KVM: SVM: Add support for CR0 write traps for an SEV-ES guest
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88         ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
165 /*
166  * Restoring the host value for MSRs that are only consumed when running in
167  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
168  * returns to userspace, i.e. the kernel can run with the guest's value.
169  */
170 #define KVM_MAX_NR_USER_RETURN_MSRS 16
171
172 struct kvm_user_return_msrs_global {
173         int nr;
174         u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
175 };
176
177 struct kvm_user_return_msrs {
178         struct user_return_notifier urn;
179         bool registered;
180         struct kvm_user_return_msr_values {
181                 u64 host;
182                 u64 curr;
183         } values[KVM_MAX_NR_USER_RETURN_MSRS];
184 };
185
186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
187 static struct kvm_user_return_msrs __percpu *user_return_msrs;
188
189 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
190                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
191                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
192                                 | XFEATURE_MASK_PKRU)
193
194 u64 __read_mostly host_efer;
195 EXPORT_SYMBOL_GPL(host_efer);
196
197 bool __read_mostly allow_smaller_maxphyaddr = 0;
198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
199
200 static u64 __read_mostly host_xss;
201 u64 __read_mostly supported_xss;
202 EXPORT_SYMBOL_GPL(supported_xss);
203
204 struct kvm_stats_debugfs_item debugfs_entries[] = {
205         VCPU_STAT("pf_fixed", pf_fixed),
206         VCPU_STAT("pf_guest", pf_guest),
207         VCPU_STAT("tlb_flush", tlb_flush),
208         VCPU_STAT("invlpg", invlpg),
209         VCPU_STAT("exits", exits),
210         VCPU_STAT("io_exits", io_exits),
211         VCPU_STAT("mmio_exits", mmio_exits),
212         VCPU_STAT("signal_exits", signal_exits),
213         VCPU_STAT("irq_window", irq_window_exits),
214         VCPU_STAT("nmi_window", nmi_window_exits),
215         VCPU_STAT("halt_exits", halt_exits),
216         VCPU_STAT("halt_successful_poll", halt_successful_poll),
217         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
218         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
219         VCPU_STAT("halt_wakeup", halt_wakeup),
220         VCPU_STAT("hypercalls", hypercalls),
221         VCPU_STAT("request_irq", request_irq_exits),
222         VCPU_STAT("irq_exits", irq_exits),
223         VCPU_STAT("host_state_reload", host_state_reload),
224         VCPU_STAT("fpu_reload", fpu_reload),
225         VCPU_STAT("insn_emulation", insn_emulation),
226         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
227         VCPU_STAT("irq_injections", irq_injections),
228         VCPU_STAT("nmi_injections", nmi_injections),
229         VCPU_STAT("req_event", req_event),
230         VCPU_STAT("l1d_flush", l1d_flush),
231         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
232         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
233         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
234         VM_STAT("mmu_pte_write", mmu_pte_write),
235         VM_STAT("mmu_pte_updated", mmu_pte_updated),
236         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
237         VM_STAT("mmu_flooded", mmu_flooded),
238         VM_STAT("mmu_recycled", mmu_recycled),
239         VM_STAT("mmu_cache_miss", mmu_cache_miss),
240         VM_STAT("mmu_unsync", mmu_unsync),
241         VM_STAT("remote_tlb_flush", remote_tlb_flush),
242         VM_STAT("largepages", lpages, .mode = 0444),
243         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
244         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
245         { NULL }
246 };
247
248 u64 __read_mostly host_xcr0;
249 u64 __read_mostly supported_xcr0;
250 EXPORT_SYMBOL_GPL(supported_xcr0);
251
252 static struct kmem_cache *x86_fpu_cache;
253
254 static struct kmem_cache *x86_emulator_cache;
255
256 /*
257  * When called, it means the previous get/set msr reached an invalid msr.
258  * Return true if we want to ignore/silent this failed msr access.
259  */
260 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
261                                   u64 data, bool write)
262 {
263         const char *op = write ? "wrmsr" : "rdmsr";
264
265         if (ignore_msrs) {
266                 if (report_ignored_msrs)
267                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
268                                       op, msr, data);
269                 /* Mask the error */
270                 return true;
271         } else {
272                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
273                                       op, msr, data);
274                 return false;
275         }
276 }
277
278 static struct kmem_cache *kvm_alloc_emulator_cache(void)
279 {
280         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
281         unsigned int size = sizeof(struct x86_emulate_ctxt);
282
283         return kmem_cache_create_usercopy("x86_emulator", size,
284                                           __alignof__(struct x86_emulate_ctxt),
285                                           SLAB_ACCOUNT, useroffset,
286                                           size - useroffset, NULL);
287 }
288
289 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
290
291 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
292 {
293         int i;
294         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
295                 vcpu->arch.apf.gfns[i] = ~0;
296 }
297
298 static void kvm_on_user_return(struct user_return_notifier *urn)
299 {
300         unsigned slot;
301         struct kvm_user_return_msrs *msrs
302                 = container_of(urn, struct kvm_user_return_msrs, urn);
303         struct kvm_user_return_msr_values *values;
304         unsigned long flags;
305
306         /*
307          * Disabling irqs at this point since the following code could be
308          * interrupted and executed through kvm_arch_hardware_disable()
309          */
310         local_irq_save(flags);
311         if (msrs->registered) {
312                 msrs->registered = false;
313                 user_return_notifier_unregister(urn);
314         }
315         local_irq_restore(flags);
316         for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
317                 values = &msrs->values[slot];
318                 if (values->host != values->curr) {
319                         wrmsrl(user_return_msrs_global.msrs[slot], values->host);
320                         values->curr = values->host;
321                 }
322         }
323 }
324
325 void kvm_define_user_return_msr(unsigned slot, u32 msr)
326 {
327         BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
328         user_return_msrs_global.msrs[slot] = msr;
329         if (slot >= user_return_msrs_global.nr)
330                 user_return_msrs_global.nr = slot + 1;
331 }
332 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
333
334 static void kvm_user_return_msr_cpu_online(void)
335 {
336         unsigned int cpu = smp_processor_id();
337         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
338         u64 value;
339         int i;
340
341         for (i = 0; i < user_return_msrs_global.nr; ++i) {
342                 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
343                 msrs->values[i].host = value;
344                 msrs->values[i].curr = value;
345         }
346 }
347
348 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
349 {
350         unsigned int cpu = smp_processor_id();
351         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352         int err;
353
354         value = (value & mask) | (msrs->values[slot].host & ~mask);
355         if (value == msrs->values[slot].curr)
356                 return 0;
357         err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
358         if (err)
359                 return 1;
360
361         msrs->values[slot].curr = value;
362         if (!msrs->registered) {
363                 msrs->urn.on_user_return = kvm_on_user_return;
364                 user_return_notifier_register(&msrs->urn);
365                 msrs->registered = true;
366         }
367         return 0;
368 }
369 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
370
371 static void drop_user_return_notifiers(void)
372 {
373         unsigned int cpu = smp_processor_id();
374         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
375
376         if (msrs->registered)
377                 kvm_on_user_return(&msrs->urn);
378 }
379
380 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
381 {
382         return vcpu->arch.apic_base;
383 }
384 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
385
386 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
387 {
388         return kvm_apic_mode(kvm_get_apic_base(vcpu));
389 }
390 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
391
392 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
393 {
394         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
395         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
396         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
397                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
398
399         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
400                 return 1;
401         if (!msr_info->host_initiated) {
402                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
403                         return 1;
404                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
405                         return 1;
406         }
407
408         kvm_lapic_set_base(vcpu, msr_info->data);
409         kvm_recalculate_apic_map(vcpu->kvm);
410         return 0;
411 }
412 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
413
414 asmlinkage __visible noinstr void kvm_spurious_fault(void)
415 {
416         /* Fault while not rebooting.  We want the trace. */
417         BUG_ON(!kvm_rebooting);
418 }
419 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
420
421 #define EXCPT_BENIGN            0
422 #define EXCPT_CONTRIBUTORY      1
423 #define EXCPT_PF                2
424
425 static int exception_class(int vector)
426 {
427         switch (vector) {
428         case PF_VECTOR:
429                 return EXCPT_PF;
430         case DE_VECTOR:
431         case TS_VECTOR:
432         case NP_VECTOR:
433         case SS_VECTOR:
434         case GP_VECTOR:
435                 return EXCPT_CONTRIBUTORY;
436         default:
437                 break;
438         }
439         return EXCPT_BENIGN;
440 }
441
442 #define EXCPT_FAULT             0
443 #define EXCPT_TRAP              1
444 #define EXCPT_ABORT             2
445 #define EXCPT_INTERRUPT         3
446
447 static int exception_type(int vector)
448 {
449         unsigned int mask;
450
451         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
452                 return EXCPT_INTERRUPT;
453
454         mask = 1 << vector;
455
456         /* #DB is trap, as instruction watchpoints are handled elsewhere */
457         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
458                 return EXCPT_TRAP;
459
460         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
461                 return EXCPT_ABORT;
462
463         /* Reserved exceptions will result in fault */
464         return EXCPT_FAULT;
465 }
466
467 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
468 {
469         unsigned nr = vcpu->arch.exception.nr;
470         bool has_payload = vcpu->arch.exception.has_payload;
471         unsigned long payload = vcpu->arch.exception.payload;
472
473         if (!has_payload)
474                 return;
475
476         switch (nr) {
477         case DB_VECTOR:
478                 /*
479                  * "Certain debug exceptions may clear bit 0-3.  The
480                  * remaining contents of the DR6 register are never
481                  * cleared by the processor".
482                  */
483                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
484                 /*
485                  * DR6.RTM is set by all #DB exceptions that don't clear it.
486                  */
487                 vcpu->arch.dr6 |= DR6_RTM;
488                 vcpu->arch.dr6 |= payload;
489                 /*
490                  * Bit 16 should be set in the payload whenever the #DB
491                  * exception should clear DR6.RTM. This makes the payload
492                  * compatible with the pending debug exceptions under VMX.
493                  * Though not currently documented in the SDM, this also
494                  * makes the payload compatible with the exit qualification
495                  * for #DB exceptions under VMX.
496                  */
497                 vcpu->arch.dr6 ^= payload & DR6_RTM;
498
499                 /*
500                  * The #DB payload is defined as compatible with the 'pending
501                  * debug exceptions' field under VMX, not DR6. While bit 12 is
502                  * defined in the 'pending debug exceptions' field (enabled
503                  * breakpoint), it is reserved and must be zero in DR6.
504                  */
505                 vcpu->arch.dr6 &= ~BIT(12);
506                 break;
507         case PF_VECTOR:
508                 vcpu->arch.cr2 = payload;
509                 break;
510         }
511
512         vcpu->arch.exception.has_payload = false;
513         vcpu->arch.exception.payload = 0;
514 }
515 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
516
517 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
518                 unsigned nr, bool has_error, u32 error_code,
519                 bool has_payload, unsigned long payload, bool reinject)
520 {
521         u32 prev_nr;
522         int class1, class2;
523
524         kvm_make_request(KVM_REQ_EVENT, vcpu);
525
526         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
527         queue:
528                 if (has_error && !is_protmode(vcpu))
529                         has_error = false;
530                 if (reinject) {
531                         /*
532                          * On vmentry, vcpu->arch.exception.pending is only
533                          * true if an event injection was blocked by
534                          * nested_run_pending.  In that case, however,
535                          * vcpu_enter_guest requests an immediate exit,
536                          * and the guest shouldn't proceed far enough to
537                          * need reinjection.
538                          */
539                         WARN_ON_ONCE(vcpu->arch.exception.pending);
540                         vcpu->arch.exception.injected = true;
541                         if (WARN_ON_ONCE(has_payload)) {
542                                 /*
543                                  * A reinjected event has already
544                                  * delivered its payload.
545                                  */
546                                 has_payload = false;
547                                 payload = 0;
548                         }
549                 } else {
550                         vcpu->arch.exception.pending = true;
551                         vcpu->arch.exception.injected = false;
552                 }
553                 vcpu->arch.exception.has_error_code = has_error;
554                 vcpu->arch.exception.nr = nr;
555                 vcpu->arch.exception.error_code = error_code;
556                 vcpu->arch.exception.has_payload = has_payload;
557                 vcpu->arch.exception.payload = payload;
558                 if (!is_guest_mode(vcpu))
559                         kvm_deliver_exception_payload(vcpu);
560                 return;
561         }
562
563         /* to check exception */
564         prev_nr = vcpu->arch.exception.nr;
565         if (prev_nr == DF_VECTOR) {
566                 /* triple fault -> shutdown */
567                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
568                 return;
569         }
570         class1 = exception_class(prev_nr);
571         class2 = exception_class(nr);
572         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
573                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
574                 /*
575                  * Generate double fault per SDM Table 5-5.  Set
576                  * exception.pending = true so that the double fault
577                  * can trigger a nested vmexit.
578                  */
579                 vcpu->arch.exception.pending = true;
580                 vcpu->arch.exception.injected = false;
581                 vcpu->arch.exception.has_error_code = true;
582                 vcpu->arch.exception.nr = DF_VECTOR;
583                 vcpu->arch.exception.error_code = 0;
584                 vcpu->arch.exception.has_payload = false;
585                 vcpu->arch.exception.payload = 0;
586         } else
587                 /* replace previous exception with a new one in a hope
588                    that instruction re-execution will regenerate lost
589                    exception */
590                 goto queue;
591 }
592
593 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
594 {
595         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
596 }
597 EXPORT_SYMBOL_GPL(kvm_queue_exception);
598
599 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
600 {
601         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
602 }
603 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
604
605 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
606                            unsigned long payload)
607 {
608         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
609 }
610 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
611
612 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
613                                     u32 error_code, unsigned long payload)
614 {
615         kvm_multiple_exception(vcpu, nr, true, error_code,
616                                true, payload, false);
617 }
618
619 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
620 {
621         if (err)
622                 kvm_inject_gp(vcpu, 0);
623         else
624                 return kvm_skip_emulated_instruction(vcpu);
625
626         return 1;
627 }
628 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
629
630 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
631 {
632         ++vcpu->stat.pf_guest;
633         vcpu->arch.exception.nested_apf =
634                 is_guest_mode(vcpu) && fault->async_page_fault;
635         if (vcpu->arch.exception.nested_apf) {
636                 vcpu->arch.apf.nested_apf_token = fault->address;
637                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
638         } else {
639                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
640                                         fault->address);
641         }
642 }
643 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
644
645 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
646                                     struct x86_exception *fault)
647 {
648         struct kvm_mmu *fault_mmu;
649         WARN_ON_ONCE(fault->vector != PF_VECTOR);
650
651         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
652                                                vcpu->arch.walk_mmu;
653
654         /*
655          * Invalidate the TLB entry for the faulting address, if it exists,
656          * else the access will fault indefinitely (and to emulate hardware).
657          */
658         if ((fault->error_code & PFERR_PRESENT_MASK) &&
659             !(fault->error_code & PFERR_RSVD_MASK))
660                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
661                                        fault_mmu->root_hpa);
662
663         fault_mmu->inject_page_fault(vcpu, fault);
664         return fault->nested_page_fault;
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
667
668 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
669 {
670         atomic_inc(&vcpu->arch.nmi_queued);
671         kvm_make_request(KVM_REQ_NMI, vcpu);
672 }
673 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
674
675 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
676 {
677         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
678 }
679 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
680
681 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
682 {
683         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
684 }
685 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
686
687 /*
688  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
689  * a #GP and return false.
690  */
691 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
692 {
693         if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
694                 return true;
695         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
696         return false;
697 }
698 EXPORT_SYMBOL_GPL(kvm_require_cpl);
699
700 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
701 {
702         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703                 return true;
704
705         kvm_queue_exception(vcpu, UD_VECTOR);
706         return false;
707 }
708 EXPORT_SYMBOL_GPL(kvm_require_dr);
709
710 /*
711  * This function will be used to read from the physical memory of the currently
712  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
713  * can read from guest physical or from the guest's guest physical memory.
714  */
715 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
716                             gfn_t ngfn, void *data, int offset, int len,
717                             u32 access)
718 {
719         struct x86_exception exception;
720         gfn_t real_gfn;
721         gpa_t ngpa;
722
723         ngpa     = gfn_to_gpa(ngfn);
724         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
725         if (real_gfn == UNMAPPED_GVA)
726                 return -EFAULT;
727
728         real_gfn = gpa_to_gfn(real_gfn);
729
730         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
731 }
732 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
733
734 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
735                                void *data, int offset, int len, u32 access)
736 {
737         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
738                                        data, offset, len, access);
739 }
740
741 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
742 {
743         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
744                rsvd_bits(1, 2);
745 }
746
747 /*
748  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
749  */
750 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
751 {
752         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
753         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
754         int i;
755         int ret;
756         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
757
758         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
759                                       offset * sizeof(u64), sizeof(pdpte),
760                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
761         if (ret < 0) {
762                 ret = 0;
763                 goto out;
764         }
765         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
766                 if ((pdpte[i] & PT_PRESENT_MASK) &&
767                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
768                         ret = 0;
769                         goto out;
770                 }
771         }
772         ret = 1;
773
774         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
775         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
776
777 out:
778
779         return ret;
780 }
781 EXPORT_SYMBOL_GPL(load_pdptrs);
782
783 bool pdptrs_changed(struct kvm_vcpu *vcpu)
784 {
785         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
786         int offset;
787         gfn_t gfn;
788         int r;
789
790         if (!is_pae_paging(vcpu))
791                 return false;
792
793         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
794                 return true;
795
796         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
797         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
798         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
799                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
800         if (r < 0)
801                 return true;
802
803         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
804 }
805 EXPORT_SYMBOL_GPL(pdptrs_changed);
806
807 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
808 {
809         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
810
811         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
812                 kvm_clear_async_pf_completion_queue(vcpu);
813                 kvm_async_pf_hash_reset(vcpu);
814         }
815
816         if ((cr0 ^ old_cr0) & update_bits)
817                 kvm_mmu_reset_context(vcpu);
818
819         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
820             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
821             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
822                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
823 }
824 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
825
826 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
827 {
828         unsigned long old_cr0 = kvm_read_cr0(vcpu);
829         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
830
831         cr0 |= X86_CR0_ET;
832
833 #ifdef CONFIG_X86_64
834         if (cr0 & 0xffffffff00000000UL)
835                 return 1;
836 #endif
837
838         cr0 &= ~CR0_RESERVED_BITS;
839
840         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
841                 return 1;
842
843         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
844                 return 1;
845
846 #ifdef CONFIG_X86_64
847         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
848             (cr0 & X86_CR0_PG)) {
849                 int cs_db, cs_l;
850
851                 if (!is_pae(vcpu))
852                         return 1;
853                 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
854                 if (cs_l)
855                         return 1;
856         }
857 #endif
858         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
859             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
860             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
861                 return 1;
862
863         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
864                 return 1;
865
866         kvm_x86_ops.set_cr0(vcpu, cr0);
867
868         kvm_post_set_cr0(vcpu, old_cr0, cr0);
869
870         return 0;
871 }
872 EXPORT_SYMBOL_GPL(kvm_set_cr0);
873
874 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
875 {
876         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
877 }
878 EXPORT_SYMBOL_GPL(kvm_lmsw);
879
880 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
881 {
882         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
883
884                 if (vcpu->arch.xcr0 != host_xcr0)
885                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
886
887                 if (vcpu->arch.xsaves_enabled &&
888                     vcpu->arch.ia32_xss != host_xss)
889                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
890         }
891
892         if (static_cpu_has(X86_FEATURE_PKU) &&
893             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
894              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
895             vcpu->arch.pkru != vcpu->arch.host_pkru)
896                 __write_pkru(vcpu->arch.pkru);
897 }
898 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
899
900 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
901 {
902         if (static_cpu_has(X86_FEATURE_PKU) &&
903             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
904              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
905                 vcpu->arch.pkru = rdpkru();
906                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
907                         __write_pkru(vcpu->arch.host_pkru);
908         }
909
910         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
911
912                 if (vcpu->arch.xcr0 != host_xcr0)
913                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
914
915                 if (vcpu->arch.xsaves_enabled &&
916                     vcpu->arch.ia32_xss != host_xss)
917                         wrmsrl(MSR_IA32_XSS, host_xss);
918         }
919
920 }
921 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
922
923 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
924 {
925         u64 xcr0 = xcr;
926         u64 old_xcr0 = vcpu->arch.xcr0;
927         u64 valid_bits;
928
929         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
930         if (index != XCR_XFEATURE_ENABLED_MASK)
931                 return 1;
932         if (!(xcr0 & XFEATURE_MASK_FP))
933                 return 1;
934         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
935                 return 1;
936
937         /*
938          * Do not allow the guest to set bits that we do not support
939          * saving.  However, xcr0 bit 0 is always set, even if the
940          * emulated CPU does not support XSAVE (see fx_init).
941          */
942         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
943         if (xcr0 & ~valid_bits)
944                 return 1;
945
946         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
947             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
948                 return 1;
949
950         if (xcr0 & XFEATURE_MASK_AVX512) {
951                 if (!(xcr0 & XFEATURE_MASK_YMM))
952                         return 1;
953                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
954                         return 1;
955         }
956         vcpu->arch.xcr0 = xcr0;
957
958         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
959                 kvm_update_cpuid_runtime(vcpu);
960         return 0;
961 }
962
963 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
964 {
965         if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
966             __kvm_set_xcr(vcpu, index, xcr)) {
967                 kvm_inject_gp(vcpu, 0);
968                 return 1;
969         }
970         return 0;
971 }
972 EXPORT_SYMBOL_GPL(kvm_set_xcr);
973
974 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
975 {
976         if (cr4 & cr4_reserved_bits)
977                 return false;
978
979         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
980                 return false;
981
982         return kvm_x86_ops.is_valid_cr4(vcpu, cr4);
983 }
984 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
985
986 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
987 {
988         unsigned long old_cr4 = kvm_read_cr4(vcpu);
989         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
990                                    X86_CR4_SMEP;
991         unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
992
993         if (!kvm_is_valid_cr4(vcpu, cr4))
994                 return 1;
995
996         if (is_long_mode(vcpu)) {
997                 if (!(cr4 & X86_CR4_PAE))
998                         return 1;
999                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1000                         return 1;
1001         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1002                    && ((cr4 ^ old_cr4) & pdptr_bits)
1003                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1004                                    kvm_read_cr3(vcpu)))
1005                 return 1;
1006
1007         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1008                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1009                         return 1;
1010
1011                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1012                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1013                         return 1;
1014         }
1015
1016         kvm_x86_ops.set_cr4(vcpu, cr4);
1017
1018         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1019             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1020                 kvm_mmu_reset_context(vcpu);
1021
1022         return 0;
1023 }
1024 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1025
1026 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1027 {
1028         bool skip_tlb_flush = false;
1029 #ifdef CONFIG_X86_64
1030         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1031
1032         if (pcid_enabled) {
1033                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1034                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1035         }
1036 #endif
1037
1038         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1039                 if (!skip_tlb_flush) {
1040                         kvm_mmu_sync_roots(vcpu);
1041                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1042                 }
1043                 return 0;
1044         }
1045
1046         if (is_long_mode(vcpu) &&
1047             (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1048                 return 1;
1049         else if (is_pae_paging(vcpu) &&
1050                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1051                 return 1;
1052
1053         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1054         vcpu->arch.cr3 = cr3;
1055         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1056
1057         return 0;
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1060
1061 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1062 {
1063         if (cr8 & CR8_RESERVED_BITS)
1064                 return 1;
1065         if (lapic_in_kernel(vcpu))
1066                 kvm_lapic_set_tpr(vcpu, cr8);
1067         else
1068                 vcpu->arch.cr8 = cr8;
1069         return 0;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1072
1073 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1074 {
1075         if (lapic_in_kernel(vcpu))
1076                 return kvm_lapic_get_cr8(vcpu);
1077         else
1078                 return vcpu->arch.cr8;
1079 }
1080 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1081
1082 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1083 {
1084         int i;
1085
1086         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1087                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1088                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1089                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1090         }
1091 }
1092
1093 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1094 {
1095         unsigned long dr7;
1096
1097         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1098                 dr7 = vcpu->arch.guest_debug_dr7;
1099         else
1100                 dr7 = vcpu->arch.dr7;
1101         kvm_x86_ops.set_dr7(vcpu, dr7);
1102         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1103         if (dr7 & DR7_BP_EN_MASK)
1104                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1105 }
1106 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1107
1108 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1109 {
1110         u64 fixed = DR6_FIXED_1;
1111
1112         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1113                 fixed |= DR6_RTM;
1114         return fixed;
1115 }
1116
1117 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1118 {
1119         size_t size = ARRAY_SIZE(vcpu->arch.db);
1120
1121         switch (dr) {
1122         case 0 ... 3:
1123                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1124                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1125                         vcpu->arch.eff_db[dr] = val;
1126                 break;
1127         case 4:
1128         case 6:
1129                 if (!kvm_dr6_valid(val))
1130                         return -1; /* #GP */
1131                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1132                 break;
1133         case 5:
1134         default: /* 7 */
1135                 if (!kvm_dr7_valid(val))
1136                         return -1; /* #GP */
1137                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1138                 kvm_update_dr7(vcpu);
1139                 break;
1140         }
1141
1142         return 0;
1143 }
1144
1145 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1146 {
1147         if (__kvm_set_dr(vcpu, dr, val)) {
1148                 kvm_inject_gp(vcpu, 0);
1149                 return 1;
1150         }
1151         return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(kvm_set_dr);
1154
1155 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1156 {
1157         size_t size = ARRAY_SIZE(vcpu->arch.db);
1158
1159         switch (dr) {
1160         case 0 ... 3:
1161                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1162                 break;
1163         case 4:
1164         case 6:
1165                 *val = vcpu->arch.dr6;
1166                 break;
1167         case 5:
1168         default: /* 7 */
1169                 *val = vcpu->arch.dr7;
1170                 break;
1171         }
1172         return 0;
1173 }
1174 EXPORT_SYMBOL_GPL(kvm_get_dr);
1175
1176 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1177 {
1178         u32 ecx = kvm_rcx_read(vcpu);
1179         u64 data;
1180         int err;
1181
1182         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1183         if (err)
1184                 return err;
1185         kvm_rax_write(vcpu, (u32)data);
1186         kvm_rdx_write(vcpu, data >> 32);
1187         return err;
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1190
1191 /*
1192  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1193  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1194  *
1195  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1196  * extract the supported MSRs from the related const lists.
1197  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1198  * capabilities of the host cpu. This capabilities test skips MSRs that are
1199  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1200  * may depend on host virtualization features rather than host cpu features.
1201  */
1202
1203 static const u32 msrs_to_save_all[] = {
1204         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1205         MSR_STAR,
1206 #ifdef CONFIG_X86_64
1207         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1208 #endif
1209         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1210         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1211         MSR_IA32_SPEC_CTRL,
1212         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1213         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1214         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1215         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1216         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1217         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1218         MSR_IA32_UMWAIT_CONTROL,
1219
1220         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1221         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1222         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1223         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1224         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1225         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1226         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1227         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1228         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1229         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1230         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1231         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1232         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1233         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1234         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1235         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1236         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1237         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1238         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1239         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1240         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1241         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1242 };
1243
1244 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1245 static unsigned num_msrs_to_save;
1246
1247 static const u32 emulated_msrs_all[] = {
1248         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1249         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1250         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1251         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1252         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1253         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1254         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1255         HV_X64_MSR_RESET,
1256         HV_X64_MSR_VP_INDEX,
1257         HV_X64_MSR_VP_RUNTIME,
1258         HV_X64_MSR_SCONTROL,
1259         HV_X64_MSR_STIMER0_CONFIG,
1260         HV_X64_MSR_VP_ASSIST_PAGE,
1261         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1262         HV_X64_MSR_TSC_EMULATION_STATUS,
1263         HV_X64_MSR_SYNDBG_OPTIONS,
1264         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1265         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1266         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1267
1268         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1269         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1270
1271         MSR_IA32_TSC_ADJUST,
1272         MSR_IA32_TSCDEADLINE,
1273         MSR_IA32_ARCH_CAPABILITIES,
1274         MSR_IA32_PERF_CAPABILITIES,
1275         MSR_IA32_MISC_ENABLE,
1276         MSR_IA32_MCG_STATUS,
1277         MSR_IA32_MCG_CTL,
1278         MSR_IA32_MCG_EXT_CTL,
1279         MSR_IA32_SMBASE,
1280         MSR_SMI_COUNT,
1281         MSR_PLATFORM_INFO,
1282         MSR_MISC_FEATURES_ENABLES,
1283         MSR_AMD64_VIRT_SPEC_CTRL,
1284         MSR_IA32_POWER_CTL,
1285         MSR_IA32_UCODE_REV,
1286
1287         /*
1288          * The following list leaves out MSRs whose values are determined
1289          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1290          * We always support the "true" VMX control MSRs, even if the host
1291          * processor does not, so I am putting these registers here rather
1292          * than in msrs_to_save_all.
1293          */
1294         MSR_IA32_VMX_BASIC,
1295         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1296         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1297         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1298         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1299         MSR_IA32_VMX_MISC,
1300         MSR_IA32_VMX_CR0_FIXED0,
1301         MSR_IA32_VMX_CR4_FIXED0,
1302         MSR_IA32_VMX_VMCS_ENUM,
1303         MSR_IA32_VMX_PROCBASED_CTLS2,
1304         MSR_IA32_VMX_EPT_VPID_CAP,
1305         MSR_IA32_VMX_VMFUNC,
1306
1307         MSR_K7_HWCR,
1308         MSR_KVM_POLL_CONTROL,
1309 };
1310
1311 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1312 static unsigned num_emulated_msrs;
1313
1314 /*
1315  * List of msr numbers which are used to expose MSR-based features that
1316  * can be used by a hypervisor to validate requested CPU features.
1317  */
1318 static const u32 msr_based_features_all[] = {
1319         MSR_IA32_VMX_BASIC,
1320         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1321         MSR_IA32_VMX_PINBASED_CTLS,
1322         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1323         MSR_IA32_VMX_PROCBASED_CTLS,
1324         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1325         MSR_IA32_VMX_EXIT_CTLS,
1326         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1327         MSR_IA32_VMX_ENTRY_CTLS,
1328         MSR_IA32_VMX_MISC,
1329         MSR_IA32_VMX_CR0_FIXED0,
1330         MSR_IA32_VMX_CR0_FIXED1,
1331         MSR_IA32_VMX_CR4_FIXED0,
1332         MSR_IA32_VMX_CR4_FIXED1,
1333         MSR_IA32_VMX_VMCS_ENUM,
1334         MSR_IA32_VMX_PROCBASED_CTLS2,
1335         MSR_IA32_VMX_EPT_VPID_CAP,
1336         MSR_IA32_VMX_VMFUNC,
1337
1338         MSR_F10H_DECFG,
1339         MSR_IA32_UCODE_REV,
1340         MSR_IA32_ARCH_CAPABILITIES,
1341         MSR_IA32_PERF_CAPABILITIES,
1342 };
1343
1344 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1345 static unsigned int num_msr_based_features;
1346
1347 static u64 kvm_get_arch_capabilities(void)
1348 {
1349         u64 data = 0;
1350
1351         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1352                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1353
1354         /*
1355          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1356          * the nested hypervisor runs with NX huge pages.  If it is not,
1357          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1358          * L1 guests, so it need not worry about its own (L2) guests.
1359          */
1360         data |= ARCH_CAP_PSCHANGE_MC_NO;
1361
1362         /*
1363          * If we're doing cache flushes (either "always" or "cond")
1364          * we will do one whenever the guest does a vmlaunch/vmresume.
1365          * If an outer hypervisor is doing the cache flush for us
1366          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1367          * capability to the guest too, and if EPT is disabled we're not
1368          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1369          * require a nested hypervisor to do a flush of its own.
1370          */
1371         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1372                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1373
1374         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1375                 data |= ARCH_CAP_RDCL_NO;
1376         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1377                 data |= ARCH_CAP_SSB_NO;
1378         if (!boot_cpu_has_bug(X86_BUG_MDS))
1379                 data |= ARCH_CAP_MDS_NO;
1380
1381         /*
1382          * On TAA affected systems:
1383          *      - nothing to do if TSX is disabled on the host.
1384          *      - we emulate TSX_CTRL if present on the host.
1385          *        This lets the guest use VERW to clear CPU buffers.
1386          */
1387         if (!boot_cpu_has(X86_FEATURE_RTM))
1388                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1389         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1390                 data |= ARCH_CAP_TAA_NO;
1391
1392         return data;
1393 }
1394
1395 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1396 {
1397         switch (msr->index) {
1398         case MSR_IA32_ARCH_CAPABILITIES:
1399                 msr->data = kvm_get_arch_capabilities();
1400                 break;
1401         case MSR_IA32_UCODE_REV:
1402                 rdmsrl_safe(msr->index, &msr->data);
1403                 break;
1404         default:
1405                 return kvm_x86_ops.get_msr_feature(msr);
1406         }
1407         return 0;
1408 }
1409
1410 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1411 {
1412         struct kvm_msr_entry msr;
1413         int r;
1414
1415         msr.index = index;
1416         r = kvm_get_msr_feature(&msr);
1417
1418         if (r == KVM_MSR_RET_INVALID) {
1419                 /* Unconditionally clear the output for simplicity */
1420                 *data = 0;
1421                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1422                         r = 0;
1423         }
1424
1425         if (r)
1426                 return r;
1427
1428         *data = msr.data;
1429
1430         return 0;
1431 }
1432
1433 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1434 {
1435         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1436                 return false;
1437
1438         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1439                 return false;
1440
1441         if (efer & (EFER_LME | EFER_LMA) &&
1442             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1443                 return false;
1444
1445         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1446                 return false;
1447
1448         return true;
1449
1450 }
1451 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1452 {
1453         if (efer & efer_reserved_bits)
1454                 return false;
1455
1456         return __kvm_valid_efer(vcpu, efer);
1457 }
1458 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1459
1460 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1461 {
1462         u64 old_efer = vcpu->arch.efer;
1463         u64 efer = msr_info->data;
1464         int r;
1465
1466         if (efer & efer_reserved_bits)
1467                 return 1;
1468
1469         if (!msr_info->host_initiated) {
1470                 if (!__kvm_valid_efer(vcpu, efer))
1471                         return 1;
1472
1473                 if (is_paging(vcpu) &&
1474                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1475                         return 1;
1476         }
1477
1478         efer &= ~EFER_LMA;
1479         efer |= vcpu->arch.efer & EFER_LMA;
1480
1481         r = kvm_x86_ops.set_efer(vcpu, efer);
1482         if (r) {
1483                 WARN_ON(r > 0);
1484                 return r;
1485         }
1486
1487         /* Update reserved bits */
1488         if ((efer ^ old_efer) & EFER_NX)
1489                 kvm_mmu_reset_context(vcpu);
1490
1491         return 0;
1492 }
1493
1494 void kvm_enable_efer_bits(u64 mask)
1495 {
1496        efer_reserved_bits &= ~mask;
1497 }
1498 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1499
1500 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1501 {
1502         struct kvm *kvm = vcpu->kvm;
1503         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1504         u32 count = kvm->arch.msr_filter.count;
1505         u32 i;
1506         bool r = kvm->arch.msr_filter.default_allow;
1507         int idx;
1508
1509         /* MSR filtering not set up or x2APIC enabled, allow everything */
1510         if (!count || (index >= 0x800 && index <= 0x8ff))
1511                 return true;
1512
1513         /* Prevent collision with set_msr_filter */
1514         idx = srcu_read_lock(&kvm->srcu);
1515
1516         for (i = 0; i < count; i++) {
1517                 u32 start = ranges[i].base;
1518                 u32 end = start + ranges[i].nmsrs;
1519                 u32 flags = ranges[i].flags;
1520                 unsigned long *bitmap = ranges[i].bitmap;
1521
1522                 if ((index >= start) && (index < end) && (flags & type)) {
1523                         r = !!test_bit(index - start, bitmap);
1524                         break;
1525                 }
1526         }
1527
1528         srcu_read_unlock(&kvm->srcu, idx);
1529
1530         return r;
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1533
1534 /*
1535  * Write @data into the MSR specified by @index.  Select MSR specific fault
1536  * checks are bypassed if @host_initiated is %true.
1537  * Returns 0 on success, non-0 otherwise.
1538  * Assumes vcpu_load() was already called.
1539  */
1540 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1541                          bool host_initiated)
1542 {
1543         struct msr_data msr;
1544
1545         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1546                 return KVM_MSR_RET_FILTERED;
1547
1548         switch (index) {
1549         case MSR_FS_BASE:
1550         case MSR_GS_BASE:
1551         case MSR_KERNEL_GS_BASE:
1552         case MSR_CSTAR:
1553         case MSR_LSTAR:
1554                 if (is_noncanonical_address(data, vcpu))
1555                         return 1;
1556                 break;
1557         case MSR_IA32_SYSENTER_EIP:
1558         case MSR_IA32_SYSENTER_ESP:
1559                 /*
1560                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1561                  * non-canonical address is written on Intel but not on
1562                  * AMD (which ignores the top 32-bits, because it does
1563                  * not implement 64-bit SYSENTER).
1564                  *
1565                  * 64-bit code should hence be able to write a non-canonical
1566                  * value on AMD.  Making the address canonical ensures that
1567                  * vmentry does not fail on Intel after writing a non-canonical
1568                  * value, and that something deterministic happens if the guest
1569                  * invokes 64-bit SYSENTER.
1570                  */
1571                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1572         }
1573
1574         msr.data = data;
1575         msr.index = index;
1576         msr.host_initiated = host_initiated;
1577
1578         return kvm_x86_ops.set_msr(vcpu, &msr);
1579 }
1580
1581 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1582                                      u32 index, u64 data, bool host_initiated)
1583 {
1584         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1585
1586         if (ret == KVM_MSR_RET_INVALID)
1587                 if (kvm_msr_ignored_check(vcpu, index, data, true))
1588                         ret = 0;
1589
1590         return ret;
1591 }
1592
1593 /*
1594  * Read the MSR specified by @index into @data.  Select MSR specific fault
1595  * checks are bypassed if @host_initiated is %true.
1596  * Returns 0 on success, non-0 otherwise.
1597  * Assumes vcpu_load() was already called.
