtual interrupt delivery.
8893          */
8894         local_irq_disable();
8895         vcpu->mode = IN_GUEST_MODE;
8896
8897         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8898
8899         /*
8900          * 1) We should set ->mode before checking ->requests.  Please see
8901          * the comment in kvm_vcpu_exiting_guest_mode().
8902          *
8903          * 2) For APICv, we should set ->mode before checking PID.ON. This
8904          * pairs with the memory barrier implicit in pi_test_and_set_on
8905          * (see vmx_deliver_posted_interrupt).
8906          *
8907          * 3) This also orders the write to mode from any reads to the page
8908          * tables done while the VCPU is running.  Please see the comment
8909          * in kvm_flush_remote_tlbs.
8910          */
8911         smp_mb__after_srcu_read_unlock();
8912
8913         /*
8914          * This handles the case where a posted interrupt was
8915          * notified with kvm_vcpu_kick.
8916          */
8917         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8918                 kvm_x86_ops.sync_pir_to_irr(vcpu);
8919
8920         if (kvm_vcpu_exit_request(vcpu)) {
8921                 vcpu->mode = OUTSIDE_GUEST_MODE;
8922                 smp_wmb();
8923                 local_irq_enable();
8924                 preempt_enable();
8925                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8926                 r = 1;
8927                 goto cancel_injection;
8928         }
8929
8930         if (req_immediate_exit) {
8931                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8932                 kvm_x86_ops.request_immediate_exit(vcpu);
8933         }
8934
8935         trace_kvm_entry(vcpu);
8936
8937         fpregs_assert_state_consistent();
8938         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8939                 switch_fpu_return();
8940
8941         if (unlikely(vcpu->arch.switch_db_regs)) {
8942                 set_debugreg(0, 7);
8943                 set_debugreg(vcpu->arch.eff_db[0], 0);
8944                 set_debugreg(vcpu->arch.eff_db[1], 1);
8945                 set_debugreg(vcpu->arch.eff_db[2], 2);
8946                 set_debugreg(vcpu->arch.eff_db[3], 3);
8947                 set_debugreg(vcpu->arch.dr6, 6);
8948                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8949         }
8950
8951         exit_fastpath = kvm_x86_ops.run(vcpu);
8952
8953         /*
8954          * Do this here before restoring debug registers on the host.  And
8955          * since we do this before handling the vmexit, a DR access vmexit
8956          * can (a) read the correct value of the debug registers, (b) set
8957          * KVM_DEBUGREG_WONT_EXIT again.
8958          */
8959         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8960                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8961                 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8962                 kvm_update_dr0123(vcpu);
8963                 kvm_update_dr7(vcpu);
8964                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8965         }
8966
8967         /*
8968          * If the guest has used debug registers, at least dr7
8969          * will be disabled while returning to the host.
8970          * If we don't have active breakpoints in the host, we don't
8971          * care about the messed up debug address registers. But if
8972          * we have some of them active, restore the old state.
8973          */
8974         if (hw_breakpoint_active())
8975                 hw_breakpoint_restore();
8976
8977         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8978         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8979
8980         vcpu->mode = OUTSIDE_GUEST_MODE;
8981         smp_wmb();
8982
8983         kvm_x86_ops.handle_exit_irqoff(vcpu);
8984
8985         /*
8986          * Consume any pending interrupts, including the possible source of
8987          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8988          * An instruction is required after local_irq_enable() to fully unblock
8989          * interrupts on processors that implement an interrupt shadow, the
8990          * stat.exits increment will do nicely.
8991          */
8992         kvm_before_interrupt(vcpu);
8993         local_irq_enable();
8994         ++vcpu->stat.exits;
8995         local_irq_disable();
8996         kvm_after_interrupt(vcpu);
8997
8998         if (lapic_in_kernel(vcpu)) {
8999                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9000                 if (delta != S64_MIN) {
9001                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9002                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9003                 }
9004         }
9005
9006         local_irq_enable();
9007         preempt_enable();
9008
9009         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9010
9011         /*
9012          * Profile KVM exit RIPs:
9013          */
9014         if (unlikely(prof_on == KVM_PROFILING)) {
9015                 unsigned long rip = kvm_rip_read(vcpu);
9016                 profile_hit(KVM_PROFILING, (void *)rip);
9017         }
9018
9019         if (unlikely(vcpu->arch.tsc_always_catchup))
9020                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9021
9022         if (vcpu->arch.apic_attention)
9023                 kvm_lapic_sync_from_vapic(vcpu);
9024
9025         r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9026         return r;
9027
9028 cancel_injection:
9029         if (req_immediate_exit)
9030                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9031         kvm_x86_ops.cancel_injection(vcpu);
9032         if (unlikely(vcpu->arch.apic_attention))
9033                 kvm_lapic_sync_from_vapic(vcpu);
9034 out:
9035         return r;
9036 }
9037
9038 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9039 {
9040         if (!kvm_arch_vcpu_runnable(vcpu) &&
9041             (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9042                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9043                 kvm_vcpu_block(vcpu);
9044                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9045
9046                 if (kvm_x86_ops.post_block)
9047                         kvm_x86_ops.post_block(vcpu);
9048
9049                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9050                         return 1;
9051         }
9052
9053         kvm_apic_accept_events(vcpu);
9054         switch(vcpu->arch.mp_state) {
9055         case KVM_MP_STATE_HALTED:
9056                 vcpu->arch.pv.pv_unhalted = false;
9057                 vcpu->arch.mp_state =
9058                         KVM_MP_STATE_RUNNABLE;
9059                 fallthrough;
9060         case KVM_MP_STATE_RUNNABLE:
9061                 vcpu->arch.apf.halted = false;
9062                 break;
9063         case KVM_MP_STATE_INIT_RECEIVED:
9064                 break;
9065         default:
9066                 return -EINTR;
9067         }
9068         return 1;
9069 }
9070
9071 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9072 {
9073         if (is_guest_mode(vcpu))
9074                 kvm_x86_ops.nested_ops->check_events(vcpu);
9075
9076         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9077                 !vcpu->arch.apf.halted);
9078 }
9079
9080 static int vcpu_run(struct kvm_vcpu *vcpu)
9081 {
9082         int r;
9083         struct kvm *kvm = vcpu->kvm;
9084
9085         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9086         vcpu->arch.l1tf_flush_l1d = true;
9087
9088         for (;;) {
9089                 if (kvm_vcpu_running(vcpu)) {
9090                         r = vcpu_enter_guest(vcpu);
9091                 } else {
9092                         r = vcpu_block(kvm, vcpu);
9093                 }
9094
9095                 if (r <= 0)
9096                         break;
9097
9098                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9099                 if (kvm_cpu_has_pending_timer(vcpu))
9100                         kvm_inject_pending_timer_irqs(vcpu);
9101
9102                 if (dm_request_for_irq_injection(vcpu) &&
9103                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9104                         r = 0;
9105                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9106                         ++vcpu->stat.request_irq_exits;
9107                         break;
9108                 }
9109
9110                 if (__xfer_to_guest_mode_work_pending()) {
9111                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9112                         r = xfer_to_guest_mode_handle_work(vcpu);
9113                         if (r)
9114                                 return r;
9115                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9116                 }
9117         }
9118
9119         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9120
9121         return r;
9122 }
9123
9124 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9125 {
9126         int r;
9127
9128         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9129         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9130         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9131         return r;
9132 }
9133
9134 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9135 {
9136         BUG_ON(!vcpu->arch.pio.count);
9137
9138         return complete_emulated_io(vcpu);
9139 }
9140
9141 /*
9142  * Implements the following, as a state machine:
9143  *
9144  * read:
9145  *   for each fragment
9146  *     for each mmio piece in the fragment
9147  *       write gpa, len
9148  *       exit
9149  *       copy data
9150  *   execute insn
9151  *
9152  * write:
9153  *   for each fragment
9154  *     for each mmio piece in the fragment
9155  *       write gpa, len
9156  *       copy data
9157  *       exit
9158  */
9159 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9160 {
9161         struct kvm_run *run = vcpu->run;
9162         struct kvm_mmio_fragment *frag;
9163         unsigned len;
9164
9165         BUG_ON(!vcpu->mmio_needed);
9166
9167         /* Complete previous fragment */
9168         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9169         len = min(8u, frag->len);
9170         if (!vcpu->mmio_is_write)
9171                 memcpy(frag->data, run->mmio.data, len);
9172
9173         if (frag->len <= 8) {
9174                 /* Switch to the next fragment. */
9175                 frag++;
9176                 vcpu->mmio_cur_fragment++;
9177         } else {
9178                 /* Go forward to the next mmio piece. */
9179                 frag->data += len;
9180                 frag->gpa += len;
9181                 frag->len -= len;
9182         }
9183
9184         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9185                 vcpu->mmio_needed = 0;
9186
9187                 /* FIXME: return into emulator if single-stepping.  */
9188                 if (vcpu->mmio_is_write)
9189                         return 1;
9190                 vcpu->mmio_read_completed = 1;
9191                 return complete_emulated_io(vcpu);
9192         }
9193
9194         run->exit_reason = KVM_EXIT_MMIO;
9195         run->mmio.phys_addr = frag->gpa;
9196         if (vcpu->mmio_is_write)
9197                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9198         run->mmio.len = min(8u, frag->len);
9199         run->mmio.is_write = vcpu->mmio_is_write;
9200         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9201         return 0;
9202 }
9203
9204 static void kvm_save_current_fpu(struct fpu *fpu)
9205 {
9206         /*
9207          * If the target FPU state is not resident in the CPU registers, just
9208          * memcpy() from current, else save CPU state directly to the target.
