Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61
62 #include <trace/events/kvm.h>
63
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <asm/sgx.h>
79 #include <clocksource/hyperv_timer.h>
80
81 #define CREATE_TRACE_POINTS
82 #include "trace.h"
83
84 #define MAX_IO_MSRS 256
85 #define KVM_MAX_MCE_BANKS 32
86 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
87 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
88
89 #define emul_to_vcpu(ctxt) \
90         ((struct kvm_vcpu *)(ctxt)->vcpu)
91
92 /* EFER defaults:
93  * - enable syscall per default because its emulated by KVM
94  * - enable LME and LMA per default on 64 bit KVM
95  */
96 #ifdef CONFIG_X86_64
97 static
98 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
99 #else
100 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
101 #endif
102
103 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
104
105 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
106                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
107
108 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
109 static void process_nmi(struct kvm_vcpu *vcpu);
110 static void process_smi(struct kvm_vcpu *vcpu);
111 static void enter_smm(struct kvm_vcpu *vcpu);
112 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
113 static void store_regs(struct kvm_vcpu *vcpu);
114 static int sync_regs(struct kvm_vcpu *vcpu);
115
116 struct kvm_x86_ops kvm_x86_ops __read_mostly;
117 EXPORT_SYMBOL_GPL(kvm_x86_ops);
118
119 #define KVM_X86_OP(func)                                             \
120         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
121                                 *(((struct kvm_x86_ops *)0)->func));
122 #define KVM_X86_OP_NULL KVM_X86_OP
123 #include <asm/kvm-x86-ops.h>
124 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
126 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
127
128 static bool __read_mostly ignore_msrs = 0;
129 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
130
131 bool __read_mostly report_ignored_msrs = true;
132 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
133 EXPORT_SYMBOL_GPL(report_ignored_msrs);
134
135 unsigned int min_timer_period_us = 200;
136 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly kvmclock_periodic_sync = true;
139 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
140
141 bool __read_mostly kvm_has_tsc_control;
142 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
143 u32  __read_mostly kvm_max_guest_tsc_khz;
144 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
145 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
146 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
147 u64  __read_mostly kvm_max_tsc_scaling_ratio;
148 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
149 u64 __read_mostly kvm_default_tsc_scaling_ratio;
150 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
151 bool __read_mostly kvm_has_bus_lock_exit;
152 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
153
154 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
155 static u32 __read_mostly tsc_tolerance_ppm = 250;
156 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
157
158 /*
159  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
160  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
161  * advancement entirely.  Any other value is used as-is and disables adaptive
162  * tuning, i.e. allows privileged userspace to set an exact advancement time.
163  */
164 static int __read_mostly lapic_timer_advance_ns = -1;
165 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
166
167 static bool __read_mostly vector_hashing = true;
168 module_param(vector_hashing, bool, S_IRUGO);
169
170 bool __read_mostly enable_vmware_backdoor = false;
171 module_param(enable_vmware_backdoor, bool, S_IRUGO);
172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
173
174 static bool __read_mostly force_emulation_prefix = false;
175 module_param(force_emulation_prefix, bool, S_IRUGO);
176
177 int __read_mostly pi_inject_timer = -1;
178 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
179
180 /*
181  * Restoring the host value for MSRs that are only consumed when running in
182  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
183  * returns to userspace, i.e. the kernel can run with the guest's value.
184  */
185 #define KVM_MAX_NR_USER_RETURN_MSRS 16
186
187 struct kvm_user_return_msrs {
188         struct user_return_notifier urn;
189         bool registered;
190         struct kvm_user_return_msr_values {
191                 u64 host;
192                 u64 curr;
193         } values[KVM_MAX_NR_USER_RETURN_MSRS];
194 };
195
196 u32 __read_mostly kvm_nr_uret_msrs;
197 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
198 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
199 static struct kvm_user_return_msrs __percpu *user_return_msrs;
200
201 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
202                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
203                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
204                                 | XFEATURE_MASK_PKRU)
205
206 u64 __read_mostly host_efer;
207 EXPORT_SYMBOL_GPL(host_efer);
208
209 bool __read_mostly allow_smaller_maxphyaddr = 0;
210 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
211
212 u64 __read_mostly host_xss;
213 EXPORT_SYMBOL_GPL(host_xss);
214 u64 __read_mostly supported_xss;
215 EXPORT_SYMBOL_GPL(supported_xss);
216
217 struct kvm_stats_debugfs_item debugfs_entries[] = {
218         VCPU_STAT("pf_fixed", pf_fixed),
219         VCPU_STAT("pf_guest", pf_guest),
220         VCPU_STAT("tlb_flush", tlb_flush),
221         VCPU_STAT("invlpg", invlpg),
222         VCPU_STAT("exits", exits),
223         VCPU_STAT("io_exits", io_exits),
224         VCPU_STAT("mmio_exits", mmio_exits),
225         VCPU_STAT("signal_exits", signal_exits),
226         VCPU_STAT("irq_window", irq_window_exits),
227         VCPU_STAT("nmi_window", nmi_window_exits),
228         VCPU_STAT("halt_exits", halt_exits),
229         VCPU_STAT("halt_successful_poll", halt_successful_poll),
230         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
231         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
232         VCPU_STAT("halt_wakeup", halt_wakeup),
233         VCPU_STAT("hypercalls", hypercalls),
234         VCPU_STAT("request_irq", request_irq_exits),
235         VCPU_STAT("irq_exits", irq_exits),
236         VCPU_STAT("host_state_reload", host_state_reload),
237         VCPU_STAT("fpu_reload", fpu_reload),
238         VCPU_STAT("insn_emulation", insn_emulation),
239         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
240         VCPU_STAT("irq_injections", irq_injections),
241         VCPU_STAT("nmi_injections", nmi_injections),
242         VCPU_STAT("req_event", req_event),
243         VCPU_STAT("l1d_flush", l1d_flush),
244         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
245         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
246         VCPU_STAT("nested_run", nested_run),
247         VCPU_STAT("directed_yield_attempted", directed_yield_attempted),
248         VCPU_STAT("directed_yield_successful", directed_yield_successful),
249         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
250         VM_STAT("mmu_pte_write", mmu_pte_write),
251         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
252         VM_STAT("mmu_flooded", mmu_flooded),
253         VM_STAT("mmu_recycled", mmu_recycled),
254         VM_STAT("mmu_cache_miss", mmu_cache_miss),
255         VM_STAT("mmu_unsync", mmu_unsync),
256         VM_STAT("remote_tlb_flush", remote_tlb_flush),
257         VM_STAT("largepages", lpages, .mode = 0444),
258         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
259         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
260         { NULL }
261 };
262
263 u64 __read_mostly host_xcr0;
264 u64 __read_mostly supported_xcr0;
265 EXPORT_SYMBOL_GPL(supported_xcr0);
266
267 static struct kmem_cache *x86_fpu_cache;
268
269 static struct kmem_cache *x86_emulator_cache;
270
271 /*
272  * When called, it means the previous get/set msr reached an invalid msr.
273  * Return true if we want to ignore/silent this failed msr access.