1598  */
1599 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1600                   bool host_initiated)
1601 {
1602         struct msr_data msr;
1603         int ret;
1604
1605         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1606                 return KVM_MSR_RET_FILTERED;
1607
1608         msr.index = index;
1609         msr.host_initiated = host_initiated;
1610
1611         ret = kvm_x86_ops.get_msr(vcpu, &msr);
1612         if (!ret)
1613                 *data = msr.data;
1614         return ret;
1615 }
1616
1617 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1618                                      u32 index, u64 *data, bool host_initiated)
1619 {
1620         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1621
1622         if (ret == KVM_MSR_RET_INVALID) {
1623                 /* Unconditionally clear *data for simplicity */
1624                 *data = 0;
1625                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1626                         ret = 0;
1627         }
1628
1629         return ret;
1630 }
1631
1632 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1633 {
1634         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_get_msr);
1637
1638 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1639 {
1640         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_set_msr);
1643
1644 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1645 {
1646         int err = vcpu->run->msr.error;
1647         if (!err) {
1648                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1649                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1650         }
1651
1652         return kvm_x86_ops.complete_emulated_msr(vcpu, err);
1653 }
1654
1655 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1656 {
1657         return kvm_x86_ops.complete_emulated_msr(vcpu, vcpu->run->msr.error);
1658 }
1659
1660 static u64 kvm_msr_reason(int r)
1661 {
1662         switch (r) {
1663         case KVM_MSR_RET_INVALID:
1664                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1665         case KVM_MSR_RET_FILTERED:
1666                 return KVM_MSR_EXIT_REASON_FILTER;
1667         default:
1668                 return KVM_MSR_EXIT_REASON_INVAL;
1669         }
1670 }
1671
1672 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1673                               u32 exit_reason, u64 data,
1674                               int (*completion)(struct kvm_vcpu *vcpu),
1675                               int r)
1676 {
1677         u64 msr_reason = kvm_msr_reason(r);
1678
1679         /* Check if the user wanted to know about this MSR fault */
1680         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1681                 return 0;
1682
1683         vcpu->run->exit_reason = exit_reason;
1684         vcpu->run->msr.error = 0;
1685         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1686         vcpu->run->msr.reason = msr_reason;
1687         vcpu->run->msr.index = index;
1688         vcpu->run->msr.data = data;
1689         vcpu->arch.complete_userspace_io = completion;
1690
1691         return 1;
1692 }
1693
1694 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1695 {
1696         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1697                                    complete_emulated_rdmsr, r);
1698 }
1699
1700 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1701 {
1702         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1703                                    complete_emulated_wrmsr, r);
1704 }
1705
1706 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1707 {
1708         u32 ecx = kvm_rcx_read(vcpu);
1709         u64 data;
1710         int r;
1711
1712         r = kvm_get_msr(vcpu, ecx, &data);
1713
1714         /* MSR read failed? See if we should ask user space */
1715         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1716                 /* Bounce to user space */
1717                 return 0;
1718         }
1719
1720         if (!r) {
1721                 trace_kvm_msr_read(ecx, data);
1722
1723                 kvm_rax_write(vcpu, data & -1u);
1724                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1725         } else {
1726                 trace_kvm_msr_read_ex(ecx);
1727         }
1728
1729         return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1730 }
1731 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1732
1733 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1734 {
1735         u32 ecx = kvm_rcx_read(vcpu);
1736         u64 data = kvm_read_edx_eax(vcpu);
1737         int r;
1738
1739         r = kvm_set_msr(vcpu, ecx, data);
1740
1741         /* MSR write failed? See if we should ask user space */
1742         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1743                 /* Bounce to user space */
1744                 return 0;
1745
1746         /* Signal all other negative errors to userspace */
1747         if (r < 0)
1748                 return r;
1749
1750         if (!r)
1751                 trace_kvm_msr_write(ecx, data);
1752         else
1753                 trace_kvm_msr_write_ex(ecx, data);
1754
1755         return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1758
1759 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1760 {
1761         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1762                 xfer_to_guest_mode_work_pending();
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1765
1766 /*
1767  * The fast path for frequent and performance sensitive wrmsr emulation,
1768  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1769  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1770  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1771  * other cases which must be called after interrupts are enabled on the host.
1772  */
1773 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1774 {
1775         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1776                 return 1;
1777
1778         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1779                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1780                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1781                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1782
1783                 data &= ~(1 << 12);
1784                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1785                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1786                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1787                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1788                 return 0;
1789         }
1790
1791         return 1;
1792 }
1793
1794 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1795 {
1796         if (!kvm_can_use_hv_timer(vcpu))
1797                 return 1;
1798
1799         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1800         return 0;
1801 }
1802
1803 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1804 {
1805         u32 msr = kvm_rcx_read(vcpu);
1806         u64 data;
1807         fastpath_t ret = EXIT_FASTPATH_NONE;
1808
1809         switch (msr) {
1810         case APIC_BASE_MSR + (APIC_ICR >> 4):
1811                 data = kvm_read_edx_eax(vcpu);
1812                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1813                         kvm_skip_emulated_instruction(vcpu);
1814                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1815                 }
1816                 break;
1817         case MSR_IA32_TSCDEADLINE:
1818                 data = kvm_read_edx_eax(vcpu);
1819                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1820                         kvm_skip_emulated_instruction(vcpu);
1821                         ret = EXIT_FASTPATH_REENTER_GUEST;
1822                 }
1823                 break;
1824         default:
1825                 break;
1826         }
1827
1828         if (ret != EXIT_FASTPATH_NONE)
1829                 trace_kvm_msr_write(msr, data);
1830
1831         return ret;
1832 }
1833 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1834
1835 /*
1836  * Adapt set_msr() to msr_io()'s calling convention
1837  */
1838 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1839 {
1840         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1841 }
1842
1843 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1844 {
1845         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1846 }
1847
1848 #ifdef CONFIG_X86_64
1849 struct pvclock_clock {
1850         int vclock_mode;
1851         u64 cycle_last;
1852         u64 mask;
1853         u32 mult;
1854         u32 shift;
1855         u64 base_cycles;
1856         u64 offset;
1857 };
1858
1859 struct pvclock_gtod_data {
1860         seqcount_t      seq;
1861
1862         struct pvclock_clock clock; /* extract of a clocksource struct */
1863         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1864
1865         ktime_t         offs_boot;
1866         u64             wall_time_sec;
1867 };
1868
1869 static struct pvclock_gtod_data pvclock_gtod_data;
1870
1871 static void update_pvclock_gtod(struct timekeeper *tk)
1872 {
1873         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1874
1875         write_seqcount_begin(&vdata->seq);
1876
1877         /* copy pvclock gtod data */
1878         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1879         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1880         vdata->clock.mask               = tk->tkr_mono.mask;
1881         vdata->clock.mult               = tk->tkr_mono.mult;
1882         vdata->clock.shift              = tk->tkr_mono.shift;
1883         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1884         vdata->clock.offset             = tk->tkr_mono.base;
1885
1886         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1887         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1888         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1889         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1890         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1891         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1892         vdata->raw_clock.offset         = tk->tkr_raw.base;
1893
1894         vdata->wall_time_sec            = tk->xtime_sec;
1895
1896         vdata->offs_boot                = tk->offs_boot;
1897
1898         write_seqcount_end(&vdata->seq);
1899 }
1900
1901 static s64 get_kvmclock_base_ns(void)
1902 {
1903         /* Count up from boot time, but with the frequency of the raw clock.  */
1904         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1905 }
1906 #else
1907 static s64 get_kvmclock_base_ns(void)
1908 {
1909         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1910         return ktime_get_boottime_ns();
1911 }
1912 #endif
1913
1914 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1915 {
1916         int version;
1917         int r;
1918         struct pvclock_wall_clock wc;
1919         u64 wall_nsec;
1920
1921         kvm->arch.wall_clock = wall_clock;
1922
1923         if (!wall_clock)
1924                 return;
1925
1926         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1927         if (r)
1928                 return;
1929
1930         if (version & 1)
1931                 ++version;  /* first time write, random junk */
1932
1933         ++version;
1934
1935         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1936                 return;
1937
1938         /*
1939          * The guest calculates current wall clock time by adding
1940          * system time (updated by kvm_guest_time_update below) to the
1941          * wall clock specified here.  We do the reverse here.
1942          */
1943         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1944
1945         wc.nsec = do_div(wall_nsec, 1000000000);
1946         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1947         wc.version = version;
1948
1949         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1950
1951         version++;
1952         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1953 }
1954
1955 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1956                                   bool old_msr, bool host_initiated)
1957 {
1958         struct kvm_arch *ka = &vcpu->kvm->arch;
1959
1960         if (vcpu->vcpu_id == 0 && !host_initiated) {
1961                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1962                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1963
1964                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1965         }
1966
1967         vcpu->arch.time = system_time;
1968         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1969
1970         /* we verify if the enable bit is set... */
1971         vcpu->arch.pv_time_enabled = false;
1972         if (!(system_time & 1))
1973                 return;
1974
1975         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1976                                        &vcpu->arch.pv_time, system_time & ~1ULL,
1977                                        sizeof(struct pvclock_vcpu_time_info)))
1978                 vcpu->arch.pv_time_enabled = true;
1979
1980         return;
1981 }
1982
1983 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1984 {
1985         do_shl32_div32(dividend, divisor);
1986         return dividend;
1987 }
1988
1989 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1990                                s8 *pshift, u32 *pmultiplier)
1991 {
1992         uint64_t scaled64;
1993         int32_t  shift = 0;
1994         uint64_t tps64;
1995         uint32_t tps32;
1996
1997         tps64 = base_hz;
1998         scaled64 = scaled_hz;
1999         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2000                 tps64 >>= 1;
2001                 shift--;
2002         }
2003
2004         tps32 = (uint32_t)tps64;
2005         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2006                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2007                         scaled64 >>= 1;
2008                 else
2009                         tps32 <<= 1;
2010                 shift++;
2011         }
2012
2013         *pshift = shift;
2014         *pmultiplier = div_frac(scaled64, tps32);
2015 }
2016
2017 #ifdef CONFIG_X86_64
2018 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2019 #endif
2020
2021 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2022 static unsigned long max_tsc_khz;
2023
2024 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2025 {
2026         u64 v = (u64)khz * (1000000 + ppm);
2027         do_div(v, 1000000);
2028         return v;
2029 }
2030
2031 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2032 {
2033         u64 ratio;
2034
2035         /* Guest TSC same frequency as host TSC? */
2036         if (!scale) {
2037                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2038                 return 0;
2039         }
2040
2041         /* TSC scaling supported? */
2042         if (!kvm_has_tsc_control) {
2043                 if (user_tsc_khz > tsc_khz) {
2044                         vcpu->arch.tsc_catchup = 1;
2045                         vcpu->arch.tsc_always_catchup = 1;
2046                         return 0;
2047                 } else {
2048                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2049                         return -1;
2050                 }
2051         }
2052
2053         /* TSC scaling required  - calculate ratio */
2054         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2055                                 user_tsc_khz, tsc_khz);
2056
2057         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2058                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2059                                     user_tsc_khz);
2060                 return -1;
2061         }
2062
2063         vcpu->arch.tsc_scaling_ratio = ratio;
2064         return 0;
2065 }
2066
2067 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2068 {
2069         u32 thresh_lo, thresh_hi;
2070         int use_scaling = 0;
2071
2072         /* tsc_khz can be zero if TSC calibration fails */
2073         if (user_tsc_khz == 0) {
2074                 /* set tsc_scaling_ratio to a safe value */
2075                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2076                 return -1;
2077         }
2078
2079         /* Compute a scale to convert nanoseconds in TSC cycles */
2080         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2081                            &vcpu->arch.virtual_tsc_shift,
2082                            &vcpu->arch.virtual_tsc_mult);
2083         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2084
2085         /*
2086          * Compute the variation in TSC rate which is acceptable
2087          * within the range of tolerance and decide if the
2088          * rate being applied is within that bounds of the hardware
2089          * rate.  If so, no scaling or compensation need be done.
2090          */
2091         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2092         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2093         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2094                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2095                 use_scaling = 1;
2096         }
2097         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2098 }
2099
2100 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2101 {
2102         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2103                                       vcpu->arch.virtual_tsc_mult,
2104                                       vcpu->arch.virtual_tsc_shift);
2105         tsc += vcpu->arch.this_tsc_write;
2106         return tsc;
2107 }
2108
2109 static inline int gtod_is_based_on_tsc(int mode)
2110 {
2111         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2112 }
2113
2114 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2115 {
2116 #ifdef CONFIG_X86_64
2117         bool vcpus_matched;
2118         struct kvm_arch *ka = &vcpu->kvm->arch;
2119         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2120
2121         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2122                          atomic_read(&vcpu->kvm->online_vcpus));
2123
2124         /*
2125          * Once the masterclock is enabled, always perform request in
2126          * order to update it.
2127          *
2128          * In order to enable masterclock, the host clocksource must be TSC
2129          * and the vcpus need to have matched TSCs.  When that happens,
2130          * perform request to enable masterclock.
2131          */
2132         if (ka->use_master_clock ||
2133             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2134                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2135
2136         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2137                             atomic_read(&vcpu->kvm->online_vcpus),
2138                             ka->use_master_clock, gtod->clock.vclock_mode);
2139 #endif
2140 }
2141
2142 /*
2143  * Multiply tsc by a fixed point number represented by ratio.
2144  *
2145  * The most significant 64-N bits (mult) of ratio represent the
2146  * integral part of the fixed point number; the remaining N bits
2147  * (frac) represent the fractional part, ie. ratio represents a fixed
2148  * point number (mult + frac * 2^(-N)).
2149  *
2150  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2151  */
2152 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2153 {
2154         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2155 }
2156
2157 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2158 {
2159         u64 _tsc = tsc;
2160         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2161
2162         if (ratio != kvm_default_tsc_scaling_ratio)
2163                 _tsc = __scale_tsc(ratio, tsc);
2164
2165         return _tsc;
2166 }
2167 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2168
2169 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2170 {
2171         u64 tsc;
2172
2173         tsc = kvm_scale_tsc(vcpu, rdtsc());
2174
2175         return target_tsc - tsc;
2176 }
2177
2178 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2179 {
2180         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2181 }
2182 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2183
2184 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2185 {
2186         vcpu->arch.l1_tsc_offset = offset;
2187         vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2188 }
2189
2190 static inline bool kvm_check_tsc_unstable(void)
2191 {
2192 #ifdef CONFIG_X86_64
2193         /*
2194          * TSC is marked unstable when we're running on Hyper-V,
2195          * 'TSC page' clocksource is good.
2196          */
2197         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2198                 return false;
2199 #endif
2200         return check_tsc_unstable();
2201 }
2202
2203 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2204 {
2205         struct kvm *kvm = vcpu->kvm;
2206         u64 offset, ns, elapsed;
2207         unsigned long flags;
2208         bool matched;
2209         bool already_matched;
2210         bool synchronizing = false;
2211
2212         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2213         offset = kvm_compute_tsc_offset(vcpu, data);
2214         ns = get_kvmclock_base_ns();
2215         elapsed = ns - kvm->arch.last_tsc_nsec;
2216
2217         if (vcpu->arch.virtual_tsc_khz) {
2218                 if (data == 0) {
2219                         /*
2220                          * detection of vcpu initialization -- need to sync
2221                          * with other vCPUs. This particularly helps to keep
2222                          * kvm_clock stable after CPU hotplug
2223                          */
2224                         synchronizing = true;
2225                 } else {
2226                         u64 tsc_exp = kvm->arch.last_tsc_write +
2227                                                 nsec_to_cycles(vcpu, elapsed);
2228                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2229                         /*
2230                          * Special case: TSC write with a small delta (1 second)
2231                          * of virtual cycle time against real time is
2232                          * interpreted as an attempt to synchronize the CPU.
2233                          */
2234                         synchronizing = data < tsc_exp + tsc_hz &&
2235                                         data + tsc_hz > tsc_exp;
2236                 }
2237         }
2238
2239         /*
2240          * For a reliable TSC, we can match TSC offsets, and for an unstable
2241          * TSC, we add elapsed time in this computation.  We could let the
2242          * compensation code attempt to catch up if we fall behind, but
2243          * it's better to try to match offsets from the beginning.
2244          */
2245         if (synchronizing &&
2246             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2247                 if (!kvm_check_tsc_unstable()) {
2248                         offset = kvm->arch.cur_tsc_offset;
2249                 } else {
2250                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2251                         data += delta;
2252                         offset = kvm_compute_tsc_offset(vcpu, data);
2253                 }
2254                 matched = true;
2255                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2256         } else {
2257                 /*
2258                  * We split periods of matched TSC writes into generations.
2259                  * For each generation, we track the original measured
2260                  * nanosecond time, offset, and write, so if TSCs are in
2261                  * sync, we can match exact offset, and if not, we can match
2262                  * exact software computation in compute_guest_tsc()
2263                  *
2264                  * These values are tracked in kvm->arch.cur_xxx variables.
2265                  */
2266                 kvm->arch.cur_tsc_generation++;
2267                 kvm->arch.cur_tsc_nsec = ns;
2268                 kvm->arch.cur_tsc_write = data;
2269                 kvm->arch.cur_tsc_offset = offset;
2270                 matched = false;
2271         }
2272
2273         /*
2274          * We also track th most recent recorded KHZ, write and time to
2275          * allow the matching interval to be extended at each write.
2276          */
2277         kvm->arch.last_tsc_nsec = ns;
2278         kvm->arch.last_tsc_write = data;
2279         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2280
2281         vcpu->arch.last_guest_tsc = data;
2282
2283         /* Keep track of which generation this VCPU has synchronized to */
2284         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2285         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2286         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2287
2288         kvm_vcpu_write_tsc_offset(vcpu, offset);
2289         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2290
2291         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2292         if (!matched) {
2293                 kvm->arch.nr_vcpus_matched_tsc = 0;
2294         } else if (!already_matched) {
2295                 kvm->arch.nr_vcpus_matched_tsc++;
2296         }
2297
2298         kvm_track_tsc_matching(vcpu);
2299         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2300 }
2301
2302 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2303                                            s64 adjustment)
2304 {
2305         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2306         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2307 }
2308
2309 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2310 {
2311         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2312                 WARN_ON(adjustment < 0);
2313         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2314         adjust_tsc_offset_guest(vcpu, adjustment);
2315 }
2316
2317 #ifdef CONFIG_X86_64
2318
2319 static u64 read_tsc(void)
2320 {
2321         u64 ret = (u64)rdtsc_ordered();
2322         u64 last = pvclock_gtod_data.clock.cycle_last;
2323
2324         if (likely(ret >= last))
2325                 return ret;
2326
2327         /*
2328          * GCC likes to generate cmov here, but this branch is extremely
2329          * predictable (it's just a function of time and the likely is
2330          * very likely) and there's a data dependence, so force GCC
2331          * to generate a branch instead.  I don't barrier() because
2332          * we don't actually need a barrier, and if this function
2333          * ever gets inlined it will generate worse code.
2334          */
2335         asm volatile ("");
2336         return last;
2337 }
2338
2339 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2340                           int *mode)
2341 {
2342         long v;
2343         u64 tsc_pg_val;
2344
2345         switch (clock->vclock_mode) {
2346         case VDSO_CLOCKMODE_HVCLOCK:
2347                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2348                                                   tsc_timestamp);
2349                 if (tsc_pg_val != U64_MAX) {
2350                         /* TSC page valid */
2351                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2352                         v = (tsc_pg_val - clock->cycle_last) &
2353                                 clock->mask;
2354                 } else {
2355                         /* TSC page invalid */
2356                         *mode = VDSO_CLOCKMODE_NONE;
2357                 }
2358                 break;
2359         case VDSO_CLOCKMODE_TSC:
2360                 *mode = VDSO_CLOCKMODE_TSC;
2361                 *tsc_timestamp = read_tsc();
2362                 v = (*tsc_timestamp - clock->cycle_last) &
2363                         clock->mask;
2364                 break;
2365         default:
2366                 *mode = VDSO_CLOCKMODE_NONE;
2367         }
2368
2369         if (*mode == VDSO_CLOCKMODE_NONE)
2370                 *tsc_timestamp = v = 0;
2371
2372         return v * clock->mult;
2373 }
2374
2375 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2376 {
2377         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2378         unsigned long seq;
2379         int mode;
2380         u64 ns;
2381
2382         do {
2383                 seq = read_seqcount_begin(&gtod->seq);
2384                 ns = gtod->raw_clock.base_cycles;
2385                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2386                 ns >>= gtod->raw_clock.shift;
2387                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2388         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2389         *t = ns;
2390
2391         return mode;
2392 }
2393
2394 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2395 {
2396         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2397         unsigned long seq;
2398         int mode;
2399         u64 ns;
2400
2401         do {
2402                 seq = read_seqcount_begin(&gtod->seq);
2403                 ts->tv_sec = gtod->wall_time_sec;
2404                 ns = gtod->clock.base_cycles;
2405                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2406                 ns >>= gtod->clock.shift;
2407         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2408
2409         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2410         ts->tv_nsec = ns;
2411
2412         return mode;
2413 }
2414
2415 /* returns true if host is using TSC based clocksource */
2416 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2417 {
2418         /* checked again under seqlock below */
2419         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2420                 return false;
2421
2422         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2423                                                       tsc_timestamp));
2424 }
2425
2426 /* returns true if host is using TSC based clocksource */
2427 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2428                                            u64 *tsc_timestamp)
2429 {
2430         /* checked again under seqlock below */
2431         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2432                 return false;
2433
2434         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2435 }
2436 #endif
2437
2438 /*
2439  *
2440  * Assuming a stable TSC across physical CPUS, and a stable TSC
2441  * across virtual CPUs, the following condition is possible.
2442  * Each numbered line represents an event visible to both
2443  * CPUs at the next numbered event.
2444  *
2445  * "timespecX" represents host monotonic time. "tscX" represents
2446  * RDTSC value.
2447  *
2448  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2449  *
2450  * 1.  read timespec0,tsc0
2451  * 2.                                   | timespec1 = timespec0 + N
2452  *                                      | tsc1 = tsc0 + M
2453  * 3. transition to guest               | transition to guest
2454  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2455  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2456  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2457  *
2458  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2459  *
2460  *      - ret0 < ret1
2461  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2462  *              ...
2463  *      - 0 < N - M => M < N
2464  *
2465  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2466  * always the case (the difference between two distinct xtime instances
2467  * might be smaller then the difference between corresponding TSC reads,
2468  * when updating guest vcpus pvclock areas).
2469  *
2470  * To avoid that problem, do not allow visibility of distinct
2471  * system_timestamp/tsc_timestamp values simultaneously: use a master
2472  * copy of host monotonic time values. Update that master copy
2473  * in lockstep.
2474  *
2475  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2476  *
2477  */
2478
2479 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2480 {
2481 #ifdef CONFIG_X86_64
2482         struct kvm_arch *ka = &kvm->arch;
2483         int vclock_mode;
2484         bool host_tsc_clocksource, vcpus_matched;
2485
2486         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2487                         atomic_read(&kvm->online_vcpus));
2488
2489         /*
2490          * If the host uses TSC clock, then passthrough TSC as stable
2491          * to the guest.
2492          */
2493         host_tsc_clocksource = kvm_get_time_and_clockread(
2494                                         &ka->master_kernel_ns,
2495                                         &ka->master_cycle_now);
2496
2497         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2498                                 && !ka->backwards_tsc_observed
2499                                 && !ka->boot_vcpu_runs_old_kvmclock;
2500
2501         if (ka->use_master_clock)
2502                 atomic_set(&kvm_guest_has_master_clock, 1);
2503
2504         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2505         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2506                                         vcpus_matched);
2507 #endif
2508 }
2509
2510 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2511 {
2512         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2513 }
2514
2515 static void kvm_gen_update_masterclock(struct kvm *kvm)
2516 {
2517 #ifdef CONFIG_X86_64
2518         int i;
2519         struct kvm_vcpu *vcpu;
2520         struct kvm_arch *ka = &kvm->arch;
2521
2522         spin_lock(&ka->pvclock_gtod_sync_lock);
2523         kvm_make_mclock_inprogress_request(kvm);
2524         /* no guest entries from this point */
2525         pvclock_update_vm_gtod_copy(kvm);
2526
2527         kvm_for_each_vcpu(i, vcpu, kvm)
2528                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2529
2530         /* guest entries allowed */
2531         kvm_for_each_vcpu(i, vcpu, kvm)
2532                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2533
2534         spin_unlock(&ka->pvclock_gtod_sync_lock);
2535 #endif
2536 }
2537
2538 u64 get_kvmclock_ns(struct kvm *kvm)
2539 {
2540         struct kvm_arch *ka = &kvm->arch;
2541         struct pvclock_vcpu_time_info hv_clock;
2542         u64 ret;
2543
2544         spin_lock(&ka->pvclock_gtod_sync_lock);
2545         if (!ka->use_master_clock) {
2546                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2547                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2548         }
2549
2550         hv_clock.tsc_timestamp = ka->master_cycle_now;
2551         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2552         spin_unlock(&ka->pvclock_gtod_sync_lock);
2553
2554         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2555         get_cpu();
2556
2557         if (__this_cpu_read(cpu_tsc_khz)) {
2558                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2559                                    &hv_clock.tsc_shift,
2560                                    &hv_clock.tsc_to_system_mul);
2561                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2562         } else
2563                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2564
2565         put_cpu();
2566
2567         return ret;
2568 }
2569
2570 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2571 {
2572         struct kvm_vcpu_arch *vcpu = &v->arch;
2573         struct pvclock_vcpu_time_info guest_hv_clock;
2574
2575         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2576                 &guest_hv_clock, sizeof(guest_hv_clock))))
2577                 return;
2578
2579         /* This VCPU is paused, but it's legal for a guest to read another
2580          * VCPU's kvmclock, so we really have to follow the specification where
2581          * it says that version is odd if data is being modified, and even after
2582          * it is consistent.
2583          *
2584          * Version field updates must be kept separate.  This is because
2585          * kvm_write_guest_cached might use a "rep movs" instruction, and
2586          * writes within a string instruction are weakly ordered.  So there
2587          * are three writes overall.
2588          *
2589          * As a small optimization, only write the version field in the first
2590          * and third write.  The vcpu->pv_time cache is still valid, because the
2591          * version field is the first in the struct.
2592          */
2593         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2594
2595         if (guest_hv_clock.version & 1)
2596                 ++guest_hv_clock.version;  /* first time write, random junk */
2597
2598         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2599         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2600                                 &vcpu->hv_clock,
2601                                 sizeof(vcpu->hv_clock.version));
2602
2603         smp_wmb();
2604
2605         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2606         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2607
2608         if (vcpu->pvclock_set_guest_stopped_request) {
2609                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2610                 vcpu->pvclock_set_guest_stopped_request = false;
2611         }
2612
2613         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2614
2615         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2616                                 &vcpu->hv_clock,
2617                                 sizeof(vcpu->hv_clock));
2618
2619         smp_wmb();
2620
2621         vcpu->hv_clock.version++;
2622         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2623                                 &vcpu->hv_clock,
2624                                 sizeof(vcpu->hv_clock.version));
2625 }
2626
2627 static int kvm_guest_time_update(struct kvm_vcpu *v)
2628 {
2629         unsigned long flags, tgt_tsc_khz;
2630         struct kvm_vcpu_arch *vcpu = &v->arch;
2631         struct kvm_arch *ka = &v->kvm->arch;
2632         s64 kernel_ns;
2633         u64 tsc_timestamp, host_tsc;
2634         u8 pvclock_flags;
2635         bool use_master_clock;
2636
2637         kernel_ns = 0;
2638         host_tsc = 0;
2639
2640         /*
2641          * If the host uses TSC clock, then passthrough TSC as stable
2642          * to the guest.
2643          */
2644         spin_lock(&ka->pvclock_gtod_sync_lock);
2645         use_master_clock = ka->use_master_clock;
2646         if (use_master_clock) {
2647                 host_tsc = ka->master_cycle_now;
2648                 kernel_ns = ka->master_kernel_ns;
2649         }
2650         spin_unlock(&ka->pvclock_gtod_sync_lock);
2651
2652         /* Keep irq disabled to prevent changes to the clock */
2653         local_irq_save(flags);
2654         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2655         if (unlikely(tgt_tsc_khz == 0)) {
2656                 local_irq_restore(flags);
2657                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2658                 return 1;
2659         }
2660         if (!use_master_clock) {
2661                 host_tsc = rdtsc();
2662                 kernel_ns = get_kvmclock_base_ns();
2663         }
2664
2665         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2666
2667         /*
2668          * We may have to catch up the TSC to match elapsed wall clock
2669          * time for two reasons, even if kvmclock is used.
2670          *   1) CPU could have been running below the maximum TSC rate
2671          *   2) Broken TSC compensation resets the base at each VCPU
2672          *      entry to avoid unknown leaps of TSC even when running
2673          *      again on the same CPU.  This may cause apparent elapsed
2674          *      time to disappear, and the guest to stand still or run
2675          *      very slowly.
2676          */
2677         if (vcpu->tsc_catchup) {
2678                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2679                 if (tsc > tsc_timestamp) {
2680                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2681                         tsc_timestamp = tsc;
2682                 }
2683         }
2684
2685         local_irq_restore(flags);
2686
2687         /* With all the info we got, fill in the values */
2688
2689         if (kvm_has_tsc_control)
2690                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2691
2692         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2693                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2694                                    &vcpu->hv_clock.tsc_shift,
2695                                    &vcpu->hv_clock.tsc_to_system_mul);
2696                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2697         }
2698
2699         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2700         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2701         vcpu->last_guest_tsc = tsc_timestamp;
2702
2703         /* If the host uses TSC clocksource, then it is stable */
2704         pvclock_flags = 0;
2705         if (use_master_clock)
2706                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2707
2708         vcpu->hv_clock.flags = pvclock_flags;
2709
2710         if (vcpu->pv_time_enabled)
2711                 kvm_setup_pvclock_page(v);
2712         if (v == kvm_get_vcpu(v->kvm, 0))
2713                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2714         return 0;
2715 }
2716
2717 /*
2718  * kvmclock updates which are isolated to a given vcpu, such as
2719  * vcpu->cpu migration, should not allow system_timestamp from
2720  * the rest of the vcpus to remain static. Otherwise ntp frequency
2721  * correction applies to one vcpu's system_timestamp but not
2722  * the others.
2723  *
2724  * So in those cases, request a kvmclock update for all vcpus.
2725  * We need to rate-limit these requests though, as they can
2726  * considerably slow guests that have a large number of vcpus.
2727  * The time for a remote vcpu to update its kvmclock is bound
2728  * by the delay we use to rate-limit the updates.
2729  */
2730
2731 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2732
2733 static void kvmclock_update_fn(struct work_struct *work)
2734 {
2735         int i;
2736         struct delayed_work *dwork = to_delayed_work(work);
2737         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2738                                            kvmclock_update_work);
2739         struct kvm *kvm = container_of(ka, struct kvm, arch);
2740         struct kvm_vcpu *vcpu;
2741
2742         kvm_for_each_vcpu(i, vcpu, kvm) {
2743                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2744                 kvm_vcpu_kick(vcpu);
2745         }
2746 }
2747
2748 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2749 {
2750         struct kvm *kvm = v->kvm;
2751
2752         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2753         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2754                                         KVMCLOCK_UPDATE_DELAY);
2755 }
2756
2757 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2758
2759 static void kvmclock_sync_fn(struct work_struct *work)
2760 {
2761         struct delayed_work *dwork = to_delayed_work(work);
2762         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2763                                            kvmclock_sync_work);
2764         struct kvm *kvm = container_of(ka, struct kvm, arch);
2765
2766         if (!kvmclock_periodic_sync)
2767                 return;
2768
2769         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2770         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2771                                         KVMCLOCK_SYNC_PERIOD);
2772 }
2773
2774 /*
2775  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2776  */
2777 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2778 {
2779         /* McStatusWrEn enabled? */
2780         if (guest_cpuid_is_amd_or_hygon(vcpu))
2781                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2782
2783         return false;
2784 }
2785
2786 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2787 {
2788         u64 mcg_cap = vcpu->arch.mcg_cap;
2789         unsigned bank_num = mcg_cap & 0xff;
2790         u32 msr = msr_info->index;
2791         u64 data = msr_info->data;
2792
2793         switch (msr) {
2794         case MSR_IA32_MCG_STATUS:
2795                 vcpu->arch.mcg_status = data;
2796                 break;
2797         case MSR_IA32_MCG_CTL:
2798                 if (!(mcg_cap & MCG_CTL_P) &&
2799                     (data || !msr_info->host_initiated))
2800                         return 1;
2801                 if (data != 0 && data != ~(u64)0)
2802                         return 1;
2803                 vcpu->arch.mcg_ctl = data;
2804                 break;
2805         default:
2806                 if (msr >= MSR_IA32_MC0_CTL &&
2807                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2808                         u32 offset = array_index_nospec(
2809                                 msr - MSR_IA32_MC0_CTL,
2810                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2811
2812                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2813                          * some Linux kernels though clear bit 10 in bank 4 to
2814                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2815                          * this to avoid an uncatched #GP in the guest
2816                          */
2817                         if ((offset & 0x3) == 0 &&
2818                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2819                                 return -1;
2820
2821                         /* MCi_STATUS */
2822                         if (!msr_info->host_initiated &&
2823                             (offset & 0x3) == 1 && data != 0) {
2824                                 if (!can_set_mci_status(vcpu))
2825                                         return -1;
2826                         }
2827
2828                         vcpu->arch.mce_banks[offset] = data;
2829                         break;
2830                 }
2831                 return 1;
2832         }
2833         return 0;
2834 }
2835
2836 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2837 {
2838         struct kvm *kvm = vcpu->kvm;
2839         int lm = is_long_mode(vcpu);
2840         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2841                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2842         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2843                 : kvm->arch.xen_hvm_config.blob_size_32;
2844         u32 page_num = data & ~PAGE_MASK;
2845         u64 page_addr = data & PAGE_MASK;
2846         u8 *page;
2847
2848         if (page_num >= blob_size)
2849                 return 1;
2850
2851         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2852         if (IS_ERR(page))
2853                 return PTR_ERR(page);
2854
2855         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2856                 kfree(page);
2857                 return 1;
2858         }
2859         return 0;
2860 }
2861
2862 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2863 {
2864         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2865
2866         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2867 }
2868
2869 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2870 {
2871         gpa_t gpa = data & ~0x3f;
2872
2873         /* Bits 4:5 are reserved, Should be zero */
2874         if (data & 0x30)
2875                 return 1;
2876
2877         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2878             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2879                 return 1;
2880
2881         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2882             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2883                 return 1;
2884
2885         if (!lapic_in_kernel(vcpu))
2886                 return data ? 1 : 0;
2887
2888         vcpu->arch.apf.msr_en_val = data;
2889
2890         if (!kvm_pv_async_pf_enabled(vcpu)) {
2891                 kvm_clear_async_pf_completion_queue(vcpu);
2892                 kvm_async_pf_hash_reset(vcpu);
2893                 return 0;
2894         }
2895
2896         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2897                                         sizeof(u64)))
2898                 return 1;
2899
2900         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2901         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2902
2903         kvm_async_pf_wakeup_all(vcpu);
2904
2905         return 0;
2906 }
2907
2908 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2909 {
2910         /* Bits 8-63 are reserved */
2911         if (data >> 8)
2912                 return 1;
2913
2914         if (!lapic_in_kernel(vcpu))
2915                 return 1;
2916
2917         vcpu->arch.apf.msr_int_val = data;
2918
2919         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2920
2921         return 0;
2922 }
2923
2924 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2925 {
2926         vcpu->arch.pv_time_enabled = false;
2927         vcpu->arch.time = 0;
2928 }
2929
2930 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2931 {
2932         ++vcpu->stat.tlb_flush;
2933         kvm_x86_ops.tlb_flush_all(vcpu);
2934 }
2935
2936 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2937 {
2938         ++vcpu->stat.tlb_flush;
2939         kvm_x86_ops.tlb_flush_guest(vcpu);
2940 }
2941
2942 static void record_steal_time(struct kvm_vcpu *vcpu)
2943 {
2944         struct kvm_host_map map;
2945         struct kvm_steal_time *st;
2946
2947         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2948                 return;
2949
2950         /* -EAGAIN is returned in atomic context so we can just return. */
2951         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2952                         &map, &vcpu->arch.st.cache, false))
2953                 return;
2954
2955         st = map.hva +
2956                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2957
2958         /*
2959          * Doing a TLB flush here, on the guest's behalf, can avoid
2960          * expensive IPIs.
2961          */
2962         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2963                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2964                                        st->preempted & KVM_VCPU_FLUSH_TLB);
2965                 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2966                         kvm_vcpu_flush_tlb_guest(vcpu);
2967         }
2968
2969         vcpu->arch.st.preempted = 0;
2970
2971         if (st->version & 1)
2972                 st->version += 1;  /* first time write, random junk */
2973
2974         st->version += 1;
2975
2976         smp_wmb();
2977
2978         st->steal += current->sched_info.run_delay -
2979                 vcpu->arch.st.last_steal;
2980         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2981
2982         smp_wmb();
2983
2984         st->version += 1;
2985
2986         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2987 }
2988
2989 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2990 {
2991         bool pr = false;
2992         u32 msr = msr_info->index;
2993         u64 data = msr_info->data;
2994
2995         switch (msr) {
2996         case MSR_AMD64_NB_CFG:
2997         case MSR_IA32_UCODE_WRITE:
2998         case MSR_VM_HSAVE_PA:
2999         case MSR_AMD64_PATCH_LOADER:
3000         case MSR_AMD64_BU_CFG2:
3001         case MSR_AMD64_DC_CFG:
3002         case MSR_F15H_EX_CFG:
3003                 break;
3004
3005         case MSR_IA32_UCODE_REV:
3006                 if (msr_info->host_initiated)
3007                         vcpu->arch.microcode_version = data;
3008                 break;
3009         case MSR_IA32_ARCH_CAPABILITIES:
3010                 if (!msr_info->host_initiated)
3011                         return 1;
3012                 vcpu->arch.arch_capabilities = data;
3013                 break;
3014         case MSR_IA32_PERF_CAPABILITIES: {
3015                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3016
3017                 if (!msr_info->host_initiated)
3018                         return 1;
3019                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3020                         return 1;
3021                 if (data & ~msr_ent.data)
3022                         return 1;
3023
3024                 vcpu->arch.perf_capabilities = data;
3025
3026                 return 0;
3027                 }
3028         case MSR_EFER:
3029                 return set_efer(vcpu, msr_info);
3030         case MSR_K7_HWCR:
3031                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3032                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3033                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3034
3035                 /* Handle McStatusWrEn */
3036                 if (data == BIT_ULL(18)) {
3037                         vcpu->arch.msr_hwcr = data;
3038                 } else if (data != 0) {
3039                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3040                                     data);
3041                         return 1;
3042                 }
3043                 break;
3044         case MSR_FAM10H_MMIO_CONF_BASE:
3045                 if (data != 0) {
3046                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3047                                     "0x%llx\n", data);
3048                         return 1;
3049                 }
3050                 break;
3051         case MSR_IA32_DEBUGCTLMSR:
3052                 if (!data) {
3053                         /* We support the non-activated case already */
3054                         break;
3055                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3056                         /* Values other than LBR and BTF are vendor-specific,
3057                            thus reserved and should throw a #GP */
3058                         return 1;
3059                 } else if (report_ignored_msrs)
3060                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3061                                     __func__, data);
3062                 break;
3063         case 0x200 ... 0x2ff:
3064                 return kvm_mtrr_set_msr(vcpu, msr, data);
3065         case MSR_IA32_APICBASE:
3066                 return kvm_set_apic_base(vcpu, msr_info);
3067         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3068                 return kvm_x2apic_msr_write(vcpu, msr, data);
3069         case MSR_IA32_TSCDEADLINE:
3070                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3071                 break;
3072         case MSR_IA32_TSC_ADJUST:
3073                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3074                         if (!msr_info->host_initiated) {
3075                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3076                                 adjust_tsc_offset_guest(vcpu, adj);
3077                         }
3078                         vcpu->arch.ia32_tsc_adjust_msr = data;
3079                 }
3080                 break;
3081         case MSR_IA32_MISC_ENABLE:
3082                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3083                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3084                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3085                                 return 1;
3086                         vcpu->arch.ia32_misc_enable_msr = data;
3087                         kvm_update_cpuid_runtime(vcpu);
3088                 } else {
3089                         vcpu->arch.ia32_misc_enable_msr = data;
3090                 }
3091                 break;
3092         case MSR_IA32_SMBASE:
3093                 if (!msr_info->host_initiated)
3094                         return 1;
3095                 vcpu->arch.smbase = data;
3096                 break;
3097         case MSR_IA32_POWER_CTL:
3098                 vcpu->arch.msr_ia32_power_ctl = data;
3099                 break;
3100         case MSR_IA32_TSC:
3101                 if (msr_info->host_initiated) {
3102                         kvm_synchronize_tsc(vcpu, data);
3103                 } else {
3104                         u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3105                         adjust_tsc_offset_guest(vcpu, adj);
3106                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3107                 }
3108                 break;
3109         case MSR_IA32_XSS:
3110                 if (!msr_info->host_initiated &&
3111                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3112                         return 1;
3113                 /*
3114                  * KVM supports exposing PT to the guest, but does not support
3115                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3116                  * XSAVES/XRSTORS to save/restore PT MSRs.