9209          */
9210         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9211                 memcpy(&fpu->state, &current->thread.fpu.state,
9212                        fpu_kernel_xstate_size);
9213         else
9214                 copy_fpregs_to_fpstate(fpu);
9215 }
9216
9217 /* Swap (qemu) user FPU context for the guest FPU context. */
9218 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9219 {
9220         fpregs_lock();
9221
9222         kvm_save_current_fpu(vcpu->arch.user_fpu);
9223
9224         /* PKRU is separately restored in kvm_x86_ops.run.  */
9225         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9226                                 ~XFEATURE_MASK_PKRU);
9227
9228         fpregs_mark_activate();
9229         fpregs_unlock();
9230
9231         trace_kvm_fpu(1);
9232 }
9233
9234 /* When vcpu_run ends, restore user space FPU context. */
9235 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9236 {
9237         fpregs_lock();
9238
9239         kvm_save_current_fpu(vcpu->arch.guest_fpu);
9240
9241         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9242
9243         fpregs_mark_activate();
9244         fpregs_unlock();
9245
9246         ++vcpu->stat.fpu_reload;
9247         trace_kvm_fpu(0);
9248 }
9249
9250 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9251 {
9252         struct kvm_run *kvm_run = vcpu->run;
9253         int r;
9254
9255         vcpu_load(vcpu);
9256         kvm_sigset_activate(vcpu);
9257         kvm_load_guest_fpu(vcpu);
9258
9259         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9260                 if (kvm_run->immediate_exit) {
9261                         r = -EINTR;
9262                         goto out;
9263                 }
9264                 kvm_vcpu_block(vcpu);
9265                 kvm_apic_accept_events(vcpu);
9266                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9267                 r = -EAGAIN;
9268                 if (signal_pending(current)) {
9269                         r = -EINTR;
9270                         kvm_run->exit_reason = KVM_EXIT_INTR;
9271                         ++vcpu->stat.signal_exits;
9272                 }
9273                 goto out;
9274         }
9275
9276         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9277                 r = -EINVAL;
9278                 goto out;
9279         }
9280
9281         if (kvm_run->kvm_dirty_regs) {
9282                 r = sync_regs(vcpu);
9283                 if (r != 0)
9284                         goto out;
9285         }
9286
9287         /* re-sync apic's tpr */
9288         if (!lapic_in_kernel(vcpu)) {
9289                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9290                         r = -EINVAL;
9291                         goto out;
9292                 }
9293         }
9294
9295         if (unlikely(vcpu->arch.complete_userspace_io)) {
9296                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9297                 vcpu->arch.complete_userspace_io = NULL;
9298                 r = cui(vcpu);
9299                 if (r <= 0)
9300                         goto out;
9301         } else
9302                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9303
9304         if (kvm_run->immediate_exit)
9305                 r = -EINTR;
9306         else
9307                 r = vcpu_run(vcpu);
9308
9309 out:
9310         kvm_put_guest_fpu(vcpu);
9311         if (kvm_run->kvm_valid_regs)
9312                 store_regs(vcpu);
9313         post_kvm_run_save(vcpu);
9314         kvm_sigset_deactivate(vcpu);
9315
9316         vcpu_put(vcpu);
9317         return r;
9318 }
9319
9320 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9321 {
9322         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9323                 /*
9324                  * We are here if userspace calls get_regs() in the middle of
9325                  * instruction emulation. Registers state needs to be copied
9326                  * back from emulation context to vcpu. Userspace shouldn't do
9327                  * that usually, but some bad designed PV devices (vmware
9328                  * backdoor interface) need this to work
9329                  */
9330                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9331                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9332         }
9333         regs->rax = kvm_rax_read(vcpu);
9334         regs->rbx = kvm_rbx_read(vcpu);
9335         regs->rcx = kvm_rcx_read(vcpu);
9336         regs->rdx = kvm_rdx_read(vcpu);
9337         regs->rsi = kvm_rsi_read(vcpu);
9338         regs->rdi = kvm_rdi_read(vcpu);
9339         regs->rsp = kvm_rsp_read(vcpu);
9340         regs->rbp = kvm_rbp_read(vcpu);
9341 #ifdef CONFIG_X86_64
9342         regs->r8 = kvm_r8_read(vcpu);
9343         regs->r9 = kvm_r9_read(vcpu);
9344         regs->r10 = kvm_r10_read(vcpu);
9345         regs->r11 = kvm_r11_read(vcpu);
9346         regs->r12 = kvm_r12_read(vcpu);
9347         regs->r13 = kvm_r13_read(vcpu);
9348         regs->r14 = kvm_r14_read(vcpu);
9349         regs->r15 = kvm_r15_read(vcpu);
9350 #endif
9351
9352         regs->rip = kvm_rip_read(vcpu);
9353         regs->rflags = kvm_get_rflags(vcpu);
9354 }
9355
9356 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9357 {
9358         vcpu_load(vcpu);
9359         __get_regs(vcpu, regs);
9360         vcpu_put(vcpu);
9361         return 0;
9362 }
9363
9364 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9365 {
9366         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9367         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9368
9369         kvm_rax_write(vcpu, regs->rax);
9370         kvm_rbx_write(vcpu, regs->rbx);
9371         kvm_rcx_write(vcpu, regs->rcx);
9372         kvm_rdx_write(vcpu, regs->rdx);
9373         kvm_rsi_write(vcpu, regs->rsi);
9374         kvm_rdi_write(vcpu, regs->rdi);
9375         kvm_rsp_write(vcpu, regs->rsp);
9376         kvm_rbp_write(vcpu, regs->rbp);
9377 #ifdef CONFIG_X86_64
9378         kvm_r8_write(vcpu, regs->r8);
9379         kvm_r9_write(vcpu, regs->r9);
9380         kvm_r10_write(vcpu, regs->r10);
9381         kvm_r11_write(vcpu, regs->r11);
9382         kvm_r12_write(vcpu, regs->r12);
9383         kvm_r13_write(vcpu, regs->r13);
9384         kvm_r14_write(vcpu, regs->r14);
9385         kvm_r15_write(vcpu, regs->r15);
9386 #endif
9387
9388         kvm_rip_write(vcpu, regs->rip);
9389         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9390
9391         vcpu->arch.exception.pending = false;
9392
9393         kvm_make_request(KVM_REQ_EVENT, vcpu);
9394 }
9395
9396 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9397 {
9398         vcpu_load(vcpu);
9399         __set_regs(vcpu, regs);
9400         vcpu_put(vcpu);
9401         return 0;
9402 }
9403
9404 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9405 {
9406         struct kvm_segment cs;
9407
9408         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9409         *db = cs.db;
9410         *l = cs.l;
9411 }
9412 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9413
9414 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9415 {
9416         struct desc_ptr dt;
9417
9418         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9419         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9420         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9421         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9422         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9423         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9424
9425         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9426         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9427
9428         kvm_x86_ops.get_idt(vcpu, &dt);
9429         sregs->idt.limit = dt.size;
9430         sregs->idt.base = dt.address;
9431         kvm_x86_ops.get_gdt(vcpu, &dt);
9432         sregs->gdt.limit = dt.size;
9433         sregs->gdt.base = dt.address;
9434
9435         sregs->cr0 = kvm_read_cr0(vcpu);
9436         sregs->cr2 = vcpu->arch.cr2;
9437         sregs->cr3 = kvm_read_cr3(vcpu);
9438         sregs->cr4 = kvm_read_cr4(vcpu);
9439         sregs->cr8 = kvm_get_cr8(vcpu);
9440         sregs->efer = vcpu->arch.efer;
9441         sregs->apic_base = kvm_get_apic_base(vcpu);
9442
9443         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9444
9445         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9446                 set_bit(vcpu->arch.interrupt.nr,
9447                         (unsigned long *)sregs->interrupt_bitmap);
9448 }
9449
9450 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9451                                   struct kvm_sregs *sregs)
9452 {
9453         vcpu_load(vcpu);
9454         __get_sregs(vcpu, sregs);
9455         vcpu_put(vcpu);
9456         return 0;
9457 }
9458
9459 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9460                                     struct kvm_mp_state *mp_state)
9461 {
9462         vcpu_load(vcpu);
9463         if (kvm_mpx_supported())
9464                 kvm_load_guest_fpu(vcpu);
9465
9466         kvm_apic_accept_events(vcpu);
9467         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9468                                         vcpu->arch.pv.pv_unhalted)
9469                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9470         else
9471                 mp_state->mp_state = vcpu->arch.mp_state;
9472
9473         if (kvm_mpx_supported())
9474                 kvm_put_guest_fpu(vcpu);
9475         vcpu_put(vcpu);
9476         return 0;
9477 }
9478
9479 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9480                                     struct kvm_mp_state *mp_state)
9481 {
9482         int ret = -EINVAL;
9483
9484         vcpu_load(vcpu);
9485
9486         if (!lapic_in_kernel(vcpu) &&
9487             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9488                 goto out;
9489
9490         /*
9491          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9492          * INIT state; latched init should be reported using
9493          * KVM_SET_VCPU_EVENTS, so reject it here.