274  */
275 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
276 {
277         const char *op = write ? "wrmsr" : "rdmsr";
278
279         if (ignore_msrs) {
280                 if (report_ignored_msrs)
281                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
282                                       op, msr, data);
283                 /* Mask the error */
284                 return true;
285         } else {
286                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
287                                       op, msr, data);
288                 return false;
289         }
290 }
291
292 static struct kmem_cache *kvm_alloc_emulator_cache(void)
293 {
294         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
295         unsigned int size = sizeof(struct x86_emulate_ctxt);
296
297         return kmem_cache_create_usercopy("x86_emulator", size,
298                                           __alignof__(struct x86_emulate_ctxt),
299                                           SLAB_ACCOUNT, useroffset,
300                                           size - useroffset, NULL);
301 }
302
303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
304
305 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
306 {
307         int i;
308         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
309                 vcpu->arch.apf.gfns[i] = ~0;
310 }
311
312 static void kvm_on_user_return(struct user_return_notifier *urn)
313 {
314         unsigned slot;
315         struct kvm_user_return_msrs *msrs
316                 = container_of(urn, struct kvm_user_return_msrs, urn);
317         struct kvm_user_return_msr_values *values;
318         unsigned long flags;
319
320         /*
321          * Disabling irqs at this point since the following code could be
322          * interrupted and executed through kvm_arch_hardware_disable()
323          */
324         local_irq_save(flags);
325         if (msrs->registered) {
326                 msrs->registered = false;
327                 user_return_notifier_unregister(urn);
328         }
329         local_irq_restore(flags);
330         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
331                 values = &msrs->values[slot];
332                 if (values->host != values->curr) {
333                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
334                         values->curr = values->host;
335                 }
336         }
337 }
338
339 static int kvm_probe_user_return_msr(u32 msr)
340 {
341         u64 val;
342         int ret;
343
344         preempt_disable();
345         ret = rdmsrl_safe(msr, &val);
346         if (ret)
347                 goto out;
348         ret = wrmsrl_safe(msr, val);
349 out:
350         preempt_enable();
351         return ret;
352 }
353
354 int kvm_add_user_return_msr(u32 msr)
355 {
356         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
357
358         if (kvm_probe_user_return_msr(msr))
359                 return -1;
360
361         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
362         return kvm_nr_uret_msrs++;
363 }
364 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
365
366 int kvm_find_user_return_msr(u32 msr)
367 {
368         int i;
369
370         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
371                 if (kvm_uret_msrs_list[i] == msr)
372                         return i;
373         }
374         return -1;
375 }
376 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
377
378 static void kvm_user_return_msr_cpu_online(void)
379 {
380         unsigned int cpu = smp_processor_id();
381         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
382         u64 value;
383         int i;
384
385         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
386                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
387                 msrs->values[i].host = value;
388                 msrs->values[i].curr = value;
389         }
390 }
391
392 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
393 {
394         unsigned int cpu = smp_processor_id();
395         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
396         int err;
397
398         value = (value & mask) | (msrs->values[slot].host & ~mask);
399         if (value == msrs->values[slot].curr)
400                 return 0;
401         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
402         if (err)
403                 return 1;
404
405         msrs->values[slot].curr = value;
406         if (!msrs->registered) {
407                 msrs->urn.on_user_return = kvm_on_user_return;
408                 user_return_notifier_register(&msrs->urn);
409                 msrs->registered = true;
410         }
411         return 0;
412 }
413 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
414
415 static void drop_user_return_notifiers(void)
416 {
417         unsigned int cpu = smp_processor_id();
418         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
419
420         if (msrs->registered)
421                 kvm_on_user_return(&msrs->urn);
422 }
423
424 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
425 {
426         return vcpu->arch.apic_base;
427 }
428 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
429
430 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
431 {
432         return kvm_apic_mode(kvm_get_apic_base(vcpu));
433 }
434 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
435
436 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
437 {
438         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
439         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
440         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
441                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
442
443         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
444                 return 1;
445         if (!msr_info->host_initiated) {
446                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
447                         return 1;
448                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
449                         return 1;
450         }
451
452         kvm_lapic_set_base(vcpu, msr_info->data);
453         kvm_recalculate_apic_map(vcpu->kvm);
454         return 0;
455 }
456 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
457
458 asmlinkage __visible noinstr void kvm_spurious_fault(void)
459 {
460         /* Fault while not rebooting.  We want the trace. */
461         BUG_ON(!kvm_rebooting);
462 }
463 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
464
465 #define EXCPT_BENIGN            0
466 #define EXCPT_CONTRIBUTORY      1
467 #define EXCPT_PF                2
468
469 static int exception_class(int vector)
470 {
471         switch (vector) {
472         case PF_VECTOR:
473                 return EXCPT_PF;
474         case DE_VECTOR:
475         case TS_VECTOR:
476         case NP_VECTOR:
477         case SS_VECTOR:
478         case GP_VECTOR:
479                 return EXCPT_CONTRIBUTORY;
480         default:
481                 break;
482         }
483         return EXCPT_BENIGN;
484 }
485
486 #define EXCPT_FAULT             0
487 #define EXCPT_TRAP              1
488 #define EXCPT_ABORT             2
489 #define EXCPT_INTERRUPT         3
490
491 static int exception_type(int vector)
492 {
493         unsigned int mask;
494
495         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
496                 return EXCPT_INTERRUPT;
497
498         mask = 1 << vector;
499
500         /* #DB is trap, as instruction watchpoints are handled elsewhere */
501         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
502                 return EXCPT_TRAP;
503
504         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
505                 return EXCPT_ABORT;
506
507         /* Reserved exceptions will result in fault */
508         return EXCPT_FAULT;
509 }
510
511 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
512 {
513         unsigned nr = vcpu->arch.exception.nr;
514         bool has_payload = vcpu->arch.exception.has_payload;
515         unsigned long payload = vcpu->arch.exception.payload;
516
517         if (!has_payload)
518                 return;
519
520         switch (nr) {
521         case DB_VECTOR:
522                 /*
523                  * "Certain debug exceptions may clear bit 0-3.  The
524                  * remaining contents of the DR6 register are never
525                  * cleared by the processor".
526                  */
527                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
528                 /*
529                  * In order to reflect the #DB exception payload in guest
530                  * dr6, three components need to be considered: active low
531                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
532                  * DR6_BS and DR6_BT)
533                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
534                  * In the target guest dr6:
535                  * FIXED_1 bits should always be set.
536                  * Active low bits should be cleared if 1-setting in payload.
537                  * Active high bits should be set if 1-setting in payload.
538                  *
539                  * Note, the payload is compatible with the pending debug
540                  * exceptions/exit qualification under VMX, that active_low bits
541                  * are active high in payload.
542                  * So they need to be flipped for DR6.
543                  */
544                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
545                 vcpu->arch.dr6 |= payload;
546                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
547
548                 /*
549                  * The #DB payload is defined as compatible with the 'pending
550                  * debug exceptions' field under VMX, not DR6. While bit 12 is
551                  * defined in the 'pending debug exceptions' field (enabled
552                  * breakpoint), it is reserved and must be zero in DR6.
553                  */
554                 vcpu->arch.dr6 &= ~BIT(12);
555                 break;
556         case PF_VECTOR:
557                 vcpu->arch.cr2 = payload;
558                 break;
559         }
560
561         vcpu->arch.exception.has_payload = false;
562         vcpu->arch.exception.payload = 0;
563 }
564 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
565
566 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
567                 unsigned nr, bool has_error, u32 error_code,
568                 bool has_payload, unsigned long payload, bool reinject)
569 {
570         u32 prev_nr;
571         int class1, class2;
572
573         kvm_make_request(KVM_REQ_EVENT, vcpu);
574
575         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
576         queue:
577                 if (reinject) {
578                         /*
579                          * On vmentry, vcpu->arch.exception.pending is only
580                          * true if an event injection was blocked by
581                          * nested_run_pending.  In that case, however,
582                          * vcpu_enter_guest requests an immediate exit,
583                          * and the guest shouldn't proceed far enough to
584                          * need reinjection.
585                          */
586                         WARN_ON_ONCE(vcpu->arch.exception.pending);
587                         vcpu->arch.exception.injected = true;
588                         if (WARN_ON_ONCE(has_payload)) {
589                                 /*
590                                  * A reinjected event has already
591                                  * delivered its payload.
592                                  */
593                                 has_payload = false;
594                                 payload = 0;
595                         }
596                 } else {
597                         vcpu->arch.exception.pending = true;
598                         vcpu->arch.exception.injected = false;
599                 }
600                 vcpu->arch.exception.has_error_code = has_error;
601                 vcpu->arch.exception.nr = nr;
602                 vcpu->arch.exception.error_code = error_code;
603                 vcpu->arch.exception.has_payload = has_payload;
604                 vcpu->arch.exception.payload = payload;
605                 if (!is_guest_mode(vcpu))
606                         kvm_deliver_exception_payload(vcpu);
607                 return;
608         }
609
610         /* to check exception */
611         prev_nr = vcpu->arch.exception.nr;
612         if (prev_nr == DF_VECTOR) {
613                 /* triple fault -> shutdown */
614                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
615                 return;
616         }
617         class1 = exception_class(prev_nr);
618         class2 = exception_class(nr);
619         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
620                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
621                 /*
622                  * Generate double fault per SDM Table 5-5.  Set
623                  * exception.pending = true so that the double fault
624                  * can trigger a nested vmexit.
625                  */
626                 vcpu->arch.exception.pending = true;
627                 vcpu->arch.exception.injected = false;
628                 vcpu->arch.exception.has_error_code = true;
629                 vcpu->arch.exception.nr = DF_VECTOR;
630                 vcpu->arch.exception.error_code = 0;
631                 vcpu->arch.exception.has_payload = false;
632                 vcpu->arch.exception.payload = 0;
633         } else
634                 /* replace previous exception with a new one in a hope
635                    that instruction re-execution will regenerate lost
636                    exception */
637                 goto queue;
638 }
639
640 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
641 {
642         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
643 }
644 EXPORT_SYMBOL_GPL(kvm_queue_exception);
645
646 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
647 {
648         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
649 }
650 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
651
652 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
653                            unsigned long payload)
654 {
655         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
656 }
657 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
658
659 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
660                                     u32 error_code, unsigned long payload)
661 {
662         kvm_multiple_exception(vcpu, nr, true, error_code,
663                                true, payload, false);
664 }
665
666 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
667 {
668         if (err)
669                 kvm_inject_gp(vcpu, 0);
670         else
671                 return kvm_skip_emulated_instruction(vcpu);
672
673         return 1;
674 }
675 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
676
677 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
678 {
679         ++vcpu->stat.pf_guest;
680         vcpu->arch.exception.nested_apf =
681                 is_guest_mode(vcpu) && fault->async_page_fault;
682         if (vcpu->arch.exception.nested_apf) {
683                 vcpu->arch.apf.nested_apf_token = fault->address;
684                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
685         } else {
686                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
687                                         fault->address);
688         }
689 }
690 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
691
692 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
693                                     struct x86_exception *fault)
694 {
695         struct kvm_mmu *fault_mmu;
696         WARN_ON_ONCE(fault->vector != PF_VECTOR);
697
698         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
699                                                vcpu->arch.walk_mmu;
700
701         /*
702          * Invalidate the TLB entry for the faulting address, if it exists,
703          * else the access will fault indefinitely (and to emulate hardware).