3117                  */
3118                 if (data & ~supported_xss)
3119                         return 1;
3120                 vcpu->arch.ia32_xss = data;
3121                 break;
3122         case MSR_SMI_COUNT:
3123                 if (!msr_info->host_initiated)
3124                         return 1;
3125                 vcpu->arch.smi_count = data;
3126                 break;
3127         case MSR_KVM_WALL_CLOCK_NEW:
3128                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3129                         return 1;
3130
3131                 kvm_write_wall_clock(vcpu->kvm, data);
3132                 break;
3133         case MSR_KVM_WALL_CLOCK:
3134                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3135                         return 1;
3136
3137                 kvm_write_wall_clock(vcpu->kvm, data);
3138                 break;
3139         case MSR_KVM_SYSTEM_TIME_NEW:
3140                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3141                         return 1;
3142
3143                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3144                 break;
3145         case MSR_KVM_SYSTEM_TIME:
3146                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3147                         return 1;
3148
3149                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3150                 break;
3151         case MSR_KVM_ASYNC_PF_EN:
3152                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3153                         return 1;
3154
3155                 if (kvm_pv_enable_async_pf(vcpu, data))
3156                         return 1;
3157                 break;
3158         case MSR_KVM_ASYNC_PF_INT:
3159                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3160                         return 1;
3161
3162                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3163                         return 1;
3164                 break;
3165         case MSR_KVM_ASYNC_PF_ACK:
3166                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3167                         return 1;
3168                 if (data & 0x1) {
3169                         vcpu->arch.apf.pageready_pending = false;
3170                         kvm_check_async_pf_completion(vcpu);
3171                 }
3172                 break;
3173         case MSR_KVM_STEAL_TIME:
3174                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3175                         return 1;
3176
3177                 if (unlikely(!sched_info_on()))
3178                         return 1;
3179
3180                 if (data & KVM_STEAL_RESERVED_MASK)
3181                         return 1;
3182
3183                 vcpu->arch.st.msr_val = data;
3184
3185                 if (!(data & KVM_MSR_ENABLED))
3186                         break;
3187
3188                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3189
3190                 break;
3191         case MSR_KVM_PV_EOI_EN:
3192                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3193                         return 1;
3194
3195                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3196                         return 1;
3197                 break;
3198
3199         case MSR_KVM_POLL_CONTROL:
3200                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3201                         return 1;
3202
3203                 /* only enable bit supported */
3204                 if (data & (-1ULL << 1))
3205                         return 1;
3206
3207                 vcpu->arch.msr_kvm_poll_control = data;
3208                 break;
3209
3210         case MSR_IA32_MCG_CTL:
3211         case MSR_IA32_MCG_STATUS:
3212         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3213                 return set_msr_mce(vcpu, msr_info);
3214
3215         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3216         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3217                 pr = true;
3218                 fallthrough;
3219         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3220         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3221                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3222                         return kvm_pmu_set_msr(vcpu, msr_info);
3223
3224                 if (pr || data != 0)
3225                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3226                                     "0x%x data 0x%llx\n", msr, data);
3227                 break;
3228         case MSR_K7_CLK_CTL:
3229                 /*
3230                  * Ignore all writes to this no longer documented MSR.
3231                  * Writes are only relevant for old K7 processors,
3232                  * all pre-dating SVM, but a recommended workaround from
3233                  * AMD for these chips. It is possible to specify the
3234                  * affected processor models on the command line, hence
3235                  * the need to ignore the workaround.
3236                  */
3237                 break;
3238         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3239         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3240         case HV_X64_MSR_SYNDBG_OPTIONS:
3241         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3242         case HV_X64_MSR_CRASH_CTL:
3243         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3244         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3245         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3246         case HV_X64_MSR_TSC_EMULATION_STATUS:
3247                 return kvm_hv_set_msr_common(vcpu, msr, data,
3248                                              msr_info->host_initiated);
3249         case MSR_IA32_BBL_CR_CTL3:
3250                 /* Drop writes to this legacy MSR -- see rdmsr
3251                  * counterpart for further detail.
3252                  */
3253                 if (report_ignored_msrs)
3254                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3255                                 msr, data);
3256                 break;
3257         case MSR_AMD64_OSVW_ID_LENGTH:
3258                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3259                         return 1;
3260                 vcpu->arch.osvw.length = data;
3261                 break;
3262         case MSR_AMD64_OSVW_STATUS:
3263                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3264                         return 1;
3265                 vcpu->arch.osvw.status = data;
3266                 break;
3267         case MSR_PLATFORM_INFO:
3268                 if (!msr_info->host_initiated ||
3269                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3270                      cpuid_fault_enabled(vcpu)))
3271                         return 1;
3272                 vcpu->arch.msr_platform_info = data;
3273                 break;
3274         case MSR_MISC_FEATURES_ENABLES:
3275                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3276                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3277                      !supports_cpuid_fault(vcpu)))
3278                         return 1;
3279                 vcpu->arch.msr_misc_features_enables = data;
3280                 break;
3281         default:
3282                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3283                         return xen_hvm_config(vcpu, data);
3284                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3285                         return kvm_pmu_set_msr(vcpu, msr_info);
3286                 return KVM_MSR_RET_INVALID;
3287         }
3288         return 0;
3289 }
3290 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3291
3292 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3293 {
3294         u64 data;
3295         u64 mcg_cap = vcpu->arch.mcg_cap;
3296         unsigned bank_num = mcg_cap & 0xff;
3297
3298         switch (msr) {
3299         case MSR_IA32_P5_MC_ADDR:
3300         case MSR_IA32_P5_MC_TYPE:
3301                 data = 0;
3302                 break;
3303         case MSR_IA32_MCG_CAP:
3304                 data = vcpu->arch.mcg_cap;
3305                 break;
3306         case MSR_IA32_MCG_CTL:
3307                 if (!(mcg_cap & MCG_CTL_P) && !host)
3308                         return 1;
3309                 data = vcpu->arch.mcg_ctl;
3310                 break;
3311         case MSR_IA32_MCG_STATUS:
3312                 data = vcpu->arch.mcg_status;
3313                 break;
3314         default:
3315                 if (msr >= MSR_IA32_MC0_CTL &&
3316                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3317                         u32 offset = array_index_nospec(
3318                                 msr - MSR_IA32_MC0_CTL,
3319                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3320
3321                         data = vcpu->arch.mce_banks[offset];
3322                         break;
3323                 }
3324                 return 1;
3325         }
3326         *pdata = data;
3327         return 0;
3328 }
3329
3330 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3331 {
3332         switch (msr_info->index) {
3333         case MSR_IA32_PLATFORM_ID:
3334         case MSR_IA32_EBL_CR_POWERON:
3335         case MSR_IA32_DEBUGCTLMSR:
3336         case MSR_IA32_LASTBRANCHFROMIP:
3337         case MSR_IA32_LASTBRANCHTOIP:
3338         case MSR_IA32_LASTINTFROMIP:
3339         case MSR_IA32_LASTINTTOIP:
3340         case MSR_K8_SYSCFG:
3341         case MSR_K8_TSEG_ADDR:
3342         case MSR_K8_TSEG_MASK:
3343         case MSR_VM_HSAVE_PA:
3344         case MSR_K8_INT_PENDING_MSG:
3345         case MSR_AMD64_NB_CFG:
3346         case MSR_FAM10H_MMIO_CONF_BASE:
3347         case MSR_AMD64_BU_CFG2:
3348         case MSR_IA32_PERF_CTL:
3349         case MSR_AMD64_DC_CFG:
3350         case MSR_F15H_EX_CFG:
3351         /*
3352          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3353          * limit) MSRs. Just return 0, as we do not want to expose the host
3354          * data here. Do not conditionalize this on CPUID, as KVM does not do
3355          * so for existing CPU-specific MSRs.
3356          */
3357         case MSR_RAPL_POWER_UNIT:
3358         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3359         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3360         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3361         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3362                 msr_info->data = 0;
3363                 break;
3364         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3365         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3366         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3367         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3368         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3369                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3370                         return kvm_pmu_get_msr(vcpu, msr_info);
3371                 msr_info->data = 0;
3372                 break;
3373         case MSR_IA32_UCODE_REV:
3374                 msr_info->data = vcpu->arch.microcode_version;
3375                 break;
3376         case MSR_IA32_ARCH_CAPABILITIES:
3377                 if (!msr_info->host_initiated &&
3378                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3379                         return 1;
3380                 msr_info->data = vcpu->arch.arch_capabilities;
3381                 break;
3382         case MSR_IA32_PERF_CAPABILITIES:
3383                 if (!msr_info->host_initiated &&
3384                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3385                         return 1;
3386                 msr_info->data = vcpu->arch.perf_capabilities;
3387                 break;
3388         case MSR_IA32_POWER_CTL:
3389                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3390                 break;
3391         case MSR_IA32_TSC: {
3392                 /*
3393                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3394                  * even when not intercepted. AMD manual doesn't explicitly
3395                  * state this but appears to behave the same.
3396                  *
3397                  * On userspace reads and writes, however, we unconditionally
3398                  * return L1's TSC value to ensure backwards-compatible
3399                  * behavior for migration.
3400                  */
3401                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3402                                                             vcpu->arch.tsc_offset;
3403
3404                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3405                 break;
3406         }
3407         case MSR_MTRRcap:
3408         case 0x200 ... 0x2ff:
3409                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3410         case 0xcd: /* fsb frequency */
3411                 msr_info->data = 3;
3412                 break;
3413                 /*
3414                  * MSR_EBC_FREQUENCY_ID
3415                  * Conservative value valid for even the basic CPU models.
3416                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3417                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3418                  * and 266MHz for model 3, or 4. Set Core Clock
3419                  * Frequency to System Bus Frequency Ratio to 1 (bits
3420                  * 31:24) even though these are only valid for CPU
3421                  * models > 2, however guests may end up dividing or
3422                  * multiplying by zero otherwise.
3423                  */
3424         case MSR_EBC_FREQUENCY_ID:
3425                 msr_info->data = 1 << 24;
3426                 break;
3427         case MSR_IA32_APICBASE:
3428                 msr_info->data = kvm_get_apic_base(vcpu);
3429                 break;
3430         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3431                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3432         case MSR_IA32_TSCDEADLINE:
3433                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3434                 break;
3435         case MSR_IA32_TSC_ADJUST:
3436                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3437                 break;
3438         case MSR_IA32_MISC_ENABLE:
3439                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3440                 break;
3441         case MSR_IA32_SMBASE:
3442                 if (!msr_info->host_initiated)
3443                         return 1;
3444                 msr_info->data = vcpu->arch.smbase;
3445                 break;
3446         case MSR_SMI_COUNT:
3447                 msr_info->data = vcpu->arch.smi_count;
3448                 break;
3449         case MSR_IA32_PERF_STATUS:
3450                 /* TSC increment by tick */
3451                 msr_info->data = 1000ULL;
3452                 /* CPU multiplier */
3453                 msr_info->data |= (((uint64_t)4ULL) << 40);
3454                 break;
3455         case MSR_EFER:
3456                 msr_info->data = vcpu->arch.efer;
3457                 break;
3458         case MSR_KVM_WALL_CLOCK:
3459                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3460                         return 1;
3461
3462                 msr_info->data = vcpu->kvm->arch.wall_clock;
3463                 break;
3464         case MSR_KVM_WALL_CLOCK_NEW:
3465                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3466                         return 1;
3467
3468                 msr_info->data = vcpu->kvm->arch.wall_clock;
3469                 break;
3470         case MSR_KVM_SYSTEM_TIME:
3471                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3472                         return 1;
3473
3474                 msr_info->data = vcpu->arch.time;
3475                 break;
3476         case MSR_KVM_SYSTEM_TIME_NEW:
3477                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3478                         return 1;
3479
3480                 msr_info->data = vcpu->arch.time;
3481                 break;
3482         case MSR_KVM_ASYNC_PF_EN:
3483                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3484                         return 1;
3485
3486                 msr_info->data = vcpu->arch.apf.msr_en_val;
3487                 break;
3488         case MSR_KVM_ASYNC_PF_INT:
3489                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3490                         return 1;
3491
3492                 msr_info->data = vcpu->arch.apf.msr_int_val;
3493                 break;
3494         case MSR_KVM_ASYNC_PF_ACK:
3495                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3496                         return 1;
3497
3498                 msr_info->data = 0;
3499                 break;
3500         case MSR_KVM_STEAL_TIME:
3501                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3502                         return 1;
3503
3504                 msr_info->data = vcpu->arch.st.msr_val;
3505                 break;
3506         case MSR_KVM_PV_EOI_EN:
3507                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3508                         return 1;
3509
3510                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3511                 break;
3512         case MSR_KVM_POLL_CONTROL:
3513                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3514                         return 1;
3515
3516                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3517                 break;
3518         case MSR_IA32_P5_MC_ADDR:
3519         case MSR_IA32_P5_MC_TYPE:
3520         case MSR_IA32_MCG_CAP:
3521         case MSR_IA32_MCG_CTL:
3522         case MSR_IA32_MCG_STATUS:
3523         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3524                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3525                                    msr_info->host_initiated);
3526         case MSR_IA32_XSS:
3527                 if (!msr_info->host_initiated &&
3528                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3529                         return 1;
3530                 msr_info->data = vcpu->arch.ia32_xss;
3531                 break;
3532         case MSR_K7_CLK_CTL:
3533                 /*
3534                  * Provide expected ramp-up count for K7. All other
3535                  * are set to zero, indicating minimum divisors for
3536                  * every field.
3537                  *
3538                  * This prevents guest kernels on AMD host with CPU
3539                  * type 6, model 8 and higher from exploding due to
3540                  * the rdmsr failing.
3541                  */
3542                 msr_info->data = 0x20000000;
3543                 break;
3544         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3545         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3546         case HV_X64_MSR_SYNDBG_OPTIONS:
3547         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3548         case HV_X64_MSR_CRASH_CTL:
3549         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3550         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3551         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3552         case HV_X64_MSR_TSC_EMULATION_STATUS:
3553                 return kvm_hv_get_msr_common(vcpu,
3554                                              msr_info->index, &msr_info->data,
3555                                              msr_info->host_initiated);
3556         case MSR_IA32_BBL_CR_CTL3:
3557                 /* This legacy MSR exists but isn't fully documented in current
3558                  * silicon.  It is however accessed by winxp in very narrow
3559                  * scenarios where it sets bit #19, itself documented as
3560                  * a "reserved" bit.  Best effort attempt to source coherent
3561                  * read data here should the balance of the register be
3562                  * interpreted by the guest:
3563                  *
3564                  * L2 cache control register 3: 64GB range, 256KB size,
3565                  * enabled, latency 0x1, configured
3566                  */
3567                 msr_info->data = 0xbe702111;
3568                 break;
3569         case MSR_AMD64_OSVW_ID_LENGTH:
3570                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3571                         return 1;
3572                 msr_info->data = vcpu->arch.osvw.length;
3573                 break;
3574         case MSR_AMD64_OSVW_STATUS:
3575                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3576                         return 1;
3577                 msr_info->data = vcpu->arch.osvw.status;
3578                 break;
3579         case MSR_PLATFORM_INFO:
3580                 if (!msr_info->host_initiated &&
3581                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3582                         return 1;
3583                 msr_info->data = vcpu->arch.msr_platform_info;
3584                 break;
3585         case MSR_MISC_FEATURES_ENABLES:
3586                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3587                 break;
3588         case MSR_K7_HWCR:
3589                 msr_info->data = vcpu->arch.msr_hwcr;
3590                 break;
3591         default:
3592                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3593                         return kvm_pmu_get_msr(vcpu, msr_info);
3594                 return KVM_MSR_RET_INVALID;
3595         }
3596         return 0;
3597 }
3598 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3599
3600 /*
3601  * Read or write a bunch of msrs. All parameters are kernel addresses.
3602  *
3603  * @return number of msrs set successfully.
3604  */
3605 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3606                     struct kvm_msr_entry *entries,
3607                     int (*do_msr)(struct kvm_vcpu *vcpu,
3608                                   unsigned index, u64 *data))
3609 {
3610         int i;
3611
3612         for (i = 0; i < msrs->nmsrs; ++i)
3613                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3614                         break;
3615
3616         return i;
3617 }
3618
3619 /*
3620  * Read or write a bunch of msrs. Parameters are user addresses.
3621  *
3622  * @return number of msrs set successfully.
3623  */
3624 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3625                   int (*do_msr)(struct kvm_vcpu *vcpu,
3626                                 unsigned index, u64 *data),
3627                   int writeback)
3628 {
3629         struct kvm_msrs msrs;
3630         struct kvm_msr_entry *entries;
3631         int r, n;
3632         unsigned size;
3633
3634         r = -EFAULT;
3635         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3636                 goto out;
3637
3638         r = -E2BIG;
3639         if (msrs.nmsrs >= MAX_IO_MSRS)
3640                 goto out;
3641
3642         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3643         entries = memdup_user(user_msrs->entries, size);
3644         if (IS_ERR(entries)) {
3645                 r = PTR_ERR(entries);
3646                 goto out;
3647         }
3648
3649         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3650         if (r < 0)
3651                 goto out_free;
3652
3653         r = -EFAULT;
3654         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3655                 goto out_free;
3656
3657         r = n;
3658
3659 out_free:
3660         kfree(entries);
3661 out:
3662         return r;
3663 }
3664
3665 static inline bool kvm_can_mwait_in_guest(void)
3666 {
3667         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3668                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3669                 boot_cpu_has(X86_FEATURE_ARAT);
3670 }
3671
3672 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3673                                             struct kvm_cpuid2 __user *cpuid_arg)
3674 {
3675         struct kvm_cpuid2 cpuid;
3676         int r;
3677
3678         r = -EFAULT;
3679         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3680                 return r;
3681
3682         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3683         if (r)
3684                 return r;
3685
3686         r = -EFAULT;
3687         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3688                 return r;
3689
3690         return 0;
3691 }
3692
3693 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3694 {
3695         int r = 0;
3696
3697         switch (ext) {
3698         case KVM_CAP_IRQCHIP:
3699         case KVM_CAP_HLT:
3700         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3701         case KVM_CAP_SET_TSS_ADDR:
3702         case KVM_CAP_EXT_CPUID:
3703         case KVM_CAP_EXT_EMUL_CPUID:
3704         case KVM_CAP_CLOCKSOURCE:
3705         case KVM_CAP_PIT:
3706         case KVM_CAP_NOP_IO_DELAY:
3707         case KVM_CAP_MP_STATE:
3708         case KVM_CAP_SYNC_MMU:
3709         case KVM_CAP_USER_NMI:
3710         case KVM_CAP_REINJECT_CONTROL:
3711         case KVM_CAP_IRQ_INJECT_STATUS:
3712         case KVM_CAP_IOEVENTFD:
3713         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3714         case KVM_CAP_PIT2:
3715         case KVM_CAP_PIT_STATE2:
3716         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3717         case KVM_CAP_XEN_HVM:
3718         case KVM_CAP_VCPU_EVENTS:
3719         case KVM_CAP_HYPERV:
3720         case KVM_CAP_HYPERV_VAPIC:
3721         case KVM_CAP_HYPERV_SPIN:
3722         case KVM_CAP_HYPERV_SYNIC:
3723         case KVM_CAP_HYPERV_SYNIC2:
3724         case KVM_CAP_HYPERV_VP_INDEX:
3725         case KVM_CAP_HYPERV_EVENTFD:
3726         case KVM_CAP_HYPERV_TLBFLUSH:
3727         case KVM_CAP_HYPERV_SEND_IPI:
3728         case KVM_CAP_HYPERV_CPUID:
3729         case KVM_CAP_SYS_HYPERV_CPUID:
3730         case KVM_CAP_PCI_SEGMENT:
3731         case KVM_CAP_DEBUGREGS:
3732         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3733         case KVM_CAP_XSAVE:
3734         case KVM_CAP_ASYNC_PF:
3735         case KVM_CAP_ASYNC_PF_INT:
3736         case KVM_CAP_GET_TSC_KHZ:
3737         case KVM_CAP_KVMCLOCK_CTRL:
3738         case KVM_CAP_READONLY_MEM:
3739         case KVM_CAP_HYPERV_TIME:
3740         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3741         case KVM_CAP_TSC_DEADLINE_TIMER:
3742         case KVM_CAP_DISABLE_QUIRKS:
3743         case KVM_CAP_SET_BOOT_CPU_ID:
3744         case KVM_CAP_SPLIT_IRQCHIP:
3745         case KVM_CAP_IMMEDIATE_EXIT:
3746         case KVM_CAP_PMU_EVENT_FILTER:
3747         case KVM_CAP_GET_MSR_FEATURES:
3748         case KVM_CAP_MSR_PLATFORM_INFO:
3749         case KVM_CAP_EXCEPTION_PAYLOAD:
3750         case KVM_CAP_SET_GUEST_DEBUG:
3751         case KVM_CAP_LAST_CPU:
3752         case KVM_CAP_X86_USER_SPACE_MSR:
3753         case KVM_CAP_X86_MSR_FILTER:
3754         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3755                 r = 1;
3756                 break;
3757         case KVM_CAP_SYNC_REGS:
3758                 r = KVM_SYNC_X86_VALID_FIELDS;
3759                 break;
3760         case KVM_CAP_ADJUST_CLOCK:
3761                 r = KVM_CLOCK_TSC_STABLE;
3762                 break;
3763         case KVM_CAP_X86_DISABLE_EXITS:
3764                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3765                       KVM_X86_DISABLE_EXITS_CSTATE;
3766                 if(kvm_can_mwait_in_guest())
3767                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3768                 break;
3769         case KVM_CAP_X86_SMM:
3770                 /* SMBASE is usually relocated above 1M on modern chipsets,
3771                  * and SMM handlers might indeed rely on 4G segment limits,
3772                  * so do not report SMM to be available if real mode is
3773                  * emulated via vm86 mode.  Still, do not go to great lengths
3774                  * to avoid userspace's usage of the feature, because it is a
3775                  * fringe case that is not enabled except via specific settings
3776                  * of the module parameters.
3777                  */
3778                 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3779                 break;
3780         case KVM_CAP_VAPIC:
3781                 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3782                 break;
3783         case KVM_CAP_NR_VCPUS:
3784                 r = KVM_SOFT_MAX_VCPUS;
3785                 break;
3786         case KVM_CAP_MAX_VCPUS:
3787                 r = KVM_MAX_VCPUS;
3788                 break;
3789         case KVM_CAP_MAX_VCPU_ID:
3790                 r = KVM_MAX_VCPU_ID;
3791                 break;
3792         case KVM_CAP_PV_MMU:    /* obsolete */
3793                 r = 0;
3794                 break;
3795         case KVM_CAP_MCE:
3796                 r = KVM_MAX_MCE_BANKS;
3797                 break;
3798         case KVM_CAP_XCRS:
3799                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3800                 break;
3801         case KVM_CAP_TSC_CONTROL:
3802                 r = kvm_has_tsc_control;
3803                 break;
3804         case KVM_CAP_X2APIC_API:
3805                 r = KVM_X2APIC_API_VALID_FLAGS;
3806                 break;
3807         case KVM_CAP_NESTED_STATE:
3808                 r = kvm_x86_ops.nested_ops->get_state ?
3809                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3810                 break;
3811         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3812                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3813                 break;
3814         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3815                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3816                 break;
3817         case KVM_CAP_SMALLER_MAXPHYADDR:
3818                 r = (int) allow_smaller_maxphyaddr;
3819                 break;
3820         case KVM_CAP_STEAL_TIME:
3821                 r = sched_info_on();
3822                 break;
3823         default:
3824                 break;
3825         }
3826         return r;
3827
3828 }
3829
3830 long kvm_arch_dev_ioctl(struct file *filp,
3831                         unsigned int ioctl, unsigned long arg)
3832 {
3833         void __user *argp = (void __user *)arg;
3834         long r;
3835
3836         switch (ioctl) {
3837         case KVM_GET_MSR_INDEX_LIST: {
3838                 struct kvm_msr_list __user *user_msr_list = argp;
3839                 struct kvm_msr_list msr_list;
3840                 unsigned n;
3841
3842                 r = -EFAULT;
3843                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3844                         goto out;
3845                 n = msr_list.nmsrs;
3846                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3847                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3848                         goto out;
3849                 r = -E2BIG;
3850                 if (n < msr_list.nmsrs)
3851                         goto out;
3852                 r = -EFAULT;
3853                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3854                                  num_msrs_to_save * sizeof(u32)))
3855                         goto out;
3856                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3857                                  &emulated_msrs,
3858                                  num_emulated_msrs * sizeof(u32)))
3859                         goto out;
3860                 r = 0;
3861                 break;
3862         }
3863         case KVM_GET_SUPPORTED_CPUID:
3864         case KVM_GET_EMULATED_CPUID: {
3865                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3866                 struct kvm_cpuid2 cpuid;
3867
3868                 r = -EFAULT;
3869                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3870                         goto out;
3871
3872                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3873                                             ioctl);
3874                 if (r)
3875                         goto out;
3876
3877                 r = -EFAULT;
3878                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3879                         goto out;
3880                 r = 0;
3881                 break;
3882         }
3883         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3884                 r = -EFAULT;
3885                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3886                                  sizeof(kvm_mce_cap_supported)))
3887                         goto out;
3888                 r = 0;
3889                 break;
3890         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3891                 struct kvm_msr_list __user *user_msr_list = argp;
3892                 struct kvm_msr_list msr_list;
3893                 unsigned int n;
3894
3895                 r = -EFAULT;
3896                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3897                         goto out;
3898                 n = msr_list.nmsrs;
3899                 msr_list.nmsrs = num_msr_based_features;
3900                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3901                         goto out;
3902                 r = -E2BIG;
3903                 if (n < msr_list.nmsrs)
3904                         goto out;
3905                 r = -EFAULT;
3906                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3907                                  num_msr_based_features * sizeof(u32)))
3908                         goto out;
3909                 r = 0;
3910                 break;
3911         }
3912         case KVM_GET_MSRS:
3913                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3914                 break;
3915         case KVM_GET_SUPPORTED_HV_CPUID:
3916                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3917                 break;
3918         default:
3919                 r = -EINVAL;
3920                 break;
3921         }
3922 out:
3923         return r;
3924 }
3925
3926 static void wbinvd_ipi(void *garbage)
3927 {
3928         wbinvd();
3929 }
3930
3931 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3932 {
3933         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3934 }
3935
3936 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3937 {
3938         /* Address WBINVD may be executed by guest */
3939         if (need_emulate_wbinvd(vcpu)) {
3940                 if (kvm_x86_ops.has_wbinvd_exit())
3941                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3942                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3943                         smp_call_function_single(vcpu->cpu,
3944                                         wbinvd_ipi, NULL, 1);
3945         }
3946
3947         kvm_x86_ops.vcpu_load(vcpu, cpu);
3948
3949         /* Save host pkru register if supported */
3950         vcpu->arch.host_pkru = read_pkru();
3951
3952         /* Apply any externally detected TSC adjustments (due to suspend) */
3953         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3954                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3955                 vcpu->arch.tsc_offset_adjustment = 0;
3956                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3957         }
3958
3959         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3960                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3961                                 rdtsc() - vcpu->arch.last_host_tsc;
3962                 if (tsc_delta < 0)
3963                         mark_tsc_unstable("KVM discovered backwards TSC");
3964
3965                 if (kvm_check_tsc_unstable()) {
3966                         u64 offset = kvm_compute_tsc_offset(vcpu,
3967                                                 vcpu->arch.last_guest_tsc);
3968                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3969                         vcpu->arch.tsc_catchup = 1;
3970                 }
3971
3972                 if (kvm_lapic_hv_timer_in_use(vcpu))
3973                         kvm_lapic_restart_hv_timer(vcpu);
3974
3975                 /*
3976                  * On a host with synchronized TSC, there is no need to update
3977                  * kvmclock on vcpu->cpu migration
3978                  */
3979                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3980                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3981                 if (vcpu->cpu != cpu)
3982                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3983                 vcpu->cpu = cpu;
3984         }
3985
3986         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3987 }
3988
3989 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3990 {
3991         struct kvm_host_map map;
3992         struct kvm_steal_time *st;
3993
3994         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3995                 return;
3996
3997         if (vcpu->arch.st.preempted)
3998                 return;
3999
4000         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4001                         &vcpu->arch.st.cache, true))
4002                 return;
4003
4004         st = map.hva +
4005                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4006
4007         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4008
4009         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4010 }
4011
4012 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4013 {
4014         int idx;
4015
4016         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4017                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4018
4019         /*
4020          * Disable page faults because we're in atomic context here.
4021          * kvm_write_guest_offset_cached() would call might_fault()
4022          * that relies on pagefault_disable() to tell if there's a
4023          * bug. NOTE: the write to guest memory may not go through if
4024          * during postcopy live migration or if there's heavy guest
4025          * paging.
4026          */
4027         pagefault_disable();
4028         /*
4029          * kvm_memslots() will be called by
4030          * kvm_write_guest_offset_cached() so take the srcu lock.
4031          */
4032         idx = srcu_read_lock(&vcpu->kvm->srcu);
4033         kvm_steal_time_set_preempted(vcpu);
4034         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4035         pagefault_enable();
4036         kvm_x86_ops.vcpu_put(vcpu);
4037         vcpu->arch.last_host_tsc = rdtsc();
4038         /*
4039          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4040          * on every vmexit, but if not, we might have a stale dr6 from the
4041          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4042          */
4043         set_debugreg(0, 6);
4044 }
4045
4046 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4047                                     struct kvm_lapic_state *s)
4048 {
4049         if (vcpu->arch.apicv_active)
4050                 kvm_x86_ops.sync_pir_to_irr(vcpu);
4051
4052         return kvm_apic_get_state(vcpu, s);
4053 }
4054
4055 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4056                                     struct kvm_lapic_state *s)
4057 {
4058         int r;
4059
4060         r = kvm_apic_set_state(vcpu, s);
4061         if (r)
4062                 return r;
4063         update_cr8_intercept(vcpu);
4064
4065         return 0;
4066 }
4067
4068 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4069 {
4070         return (!lapic_in_kernel(vcpu) ||
4071                 kvm_apic_accept_pic_intr(vcpu));
4072 }
4073
4074 /*
4075  * if userspace requested an interrupt window, check that the
4076  * interrupt window is open.
4077  *
4078  * No need to exit to userspace if we already have an interrupt queued.
4079  */
4080 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4081 {
4082         return kvm_arch_interrupt_allowed(vcpu) &&
4083                 !kvm_cpu_has_interrupt(vcpu) &&
4084                 !kvm_event_needs_reinjection(vcpu) &&
4085                 kvm_cpu_accept_dm_intr(vcpu);
4086 }
4087
4088 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4089                                     struct kvm_interrupt *irq)
4090 {
4091         if (irq->irq >= KVM_NR_INTERRUPTS)
4092                 return -EINVAL;
4093
4094         if (!irqchip_in_kernel(vcpu->kvm)) {
4095                 kvm_queue_interrupt(vcpu, irq->irq, false);
4096                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4097                 return 0;
4098         }
4099
4100         /*
4101          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4102          * fail for in-kernel 8259.
4103          */
4104         if (pic_in_kernel(vcpu->kvm))
4105                 return -ENXIO;
4106
4107         if (vcpu->arch.pending_external_vector != -1)
4108                 return -EEXIST;
4109
4110         vcpu->arch.pending_external_vector = irq->irq;
4111         kvm_make_request(KVM_REQ_EVENT, vcpu);
4112         return 0;
4113 }
4114
4115 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4116 {
4117         kvm_inject_nmi(vcpu);
4118
4119         return 0;
4120 }
4121
4122 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4123 {
4124         kvm_make_request(KVM_REQ_SMI, vcpu);
4125
4126         return 0;
4127 }
4128
4129 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4130                                            struct kvm_tpr_access_ctl *tac)
4131 {
4132         if (tac->flags)
4133                 return -EINVAL;
4134         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4135         return 0;
4136 }
4137
4138 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4139                                         u64 mcg_cap)
4140 {
4141         int r;
4142         unsigned bank_num = mcg_cap & 0xff, bank;
4143
4144         r = -EINVAL;
4145         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4146                 goto out;
4147         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4148                 goto out;
4149         r = 0;
4150         vcpu->arch.mcg_cap = mcg_cap;
4151         /* Init IA32_MCG_CTL to all 1s */
4152         if (mcg_cap & MCG_CTL_P)
4153                 vcpu->arch.mcg_ctl = ~(u64)0;
4154         /* Init IA32_MCi_CTL to all 1s */
4155         for (bank = 0; bank < bank_num; bank++)
4156                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4157
4158         kvm_x86_ops.setup_mce(vcpu);
4159 out:
4160         return r;
4161 }
4162
4163 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4164                                       struct kvm_x86_mce *mce)
4165 {
4166         u64 mcg_cap = vcpu->arch.mcg_cap;
4167         unsigned bank_num = mcg_cap & 0xff;
4168         u64 *banks = vcpu->arch.mce_banks;
4169
4170         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4171                 return -EINVAL;
4172         /*
4173          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4174          * reporting is disabled
4175          */
4176         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4177             vcpu->arch.mcg_ctl != ~(u64)0)
4178                 return 0;
4179         banks += 4 * mce->bank;
4180         /*
4181          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4182          * reporting is disabled for the bank
4183          */
4184         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4185                 return 0;
4186         if (mce->status & MCI_STATUS_UC) {
4187                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4188                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4189                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4190                         return 0;
4191                 }
4192                 if (banks[1] & MCI_STATUS_VAL)
4193                         mce->status |= MCI_STATUS_OVER;
4194                 banks[2] = mce->addr;
4195                 banks[3] = mce->misc;
4196                 vcpu->arch.mcg_status = mce->mcg_status;
4197                 banks[1] = mce->status;
4198                 kvm_queue_exception(vcpu, MC_VECTOR);
4199         } else if (!(banks[1] & MCI_STATUS_VAL)
4200                    || !(banks[1] & MCI_STATUS_UC)) {
4201                 if (banks[1] & MCI_STATUS_VAL)
4202                         mce->status |= MCI_STATUS_OVER;
4203                 banks[2] = mce->addr;
4204                 banks[3] = mce->misc;
4205                 banks[1] = mce->status;
4206         } else
4207                 banks[1] |= MCI_STATUS_OVER;
4208         return 0;
4209 }
4210
4211 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4212                                                struct kvm_vcpu_events *events)
4213 {
4214         process_nmi(vcpu);
4215
4216         /*
4217          * In guest mode, payload delivery should be deferred,
4218          * so that the L1 hypervisor can intercept #PF before
4219          * CR2 is modified (or intercept #DB before DR6 is
4220          * modified under nVMX). Unless the per-VM capability,
4221          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4222          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4223          * opportunistically defer the exception payload, deliver it if the
4224          * capability hasn't been requested before processing a
4225          * KVM_GET_VCPU_EVENTS.
4226          */
4227         if (!vcpu->kvm->arch.exception_payload_enabled &&
4228             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4229                 kvm_deliver_exception_payload(vcpu);
4230
4231         /*
4232          * The API doesn't provide the instruction length for software
4233          * exceptions, so don't report them. As long as the guest RIP
4234          * isn't advanced, we should expect to encounter the exception
4235          * again.