9494          */
9495         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9496             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9497              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9498                 goto out;
9499
9500         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9501                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9502                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9503         } else
9504                 vcpu->arch.mp_state = mp_state->mp_state;
9505         kvm_make_request(KVM_REQ_EVENT, vcpu);
9506
9507         ret = 0;
9508 out:
9509         vcpu_put(vcpu);
9510         return ret;
9511 }
9512
9513 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9514                     int reason, bool has_error_code, u32 error_code)
9515 {
9516         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9517         int ret;
9518
9519         init_emulate_ctxt(vcpu);
9520
9521         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9522                                    has_error_code, error_code);
9523         if (ret) {
9524                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9525                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9526                 vcpu->run->internal.ndata = 0;
9527                 return 0;
9528         }
9529
9530         kvm_rip_write(vcpu, ctxt->eip);
9531         kvm_set_rflags(vcpu, ctxt->eflags);
9532         return 1;
9533 }
9534 EXPORT_SYMBOL_GPL(kvm_task_switch);
9535
9536 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9537 {
9538         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9539                 /*
9540                  * When EFER.LME and CR0.PG are set, the processor is in
9541                  * 64-bit mode (though maybe in a 32-bit code segment).
9542                  * CR4.PAE and EFER.LMA must be set.
9543                  */
9544                 if (!(sregs->cr4 & X86_CR4_PAE)
9545                     || !(sregs->efer & EFER_LMA))
9546                         return -EINVAL;
9547         } else {
9548                 /*
9549                  * Not in 64-bit mode: EFER.LMA is clear and the code
9550                  * segment cannot be 64-bit.
9551                  */
9552                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9553                         return -EINVAL;
9554         }
9555
9556         return kvm_valid_cr4(vcpu, sregs->cr4);
9557 }
9558
9559 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9560 {
9561         struct msr_data apic_base_msr;
9562         int mmu_reset_needed = 0;
9563         int cpuid_update_needed = 0;
9564         int pending_vec, max_bits, idx;
9565         struct desc_ptr dt;
9566         int ret = -EINVAL;
9567
9568         if (kvm_valid_sregs(vcpu, sregs))
9569                 goto out;
9570
9571         apic_base_msr.data = sregs->apic_base;
9572         apic_base_msr.host_initiated = true;
9573         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9574                 goto out;
9575
9576         dt.size = sregs->idt.limit;
9577         dt.address = sregs->idt.base;
9578         kvm_x86_ops.set_idt(vcpu, &dt);
9579         dt.size = sregs->gdt.limit;
9580         dt.address = sregs->gdt.base;
9581         kvm_x86_ops.set_gdt(vcpu, &dt);
9582
9583         vcpu->arch.cr2 = sregs->cr2;
9584         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9585         vcpu->arch.cr3 = sregs->cr3;
9586         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9587
9588         kvm_set_cr8(vcpu, sregs->cr8);
9589
9590         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9591         kvm_x86_ops.set_efer(vcpu, sregs->efer);
9592
9593         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9594         kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9595         vcpu->arch.cr0 = sregs->cr0;
9596
9597         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9598         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9599                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9600         kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9601         if (cpuid_update_needed)
9602                 kvm_update_cpuid_runtime(vcpu);
9603
9604         idx = srcu_read_lock(&vcpu->kvm->srcu);
9605         if (is_pae_paging(vcpu)) {
9606                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9607                 mmu_reset_needed = 1;
9608         }
9609         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9610
9611         if (mmu_reset_needed)
9612                 kvm_mmu_reset_context(vcpu);
9613
9614         max_bits = KVM_NR_INTERRUPTS;
9615         pending_vec = find_first_bit(
9616                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9617         if (pending_vec < max_bits) {
9618                 kvm_queue_interrupt(vcpu, pending_vec, false);
9619                 pr_debug("Set back pending irq %d\n", pending_vec);
9620         }
9621
9622         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9623         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9624         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9625         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9626         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9627         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9628
9629         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9630         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9631
9632         update_cr8_intercept(vcpu);
9633
9634         /* Older userspace won't unhalt the vcpu on reset. */
9635         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9636             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9637             !is_protmode(vcpu))
9638                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9639
9640         kvm_make_request(KVM_REQ_EVENT, vcpu);
9641
9642         ret = 0;
9643 out:
9644         return ret;
9645 }
9646
9647 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9648                                   struct kvm_sregs *sregs)
9649 {
9650         int ret;
9651
9652         vcpu_load(vcpu);
9653         ret = __set_sregs(vcpu, sregs);
9654         vcpu_put(vcpu);
9655         return ret;
9656 }
9657
9658 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9659                                         struct kvm_guest_debug *dbg)
9660 {
9661         unsigned long rflags;
9662         int i, r;
9663
9664         vcpu_load(vcpu);
9665
9666         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9667                 r = -EBUSY;
9668                 if (vcpu->arch.exception.pending)
9669                         goto out;
9670                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9671                         kvm_queue_exception(vcpu, DB_VECTOR);
9672                 else
9673                         kvm_queue_exception(vcpu, BP_VECTOR);
9674         }
9675
9676         /*
9677          * Read rflags as long as potentially injected trace flags are still
9678          * filtered out.
9679          */
9680         rflags = kvm_get_rflags(vcpu);
9681
9682         vcpu->guest_debug = dbg->control;
9683         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9684                 vcpu->guest_debug = 0;
9685
9686         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9687                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9688                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9689                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9690         } else {
9691                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9692                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9693         }
9694         kvm_update_dr7(vcpu);
9695
9696         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9697                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9698                         get_segment_base(vcpu, VCPU_SREG_CS);
9699
9700         /*
9701          * Trigger an rflags update that will inject or remove the trace
9702          * flags.
9703          */
9704         kvm_set_rflags(vcpu, rflags);
9705
9706         kvm_x86_ops.update_exception_bitmap(vcpu);
9707
9708         r = 0;
9709
9710 out:
9711         vcpu_put(vcpu);
9712         return r;
9713 }
9714
9715 /*
9716  * Translate a guest virtual address to a guest physical address.