704          */
705         if ((fault->error_code & PFERR_PRESENT_MASK) &&
706             !(fault->error_code & PFERR_RSVD_MASK))
707                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
708                                        fault_mmu->root_hpa);
709
710         fault_mmu->inject_page_fault(vcpu, fault);
711         return fault->nested_page_fault;
712 }
713 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
714
715 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
716 {
717         atomic_inc(&vcpu->arch.nmi_queued);
718         kvm_make_request(KVM_REQ_NMI, vcpu);
719 }
720 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
721
722 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
723 {
724         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
725 }
726 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
727
728 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
729 {
730         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
731 }
732 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
733
734 /*
735  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
736  * a #GP and return false.
737  */
738 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
739 {
740         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
741                 return true;
742         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
743         return false;
744 }
745 EXPORT_SYMBOL_GPL(kvm_require_cpl);
746
747 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
748 {
749         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
750                 return true;
751
752         kvm_queue_exception(vcpu, UD_VECTOR);
753         return false;
754 }
755 EXPORT_SYMBOL_GPL(kvm_require_dr);
756
757 /*
758  * This function will be used to read from the physical memory of the currently
759  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
760  * can read from guest physical or from the guest's guest physical memory.
761  */
762 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
763                             gfn_t ngfn, void *data, int offset, int len,
764                             u32 access)
765 {
766         struct x86_exception exception;
767         gfn_t real_gfn;
768         gpa_t ngpa;
769
770         ngpa     = gfn_to_gpa(ngfn);
771         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
772         if (real_gfn == UNMAPPED_GVA)
773                 return -EFAULT;
774
775         real_gfn = gpa_to_gfn(real_gfn);
776
777         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
778 }
779 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
780
781 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
782                                void *data, int offset, int len, u32 access)
783 {
784         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
785                                        data, offset, len, access);
786 }
787
788 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
789 {
790         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
791 }
792
793 /*
794  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
795  */
796 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
797 {
798         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
799         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
800         int i;
801         int ret;
802         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
803
804         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
805                                       offset * sizeof(u64), sizeof(pdpte),
806                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
807         if (ret < 0) {
808                 ret = 0;
809                 goto out;
810         }
811         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
812                 if ((pdpte[i] & PT_PRESENT_MASK) &&
813                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
814                         ret = 0;
815                         goto out;
816                 }
817         }
818         ret = 1;
819
820         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
821         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
822
823 out:
824
825         return ret;
826 }
827 EXPORT_SYMBOL_GPL(load_pdptrs);
828
829 bool pdptrs_changed(struct kvm_vcpu *vcpu)
830 {
831         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
832         int offset;
833         gfn_t gfn;
834         int r;
835
836         if (!is_pae_paging(vcpu))
837                 return false;
838
839         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
840                 return true;
841
842         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
843         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
844         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
845                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
846         if (r < 0)
847                 return true;
848
849         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
850 }
851 EXPORT_SYMBOL_GPL(pdptrs_changed);
852
853 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
854 {
855         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
856
857         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
858                 kvm_clear_async_pf_completion_queue(vcpu);
859                 kvm_async_pf_hash_reset(vcpu);
860         }
861
862         if ((cr0 ^ old_cr0) & update_bits)
863                 kvm_mmu_reset_context(vcpu);
864
865         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
866             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
867             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
868                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
869 }
870 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
871
872 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
873 {
874         unsigned long old_cr0 = kvm_read_cr0(vcpu);
875         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
876
877         cr0 |= X86_CR0_ET;
878
879 #ifdef CONFIG_X86_64
880         if (cr0 & 0xffffffff00000000UL)
881                 return 1;
882 #endif
883
884         cr0 &= ~CR0_RESERVED_BITS;
885
886         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
887                 return 1;
888
889         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
890                 return 1;
891
892 #ifdef CONFIG_X86_64
893         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
894             (cr0 & X86_CR0_PG)) {
895                 int cs_db, cs_l;
896
897                 if (!is_pae(vcpu))
898                         return 1;
899                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
900                 if (cs_l)
901                         return 1;
902         }
903 #endif
904         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
905             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
906             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
907                 return 1;
908
909         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
910                 return 1;
911
912         static_call(kvm_x86_set_cr0)(vcpu, cr0);
913
914         kvm_post_set_cr0(vcpu, old_cr0, cr0);
915
916         return 0;
917 }
918 EXPORT_SYMBOL_GPL(kvm_set_cr0);
919
920 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
921 {
922         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
923 }
924 EXPORT_SYMBOL_GPL(kvm_lmsw);
925
926 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
927 {
928         if (vcpu->arch.guest_state_protected)
929                 return;
930
931         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
932
933                 if (vcpu->arch.xcr0 != host_xcr0)
934                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
935
936                 if (vcpu->arch.xsaves_enabled &&
937                     vcpu->arch.ia32_xss != host_xss)
938                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
939         }
940
941         if (static_cpu_has(X86_FEATURE_PKU) &&
942             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
943              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
944             vcpu->arch.pkru != vcpu->arch.host_pkru)
945                 __write_pkru(vcpu->arch.pkru);
946 }
947 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
948
949 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
950 {
951         if (vcpu->arch.guest_state_protected)
952                 return;
953
954         if (static_cpu_has(X86_FEATURE_PKU) &&
955             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
956              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
957                 vcpu->arch.pkru = rdpkru();
958                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
959                         __write_pkru(vcpu->arch.host_pkru);
960         }
961
962         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
963
964                 if (vcpu->arch.xcr0 != host_xcr0)
965                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
966
967                 if (vcpu->arch.xsaves_enabled &&
968                     vcpu->arch.ia32_xss != host_xss)
969                         wrmsrl(MSR_IA32_XSS, host_xss);
970         }
971
972 }
973 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
974
975 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
976 {
977         u64 xcr0 = xcr;
978         u64 old_xcr0 = vcpu->arch.xcr0;
979         u64 valid_bits;
980
981         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
982         if (index != XCR_XFEATURE_ENABLED_MASK)
983                 return 1;
984         if (!(xcr0 & XFEATURE_MASK_FP))
985                 return 1;
986         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
987                 return 1;
988
989         /*
990          * Do not allow the guest to set bits that we do not support
991          * saving.  However, xcr0 bit 0 is always set, even if the
992          * emulated CPU does not support XSAVE (see fx_init).
993          */
994         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
995         if (xcr0 & ~valid_bits)
996                 return 1;
997
998         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
999             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1000                 return 1;
1001
1002         if (xcr0 & XFEATURE_MASK_AVX512) {
1003                 if (!(xcr0 & XFEATURE_MASK_YMM))
1004                         return 1;
1005                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1006                         return 1;
1007         }
1008         vcpu->arch.xcr0 = xcr0;
1009
1010         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1011                 kvm_update_cpuid_runtime(vcpu);
1012         return 0;
1013 }
1014
1015 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1016 {
1017         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1018             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1019                 kvm_inject_gp(vcpu, 0);
1020                 return 1;
1021         }
1022
1023         return kvm_skip_emulated_instruction(vcpu);
1024 }
1025 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1026
1027 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1028 {
1029         if (cr4 & cr4_reserved_bits)
1030                 return false;
1031
1032         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1033                 return false;
1034
1035         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1036 }
1037 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1038
1039 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1040 {
1041         unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1042                                       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1043
1044         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1045             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1046                 kvm_mmu_reset_context(vcpu);
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1049
1050 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1051 {
1052         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1053         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1054                                    X86_CR4_SMEP;
1055
1056         if (!kvm_is_valid_cr4(vcpu, cr4))
1057                 return 1;
1058
1059         if (is_long_mode(vcpu)) {
1060                 if (!(cr4 & X86_CR4_PAE))
1061                         return 1;
1062                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1063                         return 1;
1064         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1065                    && ((cr4 ^ old_cr4) & pdptr_bits)
1066                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1067                                    kvm_read_cr3(vcpu)))
1068                 return 1;
1069
1070         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1071                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1072                         return 1;
1073
1074                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1075                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1076                         return 1;
1077         }
1078
1079         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1080
1081         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1082
1083         return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1086
1087 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1088 {
1089         bool skip_tlb_flush = false;
1090 #ifdef CONFIG_X86_64
1091         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1092
1093         if (pcid_enabled) {
1094                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1095                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1096         }
1097 #endif
1098
1099         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1100                 if (!skip_tlb_flush) {
1101                         kvm_mmu_sync_roots(vcpu);
1102                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1103                 }
1104                 return 0;
1105         }
1106
1107         /*
1108          * Do not condition the GPA check on long mode, this helper is used to
1109          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1110          * the current vCPU mode is accurate.