4236          */
4237         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4238                 events->exception.injected = 0;
4239                 events->exception.pending = 0;
4240         } else {
4241                 events->exception.injected = vcpu->arch.exception.injected;
4242                 events->exception.pending = vcpu->arch.exception.pending;
4243                 /*
4244                  * For ABI compatibility, deliberately conflate
4245                  * pending and injected exceptions when
4246                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4247                  */
4248                 if (!vcpu->kvm->arch.exception_payload_enabled)
4249                         events->exception.injected |=
4250                                 vcpu->arch.exception.pending;
4251         }
4252         events->exception.nr = vcpu->arch.exception.nr;
4253         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4254         events->exception.error_code = vcpu->arch.exception.error_code;
4255         events->exception_has_payload = vcpu->arch.exception.has_payload;
4256         events->exception_payload = vcpu->arch.exception.payload;
4257
4258         events->interrupt.injected =
4259                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4260         events->interrupt.nr = vcpu->arch.interrupt.nr;
4261         events->interrupt.soft = 0;
4262         events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4263
4264         events->nmi.injected = vcpu->arch.nmi_injected;
4265         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4266         events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4267         events->nmi.pad = 0;
4268
4269         events->sipi_vector = 0; /* never valid when reporting to user space */
4270
4271         events->smi.smm = is_smm(vcpu);
4272         events->smi.pending = vcpu->arch.smi_pending;
4273         events->smi.smm_inside_nmi =
4274                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4275         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4276
4277         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4278                          | KVM_VCPUEVENT_VALID_SHADOW
4279                          | KVM_VCPUEVENT_VALID_SMM);
4280         if (vcpu->kvm->arch.exception_payload_enabled)
4281                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4282
4283         memset(&events->reserved, 0, sizeof(events->reserved));
4284 }
4285
4286 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4287
4288 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4289                                               struct kvm_vcpu_events *events)
4290 {
4291         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4292                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4293                               | KVM_VCPUEVENT_VALID_SHADOW
4294                               | KVM_VCPUEVENT_VALID_SMM
4295                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4296                 return -EINVAL;
4297
4298         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4299                 if (!vcpu->kvm->arch.exception_payload_enabled)
4300                         return -EINVAL;
4301                 if (events->exception.pending)
4302                         events->exception.injected = 0;
4303                 else
4304                         events->exception_has_payload = 0;
4305         } else {
4306                 events->exception.pending = 0;
4307                 events->exception_has_payload = 0;
4308         }
4309
4310         if ((events->exception.injected || events->exception.pending) &&
4311             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4312                 return -EINVAL;
4313
4314         /* INITs are latched while in SMM */
4315         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4316             (events->smi.smm || events->smi.pending) &&
4317             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4318                 return -EINVAL;
4319
4320         process_nmi(vcpu);
4321         vcpu->arch.exception.injected = events->exception.injected;
4322         vcpu->arch.exception.pending = events->exception.pending;
4323         vcpu->arch.exception.nr = events->exception.nr;
4324         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4325         vcpu->arch.exception.error_code = events->exception.error_code;
4326         vcpu->arch.exception.has_payload = events->exception_has_payload;
4327         vcpu->arch.exception.payload = events->exception_payload;
4328
4329         vcpu->arch.interrupt.injected = events->interrupt.injected;
4330         vcpu->arch.interrupt.nr = events->interrupt.nr;
4331         vcpu->arch.interrupt.soft = events->interrupt.soft;
4332         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4333                 kvm_x86_ops.set_interrupt_shadow(vcpu,
4334                                                   events->interrupt.shadow);
4335
4336         vcpu->arch.nmi_injected = events->nmi.injected;
4337         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4338                 vcpu->arch.nmi_pending = events->nmi.pending;
4339         kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4340
4341         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4342             lapic_in_kernel(vcpu))
4343                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4344
4345         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4346                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4347                         if (events->smi.smm)
4348                                 vcpu->arch.hflags |= HF_SMM_MASK;
4349                         else
4350                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4351                         kvm_smm_changed(vcpu);
4352                 }
4353
4354                 vcpu->arch.smi_pending = events->smi.pending;
4355
4356                 if (events->smi.smm) {
4357                         if (events->smi.smm_inside_nmi)
4358                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4359                         else
4360                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4361                 }
4362
4363                 if (lapic_in_kernel(vcpu)) {
4364                         if (events->smi.latched_init)
4365                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4366                         else
4367                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4368                 }
4369         }
4370
4371         kvm_make_request(KVM_REQ_EVENT, vcpu);
4372
4373         return 0;
4374 }
4375
4376 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4377                                              struct kvm_debugregs *dbgregs)
4378 {
4379         unsigned long val;
4380
4381         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4382         kvm_get_dr(vcpu, 6, &val);
4383         dbgregs->dr6 = val;
4384         dbgregs->dr7 = vcpu->arch.dr7;
4385         dbgregs->flags = 0;
4386         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4387 }
4388
4389 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4390                                             struct kvm_debugregs *dbgregs)
4391 {
4392         if (dbgregs->flags)
4393                 return -EINVAL;
4394
4395         if (dbgregs->dr6 & ~0xffffffffull)
4396                 return -EINVAL;
4397         if (dbgregs->dr7 & ~0xffffffffull)
4398                 return -EINVAL;
4399
4400         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4401         kvm_update_dr0123(vcpu);
4402         vcpu->arch.dr6 = dbgregs->dr6;
4403         vcpu->arch.dr7 = dbgregs->dr7;
4404         kvm_update_dr7(vcpu);
4405
4406         return 0;
4407 }
4408
4409 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4410
4411 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4412 {
4413         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4414         u64 xstate_bv = xsave->header.xfeatures;
4415         u64 valid;
4416
4417         /*
4418          * Copy legacy XSAVE area, to avoid complications with CPUID
4419          * leaves 0 and 1 in the loop below.
4420          */
4421         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4422
4423         /* Set XSTATE_BV */
4424         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4425         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4426
4427         /*
4428          * Copy each region from the possibly compacted offset to the
4429          * non-compacted offset.
4430          */
4431         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4432         while (valid) {
4433                 u64 xfeature_mask = valid & -valid;
4434                 int xfeature_nr = fls64(xfeature_mask) - 1;
4435                 void *src = get_xsave_addr(xsave, xfeature_nr);
4436
4437                 if (src) {
4438                         u32 size, offset, ecx, edx;
4439                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4440                                     &size, &offset, &ecx, &edx);
4441                         if (xfeature_nr == XFEATURE_PKRU)
4442                                 memcpy(dest + offset, &vcpu->arch.pkru,
4443                                        sizeof(vcpu->arch.pkru));
4444                         else
4445                                 memcpy(dest + offset, src, size);
4446
4447                 }
4448
4449                 valid -= xfeature_mask;
4450         }
4451 }
4452
4453 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4454 {
4455         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4456         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4457         u64 valid;
4458
4459         /*
4460          * Copy legacy XSAVE area, to avoid complications with CPUID
4461          * leaves 0 and 1 in the loop below.
4462          */
4463         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4464
4465         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4466         xsave->header.xfeatures = xstate_bv;
4467         if (boot_cpu_has(X86_FEATURE_XSAVES))
4468                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4469
4470         /*
4471          * Copy each region from the non-compacted offset to the
4472          * possibly compacted offset.
4473          */
4474         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4475         while (valid) {
4476                 u64 xfeature_mask = valid & -valid;
4477                 int xfeature_nr = fls64(xfeature_mask) - 1;
4478                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4479
4480                 if (dest) {
4481                         u32 size, offset, ecx, edx;
4482                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4483                                     &size, &offset, &ecx, &edx);
4484                         if (xfeature_nr == XFEATURE_PKRU)
4485                                 memcpy(&vcpu->arch.pkru, src + offset,
4486                                        sizeof(vcpu->arch.pkru));
4487                         else
4488                                 memcpy(dest, src + offset, size);
4489                 }
4490
4491                 valid -= xfeature_mask;
4492         }
4493 }
4494
4495 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4496                                          struct kvm_xsave *guest_xsave)
4497 {
4498         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4499                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4500                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4501         } else {
4502                 memcpy(guest_xsave->region,
4503                         &vcpu->arch.guest_fpu->state.fxsave,
4504                         sizeof(struct fxregs_state));
4505                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4506                         XFEATURE_MASK_FPSSE;
4507         }
4508 }
4509
4510 #define XSAVE_MXCSR_OFFSET 24
4511
4512 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4513                                         struct kvm_xsave *guest_xsave)
4514 {
4515         u64 xstate_bv =
4516                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4517         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4518
4519         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4520                 /*
4521                  * Here we allow setting states that are not present in
4522                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4523                  * with old userspace.
4524                  */
4525                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4526                         return -EINVAL;
4527                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4528         } else {
4529                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4530                         mxcsr & ~mxcsr_feature_mask)
4531                         return -EINVAL;
4532                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4533                         guest_xsave->region, sizeof(struct fxregs_state));
4534         }
4535         return 0;
4536 }
4537
4538 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4539                                         struct kvm_xcrs *guest_xcrs)
4540 {
4541         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4542                 guest_xcrs->nr_xcrs = 0;
4543                 return;
4544         }
4545
4546         guest_xcrs->nr_xcrs = 1;
4547         guest_xcrs->flags = 0;
4548         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4549         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4550 }
4551
4552 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4553                                        struct kvm_xcrs *guest_xcrs)
4554 {
4555         int i, r = 0;
4556
4557         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4558                 return -EINVAL;
4559
4560         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4561                 return -EINVAL;
4562
4563         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4564                 /* Only support XCR0 currently */
4565                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4566                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4567                                 guest_xcrs->xcrs[i].value);
4568                         break;
4569                 }
4570         if (r)
4571                 r = -EINVAL;
4572         return r;
4573 }
4574
4575 /*
4576  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4577  * stopped by the hypervisor.  This function will be called from the host only.
4578  * EINVAL is returned when the host attempts to set the flag for a guest that
4579  * does not support pv clocks.
4580  */
4581 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4582 {
4583         if (!vcpu->arch.pv_time_enabled)
4584                 return -EINVAL;
4585         vcpu->arch.pvclock_set_guest_stopped_request = true;
4586         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4587         return 0;
4588 }
4589
4590 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4591                                      struct kvm_enable_cap *cap)
4592 {
4593         int r;
4594         uint16_t vmcs_version;
4595         void __user *user_ptr;
4596
4597         if (cap->flags)
4598                 return -EINVAL;
4599
4600         switch (cap->cap) {
4601         case KVM_CAP_HYPERV_SYNIC2:
4602                 if (cap->args[0])
4603                         return -EINVAL;
4604                 fallthrough;
4605
4606         case KVM_CAP_HYPERV_SYNIC:
4607                 if (!irqchip_in_kernel(vcpu->kvm))
4608                         return -EINVAL;
4609                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4610                                              KVM_CAP_HYPERV_SYNIC2);
4611         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4612                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4613                         return -ENOTTY;
4614                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4615                 if (!r) {
4616                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4617                         if (copy_to_user(user_ptr, &vmcs_version,
4618                                          sizeof(vmcs_version)))
4619                                 r = -EFAULT;
4620                 }
4621                 return r;
4622         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4623                 if (!kvm_x86_ops.enable_direct_tlbflush)
4624                         return -ENOTTY;
4625
4626                 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4627
4628         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4629                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4630                 if (vcpu->arch.pv_cpuid.enforce)
4631                         kvm_update_pv_runtime(vcpu);
4632
4633                 return 0;
4634
4635         default:
4636                 return -EINVAL;
4637         }
4638 }
4639
4640 long kvm_arch_vcpu_ioctl(struct file *filp,
4641                          unsigned int ioctl, unsigned long arg)
4642 {
4643         struct kvm_vcpu *vcpu = filp->private_data;
4644         void __user *argp = (void __user *)arg;
4645         int r;
4646         union {
4647                 struct kvm_lapic_state *lapic;
4648                 struct kvm_xsave *xsave;
4649                 struct kvm_xcrs *xcrs;
4650                 void *buffer;
4651         } u;
4652
4653         vcpu_load(vcpu);
4654
4655         u.buffer = NULL;
4656         switch (ioctl) {
4657         case KVM_GET_LAPIC: {
4658                 r = -EINVAL;
4659                 if (!lapic_in_kernel(vcpu))
4660                         goto out;
4661                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4662                                 GFP_KERNEL_ACCOUNT);
4663
4664                 r = -ENOMEM;
4665                 if (!u.lapic)
4666                         goto out;
4667                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4668                 if (r)
4669                         goto out;
4670                 r = -EFAULT;
4671                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4672                         goto out;
4673                 r = 0;
4674                 break;
4675         }
4676         case KVM_SET_LAPIC: {
4677                 r = -EINVAL;
4678                 if (!lapic_in_kernel(vcpu))
4679                         goto out;
4680                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4681                 if (IS_ERR(u.lapic)) {
4682                         r = PTR_ERR(u.lapic);
4683                         goto out_nofree;
4684                 }
4685
4686                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4687                 break;
4688         }
4689         case KVM_INTERRUPT: {
4690                 struct kvm_interrupt irq;
4691
4692                 r = -EFAULT;
4693                 if (copy_from_user(&irq, argp, sizeof(irq)))
4694                         goto out;
4695                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4696                 break;
4697         }
4698         case KVM_NMI: {
4699                 r = kvm_vcpu_ioctl_nmi(vcpu);
4700                 break;
4701         }
4702         case KVM_SMI: {
4703                 r = kvm_vcpu_ioctl_smi(vcpu);
4704                 break;
4705         }
4706         case KVM_SET_CPUID: {
4707                 struct kvm_cpuid __user *cpuid_arg = argp;
4708                 struct kvm_cpuid cpuid;
4709
4710                 r = -EFAULT;
4711                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4712                         goto out;
4713                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4714                 break;
4715         }
4716         case KVM_SET_CPUID2: {
4717                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4718                 struct kvm_cpuid2 cpuid;
4719
4720                 r = -EFAULT;
4721                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4722                         goto out;
4723                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4724                                               cpuid_arg->entries);
4725                 break;
4726         }
4727         case KVM_GET_CPUID2: {
4728                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4729                 struct kvm_cpuid2 cpuid;
4730
4731                 r = -EFAULT;
4732                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4733                         goto out;
4734                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4735                                               cpuid_arg->entries);
4736                 if (r)
4737                         goto out;
4738                 r = -EFAULT;
4739                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4740                         goto out;
4741                 r = 0;
4742                 break;
4743         }
4744         case KVM_GET_MSRS: {
4745                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4746                 r = msr_io(vcpu, argp, do_get_msr, 1);
4747                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4748                 break;
4749         }
4750         case KVM_SET_MSRS: {
4751                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4752                 r = msr_io(vcpu, argp, do_set_msr, 0);
4753                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4754                 break;
4755         }
4756         case KVM_TPR_ACCESS_REPORTING: {
4757                 struct kvm_tpr_access_ctl tac;
4758
4759                 r = -EFAULT;
4760                 if (copy_from_user(&tac, argp, sizeof(tac)))
4761                         goto out;
4762                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4763                 if (r)
4764                         goto out;
4765                 r = -EFAULT;
4766                 if (copy_to_user(argp, &tac, sizeof(tac)))
4767                         goto out;
4768                 r = 0;
4769                 break;
4770         };
4771         case KVM_SET_VAPIC_ADDR: {
4772                 struct kvm_vapic_addr va;
4773                 int idx;
4774
4775                 r = -EINVAL;
4776                 if (!lapic_in_kernel(vcpu))
4777                         goto out;
4778                 r = -EFAULT;
4779                 if (copy_from_user(&va, argp, sizeof(va)))
4780                         goto out;
4781                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4782                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4783                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4784                 break;
4785         }
4786         case KVM_X86_SETUP_MCE: {
4787                 u64 mcg_cap;
4788
4789                 r = -EFAULT;
4790                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4791                         goto out;
4792                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4793                 break;
4794         }
4795         case KVM_X86_SET_MCE: {
4796                 struct kvm_x86_mce mce;
4797
4798                 r = -EFAULT;
4799                 if (copy_from_user(&mce, argp, sizeof(mce)))
4800                         goto out;
4801                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4802                 break;
4803         }
4804         case KVM_GET_VCPU_EVENTS: {
4805                 struct kvm_vcpu_events events;
4806
4807                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4808
4809                 r = -EFAULT;
4810                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4811                         break;
4812                 r = 0;
4813                 break;
4814         }
4815         case KVM_SET_VCPU_EVENTS: {
4816                 struct kvm_vcpu_events events;
4817
4818                 r = -EFAULT;
4819                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4820                         break;
4821
4822                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4823                 break;
4824         }
4825         case KVM_GET_DEBUGREGS: {
4826                 struct kvm_debugregs dbgregs;
4827
4828                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4829
4830                 r = -EFAULT;
4831                 if (copy_to_user(argp, &dbgregs,
4832                                  sizeof(struct kvm_debugregs)))
4833                         break;
4834                 r = 0;
4835                 break;
4836         }
4837         case KVM_SET_DEBUGREGS: {
4838                 struct kvm_debugregs dbgregs;
4839
4840                 r = -EFAULT;
4841                 if (copy_from_user(&dbgregs, argp,
4842                                    sizeof(struct kvm_debugregs)))
4843                         break;
4844
4845                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4846                 break;
4847         }
4848         case KVM_GET_XSAVE: {
4849                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4850                 r = -ENOMEM;
4851                 if (!u.xsave)
4852                         break;
4853
4854                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4855
4856                 r = -EFAULT;
4857                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4858                         break;
4859                 r = 0;
4860                 break;
4861         }
4862         case KVM_SET_XSAVE: {
4863                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4864                 if (IS_ERR(u.xsave)) {
4865                         r = PTR_ERR(u.xsave);
4866                         goto out_nofree;
4867                 }
4868
4869                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4870                 break;
4871         }
4872         case KVM_GET_XCRS: {
4873                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4874                 r = -ENOMEM;
4875                 if (!u.xcrs)
4876                         break;
4877
4878                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4879
4880                 r = -EFAULT;
4881                 if (copy_to_user(argp, u.xcrs,
4882                                  sizeof(struct kvm_xcrs)))
4883                         break;
4884                 r = 0;
4885                 break;
4886         }
4887         case KVM_SET_XCRS: {
4888                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4889                 if (IS_ERR(u.xcrs)) {
4890                         r = PTR_ERR(u.xcrs);
4891                         goto out_nofree;
4892                 }
4893
4894                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4895                 break;
4896         }
4897         case KVM_SET_TSC_KHZ: {
4898                 u32 user_tsc_khz;
4899
4900                 r = -EINVAL;
4901                 user_tsc_khz = (u32)arg;
4902
4903                 if (kvm_has_tsc_control &&
4904                     user_tsc_khz >= kvm_max_guest_tsc_khz)
4905                         goto out;
4906
4907                 if (user_tsc_khz == 0)
4908                         user_tsc_khz = tsc_khz;
4909
4910                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4911                         r = 0;
4912
4913                 goto out;
4914         }
4915         case KVM_GET_TSC_KHZ: {
4916                 r = vcpu->arch.virtual_tsc_khz;
4917                 goto out;
4918         }
4919         case KVM_KVMCLOCK_CTRL: {
4920                 r = kvm_set_guest_paused(vcpu);
4921                 goto out;
4922         }
4923         case KVM_ENABLE_CAP: {
4924                 struct kvm_enable_cap cap;
4925
4926                 r = -EFAULT;
4927                 if (copy_from_user(&cap, argp, sizeof(cap)))
4928                         goto out;
4929                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4930                 break;
4931         }
4932         case KVM_GET_NESTED_STATE: {
4933                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4934                 u32 user_data_size;
4935
4936                 r = -EINVAL;
4937                 if (!kvm_x86_ops.nested_ops->get_state)
4938                         break;
4939
4940                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4941                 r = -EFAULT;
4942                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4943                         break;
4944
4945                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4946                                                      user_data_size);
4947                 if (r < 0)
4948                         break;
4949
4950                 if (r > user_data_size) {
4951                         if (put_user(r, &user_kvm_nested_state->size))
4952                                 r = -EFAULT;
4953                         else
4954                                 r = -E2BIG;
4955                         break;
4956                 }
4957
4958                 r = 0;
4959                 break;
4960         }
4961         case KVM_SET_NESTED_STATE: {
4962                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4963                 struct kvm_nested_state kvm_state;
4964                 int idx;
4965
4966                 r = -EINVAL;
4967                 if (!kvm_x86_ops.nested_ops->set_state)
4968                         break;
4969
4970                 r = -EFAULT;
4971                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4972                         break;
4973
4974                 r = -EINVAL;
4975                 if (kvm_state.size < sizeof(kvm_state))
4976                         break;
4977
4978                 if (kvm_state.flags &
4979                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4980                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4981                       | KVM_STATE_NESTED_GIF_SET))
4982                         break;
4983
4984                 /* nested_run_pending implies guest_mode.  */
4985                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4986                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4987                         break;
4988
4989                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4990                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4991                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4992                 break;
4993         }
4994         case KVM_GET_SUPPORTED_HV_CPUID:
4995                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
4996                 break;
4997         default:
4998                 r = -EINVAL;
4999         }
5000 out:
5001         kfree(u.buffer);
5002 out_nofree:
5003         vcpu_put(vcpu);
5004         return r;
5005 }
5006
5007 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5008 {
5009         return VM_FAULT_SIGBUS;
5010 }
5011
5012 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5013 {
5014         int ret;
5015
5016         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5017                 return -EINVAL;
5018         ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5019         return ret;
5020 }
5021
5022 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5023                                               u64 ident_addr)
5024 {
5025         return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5026 }
5027
5028 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5029                                          unsigned long kvm_nr_mmu_pages)
5030 {
5031         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5032                 return -EINVAL;
5033
5034         mutex_lock(&kvm->slots_lock);
5035
5036         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5037         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5038
5039         mutex_unlock(&kvm->slots_lock);
5040         return 0;
5041 }
5042
5043 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5044 {
5045         return kvm->arch.n_max_mmu_pages;
5046 }
5047
5048 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5049 {
5050         struct kvm_pic *pic = kvm->arch.vpic;
5051         int r;
5052
5053         r = 0;
5054         switch (chip->chip_id) {
5055         case KVM_IRQCHIP_PIC_MASTER:
5056                 memcpy(&chip->chip.pic, &pic->pics[0],
5057                         sizeof(struct kvm_pic_state));
5058                 break;
5059         case KVM_IRQCHIP_PIC_SLAVE:
5060                 memcpy(&chip->chip.pic, &pic->pics[1],
5061                         sizeof(struct kvm_pic_state));
5062                 break;
5063         case KVM_IRQCHIP_IOAPIC:
5064                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5065                 break;
5066         default:
5067                 r = -EINVAL;
5068                 break;
5069         }
5070         return r;
5071 }
5072
5073 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5074 {
5075         struct kvm_pic *pic = kvm->arch.vpic;
5076         int r;
5077
5078         r = 0;
5079         switch (chip->chip_id) {
5080         case KVM_IRQCHIP_PIC_MASTER:
5081                 spin_lock(&pic->lock);
5082                 memcpy(&pic->pics[0], &chip->chip.pic,
5083                         sizeof(struct kvm_pic_state));
5084                 spin_unlock(&pic->lock);
5085                 break;
5086         case KVM_IRQCHIP_PIC_SLAVE:
5087                 spin_lock(&pic->lock);
5088                 memcpy(&pic->pics[1], &chip->chip.pic,
5089                         sizeof(struct kvm_pic_state));
5090                 spin_unlock(&pic->lock);
5091                 break;
5092         case KVM_IRQCHIP_IOAPIC:
5093                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5094                 break;
5095         default:
5096                 r = -EINVAL;
5097                 break;
5098         }
5099         kvm_pic_update_irq(pic);
5100         return r;
5101 }
5102
5103 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5104 {
5105         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5106
5107         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5108
5109         mutex_lock(&kps->lock);
5110         memcpy(ps, &kps->channels, sizeof(*ps));
5111         mutex_unlock(&kps->lock);
5112         return 0;
5113 }
5114
5115 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5116 {
5117         int i;
5118         struct kvm_pit *pit = kvm->arch.vpit;
5119
5120         mutex_lock(&pit->pit_state.lock);
5121         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5122         for (i = 0; i < 3; i++)
5123                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5124         mutex_unlock(&pit->pit_state.lock);
5125         return 0;
5126 }
5127
5128 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5129 {
5130         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5131         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5132                 sizeof(ps->channels));
5133         ps->flags = kvm->arch.vpit->pit_state.flags;
5134         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5135         memset(&ps->reserved, 0, sizeof(ps->reserved));
5136         return 0;
5137 }
5138
5139 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5140 {
5141         int start = 0;
5142         int i;
5143         u32 prev_legacy, cur_legacy;
5144         struct kvm_pit *pit = kvm->arch.vpit;
5145
5146         mutex_lock(&pit->pit_state.lock);
5147         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5148         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5149         if (!prev_legacy && cur_legacy)
5150                 start = 1;
5151         memcpy(&pit->pit_state.channels, &ps->channels,
5152                sizeof(pit->pit_state.channels));
5153         pit->pit_state.flags = ps->flags;
5154         for (i = 0; i < 3; i++)
5155                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5156                                    start && i == 0);
5157         mutex_unlock(&pit->pit_state.lock);
5158         return 0;
5159 }
5160
5161 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5162                                  struct kvm_reinject_control *control)
5163 {
5164         struct kvm_pit *pit = kvm->arch.vpit;
5165
5166         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5167          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5168          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5169          */
5170         mutex_lock(&pit->pit_state.lock);
5171         kvm_pit_set_reinject(pit, control->pit_reinject);
5172         mutex_unlock(&pit->pit_state.lock);
5173
5174         return 0;
5175 }
5176
5177 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5178 {
5179         /*
5180          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5181          */
5182         if (kvm_x86_ops.flush_log_dirty)
5183                 kvm_x86_ops.flush_log_dirty(kvm);
5184 }
5185
5186 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5187                         bool line_status)
5188 {
5189         if (!irqchip_in_kernel(kvm))
5190                 return -ENXIO;
5191
5192         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5193                                         irq_event->irq, irq_event->level,
5194                                         line_status);
5195         return 0;
5196 }
5197
5198 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5199                             struct kvm_enable_cap *cap)
5200 {
5201         int r;
5202
5203         if (cap->flags)
5204                 return -EINVAL;
5205
5206         switch (cap->cap) {
5207         case KVM_CAP_DISABLE_QUIRKS:
5208                 kvm->arch.disabled_quirks = cap->args[0];
5209                 r = 0;
5210                 break;
5211         case KVM_CAP_SPLIT_IRQCHIP: {
5212                 mutex_lock(&kvm->lock);
5213                 r = -EINVAL;
5214                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5215                         goto split_irqchip_unlock;
5216                 r = -EEXIST;
5217                 if (irqchip_in_kernel(kvm))
5218                         goto split_irqchip_unlock;
5219                 if (kvm->created_vcpus)
5220                         goto split_irqchip_unlock;
5221                 r = kvm_setup_empty_irq_routing(kvm);
5222                 if (r)
5223                         goto split_irqchip_unlock;
5224                 /* Pairs with irqchip_in_kernel. */
5225                 smp_wmb();
5226                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5227                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5228                 r = 0;
5229 split_irqchip_unlock:
5230                 mutex_unlock(&kvm->lock);
5231                 break;
5232         }
5233         case KVM_CAP_X2APIC_API:
5234                 r = -EINVAL;
5235                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5236                         break;
5237
5238                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5239                         kvm->arch.x2apic_format = true;
5240                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5241                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5242
5243                 r = 0;
5244                 break;
5245         case KVM_CAP_X86_DISABLE_EXITS:
5246                 r = -EINVAL;
5247                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5248                         break;
5249
5250                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5251                         kvm_can_mwait_in_guest())
5252                         kvm->arch.mwait_in_guest = true;
5253                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5254                         kvm->arch.hlt_in_guest = true;
5255                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5256                         kvm->arch.pause_in_guest = true;
5257                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5258                         kvm->arch.cstate_in_guest = true;
5259                 r = 0;
5260                 break;
5261         case KVM_CAP_MSR_PLATFORM_INFO:
5262                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5263                 r = 0;
5264                 break;
5265         case KVM_CAP_EXCEPTION_PAYLOAD:
5266                 kvm->arch.exception_payload_enabled = cap->args[0];
5267                 r = 0;
5268                 break;
5269         case KVM_CAP_X86_USER_SPACE_MSR:
5270                 kvm->arch.user_space_msr_mask = cap->args[0];
5271                 r = 0;
5272                 break;
5273         default:
5274                 r = -EINVAL;
5275                 break;
5276         }
5277         return r;
5278 }
5279
5280 static void kvm_clear_msr_filter(struct kvm *kvm)
5281 {
5282         u32 i;
5283         u32 count = kvm->arch.msr_filter.count;
5284         struct msr_bitmap_range ranges[16];
5285
5286         mutex_lock(&kvm->lock);
5287         kvm->arch.msr_filter.count = 0;
5288         memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5289         mutex_unlock(&kvm->lock);
5290         synchronize_srcu(&kvm->srcu);
5291
5292         for (i = 0; i < count; i++)
5293                 kfree(ranges[i].bitmap);
5294 }
5295
5296 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5297 {
5298         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5299         struct msr_bitmap_range range;
5300         unsigned long *bitmap = NULL;
5301         size_t bitmap_size;
5302         int r;
5303
5304         if (!user_range->nmsrs)
5305                 return 0;
5306
5307         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5308         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5309                 return -EINVAL;
5310
5311         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5312         if (IS_ERR(bitmap))
5313                 return PTR_ERR(bitmap);
5314
5315         range = (struct msr_bitmap_range) {
5316                 .flags = user_range->flags,
5317                 .base = user_range->base,
5318                 .nmsrs = user_range->nmsrs,
5319                 .bitmap = bitmap,
5320         };
5321
5322         if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5323                 r = -EINVAL;
5324                 goto err;
5325         }
5326
5327         if (!range.flags) {
5328                 r = -EINVAL;
5329                 goto err;
5330         }
5331
5332         /* Everything ok, add this range identifier to our global pool */
5333         ranges[kvm->arch.msr_filter.count] = range;
5334         /* Make sure we filled the array before we tell anyone to walk it */
5335         smp_wmb();
5336         kvm->arch.msr_filter.count++;
5337
5338         return 0;
5339 err:
5340         kfree(bitmap);
5341         return r;
5342 }
5343
5344 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5345 {
5346         struct kvm_msr_filter __user *user_msr_filter = argp;
5347         struct kvm_msr_filter filter;
5348         bool default_allow;
5349         int r = 0;
5350         bool empty = true;
5351         u32 i;
5352
5353         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5354                 return -EFAULT;
5355
5356         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5357                 empty &= !filter.ranges[i].nmsrs;
5358
5359         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5360         if (empty && !default_allow)
5361                 return -EINVAL;
5362
5363         kvm_clear_msr_filter(kvm);
5364
5365         kvm->arch.msr_filter.default_allow = default_allow;
5366
5367         /*
5368          * Protect from concurrent calls to this function that could trigger
5369          * a TOCTOU violation on kvm->arch.msr_filter.count.
5370          */
5371         mutex_lock(&kvm->lock);
5372         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5373                 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5374                 if (r)
5375                         break;
5376         }
5377
5378         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5379         mutex_unlock(&kvm->lock);
5380
5381         return r;
5382 }
5383
5384 long kvm_arch_vm_ioctl(struct file *filp,
5385                        unsigned int ioctl, unsigned long arg)
5386 {
5387         struct kvm *kvm = filp->private_data;
5388         void __user *argp = (void __user *)arg;
5389         int r = -ENOTTY;
5390         /*
5391          * This union makes it completely explicit to gcc-3.x
5392          * that these two variables' stack usage should be
5393          * combined, not added together.
5394          */
5395         union {
5396                 struct kvm_pit_state ps;
5397                 struct kvm_pit_state2 ps2;
5398                 struct kvm_pit_config pit_config;
5399         } u;
5400
5401         switch (ioctl) {
5402         case KVM_SET_TSS_ADDR:
5403                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5404                 break;
5405         case KVM_SET_IDENTITY_MAP_ADDR: {
5406                 u64 ident_addr;
5407
5408                 mutex_lock(&kvm->lock);
5409                 r = -EINVAL;
5410                 if (kvm->created_vcpus)
5411                         goto set_identity_unlock;
5412                 r = -EFAULT;
5413                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5414                         goto set_identity_unlock;
5415                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5416 set_identity_unlock:
5417                 mutex_unlock(&kvm->lock);
5418                 break;
5419         }
5420         case KVM_SET_NR_MMU_PAGES:
5421                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5422                 break;
5423         case KVM_GET_NR_MMU_PAGES:
5424                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5425                 break;
5426         case KVM_CREATE_IRQCHIP: {
5427                 mutex_lock(&kvm->lock);
5428
5429                 r = -EEXIST;
5430                 if (irqchip_in_kernel(kvm))
5431                         goto create_irqchip_unlock;
5432
5433                 r = -EINVAL;
5434                 if (kvm->created_vcpus)
5435                         goto create_irqchip_unlock;
5436
5437                 r = kvm_pic_init(kvm);
5438                 if (r)
5439                         goto create_irqchip_unlock;
5440
5441                 r = kvm_ioapic_init(kvm);
5442                 if (r) {
5443                         kvm_pic_destroy(kvm);
5444                         goto create_irqchip_unlock;
5445                 }
5446
5447                 r = kvm_setup_default_irq_routing(kvm);
5448                 if (r) {
5449                         kvm_ioapic_destroy(kvm);
5450                         kvm_pic_destroy(kvm);
5451                         goto create_irqchip_unlock;
5452                 }
5453                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5454                 smp_wmb();
5455                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5456         create_irqchip_unlock:
5457                 mutex_unlock(&kvm->lock);
5458                 break;
5459         }
5460         case KVM_CREATE_PIT:
5461                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5462                 goto create_pit;
5463         case KVM_CREATE_PIT2:
5464                 r = -EFAULT;
5465                 if (copy_from_user(&u.pit_config, argp,
5466                                    sizeof(struct kvm_pit_config)))
5467                         goto out;
5468         create_pit:
5469                 mutex_lock(&kvm->lock);
5470                 r = -EEXIST;
5471                 if (kvm->arch.vpit)
5472                         goto create_pit_unlock;
5473                 r = -ENOMEM;
5474                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5475                 if (kvm->arch.vpit)
5476                         r = 0;
5477         create_pit_unlock:
5478                 mutex_unlock(&kvm->lock);
5479                 break;
5480         case KVM_GET_IRQCHIP: {
5481                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5482                 struct kvm_irqchip *chip;
5483
5484                 chip = memdup_user(argp, sizeof(*chip));
5485                 if (IS_ERR(chip)) {
5486                         r = PTR_ERR(chip);
5487                         goto out;
5488                 }
5489
5490                 r = -ENXIO;
5491                 if (!irqchip_kernel(kvm))
5492                         goto get_irqchip_out;
5493                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5494                 if (r)
5495                         goto get_irqchip_out;
5496                 r = -EFAULT;
5497                 if (copy_to_user(argp, chip, sizeof(*chip)))
5498                         goto get_irqchip_out;
5499                 r = 0;
5500         get_irqchip_out:
5501                 kfree(chip);
5502                 break;
5503         }
5504         case KVM_SET_IRQCHIP: {
5505                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5506                 struct kvm_irqchip *chip;
5507
5508                 chip = memdup_user(argp, sizeof(*chip));
5509                 if (IS_ERR(chip)) {
5510                         r = PTR_ERR(chip);
5511                         goto out;
5512                 }
5513
5514                 r = -ENXIO;
5515                 if (!irqchip_kernel(kvm))
5516                         goto set_irqchip_out;
5517                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5518         set_irqchip_out:
5519                 kfree(chip);
5520                 break;
5521         }
5522         case KVM_GET_PIT: {
5523                 r = -EFAULT;
5524                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5525                         goto out;
5526                 r = -ENXIO;
5527                 if (!kvm->arch.vpit)
5528                         goto out;
5529                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5530                 if (r)
5531                         goto out;
5532                 r = -EFAULT;
5533                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5534                         goto out;
5535                 r = 0;
5536                 break;
5537         }
5538         case KVM_SET_PIT: {
5539                 r = -EFAULT;
5540                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5541                         goto out;
5542                 mutex_lock(&kvm->lock);
5543                 r = -ENXIO;
5544                 if (!kvm->arch.vpit)
5545                         goto set_pit_out;
5546                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5547 set_pit_out:
5548                 mutex_unlock(&kvm->lock);
5549                 break;
5550         }
5551         case KVM_GET_PIT2: {
5552                 r = -ENXIO;
5553                 if (!kvm->arch.vpit)
5554                         goto out;
5555                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5556                 if (r)
5557                         goto out;
5558                 r = -EFAULT;
5559                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5560                         goto out;
5561                 r = 0;
5562                 break;
5563         }
5564         case KVM_SET_PIT2: {
5565                 r = -EFAULT;
5566                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5567                         goto out;
5568                 mutex_lock(&kvm->lock);
5569                 r = -ENXIO;
5570                 if (!kvm->arch.vpit)
5571                         goto set_pit2_out;
5572                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5573 set_pit2_out:
5574                 mutex_unlock(&kvm->lock);
5575                 break;
5576         }
5577         case KVM_REINJECT_CONTROL: {
5578                 struct kvm_reinject_control control;
5579                 r =  -EFAULT;
5580                 if (copy_from_user(&control, argp, sizeof(control)))
5581                         goto out;
5582                 r = -ENXIO;
5583                 if (!kvm->arch.vpit)
5584                         goto out;
5585                 r = kvm_vm_ioctl_reinject(kvm, &control);
5586                 break;
5587         }
5588         case KVM_SET_BOOT_CPU_ID:
5589                 r = 0;
5590                 mutex_lock(&kvm->lock);
5591                 if (kvm->created_vcpus)
5592                         r = -EBUSY;
5593                 else
5594                         kvm->arch.bsp_vcpu_id = arg;
5595                 mutex_unlock(&kvm->lock);
5596                 break;
5597         case KVM_XEN_HVM_CONFIG: {
5598                 struct kvm_xen_hvm_config xhc;
5599                 r = -EFAULT;
5600                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5601                         goto out;
5602                 r = -EINVAL;
5603                 if (xhc.flags)
5604                         goto out;
5605                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5606                 r = 0;
5607                 break;
5608         }
5609         case KVM_SET_CLOCK: {
5610                 struct kvm_clock_data user_ns;
5611                 u64 now_ns;
5612
5613                 r = -EFAULT;
5614                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5615                         goto out;
5616
5617                 r = -EINVAL;
5618                 if (user_ns.flags)
5619                         goto out;
5620
5621                 r = 0;
5622                 /*
5623                  * TODO: userspace has to take care of races with VCPU_RUN, so
5624                  * kvm_gen_update_masterclock() can be cut down to locked
5625                  * pvclock_update_vm_gtod_copy().
5626                  */
5627                 kvm_gen_update_masterclock(kvm);
5628                 now_ns = get_kvmclock_ns(kvm);
5629                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5630                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5631                 break;
5632         }
5633         case KVM_GET_CLOCK: {
5634                 struct kvm_clock_data user_ns;
5635                 u64 now_ns;
5636
5637                 now_ns = get_kvmclock_ns(kvm);
5638                 user_ns.clock = now_ns;
5639                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5640                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5641
5642                 r = -EFAULT;
5643                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5644                         goto out;
5645                 r = 0;
5646                 break;
5647         }
5648         case KVM_MEMORY_ENCRYPT_OP: {
5649                 r = -ENOTTY;
5650                 if (kvm_x86_ops.mem_enc_op)
5651                         r = kvm_x86_ops.mem_enc_op(kvm, argp);
5652                 break;
5653         }
5654         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5655                 struct kvm_enc_region region;
5656
5657                 r = -EFAULT;
5658                 if (copy_from_user(&region, argp, sizeof(region)))
5659                         goto out;
5660
5661                 r = -ENOTTY;
5662                 if (kvm_x86_ops.mem_enc_reg_region)
5663                         r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5664                 break;
5665         }
5666         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5667                 struct kvm_enc_region region;
5668
5669                 r = -EFAULT;
5670                 if (copy_from_user(&region, argp, sizeof(region)))
5671                         goto out;
5672
5673                 r = -ENOTTY;
5674                 if (kvm_x86_ops.mem_enc_unreg_region)
5675                         r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5676                 break;
5677         }
5678         case KVM_HYPERV_EVENTFD: {
5679                 struct kvm_hyperv_eventfd hvevfd;
5680
5681                 r = -EFAULT;
5682                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5683                         goto out;
5684                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5685                 break;
5686         }
5687         case KVM_SET_PMU_EVENT_FILTER:
5688                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5689                 break;
5690         case KVM_X86_SET_MSR_FILTER:
5691                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5692                 break;
5693         default:
5694                 r = -ENOTTY;
5695         }
5696 out:
5697         return r;
5698 }
5699
5700 static void kvm_init_msr_list(void)
5701 {
5702         struct x86_pmu_capability x86_pmu;
5703         u32 dummy[2];
5704         unsigned i;
5705
5706         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5707                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5708
5709         perf_get_x86_pmu_capability(&x86_pmu);
5710
5711         num_msrs_to_save = 0;
5712         num_emulated_msrs = 0;
5713         num_msr_based_features = 0;
5714
5715         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5716                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5717                         continue;
5718
5719                 /*
5720                  * Even MSRs that are valid in the host may not be exposed
5721                  * to the guests in some cases.