9717  */
9718 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9719                                     struct kvm_translation *tr)
9720 {
9721         unsigned long vaddr = tr->linear_address;
9722         gpa_t gpa;
9723         int idx;
9724
9725         vcpu_load(vcpu);
9726
9727         idx = srcu_read_lock(&vcpu->kvm->srcu);
9728         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9729         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9730         tr->physical_address = gpa;
9731         tr->valid = gpa != UNMAPPED_GVA;
9732         tr->writeable = 1;
9733         tr->usermode = 0;
9734
9735         vcpu_put(vcpu);
9736         return 0;
9737 }
9738
9739 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9740 {
9741         struct fxregs_state *fxsave;
9742
9743         vcpu_load(vcpu);
9744
9745         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9746         memcpy(fpu->fpr, fxsave->st_space, 128);
9747         fpu->fcw = fxsave->cwd;
9748         fpu->fsw = fxsave->swd;
9749         fpu->ftwx = fxsave->twd;
9750         fpu->last_opcode = fxsave->fop;
9751         fpu->last_ip = fxsave->rip;
9752         fpu->last_dp = fxsave->rdp;
9753         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9754
9755         vcpu_put(vcpu);
9756         return 0;
9757 }
9758
9759 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9760 {
9761         struct fxregs_state *fxsave;
9762
9763         vcpu_load(vcpu);
9764
9765         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9766
9767         memcpy(fxsave->st_space, fpu->fpr, 128);
9768         fxsave->cwd = fpu->fcw;
9769         fxsave->swd = fpu->fsw;
9770         fxsave->twd = fpu->ftwx;
9771         fxsave->fop = fpu->last_opcode;
9772         fxsave->rip = fpu->last_ip;
9773         fxsave->rdp = fpu->last_dp;
9774         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9775
9776         vcpu_put(vcpu);
9777         return 0;
9778 }
9779
9780 static void store_regs(struct kvm_vcpu *vcpu)
9781 {
9782         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9783
9784         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9785                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9786
9787         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9788                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9789
9790         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9791                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9792                                 vcpu, &vcpu->run->s.regs.events);
9793 }
9794
9795 static int sync_regs(struct kvm_vcpu *vcpu)
9796 {
9797         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9798                 return -EINVAL;
9799
9800         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9801                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9802                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9803         }
9804         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9805                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9806                         return -EINVAL;
9807                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9808         }
9809         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9810                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9811                                 vcpu, &vcpu->run->s.regs.events))
9812                         return -EINVAL;
9813                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9814         }
9815
9816         return 0;
9817 }
9818
9819 static void fx_init(struct kvm_vcpu *vcpu)
9820 {
9821         fpstate_init(&vcpu->arch.guest_fpu->state);
9822         if (boot_cpu_has(X86_FEATURE_XSAVES))
9823                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9824                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9825
9826         /*
9827          * Ensure guest xcr0 is valid for loading
9828          */
9829         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9830
9831         vcpu->arch.cr0 |= X86_CR0_ET;
9832 }
9833
9834 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9835 {
9836         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9837                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9838                              "guest TSC will not be reliable\n");
9839
9840         return 0;
9841 }
9842
9843 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9844 {
9845         struct page *page;
9846         int r;
9847
9848         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9849                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9850         else
9851                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9852
9853         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9854
9855         r = kvm_mmu_create(vcpu);
9856         if (r < 0)
9857                 return r;
9858
9859         if (irqchip_in_kernel(vcpu->kvm)) {
9860                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9861                 if (r < 0)
9862                         goto fail_mmu_destroy;
9863                 if (kvm_apicv_activated(vcpu->kvm))
9864                         vcpu->arch.apicv_active = true;
9865         } else
9866                 static_key_slow_inc(&kvm_no_apic_vcpu);
9867
9868         r = -ENOMEM;
9869
9870         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9871         if (!page)
9872                 goto fail_free_lapic;
9873         vcpu->arch.pio_data = page_address(page);
9874
9875         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9876                                        GFP_KERNEL_ACCOUNT);
9877         if (!vcpu->arch.mce_banks)
9878                 goto fail_free_pio_data;
9879         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9880
9881         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9882                                 GFP_KERNEL_ACCOUNT))
9883                 goto fail_free_mce_banks;
9884
9885         if (!alloc_emulate_ctxt(vcpu))
9886                 goto free_wbinvd_dirty_mask;
9887
9888         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9889                                                 GFP_KERNEL_ACCOUNT);
9890         if (!vcpu->arch.user_fpu) {
9891                 pr_err("kvm: failed to allocate userspace's fpu\n");
9892                 goto free_emulate_ctxt;
9893         }
9894
9895         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9896                                                  GFP_KERNEL_ACCOUNT);
9897         if (!vcpu->arch.guest_fpu) {
9898                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9899                 goto free_user_fpu;
9900         }
9901         fx_init(vcpu);
9902
9903         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9904
9905         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9906
9907         kvm_async_pf_hash_reset(vcpu);
9908         kvm_pmu_init(vcpu);
9909
9910         vcpu->arch.pending_external_vector = -1;
9911         vcpu->arch.preempted_in_kernel = false;
9912
9913         kvm_hv_vcpu_init(vcpu);
9914
9915         r = kvm_x86_ops.vcpu_create(vcpu);
9916         if (r)
9917                 goto free_guest_fpu;
9918
9919         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9920         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9921         kvm_vcpu_mtrr_init(vcpu);
9922         vcpu_load(vcpu);
9923         kvm_vcpu_reset(vcpu, false);
9924         kvm_init_mmu(vcpu, false);
9925         vcpu_put(vcpu);
9926         return 0;
9927
9928 free_guest_fpu:
9929         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9930 free_user_fpu:
9931         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9932 free_emulate_ctxt:
9933         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9934 free_wbinvd_dirty_mask:
9935         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9936 fail_free_mce_banks:
9937         kfree(vcpu->arch.mce_banks);
9938 fail_free_pio_data:
9939         free_page((unsigned long)vcpu->arch.pio_data);
9940 fail_free_lapic:
9941         kvm_free_lapic(vcpu);
9942 fail_mmu_destroy:
9943         kvm_mmu_destroy(vcpu);
9944         return r;
9945 }
9946
9947 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9948 {
9949         struct kvm *kvm = vcpu->kvm;
9950
9951         kvm_hv_vcpu_postcreate(vcpu);
9952
9953         if (mutex_lock_killable(&vcpu->mutex))
9954                 return;
9955         vcpu_load(vcpu);
9956         kvm_synchronize_tsc(vcpu, 0);
9957         vcpu_put(vcpu);
9958
9959         /* poll control enabled by default */
9960         vcpu->arch.msr_kvm_poll_control = 1;
9961
9962         mutex_unlock(&vcpu->mutex);
9963
9964         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9965                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9966                                                 KVMCLOCK_SYNC_PERIOD);
9967 }
9968
9969 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9970 {
9971         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9972         int idx;
9973
9974         kvm_release_pfn(cache->pfn, cache->dirty, cache);
9975
9976         kvmclock_reset(vcpu);
9977
9978         kvm_x86_ops.vcpu_free(vcpu);
9979
9980         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9981         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9982         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9983         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9984
9985         kvm_hv_vcpu_uninit(vcpu);
9986         kvm_pmu_destroy(vcpu);
9987         kfree(vcpu->arch.mce_banks);
9988         kvm_free_lapic(vcpu);
9989         idx = srcu_read_lock(&vcpu->kvm->srcu);
9990         kvm_mmu_destroy(vcpu);
9991         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9992         free_page((unsigned long)vcpu->arch.pio_data);
9993         kvfree(vcpu->arch.cpuid_entries);
9994         if (!lapic_in_kernel(vcpu))
9995                 static_key_slow_dec(&kvm_no_apic_vcpu);
9996 }
9997
9998 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9999 {
10000         kvm_lapic_reset(vcpu, init_event);
10001
10002         vcpu->arch.hflags = 0;
10003
10004         vcpu->arch.smi_pending = 0;
10005         vcpu->arch.smi_count = 0;
10006         atomic_set(&vcpu->arch.nmi_queued, 0);
10007         vcpu->arch.nmi_pending = 0;
10008         vcpu->arch.nmi_injected = false;
10009         kvm_clear_interrupt_queue(vcpu);
10010         kvm_clear_exception_queue(vcpu);
10011
10012         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10013         kvm_update_dr0123(vcpu);
10014         vcpu->arch.dr6 = DR6_INIT;
10015         vcpu->arch.dr7 = DR7_FIXED_1;
10016         kvm_update_dr7(vcpu);
10017
10018         vcpu->arch.cr2 = 0;
10019
10020         kvm_make_request(KVM_REQ_EVENT, vcpu);
10021         vcpu->arch.apf.msr_en_val = 0;
10022         vcpu->arch.apf.msr_int_val = 0;
10023         vcpu->arch.st.msr_val = 0;
10024
10025         kvmclock_reset(vcpu);
10026
10027         kvm_clear_async_pf_completion_queue(vcpu);
10028         kvm_async_pf_hash_reset(vcpu);
10029         vcpu->arch.apf.halted = false;
10030
10031         if (kvm_mpx_supported()) {
10032                 void *mpx_state_buffer;
10033
10034                 /*
10035                  * To avoid have the INIT path from kvm_apic_has_events() that be
10036                  * called with loaded FPU and does not let userspace fix the state.