1111          */
1112         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1113                 return 1;
1114
1115         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1116                 return 1;
1117
1118         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1119         vcpu->arch.cr3 = cr3;
1120         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1121
1122         return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1125
1126 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1127 {
1128         if (cr8 & CR8_RESERVED_BITS)
1129                 return 1;
1130         if (lapic_in_kernel(vcpu))
1131                 kvm_lapic_set_tpr(vcpu, cr8);
1132         else
1133                 vcpu->arch.cr8 = cr8;
1134         return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1137
1138 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1139 {
1140         if (lapic_in_kernel(vcpu))
1141                 return kvm_lapic_get_cr8(vcpu);
1142         else
1143                 return vcpu->arch.cr8;
1144 }
1145 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1146
1147 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1148 {
1149         int i;
1150
1151         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1152                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1153                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1154                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1155         }
1156 }
1157
1158 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1159 {
1160         unsigned long dr7;
1161
1162         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1163                 dr7 = vcpu->arch.guest_debug_dr7;
1164         else
1165                 dr7 = vcpu->arch.dr7;
1166         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1167         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1168         if (dr7 & DR7_BP_EN_MASK)
1169                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1172
1173 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1174 {
1175         u64 fixed = DR6_FIXED_1;
1176
1177         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1178                 fixed |= DR6_RTM;
1179
1180         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1181                 fixed |= DR6_BUS_LOCK;
1182         return fixed;
1183 }
1184
1185 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1186 {
1187         size_t size = ARRAY_SIZE(vcpu->arch.db);
1188
1189         switch (dr) {
1190         case 0 ... 3:
1191                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1192                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1193                         vcpu->arch.eff_db[dr] = val;
1194                 break;
1195         case 4:
1196         case 6:
1197                 if (!kvm_dr6_valid(val))
1198                         return 1; /* #GP */
1199                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1200                 break;
1201         case 5:
1202         default: /* 7 */
1203                 if (!kvm_dr7_valid(val))
1204                         return 1; /* #GP */
1205                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1206                 kvm_update_dr7(vcpu);
1207                 break;
1208         }
1209
1210         return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_set_dr);
1213
1214 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1215 {
1216         size_t size = ARRAY_SIZE(vcpu->arch.db);
1217
1218         switch (dr) {
1219         case 0 ... 3:
1220                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1221                 break;
1222         case 4:
1223         case 6:
1224                 *val = vcpu->arch.dr6;
1225                 break;
1226         case 5:
1227         default: /* 7 */
1228                 *val = vcpu->arch.dr7;
1229                 break;
1230         }
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_get_dr);
1233
1234 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1235 {
1236         u32 ecx = kvm_rcx_read(vcpu);
1237         u64 data;
1238
1239         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1240                 kvm_inject_gp(vcpu, 0);
1241                 return 1;
1242         }
1243
1244         kvm_rax_write(vcpu, (u32)data);
1245         kvm_rdx_write(vcpu, data >> 32);
1246         return kvm_skip_emulated_instruction(vcpu);
1247 }
1248 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1249
1250 /*
1251  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1252  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1253  *
1254  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1255  * extract the supported MSRs from the related const lists.
1256  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1257  * capabilities of the host cpu. This capabilities test skips MSRs that are
1258  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1259  * may depend on host virtualization features rather than host cpu features.
1260  */
1261
1262 static const u32 msrs_to_save_all[] = {
1263         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1264         MSR_STAR,
1265 #ifdef CONFIG_X86_64
1266         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1267 #endif
1268         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1269         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1270         MSR_IA32_SPEC_CTRL,
1271         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1272         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1273         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1274         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1275         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1276         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1277         MSR_IA32_UMWAIT_CONTROL,
1278
1279         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1280         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1281         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1282         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1283         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1284         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1285         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1286         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1287         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1288         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1289         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1290         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1291         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1292         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1293         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1294         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1295         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1296         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1297         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1298         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1299         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1300         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1301 };
1302
1303 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1304 static unsigned num_msrs_to_save;
1305
1306 static const u32 emulated_msrs_all[] = {
1307         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1308         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1309         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1310         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1311         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1312         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1313         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1314         HV_X64_MSR_RESET,
1315         HV_X64_MSR_VP_INDEX,
1316         HV_X64_MSR_VP_RUNTIME,
1317         HV_X64_MSR_SCONTROL,
1318         HV_X64_MSR_STIMER0_CONFIG,
1319         HV_X64_MSR_VP_ASSIST_PAGE,
1320         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1321         HV_X64_MSR_TSC_EMULATION_STATUS,
1322         HV_X64_MSR_SYNDBG_OPTIONS,
1323         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1324         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1325         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1326
1327         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1328         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1329
1330         MSR_IA32_TSC_ADJUST,
1331         MSR_IA32_TSC_DEADLINE,
1332         MSR_IA32_ARCH_CAPABILITIES,
1333         MSR_IA32_PERF_CAPABILITIES,
1334         MSR_IA32_MISC_ENABLE,
1335         MSR_IA32_MCG_STATUS,
1336         MSR_IA32_MCG_CTL,
1337         MSR_IA32_MCG_EXT_CTL,
1338         MSR_IA32_SMBASE,
1339         MSR_SMI_COUNT,
1340         MSR_PLATFORM_INFO,
1341         MSR_MISC_FEATURES_ENABLES,
1342         MSR_AMD64_VIRT_SPEC_CTRL,
1343         MSR_IA32_POWER_CTL,
1344         MSR_IA32_UCODE_REV,
1345
1346         /*
1347          * The following list leaves out MSRs whose values are determined
1348          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1349          * We always support the "true" VMX control MSRs, even if the host
1350          * processor does not, so I am putting these registers here rather
1351          * than in msrs_to_save_all.
1352          */
1353         MSR_IA32_VMX_BASIC,
1354         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1355         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1356         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1357         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1358         MSR_IA32_VMX_MISC,
1359         MSR_IA32_VMX_CR0_FIXED0,
1360         MSR_IA32_VMX_CR4_FIXED0,
1361         MSR_IA32_VMX_VMCS_ENUM,
1362         MSR_IA32_VMX_PROCBASED_CTLS2,
1363         MSR_IA32_VMX_EPT_VPID_CAP,
1364         MSR_IA32_VMX_VMFUNC,
1365
1366         MSR_K7_HWCR,
1367         MSR_KVM_POLL_CONTROL,
1368 };
1369
1370 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1371 static unsigned num_emulated_msrs;
1372
1373 /*
1374  * List of msr numbers which are used to expose MSR-based features that
1375  * can be used by a hypervisor to validate requested CPU features.
1376  */
1377 static const u32 msr_based_features_all[] = {
1378         MSR_IA32_VMX_BASIC,
1379         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1380         MSR_IA32_VMX_PINBASED_CTLS,
1381         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1382         MSR_IA32_VMX_PROCBASED_CTLS,
1383         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1384         MSR_IA32_VMX_EXIT_CTLS,
1385         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1386         MSR_IA32_VMX_ENTRY_CTLS,
1387         MSR_IA32_VMX_MISC,
1388         MSR_IA32_VMX_CR0_FIXED0,
1389         MSR_IA32_VMX_CR0_FIXED1,
1390         MSR_IA32_VMX_CR4_FIXED0,
1391         MSR_IA32_VMX_CR4_FIXED1,
1392         MSR_IA32_VMX_VMCS_ENUM,
1393         MSR_IA32_VMX_PROCBASED_CTLS2,
1394         MSR_IA32_VMX_EPT_VPID_CAP,
1395         MSR_IA32_VMX_VMFUNC,
1396
1397         MSR_F10H_DECFG,
1398         MSR_IA32_UCODE_REV,
1399         MSR_IA32_ARCH_CAPABILITIES,
1400         MSR_IA32_PERF_CAPABILITIES,
1401 };
1402
1403 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1404 static unsigned int num_msr_based_features;
1405
1406 static u64 kvm_get_arch_capabilities(void)
1407 {
1408         u64 data = 0;
1409
1410         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1411                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1412
1413         /*
1414          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1415          * the nested hypervisor runs with NX huge pages.  If it is not,
1416          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1417          * L1 guests, so it need not worry about its own (L2) guests.
1418          */
1419         data |= ARCH_CAP_PSCHANGE_MC_NO;
1420
1421         /*
1422          * If we're doing cache flushes (either "always" or "cond")
1423          * we will do one whenever the guest does a vmlaunch/vmresume.
1424          * If an outer hypervisor is doing the cache flush for us
1425          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1426          * capability to the guest too, and if EPT is disabled we're not
1427          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1428          * require a nested hypervisor to do a flush of its own.
1429          */
1430         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1431                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1432
1433         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1434                 data |= ARCH_CAP_RDCL_NO;
1435         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1436                 data |= ARCH_CAP_SSB_NO;
1437         if (!boot_cpu_has_bug(X86_BUG_MDS))
1438                 data |= ARCH_CAP_MDS_NO;
1439
1440         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1441                 /*
1442                  * If RTM=0 because the kernel has disabled TSX, the host might
1443                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1444                  * and therefore knows that there cannot be TAA) but keep
1445                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1446                  * and we want to allow migrating those guests to tsx=off hosts.
1447                  */
1448                 data &= ~ARCH_CAP_TAA_NO;
1449         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1450                 data |= ARCH_CAP_TAA_NO;
1451         } else {
1452                 /*
1453                  * Nothing to do here; we emulate TSX_CTRL if present on the
1454                  * host so the guest can choose between disabling TSX or
1455                  * using VERW to clear CPU buffers.