5722                  */
5723                 switch (msrs_to_save_all[i]) {
5724                 case MSR_IA32_BNDCFGS:
5725                         if (!kvm_mpx_supported())
5726                                 continue;
5727                         break;
5728                 case MSR_TSC_AUX:
5729                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5730                                 continue;
5731                         break;
5732                 case MSR_IA32_UMWAIT_CONTROL:
5733                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5734                                 continue;
5735                         break;
5736                 case MSR_IA32_RTIT_CTL:
5737                 case MSR_IA32_RTIT_STATUS:
5738                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5739                                 continue;
5740                         break;
5741                 case MSR_IA32_RTIT_CR3_MATCH:
5742                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5743                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5744                                 continue;
5745                         break;
5746                 case MSR_IA32_RTIT_OUTPUT_BASE:
5747                 case MSR_IA32_RTIT_OUTPUT_MASK:
5748                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5749                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5750                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5751                                 continue;
5752                         break;
5753                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5754                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5755                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5756                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5757                                 continue;
5758                         break;
5759                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5760                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5761                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5762                                 continue;
5763                         break;
5764                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5765                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5766                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5767                                 continue;
5768                         break;
5769                 default:
5770                         break;
5771                 }
5772
5773                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5774         }
5775
5776         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5777                 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5778                         continue;
5779
5780                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5781         }
5782
5783         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5784                 struct kvm_msr_entry msr;
5785
5786                 msr.index = msr_based_features_all[i];
5787                 if (kvm_get_msr_feature(&msr))
5788                         continue;
5789
5790                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5791         }
5792 }
5793
5794 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5795                            const void *v)
5796 {
5797         int handled = 0;
5798         int n;
5799
5800         do {
5801                 n = min(len, 8);
5802                 if (!(lapic_in_kernel(vcpu) &&
5803                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5804                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5805                         break;
5806                 handled += n;
5807                 addr += n;
5808                 len -= n;
5809                 v += n;
5810         } while (len);
5811
5812         return handled;
5813 }
5814
5815 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5816 {
5817         int handled = 0;
5818         int n;
5819
5820         do {
5821                 n = min(len, 8);
5822                 if (!(lapic_in_kernel(vcpu) &&
5823                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5824                                          addr, n, v))
5825                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5826                         break;
5827                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5828                 handled += n;
5829                 addr += n;
5830                 len -= n;
5831                 v += n;
5832         } while (len);
5833
5834         return handled;
5835 }
5836
5837 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5838                         struct kvm_segment *var, int seg)
5839 {
5840         kvm_x86_ops.set_segment(vcpu, var, seg);
5841 }
5842
5843 void kvm_get_segment(struct kvm_vcpu *vcpu,
5844                      struct kvm_segment *var, int seg)
5845 {
5846         kvm_x86_ops.get_segment(vcpu, var, seg);
5847 }
5848
5849 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5850                            struct x86_exception *exception)
5851 {
5852         gpa_t t_gpa;
5853
5854         BUG_ON(!mmu_is_nested(vcpu));
5855
5856         /* NPT walks are always user-walks */
5857         access |= PFERR_USER_MASK;
5858         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5859
5860         return t_gpa;
5861 }
5862
5863 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5864                               struct x86_exception *exception)
5865 {
5866         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5867         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5868 }
5869
5870  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5871                                 struct x86_exception *exception)
5872 {
5873         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5874         access |= PFERR_FETCH_MASK;
5875         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5876 }
5877
5878 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5879                                struct x86_exception *exception)
5880 {
5881         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5882         access |= PFERR_WRITE_MASK;
5883         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5884 }
5885
5886 /* uses this to access any guest's mapped memory without checking CPL */
5887 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5888                                 struct x86_exception *exception)
5889 {
5890         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5891 }
5892
5893 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5894                                       struct kvm_vcpu *vcpu, u32 access,
5895                                       struct x86_exception *exception)
5896 {
5897         void *data = val;
5898         int r = X86EMUL_CONTINUE;
5899
5900         while (bytes) {
5901                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5902                                                             exception);
5903                 unsigned offset = addr & (PAGE_SIZE-1);
5904                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5905                 int ret;
5906
5907                 if (gpa == UNMAPPED_GVA)
5908                         return X86EMUL_PROPAGATE_FAULT;
5909                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5910                                                offset, toread);
5911                 if (ret < 0) {
5912                         r = X86EMUL_IO_NEEDED;
5913                         goto out;
5914                 }
5915
5916                 bytes -= toread;
5917                 data += toread;
5918                 addr += toread;
5919         }
5920 out:
5921         return r;
5922 }
5923
5924 /* used for instruction fetching */
5925 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5926                                 gva_t addr, void *val, unsigned int bytes,
5927                                 struct x86_exception *exception)
5928 {
5929         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5930         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5931         unsigned offset;
5932         int ret;
5933
5934         /* Inline kvm_read_guest_virt_helper for speed.  */
5935         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5936                                                     exception);
5937         if (unlikely(gpa == UNMAPPED_GVA))
5938                 return X86EMUL_PROPAGATE_FAULT;
5939
5940         offset = addr & (PAGE_SIZE-1);
5941         if (WARN_ON(offset + bytes > PAGE_SIZE))
5942                 bytes = (unsigned)PAGE_SIZE - offset;
5943         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5944                                        offset, bytes);
5945         if (unlikely(ret < 0))
5946                 return X86EMUL_IO_NEEDED;
5947
5948         return X86EMUL_CONTINUE;
5949 }
5950
5951 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5952                                gva_t addr, void *val, unsigned int bytes,
5953                                struct x86_exception *exception)
5954 {
5955         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5956
5957         /*
5958          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5959          * is returned, but our callers are not ready for that and they blindly
5960          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5961          * uninitialized kernel stack memory into cr2 and error code.
5962          */
5963         memset(exception, 0, sizeof(*exception));
5964         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5965                                           exception);
5966 }
5967 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5968
5969 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5970                              gva_t addr, void *val, unsigned int bytes,
5971                              struct x86_exception *exception, bool system)
5972 {
5973         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5974         u32 access = 0;
5975
5976         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5977                 access |= PFERR_USER_MASK;
5978
5979         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5980 }
5981
5982 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5983                 unsigned long addr, void *val, unsigned int bytes)
5984 {
5985         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5986         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5987
5988         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5989 }
5990
5991 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5992                                       struct kvm_vcpu *vcpu, u32 access,
5993                                       struct x86_exception *exception)
5994 {
5995         void *data = val;
5996         int r = X86EMUL_CONTINUE;
5997
5998         while (bytes) {
5999                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6000                                                              access,
6001                                                              exception);
6002                 unsigned offset = addr & (PAGE_SIZE-1);
6003                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6004                 int ret;
6005
6006                 if (gpa == UNMAPPED_GVA)
6007                         return X86EMUL_PROPAGATE_FAULT;
6008                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6009                 if (ret < 0) {
6010                         r = X86EMUL_IO_NEEDED;
6011                         goto out;
6012                 }
6013
6014                 bytes -= towrite;
6015                 data += towrite;
6016                 addr += towrite;
6017         }
6018 out:
6019         return r;
6020 }
6021
6022 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6023                               unsigned int bytes, struct x86_exception *exception,
6024                               bool system)
6025 {
6026         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6027         u32 access = PFERR_WRITE_MASK;
6028
6029         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6030                 access |= PFERR_USER_MASK;
6031
6032         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6033                                            access, exception);
6034 }
6035
6036 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6037                                 unsigned int bytes, struct x86_exception *exception)
6038 {
6039         /* kvm_write_guest_virt_system can pull in tons of pages. */
6040         vcpu->arch.l1tf_flush_l1d = true;
6041
6042         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6043                                            PFERR_WRITE_MASK, exception);
6044 }
6045 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6046
6047 int handle_ud(struct kvm_vcpu *vcpu)
6048 {
6049         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6050         int emul_type = EMULTYPE_TRAP_UD;
6051         char sig[5]; /* ud2; .ascii "kvm" */
6052         struct x86_exception e;
6053
6054         if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6055                 return 1;
6056
6057         if (force_emulation_prefix &&
6058             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6059                                 sig, sizeof(sig), &e) == 0 &&
6060             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6061                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6062                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6063         }
6064
6065         return kvm_emulate_instruction(vcpu, emul_type);
6066 }
6067 EXPORT_SYMBOL_GPL(handle_ud);
6068
6069 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6070                             gpa_t gpa, bool write)
6071 {
6072         /* For APIC access vmexit */
6073         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6074                 return 1;
6075
6076         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6077                 trace_vcpu_match_mmio(gva, gpa, write, true);
6078                 return 1;
6079         }
6080
6081         return 0;
6082 }
6083
6084 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6085                                 gpa_t *gpa, struct x86_exception *exception,
6086                                 bool write)
6087 {
6088         u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6089                 | (write ? PFERR_WRITE_MASK : 0);
6090
6091         /*
6092          * currently PKRU is only applied to ept enabled guest so
6093          * there is no pkey in EPT page table for L1 guest or EPT
6094          * shadow page table for L2 guest.
6095          */
6096         if (vcpu_match_mmio_gva(vcpu, gva)
6097             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6098                                  vcpu->arch.mmio_access, 0, access)) {
6099                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6100                                         (gva & (PAGE_SIZE - 1));
6101                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6102                 return 1;
6103         }
6104
6105         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6106
6107         if (*gpa == UNMAPPED_GVA)
6108                 return -1;
6109
6110         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6111 }
6112
6113 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6114                         const void *val, int bytes)
6115 {
6116         int ret;
6117
6118         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6119         if (ret < 0)
6120                 return 0;
6121         kvm_page_track_write(vcpu, gpa, val, bytes);
6122         return 1;
6123 }
6124
6125 struct read_write_emulator_ops {
6126         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6127                                   int bytes);
6128         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6129                                   void *val, int bytes);
6130         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6131                                int bytes, void *val);
6132         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6133                                     void *val, int bytes);
6134         bool write;
6135 };
6136
6137 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6138 {
6139         if (vcpu->mmio_read_completed) {
6140                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6141                                vcpu->mmio_fragments[0].gpa, val);
6142                 vcpu->mmio_read_completed = 0;
6143                 return 1;
6144         }
6145
6146         return 0;
6147 }
6148
6149 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6150                         void *val, int bytes)
6151 {
6152         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6153 }
6154
6155 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6156                          void *val, int bytes)
6157 {
6158         return emulator_write_phys(vcpu, gpa, val, bytes);
6159 }
6160
6161 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6162 {
6163         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6164         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6165 }
6166
6167 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6168                           void *val, int bytes)
6169 {
6170         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6171         return X86EMUL_IO_NEEDED;
6172 }
6173
6174 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6175                            void *val, int bytes)
6176 {
6177         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6178
6179         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6180         return X86EMUL_CONTINUE;
6181 }
6182
6183 static const struct read_write_emulator_ops read_emultor = {
6184         .read_write_prepare = read_prepare,
6185         .read_write_emulate = read_emulate,
6186         .read_write_mmio = vcpu_mmio_read,
6187         .read_write_exit_mmio = read_exit_mmio,
6188 };
6189
6190 static const struct read_write_emulator_ops write_emultor = {
6191         .read_write_emulate = write_emulate,
6192         .read_write_mmio = write_mmio,
6193         .read_write_exit_mmio = write_exit_mmio,
6194         .write = true,
6195 };
6196
6197 static int emulator_read_write_onepage(unsigned long addr, void *val,
6198                                        unsigned int bytes,
6199                                        struct x86_exception *exception,
6200                                        struct kvm_vcpu *vcpu,
6201                                        const struct read_write_emulator_ops *ops)
6202 {
6203         gpa_t gpa;
6204         int handled, ret;
6205         bool write = ops->write;
6206         struct kvm_mmio_fragment *frag;
6207         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6208
6209         /*
6210          * If the exit was due to a NPF we may already have a GPA.
6211          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6212          * Note, this cannot be used on string operations since string
6213          * operation using rep will only have the initial GPA from the NPF
6214          * occurred.
6215          */
6216         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6217             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6218                 gpa = ctxt->gpa_val;
6219                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6220         } else {
6221                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6222                 if (ret < 0)
6223                         return X86EMUL_PROPAGATE_FAULT;
6224         }
6225
6226         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6227                 return X86EMUL_CONTINUE;
6228
6229         /*
6230          * Is this MMIO handled locally?
6231          */
6232         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6233         if (handled == bytes)
6234                 return X86EMUL_CONTINUE;
6235
6236         gpa += handled;
6237         bytes -= handled;
6238         val += handled;
6239
6240         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6241         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6242         frag->gpa = gpa;
6243         frag->data = val;
6244         frag->len = bytes;
6245         return X86EMUL_CONTINUE;
6246 }
6247
6248 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6249                         unsigned long addr,
6250                         void *val, unsigned int bytes,
6251                         struct x86_exception *exception,
6252                         const struct read_write_emulator_ops *ops)
6253 {
6254         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6255         gpa_t gpa;
6256         int rc;
6257
6258         if (ops->read_write_prepare &&
6259                   ops->read_write_prepare(vcpu, val, bytes))
6260                 return X86EMUL_CONTINUE;
6261
6262         vcpu->mmio_nr_fragments = 0;
6263
6264         /* Crossing a page boundary? */
6265         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6266                 int now;
6267
6268                 now = -addr & ~PAGE_MASK;
6269                 rc = emulator_read_write_onepage(addr, val, now, exception,
6270                                                  vcpu, ops);
6271
6272                 if (rc != X86EMUL_CONTINUE)
6273                         return rc;
6274                 addr += now;
6275                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6276                         addr = (u32)addr;
6277                 val += now;
6278                 bytes -= now;
6279         }
6280
6281         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6282                                          vcpu, ops);
6283         if (rc != X86EMUL_CONTINUE)
6284                 return rc;
6285
6286         if (!vcpu->mmio_nr_fragments)
6287                 return rc;
6288
6289         gpa = vcpu->mmio_fragments[0].gpa;
6290
6291         vcpu->mmio_needed = 1;
6292         vcpu->mmio_cur_fragment = 0;
6293
6294         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6295         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6296         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6297         vcpu->run->mmio.phys_addr = gpa;
6298
6299         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6300 }
6301
6302 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6303                                   unsigned long addr,
6304                                   void *val,
6305                                   unsigned int bytes,
6306                                   struct x86_exception *exception)
6307 {
6308         return emulator_read_write(ctxt, addr, val, bytes,
6309                                    exception, &read_emultor);
6310 }
6311
6312 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6313                             unsigned long addr,
6314                             const void *val,
6315                             unsigned int bytes,
6316                             struct x86_exception *exception)
6317 {
6318         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6319                                    exception, &write_emultor);
6320 }
6321
6322 #define CMPXCHG_TYPE(t, ptr, old, new) \
6323         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6324
6325 #ifdef CONFIG_X86_64
6326 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6327 #else
6328 #  define CMPXCHG64(ptr, old, new) \
6329         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6330 #endif
6331
6332 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6333                                      unsigned long addr,
6334                                      const void *old,
6335                                      const void *new,
6336                                      unsigned int bytes,
6337                                      struct x86_exception *exception)
6338 {
6339         struct kvm_host_map map;
6340         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6341         u64 page_line_mask;
6342         gpa_t gpa;
6343         char *kaddr;
6344         bool exchanged;
6345
6346         /* guests cmpxchg8b have to be emulated atomically */
6347         if (bytes > 8 || (bytes & (bytes - 1)))
6348                 goto emul_write;
6349
6350         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6351
6352         if (gpa == UNMAPPED_GVA ||
6353             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6354                 goto emul_write;
6355
6356         /*
6357          * Emulate the atomic as a straight write to avoid #AC if SLD is
6358          * enabled in the host and the access splits a cache line.
6359          */
6360         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6361                 page_line_mask = ~(cache_line_size() - 1);
6362         else
6363                 page_line_mask = PAGE_MASK;
6364
6365         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6366                 goto emul_write;
6367
6368         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6369                 goto emul_write;
6370
6371         kaddr = map.hva + offset_in_page(gpa);
6372
6373         switch (bytes) {
6374         case 1:
6375                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6376                 break;
6377         case 2:
6378                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6379                 break;
6380         case 4:
6381                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6382                 break;
6383         case 8:
6384                 exchanged = CMPXCHG64(kaddr, old, new);
6385                 break;
6386         default:
6387                 BUG();
6388         }
6389
6390         kvm_vcpu_unmap(vcpu, &map, true);
6391
6392         if (!exchanged)
6393                 return X86EMUL_CMPXCHG_FAILED;
6394
6395         kvm_page_track_write(vcpu, gpa, new, bytes);
6396
6397         return X86EMUL_CONTINUE;
6398
6399 emul_write:
6400         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6401
6402         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6403 }
6404
6405 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6406 {
6407         int r = 0, i;
6408
6409         for (i = 0; i < vcpu->arch.pio.count; i++) {
6410                 if (vcpu->arch.pio.in)
6411                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6412                                             vcpu->arch.pio.size, pd);
6413                 else
6414                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6415                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6416                                              pd);
6417                 if (r)
6418                         break;
6419                 pd += vcpu->arch.pio.size;
6420         }
6421         return r;
6422 }
6423
6424 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6425                                unsigned short port, void *val,
6426                                unsigned int count, bool in)
6427 {
6428         vcpu->arch.pio.port = port;
6429         vcpu->arch.pio.in = in;
6430         vcpu->arch.pio.count  = count;
6431         vcpu->arch.pio.size = size;
6432
6433         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6434                 vcpu->arch.pio.count = 0;
6435                 return 1;
6436         }
6437
6438         vcpu->run->exit_reason = KVM_EXIT_IO;
6439         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6440         vcpu->run->io.size = size;
6441         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6442         vcpu->run->io.count = count;
6443         vcpu->run->io.port = port;
6444
6445         return 0;
6446 }
6447
6448 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6449                            unsigned short port, void *val, unsigned int count)
6450 {
6451         int ret;
6452
6453         if (vcpu->arch.pio.count)
6454                 goto data_avail;
6455
6456         memset(vcpu->arch.pio_data, 0, size * count);
6457
6458         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6459         if (ret) {
6460 data_avail:
6461                 memcpy(val, vcpu->arch.pio_data, size * count);
6462                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6463                 vcpu->arch.pio.count = 0;
6464                 return 1;
6465         }
6466
6467         return 0;
6468 }
6469
6470 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6471                                     int size, unsigned short port, void *val,
6472                                     unsigned int count)
6473 {
6474         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6475
6476 }
6477
6478 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6479                             unsigned short port, const void *val,
6480                             unsigned int count)
6481 {
6482         memcpy(vcpu->arch.pio_data, val, size * count);
6483         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6484         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6485 }
6486
6487 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6488                                      int size, unsigned short port,
6489                                      const void *val, unsigned int count)
6490 {
6491         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6492 }
6493
6494 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6495 {
6496         return kvm_x86_ops.get_segment_base(vcpu, seg);
6497 }
6498
6499 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6500 {
6501         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6502 }
6503
6504 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6505 {
6506         if (!need_emulate_wbinvd(vcpu))
6507                 return X86EMUL_CONTINUE;
6508
6509         if (kvm_x86_ops.has_wbinvd_exit()) {
6510                 int cpu = get_cpu();
6511
6512                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6513                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6514                                 wbinvd_ipi, NULL, 1);
6515                 put_cpu();
6516                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6517         } else
6518                 wbinvd();
6519         return X86EMUL_CONTINUE;
6520 }
6521
6522 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6523 {
6524         kvm_emulate_wbinvd_noskip(vcpu);
6525         return kvm_skip_emulated_instruction(vcpu);
6526 }
6527 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6528
6529
6530
6531 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6532 {
6533         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6534 }
6535
6536 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6537                            unsigned long *dest)
6538 {
6539         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6540 }
6541
6542 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6543                            unsigned long value)
6544 {
6545
6546         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6547 }
6548
6549 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6550 {
6551         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6552 }
6553
6554 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6555 {
6556         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6557         unsigned long value;
6558
6559         switch (cr) {
6560         case 0:
6561                 value = kvm_read_cr0(vcpu);
6562                 break;
6563         case 2:
6564                 value = vcpu->arch.cr2;
6565                 break;
6566         case 3:
6567                 value = kvm_read_cr3(vcpu);
6568                 break;
6569         case 4:
6570                 value = kvm_read_cr4(vcpu);
6571                 break;
6572         case 8:
6573                 value = kvm_get_cr8(vcpu);
6574                 break;
6575         default:
6576                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6577                 return 0;
6578         }
6579
6580         return value;
6581 }
6582
6583 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6584 {
6585         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6586         int res = 0;
6587
6588         switch (cr) {
6589         case 0:
6590                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6591                 break;
6592         case 2:
6593                 vcpu->arch.cr2 = val;
6594                 break;
6595         case 3:
6596                 res = kvm_set_cr3(vcpu, val);
6597                 break;
6598         case 4:
6599                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6600                 break;
6601         case 8:
6602                 res = kvm_set_cr8(vcpu, val);
6603                 break;
6604         default:
6605                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6606                 res = -1;
6607         }
6608
6609         return res;
6610 }
6611
6612 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6613 {
6614         return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6615 }
6616
6617 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6618 {
6619         kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6620 }
6621
6622 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6623 {
6624         kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6625 }
6626
6627 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6628 {
6629         kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6630 }
6631
6632 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6633 {
6634         kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6635 }
6636
6637 static unsigned long emulator_get_cached_segment_base(
6638         struct x86_emulate_ctxt *ctxt, int seg)
6639 {
6640         return get_segment_base(emul_to_vcpu(ctxt), seg);
6641 }
6642
6643 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6644                                  struct desc_struct *desc, u32 *base3,
6645                                  int seg)
6646 {
6647         struct kvm_segment var;
6648
6649         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6650         *selector = var.selector;
6651
6652         if (var.unusable) {
6653                 memset(desc, 0, sizeof(*desc));
6654                 if (base3)
6655                         *base3 = 0;
6656                 return false;
6657         }
6658
6659         if (var.g)
6660                 var.limit >>= 12;
6661         set_desc_limit(desc, var.limit);
6662         set_desc_base(desc, (unsigned long)var.base);
6663 #ifdef CONFIG_X86_64
6664         if (base3)
6665                 *base3 = var.base >> 32;
6666 #endif
6667         desc->type = var.type;
6668         desc->s = var.s;
6669         desc->dpl = var.dpl;
6670         desc->p = var.present;
6671         desc->avl = var.avl;
6672         desc->l = var.l;
6673         desc->d = var.db;
6674         desc->g = var.g;
6675
6676         return true;
6677 }
6678
6679 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6680                                  struct desc_struct *desc, u32 base3,
6681                                  int seg)
6682 {
6683         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6684         struct kvm_segment var;
6685
6686         var.selector = selector;
6687         var.base = get_desc_base(desc);
6688 #ifdef CONFIG_X86_64
6689         var.base |= ((u64)base3) << 32;
6690 #endif
6691         var.limit = get_desc_limit(desc);
6692         if (desc->g)
6693                 var.limit = (var.limit << 12) | 0xfff;
6694         var.type = desc->type;
6695         var.dpl = desc->dpl;
6696         var.db = desc->d;
6697         var.s = desc->s;
6698         var.l = desc->l;
6699         var.g = desc->g;
6700         var.avl = desc->avl;
6701         var.present = desc->p;
6702         var.unusable = !var.present;
6703         var.padding = 0;
6704
6705         kvm_set_segment(vcpu, &var, seg);
6706         return;
6707 }
6708
6709 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6710                             u32 msr_index, u64 *pdata)
6711 {
6712         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6713         int r;
6714
6715         r = kvm_get_msr(vcpu, msr_index, pdata);
6716
6717         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6718                 /* Bounce to user space */
6719                 return X86EMUL_IO_NEEDED;
6720         }
6721
6722         return r;
6723 }
6724
6725 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6726                             u32 msr_index, u64 data)
6727 {
6728         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6729         int r;
6730
6731         r = kvm_set_msr(vcpu, msr_index, data);
6732
6733         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6734                 /* Bounce to user space */
6735                 return X86EMUL_IO_NEEDED;
6736         }
6737
6738         return r;
6739 }
6740
6741 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6742 {
6743         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6744
6745         return vcpu->arch.smbase;
6746 }
6747
6748 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6749 {
6750         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6751
6752         vcpu->arch.smbase = smbase;
6753 }
6754
6755 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6756                               u32 pmc)
6757 {
6758         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6759 }
6760
6761 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6762                              u32 pmc, u64 *pdata)
6763 {
6764         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6765 }
6766
6767 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6768 {
6769         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6770 }
6771
6772 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6773                               struct x86_instruction_info *info,
6774                               enum x86_intercept_stage stage)
6775 {
6776         return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6777                                             &ctxt->exception);
6778 }
6779
6780 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6781                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6782                               bool exact_only)
6783 {
6784         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6785 }
6786
6787 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6788 {
6789         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6790 }
6791
6792 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6793 {
6794         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6795 }
6796
6797 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6798 {
6799         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6800 }
6801
6802 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6803 {
6804         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6805 }
6806
6807 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6808 {
6809         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6810 }
6811
6812 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6813 {
6814         kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6815 }
6816
6817 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6818 {
6819         return emul_to_vcpu(ctxt)->arch.hflags;
6820 }
6821
6822 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6823 {
6824         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6825 }
6826
6827 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6828                                   const char *smstate)
6829 {
6830         return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6831 }
6832
6833 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6834 {
6835         kvm_smm_changed(emul_to_vcpu(ctxt));
6836 }
6837
6838 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6839 {
6840         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6841 }
6842
6843 static const struct x86_emulate_ops emulate_ops = {
6844         .read_gpr            = emulator_read_gpr,
6845         .write_gpr           = emulator_write_gpr,
6846         .read_std            = emulator_read_std,
6847         .write_std           = emulator_write_std,
6848         .read_phys           = kvm_read_guest_phys_system,
6849         .fetch               = kvm_fetch_guest_virt,
6850         .read_emulated       = emulator_read_emulated,
6851         .write_emulated      = emulator_write_emulated,
6852         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6853         .invlpg              = emulator_invlpg,
6854         .pio_in_emulated     = emulator_pio_in_emulated,
6855         .pio_out_emulated    = emulator_pio_out_emulated,
6856         .get_segment         = emulator_get_segment,
6857         .set_segment         = emulator_set_segment,
6858         .get_cached_segment_base = emulator_get_cached_segment_base,
6859         .get_gdt             = emulator_get_gdt,
6860         .get_idt             = emulator_get_idt,
6861         .set_gdt             = emulator_set_gdt,
6862         .set_idt             = emulator_set_idt,
6863         .get_cr              = emulator_get_cr,
6864         .set_cr              = emulator_set_cr,
6865         .cpl                 = emulator_get_cpl,
6866         .get_dr              = emulator_get_dr,
6867         .set_dr              = emulator_set_dr,
6868         .get_smbase          = emulator_get_smbase,
6869         .set_smbase          = emulator_set_smbase,
6870         .set_msr             = emulator_set_msr,
6871         .get_msr             = emulator_get_msr,
6872         .check_pmc           = emulator_check_pmc,
6873         .read_pmc            = emulator_read_pmc,
6874         .halt                = emulator_halt,
6875         .wbinvd              = emulator_wbinvd,
6876         .fix_hypercall       = emulator_fix_hypercall,
6877         .intercept           = emulator_intercept,
6878         .get_cpuid           = emulator_get_cpuid,
6879         .guest_has_long_mode = emulator_guest_has_long_mode,
6880         .guest_has_movbe     = emulator_guest_has_movbe,
6881         .guest_has_fxsr      = emulator_guest_has_fxsr,
6882         .set_nmi_mask        = emulator_set_nmi_mask,
6883         .get_hflags          = emulator_get_hflags,
6884         .set_hflags          = emulator_set_hflags,
6885         .pre_leave_smm       = emulator_pre_leave_smm,
6886         .post_leave_smm      = emulator_post_leave_smm,
6887         .set_xcr             = emulator_set_xcr,
6888 };
6889
6890 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6891 {
6892         u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6893         /*
6894          * an sti; sti; sequence only disable interrupts for the first
6895          * instruction. So, if the last instruction, be it emulated or
6896          * not, left the system with the INT_STI flag enabled, it
6897          * means that the last instruction is an sti. We should not
6898          * leave the flag on in this case. The same goes for mov ss
6899          */
6900         if (int_shadow & mask)
6901                 mask = 0;
6902         if (unlikely(int_shadow || mask)) {
6903                 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6904                 if (!mask)
6905                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6906         }
6907 }
6908
6909 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6910 {
6911         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6912         if (ctxt->exception.vector == PF_VECTOR)
6913                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6914
6915         if (ctxt->exception.error_code_valid)
6916                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6917                                       ctxt->exception.error_code);
6918         else
6919                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6920         return false;
6921 }
6922
6923 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6924 {
6925         struct x86_emulate_ctxt *ctxt;
6926
6927         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6928         if (!ctxt) {
6929                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6930                 return NULL;
6931         }
6932
6933         ctxt->vcpu = vcpu;
6934         ctxt->ops = &emulate_ops;
6935         vcpu->arch.emulate_ctxt = ctxt;
6936
6937         return ctxt;
6938 }
6939
6940 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6941 {
6942         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6943         int cs_db, cs_l;
6944
6945         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6946
6947         ctxt->gpa_available = false;
6948         ctxt->eflags = kvm_get_rflags(vcpu);
6949         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6950
6951         ctxt->eip = kvm_rip_read(vcpu);
6952         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6953                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6954                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6955                      cs_db                              ? X86EMUL_MODE_PROT32 :
6956                                                           X86EMUL_MODE_PROT16;
6957         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6958         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6959         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6960
6961         init_decode_cache(ctxt);
6962         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6963 }
6964
6965 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6966 {
6967         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6968         int ret;
6969
6970         init_emulate_ctxt(vcpu);
6971
6972         ctxt->op_bytes = 2;
6973         ctxt->ad_bytes = 2;
6974         ctxt->_eip = ctxt->eip + inc_eip;
6975         ret = emulate_int_real(ctxt, irq);
6976
6977         if (ret != X86EMUL_CONTINUE) {
6978                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6979         } else {
6980                 ctxt->eip = ctxt->_eip;
6981                 kvm_rip_write(vcpu, ctxt->eip);
6982                 kvm_set_rflags(vcpu, ctxt->eflags);
6983         }
6984 }
6985 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6986
6987 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6988 {
6989         ++vcpu->stat.insn_emulation_fail;
6990         trace_kvm_emulate_insn_failed(vcpu);
6991
6992         if (emulation_type & EMULTYPE_VMWARE_GP) {
6993                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6994                 return 1;
6995         }
6996
6997         if (emulation_type & EMULTYPE_SKIP) {
6998                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6999                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7000                 vcpu->run->internal.ndata = 0;
7001                 return 0;
7002         }
7003
7004         kvm_queue_exception(vcpu, UD_VECTOR);
7005
7006         if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7007                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7008                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7009                 vcpu->run->internal.ndata = 0;
7010                 return 0;
7011         }
7012
7013         return 1;
7014 }
7015
7016 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7017                                   bool write_fault_to_shadow_pgtable,
7018                                   int emulation_type)
7019 {
7020         gpa_t gpa = cr2_or_gpa;
7021         kvm_pfn_t pfn;
7022
7023         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7024                 return false;
7025
7026         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7027             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7028                 return false;
7029
7030         if (!vcpu->arch.mmu->direct_map) {
7031                 /*
7032                  * Write permission should be allowed since only
7033                  * write access need to be emulated.
7034                  */
7035                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7036
7037                 /*
7038                  * If the mapping is invalid in guest, let cpu retry
7039                  * it to generate fault.
7040                  */
7041                 if (gpa == UNMAPPED_GVA)
7042                         return true;
7043         }
7044
7045         /*
7046          * Do not retry the unhandleable instruction if it faults on the
7047          * readonly host memory, otherwise it will goto a infinite loop:
7048          * retry instruction -> write #PF -> emulation fail -> retry
7049          * instruction -> ...
7050          */
7051         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7052
7053         /*
7054          * If the instruction failed on the error pfn, it can not be fixed,
7055          * report the error to userspace.
7056          */
7057         if (is_error_noslot_pfn(pfn))
7058                 return false;
7059
7060         kvm_release_pfn_clean(pfn);
7061
7062         /* The instructions are well-emulated on direct mmu. */
7063         if (vcpu->arch.mmu->direct_map) {
7064                 unsigned int indirect_shadow_pages;
7065
7066                 spin_lock(&vcpu->kvm->mmu_lock);
7067                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7068                 spin_unlock(&vcpu->kvm->mmu_lock);
7069
7070                 if (indirect_shadow_pages)
7071                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7072
7073                 return true;
7074         }
7075
7076         /*
7077          * if emulation was due to access to shadowed page table
7078          * and it failed try to unshadow page and re-enter the
7079          * guest to let CPU execute the instruction.
7080          */
7081         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7082
7083         /*
7084          * If the access faults on its page table, it can not
7085          * be fixed by unprotecting shadow page and it should
7086          * be reported to userspace.
7087          */
7088         return !write_fault_to_shadow_pgtable;
7089 }
7090
7091 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7092                               gpa_t cr2_or_gpa,  int emulation_type)
7093 {
7094         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7095         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7096
7097         last_retry_eip = vcpu->arch.last_retry_eip;
7098         last_retry_addr = vcpu->arch.last_retry_addr;
7099
7100         /*
7101          * If the emulation is caused by #PF and it is non-page_table
7102          * writing instruction, it means the VM-EXIT is caused by shadow
7103          * page protected, we can zap the shadow page and retry this
7104          * instruction directly.
7105          *
7106          * Note: if the guest uses a non-page-table modifying instruction
7107          * on the PDE that points to the instruction, then we will unmap
7108          * the instruction and go to an infinite loop. So, we cache the
7109          * last retried eip and the last fault address, if we meet the eip
7110          * and the address again, we can break out of the potential infinite
7111          * loop.
7112          */
7113         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7114
7115         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7116                 return false;
7117
7118         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7119             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7120                 return false;
7121
7122         if (x86_page_table_writing_insn(ctxt))
7123                 return false;
7124
7125         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7126                 return false;
7127
7128         vcpu->arch.last_retry_eip = ctxt->eip;
7129         vcpu->arch.last_retry_addr = cr2_or_gpa;
7130
7131         if (!vcpu->arch.mmu->direct_map)
7132                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7133
7134         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7135
7136         return true;
7137 }
7138
7139 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7140 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7141
7142 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7143 {
7144         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7145                 /* This is a good place to trace that we are exiting SMM.  */
7146                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7147
7148                 /* Process a latched INIT or SMI, if any.  */
7149                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7150         }
7151
7152         kvm_mmu_reset_context(vcpu);
7153 }
7154
7155 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7156                                 unsigned long *db)
7157 {
7158         u32 dr6 = 0;
7159         int i;
7160         u32 enable, rwlen;
7161
7162         enable = dr7;
7163         rwlen = dr7 >> 16;
7164         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7165                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7166                         dr6 |= (1 << i);
7167         return dr6;
7168 }
7169
7170 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7171 {
7172         struct kvm_run *kvm_run = vcpu->run;
7173
7174         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7175                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7176                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7177                 kvm_run->debug.arch.exception = DB_VECTOR;
7178                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7179                 return 0;
7180         }
7181         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7182         return 1;
7183 }
7184
7185 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7186 {
7187         unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7188         int r;
7189
7190         r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7191         if (unlikely(!r))
7192                 return 0;
7193
7194         /*
7195          * rflags is the old, "raw" value of the flags.  The new value has
7196          * not been saved yet.
7197          *
7198          * This is correct even for TF set by the guest, because "the
7199          * processor will not generate this exception after the instruction
7200          * that sets the TF flag".
7201          */
7202         if (unlikely(rflags & X86_EFLAGS_TF))
7203                 r = kvm_vcpu_do_singlestep(vcpu);
7204         return r;
7205 }
7206 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7207
7208 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7209 {
7210         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7211             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7212                 struct kvm_run *kvm_run = vcpu->run;
7213                 unsigned long eip = kvm_get_linear_rip(vcpu);
7214                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7215                                            vcpu->arch.guest_debug_dr7,
7216                                            vcpu->arch.eff_db);
7217
7218                 if (dr6 != 0) {
7219                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7220                         kvm_run->debug.arch.pc = eip;
7221                         kvm_run->debug.arch.exception = DB_VECTOR;
7222                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7223                         *r = 0;
7224                         return true;
7225                 }
7226         }
7227
7228         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7229             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7230                 unsigned long eip = kvm_get_linear_rip(vcpu);
7231                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7232                                            vcpu->arch.dr7,
7233                                            vcpu->arch.db);
7234
7235                 if (dr6 != 0) {
7236                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7237                         *r = 1;
7238                         return true;
7239                 }
7240         }
7241
7242         return false;
7243 }
7244
7245 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7246 {
7247         switch (ctxt->opcode_len) {
7248         case 1:
7249                 switch (ctxt->b) {
7250                 case 0xe4:      /* IN */
7251                 case 0xe5:
7252                 case 0xec:
7253                 case 0xed:
7254                 case 0xe6:      /* OUT */
7255                 case 0xe7:
7256                 case 0xee:
7257                 case 0xef:
7258                 case 0x6c:      /* INS */
7259                 case 0x6d:
7260                 case 0x6e:      /* OUTS */
7261                 case 0x6f:
7262                         return true;
7263                 }
7264                 break;
7265         case 2:
7266                 switch (ctxt->b) {
7267                 case 0x33:      /* RDPMC */
7268                         return true;
7269                 }
7270                 break;
7271         }
7272
7273         return false;
7274 }
7275
7276 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7277                             int emulation_type, void *insn, int insn_len)
7278 {
7279         int r;
7280         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7281         bool writeback = true;
7282         bool write_fault_to_spt;
7283
7284         if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7285                 return 1;
7286
7287         vcpu->arch.l1tf_flush_l1d = true;
7288
7289         /*
7290          * Clear write_fault_to_shadow_pgtable here to ensure it is
7291          * never reused.
7292          */
7293         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7294         vcpu->arch.write_fault_to_shadow_pgtable = false;
7295         kvm_clear_exception_queue(vcpu);
7296
7297         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7298                 init_emulate_ctxt(vcpu);
7299
7300                 /*
7301                  * We will reenter on the same instruction since
7302                  * we do not set complete_userspace_io.  This does not
7303                  * handle watchpoints yet, those would be handled in
7304                  * the emulate_ops.
7305                  */
7306                 if (!(emulation_type & EMULTYPE_SKIP) &&
7307                     kvm_vcpu_check_breakpoint(vcpu, &r))
7308                         return r;
7309
7310                 ctxt->interruptibility = 0;
7311                 ctxt->have_exception = false;
7312                 ctxt->exception.vector = -1;
7313                 ctxt->perm_ok = false;
7314
7315                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7316
7317                 r = x86_decode_insn(ctxt, insn, insn_len);
7318
7319                 trace_kvm_emulate_insn_start(vcpu);
7320                 ++vcpu->stat.insn_emulation;
7321                 if (r != EMULATION_OK)  {
7322                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7323                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7324                                 kvm_queue_exception(vcpu, UD_VECTOR);
7325                                 return 1;
7326                         }
7327                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7328                                                   write_fault_to_spt,
7329                                                   emulation_type))
7330                                 return 1;
7331                         if (ctxt->have_exception) {
7332                                 /*
7333                                  * #UD should result in just EMULATION_FAILED, and trap-like
7334                                  * exception should not be encountered during decode.