10037                  */
10038                 if (init_event)
10039                         kvm_put_guest_fpu(vcpu);
10040                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10041                                         XFEATURE_BNDREGS);
10042                 if (mpx_state_buffer)
10043                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10044                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10045                                         XFEATURE_BNDCSR);
10046                 if (mpx_state_buffer)
10047                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10048                 if (init_event)
10049                         kvm_load_guest_fpu(vcpu);
10050         }
10051
10052         if (!init_event) {
10053                 kvm_pmu_reset(vcpu);
10054                 vcpu->arch.smbase = 0x30000;
10055
10056                 vcpu->arch.msr_misc_features_enables = 0;
10057
10058                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10059         }
10060
10061         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10062         vcpu->arch.regs_avail = ~0;
10063         vcpu->arch.regs_dirty = ~0;
10064
10065         vcpu->arch.ia32_xss = 0;
10066
10067         kvm_x86_ops.vcpu_reset(vcpu, init_event);
10068 }
10069
10070 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10071 {
10072         struct kvm_segment cs;
10073
10074         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10075         cs.selector = vector << 8;
10076         cs.base = vector << 12;
10077         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10078         kvm_rip_write(vcpu, 0);
10079 }
10080
10081 int kvm_arch_hardware_enable(void)
10082 {
10083         struct kvm *kvm;
10084         struct kvm_vcpu *vcpu;
10085         int i;
10086         int ret;
10087         u64 local_tsc;
10088         u64 max_tsc = 0;
10089         bool stable, backwards_tsc = false;
10090
10091         kvm_user_return_msr_cpu_online();
10092         ret = kvm_x86_ops.hardware_enable();
10093         if (ret != 0)
10094                 return ret;
10095
10096         local_tsc = rdtsc();
10097         stable = !kvm_check_tsc_unstable();
10098         list_for_each_entry(kvm, &vm_list, vm_list) {
10099                 kvm_for_each_vcpu(i, vcpu, kvm) {
10100                         if (!stable && vcpu->cpu == smp_processor_id())
10101                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10102                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10103                                 backwards_tsc = true;
10104                                 if (vcpu->arch.last_host_tsc > max_tsc)
10105                                         max_tsc = vcpu->arch.last_host_tsc;
10106                         }
10107                 }
10108         }
10109
10110         /*
10111          * Sometimes, even reliable TSCs go backwards.  This happens on
10112          * platforms that reset TSC during suspend or hibernate actions, but
10113          * maintain synchronization.  We must compensate.  Fortunately, we can
10114          * detect that condition here, which happens early in CPU bringup,
10115          * before any KVM threads can be running.  Unfortunately, we can't
10116          * bring the TSCs fully up to date with real time, as we aren't yet far
10117          * enough into CPU bringup that we know how much real time has actually
10118          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10119          * variables that haven't been updated yet.
10120          *
10121          * So we simply find the maximum observed TSC above, then record the
10122          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10123          * the adjustment will be applied.  Note that we accumulate
10124          * adjustments, in case multiple suspend cycles happen before some VCPU
10125          * gets a chance to run again.  In the event that no KVM threads get a
10126          * chance to run, we will miss the entire elapsed period, as we'll have
10127          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10128          * loose cycle time.  This isn't too big a deal, since the loss will be
10129          * uniform across all VCPUs (not to mention the scenario is extremely
10130          * unlikely). It is possible that a second hibernate recovery happens
10131          * much faster than a first, causing the observed TSC here to be
10132          * smaller; this would require additional padding adjustment, which is
10133          * why we set last_host_tsc to the local tsc observed here.
10134          *
10135          * N.B. - this code below runs only on platforms with reliable TSC,
10136          * as that is the only way backwards_tsc is set above.  Also note
10137          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10138          * have the same delta_cyc adjustment applied if backwards_tsc
10139          * is detected.  Note further, this adjustment is only done once,
10140          * as we reset last_host_tsc on all VCPUs to stop this from being
10141          * called multiple times (one for each physical CPU bringup).
10142          *
10143          * Platforms with unreliable TSCs don't have to deal with this, they
10144          * will be compensated by the logic in vcpu_load, which sets the TSC to
10145          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10146          * guarantee that they stay in perfect synchronization.
10147          */
10148         if (backwards_tsc) {
10149                 u64 delta_cyc = max_tsc - local_tsc;
10150                 list_for_each_entry(kvm, &vm_list, vm_list) {
10151                         kvm->arch.backwards_tsc_observed = true;
10152                         kvm_for_each_vcpu(i, vcpu, kvm) {
10153                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10154                                 vcpu->arch.last_host_tsc = local_tsc;
10155                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10156                         }
10157
10158                         /*
10159                          * We have to disable TSC offset matching.. if you were
10160                          * booting a VM while issuing an S4 host suspend....
10161                          * you may have some problem.  Solving this issue is
10162                          * left as an exercise to the reader.
10163                          */
10164                         kvm->arch.last_tsc_nsec = 0;
10165                         kvm->arch.last_tsc_write = 0;
10166                 }
10167
10168         }
10169         return 0;
10170 }
10171
10172 void kvm_arch_hardware_disable(void)
10173 {
10174         kvm_x86_ops.hardware_disable();
10175         drop_user_return_notifiers();
10176 }
10177
10178 int kvm_arch_hardware_setup(void *opaque)
10179 {
10180         struct kvm_x86_init_ops *ops = opaque;
10181         int r;
10182
10183         rdmsrl_safe(MSR_EFER, &host_efer);
10184
10185         if (boot_cpu_has(X86_FEATURE_XSAVES))
10186                 rdmsrl(MSR_IA32_XSS, host_xss);
10187
10188         r = ops->hardware_setup();
10189         if (r != 0)
10190                 return r;
10191
10192         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10193
10194         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10195                 supported_xss = 0;
10196
10197 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10198         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10199 #undef __kvm_cpu_cap_has
10200
10201         if (kvm_has_tsc_control) {
10202                 /*
10203                  * Make sure the user can only configure tsc_khz values that
10204                  * fit into a signed integer.
10205                  * A min value is not calculated because it will always
10206                  * be 1 on all machines.
10207                  */
10208                 u64 max = min(0x7fffffffULL,
10209                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10210                 kvm_max_guest_tsc_khz = max;
10211
10212                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10213         }
10214
10215         kvm_init_msr_list();
10216         return 0;
10217 }
10218
10219 void kvm_arch_hardware_unsetup(void)
10220 {
10221         kvm_x86_ops.hardware_unsetup();
10222 }
10223
10224 int kvm_arch_check_processor_compat(void *opaque)
10225 {
10226         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10227         struct kvm_x86_init_ops *ops = opaque;
10228
10229         WARN_ON(!irqs_disabled());
10230
10231         if (__cr4_reserved_bits(cpu_has, c) !=
10232             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10233                 return -EIO;
10234
10235         return ops->check_processor_compatibility();
10236 }
10237
10238 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10239 {
10240         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10241 }
10242 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10243
10244 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10245 {
10246         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10247 }
10248
10249 struct static_key kvm_no_apic_vcpu __read_mostly;
10250 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10251
10252 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10253 {
10254         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10255
10256         vcpu->arch.l1tf_flush_l1d = true;
10257         if (pmu->version && unlikely(pmu->event_count)) {
10258                 pmu->need_cleanup = true;
10259                 kvm_make_request(KVM_REQ_PMU, vcpu);
10260         }
10261         kvm_x86_ops.sched_in(vcpu, cpu);
10262 }
10263
10264 void kvm_arch_free_vm(struct kvm *kvm)
10265 {
10266         kfree(kvm->arch.hyperv.hv_pa_pg);
10267         vfree(kvm);
10268 }
10269
10270
10271 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10272 {
10273         if (type)
10274                 return -EINVAL;
10275
10276         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10277         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10278         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10279         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10280         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10281         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10282
10283         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10284         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10285         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10286         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10287                 &kvm->arch.irq_sources_bitmap);
10288
10289         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10290         mutex_init(&kvm->arch.apic_map_lock);
10291         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10292
10293         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10294         pvclock_update_vm_gtod_copy(kvm);
10295
10296         kvm->arch.guest_can_read_msr_platform_info = true;
10297
10298         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10299         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10300
10301         kvm_hv_init_vm(kvm);
10302         kvm_page_track_init(kvm);
10303         kvm_mmu_init_vm(kvm);
10304
10305         return kvm_x86_ops.vm_init(kvm);
10306 }
10307
10308 int kvm_arch_post_init_vm(struct kvm *kvm)
10309 {
10310         return kvm_mmu_post_init_vm(kvm);
10311 }
10312
10313 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10314 {
10315         vcpu_load(vcpu);
10316         kvm_mmu_unload(vcpu);
10317         vcpu_put(vcpu);
10318 }
10319
10320 static void kvm_free_vcpus(struct kvm *kvm)
10321 {
10322         unsigned int i;
10323         struct kvm_vcpu *vcpu;
10324
10325         /*
10326          * Unpin any mmu pages first.