1456                  */
1457         }
1458
1459         return data;
1460 }
1461
1462 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1463 {
1464         switch (msr->index) {
1465         case MSR_IA32_ARCH_CAPABILITIES:
1466                 msr->data = kvm_get_arch_capabilities();
1467                 break;
1468         case MSR_IA32_UCODE_REV:
1469                 rdmsrl_safe(msr->index, &msr->data);
1470                 break;
1471         default:
1472                 return static_call(kvm_x86_get_msr_feature)(msr);
1473         }
1474         return 0;
1475 }
1476
1477 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1478 {
1479         struct kvm_msr_entry msr;
1480         int r;
1481
1482         msr.index = index;
1483         r = kvm_get_msr_feature(&msr);
1484
1485         if (r == KVM_MSR_RET_INVALID) {
1486                 /* Unconditionally clear the output for simplicity */
1487                 *data = 0;
1488                 if (kvm_msr_ignored_check(index, 0, false))
1489                         r = 0;
1490         }
1491
1492         if (r)
1493                 return r;
1494
1495         *data = msr.data;
1496
1497         return 0;
1498 }
1499
1500 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1501 {
1502         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1503                 return false;
1504
1505         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1506                 return false;
1507
1508         if (efer & (EFER_LME | EFER_LMA) &&
1509             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1510                 return false;
1511
1512         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1513                 return false;
1514
1515         return true;
1516
1517 }
1518 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1519 {
1520         if (efer & efer_reserved_bits)
1521                 return false;
1522
1523         return __kvm_valid_efer(vcpu, efer);
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1526
1527 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1528 {
1529         u64 old_efer = vcpu->arch.efer;
1530         u64 efer = msr_info->data;
1531         int r;
1532
1533         if (efer & efer_reserved_bits)
1534                 return 1;
1535
1536         if (!msr_info->host_initiated) {
1537                 if (!__kvm_valid_efer(vcpu, efer))
1538                         return 1;
1539
1540                 if (is_paging(vcpu) &&
1541                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1542                         return 1;
1543         }
1544
1545         efer &= ~EFER_LMA;
1546         efer |= vcpu->arch.efer & EFER_LMA;
1547
1548         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1549         if (r) {
1550                 WARN_ON(r > 0);
1551                 return r;
1552         }
1553
1554         /* Update reserved bits */
1555         if ((efer ^ old_efer) & EFER_NX)
1556                 kvm_mmu_reset_context(vcpu);
1557
1558         return 0;
1559 }
1560
1561 void kvm_enable_efer_bits(u64 mask)
1562 {
1563        efer_reserved_bits &= ~mask;
1564 }
1565 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1566
1567 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1568 {
1569         struct kvm_x86_msr_filter *msr_filter;
1570         struct msr_bitmap_range *ranges;
1571         struct kvm *kvm = vcpu->kvm;
1572         bool allowed;
1573         int idx;
1574         u32 i;
1575
1576         /* x2APIC MSRs do not support filtering. */
1577         if (index >= 0x800 && index <= 0x8ff)
1578                 return true;
1579
1580         idx = srcu_read_lock(&kvm->srcu);
1581
1582         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1583         if (!msr_filter) {
1584                 allowed = true;
1585                 goto out;
1586         }
1587
1588         allowed = msr_filter->default_allow;
1589         ranges = msr_filter->ranges;
1590
1591         for (i = 0; i < msr_filter->count; i++) {
1592                 u32 start = ranges[i].base;
1593                 u32 end = start + ranges[i].nmsrs;
1594                 u32 flags = ranges[i].flags;
1595                 unsigned long *bitmap = ranges[i].bitmap;
1596
1597                 if ((index >= start) && (index < end) && (flags & type)) {
1598                         allowed = !!test_bit(index - start, bitmap);
1599                         break;
1600                 }
1601         }
1602
1603 out:
1604         srcu_read_unlock(&kvm->srcu, idx);
1605
1606         return allowed;
1607 }
1608 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1609
1610 /*
1611  * Write @data into the MSR specified by @index.  Select MSR specific fault
1612  * checks are bypassed if @host_initiated is %true.
1613  * Returns 0 on success, non-0 otherwise.
1614  * Assumes vcpu_load() was already called.
1615  */
1616 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1617                          bool host_initiated)
1618 {
1619         struct msr_data msr;
1620
1621         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1622                 return KVM_MSR_RET_FILTERED;
1623
1624         switch (index) {
1625         case MSR_FS_BASE:
1626         case MSR_GS_BASE:
1627         case MSR_KERNEL_GS_BASE:
1628         case MSR_CSTAR:
1629         case MSR_LSTAR:
1630                 if (is_noncanonical_address(data, vcpu))
1631                         return 1;
1632                 break;
1633         case MSR_IA32_SYSENTER_EIP:
1634         case MSR_IA32_SYSENTER_ESP:
1635                 /*
1636                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1637                  * non-canonical address is written on Intel but not on
1638                  * AMD (which ignores the top 32-bits, because it does
1639                  * not implement 64-bit SYSENTER).
1640                  *
1641                  * 64-bit code should hence be able to write a non-canonical
1642                  * value on AMD.  Making the address canonical ensures that
1643                  * vmentry does not fail on Intel after writing a non-canonical
1644                  * value, and that something deterministic happens if the guest
1645                  * invokes 64-bit SYSENTER.
1646                  */
1647                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1648                 break;
1649         case MSR_TSC_AUX:
1650                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1651                         return 1;
1652
1653                 if (!host_initiated &&
1654                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1655                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1656                         return 1;
1657
1658                 /*
1659                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1660                  * incomplete and conflicting architectural behavior.  Current
1661                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1662                  * reserved and always read as zeros.  Enforce Intel's reserved
1663                  * bits check if and only if the guest CPU is Intel, and clear
1664                  * the bits in all other cases.  This ensures cross-vendor
1665                  * migration will provide consistent behavior for the guest.
1666                  */
1667                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1668                         return 1;
1669
1670                 data = (u32)data;
1671                 break;
1672         }
1673
1674         msr.data = data;
1675         msr.index = index;
1676         msr.host_initiated = host_initiated;
1677
1678         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1679 }
1680
1681 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1682                                      u32 index, u64 data, bool host_initiated)
1683 {
1684         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1685
1686         if (ret == KVM_MSR_RET_INVALID)
1687                 if (kvm_msr_ignored_check(index, data, true))
1688                         ret = 0;
1689
1690         return ret;
1691 }
1692
1693 /*
1694  * Read the MSR specified by @index into @data.  Select MSR specific fault
1695  * checks are bypassed if @host_initiated is %true.
1696  * Returns 0 on success, non-0 otherwise.
1697  * Assumes vcpu_load() was already called.
1698  */
1699 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1700                   bool host_initiated)
1701 {
1702         struct msr_data msr;
1703         int ret;
1704
1705         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1706                 return KVM_MSR_RET_FILTERED;
1707
1708         switch (index) {
1709         case MSR_TSC_AUX:
1710                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1711                         return 1;
1712
1713                 if (!host_initiated &&
1714                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1715                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1716                         return 1;
1717                 break;
1718         }
1719
1720         msr.index = index;
1721         msr.host_initiated = host_initiated;
1722
1723         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1724         if (!ret)
1725                 *data = msr.data;
1726         return ret;
1727 }
1728
1729 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1730                                      u32 index, u64 *data, bool host_initiated)
1731 {
1732         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1733
1734         if (ret == KVM_MSR_RET_INVALID) {
1735                 /* Unconditionally clear *data for simplicity */
1736                 *data = 0;
1737                 if (kvm_msr_ignored_check(index, 0, false))
1738                         ret = 0;
1739         }
1740
1741         return ret;
1742 }
1743
1744 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1745 {
1746         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_get_msr);
1749
1750 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1751 {
1752         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1753 }
1754 EXPORT_SYMBOL_GPL(kvm_set_msr);
1755
1756 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1757 {
1758         int err = vcpu->run->msr.error;
1759         if (!err) {
1760                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1761                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1762         }
1763
1764         return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1765 }
1766
1767 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1768 {
1769         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1770 }
1771
1772 static u64 kvm_msr_reason(int r)
1773 {
1774         switch (r) {
1775         case KVM_MSR_RET_INVALID:
1776                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1777         case KVM_MSR_RET_FILTERED:
1778                 return KVM_MSR_EXIT_REASON_FILTER;
1779         default:
1780                 return KVM_MSR_EXIT_REASON_INVAL;
1781         }
1782 }
1783
1784 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1785                               u32 exit_reason, u64 data,
1786                               int (*completion)(struct kvm_vcpu *vcpu),
1787                               int r)
1788 {
1789         u64 msr_reason = kvm_msr_reason(r);
1790
1791         /* Check if the user wanted to know about this MSR fault */
1792         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1793                 return 0;
1794
1795         vcpu->run->exit_reason = exit_reason;
1796         vcpu->run->msr.error = 0;
1797         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1798         vcpu->run->msr.reason = msr_reason;
1799         vcpu->run->msr.index = index;
1800         vcpu->run->msr.data = data;
1801         vcpu->arch.complete_userspace_io = completion;
1802
1803         return 1;
1804 }
1805
1806 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1807 {
1808         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1809                                    complete_emulated_rdmsr, r);
1810 }
1811
1812 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1813 {
1814         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1815                                    complete_emulated_wrmsr, r);
1816 }
1817
1818 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1819 {
1820         u32 ecx = kvm_rcx_read(vcpu);
1821         u64 data;
1822         int r;
1823
1824         r = kvm_get_msr(vcpu, ecx, &data);
1825
1826         /* MSR read failed? See if we should ask user space */
1827         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1828                 /* Bounce to user space */
1829                 return 0;
1830         }
1831
1832         if (!r) {
1833                 trace_kvm_msr_read(ecx, data);
1834
1835                 kvm_rax_write(vcpu, data & -1u);
1836                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1837         } else {
1838                 trace_kvm_msr_read_ex(ecx);
1839         }
1840
1841         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1842 }
1843 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1844
1845 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1846 {
1847         u32 ecx = kvm_rcx_read(vcpu);
1848         u64 data = kvm_read_edx_eax(vcpu);
1849         int r;
1850
1851         r = kvm_set_msr(vcpu, ecx, data);
1852
1853         /* MSR write failed? See if we should ask user space */
1854         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1855                 /* Bounce to user space */
1856                 return 0;
1857
1858         /* Signal all other negative errors to userspace */
1859         if (r < 0)
1860                 return r;
1861
1862         if (!r)
1863                 trace_kvm_msr_write(ecx, data);
1864         else
1865                 trace_kvm_msr_write_ex(ecx, data);
1866
1867         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1870
1871 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1872 {
1873         return kvm_skip_emulated_instruction(vcpu);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1876
1877 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1878 {
1879         /* Treat an INVD instruction as a NOP and just skip it. */
1880         return kvm_emulate_as_nop(vcpu);
1881 }
1882 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1883
1884 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1885 {
1886         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1887         return kvm_emulate_as_nop(vcpu);
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1890
1891 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1892 {
1893         kvm_queue_exception(vcpu, UD_VECTOR);
1894         return 1;
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1897
1898 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1899 {
1900         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1901         return kvm_emulate_as_nop(vcpu);
1902 }
1903 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1904
1905 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1906 {
1907         xfer_to_guest_mode_prepare();
1908         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1909                 xfer_to_guest_mode_work_pending();
1910 }
1911
1912 /*
1913  * The fast path for frequent and performance sensitive wrmsr emulation,
1914  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1915  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1916  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1917  * other cases which must be called after interrupts are enabled on the host.