7335                                  */
7336                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7337                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7338                                 inject_emulated_exception(vcpu);
7339                                 return 1;
7340                         }
7341                         return handle_emulation_failure(vcpu, emulation_type);
7342                 }
7343         }
7344
7345         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7346             !is_vmware_backdoor_opcode(ctxt)) {
7347                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7348                 return 1;
7349         }
7350
7351         /*
7352          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7353          * for kvm_skip_emulated_instruction().  The caller is responsible for
7354          * updating interruptibility state and injecting single-step #DBs.
7355          */
7356         if (emulation_type & EMULTYPE_SKIP) {
7357                 kvm_rip_write(vcpu, ctxt->_eip);
7358                 if (ctxt->eflags & X86_EFLAGS_RF)
7359                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7360                 return 1;
7361         }
7362
7363         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7364                 return 1;
7365
7366         /* this is needed for vmware backdoor interface to work since it
7367            changes registers values  during IO operation */
7368         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7369                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7370                 emulator_invalidate_register_cache(ctxt);
7371         }
7372
7373 restart:
7374         if (emulation_type & EMULTYPE_PF) {
7375                 /* Save the faulting GPA (cr2) in the address field */
7376                 ctxt->exception.address = cr2_or_gpa;
7377
7378                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7379                 if (vcpu->arch.mmu->direct_map) {
7380                         ctxt->gpa_available = true;
7381                         ctxt->gpa_val = cr2_or_gpa;
7382                 }
7383         } else {
7384                 /* Sanitize the address out of an abundance of paranoia. */
7385                 ctxt->exception.address = 0;
7386         }
7387
7388         r = x86_emulate_insn(ctxt);
7389
7390         if (r == EMULATION_INTERCEPTED)
7391                 return 1;
7392
7393         if (r == EMULATION_FAILED) {
7394                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7395                                         emulation_type))
7396                         return 1;
7397
7398                 return handle_emulation_failure(vcpu, emulation_type);
7399         }
7400
7401         if (ctxt->have_exception) {
7402                 r = 1;
7403                 if (inject_emulated_exception(vcpu))
7404                         return r;
7405         } else if (vcpu->arch.pio.count) {
7406                 if (!vcpu->arch.pio.in) {
7407                         /* FIXME: return into emulator if single-stepping.  */
7408                         vcpu->arch.pio.count = 0;
7409                 } else {
7410                         writeback = false;
7411                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7412                 }
7413                 r = 0;
7414         } else if (vcpu->mmio_needed) {
7415                 ++vcpu->stat.mmio_exits;
7416
7417                 if (!vcpu->mmio_is_write)
7418                         writeback = false;
7419                 r = 0;
7420                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7421         } else if (r == EMULATION_RESTART)
7422                 goto restart;
7423         else
7424                 r = 1;
7425
7426         if (writeback) {
7427                 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7428                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7429                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7430                 if (!ctxt->have_exception ||
7431                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7432                         kvm_rip_write(vcpu, ctxt->eip);
7433                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7434                                 r = kvm_vcpu_do_singlestep(vcpu);
7435                         if (kvm_x86_ops.update_emulated_instruction)
7436                                 kvm_x86_ops.update_emulated_instruction(vcpu);
7437                         __kvm_set_rflags(vcpu, ctxt->eflags);
7438                 }
7439
7440                 /*
7441                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7442                  * do nothing, and it will be requested again as soon as
7443                  * the shadow expires.  But we still need to check here,
7444                  * because POPF has no interrupt shadow.
7445                  */
7446                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7447                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7448         } else
7449                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7450
7451         return r;
7452 }
7453
7454 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7455 {
7456         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7457 }
7458 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7459
7460 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7461                                         void *insn, int insn_len)
7462 {
7463         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7464 }
7465 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7466
7467 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7468 {
7469         vcpu->arch.pio.count = 0;
7470         return 1;
7471 }
7472
7473 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7474 {
7475         vcpu->arch.pio.count = 0;
7476
7477         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7478                 return 1;
7479
7480         return kvm_skip_emulated_instruction(vcpu);
7481 }
7482
7483 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7484                             unsigned short port)
7485 {
7486         unsigned long val = kvm_rax_read(vcpu);
7487         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7488
7489         if (ret)
7490                 return ret;
7491
7492         /*
7493          * Workaround userspace that relies on old KVM behavior of %rip being
7494          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7495          */
7496         if (port == 0x7e &&
7497             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7498                 vcpu->arch.complete_userspace_io =
7499                         complete_fast_pio_out_port_0x7e;
7500                 kvm_skip_emulated_instruction(vcpu);
7501         } else {
7502                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7503                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7504         }
7505         return 0;
7506 }
7507
7508 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7509 {
7510         unsigned long val;
7511
7512         /* We should only ever be called with arch.pio.count equal to 1 */
7513         BUG_ON(vcpu->arch.pio.count != 1);
7514
7515         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7516                 vcpu->arch.pio.count = 0;
7517                 return 1;
7518         }
7519
7520         /* For size less than 4 we merge, else we zero extend */
7521         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7522
7523         /*
7524          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7525          * the copy and tracing
7526          */
7527         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7528         kvm_rax_write(vcpu, val);
7529
7530         return kvm_skip_emulated_instruction(vcpu);
7531 }
7532
7533 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7534                            unsigned short port)
7535 {
7536         unsigned long val;
7537         int ret;
7538
7539         /* For size less than 4 we merge, else we zero extend */
7540         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7541
7542         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7543         if (ret) {
7544                 kvm_rax_write(vcpu, val);
7545                 return ret;
7546         }
7547
7548         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7549         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7550
7551         return 0;
7552 }
7553
7554 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7555 {
7556         int ret;
7557
7558         if (in)
7559                 ret = kvm_fast_pio_in(vcpu, size, port);
7560         else
7561                 ret = kvm_fast_pio_out(vcpu, size, port);
7562         return ret && kvm_skip_emulated_instruction(vcpu);
7563 }
7564 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7565
7566 static int kvmclock_cpu_down_prep(unsigned int cpu)
7567 {
7568         __this_cpu_write(cpu_tsc_khz, 0);
7569         return 0;
7570 }
7571
7572 static void tsc_khz_changed(void *data)
7573 {
7574         struct cpufreq_freqs *freq = data;
7575         unsigned long khz = 0;
7576
7577         if (data)
7578                 khz = freq->new;
7579         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7580                 khz = cpufreq_quick_get(raw_smp_processor_id());
7581         if (!khz)
7582                 khz = tsc_khz;
7583         __this_cpu_write(cpu_tsc_khz, khz);
7584 }
7585
7586 #ifdef CONFIG_X86_64
7587 static void kvm_hyperv_tsc_notifier(void)
7588 {
7589         struct kvm *kvm;
7590         struct kvm_vcpu *vcpu;
7591         int cpu;
7592
7593         mutex_lock(&kvm_lock);
7594         list_for_each_entry(kvm, &vm_list, vm_list)
7595                 kvm_make_mclock_inprogress_request(kvm);
7596
7597         hyperv_stop_tsc_emulation();
7598
7599         /* TSC frequency always matches when on Hyper-V */
7600         for_each_present_cpu(cpu)
7601                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7602         kvm_max_guest_tsc_khz = tsc_khz;
7603
7604         list_for_each_entry(kvm, &vm_list, vm_list) {
7605                 struct kvm_arch *ka = &kvm->arch;
7606
7607                 spin_lock(&ka->pvclock_gtod_sync_lock);
7608
7609                 pvclock_update_vm_gtod_copy(kvm);
7610
7611                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7612                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7613
7614                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7615                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7616
7617                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7618         }
7619         mutex_unlock(&kvm_lock);
7620 }
7621 #endif
7622
7623 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7624 {
7625         struct kvm *kvm;
7626         struct kvm_vcpu *vcpu;
7627         int i, send_ipi = 0;
7628
7629         /*
7630          * We allow guests to temporarily run on slowing clocks,
7631          * provided we notify them after, or to run on accelerating
7632          * clocks, provided we notify them before.  Thus time never
7633          * goes backwards.
7634          *
7635          * However, we have a problem.  We can't atomically update
7636          * the frequency of a given CPU from this function; it is
7637          * merely a notifier, which can be called from any CPU.
7638          * Changing the TSC frequency at arbitrary points in time
7639          * requires a recomputation of local variables related to
7640          * the TSC for each VCPU.  We must flag these local variables
7641          * to be updated and be sure the update takes place with the
7642          * new frequency before any guests proceed.
7643          *
7644          * Unfortunately, the combination of hotplug CPU and frequency
7645          * change creates an intractable locking scenario; the order
7646          * of when these callouts happen is undefined with respect to
7647          * CPU hotplug, and they can race with each other.  As such,
7648          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7649          * undefined; you can actually have a CPU frequency change take
7650          * place in between the computation of X and the setting of the
7651          * variable.  To protect against this problem, all updates of
7652          * the per_cpu tsc_khz variable are done in an interrupt
7653          * protected IPI, and all callers wishing to update the value
7654          * must wait for a synchronous IPI to complete (which is trivial
7655          * if the caller is on the CPU already).  This establishes the
7656          * necessary total order on variable updates.
7657          *
7658          * Note that because a guest time update may take place
7659          * anytime after the setting of the VCPU's request bit, the
7660          * correct TSC value must be set before the request.  However,
7661          * to ensure the update actually makes it to any guest which
7662          * starts running in hardware virtualization between the set
7663          * and the acquisition of the spinlock, we must also ping the
7664          * CPU after setting the request bit.
7665          *
7666          */
7667
7668         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7669
7670         mutex_lock(&kvm_lock);
7671         list_for_each_entry(kvm, &vm_list, vm_list) {
7672                 kvm_for_each_vcpu(i, vcpu, kvm) {
7673                         if (vcpu->cpu != cpu)
7674                                 continue;
7675                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7676                         if (vcpu->cpu != raw_smp_processor_id())
7677                                 send_ipi = 1;
7678                 }
7679         }
7680         mutex_unlock(&kvm_lock);
7681
7682         if (freq->old < freq->new && send_ipi) {
7683                 /*
7684                  * We upscale the frequency.  Must make the guest
7685                  * doesn't see old kvmclock values while running with
7686                  * the new frequency, otherwise we risk the guest sees
7687                  * time go backwards.
7688                  *
7689                  * In case we update the frequency for another cpu
7690                  * (which might be in guest context) send an interrupt
7691                  * to kick the cpu out of guest context.  Next time
7692                  * guest context is entered kvmclock will be updated,
7693                  * so the guest will not see stale values.
7694                  */
7695                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7696         }
7697 }
7698
7699 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7700                                      void *data)
7701 {
7702         struct cpufreq_freqs *freq = data;
7703         int cpu;
7704
7705         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7706                 return 0;
7707         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7708                 return 0;
7709
7710         for_each_cpu(cpu, freq->policy->cpus)
7711                 __kvmclock_cpufreq_notifier(freq, cpu);
7712
7713         return 0;
7714 }
7715
7716 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7717         .notifier_call  = kvmclock_cpufreq_notifier
7718 };
7719
7720 static int kvmclock_cpu_online(unsigned int cpu)
7721 {
7722         tsc_khz_changed(NULL);
7723         return 0;
7724 }
7725
7726 static void kvm_timer_init(void)
7727 {
7728         max_tsc_khz = tsc_khz;
7729
7730         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7731 #ifdef CONFIG_CPU_FREQ
7732                 struct cpufreq_policy *policy;
7733                 int cpu;
7734
7735                 cpu = get_cpu();
7736                 policy = cpufreq_cpu_get(cpu);
7737                 if (policy) {
7738                         if (policy->cpuinfo.max_freq)
7739                                 max_tsc_khz = policy->cpuinfo.max_freq;
7740                         cpufreq_cpu_put(policy);
7741                 }
7742                 put_cpu();
7743 #endif
7744                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7745                                           CPUFREQ_TRANSITION_NOTIFIER);
7746         }
7747
7748         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7749                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7750 }
7751
7752 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7753 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7754
7755 int kvm_is_in_guest(void)
7756 {
7757         return __this_cpu_read(current_vcpu) != NULL;
7758 }
7759
7760 static int kvm_is_user_mode(void)
7761 {
7762         int user_mode = 3;
7763
7764         if (__this_cpu_read(current_vcpu))
7765                 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7766
7767         return user_mode != 0;
7768 }
7769
7770 static unsigned long kvm_get_guest_ip(void)
7771 {
7772         unsigned long ip = 0;
7773
7774         if (__this_cpu_read(current_vcpu))
7775                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7776
7777         return ip;
7778 }
7779
7780 static void kvm_handle_intel_pt_intr(void)
7781 {
7782         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7783
7784         kvm_make_request(KVM_REQ_PMI, vcpu);
7785         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7786                         (unsigned long *)&vcpu->arch.pmu.global_status);
7787 }
7788
7789 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7790         .is_in_guest            = kvm_is_in_guest,
7791         .is_user_mode           = kvm_is_user_mode,
7792         .get_guest_ip           = kvm_get_guest_ip,
7793         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7794 };
7795
7796 #ifdef CONFIG_X86_64
7797 static void pvclock_gtod_update_fn(struct work_struct *work)
7798 {
7799         struct kvm *kvm;
7800
7801         struct kvm_vcpu *vcpu;
7802         int i;
7803
7804         mutex_lock(&kvm_lock);
7805         list_for_each_entry(kvm, &vm_list, vm_list)
7806                 kvm_for_each_vcpu(i, vcpu, kvm)
7807                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7808         atomic_set(&kvm_guest_has_master_clock, 0);
7809         mutex_unlock(&kvm_lock);
7810 }
7811
7812 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7813
7814 /*
7815  * Notification about pvclock gtod data update.
7816  */
7817 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7818                                void *priv)
7819 {
7820         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7821         struct timekeeper *tk = priv;
7822
7823         update_pvclock_gtod(tk);
7824
7825         /* disable master clock if host does not trust, or does not
7826          * use, TSC based clocksource.
7827          */
7828         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7829             atomic_read(&kvm_guest_has_master_clock) != 0)
7830                 queue_work(system_long_wq, &pvclock_gtod_work);
7831
7832         return 0;
7833 }
7834
7835 static struct notifier_block pvclock_gtod_notifier = {
7836         .notifier_call = pvclock_gtod_notify,
7837 };
7838 #endif
7839
7840 int kvm_arch_init(void *opaque)
7841 {
7842         struct kvm_x86_init_ops *ops = opaque;
7843         int r;
7844
7845         if (kvm_x86_ops.hardware_enable) {
7846                 printk(KERN_ERR "kvm: already loaded the other module\n");
7847                 r = -EEXIST;
7848                 goto out;
7849         }
7850
7851         if (!ops->cpu_has_kvm_support()) {
7852                 pr_err_ratelimited("kvm: no hardware support\n");
7853                 r = -EOPNOTSUPP;
7854                 goto out;
7855         }
7856         if (ops->disabled_by_bios()) {
7857                 pr_err_ratelimited("kvm: disabled by bios\n");
7858                 r = -EOPNOTSUPP;
7859                 goto out;
7860         }
7861
7862         /*
7863          * KVM explicitly assumes that the guest has an FPU and
7864          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7865          * vCPU's FPU state as a fxregs_state struct.
7866          */
7867         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7868                 printk(KERN_ERR "kvm: inadequate fpu\n");
7869                 r = -EOPNOTSUPP;
7870                 goto out;
7871         }
7872
7873         r = -ENOMEM;
7874         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7875                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7876                                           NULL);
7877         if (!x86_fpu_cache) {
7878                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7879                 goto out;
7880         }
7881
7882         x86_emulator_cache = kvm_alloc_emulator_cache();
7883         if (!x86_emulator_cache) {
7884                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7885                 goto out_free_x86_fpu_cache;
7886         }
7887
7888         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7889         if (!user_return_msrs) {
7890                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7891                 goto out_free_x86_emulator_cache;
7892         }
7893
7894         r = kvm_mmu_module_init();
7895         if (r)
7896                 goto out_free_percpu;
7897
7898         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7899                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7900                         PT_PRESENT_MASK, 0, sme_me_mask);
7901         kvm_timer_init();
7902
7903         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7904
7905         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7906                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7907                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7908         }
7909
7910         kvm_lapic_init();
7911         if (pi_inject_timer == -1)
7912                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7913 #ifdef CONFIG_X86_64
7914         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7915
7916         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7917                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7918 #endif
7919
7920         return 0;
7921
7922 out_free_percpu:
7923         free_percpu(user_return_msrs);
7924 out_free_x86_emulator_cache:
7925         kmem_cache_destroy(x86_emulator_cache);
7926 out_free_x86_fpu_cache:
7927         kmem_cache_destroy(x86_fpu_cache);
7928 out:
7929         return r;
7930 }
7931
7932 void kvm_arch_exit(void)
7933 {
7934 #ifdef CONFIG_X86_64
7935         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7936                 clear_hv_tscchange_cb();
7937 #endif
7938         kvm_lapic_exit();
7939         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7940
7941         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7942                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7943                                             CPUFREQ_TRANSITION_NOTIFIER);
7944         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7945 #ifdef CONFIG_X86_64
7946         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7947 #endif
7948         kvm_x86_ops.hardware_enable = NULL;
7949         kvm_mmu_module_exit();
7950         free_percpu(user_return_msrs);
7951         kmem_cache_destroy(x86_fpu_cache);
7952 }
7953
7954 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7955 {
7956         ++vcpu->stat.halt_exits;
7957         if (lapic_in_kernel(vcpu)) {
7958                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7959                 return 1;
7960         } else {
7961                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7962                 return 0;
7963         }
7964 }
7965 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7966
7967 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7968 {
7969         int ret = kvm_skip_emulated_instruction(vcpu);
7970         /*
7971          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7972          * KVM_EXIT_DEBUG here.
7973          */
7974         return kvm_vcpu_halt(vcpu) && ret;
7975 }
7976 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7977
7978 #ifdef CONFIG_X86_64
7979 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7980                                 unsigned long clock_type)
7981 {
7982         struct kvm_clock_pairing clock_pairing;
7983         struct timespec64 ts;
7984         u64 cycle;
7985         int ret;
7986
7987         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7988                 return -KVM_EOPNOTSUPP;
7989
7990         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7991                 return -KVM_EOPNOTSUPP;
7992
7993         clock_pairing.sec = ts.tv_sec;
7994         clock_pairing.nsec = ts.tv_nsec;
7995         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7996         clock_pairing.flags = 0;
7997         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7998
7999         ret = 0;
8000         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8001                             sizeof(struct kvm_clock_pairing)))
8002                 ret = -KVM_EFAULT;
8003
8004         return ret;
8005 }
8006 #endif
8007
8008 /*
8009  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8010  *
8011  * @apicid - apicid of vcpu to be kicked.
8012  */
8013 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8014 {
8015         struct kvm_lapic_irq lapic_irq;
8016
8017         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8018         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8019         lapic_irq.level = 0;
8020         lapic_irq.dest_id = apicid;
8021         lapic_irq.msi_redir_hint = false;
8022
8023         lapic_irq.delivery_mode = APIC_DM_REMRD;
8024         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8025 }
8026
8027 bool kvm_apicv_activated(struct kvm *kvm)
8028 {
8029         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8030 }
8031 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8032
8033 void kvm_apicv_init(struct kvm *kvm, bool enable)
8034 {
8035         if (enable)
8036                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8037                           &kvm->arch.apicv_inhibit_reasons);
8038         else
8039                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8040                         &kvm->arch.apicv_inhibit_reasons);
8041 }
8042 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8043
8044 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8045 {
8046         struct kvm_vcpu *target = NULL;
8047         struct kvm_apic_map *map;
8048
8049         rcu_read_lock();
8050         map = rcu_dereference(kvm->arch.apic_map);
8051
8052         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8053                 target = map->phys_map[dest_id]->vcpu;
8054
8055         rcu_read_unlock();
8056
8057         if (target && READ_ONCE(target->ready))
8058                 kvm_vcpu_yield_to(target);
8059 }
8060
8061 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8062 {
8063         unsigned long nr, a0, a1, a2, a3, ret;
8064         int op_64_bit;
8065
8066         if (kvm_hv_hypercall_enabled(vcpu->kvm))
8067                 return kvm_hv_hypercall(vcpu);
8068
8069         nr = kvm_rax_read(vcpu);
8070         a0 = kvm_rbx_read(vcpu);
8071         a1 = kvm_rcx_read(vcpu);
8072         a2 = kvm_rdx_read(vcpu);
8073         a3 = kvm_rsi_read(vcpu);
8074
8075         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8076
8077         op_64_bit = is_64_bit_mode(vcpu);
8078         if (!op_64_bit) {
8079                 nr &= 0xFFFFFFFF;
8080                 a0 &= 0xFFFFFFFF;
8081                 a1 &= 0xFFFFFFFF;
8082                 a2 &= 0xFFFFFFFF;
8083                 a3 &= 0xFFFFFFFF;
8084         }
8085
8086         if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8087                 ret = -KVM_EPERM;
8088                 goto out;
8089         }
8090
8091         ret = -KVM_ENOSYS;
8092
8093         switch (nr) {
8094         case KVM_HC_VAPIC_POLL_IRQ:
8095                 ret = 0;
8096                 break;
8097         case KVM_HC_KICK_CPU:
8098                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8099                         break;
8100
8101                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8102                 kvm_sched_yield(vcpu->kvm, a1);
8103                 ret = 0;
8104                 break;
8105 #ifdef CONFIG_X86_64
8106         case KVM_HC_CLOCK_PAIRING:
8107                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8108                 break;
8109 #endif
8110         case KVM_HC_SEND_IPI:
8111                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8112                         break;
8113
8114                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8115                 break;
8116         case KVM_HC_SCHED_YIELD:
8117                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8118                         break;
8119
8120                 kvm_sched_yield(vcpu->kvm, a0);
8121                 ret = 0;
8122                 break;
8123         default:
8124                 ret = -KVM_ENOSYS;
8125                 break;
8126         }
8127 out:
8128         if (!op_64_bit)
8129                 ret = (u32)ret;
8130         kvm_rax_write(vcpu, ret);
8131
8132         ++vcpu->stat.hypercalls;
8133         return kvm_skip_emulated_instruction(vcpu);
8134 }
8135 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8136
8137 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8138 {
8139         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8140         char instruction[3];
8141         unsigned long rip = kvm_rip_read(vcpu);
8142
8143         kvm_x86_ops.patch_hypercall(vcpu, instruction);
8144
8145         return emulator_write_emulated(ctxt, rip, instruction, 3,
8146                 &ctxt->exception);
8147 }
8148
8149 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8150 {
8151         return vcpu->run->request_interrupt_window &&
8152                 likely(!pic_in_kernel(vcpu->kvm));
8153 }
8154
8155 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8156 {
8157         struct kvm_run *kvm_run = vcpu->run;
8158
8159         /*
8160          * if_flag is obsolete and useless, so do not bother
8161          * setting it for SEV-ES guests.  Userspace can just
8162          * use kvm_run->ready_for_interrupt_injection.
8163          */
8164         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8165                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8166
8167         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8168         kvm_run->cr8 = kvm_get_cr8(vcpu);
8169         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8170         kvm_run->ready_for_interrupt_injection =
8171                 pic_in_kernel(vcpu->kvm) ||
8172                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8173 }
8174
8175 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8176 {
8177         int max_irr, tpr;
8178
8179         if (!kvm_x86_ops.update_cr8_intercept)
8180                 return;
8181
8182         if (!lapic_in_kernel(vcpu))
8183                 return;
8184
8185         if (vcpu->arch.apicv_active)
8186                 return;
8187
8188         if (!vcpu->arch.apic->vapic_addr)
8189                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8190         else
8191                 max_irr = -1;
8192
8193         if (max_irr != -1)
8194                 max_irr >>= 4;
8195
8196         tpr = kvm_lapic_get_cr8(vcpu);
8197
8198         kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8199 }
8200
8201 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8202 {
8203         int r;
8204         bool can_inject = true;
8205
8206         /* try to reinject previous events if any */
8207
8208         if (vcpu->arch.exception.injected) {
8209                 kvm_x86_ops.queue_exception(vcpu);
8210                 can_inject = false;
8211         }
8212         /*
8213          * Do not inject an NMI or interrupt if there is a pending
8214          * exception.  Exceptions and interrupts are recognized at
8215          * instruction boundaries, i.e. the start of an instruction.
8216          * Trap-like exceptions, e.g. #DB, have higher priority than
8217          * NMIs and interrupts, i.e. traps are recognized before an
8218          * NMI/interrupt that's pending on the same instruction.
8219          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8220          * priority, but are only generated (pended) during instruction
8221          * execution, i.e. a pending fault-like exception means the
8222          * fault occurred on the *previous* instruction and must be
8223          * serviced prior to recognizing any new events in order to
8224          * fully complete the previous instruction.
8225          */
8226         else if (!vcpu->arch.exception.pending) {
8227                 if (vcpu->arch.nmi_injected) {
8228                         kvm_x86_ops.set_nmi(vcpu);
8229                         can_inject = false;
8230                 } else if (vcpu->arch.interrupt.injected) {
8231                         kvm_x86_ops.set_irq(vcpu);
8232                         can_inject = false;
8233                 }
8234         }
8235
8236         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8237                      vcpu->arch.exception.pending);
8238
8239         /*
8240          * Call check_nested_events() even if we reinjected a previous event
8241          * in order for caller to determine if it should require immediate-exit
8242          * from L2 to L1 due to pending L1 events which require exit
8243          * from L2 to L1.
8244          */
8245         if (is_guest_mode(vcpu)) {
8246                 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8247                 if (r < 0)
8248                         goto busy;
8249         }
8250
8251         /* try to inject new event if pending */
8252         if (vcpu->arch.exception.pending) {
8253                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8254                                         vcpu->arch.exception.has_error_code,
8255                                         vcpu->arch.exception.error_code);
8256
8257                 vcpu->arch.exception.pending = false;
8258                 vcpu->arch.exception.injected = true;
8259
8260                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8261                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8262                                              X86_EFLAGS_RF);
8263
8264                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8265                         kvm_deliver_exception_payload(vcpu);
8266                         if (vcpu->arch.dr7 & DR7_GD) {
8267                                 vcpu->arch.dr7 &= ~DR7_GD;
8268                                 kvm_update_dr7(vcpu);
8269                         }
8270                 }
8271
8272                 kvm_x86_ops.queue_exception(vcpu);
8273                 can_inject = false;
8274         }
8275
8276         /*
8277          * Finally, inject interrupt events.  If an event cannot be injected
8278          * due to architectural conditions (e.g. IF=0) a window-open exit
8279          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8280          * and can architecturally be injected, but we cannot do it right now:
8281          * an interrupt could have arrived just now and we have to inject it
8282          * as a vmexit, or there could already an event in the queue, which is
8283          * indicated by can_inject.  In that case we request an immediate exit
8284          * in order to make progress and get back here for another iteration.
8285          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8286          */
8287         if (vcpu->arch.smi_pending) {
8288                 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8289                 if (r < 0)
8290                         goto busy;
8291                 if (r) {
8292                         vcpu->arch.smi_pending = false;
8293                         ++vcpu->arch.smi_count;
8294                         enter_smm(vcpu);
8295                         can_inject = false;
8296                 } else
8297                         kvm_x86_ops.enable_smi_window(vcpu);
8298         }
8299
8300         if (vcpu->arch.nmi_pending) {
8301                 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8302                 if (r < 0)
8303                         goto busy;
8304                 if (r) {
8305                         --vcpu->arch.nmi_pending;
8306                         vcpu->arch.nmi_injected = true;
8307                         kvm_x86_ops.set_nmi(vcpu);
8308                         can_inject = false;
8309                         WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8310                 }
8311                 if (vcpu->arch.nmi_pending)
8312                         kvm_x86_ops.enable_nmi_window(vcpu);
8313         }
8314
8315         if (kvm_cpu_has_injectable_intr(vcpu)) {
8316                 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8317                 if (r < 0)
8318                         goto busy;
8319                 if (r) {
8320                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8321                         kvm_x86_ops.set_irq(vcpu);
8322                         WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8323                 }
8324                 if (kvm_cpu_has_injectable_intr(vcpu))
8325                         kvm_x86_ops.enable_irq_window(vcpu);
8326         }
8327
8328         if (is_guest_mode(vcpu) &&
8329             kvm_x86_ops.nested_ops->hv_timer_pending &&
8330             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8331                 *req_immediate_exit = true;
8332
8333         WARN_ON(vcpu->arch.exception.pending);
8334         return;
8335
8336 busy:
8337         *req_immediate_exit = true;
8338         return;
8339 }
8340
8341 static void process_nmi(struct kvm_vcpu *vcpu)
8342 {
8343         unsigned limit = 2;
8344
8345         /*
8346          * x86 is limited to one NMI running, and one NMI pending after it.
8347          * If an NMI is already in progress, limit further NMIs to just one.
8348          * Otherwise, allow two (and we'll inject the first one immediately).
8349          */
8350         if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8351                 limit = 1;
8352
8353         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8354         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8355         kvm_make_request(KVM_REQ_EVENT, vcpu);
8356 }
8357
8358 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8359 {
8360         u32 flags = 0;
8361         flags |= seg->g       << 23;
8362         flags |= seg->db      << 22;
8363         flags |= seg->l       << 21;
8364         flags |= seg->avl     << 20;
8365         flags |= seg->present << 15;
8366         flags |= seg->dpl     << 13;
8367         flags |= seg->s       << 12;
8368         flags |= seg->type    << 8;
8369         return flags;
8370 }
8371
8372 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8373 {
8374         struct kvm_segment seg;
8375         int offset;
8376
8377         kvm_get_segment(vcpu, &seg, n);
8378         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8379
8380         if (n < 3)
8381                 offset = 0x7f84 + n * 12;
8382         else
8383                 offset = 0x7f2c + (n - 3) * 12;
8384
8385         put_smstate(u32, buf, offset + 8, seg.base);
8386         put_smstate(u32, buf, offset + 4, seg.limit);
8387         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8388 }
8389
8390 #ifdef CONFIG_X86_64
8391 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8392 {
8393         struct kvm_segment seg;
8394         int offset;
8395         u16 flags;
8396
8397         kvm_get_segment(vcpu, &seg, n);
8398         offset = 0x7e00 + n * 16;
8399
8400         flags = enter_smm_get_segment_flags(&seg) >> 8;
8401         put_smstate(u16, buf, offset, seg.selector);
8402         put_smstate(u16, buf, offset + 2, flags);
8403         put_smstate(u32, buf, offset + 4, seg.limit);
8404         put_smstate(u64, buf, offset + 8, seg.base);
8405 }
8406 #endif
8407
8408 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8409 {
8410         struct desc_ptr dt;
8411         struct kvm_segment seg;
8412         unsigned long val;
8413         int i;
8414
8415         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8416         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8417         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8418         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8419
8420         for (i = 0; i < 8; i++)
8421                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8422
8423         kvm_get_dr(vcpu, 6, &val);
8424         put_smstate(u32, buf, 0x7fcc, (u32)val);
8425         kvm_get_dr(vcpu, 7, &val);
8426         put_smstate(u32, buf, 0x7fc8, (u32)val);
8427
8428         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8429         put_smstate(u32, buf, 0x7fc4, seg.selector);
8430         put_smstate(u32, buf, 0x7f64, seg.base);
8431         put_smstate(u32, buf, 0x7f60, seg.limit);
8432         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8433
8434         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8435         put_smstate(u32, buf, 0x7fc0, seg.selector);
8436         put_smstate(u32, buf, 0x7f80, seg.base);
8437         put_smstate(u32, buf, 0x7f7c, seg.limit);
8438         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8439
8440         kvm_x86_ops.get_gdt(vcpu, &dt);
8441         put_smstate(u32, buf, 0x7f74, dt.address);
8442         put_smstate(u32, buf, 0x7f70, dt.size);
8443
8444         kvm_x86_ops.get_idt(vcpu, &dt);
8445         put_smstate(u32, buf, 0x7f58, dt.address);
8446         put_smstate(u32, buf, 0x7f54, dt.size);
8447
8448         for (i = 0; i < 6; i++)
8449                 enter_smm_save_seg_32(vcpu, buf, i);
8450
8451         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8452
8453         /* revision id */
8454         put_smstate(u32, buf, 0x7efc, 0x00020000);
8455         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8456 }
8457
8458 #ifdef CONFIG_X86_64
8459 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8460 {
8461         struct desc_ptr dt;
8462         struct kvm_segment seg;
8463         unsigned long val;
8464         int i;
8465
8466         for (i = 0; i < 16; i++)
8467                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8468
8469         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8470         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8471
8472         kvm_get_dr(vcpu, 6, &val);
8473         put_smstate(u64, buf, 0x7f68, val);
8474         kvm_get_dr(vcpu, 7, &val);
8475         put_smstate(u64, buf, 0x7f60, val);
8476
8477         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8478         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8479         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8480
8481         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8482
8483         /* revision id */
8484         put_smstate(u32, buf, 0x7efc, 0x00020064);
8485
8486         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8487
8488         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8489         put_smstate(u16, buf, 0x7e90, seg.selector);
8490         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8491         put_smstate(u32, buf, 0x7e94, seg.limit);
8492         put_smstate(u64, buf, 0x7e98, seg.base);
8493
8494         kvm_x86_ops.get_idt(vcpu, &dt);
8495         put_smstate(u32, buf, 0x7e84, dt.size);
8496         put_smstate(u64, buf, 0x7e88, dt.address);
8497
8498         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8499         put_smstate(u16, buf, 0x7e70, seg.selector);
8500         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8501         put_smstate(u32, buf, 0x7e74, seg.limit);
8502         put_smstate(u64, buf, 0x7e78, seg.base);
8503
8504         kvm_x86_ops.get_gdt(vcpu, &dt);
8505         put_smstate(u32, buf, 0x7e64, dt.size);
8506         put_smstate(u64, buf, 0x7e68, dt.address);
8507
8508         for (i = 0; i < 6; i++)
8509                 enter_smm_save_seg_64(vcpu, buf, i);
8510 }
8511 #endif
8512
8513 static void enter_smm(struct kvm_vcpu *vcpu)
8514 {
8515         struct kvm_segment cs, ds;
8516         struct desc_ptr dt;
8517         char buf[512];
8518         u32 cr0;
8519
8520         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8521         memset(buf, 0, 512);
8522 #ifdef CONFIG_X86_64
8523         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8524                 enter_smm_save_state_64(vcpu, buf);
8525         else
8526 #endif
8527                 enter_smm_save_state_32(vcpu, buf);
8528
8529         /*
8530          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8531          * vCPU state (e.g. leave guest mode) after we've saved the state into
8532          * the SMM state-save area.
8533          */
8534         kvm_x86_ops.pre_enter_smm(vcpu, buf);
8535
8536         vcpu->arch.hflags |= HF_SMM_MASK;
8537         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8538
8539         if (kvm_x86_ops.get_nmi_mask(vcpu))
8540                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8541         else
8542                 kvm_x86_ops.set_nmi_mask(vcpu, true);
8543
8544         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8545         kvm_rip_write(vcpu, 0x8000);
8546
8547         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8548         kvm_x86_ops.set_cr0(vcpu, cr0);
8549         vcpu->arch.cr0 = cr0;
8550
8551         kvm_x86_ops.set_cr4(vcpu, 0);
8552
8553         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8554         dt.address = dt.size = 0;
8555         kvm_x86_ops.set_idt(vcpu, &dt);
8556
8557         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8558
8559         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8560         cs.base = vcpu->arch.smbase;
8561
8562         ds.selector = 0;
8563         ds.base = 0;
8564
8565         cs.limit    = ds.limit = 0xffffffff;
8566         cs.type     = ds.type = 0x3;
8567         cs.dpl      = ds.dpl = 0;
8568         cs.db       = ds.db = 0;
8569         cs.s        = ds.s = 1;
8570         cs.l        = ds.l = 0;
8571         cs.g        = ds.g = 1;
8572         cs.avl      = ds.avl = 0;
8573         cs.present  = ds.present = 1;
8574         cs.unusable = ds.unusable = 0;
8575         cs.padding  = ds.padding = 0;
8576
8577         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8578         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8579         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8580         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8581         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8582         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8583
8584 #ifdef CONFIG_X86_64
8585         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8586                 kvm_x86_ops.set_efer(vcpu, 0);
8587 #endif
8588
8589         kvm_update_cpuid_runtime(vcpu);
8590         kvm_mmu_reset_context(vcpu);
8591 }
8592
8593 static void process_smi(struct kvm_vcpu *vcpu)
8594 {
8595         vcpu->arch.smi_pending = true;
8596         kvm_make_request(KVM_REQ_EVENT, vcpu);
8597 }
8598
8599 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8600                                        unsigned long *vcpu_bitmap)
8601 {
8602         cpumask_var_t cpus;
8603
8604         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8605
8606         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8607                                     NULL, vcpu_bitmap, cpus);
8608
8609         free_cpumask_var(cpus);
8610 }
8611
8612 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8613 {
8614         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8615 }
8616
8617 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8618 {
8619         if (!lapic_in_kernel(vcpu))
8620                 return;
8621
8622         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8623         kvm_apic_update_apicv(vcpu);
8624         kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8625 }
8626 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8627
8628 /*
8629  * NOTE: Do not hold any lock prior to calling this.
8630  *
8631  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8632  * locked, because it calls __x86_set_memory_region() which does
8633  * synchronize_srcu(&kvm->srcu).
8634  */
8635 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8636 {
8637         struct kvm_vcpu *except;
8638         unsigned long old, new, expected;
8639
8640         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8641             !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8642                 return;
8643
8644         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8645         do {
8646                 expected = new = old;
8647                 if (activate)
8648                         __clear_bit(bit, &new);
8649                 else
8650                         __set_bit(bit, &new);
8651                 if (new == old)
8652                         break;
8653                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8654         } while (old != expected);
8655
8656         if (!!old == !!new)
8657                 return;
8658
8659         trace_kvm_apicv_update_request(activate, bit);
8660         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8661                 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8662
8663         /*
8664          * Sending request to update APICV for all other vcpus,
8665          * while update the calling vcpu immediately instead of
8666          * waiting for another #VMEXIT to handle the request.
8667          */
8668         except = kvm_get_running_vcpu();
8669         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8670                                          except);
8671         if (except)
8672                 kvm_vcpu_update_apicv(except);
8673 }
8674 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8675
8676 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8677 {
8678         if (!kvm_apic_present(vcpu))
8679                 return;
8680
8681         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8682
8683         if (irqchip_split(vcpu->kvm))
8684                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8685         else {
8686                 if (vcpu->arch.apicv_active)
8687                         kvm_x86_ops.sync_pir_to_irr(vcpu);
8688                 if (ioapic_in_kernel(vcpu->kvm))
8689                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8690         }
8691
8692         if (is_guest_mode(vcpu))
8693                 vcpu->arch.load_eoi_exitmap_pending = true;
8694         else
8695                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8696 }
8697
8698 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8699 {
8700         u64 eoi_exit_bitmap[4];
8701
8702         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8703                 return;
8704
8705         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8706                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8707         kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8708 }
8709
8710 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8711                                             unsigned long start, unsigned long end)
8712 {
8713         unsigned long apic_address;
8714
8715         /*
8716          * The physical address of apic access page is stored in the VMCS.