10327          */
10328         kvm_for_each_vcpu(i, vcpu, kvm) {
10329                 kvm_clear_async_pf_completion_queue(vcpu);
10330                 kvm_unload_vcpu_mmu(vcpu);
10331         }
10332         kvm_for_each_vcpu(i, vcpu, kvm)
10333                 kvm_vcpu_destroy(vcpu);
10334
10335         mutex_lock(&kvm->lock);
10336         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10337                 kvm->vcpus[i] = NULL;
10338
10339         atomic_set(&kvm->online_vcpus, 0);
10340         mutex_unlock(&kvm->lock);
10341 }
10342
10343 void kvm_arch_sync_events(struct kvm *kvm)
10344 {
10345         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10346         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10347         kvm_free_pit(kvm);
10348 }
10349
10350 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10351 {
10352         int i, r;
10353         unsigned long hva, old_npages;
10354         struct kvm_memslots *slots = kvm_memslots(kvm);
10355         struct kvm_memory_slot *slot;
10356
10357         /* Called with kvm->slots_lock held.  */
10358         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10359                 return -EINVAL;
10360
10361         slot = id_to_memslot(slots, id);
10362         if (size) {
10363                 if (slot && slot->npages)
10364                         return -EEXIST;
10365
10366                 /*
10367                  * MAP_SHARED to prevent internal slot pages from being moved
10368                  * by fork()/COW.
10369                  */
10370                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10371                               MAP_SHARED | MAP_ANONYMOUS, 0);
10372                 if (IS_ERR((void *)hva))
10373                         return PTR_ERR((void *)hva);
10374         } else {
10375                 if (!slot || !slot->npages)
10376                         return 0;
10377
10378                 old_npages = slot->npages;
10379                 hva = 0;
10380         }
10381
10382         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10383                 struct kvm_userspace_memory_region m;
10384
10385                 m.slot = id | (i << 16);
10386                 m.flags = 0;
10387                 m.guest_phys_addr = gpa;
10388                 m.userspace_addr = hva;
10389                 m.memory_size = size;
10390                 r = __kvm_set_memory_region(kvm, &m);
10391                 if (r < 0)
10392                         return r;
10393         }
10394
10395         if (!size)
10396                 vm_munmap(hva, old_npages * PAGE_SIZE);
10397
10398         return 0;
10399 }
10400 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10401
10402 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10403 {
10404         kvm_mmu_pre_destroy_vm(kvm);
10405 }
10406
10407 void kvm_arch_destroy_vm(struct kvm *kvm)
10408 {
10409         u32 i;
10410
10411         if (current->mm == kvm->mm) {
10412                 /*
10413                  * Free memory regions allocated on behalf of userspace,
10414                  * unless the the memory map has changed due to process exit
10415                  * or fd copying.
10416                  */
10417                 mutex_lock(&kvm->slots_lock);
10418                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10419                                         0, 0);
10420                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10421                                         0, 0);
10422                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10423                 mutex_unlock(&kvm->slots_lock);
10424         }
10425         if (kvm_x86_ops.vm_destroy)
10426                 kvm_x86_ops.vm_destroy(kvm);
10427         for (i = 0; i < kvm->arch.msr_filter.count; i++)
10428                 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10429         kvm_pic_destroy(kvm);
10430         kvm_ioapic_destroy(kvm);
10431         kvm_free_vcpus(kvm);
10432         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10433         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10434         kvm_mmu_uninit_vm(kvm);
10435         kvm_page_track_cleanup(kvm);
10436         kvm_hv_destroy_vm(kvm);
10437 }
10438
10439 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10440 {
10441         int i;
10442
10443         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10444                 kvfree(slot->arch.rmap[i]);
10445                 slot->arch.rmap[i] = NULL;
10446
10447                 if (i == 0)
10448                         continue;
10449
10450                 kvfree(slot->arch.lpage_info[i - 1]);
10451                 slot->arch.lpage_info[i - 1] = NULL;
10452         }
10453
10454         kvm_page_track_free_memslot(slot);
10455 }
10456
10457 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10458                                       unsigned long npages)
10459 {
10460         int i;
10461
10462         /*
10463          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10464          * old arrays will be freed by __kvm_set_memory_region() if installing
10465          * the new memslot is successful.
10466          */
10467         memset(&slot->arch, 0, sizeof(slot->arch));
10468
10469         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10470                 struct kvm_lpage_info *linfo;
10471                 unsigned long ugfn;
10472                 int lpages;
10473                 int level = i + 1;
10474
10475                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10476                                       slot->base_gfn, level) + 1;
10477
10478                 slot->arch.rmap[i] =
10479                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10480                                  GFP_KERNEL_ACCOUNT);
10481                 if (!slot->arch.rmap[i])
10482                         goto out_free;
10483                 if (i == 0)
10484                         continue;
10485
10486                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10487                 if (!linfo)
10488                         goto out_free;
10489
10490                 slot->arch.lpage_info[i - 1] = linfo;
10491
10492                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10493                         linfo[0].disallow_lpage = 1;
10494                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10495                         linfo[lpages - 1].disallow_lpage = 1;
10496                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10497                 /*
10498                  * If the gfn and userspace address are not aligned wrt each
10499                  * other, disable large page support for this slot.
10500                  */
10501                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10502                         unsigned long j;
10503
10504                         for (j = 0; j < lpages; ++j)
10505                                 linfo[j].disallow_lpage = 1;
10506                 }
10507         }
10508
10509         if (kvm_page_track_create_memslot(slot, npages))
10510                 goto out_free;
10511
10512         return 0;
10513
10514 out_free:
10515         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10516                 kvfree(slot->arch.rmap[i]);
10517                 slot->arch.rmap[i] = NULL;
10518                 if (i == 0)
10519                         continue;
10520
10521                 kvfree(slot->arch.lpage_info[i - 1]);
10522                 slot->arch.lpage_info[i - 1] = NULL;
10523         }
10524         return -ENOMEM;
10525 }
10526
10527 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10528 {
10529         struct kvm_vcpu *vcpu;
10530         int i;
10531
10532         /*
10533          * memslots->generation has been incremented.
10534          * mmio generation may have reached its maximum value.
10535          */
10536         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10537
10538         /* Force re-initialization of steal_time cache */
10539         kvm_for_each_vcpu(i, vcpu, kvm)
10540                 kvm_vcpu_kick(vcpu);
10541 }
10542
10543 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10544                                 struct kvm_memory_slot *memslot,
10545                                 const struct kvm_userspace_memory_region *mem,
10546                                 enum kvm_mr_change change)
10547 {
10548         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10549                 return kvm_alloc_memslot_metadata(memslot,
10550                                                   mem->memory_size >> PAGE_SHIFT);
10551         return 0;
10552 }
10553
10554 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10555                                      struct kvm_memory_slot *old,
10556                                      struct kvm_memory_slot *new,
10557                                      enum kvm_mr_change change)
10558 {
10559         /*
10560          * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10561          * See comments below.
10562          */
10563         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10564                 return;
10565
10566         /*
10567          * Dirty logging tracks sptes in 4k granularity, meaning that large
10568          * sptes have to be split.  If live migration is successful, the guest
10569          * in the source machine will be destroyed and large sptes will be
10570          * created in the destination. However, if the guest continues to run
10571          * in the source machine (for example if live migration fails), small
10572          * sptes will remain around and cause bad performance.
10573          *
10574          * Scan sptes if dirty logging has been stopped, dropping those
10575          * which can be collapsed into a single large-page spte.  Later
10576          * page faults will create the large-page sptes.
10577          *
10578          * There is no need to do this in any of the following cases:
10579          * CREATE:      No dirty mappings will already exist.
10580          * MOVE/DELETE: The old mappings will already have been cleaned up by
10581          *              kvm_arch_flush_shadow_memslot()
10582          */
10583         if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10584             !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10585                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10586
10587         /*
10588          * Enable or disable dirty logging for the slot.
10589          *
10590          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10591          * slot have been zapped so no dirty logging updates are needed for
10592          * the old slot.
10593          * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10594          * any mappings that might be created in it will consume the
10595          * properties of the new slot and do not need to be updated here.
10596          *
10597          * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10598          * called to enable/disable dirty logging.
10599          *
10600          * When disabling dirty logging with PML enabled, the D-bit is set
10601          * for sptes in the slot in order to prevent unnecessary GPA
10602          * logging in the PML buffer (and potential PML buffer full VMEXIT).
10603          * This guarantees leaving PML enabled for the guest's lifetime
10604          * won't have any additional overhead from PML when the guest is
10605          * running with dirty logging disabled.
10606          *
10607          * When enabling dirty logging, large sptes are write-protected
10608          * so they can be split on first write.  New large sptes cannot
10609          * be created for this slot until the end of the logging.