1918  */
1919 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1920 {
1921         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1922                 return 1;
1923
1924         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1925                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1926                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1927                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1928
1929                 data &= ~(1 << 12);
1930                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1931                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1932                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1933                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1934                 return 0;
1935         }
1936
1937         return 1;
1938 }
1939
1940 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1941 {
1942         if (!kvm_can_use_hv_timer(vcpu))
1943                 return 1;
1944
1945         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1946         return 0;
1947 }
1948
1949 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1950 {
1951         u32 msr = kvm_rcx_read(vcpu);
1952         u64 data;
1953         fastpath_t ret = EXIT_FASTPATH_NONE;
1954
1955         switch (msr) {
1956         case APIC_BASE_MSR + (APIC_ICR >> 4):
1957                 data = kvm_read_edx_eax(vcpu);
1958                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1959                         kvm_skip_emulated_instruction(vcpu);
1960                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1961                 }
1962                 break;
1963         case MSR_IA32_TSC_DEADLINE:
1964                 data = kvm_read_edx_eax(vcpu);
1965                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1966                         kvm_skip_emulated_instruction(vcpu);
1967                         ret = EXIT_FASTPATH_REENTER_GUEST;
1968                 }
1969                 break;
1970         default:
1971                 break;
1972         }
1973
1974         if (ret != EXIT_FASTPATH_NONE)
1975                 trace_kvm_msr_write(msr, data);
1976
1977         return ret;
1978 }
1979 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1980
1981 /*
1982  * Adapt set_msr() to msr_io()'s calling convention
1983  */
1984 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1985 {
1986         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1987 }
1988
1989 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1990 {
1991         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1992 }
1993
1994 #ifdef CONFIG_X86_64
1995 struct pvclock_clock {
1996         int vclock_mode;
1997         u64 cycle_last;
1998         u64 mask;
1999         u32 mult;
2000         u32 shift;
2001         u64 base_cycles;
2002         u64 offset;
2003 };
2004
2005 struct pvclock_gtod_data {
2006         seqcount_t      seq;
2007
2008         struct pvclock_clock clock; /* extract of a clocksource struct */
2009         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2010
2011         ktime_t         offs_boot;
2012         u64             wall_time_sec;
2013 };
2014
2015 static struct pvclock_gtod_data pvclock_gtod_data;
2016
2017 static void update_pvclock_gtod(struct timekeeper *tk)
2018 {
2019         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2020
2021         write_seqcount_begin(&vdata->seq);
2022
2023         /* copy pvclock gtod data */
2024         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2025         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2026         vdata->clock.mask               = tk->tkr_mono.mask;
2027         vdata->clock.mult               = tk->tkr_mono.mult;
2028         vdata->clock.shift              = tk->tkr_mono.shift;
2029         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2030         vdata->clock.offset             = tk->tkr_mono.base;
2031
2032         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2033         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2034         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2035         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2036         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2037         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2038         vdata->raw_clock.offset         = tk->tkr_raw.base;
2039
2040         vdata->wall_time_sec            = tk->xtime_sec;
2041
2042         vdata->offs_boot                = tk->offs_boot;
2043
2044         write_seqcount_end(&vdata->seq);
2045 }
2046
2047 static s64 get_kvmclock_base_ns(void)
2048 {
2049         /* Count up from boot time, but with the frequency of the raw clock.  */
2050         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2051 }
2052 #else
2053 static s64 get_kvmclock_base_ns(void)
2054 {
2055         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2056         return ktime_get_boottime_ns();
2057 }
2058 #endif
2059
2060 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2061 {
2062         int version;
2063         int r;
2064         struct pvclock_wall_clock wc;
2065         u32 wc_sec_hi;
2066         u64 wall_nsec;
2067
2068         if (!wall_clock)
2069                 return;
2070
2071         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2072         if (r)
2073                 return;
2074
2075         if (version & 1)
2076                 ++version;  /* first time write, random junk */
2077
2078         ++version;
2079
2080         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2081                 return;
2082
2083         /*
2084          * The guest calculates current wall clock time by adding
2085          * system time (updated by kvm_guest_time_update below) to the
2086          * wall clock specified here.  We do the reverse here.
2087          */
2088         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2089
2090         wc.nsec = do_div(wall_nsec, 1000000000);
2091         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2092         wc.version = version;
2093
2094         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2095
2096         if (sec_hi_ofs) {
2097                 wc_sec_hi = wall_nsec >> 32;
2098                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2099                                 &wc_sec_hi, sizeof(wc_sec_hi));
2100         }
2101
2102         version++;
2103         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2104 }
2105
2106 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2107                                   bool old_msr, bool host_initiated)
2108 {
2109         struct kvm_arch *ka = &vcpu->kvm->arch;
2110
2111         if (vcpu->vcpu_id == 0 && !host_initiated) {
2112                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2113                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2114
2115                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2116         }
2117
2118         vcpu->arch.time = system_time;
2119         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2120
2121         /* we verify if the enable bit is set... */
2122         vcpu->arch.pv_time_enabled = false;
2123         if (!(system_time & 1))
2124                 return;
2125
2126         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2127                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2128                                        sizeof(struct pvclock_vcpu_time_info)))
2129                 vcpu->arch.pv_time_enabled = true;
2130
2131         return;
2132 }
2133
2134 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2135 {
2136         do_shl32_div32(dividend, divisor);
2137         return dividend;
2138 }
2139
2140 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2141                                s8 *pshift, u32 *pmultiplier)
2142 {
2143         uint64_t scaled64;
2144         int32_t  shift = 0;
2145         uint64_t tps64;
2146         uint32_t tps32;
2147
2148         tps64 = base_hz;
2149         scaled64 = scaled_hz;
2150         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2151                 tps64 >>= 1;
2152                 shift--;
2153         }
2154
2155         tps32 = (uint32_t)tps64;
2156         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2157                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2158                         scaled64 >>= 1;
2159                 else
2160                         tps32 <<= 1;
2161                 shift++;
2162         }
2163
2164         *pshift = shift;
2165         *pmultiplier = div_frac(scaled64, tps32);
2166 }
2167
2168 #ifdef CONFIG_X86_64
2169 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2170 #endif
2171
2172 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2173 static unsigned long max_tsc_khz;
2174
2175 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2176 {
2177         u64 v = (u64)khz * (1000000 + ppm);
2178         do_div(v, 1000000);
2179         return v;
2180 }
2181
2182 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2183 {
2184         u64 ratio;
2185
2186         /* Guest TSC same frequency as host TSC? */
2187         if (!scale) {
2188                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2189                 return 0;
2190         }
2191
2192         /* TSC scaling supported? */
2193         if (!kvm_has_tsc_control) {
2194                 if (user_tsc_khz > tsc_khz) {
2195                         vcpu->arch.tsc_catchup = 1;
2196                         vcpu->arch.tsc_always_catchup = 1;
2197                         return 0;
2198                 } else {
2199                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2200                         return -1;
2201                 }
2202         }
2203
2204         /* TSC scaling required  - calculate ratio */
2205         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2206                                 user_tsc_khz, tsc_khz);
2207
2208         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2209                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2210                                     user_tsc_khz);
2211                 return -1;
2212         }
2213
2214         vcpu->arch.tsc_scaling_ratio = ratio;
2215         return 0;
2216 }
2217
2218 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2219 {
2220         u32 thresh_lo, thresh_hi;
2221         int use_scaling = 0;
2222
2223         /* tsc_khz can be zero if TSC calibration fails */
2224         if (user_tsc_khz == 0) {
2225                 /* set tsc_scaling_ratio to a safe value */
2226                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2227                 return -1;
2228         }
2229
2230         /* Compute a scale to convert nanoseconds in TSC cycles */
2231         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2232                            &vcpu->arch.virtual_tsc_shift,
2233                            &vcpu->arch.virtual_tsc_mult);
2234         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2235
2236         /*
2237          * Compute the variation in TSC rate which is acceptable
2238          * within the range of tolerance and decide if the
2239          * rate being applied is within that bounds of the hardware
2240          * rate.  If so, no scaling or compensation need be done.