8717          * Update it when it becomes invalid.
8718          */
8719         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8720         if (start <= apic_address && apic_address < end)
8721                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8722 }
8723
8724 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8725 {
8726         if (!lapic_in_kernel(vcpu))
8727                 return;
8728
8729         if (!kvm_x86_ops.set_apic_access_page_addr)
8730                 return;
8731
8732         kvm_x86_ops.set_apic_access_page_addr(vcpu);
8733 }
8734
8735 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8736 {
8737         smp_send_reschedule(vcpu->cpu);
8738 }
8739 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8740
8741 /*
8742  * Returns 1 to let vcpu_run() continue the guest execution loop without
8743  * exiting to the userspace.  Otherwise, the value will be returned to the
8744  * userspace.
8745  */
8746 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8747 {
8748         int r;
8749         bool req_int_win =
8750                 dm_request_for_irq_injection(vcpu) &&
8751                 kvm_cpu_accept_dm_intr(vcpu);
8752         fastpath_t exit_fastpath;
8753
8754         bool req_immediate_exit = false;
8755
8756         /* Forbid vmenter if vcpu dirty ring is soft-full */
8757         if (unlikely(vcpu->kvm->dirty_ring_size &&
8758                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8759                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8760                 trace_kvm_dirty_ring_exit(vcpu);
8761                 r = 0;
8762                 goto out;
8763         }
8764
8765         if (kvm_request_pending(vcpu)) {
8766                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8767                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8768                                 r = 0;
8769                                 goto out;
8770                         }
8771                 }
8772                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8773                         kvm_mmu_unload(vcpu);
8774                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8775                         __kvm_migrate_timers(vcpu);
8776                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8777                         kvm_gen_update_masterclock(vcpu->kvm);
8778                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8779                         kvm_gen_kvmclock_update(vcpu);
8780                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8781                         r = kvm_guest_time_update(vcpu);
8782                         if (unlikely(r))
8783                                 goto out;
8784                 }
8785                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8786                         kvm_mmu_sync_roots(vcpu);
8787                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8788                         kvm_mmu_load_pgd(vcpu);
8789                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8790                         kvm_vcpu_flush_tlb_all(vcpu);
8791
8792                         /* Flushing all ASIDs flushes the current ASID... */
8793                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8794                 }
8795                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8796                         kvm_vcpu_flush_tlb_current(vcpu);
8797                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8798                         kvm_vcpu_flush_tlb_guest(vcpu);
8799
8800                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8801                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8802                         r = 0;
8803                         goto out;
8804                 }
8805                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8806                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8807                         vcpu->mmio_needed = 0;
8808                         r = 0;
8809                         goto out;
8810                 }
8811                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8812                         /* Page is swapped out. Do synthetic halt */
8813                         vcpu->arch.apf.halted = true;
8814                         r = 1;
8815                         goto out;
8816                 }
8817                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8818                         record_steal_time(vcpu);
8819                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8820                         process_smi(vcpu);
8821                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8822                         process_nmi(vcpu);
8823                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8824                         kvm_pmu_handle_event(vcpu);
8825                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8826                         kvm_pmu_deliver_pmi(vcpu);
8827                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8828                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8829                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8830                                      vcpu->arch.ioapic_handled_vectors)) {
8831                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8832                                 vcpu->run->eoi.vector =
8833                                                 vcpu->arch.pending_ioapic_eoi;
8834                                 r = 0;
8835                                 goto out;
8836                         }
8837                 }
8838                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8839                         vcpu_scan_ioapic(vcpu);
8840                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8841                         vcpu_load_eoi_exitmap(vcpu);
8842                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8843                         kvm_vcpu_reload_apic_access_page(vcpu);
8844                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8845                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8846                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8847                         r = 0;
8848                         goto out;
8849                 }
8850                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8851                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8852                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8853                         r = 0;
8854                         goto out;
8855                 }
8856                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8857                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8858                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8859                         r = 0;
8860                         goto out;
8861                 }
8862
8863                 /*
8864                  * KVM_REQ_HV_STIMER has to be processed after
8865                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8866                  * depend on the guest clock being up-to-date
8867                  */
8868                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8869                         kvm_hv_process_stimers(vcpu);
8870                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8871                         kvm_vcpu_update_apicv(vcpu);
8872                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8873                         kvm_check_async_pf_completion(vcpu);
8874                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8875                         kvm_x86_ops.msr_filter_changed(vcpu);
8876         }
8877
8878         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8879                 ++vcpu->stat.req_event;
8880                 kvm_apic_accept_events(vcpu);
8881                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8882                         r = 1;
8883                         goto out;
8884                 }
8885
8886                 inject_pending_event(vcpu, &req_immediate_exit);
8887                 if (req_int_win)
8888                         kvm_x86_ops.enable_irq_window(vcpu);
8889
8890                 if (kvm_lapic_enabled(vcpu)) {
8891                         update_cr8_intercept(vcpu);
8892                         kvm_lapic_sync_to_vapic(vcpu);
8893                 }
8894         }
8895
8896         r = kvm_mmu_reload(vcpu);
8897         if (unlikely(r)) {
8898                 goto cancel_injection;
8899         }
8900
8901         preempt_disable();
8902
8903         kvm_x86_ops.prepare_guest_switch(vcpu);
8904
8905         /*
8906          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8907          * IPI are then delayed after guest entry, which ensures that they
8908          * result in virtual interrupt delivery.
8909          */
8910         local_irq_disable();
8911         vcpu->mode = IN_GUEST_MODE;
8912
8913         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8914
8915         /*
8916          * 1) We should set ->mode before checking ->requests.  Please see
8917          * the comment in kvm_vcpu_exiting_guest_mode().
8918          *
8919          * 2) For APICv, we should set ->mode before checking PID.ON. This
8920          * pairs with the memory barrier implicit in pi_test_and_set_on
8921          * (see vmx_deliver_posted_interrupt).
8922          *
8923          * 3) This also orders the write to mode from any reads to the page
8924          * tables done while the VCPU is running.  Please see the comment
8925          * in kvm_flush_remote_tlbs.
8926          */
8927         smp_mb__after_srcu_read_unlock();
8928
8929         /*
8930          * This handles the case where a posted interrupt was
8931          * notified with kvm_vcpu_kick.
8932          */
8933         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8934                 kvm_x86_ops.sync_pir_to_irr(vcpu);
8935
8936         if (kvm_vcpu_exit_request(vcpu)) {
8937                 vcpu->mode = OUTSIDE_GUEST_MODE;
8938                 smp_wmb();
8939                 local_irq_enable();
8940                 preempt_enable();
8941                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8942                 r = 1;
8943                 goto cancel_injection;
8944         }
8945
8946         if (req_immediate_exit) {
8947                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8948                 kvm_x86_ops.request_immediate_exit(vcpu);
8949         }
8950
8951         trace_kvm_entry(vcpu);
8952
8953         fpregs_assert_state_consistent();
8954         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8955                 switch_fpu_return();
8956
8957         if (unlikely(vcpu->arch.switch_db_regs)) {
8958                 set_debugreg(0, 7);
8959                 set_debugreg(vcpu->arch.eff_db[0], 0);
8960                 set_debugreg(vcpu->arch.eff_db[1], 1);
8961                 set_debugreg(vcpu->arch.eff_db[2], 2);
8962                 set_debugreg(vcpu->arch.eff_db[3], 3);
8963                 set_debugreg(vcpu->arch.dr6, 6);
8964                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8965         }
8966
8967         exit_fastpath = kvm_x86_ops.run(vcpu);
8968
8969         /*
8970          * Do this here before restoring debug registers on the host.  And
8971          * since we do this before handling the vmexit, a DR access vmexit
8972          * can (a) read the correct value of the debug registers, (b) set
8973          * KVM_DEBUGREG_WONT_EXIT again.
8974          */
8975         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8976                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8977                 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8978                 kvm_update_dr0123(vcpu);
8979                 kvm_update_dr7(vcpu);
8980                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8981         }
8982
8983         /*
8984          * If the guest has used debug registers, at least dr7
8985          * will be disabled while returning to the host.
8986          * If we don't have active breakpoints in the host, we don't
8987          * care about the messed up debug address registers. But if
8988          * we have some of them active, restore the old state.
8989          */
8990         if (hw_breakpoint_active())
8991                 hw_breakpoint_restore();
8992
8993         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8994         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8995
8996         vcpu->mode = OUTSIDE_GUEST_MODE;
8997         smp_wmb();
8998
8999         kvm_x86_ops.handle_exit_irqoff(vcpu);
9000
9001         /*
9002          * Consume any pending interrupts, including the possible source of
9003          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9004          * An instruction is required after local_irq_enable() to fully unblock
9005          * interrupts on processors that implement an interrupt shadow, the
9006          * stat.exits increment will do nicely.
9007          */
9008         kvm_before_interrupt(vcpu);
9009         local_irq_enable();
9010         ++vcpu->stat.exits;
9011         local_irq_disable();
9012         kvm_after_interrupt(vcpu);
9013
9014         if (lapic_in_kernel(vcpu)) {
9015                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9016                 if (delta != S64_MIN) {
9017                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9018                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9019                 }
9020         }
9021
9022         local_irq_enable();
9023         preempt_enable();
9024
9025         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9026
9027         /*
9028          * Profile KVM exit RIPs:
9029          */
9030         if (unlikely(prof_on == KVM_PROFILING)) {
9031                 unsigned long rip = kvm_rip_read(vcpu);
9032                 profile_hit(KVM_PROFILING, (void *)rip);
9033         }
9034
9035         if (unlikely(vcpu->arch.tsc_always_catchup))
9036                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9037
9038         if (vcpu->arch.apic_attention)
9039                 kvm_lapic_sync_from_vapic(vcpu);
9040
9041         r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9042         return r;
9043
9044 cancel_injection:
9045         if (req_immediate_exit)
9046                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9047         kvm_x86_ops.cancel_injection(vcpu);
9048         if (unlikely(vcpu->arch.apic_attention))
9049                 kvm_lapic_sync_from_vapic(vcpu);
9050 out:
9051         return r;
9052 }
9053
9054 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9055 {
9056         if (!kvm_arch_vcpu_runnable(vcpu) &&
9057             (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9058                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9059                 kvm_vcpu_block(vcpu);
9060                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9061
9062                 if (kvm_x86_ops.post_block)
9063                         kvm_x86_ops.post_block(vcpu);
9064
9065                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9066                         return 1;
9067         }
9068
9069         kvm_apic_accept_events(vcpu);
9070         switch(vcpu->arch.mp_state) {
9071         case KVM_MP_STATE_HALTED:
9072                 vcpu->arch.pv.pv_unhalted = false;
9073                 vcpu->arch.mp_state =
9074                         KVM_MP_STATE_RUNNABLE;
9075                 fallthrough;
9076         case KVM_MP_STATE_RUNNABLE:
9077                 vcpu->arch.apf.halted = false;
9078                 break;
9079         case KVM_MP_STATE_INIT_RECEIVED:
9080                 break;
9081         default:
9082                 return -EINTR;
9083         }
9084         return 1;
9085 }
9086
9087 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9088 {
9089         if (is_guest_mode(vcpu))
9090                 kvm_x86_ops.nested_ops->check_events(vcpu);
9091
9092         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9093                 !vcpu->arch.apf.halted);
9094 }
9095
9096 static int vcpu_run(struct kvm_vcpu *vcpu)
9097 {
9098         int r;
9099         struct kvm *kvm = vcpu->kvm;
9100
9101         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9102         vcpu->arch.l1tf_flush_l1d = true;
9103
9104         for (;;) {
9105                 if (kvm_vcpu_running(vcpu)) {
9106                         r = vcpu_enter_guest(vcpu);
9107                 } else {
9108                         r = vcpu_block(kvm, vcpu);
9109                 }
9110
9111                 if (r <= 0)
9112                         break;
9113
9114                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9115                 if (kvm_cpu_has_pending_timer(vcpu))
9116                         kvm_inject_pending_timer_irqs(vcpu);
9117
9118                 if (dm_request_for_irq_injection(vcpu) &&
9119                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9120                         r = 0;
9121                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9122                         ++vcpu->stat.request_irq_exits;
9123                         break;
9124                 }
9125
9126                 if (__xfer_to_guest_mode_work_pending()) {
9127                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9128                         r = xfer_to_guest_mode_handle_work(vcpu);
9129                         if (r)
9130                                 return r;
9131                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9132                 }
9133         }
9134
9135         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9136
9137         return r;
9138 }
9139
9140 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9141 {
9142         int r;
9143
9144         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9145         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9146         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9147         return r;
9148 }
9149
9150 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9151 {
9152         BUG_ON(!vcpu->arch.pio.count);
9153
9154         return complete_emulated_io(vcpu);
9155 }
9156
9157 /*
9158  * Implements the following, as a state machine:
9159  *
9160  * read:
9161  *   for each fragment
9162  *     for each mmio piece in the fragment
9163  *       write gpa, len
9164  *       exit
9165  *       copy data
9166  *   execute insn
9167  *
9168  * write:
9169  *   for each fragment
9170  *     for each mmio piece in the fragment
9171  *       write gpa, len
9172  *       copy data
9173  *       exit
9174  */
9175 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9176 {
9177         struct kvm_run *run = vcpu->run;
9178         struct kvm_mmio_fragment *frag;
9179         unsigned len;
9180
9181         BUG_ON(!vcpu->mmio_needed);
9182
9183         /* Complete previous fragment */
9184         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9185         len = min(8u, frag->len);
9186         if (!vcpu->mmio_is_write)
9187                 memcpy(frag->data, run->mmio.data, len);
9188
9189         if (frag->len <= 8) {
9190                 /* Switch to the next fragment. */
9191                 frag++;
9192                 vcpu->mmio_cur_fragment++;
9193         } else {
9194                 /* Go forward to the next mmio piece. */
9195                 frag->data += len;
9196                 frag->gpa += len;
9197                 frag->len -= len;
9198         }
9199
9200         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9201                 vcpu->mmio_needed = 0;
9202
9203                 /* FIXME: return into emulator if single-stepping.  */
9204                 if (vcpu->mmio_is_write)
9205                         return 1;
9206                 vcpu->mmio_read_completed = 1;
9207                 return complete_emulated_io(vcpu);
9208         }
9209
9210         run->exit_reason = KVM_EXIT_MMIO;
9211         run->mmio.phys_addr = frag->gpa;
9212         if (vcpu->mmio_is_write)
9213                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9214         run->mmio.len = min(8u, frag->len);
9215         run->mmio.is_write = vcpu->mmio_is_write;
9216         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9217         return 0;
9218 }
9219
9220 static void kvm_save_current_fpu(struct fpu *fpu)
9221 {
9222         /*
9223          * If the target FPU state is not resident in the CPU registers, just
9224          * memcpy() from current, else save CPU state directly to the target.
9225          */
9226         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9227                 memcpy(&fpu->state, &current->thread.fpu.state,
9228                        fpu_kernel_xstate_size);
9229         else
9230                 copy_fpregs_to_fpstate(fpu);
9231 }
9232
9233 /* Swap (qemu) user FPU context for the guest FPU context. */
9234 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9235 {
9236         fpregs_lock();
9237
9238         kvm_save_current_fpu(vcpu->arch.user_fpu);
9239
9240         /* PKRU is separately restored in kvm_x86_ops.run.  */
9241         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9242                                 ~XFEATURE_MASK_PKRU);
9243
9244         fpregs_mark_activate();
9245         fpregs_unlock();
9246
9247         trace_kvm_fpu(1);
9248 }
9249
9250 /* When vcpu_run ends, restore user space FPU context. */
9251 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9252 {
9253         fpregs_lock();
9254
9255         kvm_save_current_fpu(vcpu->arch.guest_fpu);
9256
9257         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9258
9259         fpregs_mark_activate();
9260         fpregs_unlock();
9261
9262         ++vcpu->stat.fpu_reload;
9263         trace_kvm_fpu(0);
9264 }
9265
9266 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9267 {
9268         struct kvm_run *kvm_run = vcpu->run;
9269         int r;
9270
9271         vcpu_load(vcpu);
9272         kvm_sigset_activate(vcpu);
9273         kvm_load_guest_fpu(vcpu);
9274
9275         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9276                 if (kvm_run->immediate_exit) {
9277                         r = -EINTR;
9278                         goto out;
9279                 }
9280                 kvm_vcpu_block(vcpu);
9281                 kvm_apic_accept_events(vcpu);
9282                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9283                 r = -EAGAIN;
9284                 if (signal_pending(current)) {
9285                         r = -EINTR;
9286                         kvm_run->exit_reason = KVM_EXIT_INTR;
9287                         ++vcpu->stat.signal_exits;
9288                 }
9289                 goto out;
9290         }
9291
9292         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9293                 r = -EINVAL;
9294                 goto out;
9295         }
9296
9297         if (kvm_run->kvm_dirty_regs) {
9298                 r = sync_regs(vcpu);
9299                 if (r != 0)
9300                         goto out;
9301         }
9302
9303         /* re-sync apic's tpr */
9304         if (!lapic_in_kernel(vcpu)) {
9305                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9306                         r = -EINVAL;
9307                         goto out;
9308                 }
9309         }
9310
9311         if (unlikely(vcpu->arch.complete_userspace_io)) {
9312                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9313                 vcpu->arch.complete_userspace_io = NULL;
9314                 r = cui(vcpu);
9315                 if (r <= 0)
9316                         goto out;
9317         } else
9318                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9319
9320         if (kvm_run->immediate_exit)
9321                 r = -EINTR;
9322         else
9323                 r = vcpu_run(vcpu);
9324
9325 out:
9326         kvm_put_guest_fpu(vcpu);
9327         if (kvm_run->kvm_valid_regs)
9328                 store_regs(vcpu);
9329         post_kvm_run_save(vcpu);
9330         kvm_sigset_deactivate(vcpu);
9331
9332         vcpu_put(vcpu);
9333         return r;
9334 }
9335
9336 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9337 {
9338         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9339                 /*
9340                  * We are here if userspace calls get_regs() in the middle of
9341                  * instruction emulation. Registers state needs to be copied
9342                  * back from emulation context to vcpu. Userspace shouldn't do
9343                  * that usually, but some bad designed PV devices (vmware
9344                  * backdoor interface) need this to work
9345                  */
9346                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9347                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9348         }
9349         regs->rax = kvm_rax_read(vcpu);
9350         regs->rbx = kvm_rbx_read(vcpu);
9351         regs->rcx = kvm_rcx_read(vcpu);
9352         regs->rdx = kvm_rdx_read(vcpu);
9353         regs->rsi = kvm_rsi_read(vcpu);
9354         regs->rdi = kvm_rdi_read(vcpu);
9355         regs->rsp = kvm_rsp_read(vcpu);
9356         regs->rbp = kvm_rbp_read(vcpu);
9357 #ifdef CONFIG_X86_64
9358         regs->r8 = kvm_r8_read(vcpu);
9359         regs->r9 = kvm_r9_read(vcpu);
9360         regs->r10 = kvm_r10_read(vcpu);
9361         regs->r11 = kvm_r11_read(vcpu);
9362         regs->r12 = kvm_r12_read(vcpu);
9363         regs->r13 = kvm_r13_read(vcpu);
9364         regs->r14 = kvm_r14_read(vcpu);
9365         regs->r15 = kvm_r15_read(vcpu);
9366 #endif
9367
9368         regs->rip = kvm_rip_read(vcpu);
9369         regs->rflags = kvm_get_rflags(vcpu);
9370 }
9371
9372 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9373 {
9374         vcpu_load(vcpu);
9375         __get_regs(vcpu, regs);
9376         vcpu_put(vcpu);
9377         return 0;
9378 }
9379
9380 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9381 {
9382         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9383         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9384
9385         kvm_rax_write(vcpu, regs->rax);
9386         kvm_rbx_write(vcpu, regs->rbx);
9387         kvm_rcx_write(vcpu, regs->rcx);
9388         kvm_rdx_write(vcpu, regs->rdx);
9389         kvm_rsi_write(vcpu, regs->rsi);
9390         kvm_rdi_write(vcpu, regs->rdi);
9391         kvm_rsp_write(vcpu, regs->rsp);
9392         kvm_rbp_write(vcpu, regs->rbp);
9393 #ifdef CONFIG_X86_64
9394         kvm_r8_write(vcpu, regs->r8);
9395         kvm_r9_write(vcpu, regs->r9);
9396         kvm_r10_write(vcpu, regs->r10);
9397         kvm_r11_write(vcpu, regs->r11);
9398         kvm_r12_write(vcpu, regs->r12);
9399         kvm_r13_write(vcpu, regs->r13);
9400         kvm_r14_write(vcpu, regs->r14);
9401         kvm_r15_write(vcpu, regs->r15);
9402 #endif
9403
9404         kvm_rip_write(vcpu, regs->rip);
9405         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9406
9407         vcpu->arch.exception.pending = false;
9408
9409         kvm_make_request(KVM_REQ_EVENT, vcpu);
9410 }
9411
9412 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9413 {
9414         vcpu_load(vcpu);
9415         __set_regs(vcpu, regs);
9416         vcpu_put(vcpu);
9417         return 0;
9418 }
9419
9420 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9421 {
9422         struct kvm_segment cs;
9423
9424         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9425         *db = cs.db;
9426         *l = cs.l;
9427 }
9428 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9429
9430 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9431 {
9432         struct desc_ptr dt;
9433
9434         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9435         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9436         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9437         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9438         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9439         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9440
9441         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9442         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9443
9444         kvm_x86_ops.get_idt(vcpu, &dt);
9445         sregs->idt.limit = dt.size;
9446         sregs->idt.base = dt.address;
9447         kvm_x86_ops.get_gdt(vcpu, &dt);
9448         sregs->gdt.limit = dt.size;
9449         sregs->gdt.base = dt.address;
9450
9451         sregs->cr0 = kvm_read_cr0(vcpu);
9452         sregs->cr2 = vcpu->arch.cr2;
9453         sregs->cr3 = kvm_read_cr3(vcpu);
9454         sregs->cr4 = kvm_read_cr4(vcpu);
9455         sregs->cr8 = kvm_get_cr8(vcpu);
9456         sregs->efer = vcpu->arch.efer;
9457         sregs->apic_base = kvm_get_apic_base(vcpu);
9458
9459         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9460
9461         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9462                 set_bit(vcpu->arch.interrupt.nr,
9463                         (unsigned long *)sregs->interrupt_bitmap);
9464 }
9465
9466 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9467                                   struct kvm_sregs *sregs)
9468 {
9469         vcpu_load(vcpu);
9470         __get_sregs(vcpu, sregs);
9471         vcpu_put(vcpu);
9472         return 0;
9473 }
9474
9475 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9476                                     struct kvm_mp_state *mp_state)
9477 {
9478         vcpu_load(vcpu);
9479         if (kvm_mpx_supported())
9480                 kvm_load_guest_fpu(vcpu);
9481
9482         kvm_apic_accept_events(vcpu);
9483         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9484                                         vcpu->arch.pv.pv_unhalted)
9485                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9486         else
9487                 mp_state->mp_state = vcpu->arch.mp_state;
9488
9489         if (kvm_mpx_supported())
9490                 kvm_put_guest_fpu(vcpu);
9491         vcpu_put(vcpu);
9492         return 0;
9493 }
9494
9495 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9496                                     struct kvm_mp_state *mp_state)
9497 {
9498         int ret = -EINVAL;
9499
9500         vcpu_load(vcpu);
9501
9502         if (!lapic_in_kernel(vcpu) &&
9503             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9504                 goto out;
9505
9506         /*
9507          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9508          * INIT state; latched init should be reported using
9509          * KVM_SET_VCPU_EVENTS, so reject it here.
9510          */
9511         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9512             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9513              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9514                 goto out;
9515
9516         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9517                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9518                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9519         } else
9520                 vcpu->arch.mp_state = mp_state->mp_state;
9521         kvm_make_request(KVM_REQ_EVENT, vcpu);
9522
9523         ret = 0;
9524 out:
9525         vcpu_put(vcpu);
9526         return ret;
9527 }
9528
9529 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9530                     int reason, bool has_error_code, u32 error_code)
9531 {
9532         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9533         int ret;
9534
9535         init_emulate_ctxt(vcpu);
9536
9537         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9538                                    has_error_code, error_code);
9539         if (ret) {
9540                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9541                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9542                 vcpu->run->internal.ndata = 0;
9543                 return 0;
9544         }
9545
9546         kvm_rip_write(vcpu, ctxt->eip);
9547         kvm_set_rflags(vcpu, ctxt->eflags);
9548         return 1;
9549 }
9550 EXPORT_SYMBOL_GPL(kvm_task_switch);
9551
9552 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9553 {
9554         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9555                 /*
9556                  * When EFER.LME and CR0.PG are set, the processor is in
9557                  * 64-bit mode (though maybe in a 32-bit code segment).
9558                  * CR4.PAE and EFER.LMA must be set.
9559                  */
9560                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9561                         return false;
9562         } else {
9563                 /*
9564                  * Not in 64-bit mode: EFER.LMA is clear and the code
9565                  * segment cannot be 64-bit.
9566                  */
9567                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9568                         return false;
9569         }
9570
9571         return kvm_is_valid_cr4(vcpu, sregs->cr4);
9572 }
9573
9574 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9575 {
9576         struct msr_data apic_base_msr;
9577         int mmu_reset_needed = 0;
9578         int pending_vec, max_bits, idx;
9579         struct desc_ptr dt;
9580         int ret = -EINVAL;
9581
9582         if (!kvm_is_valid_sregs(vcpu, sregs))
9583                 goto out;
9584
9585         apic_base_msr.data = sregs->apic_base;
9586         apic_base_msr.host_initiated = true;
9587         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9588                 goto out;
9589
9590         dt.size = sregs->idt.limit;
9591         dt.address = sregs->idt.base;
9592         kvm_x86_ops.set_idt(vcpu, &dt);
9593         dt.size = sregs->gdt.limit;
9594         dt.address = sregs->gdt.base;
9595         kvm_x86_ops.set_gdt(vcpu, &dt);
9596
9597         vcpu->arch.cr2 = sregs->cr2;
9598         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9599         vcpu->arch.cr3 = sregs->cr3;
9600         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9601
9602         kvm_set_cr8(vcpu, sregs->cr8);
9603
9604         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9605         kvm_x86_ops.set_efer(vcpu, sregs->efer);
9606
9607         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9608         kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9609         vcpu->arch.cr0 = sregs->cr0;
9610
9611         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9612         kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9613
9614         idx = srcu_read_lock(&vcpu->kvm->srcu);
9615         if (is_pae_paging(vcpu)) {
9616                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9617                 mmu_reset_needed = 1;
9618         }
9619         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9620
9621         if (mmu_reset_needed)
9622                 kvm_mmu_reset_context(vcpu);
9623
9624         max_bits = KVM_NR_INTERRUPTS;
9625         pending_vec = find_first_bit(
9626                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9627         if (pending_vec < max_bits) {
9628                 kvm_queue_interrupt(vcpu, pending_vec, false);
9629                 pr_debug("Set back pending irq %d\n", pending_vec);
9630         }
9631
9632         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9633         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9634         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9635         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9636         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9637         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9638
9639         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9640         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9641
9642         update_cr8_intercept(vcpu);
9643
9644         /* Older userspace won't unhalt the vcpu on reset. */
9645         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9646             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9647             !is_protmode(vcpu))
9648                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9649
9650         kvm_make_request(KVM_REQ_EVENT, vcpu);
9651
9652         ret = 0;
9653 out:
9654         return ret;
9655 }
9656
9657 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9658                                   struct kvm_sregs *sregs)
9659 {
9660         int ret;
9661
9662         vcpu_load(vcpu);
9663         ret = __set_sregs(vcpu, sregs);
9664         vcpu_put(vcpu);
9665         return ret;
9666 }
9667
9668 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9669                                         struct kvm_guest_debug *dbg)
9670 {
9671         unsigned long rflags;
9672         int i, r;
9673
9674         if (vcpu->arch.guest_state_protected)
9675                 return -EINVAL;
9676
9677         vcpu_load(vcpu);
9678
9679         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9680                 r = -EBUSY;
9681                 if (vcpu->arch.exception.pending)
9682                         goto out;
9683                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9684                         kvm_queue_exception(vcpu, DB_VECTOR);
9685                 else
9686                         kvm_queue_exception(vcpu, BP_VECTOR);
9687         }
9688
9689         /*
9690          * Read rflags as long as potentially injected trace flags are still
9691          * filtered out.
9692          */
9693         rflags = kvm_get_rflags(vcpu);
9694
9695         vcpu->guest_debug = dbg->control;
9696         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9697                 vcpu->guest_debug = 0;
9698
9699         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9700                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9701                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9702                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9703         } else {
9704                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9705                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9706         }
9707         kvm_update_dr7(vcpu);
9708
9709         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9710                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9711                         get_segment_base(vcpu, VCPU_SREG_CS);
9712
9713         /*
9714          * Trigger an rflags update that will inject or remove the trace
9715          * flags.
9716          */
9717         kvm_set_rflags(vcpu, rflags);
9718
9719         kvm_x86_ops.update_exception_bitmap(vcpu);
9720
9721         r = 0;
9722
9723 out:
9724         vcpu_put(vcpu);
9725         return r;
9726 }
9727
9728 /*
9729  * Translate a guest virtual address to a guest physical address.
9730  */
9731 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9732                                     struct kvm_translation *tr)
9733 {
9734         unsigned long vaddr = tr->linear_address;
9735         gpa_t gpa;
9736         int idx;
9737
9738         vcpu_load(vcpu);
9739
9740         idx = srcu_read_lock(&vcpu->kvm->srcu);
9741         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9742         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9743         tr->physical_address = gpa;
9744         tr->valid = gpa != UNMAPPED_GVA;
9745         tr->writeable = 1;
9746         tr->usermode = 0;
9747
9748         vcpu_put(vcpu);
9749         return 0;
9750 }
9751
9752 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9753 {
9754         struct fxregs_state *fxsave;
9755
9756         vcpu_load(vcpu);
9757
9758         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9759         memcpy(fpu->fpr, fxsave->st_space, 128);
9760         fpu->fcw = fxsave->cwd;
9761         fpu->fsw = fxsave->swd;
9762         fpu->ftwx = fxsave->twd;
9763         fpu->last_opcode = fxsave->fop;
9764         fpu->last_ip = fxsave->rip;
9765         fpu->last_dp = fxsave->rdp;
9766         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9767
9768         vcpu_put(vcpu);
9769         return 0;
9770 }
9771
9772 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9773 {
9774         struct fxregs_state *fxsave;
9775
9776         vcpu_load(vcpu);
9777
9778         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9779
9780         memcpy(fxsave->st_space, fpu->fpr, 128);
9781         fxsave->cwd = fpu->fcw;
9782         fxsave->swd = fpu->fsw;
9783         fxsave->twd = fpu->ftwx;
9784         fxsave->fop = fpu->last_opcode;
9785         fxsave->rip = fpu->last_ip;
9786         fxsave->rdp = fpu->last_dp;
9787         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9788
9789         vcpu_put(vcpu);
9790         return 0;
9791 }
9792
9793 static void store_regs(struct kvm_vcpu *vcpu)
9794 {
9795         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9796
9797         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9798                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9799
9800         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9801                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9802
9803         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9804                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9805                                 vcpu, &vcpu->run->s.regs.events);
9806 }
9807
9808 static int sync_regs(struct kvm_vcpu *vcpu)
9809 {
9810         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9811                 return -EINVAL;
9812
9813         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9814                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9815                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9816         }
9817         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9818                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9819                         return -EINVAL;
9820                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9821         }
9822         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9823                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9824                                 vcpu, &vcpu->run->s.regs.events))
9825                         return -EINVAL;
9826                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9827         }
9828
9829         return 0;
9830 }
9831
9832 static void fx_init(struct kvm_vcpu *vcpu)
9833 {
9834         fpstate_init(&vcpu->arch.guest_fpu->state);
9835         if (boot_cpu_has(X86_FEATURE_XSAVES))
9836                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9837                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9838
9839         /*
9840          * Ensure guest xcr0 is valid for loading
9841          */
9842         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9843
9844         vcpu->arch.cr0 |= X86_CR0_ET;
9845 }
9846
9847 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9848 {
9849         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9850                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9851                              "guest TSC will not be reliable\n");
9852
9853         return 0;
9854 }
9855
9856 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9857 {
9858         struct page *page;
9859         int r;
9860
9861         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9862                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9863         else
9864                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9865
9866         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9867
9868         r = kvm_mmu_create(vcpu);
9869         if (r < 0)
9870                 return r;
9871
9872         if (irqchip_in_kernel(vcpu->kvm)) {
9873                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9874                 if (r < 0)
9875                         goto fail_mmu_destroy;
9876                 if (kvm_apicv_activated(vcpu->kvm))
9877                         vcpu->arch.apicv_active = true;
9878         } else
9879                 static_key_slow_inc(&kvm_no_apic_vcpu);
9880
9881         r = -ENOMEM;
9882
9883         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9884         if (!page)
9885                 goto fail_free_lapic;
9886         vcpu->arch.pio_data = page_address(page);
9887
9888         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9889                                        GFP_KERNEL_ACCOUNT);
9890         if (!vcpu->arch.mce_banks)
9891                 goto fail_free_pio_data;
9892         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9893
9894         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9895                                 GFP_KERNEL_ACCOUNT))
9896                 goto fail_free_mce_banks;
9897
9898         if (!alloc_emulate_ctxt(vcpu))
9899                 goto free_wbinvd_dirty_mask;
9900
9901         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9902                                                 GFP_KERNEL_ACCOUNT);
9903         if (!vcpu->arch.user_fpu) {
9904                 pr_err("kvm: failed to allocate userspace's fpu\n");
9905                 goto free_emulate_ctxt;
9906         }
9907
9908         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9909                                                  GFP_KERNEL_ACCOUNT);
9910         if (!vcpu->arch.guest_fpu) {
9911                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9912                 goto free_user_fpu;
9913         }
9914         fx_init(vcpu);
9915
9916         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9917
9918         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9919
9920         kvm_async_pf_hash_reset(vcpu);
9921         kvm_pmu_init(vcpu);
9922
9923         vcpu->arch.pending_external_vector = -1;
9924         vcpu->arch.preempted_in_kernel = false;
9925
9926         kvm_hv_vcpu_init(vcpu);
9927
9928         r = kvm_x86_ops.vcpu_create(vcpu);
9929         if (r)
9930                 goto free_guest_fpu;
9931
9932         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9933         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9934         kvm_vcpu_mtrr_init(vcpu);
9935         vcpu_load(vcpu);
9936         kvm_vcpu_reset(vcpu, false);
9937         kvm_init_mmu(vcpu, false);
9938         vcpu_put(vcpu);
9939         return 0;
9940
9941 free_guest_fpu:
9942         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9943 free_user_fpu:
9944         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9945 free_emulate_ctxt:
9946         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9947 free_wbinvd_dirty_mask:
9948         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9949 fail_free_mce_banks:
9950         kfree(vcpu->arch.mce_banks);
9951 fail_free_pio_data:
9952         free_page((unsigned long)vcpu->arch.pio_data);
9953 fail_free_lapic:
9954         kvm_free_lapic(vcpu);
9955 fail_mmu_destroy:
9956         kvm_mmu_destroy(vcpu);
9957         return r;
9958 }
9959
9960 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9961 {
9962         struct kvm *kvm = vcpu->kvm;
9963
9964         kvm_hv_vcpu_postcreate(vcpu);
9965
9966         if (mutex_lock_killable(&vcpu->mutex))
9967                 return;
9968         vcpu_load(vcpu);
9969         kvm_synchronize_tsc(vcpu, 0);
9970         vcpu_put(vcpu);
9971
9972         /* poll control enabled by default */
9973         vcpu->arch.msr_kvm_poll_control = 1;
9974
9975         mutex_unlock(&vcpu->mutex);
9976
9977         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9978                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9979                                                 KVMCLOCK_SYNC_PERIOD);
9980 }
9981
9982 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9983 {
9984         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9985         int idx;
9986
9987         kvm_release_pfn(cache->pfn, cache->dirty, cache);
9988
9989         kvmclock_reset(vcpu);
9990
9991         kvm_x86_ops.vcpu_free(vcpu);
9992
9993         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9994         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9995         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9996         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9997
9998         kvm_hv_vcpu_uninit(vcpu);
9999         kvm_pmu_destroy(vcpu);
10000         kfree(vcpu->arch.mce_banks);
10001         kvm_free_lapic(vcpu);
10002         idx = srcu_read_lock(&vcpu->kvm->srcu);
10003         kvm_mmu_destroy(vcpu);
10004         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10005         free_page((unsigned long)vcpu->arch.pio_data);
10006         kvfree(vcpu->arch.cpuid_entries);
10007         if (!lapic_in_kernel(vcpu))
10008                 static_key_slow_dec(&kvm_no_apic_vcpu);
10009 }
10010
10011 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10012 {
10013         kvm_lapic_reset(vcpu, init_event);
10014
10015         vcpu->arch.hflags = 0;
10016
10017         vcpu->arch.smi_pending = 0;
10018         vcpu->arch.smi_count = 0;
10019         atomic_set(&vcpu->arch.nmi_queued, 0);
10020         vcpu->arch.nmi_pending = 0;
10021         vcpu->arch.nmi_injected = false;
10022         kvm_clear_interrupt_queue(vcpu);
10023         kvm_clear_exception_queue(vcpu);
10024
10025         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10026         kvm_update_dr0123(vcpu);
10027         vcpu->arch.dr6 = DR6_INIT;
10028         vcpu->arch.dr7 = DR7_FIXED_1;
10029         kvm_update_dr7(vcpu);
10030
10031         vcpu->arch.cr2 = 0;
10032
10033         kvm_make_request(KVM_REQ_EVENT, vcpu);
10034         vcpu->arch.apf.msr_en_val = 0;
10035         vcpu->arch.apf.msr_int_val = 0;
10036         vcpu->arch.st.msr_val = 0;
10037
10038         kvmclock_reset(vcpu);
10039
10040         kvm_clear_async_pf_completion_queue(vcpu);
10041         kvm_async_pf_hash_reset(vcpu);
10042         vcpu->arch.apf.halted = false;
10043
10044         if (kvm_mpx_supported()) {
10045                 void *mpx_state_buffer;
10046
10047                 /*
10048                  * To avoid have the INIT path from kvm_apic_has_events() that be
10049                  * called with loaded FPU and does not let userspace fix the state.