10610          * See the comments in fast_page_fault().
10611          * For small sptes, nothing is done if the dirty log is in the
10612          * initial-all-set state.  Otherwise, depending on whether pml
10613          * is enabled the D-bit or the W-bit will be cleared.
10614          */
10615         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10616                 if (kvm_x86_ops.slot_enable_log_dirty) {
10617                         kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10618                 } else {
10619                         int level =
10620                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10621                                 PG_LEVEL_2M : PG_LEVEL_4K;
10622
10623                         /*
10624                          * If we're with initial-all-set, we don't need
10625                          * to write protect any small page because
10626                          * they're reported as dirty already.  However
10627                          * we still need to write-protect huge pages
10628                          * so that the page split can happen lazily on
10629                          * the first write to the huge page.
10630                          */
10631                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10632                 }
10633         } else {
10634                 if (kvm_x86_ops.slot_disable_log_dirty)
10635                         kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10636         }
10637 }
10638
10639 void kvm_arch_commit_memory_region(struct kvm *kvm,
10640                                 const struct kvm_userspace_memory_region *mem,
10641                                 struct kvm_memory_slot *old,
10642                                 const struct kvm_memory_slot *new,
10643                                 enum kvm_mr_change change)
10644 {
10645         if (!kvm->arch.n_requested_mmu_pages)
10646                 kvm_mmu_change_mmu_pages(kvm,
10647                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10648
10649         /*
10650          * FIXME: const-ify all uses of struct kvm_memory_slot.
10651          */
10652         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10653
10654         /* Free the arrays associated with the old memslot. */
10655         if (change == KVM_MR_MOVE)
10656                 kvm_arch_free_memslot(kvm, old);
10657 }
10658
10659 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10660 {
10661         kvm_mmu_zap_all(kvm);
10662 }
10663
10664 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10665                                    struct kvm_memory_slot *slot)
10666 {
10667         kvm_page_track_flush_slot(kvm, slot);
10668 }
10669
10670 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10671 {
10672         return (is_guest_mode(vcpu) &&
10673                         kvm_x86_ops.guest_apic_has_interrupt &&
10674                         kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10675 }
10676
10677 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10678 {
10679         if (!list_empty_careful(&vcpu->async_pf.done))
10680                 return true;
10681
10682         if (kvm_apic_has_events(vcpu))
10683                 return true;
10684
10685         if (vcpu->arch.pv.pv_unhalted)
10686                 return true;
10687
10688         if (vcpu->arch.exception.pending)
10689                 return true;
10690
10691         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10692             (vcpu->arch.nmi_pending &&
10693              kvm_x86_ops.nmi_allowed(vcpu, false)))
10694                 return true;
10695
10696         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10697             (vcpu->arch.smi_pending &&
10698              kvm_x86_ops.smi_allowed(vcpu, false)))
10699                 return true;
10700
10701         if (kvm_arch_interrupt_allowed(vcpu) &&
10702             (kvm_cpu_has_interrupt(vcpu) ||
10703             kvm_guest_apic_has_interrupt(vcpu)))
10704                 return true;
10705
10706         if (kvm_hv_has_stimer_pending(vcpu))
10707                 return true;
10708
10709         if (is_guest_mode(vcpu) &&
10710             kvm_x86_ops.nested_ops->hv_timer_pending &&
10711             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10712                 return true;
10713
10714         return false;
10715 }
10716
10717 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10718 {
10719         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10720 }
10721
10722 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10723 {
10724         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10725                 return true;
10726
10727         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10728                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10729                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10730                 return true;
10731
10732         if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10733                 return true;
10734
10735         return false;
10736 }
10737
10738 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10739 {
10740         return vcpu->arch.preempted_in_kernel;
10741 }
10742
10743 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10744 {
10745         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10746 }
10747
10748 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10749 {
10750         return kvm_x86_ops.interrupt_allowed(vcpu, false);
10751 }
10752
10753 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10754 {
10755         if (is_64_bit_mode(vcpu))
10756                 return kvm_rip_read(vcpu);
10757         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10758                      kvm_rip_read(vcpu));
10759 }
10760 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10761
10762 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10763 {
10764         return kvm_get_linear_rip(vcpu) == linear_rip;
10765 }
10766 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10767
10768 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10769 {
10770         unsigned long rflags;
10771
10772         rflags = kvm_x86_ops.get_rflags(vcpu);
10773         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10774                 rflags &= ~X86_EFLAGS_TF;
10775         return rflags;
10776 }
10777 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10778
10779 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10780 {
10781         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10782             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10783                 rflags |= X86_EFLAGS_TF;
10784         kvm_x86_ops.set_rflags(vcpu, rflags);
10785 }
10786
10787 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10788 {
10789         __kvm_set_rflags(vcpu, rflags);
10790         kvm_make_request(KVM_REQ_EVENT, vcpu);
10791 }
10792 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10793
10794 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10795 {
10796         int r;
10797
10798         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10799               work->wakeup_all)
10800                 return;
10801
10802         r = kvm_mmu_reload(vcpu);
10803         if (unlikely(r))
10804                 return;
10805
10806         if (!vcpu->arch.mmu->direct_map &&
10807               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10808                 return;
10809
10810         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10811 }
10812
10813 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10814 {
10815         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10816
10817         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10818 }
10819
10820 static inline u32 kvm_async_pf_next_probe(u32 key)
10821 {
10822         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10823 }
10824
10825 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10826 {
10827         u32 key = kvm_async_pf_hash_fn(gfn);
10828
10829         while (vcpu->arch.apf.gfns[key] != ~0)
10830                 key = kvm_async_pf_next_probe(key);
10831
10832         vcpu->arch.apf.gfns[key] = gfn;
10833 }
10834
10835 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10836 {
10837         int i;
10838         u32 key = kvm_async_pf_hash_fn(gfn);
10839
10840         for (i = 0; i < ASYNC_PF_PER_VCPU &&
10841                      (vcpu->arch.apf.gfns[key] != gfn &&
10842                       vcpu->arch.apf.gfns[key] != ~0); i++)
10843                 key = kvm_async_pf_next_probe(key);
10844
10845         return key;
10846 }
10847
10848 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10849 {
10850         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10851 }
10852
10853 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10854 {
10855         u32 i, j, k;
10856
10857         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10858
10859         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10860                 return;
10861
10862         while (true) {
10863                 vcpu->arch.apf.gfns[i] = ~0;
10864                 do {
10865                         j = kvm_async_pf_next_probe(j);
10866                         if (vcpu->arch.apf.gfns[j] == ~0)
10867                                 return;
10868                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10869                         /*
10870                          * k lies cyclically in ]i,j]
10871                          * |    i.k.j |
10872                          * |....j i.k.| or  |.k..j i...|
10873                          */
10874                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10875                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10876                 i = j;
10877         }
10878 }
10879
10880 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10881 {
10882         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10883
10884         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10885                                       sizeof(reason));
10886 }
10887
10888 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10889 {
10890         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10891
10892         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10893                                              &token, offset, sizeof(token));
10894 }
10895
10896 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10897 {
10898         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10899         u32 val;
10900
10901         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10902                                          &val, offset, sizeof(val)))
10903                 return false;
10904
10905         return !val;
10906 }
10907
10908 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10909 {
10910         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10911                 return false;
10912
10913         if (!kvm_pv_async_pf_enabled(vcpu) ||
10914             (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10915                 return false;
10916
10917         return true;
10918 }
10919
10920 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10921 {
10922         if (unlikely(!lapic_in_kernel(vcpu) ||
10923                      kvm_event_needs_reinjection(vcpu) ||
10924                      vcpu->arch.exception.pending))
10925                 return false;
10926
10927         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10928                 return false;
10929
10930         /*
10931          * If interrupts are off we cannot even use an artificial
10932          * halt state.
10933          */
10934         return kvm_arch_interrupt_allowed(vcpu);
10935 }
10936
10937 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10938                                      struct kvm_async_pf *work)
10939 {
10940         struct x86_exception fault;
10941
10942         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10943         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10944
10945         if (kvm_can_deliver_async_pf(vcpu) &&
10946             !apf_put_user_notpresent(vcpu)) {
10947                 fault.vector = PF_VECTOR;
10948                 fault.error_code_valid = true;
10949                 fault.error_code = 0;
10950                 fault.nested_page_fault = false;
10951                 fault.address = work->arch.token;
10952                 fault.async_page_fault = true;
10953                 kvm_inject_page_fault(vcpu, &fault);
10954                 return true;
10955         } else {
10956                 /*
10957                  * It is not possible to deliver a paravirtualized asynchronous
10958                  * page fault, but putting the guest in an artificial halt state
10959                  * can be beneficial nevertheless: if an interrupt arrives, we
10960                  * can deliver it timely and perhaps the guest will schedule
10961                  * another process.  When the instruction that triggered a page
10962                  * fault is retried, hopefully the page will be ready in the host.