2241          */
2242         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2243         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2244         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2245                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2246                 use_scaling = 1;
2247         }
2248         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2249 }
2250
2251 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2252 {
2253         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2254                                       vcpu->arch.virtual_tsc_mult,
2255                                       vcpu->arch.virtual_tsc_shift);
2256         tsc += vcpu->arch.this_tsc_write;
2257         return tsc;
2258 }
2259
2260 static inline int gtod_is_based_on_tsc(int mode)
2261 {
2262         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2263 }
2264
2265 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2266 {
2267 #ifdef CONFIG_X86_64
2268         bool vcpus_matched;
2269         struct kvm_arch *ka = &vcpu->kvm->arch;
2270         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2271
2272         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2273                          atomic_read(&vcpu->kvm->online_vcpus));
2274
2275         /*
2276          * Once the masterclock is enabled, always perform request in
2277          * order to update it.
2278          *
2279          * In order to enable masterclock, the host clocksource must be TSC
2280          * and the vcpus need to have matched TSCs.  When that happens,
2281          * perform request to enable masterclock.
2282          */
2283         if (ka->use_master_clock ||
2284             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2285                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2286
2287         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2288                             atomic_read(&vcpu->kvm->online_vcpus),
2289                             ka->use_master_clock, gtod->clock.vclock_mode);
2290 #endif
2291 }
2292
2293 /*
2294  * Multiply tsc by a fixed point number represented by ratio.
2295  *
2296  * The most significant 64-N bits (mult) of ratio represent the
2297  * integral part of the fixed point number; the remaining N bits
2298  * (frac) represent the fractional part, ie. ratio represents a fixed
2299  * point number (mult + frac * 2^(-N)).
2300  *
2301  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2302  */
2303 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2304 {
2305         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2306 }
2307
2308 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2309 {
2310         u64 _tsc = tsc;
2311         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2312
2313         if (ratio != kvm_default_tsc_scaling_ratio)
2314                 _tsc = __scale_tsc(ratio, tsc);
2315
2316         return _tsc;
2317 }
2318 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2319
2320 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2321 {
2322         u64 tsc;
2323
2324         tsc = kvm_scale_tsc(vcpu, rdtsc());
2325
2326         return target_tsc - tsc;
2327 }
2328
2329 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2330 {
2331         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2332 }
2333 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2334
2335 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2336 {
2337         vcpu->arch.l1_tsc_offset = offset;
2338         vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2339 }
2340
2341 static inline bool kvm_check_tsc_unstable(void)
2342 {
2343 #ifdef CONFIG_X86_64
2344         /*
2345          * TSC is marked unstable when we're running on Hyper-V,
2346          * 'TSC page' clocksource is good.
2347          */
2348         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2349                 return false;
2350 #endif
2351         return check_tsc_unstable();
2352 }
2353
2354 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2355 {
2356         struct kvm *kvm = vcpu->kvm;
2357         u64 offset, ns, elapsed;
2358         unsigned long flags;
2359         bool matched;
2360         bool already_matched;
2361         bool synchronizing = false;
2362
2363         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2364         offset = kvm_compute_tsc_offset(vcpu, data);
2365         ns = get_kvmclock_base_ns();
2366         elapsed = ns - kvm->arch.last_tsc_nsec;
2367
2368         if (vcpu->arch.virtual_tsc_khz) {
2369                 if (data == 0) {
2370                         /*
2371                          * detection of vcpu initialization -- need to sync
2372                          * with other vCPUs. This particularly helps to keep
2373                          * kvm_clock stable after CPU hotplug
2374                          */
2375                         synchronizing = true;
2376                 } else {
2377                         u64 tsc_exp = kvm->arch.last_tsc_write +
2378                                                 nsec_to_cycles(vcpu, elapsed);
2379                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2380                         /*
2381                          * Special case: TSC write with a small delta (1 second)
2382                          * of virtual cycle time against real time is
2383                          * interpreted as an attempt to synchronize the CPU.
2384                          */
2385                         synchronizing = data < tsc_exp + tsc_hz &&
2386                                         data + tsc_hz > tsc_exp;
2387                 }
2388         }
2389
2390         /*
2391          * For a reliable TSC, we can match TSC offsets, and for an unstable
2392          * TSC, we add elapsed time in this computation.  We could let the
2393          * compensation code attempt to catch up if we fall behind, but
2394          * it's better to try to match offsets from the beginning.
2395          */
2396         if (synchronizing &&
2397             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2398                 if (!kvm_check_tsc_unstable()) {
2399                         offset = kvm->arch.cur_tsc_offset;
2400                 } else {
2401                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2402                         data += delta;
2403                         offset = kvm_compute_tsc_offset(vcpu, data);
2404                 }
2405                 matched = true;
2406                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2407         } else {
2408                 /*
2409                  * We split periods of matched TSC writes into generations.
2410                  * For each generation, we track the original measured
2411                  * nanosecond time, offset, and write, so if TSCs are in
2412                  * sync, we can match exact offset, and if not, we can match
2413                  * exact software computation in compute_guest_tsc()
2414                  *
2415                  * These values are tracked in kvm->arch.cur_xxx variables.
2416                  */
2417                 kvm->arch.cur_tsc_generation++;
2418                 kvm->arch.cur_tsc_nsec = ns;
2419                 kvm->arch.cur_tsc_write = data;
2420                 kvm->arch.cur_tsc_offset = offset;
2421                 matched = false;
2422         }
2423
2424         /*
2425          * We also track th most recent recorded KHZ, write and time to
2426          * allow the matching interval to be extended at each write.
2427          */
2428         kvm->arch.last_tsc_nsec = ns;
2429         kvm->arch.last_tsc_write = data;
2430         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2431
2432         vcpu->arch.last_guest_tsc = data;
2433
2434         /* Keep track of which generation this VCPU has synchronized to */
2435         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2436         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2437         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2438
2439         kvm_vcpu_write_tsc_offset(vcpu, offset);
2440         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2441
2442         spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2443         if (!matched) {
2444                 kvm->arch.nr_vcpus_matched_tsc = 0;
2445         } else if (!already_matched) {
2446                 kvm->arch.nr_vcpus_matched_tsc++;
2447         }
2448
2449         kvm_track_tsc_matching(vcpu);
2450         spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2451 }
2452
2453 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2454                                            s64 adjustment)
2455 {
2456         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2457         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2458 }
2459
2460 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2461 {
2462         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2463                 WARN_ON(adjustment < 0);
2464         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2465         adjust_tsc_offset_guest(vcpu, adjustment);
2466 }
2467
2468 #ifdef CONFIG_X86_64
2469
2470 static u64 read_tsc(void)
2471 {
2472         u64 ret = (u64)rdtsc_ordered();
2473         u64 last = pvclock_gtod_data.clock.cycle_last;
2474
2475         if (likely(ret >= last))
2476                 return ret;
2477
2478         /*
2479          * GCC likes to generate cmov here, but this branch is extremely
2480          * predictable (it's just a function of time and the likely is
2481          * very likely) and there's a data dependence, so force GCC
2482          * to generate a branch instead.  I don't barrier() because
2483          * we don't actually need a barrier, and if this function
2484          * ever gets inlined it will generate worse code.
2485          */
2486         asm volatile ("");
2487         return last;
2488 }
2489
2490 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2491                           int *mode)
2492 {
2493         long v;
2494         u64 tsc_pg_val;
2495
2496         switch (clock->vclock_mode) {
2497         case VDSO_CLOCKMODE_HVCLOCK:
2498                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2499                                                   tsc_timestamp);
2500                 if (tsc_pg_val != U64_MAX) {
2501                         /* TSC page valid */
2502                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2503                         v = (tsc_pg_val - clock->cycle_last) &
2504                                 clock->mask;
2505                 } else {
2506                         /* TSC page invalid */
2507                         *mode = VDSO_CLOCKMODE_NONE;
2508                 }
2509                 break;
2510         case VDSO_CLOCKMODE_TSC:
2511                 *mode = VDSO_CLOCKMODE_TSC;
2512                 *tsc_timestamp = read_tsc();
2513                 v = (*tsc_timestamp - clock->cycle_last) &
2514                         clock->mask;
2515                 break;
2516         default:
2517                 *mode = VDSO_CLOCKMODE_NONE;
2518         }
2519
2520         if (*mode == VDSO_CLOCKMODE_NONE)
2521                 *tsc_timestamp = v = 0;
2522
2523         return v * clock->mult;
2524 }
2525
2526 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2527 {
2528         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2529         unsigned long seq;
2530         int mode;
2531         u64 ns;
2532
2533         do {
2534                 seq = read_seqcount_begin(&gtod->seq);
2535                 ns = gtod->raw_clock.base_cycles;
2536                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2537                 ns >>= gtod->raw_clock.shift;
2538                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2539         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2540         *t = ns;
2541
2542         return mode;
2543 }
2544
2545 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2546 {
2547         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2548         unsigned long seq;
2549         int mode;
2550         u64 ns;
2551
2552         do {
2553                 seq = read_seqcount_begin(&gtod->seq);
2554                 ts->tv_sec = gtod->wall_time_sec;
2555                 ns = gtod->clock.base_cycles;
2556                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2557                 ns >>= gtod->clock.shift;
2558         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2559
2560         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2561         ts->tv_nsec = ns;
2562
2563         return mode;
2564 }
2565
2566 /* returns true if host is using TSC based clocksource */
2567 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2568 {
2569         /* checked again under seqlock below */
2570         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2571                 return false;
2572
2573         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2574                                                       tsc_timestamp));
2575 }
2576
2577 /* returns true if host is using TSC based clocksource */
2578 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2579                                            u64 *tsc_timestamp)
2580 {
2581         /* checked again under seqlock below */
2582         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2583                 return false;
2584
2585         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2586 }
2587 #endif
2588
2589 /*
2590  *
2591  * Assuming a stable TSC across physical CPUS, and a stable TSC
2592  * across virtual CPUs, the following condition is possible.