10050                  */
10051                 if (init_event)
10052                         kvm_put_guest_fpu(vcpu);
10053                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10054                                         XFEATURE_BNDREGS);
10055                 if (mpx_state_buffer)
10056                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10057                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10058                                         XFEATURE_BNDCSR);
10059                 if (mpx_state_buffer)
10060                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10061                 if (init_event)
10062                         kvm_load_guest_fpu(vcpu);
10063         }
10064
10065         if (!init_event) {
10066                 kvm_pmu_reset(vcpu);
10067                 vcpu->arch.smbase = 0x30000;
10068
10069                 vcpu->arch.msr_misc_features_enables = 0;
10070
10071                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10072         }
10073
10074         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10075         vcpu->arch.regs_avail = ~0;
10076         vcpu->arch.regs_dirty = ~0;
10077
10078         vcpu->arch.ia32_xss = 0;
10079
10080         kvm_x86_ops.vcpu_reset(vcpu, init_event);
10081 }
10082
10083 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10084 {
10085         struct kvm_segment cs;
10086
10087         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10088         cs.selector = vector << 8;
10089         cs.base = vector << 12;
10090         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10091         kvm_rip_write(vcpu, 0);
10092 }
10093
10094 int kvm_arch_hardware_enable(void)
10095 {
10096         struct kvm *kvm;
10097         struct kvm_vcpu *vcpu;
10098         int i;
10099         int ret;
10100         u64 local_tsc;
10101         u64 max_tsc = 0;
10102         bool stable, backwards_tsc = false;
10103
10104         kvm_user_return_msr_cpu_online();
10105         ret = kvm_x86_ops.hardware_enable();
10106         if (ret != 0)
10107                 return ret;
10108
10109         local_tsc = rdtsc();
10110         stable = !kvm_check_tsc_unstable();
10111         list_for_each_entry(kvm, &vm_list, vm_list) {
10112                 kvm_for_each_vcpu(i, vcpu, kvm) {
10113                         if (!stable && vcpu->cpu == smp_processor_id())
10114                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10115                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10116                                 backwards_tsc = true;
10117                                 if (vcpu->arch.last_host_tsc > max_tsc)
10118                                         max_tsc = vcpu->arch.last_host_tsc;
10119                         }
10120                 }
10121         }
10122
10123         /*
10124          * Sometimes, even reliable TSCs go backwards.  This happens on
10125          * platforms that reset TSC during suspend or hibernate actions, but
10126          * maintain synchronization.  We must compensate.  Fortunately, we can
10127          * detect that condition here, which happens early in CPU bringup,
10128          * before any KVM threads can be running.  Unfortunately, we can't
10129          * bring the TSCs fully up to date with real time, as we aren't yet far
10130          * enough into CPU bringup that we know how much real time has actually
10131          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10132          * variables that haven't been updated yet.
10133          *
10134          * So we simply find the maximum observed TSC above, then record the
10135          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10136          * the adjustment will be applied.  Note that we accumulate
10137          * adjustments, in case multiple suspend cycles happen before some VCPU
10138          * gets a chance to run again.  In the event that no KVM threads get a
10139          * chance to run, we will miss the entire elapsed period, as we'll have
10140          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10141          * loose cycle time.  This isn't too big a deal, since the loss will be
10142          * uniform across all VCPUs (not to mention the scenario is extremely
10143          * unlikely). It is possible that a second hibernate recovery happens
10144          * much faster than a first, causing the observed TSC here to be
10145          * smaller; this would require additional padding adjustment, which is
10146          * why we set last_host_tsc to the local tsc observed here.
10147          *
10148          * N.B. - this code below runs only on platforms with reliable TSC,
10149          * as that is the only way backwards_tsc is set above.  Also note
10150          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10151          * have the same delta_cyc adjustment applied if backwards_tsc
10152          * is detected.  Note further, this adjustment is only done once,
10153          * as we reset last_host_tsc on all VCPUs to stop this from being
10154          * called multiple times (one for each physical CPU bringup).
10155          *
10156          * Platforms with unreliable TSCs don't have to deal with this, they
10157          * will be compensated by the logic in vcpu_load, which sets the TSC to
10158          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10159          * guarantee that they stay in perfect synchronization.
10160          */
10161         if (backwards_tsc) {
10162                 u64 delta_cyc = max_tsc - local_tsc;
10163                 list_for_each_entry(kvm, &vm_list, vm_list) {
10164                         kvm->arch.backwards_tsc_observed = true;
10165                         kvm_for_each_vcpu(i, vcpu, kvm) {
10166                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10167                                 vcpu->arch.last_host_tsc = local_tsc;
10168                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10169                         }
10170
10171                         /*
10172                          * We have to disable TSC offset matching.. if you were
10173                          * booting a VM while issuing an S4 host suspend....
10174                          * you may have some problem.  Solving this issue is
10175                          * left as an exercise to the reader.
10176                          */
10177                         kvm->arch.last_tsc_nsec = 0;
10178                         kvm->arch.last_tsc_write = 0;
10179                 }
10180
10181         }
10182         return 0;
10183 }
10184
10185 void kvm_arch_hardware_disable(void)
10186 {
10187         kvm_x86_ops.hardware_disable();
10188         drop_user_return_notifiers();
10189 }
10190
10191 int kvm_arch_hardware_setup(void *opaque)
10192 {
10193         struct kvm_x86_init_ops *ops = opaque;
10194         int r;
10195
10196         rdmsrl_safe(MSR_EFER, &host_efer);
10197
10198         if (boot_cpu_has(X86_FEATURE_XSAVES))
10199                 rdmsrl(MSR_IA32_XSS, host_xss);
10200
10201         r = ops->hardware_setup();
10202         if (r != 0)
10203                 return r;
10204
10205         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10206
10207         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10208                 supported_xss = 0;
10209
10210 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10211         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10212 #undef __kvm_cpu_cap_has
10213
10214         if (kvm_has_tsc_control) {
10215                 /*
10216                  * Make sure the user can only configure tsc_khz values that
10217                  * fit into a signed integer.
10218                  * A min value is not calculated because it will always
10219                  * be 1 on all machines.
10220                  */
10221                 u64 max = min(0x7fffffffULL,
10222                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10223                 kvm_max_guest_tsc_khz = max;
10224
10225                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10226         }
10227
10228         kvm_init_msr_list();
10229         return 0;
10230 }
10231
10232 void kvm_arch_hardware_unsetup(void)
10233 {
10234         kvm_x86_ops.hardware_unsetup();
10235 }
10236
10237 int kvm_arch_check_processor_compat(void *opaque)
10238 {
10239         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10240         struct kvm_x86_init_ops *ops = opaque;
10241
10242         WARN_ON(!irqs_disabled());
10243
10244         if (__cr4_reserved_bits(cpu_has, c) !=
10245             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10246                 return -EIO;
10247
10248         return ops->check_processor_compatibility();
10249 }
10250
10251 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10252 {
10253         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10254 }
10255 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10256
10257 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10258 {
10259         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10260 }
10261
10262 struct static_key kvm_no_apic_vcpu __read_mostly;
10263 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10264
10265 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10266 {
10267         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10268
10269         vcpu->arch.l1tf_flush_l1d = true;
10270         if (pmu->version && unlikely(pmu->event_count)) {
10271                 pmu->need_cleanup = true;
10272                 kvm_make_request(KVM_REQ_PMU, vcpu);
10273         }
10274         kvm_x86_ops.sched_in(vcpu, cpu);
10275 }
10276
10277 void kvm_arch_free_vm(struct kvm *kvm)
10278 {
10279         kfree(kvm->arch.hyperv.hv_pa_pg);
10280         vfree(kvm);
10281 }
10282
10283
10284 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10285 {
10286         if (type)
10287                 return -EINVAL;
10288
10289         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10290         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10291         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10292         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10293         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10294         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10295
10296         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10297         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10298         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10299         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10300                 &kvm->arch.irq_sources_bitmap);
10301
10302         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10303         mutex_init(&kvm->arch.apic_map_lock);
10304         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10305
10306         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10307         pvclock_update_vm_gtod_copy(kvm);
10308
10309         kvm->arch.guest_can_read_msr_platform_info = true;
10310
10311         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10312         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10313
10314         kvm_hv_init_vm(kvm);
10315         kvm_page_track_init(kvm);
10316         kvm_mmu_init_vm(kvm);
10317
10318         return kvm_x86_ops.vm_init(kvm);
10319 }
10320
10321 int kvm_arch_post_init_vm(struct kvm *kvm)
10322 {
10323         return kvm_mmu_post_init_vm(kvm);
10324 }
10325
10326 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10327 {
10328         vcpu_load(vcpu);
10329         kvm_mmu_unload(vcpu);
10330         vcpu_put(vcpu);
10331 }
10332
10333 static void kvm_free_vcpus(struct kvm *kvm)
10334 {
10335         unsigned int i;
10336         struct kvm_vcpu *vcpu;
10337
10338         /*
10339          * Unpin any mmu pages first.
10340          */
10341         kvm_for_each_vcpu(i, vcpu, kvm) {
10342                 kvm_clear_async_pf_completion_queue(vcpu);
10343                 kvm_unload_vcpu_mmu(vcpu);
10344         }
10345         kvm_for_each_vcpu(i, vcpu, kvm)
10346                 kvm_vcpu_destroy(vcpu);
10347
10348         mutex_lock(&kvm->lock);
10349         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10350                 kvm->vcpus[i] = NULL;
10351
10352         atomic_set(&kvm->online_vcpus, 0);
10353         mutex_unlock(&kvm->lock);
10354 }
10355
10356 void kvm_arch_sync_events(struct kvm *kvm)
10357 {
10358         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10359         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10360         kvm_free_pit(kvm);
10361 }
10362
10363 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10364
10365 /**
10366  * __x86_set_memory_region: Setup KVM internal memory slot
10367  *
10368  * @kvm: the kvm pointer to the VM.
10369  * @id: the slot ID to setup.
10370  * @gpa: the GPA to install the slot (unused when @size == 0).
10371  * @size: the size of the slot. Set to zero to uninstall a slot.
10372  *
10373  * This function helps to setup a KVM internal memory slot.  Specify
10374  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10375  * slot.  The return code can be one of the following:
10376  *
10377  *   HVA:           on success (uninstall will return a bogus HVA)
10378  *   -errno:        on error
10379  *
10380  * The caller should always use IS_ERR() to check the return value
10381  * before use.  Note, the KVM internal memory slots are guaranteed to
10382  * remain valid and unchanged until the VM is destroyed, i.e., the
10383  * GPA->HVA translation will not change.  However, the HVA is a user
10384  * address, i.e. its accessibility is not guaranteed, and must be
10385  * accessed via __copy_{to,from}_user().
10386  */
10387 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10388                                       u32 size)
10389 {
10390         int i, r;
10391         unsigned long hva, old_npages;
10392         struct kvm_memslots *slots = kvm_memslots(kvm);
10393         struct kvm_memory_slot *slot;
10394
10395         /* Called with kvm->slots_lock held.  */
10396         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10397                 return ERR_PTR_USR(-EINVAL);
10398
10399         slot = id_to_memslot(slots, id);
10400         if (size) {
10401                 if (slot && slot->npages)
10402                         return ERR_PTR_USR(-EEXIST);
10403
10404                 /*
10405                  * MAP_SHARED to prevent internal slot pages from being moved
10406                  * by fork()/COW.
10407                  */
10408                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10409                               MAP_SHARED | MAP_ANONYMOUS, 0);
10410                 if (IS_ERR((void *)hva))
10411                         return (void __user *)hva;
10412         } else {
10413                 if (!slot || !slot->npages)
10414                         return 0;
10415
10416                 old_npages = slot->npages;
10417                 hva = 0;
10418         }
10419
10420         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10421                 struct kvm_userspace_memory_region m;
10422
10423                 m.slot = id | (i << 16);
10424                 m.flags = 0;
10425                 m.guest_phys_addr = gpa;
10426                 m.userspace_addr = hva;
10427                 m.memory_size = size;
10428                 r = __kvm_set_memory_region(kvm, &m);
10429                 if (r < 0)
10430                         return ERR_PTR_USR(r);
10431         }
10432
10433         if (!size)
10434                 vm_munmap(hva, old_npages * PAGE_SIZE);
10435
10436         return (void __user *)hva;
10437 }
10438 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10439
10440 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10441 {
10442         kvm_mmu_pre_destroy_vm(kvm);
10443 }
10444
10445 void kvm_arch_destroy_vm(struct kvm *kvm)
10446 {
10447         u32 i;
10448
10449         if (current->mm == kvm->mm) {
10450                 /*
10451                  * Free memory regions allocated on behalf of userspace,
10452                  * unless the the memory map has changed due to process exit
10453                  * or fd copying.
10454                  */
10455                 mutex_lock(&kvm->slots_lock);
10456                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10457                                         0, 0);
10458                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10459                                         0, 0);
10460                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10461                 mutex_unlock(&kvm->slots_lock);
10462         }
10463         if (kvm_x86_ops.vm_destroy)
10464                 kvm_x86_ops.vm_destroy(kvm);
10465         for (i = 0; i < kvm->arch.msr_filter.count; i++)
10466                 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10467         kvm_pic_destroy(kvm);
10468         kvm_ioapic_destroy(kvm);
10469         kvm_free_vcpus(kvm);
10470         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10471         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10472         kvm_mmu_uninit_vm(kvm);
10473         kvm_page_track_cleanup(kvm);
10474         kvm_hv_destroy_vm(kvm);
10475 }
10476
10477 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10478 {
10479         int i;
10480
10481         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10482                 kvfree(slot->arch.rmap[i]);
10483                 slot->arch.rmap[i] = NULL;
10484
10485                 if (i == 0)
10486                         continue;
10487
10488                 kvfree(slot->arch.lpage_info[i - 1]);
10489                 slot->arch.lpage_info[i - 1] = NULL;
10490         }
10491
10492         kvm_page_track_free_memslot(slot);
10493 }
10494
10495 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10496                                       unsigned long npages)
10497 {
10498         int i;
10499
10500         /*
10501          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10502          * old arrays will be freed by __kvm_set_memory_region() if installing
10503          * the new memslot is successful.
10504          */
10505         memset(&slot->arch, 0, sizeof(slot->arch));
10506
10507         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10508                 struct kvm_lpage_info *linfo;
10509                 unsigned long ugfn;
10510                 int lpages;
10511                 int level = i + 1;
10512
10513                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10514                                       slot->base_gfn, level) + 1;
10515
10516                 slot->arch.rmap[i] =
10517                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10518                                  GFP_KERNEL_ACCOUNT);
10519                 if (!slot->arch.rmap[i])
10520                         goto out_free;
10521                 if (i == 0)
10522                         continue;
10523
10524                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10525                 if (!linfo)
10526                         goto out_free;
10527
10528                 slot->arch.lpage_info[i - 1] = linfo;
10529
10530                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10531                         linfo[0].disallow_lpage = 1;
10532                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10533                         linfo[lpages - 1].disallow_lpage = 1;
10534                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10535                 /*
10536                  * If the gfn and userspace address are not aligned wrt each
10537                  * other, disable large page support for this slot.
10538                  */
10539                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10540                         unsigned long j;
10541
10542                         for (j = 0; j < lpages; ++j)
10543                                 linfo[j].disallow_lpage = 1;
10544                 }
10545         }
10546
10547         if (kvm_page_track_create_memslot(slot, npages))
10548                 goto out_free;
10549
10550         return 0;
10551
10552 out_free:
10553         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10554                 kvfree(slot->arch.rmap[i]);
10555                 slot->arch.rmap[i] = NULL;
10556                 if (i == 0)
10557                         continue;
10558
10559                 kvfree(slot->arch.lpage_info[i - 1]);
10560                 slot->arch.lpage_info[i - 1] = NULL;
10561         }
10562         return -ENOMEM;
10563 }
10564
10565 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10566 {
10567         struct kvm_vcpu *vcpu;
10568         int i;
10569
10570         /*
10571          * memslots->generation has been incremented.
10572          * mmio generation may have reached its maximum value.
10573          */
10574         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10575
10576         /* Force re-initialization of steal_time cache */
10577         kvm_for_each_vcpu(i, vcpu, kvm)
10578                 kvm_vcpu_kick(vcpu);
10579 }
10580
10581 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10582                                 struct kvm_memory_slot *memslot,
10583                                 const struct kvm_userspace_memory_region *mem,
10584                                 enum kvm_mr_change change)
10585 {
10586         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10587                 return kvm_alloc_memslot_metadata(memslot,
10588                                                   mem->memory_size >> PAGE_SHIFT);
10589         return 0;
10590 }
10591
10592 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10593                                      struct kvm_memory_slot *old,
10594                                      struct kvm_memory_slot *new,
10595                                      enum kvm_mr_change change)
10596 {
10597         /*
10598          * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10599          * See comments below.
10600          */
10601         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10602                 return;
10603
10604         /*
10605          * Dirty logging tracks sptes in 4k granularity, meaning that large
10606          * sptes have to be split.  If live migration is successful, the guest
10607          * in the source machine will be destroyed and large sptes will be
10608          * created in the destination. However, if the guest continues to run
10609          * in the source machine (for example if live migration fails), small
10610          * sptes will remain around and cause bad performance.
10611          *
10612          * Scan sptes if dirty logging has been stopped, dropping those
10613          * which can be collapsed into a single large-page spte.  Later
10614          * page faults will create the large-page sptes.
10615          *
10616          * There is no need to do this in any of the following cases:
10617          * CREATE:      No dirty mappings will already exist.
10618          * MOVE/DELETE: The old mappings will already have been cleaned up by
10619          *              kvm_arch_flush_shadow_memslot()
10620          */
10621         if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10622             !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10623                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10624
10625         /*
10626          * Enable or disable dirty logging for the slot.
10627          *
10628          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10629          * slot have been zapped so no dirty logging updates are needed for
10630          * the old slot.
10631          * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10632          * any mappings that might be created in it will consume the
10633          * properties of the new slot and do not need to be updated here.
10634          *
10635          * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10636          * called to enable/disable dirty logging.
10637          *
10638          * When disabling dirty logging with PML enabled, the D-bit is set
10639          * for sptes in the slot in order to prevent unnecessary GPA
10640          * logging in the PML buffer (and potential PML buffer full VMEXIT).
10641          * This guarantees leaving PML enabled for the guest's lifetime
10642          * won't have any additional overhead from PML when the guest is
10643          * running with dirty logging disabled.
10644          *
10645          * When enabling dirty logging, large sptes are write-protected
10646          * so they can be split on first write.  New large sptes cannot
10647          * be created for this slot until the end of the logging.
10648          * See the comments in fast_page_fault().
10649          * For small sptes, nothing is done if the dirty log is in the
10650          * initial-all-set state.  Otherwise, depending on whether pml
10651          * is enabled the D-bit or the W-bit will be cleared.
10652          */
10653         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10654                 if (kvm_x86_ops.slot_enable_log_dirty) {
10655                         kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10656                 } else {
10657                         int level =
10658                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10659                                 PG_LEVEL_2M : PG_LEVEL_4K;
10660
10661                         /*
10662                          * If we're with initial-all-set, we don't need
10663                          * to write protect any small page because
10664                          * they're reported as dirty already.  However
10665                          * we still need to write-protect huge pages
10666                          * so that the page split can happen lazily on
10667                          * the first write to the huge page.
10668                          */
10669                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10670                 }
10671         } else {
10672                 if (kvm_x86_ops.slot_disable_log_dirty)
10673                         kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10674         }
10675 }
10676
10677 void kvm_arch_commit_memory_region(struct kvm *kvm,
10678                                 const struct kvm_userspace_memory_region *mem,
10679                                 struct kvm_memory_slot *old,
10680                                 const struct kvm_memory_slot *new,
10681                                 enum kvm_mr_change change)
10682 {
10683         if (!kvm->arch.n_requested_mmu_pages)
10684                 kvm_mmu_change_mmu_pages(kvm,
10685                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10686
10687         /*
10688          * FIXME: const-ify all uses of struct kvm_memory_slot.
10689          */
10690         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10691
10692         /* Free the arrays associated with the old memslot. */
10693         if (change == KVM_MR_MOVE)
10694                 kvm_arch_free_memslot(kvm, old);
10695 }
10696
10697 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10698 {
10699         kvm_mmu_zap_all(kvm);
10700 }
10701
10702 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10703                                    struct kvm_memory_slot *slot)
10704 {
10705         kvm_page_track_flush_slot(kvm, slot);
10706 }
10707
10708 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10709 {
10710         return (is_guest_mode(vcpu) &&
10711                         kvm_x86_ops.guest_apic_has_interrupt &&
10712                         kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10713 }
10714
10715 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10716 {
10717         if (!list_empty_careful(&vcpu->async_pf.done))
10718                 return true;
10719
10720         if (kvm_apic_has_events(vcpu))
10721                 return true;
10722
10723         if (vcpu->arch.pv.pv_unhalted)
10724                 return true;
10725
10726         if (vcpu->arch.exception.pending)
10727                 return true;
10728
10729         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10730             (vcpu->arch.nmi_pending &&
10731              kvm_x86_ops.nmi_allowed(vcpu, false)))
10732                 return true;
10733
10734         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10735             (vcpu->arch.smi_pending &&
10736              kvm_x86_ops.smi_allowed(vcpu, false)))
10737                 return true;
10738
10739         if (kvm_arch_interrupt_allowed(vcpu) &&
10740             (kvm_cpu_has_interrupt(vcpu) ||
10741             kvm_guest_apic_has_interrupt(vcpu)))
10742                 return true;
10743
10744         if (kvm_hv_has_stimer_pending(vcpu))
10745                 return true;
10746
10747         if (is_guest_mode(vcpu) &&
10748             kvm_x86_ops.nested_ops->hv_timer_pending &&
10749             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10750                 return true;
10751
10752         return false;
10753 }
10754
10755 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10756 {
10757         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10758 }
10759
10760 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10761 {
10762         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10763                 return true;
10764
10765         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10766                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10767                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10768                 return true;
10769
10770         if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10771                 return true;
10772
10773         return false;
10774 }
10775
10776 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10777 {
10778         return vcpu->arch.preempted_in_kernel;
10779 }
10780
10781 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10782 {
10783         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10784 }
10785
10786 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10787 {
10788         return kvm_x86_ops.interrupt_allowed(vcpu, false);
10789 }
10790
10791 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10792 {
10793         /* Can't read the RIP when guest state is protected, just return 0 */
10794         if (vcpu->arch.guest_state_protected)
10795                 return 0;
10796
10797         if (is_64_bit_mode(vcpu))
10798                 return kvm_rip_read(vcpu);
10799         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10800                      kvm_rip_read(vcpu));
10801 }
10802 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10803
10804 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10805 {
10806         return kvm_get_linear_rip(vcpu) == linear_rip;
10807 }
10808 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10809
10810 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10811 {
10812         unsigned long rflags;
10813
10814         rflags = kvm_x86_ops.get_rflags(vcpu);
10815         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10816                 rflags &= ~X86_EFLAGS_TF;
10817         return rflags;
10818 }
10819 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10820
10821 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10822 {
10823         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10824             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10825                 rflags |= X86_EFLAGS_TF;
10826         kvm_x86_ops.set_rflags(vcpu, rflags);
10827 }
10828
10829 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10830 {
10831         __kvm_set_rflags(vcpu, rflags);
10832         kvm_make_request(KVM_REQ_EVENT, vcpu);
10833 }
10834 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10835
10836 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10837 {
10838         int r;
10839
10840         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10841               work->wakeup_all)
10842                 return;
10843
10844         r = kvm_mmu_reload(vcpu);
10845         if (unlikely(r))
10846                 return;
10847
10848         if (!vcpu->arch.mmu->direct_map &&
10849               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10850                 return;
10851
10852         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10853 }
10854
10855 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10856 {
10857         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10858
10859         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10860 }
10861
10862 static inline u32 kvm_async_pf_next_probe(u32 key)
10863 {
10864         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10865 }
10866
10867 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10868 {
10869         u32 key = kvm_async_pf_hash_fn(gfn);
10870
10871         while (vcpu->arch.apf.gfns[key] != ~0)
10872                 key = kvm_async_pf_next_probe(key);
10873
10874         vcpu->arch.apf.gfns[key] = gfn;
10875 }
10876
10877 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10878 {
10879         int i;
10880         u32 key = kvm_async_pf_hash_fn(gfn);
10881
10882         for (i = 0; i < ASYNC_PF_PER_VCPU &&
10883                      (vcpu->arch.apf.gfns[key] != gfn &&
10884                       vcpu->arch.apf.gfns[key] != ~0); i++)
10885                 key = kvm_async_pf_next_probe(key);
10886
10887         return key;
10888 }
10889
10890 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10891 {
10892         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10893 }
10894
10895 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10896 {
10897         u32 i, j, k;
10898
10899         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10900
10901         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10902                 return;
10903
10904         while (true) {
10905                 vcpu->arch.apf.gfns[i] = ~0;
10906                 do {
10907                         j = kvm_async_pf_next_probe(j);
10908                         if (vcpu->arch.apf.gfns[j] == ~0)
10909                                 return;
10910                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10911                         /*
10912                          * k lies cyclically in ]i,j]
10913                          * |    i.k.j |
10914                          * |....j i.k.| or  |.k..j i...|
10915                          */
10916                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10917                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10918                 i = j;
10919         }
10920 }
10921
10922 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10923 {
10924         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10925
10926         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10927                                       sizeof(reason));
10928 }
10929
10930 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10931 {
10932         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10933
10934         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10935                                              &token, offset, sizeof(token));
10936 }
10937
10938 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10939 {
10940         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10941         u32 val;
10942
10943         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10944                                          &val, offset, sizeof(val)))
10945                 return false;
10946
10947         return !val;
10948 }
10949
10950 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10951 {
10952         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10953                 return false;
10954
10955         if (!kvm_pv_async_pf_enabled(vcpu) ||
10956             (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10957                 return false;
10958
10959         return true;
10960 }
10961
10962 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10963 {
10964         if (unlikely(!lapic_in_kernel(vcpu) ||
10965                      kvm_event_needs_reinjection(vcpu) ||
10966                      vcpu->arch.exception.pending))
10967                 return false;
10968
10969         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10970                 return false;
10971
10972         /*
10973          * If interrupts are off we cannot even use an artificial
10974          * halt state.
10975          */
10976         return kvm_arch_interrupt_allowed(vcpu);
10977 }
10978
10979 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10980                                      struct kvm_async_pf *work)
10981 {
10982         struct x86_exception fault;
10983
10984         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10985         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10986
10987         if (kvm_can_deliver_async_pf(vcpu) &&
10988             !apf_put_user_notpresent(vcpu)) {
10989                 fault.vector = PF_VECTOR;
10990                 fault.error_code_valid = true;
10991                 fault.error_code = 0;
10992                 fault.nested_page_fault = false;
10993                 fault.address = work->arch.token;
10994                 fault.async_page_fault = true;
10995                 kvm_inject_page_fault(vcpu, &fault);
10996                 return true;
10997         } else {
10998                 /*
10999                  * It is not possible to deliver a paravirtualized asynchronous
11000                  * page fault, but putting the guest in an artificial halt state
11001                  * can be beneficial nevertheless: if an interrupt arrives, we
11002                  * can deliver it timely and perhaps the guest will schedule
11003                  * another process.  When the instruction that triggered a page
11004                  * fault is retried, hopefully the page will be ready in the host.
11005                  */
11006                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11007                 return false;
11008         }
11009 }
11010
11011 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11012                                  struct kvm_async_pf *work)
11013 {
11014         struct kvm_lapic_irq irq = {
11015                 .delivery_mode = APIC_DM_FIXED,
11016                 .vector = vcpu->arch.apf.vec
11017         };
11018
11019         if (work->wakeup_all)
11020                 work->arch.token = ~0; /* broadcast wakeup */
11021         else
11022                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11023         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11024
11025         if ((work->wakeup_all || work->notpresent_injected) &&
11026             kvm_pv_async_pf_enabled(vcpu) &&
11027             !apf_put_user_ready(vcpu, work->arch.token)) {
11028                 vcpu->arch.apf.pageready_pending = true;
11029                 kvm_apic_set_irq(vcpu, &irq, NULL);
11030         }
11031
11032         vcpu->arch.apf.halted = false;
11033         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11034 }
11035
11036 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11037 {
11038         kvm_make_request(KVM_REQ_APF_READY, vcpu);
11039         if (!vcpu->arch.apf.pageready_pending)
11040                 kvm_vcpu_kick(vcpu);
11041 }
11042
11043 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11044 {
11045         if (!kvm_pv_async_pf_enabled(vcpu))
11046                 return true;
11047         else
11048                 return apf_pageready_slot_free(vcpu);
11049 }
11050
11051 void kvm_arch_start_assignment(struct kvm *kvm)
11052 {
11053         atomic_inc(&kvm->arch.assigned_device_count);
11054 }
11055 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11056
11057 void kvm_arch_end_assignment(struct kvm *kvm)
11058 {
11059         atomic_dec(&kvm->arch.assigned_device_count);
11060 }
11061 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11062
11063 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11064 {
11065         return atomic_read(&kvm->arch.assigned_device_count);
11066 }
11067 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11068
11069 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11070 {
11071         atomic_inc(&kvm->arch.noncoherent_dma_count);
11072 }
11073 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11074
11075 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11076 {
11077         atomic_dec(&kvm->arch.noncoherent_dma_count);
11078 }
11079 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11080
11081 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11082 {
11083         return atomic_read(&kvm->arch.noncoherent_dma_count);
11084 }
11085 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11086
11087 bool kvm_arch_has_irq_bypass(void)
11088 {
11089         return true;
11090 }
11091
11092 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11093                                       struct irq_bypass_producer *prod)
11094 {
11095         struct kvm_kernel_irqfd *irqfd =
11096                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11097         int ret;
11098
11099         irqfd->producer = prod;
11100         kvm_arch_start_assignment(irqfd->kvm);
11101         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11102                                          prod->irq, irqfd->gsi, 1);
11103
11104         if (ret)
11105                 kvm_arch_end_assignment(irqfd->kvm);
11106
11107         return ret;
11108 }
11109
11110 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11111                                       struct irq_bypass_producer *prod)
11112 {
11113         int ret;
11114         struct kvm_kernel_irqfd *irqfd =
11115                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11116
11117         WARN_ON(irqfd->producer != prod);
11118         irqfd->producer = NULL;
11119
11120         /*
11121          * When producer of consumer is unregistered, we change back to
11122          * remapped mode, so we can re-use the current implementation
11123          * when the irq is masked/disabled or the consumer side (KVM
11124          * int this case doesn't want to receive the interrupts.
11125         */
11126         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11127         if (ret)
11128                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11129                        " fails: %d\n", irqfd->consumer.token, ret);
11130
11131         kvm_arch_end_assignment(irqfd->kvm);
11132 }
11133
11134 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11135                                    uint32_t guest_irq, bool set)
11136 {
11137         return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11138 }
11139
11140 bool kvm_vector_hashing_enabled(void)
11141 {
11142         return vector_hashing;
11143 }
11144
11145 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11146 {
11147         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11148 }
11149 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11150
11151
11152 int kvm_spec_ctrl_test_value(u64 value)
11153 {
11154         /*
11155          * test that setting IA32_SPEC_CTRL to given value
11156          * is allowed by the host processor
11157          */
11158
11159         u64 saved_value;
11160         unsigned long flags;
11161         int ret = 0;
11162
11163         local_irq_save(flags);
11164
11165         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11166                 ret = 1;
11167         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11168                 ret = 1;
11169         else
11170                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11171
11172         local_irq_restore(flags);
11173
11174         return ret;
11175 }
11176 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11177
11178 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11179 {
11180         struct x86_exception fault;
11181         u32 access = error_code &
11182                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11183
11184         if (!(error_code & PFERR_PRESENT_MASK) ||
11185             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11186                 /*
11187                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11188                  * tables probably do not match the TLB.  Just proceed
11189                  * with the error code that the processor gave.
11190                  */
11191                 fault.vector = PF_VECTOR;
11192                 fault.error_code_valid = true;
11193                 fault.error_code = error_code;
11194                 fault.nested_page_fault = false;
11195                 fault.address = gva;
11196         }
11197         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11198 }
11199 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11200
11201 /*
11202  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11203  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11204  * indicates whether exit to userspace is needed.
11205  */
11206 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11207                               struct x86_exception *e)
11208 {
11209         if (r == X86EMUL_PROPAGATE_FAULT) {
11210                 kvm_inject_emulated_page_fault(vcpu, e);
11211                 return 1;
11212         }
11213
11214         /*
11215          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11216          * while handling a VMX instruction KVM could've handled the request
11217          * correctly by exiting to userspace and performing I/O but there
11218          * doesn't seem to be a real use-case behind such requests, just return
11219          * KVM_EXIT_INTERNAL_ERROR for now.
11220          */
11221         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11222         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11223         vcpu->run->internal.ndata = 0;
11224
11225         return 0;
11226 }
11227 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11228
11229 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11230 {
11231         bool pcid_enabled;
11232         struct x86_exception e;
11233         unsigned i;
11234         unsigned long roots_to_free = 0;
11235         struct {
11236                 u64 pcid;
11237                 u64 gla;
11238         } operand;
11239         int r;
11240
11241         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11242         if (r != X86EMUL_CONTINUE)
11243                 return kvm_handle_memory_failure(vcpu, r, &e);
11244
11245         if (operand.pcid >> 12 != 0) {
11246                 kvm_inject_gp(vcpu, 0);
11247                 return 1;
11248         }
11249
11250         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11251
11252         switch (type) {
11253         case INVPCID_TYPE_INDIV_ADDR:
11254                 if ((!pcid_enabled && (operand.pcid != 0)) ||
11255                     is_noncanonical_address(operand.gla, vcpu)) {
11256                         kvm_inject_gp(vcpu, 0);
11257                         return 1;
11258                 }
11259                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11260                 return kvm_skip_emulated_instruction(vcpu);
11261
11262         case INVPCID_TYPE_SINGLE_CTXT:
11263                 if (!pcid_enabled && (operand.pcid != 0)) {
11264                         kvm_inject_gp(vcpu, 0);
11265                         return 1;
11266                 }
11267
11268                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11269                         kvm_mmu_sync_roots(vcpu);
11270                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11271                 }
11272
11273                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11274                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11275                             == operand.pcid)
11276                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11277
11278                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11279                 /*
11280                  * If neither the current cr3 nor any of the prev_roots use the
11281                  * given PCID, then nothing needs to be done here because a
11282                  * resync will happen anyway before switching to any other CR3.
11283                  */
11284
11285                 return kvm_skip_emulated_instruction(vcpu);
11286
11287         case INVPCID_TYPE_ALL_NON_GLOBAL:
11288                 /*
11289                  * Currently, KVM doesn't mark global entries in the shadow
11290                  * page tables, so a non-global flush just degenerates to a
11291                  * global flush. If needed, we could optimize this later by
11292                  * keeping track of global entries in shadow page tables.
11293                  */
11294
11295                 fallthrough;
11296         case INVPCID_TYPE_ALL_INCL_GLOBAL:
11297                 kvm_mmu_unload(vcpu);
11298                 return kvm_skip_emulated_instruction(vcpu);
11299
11300         default:
11301                 BUG(); /* We have already checked above that type <= 3 */
11302         }
11303 }
11304 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11305
11306 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11307 {
11308         struct kvm_run *run = vcpu->run;
11309         struct kvm_mmio_fragment *frag;
11310         unsigned int len;
11311
11312         BUG_ON(!vcpu->mmio_needed);
11313
11314         /* Complete previous fragment */
11315         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11316         len = min(8u, frag->len);
11317         if (!vcpu->mmio_is_write)
11318                 memcpy(frag->data, run->mmio.data, len);
11319
11320         if (frag->len <= 8) {
11321                 /* Switch to the next fragment. */
11322                 frag++;
11323                 vcpu->mmio_cur_fragment++;
11324         } else {
11325                 /* Go forward to the next mmio piece. */
11326                 frag->data += len;
11327                 frag->gpa += len;
11328                 frag->len -= len;
11329         }
11330
11331         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11332                 vcpu->mmio_needed = 0;
11333
11334                 // VMG change, at this point, we're always done
11335                 // RIP has already been advanced
11336                 return 1;
11337         }
11338
11339         // More MMIO is needed
11340         run->mmio.phys_addr = frag->gpa;
11341         run->mmio.len = min(8u, frag->len);
11342         run->mmio.is_write = vcpu->mmio_is_write;
11343         if (run->mmio.is_write)
11344                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11345         run->exit_reason = KVM_EXIT_MMIO;
11346
11347         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11348
11349         return 0;
11350 }
11351
11352 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11353                           void *data)
11354 {
11355         int handled;
11356         struct kvm_mmio_fragment *frag;
11357
11358         if (!data)
11359                 return -EINVAL;
11360
11361         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11362         if (handled == bytes)
11363                 return 1;
11364
11365         bytes -= handled;
11366         gpa += handled;
11367         data += handled;
11368
11369         /*TODO: Check if need to increment number of frags */
11370         frag = vcpu->mmio_fragments;
11371         vcpu->mmio_nr_fragments = 1;
11372         frag->len = bytes;
11373         frag->gpa = gpa;
11374         frag->data = data;
11375
11376         vcpu->mmio_needed = 1;
11377         vcpu->mmio_cur_fragment = 0;
11378
11379         vcpu->run->mmio.phys_addr = gpa;
11380         vcpu->run->mmio.len = min(8u, frag->len);
11381         vcpu->run->mmio.is_write = 1;
11382         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11383         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11384
11385         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11386
11387         return 0;
11388 }
11389 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11390
11391 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11392                          void *data)
11393 {
11394         int handled;
11395         struct kvm_mmio_fragment *frag;
11396
11397         if (!data)
11398                 return -EINVAL;
11399
11400         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11401         if (handled == bytes)
11402                 return 1;
11403
11404         bytes -= handled;
11405         gpa += handled;
11406         data += handled;
11407
11408         /*TODO: Check if need to increment number of frags */
11409         frag = vcpu->mmio_fragments;
11410         vcpu->mmio_nr_fragments = 1;
11411         frag->len = bytes;
11412         frag->gpa = gpa;
11413         frag->data = data;
11414
11415         vcpu->mmio_needed = 1;
11416         vcpu->mmio_cur_fragment = 0;
11417
11418         vcpu->run->mmio.phys_addr = gpa;
11419         vcpu->run->mmio.len = min(8u, frag->len);
11420         vcpu->run->mmio.is_write = 0;
11421         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11422
11423         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11424
11425         return 0;
11426 }
11427 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11428
11429 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11430 {
11431         memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11432                vcpu->arch.pio.count * vcpu->arch.pio.size);
11433         vcpu->arch.pio.count = 0;
11434
11435         return 1;
11436 }
11437
11438 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11439                            unsigned int port, void *data,  unsigned int count)
11440 {
11441         int ret;
11442
11443         ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11444                                         data, count);
11445         if (ret)
11446                 return ret;
11447
11448         vcpu->arch.pio.count = 0;
11449
11450         return 0;
11451 }
11452
11453 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11454                           unsigned int port, void *data, unsigned int count)
11455 {
11456         int ret;
11457
11458         ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11459                                        data, count);
11460         if (ret) {
11461                 vcpu->arch.pio.count = 0;
11462         } else {
11463                 vcpu->arch.guest_ins_data = data;
11464                 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11465         }
11466
11467         return 0;
11468 }
11469
11470 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11471                          unsigned int port, void *data,  unsigned int count,
11472                          int in)
11473 {
11474         return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11475                   : kvm_sev_es_outs(vcpu, size, port, data, count);
11476 }
11477 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11478
11479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);