10963                  */
10964                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10965                 return false;
10966         }
10967 }
10968
10969 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10970                                  struct kvm_async_pf *work)
10971 {
10972         struct kvm_lapic_irq irq = {
10973                 .delivery_mode = APIC_DM_FIXED,
10974                 .vector = vcpu->arch.apf.vec
10975         };
10976
10977         if (work->wakeup_all)
10978                 work->arch.token = ~0; /* broadcast wakeup */
10979         else
10980                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10981         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10982
10983         if ((work->wakeup_all || work->notpresent_injected) &&
10984             kvm_pv_async_pf_enabled(vcpu) &&
10985             !apf_put_user_ready(vcpu, work->arch.token)) {
10986                 vcpu->arch.apf.pageready_pending = true;
10987                 kvm_apic_set_irq(vcpu, &irq, NULL);
10988         }
10989
10990         vcpu->arch.apf.halted = false;
10991         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10992 }
10993
10994 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10995 {
10996         kvm_make_request(KVM_REQ_APF_READY, vcpu);
10997         if (!vcpu->arch.apf.pageready_pending)
10998                 kvm_vcpu_kick(vcpu);
10999 }
11000
11001 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11002 {
11003         if (!kvm_pv_async_pf_enabled(vcpu))
11004                 return true;
11005         else
11006                 return apf_pageready_slot_free(vcpu);
11007 }
11008
11009 void kvm_arch_start_assignment(struct kvm *kvm)
11010 {
11011         atomic_inc(&kvm->arch.assigned_device_count);
11012 }
11013 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11014
11015 void kvm_arch_end_assignment(struct kvm *kvm)
11016 {
11017         atomic_dec(&kvm->arch.assigned_device_count);
11018 }
11019 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11020
11021 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11022 {
11023         return atomic_read(&kvm->arch.assigned_device_count);
11024 }
11025 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11026
11027 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11028 {
11029         atomic_inc(&kvm->arch.noncoherent_dma_count);
11030 }
11031 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11032
11033 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11034 {
11035         atomic_dec(&kvm->arch.noncoherent_dma_count);
11036 }
11037 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11038
11039 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11040 {
11041         return atomic_read(&kvm->arch.noncoherent_dma_count);
11042 }
11043 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11044
11045 bool kvm_arch_has_irq_bypass(void)
11046 {
11047         return true;
11048 }
11049
11050 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11051                                       struct irq_bypass_producer *prod)
11052 {
11053         struct kvm_kernel_irqfd *irqfd =
11054                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11055         int ret;
11056
11057         irqfd->producer = prod;
11058         kvm_arch_start_assignment(irqfd->kvm);
11059         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11060                                          prod->irq, irqfd->gsi, 1);
11061
11062         if (ret)
11063                 kvm_arch_end_assignment(irqfd->kvm);
11064
11065         return ret;
11066 }
11067
11068 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11069                                       struct irq_bypass_producer *prod)
11070 {
11071         int ret;
11072         struct kvm_kernel_irqfd *irqfd =
11073                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11074
11075         WARN_ON(irqfd->producer != prod);
11076         irqfd->producer = NULL;
11077
11078         /*
11079          * When producer of consumer is unregistered, we change back to
11080          * remapped mode, so we can re-use the current implementation
11081          * when the irq is masked/disabled or the consumer side (KVM
11082          * int this case doesn't want to receive the interrupts.
11083         */
11084         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11085         if (ret)
11086                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11087                        " fails: %d\n", irqfd->consumer.token, ret);
11088
11089         kvm_arch_end_assignment(irqfd->kvm);
11090 }
11091
11092 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11093                                    uint32_t guest_irq, bool set)
11094 {
11095         return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11096 }
11097
11098 bool kvm_vector_hashing_enabled(void)
11099 {
11100         return vector_hashing;
11101 }
11102
11103 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11104 {
11105         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11106 }
11107 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11108
11109
11110 int kvm_spec_ctrl_test_value(u64 value)
11111 {
11112         /*
11113          * test that setting IA32_SPEC_CTRL to given value
11114          * is allowed by the host processor
11115          */
11116
11117         u64 saved_value;
11118         unsigned long flags;
11119         int ret = 0;
11120
11121         local_irq_save(flags);
11122
11123         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11124                 ret = 1;
11125         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11126                 ret = 1;
11127         else
11128                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11129
11130         local_irq_restore(flags);
11131
11132         return ret;
11133 }
11134 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11135
11136 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11137 {
11138         struct x86_exception fault;
11139         u32 access = error_code &
11140                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11141
11142         if (!(error_code & PFERR_PRESENT_MASK) ||
11143             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11144                 /*
11145                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11146                  * tables probably do not match the TLB.  Just proceed
11147                  * with the error code that the processor gave.
11148                  */
11149                 fault.vector = PF_VECTOR;
11150                 fault.error_code_valid = true;
11151                 fault.error_code = error_code;
11152                 fault.nested_page_fault = false;
11153                 fault.address = gva;
11154         }
11155         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11156 }
11157 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11158
11159 /*
11160  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11161  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11162  * indicates whether exit to userspace is needed.
11163  */
11164 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11165                               struct x86_exception *e)
11166 {
11167         if (r == X86EMUL_PROPAGATE_FAULT) {
11168                 kvm_inject_emulated_page_fault(vcpu, e);
11169                 return 1;
11170         }
11171
11172         /*
11173          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11174          * while handling a VMX instruction KVM could've handled the request
11175          * correctly by exiting to userspace and performing I/O but there
11176          * doesn't seem to be a real use-case behind such requests, just return
11177          * KVM_EXIT_INTERNAL_ERROR for now.
11178          */
11179         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11180         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11181         vcpu->run->internal.ndata = 0;
11182
11183         return 0;
11184 }
11185 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11186
11187 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11188 {
11189         bool pcid_enabled;
11190         struct x86_exception e;
11191         unsigned i;
11192         unsigned long roots_to_free = 0;
11193         struct {
11194                 u64 pcid;
11195                 u64 gla;
11196         } operand;
11197         int r;
11198
11199         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11200         if (r != X86EMUL_CONTINUE)
11201                 return kvm_handle_memory_failure(vcpu, r, &e);
11202
11203         if (operand.pcid >> 12 != 0) {
11204                 kvm_inject_gp(vcpu, 0);
11205                 return 1;
11206         }
11207
11208         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11209
11210         switch (type) {
11211         case INVPCID_TYPE_INDIV_ADDR:
11212                 if ((!pcid_enabled && (operand.pcid != 0)) ||
11213                     is_noncanonical_address(operand.gla, vcpu)) {
11214                         kvm_inject_gp(vcpu, 0);
11215                         return 1;
11216                 }
11217                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11218                 return kvm_skip_emulated_instruction(vcpu);
11219
11220         case INVPCID_TYPE_SINGLE_CTXT:
11221                 if (!pcid_enabled && (operand.pcid != 0)) {
11222                         kvm_inject_gp(vcpu, 0);
11223                         return 1;
11224                 }
11225
11226                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11227                         kvm_mmu_sync_roots(vcpu);
11228                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11229                 }
11230
11231                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11232                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11233                             == operand.pcid)
11234                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11235
11236                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11237                 /*
11238                  * If neither the current cr3 nor any of the prev_roots use the
11239                  * given PCID, then nothing needs to be done here because a
11240                  * resync will happen anyway before switching to any other CR3.
11241                  */
11242
11243                 return kvm_skip_emulated_instruction(vcpu);
11244
11245         case INVPCID_TYPE_ALL_NON_GLOBAL:
11246                 /*
11247                  * Currently, KVM doesn't mark global entries in the shadow
11248                  * page tables, so a non-global flush just degenerates to a
11249                  * global flush. If needed, we could optimize this later by
11250                  * keeping track of global entries in shadow page tables.
11251                  */
11252
11253                 fallthrough;
11254         case INVPCID_TYPE_ALL_INCL_GLOBAL:
11255                 kvm_mmu_unload(vcpu);
11256                 return kvm_skip_emulated_instruction(vcpu);
11257
11258         default:
11259                 BUG(); /* We have already checked above that type <= 3 */
11260         }
11261 }
11262 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11263
11264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11268 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11269 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11270 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11271 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11272 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11273 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11274 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11275 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11276 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11277 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11278 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11279 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11280 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11281 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11282 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11283 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11284 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11285 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);