2593  * Each numbered line represents an event visible to both
2594  * CPUs at the next numbered event.
2595  *
2596  * "timespecX" represents host monotonic time. "tscX" represents
2597  * RDTSC value.
2598  *
2599  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2600  *
2601  * 1.  read timespec0,tsc0
2602  * 2.                                   | timespec1 = timespec0 + N
2603  *                                      | tsc1 = tsc0 + M
2604  * 3. transition to guest               | transition to guest
2605  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2606  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2607  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2608  *
2609  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2610  *
2611  *      - ret0 < ret1
2612  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2613  *              ...
2614  *      - 0 < N - M => M < N
2615  *
2616  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2617  * always the case (the difference between two distinct xtime instances
2618  * might be smaller then the difference between corresponding TSC reads,
2619  * when updating guest vcpus pvclock areas).
2620  *
2621  * To avoid that problem, do not allow visibility of distinct
2622  * system_timestamp/tsc_timestamp values simultaneously: use a master
2623  * copy of host monotonic time values. Update that master copy
2624  * in lockstep.
2625  *
2626  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2627  *
2628  */
2629
2630 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2631 {
2632 #ifdef CONFIG_X86_64
2633         struct kvm_arch *ka = &kvm->arch;
2634         int vclock_mode;
2635         bool host_tsc_clocksource, vcpus_matched;
2636
2637         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2638                         atomic_read(&kvm->online_vcpus));
2639
2640         /*
2641          * If the host uses TSC clock, then passthrough TSC as stable
2642          * to the guest.
2643          */
2644         host_tsc_clocksource = kvm_get_time_and_clockread(
2645                                         &ka->master_kernel_ns,
2646                                         &ka->master_cycle_now);
2647
2648         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2649                                 && !ka->backwards_tsc_observed
2650                                 && !ka->boot_vcpu_runs_old_kvmclock;
2651
2652         if (ka->use_master_clock)
2653                 atomic_set(&kvm_guest_has_master_clock, 1);
2654
2655         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2656         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2657                                         vcpus_matched);
2658 #endif
2659 }
2660
2661 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2662 {
2663         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2664 }
2665
2666 static void kvm_gen_update_masterclock(struct kvm *kvm)
2667 {
2668 #ifdef CONFIG_X86_64
2669         int i;
2670         struct kvm_vcpu *vcpu;
2671         struct kvm_arch *ka = &kvm->arch;
2672         unsigned long flags;
2673
2674         kvm_hv_invalidate_tsc_page(kvm);
2675
2676         kvm_make_mclock_inprogress_request(kvm);
2677
2678         /* no guest entries from this point */
2679         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2680         pvclock_update_vm_gtod_copy(kvm);
2681         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2682
2683         kvm_for_each_vcpu(i, vcpu, kvm)
2684                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2685
2686         /* guest entries allowed */
2687         kvm_for_each_vcpu(i, vcpu, kvm)
2688                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2689 #endif
2690 }
2691
2692 u64 get_kvmclock_ns(struct kvm *kvm)
2693 {
2694         struct kvm_arch *ka = &kvm->arch;
2695         struct pvclock_vcpu_time_info hv_clock;
2696         unsigned long flags;
2697         u64 ret;
2698
2699         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2700         if (!ka->use_master_clock) {
2701                 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2702                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2703         }
2704
2705         hv_clock.tsc_timestamp = ka->master_cycle_now;
2706         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2707         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2708
2709         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2710         get_cpu();
2711
2712         if (__this_cpu_read(cpu_tsc_khz)) {
2713                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2714                                    &hv_clock.tsc_shift,
2715                                    &hv_clock.tsc_to_system_mul);
2716                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2717         } else
2718                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2719
2720         put_cpu();
2721
2722         return ret;
2723 }
2724
2725 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2726                                    struct gfn_to_hva_cache *cache,
2727                                    unsigned int offset)
2728 {
2729         struct kvm_vcpu_arch *vcpu = &v->arch;
2730         struct pvclock_vcpu_time_info guest_hv_clock;
2731
2732         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2733                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2734                 return;
2735
2736         /* This VCPU is paused, but it's legal for a guest to read another
2737          * VCPU's kvmclock, so we really have to follow the specification where
2738          * it says that version is odd if data is being modified, and even after
2739          * it is consistent.
2740          *
2741          * Version field updates must be kept separate.  This is because
2742          * kvm_write_guest_cached might use a "rep movs" instruction, and
2743          * writes within a string instruction are weakly ordered.  So there
2744          * are three writes overall.
2745          *
2746          * As a small optimization, only write the version field in the first
2747          * and third write.  The vcpu->pv_time cache is still valid, because the
2748          * version field is the first in the struct.
2749          */
2750         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2751
2752         if (guest_hv_clock.version & 1)
2753                 ++guest_hv_clock.version;  /* first time write, random junk */
2754
2755         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2756         kvm_write_guest_offset_cached(v->kvm, cache,
2757                                       &vcpu->hv_clock, offset,
2758                                       sizeof(vcpu->hv_clock.version));
2759
2760         smp_wmb();
2761
2762         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2763         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2764
2765         if (vcpu->pvclock_set_guest_stopped_request) {
2766                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2767                 vcpu->pvclock_set_guest_stopped_request = false;
2768         }
2769
2770         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2771
2772         kvm_write_guest_offset_cached(v->kvm, cache,
2773                                       &vcpu->hv_clock, offset,
2774                                       sizeof(vcpu->hv_clock));
2775
2776         smp_wmb();
2777
2778         vcpu->hv_clock.version++;
2779         kvm_write_guest_offset_cached(v->kvm, cache,
2780                                      &vcpu->hv_clock, offset,
2781                                      sizeof(vcpu->hv_clock.version));
2782 }
2783
2784 static int kvm_guest_time_update(struct kvm_vcpu *v)
2785 {
2786         unsigned long flags, tgt_tsc_khz;
2787         struct kvm_vcpu_arch *vcpu = &v->arch;
2788         struct kvm_arch *ka = &v->kvm->arch;
2789         s64 kernel_ns;
2790         u64 tsc_timestamp, host_tsc;
2791         u8 pvclock_flags;
2792         bool use_master_clock;
2793
2794         kernel_ns = 0;
2795         host_tsc = 0;
2796
2797         /*
2798          * If the host uses TSC clock, then passthrough TSC as stable
2799          * to the guest.
2800          */
2801         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2802         use_master_clock = ka->use_master_clock;
2803         if (use_master_clock) {
2804                 host_tsc = ka->master_cycle_now;
2805                 kernel_ns = ka->master_kernel_ns;
2806         }
2807         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2808
2809         /* Keep irq disabled to prevent changes to the clock */
2810         local_irq_save(flags);
2811         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2812         if (unlikely(tgt_tsc_khz == 0)) {
2813                 local_irq_restore(flags);
2814                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2815                 return 1;
2816         }
2817         if (!use_master_clock) {
2818                 host_tsc = rdtsc();
2819                 kernel_ns = get_kvmclock_base_ns();
2820         }
2821
2822         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2823
2824         /*
2825          * We may have to catch up the TSC to match elapsed wall clock
2826          * time for two reasons, even if kvmclock is used.
2827          *   1) CPU could have been running below the maximum TSC rate
2828          *   2) Broken TSC compensation resets the base at each VCPU
2829          *      entry to avoid unknown leaps of TSC even when running
2830          *      again on the same CPU.  This may cause apparent elapsed
2831          *      time to disappear, and the guest to stand still or run
2832          *      very slowly.
2833          */
2834         if (vcpu->tsc_catchup) {
2835                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2836                 if (tsc > tsc_timestamp) {
2837                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2838                         tsc_timestamp = tsc;
2839                 }
2840         }
2841
2842         local_irq_restore(flags);
2843
2844         /* With all the info we got, fill in the values */
2845
2846         if (kvm_has_tsc_control)
2847                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2848
2849         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2850                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2851                                    &vcpu->hv_clock.tsc_shift,
2852                                    &vcpu->hv_clock.tsc_to_system_mul);
2853                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2854         }
2855
2856         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2857         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2858         vcpu->last_guest_tsc = tsc_timestamp;
2859
2860         /* If the host uses TSC clocksource, then it is stable */
2861         pvclock_flags = 0;
2862         if (use_master_clock)
2863                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2864
2865         vcpu->hv_clock.flags = pvclock_flags;
2866
2867         if (vcpu->pv_time_enabled)
2868                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2869         if (vcpu->xen.vcpu_info_set)
2870                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2871                                        offsetof(struct compat_vcpu_info, time));
2872         if (vcpu->xen.vcpu_time_info_set)
2873                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2874         if (v == kvm_get_vcpu(v->kvm, 0))
2875                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2876         return 0;
2877 }
2878
2879 /*
2880  * kvmclock updates which are isolated to a given vcpu, such as
2881  * vcpu->cpu migration, should not allow system_timestamp from
2882  * the rest of the vcpus to remain static. Otherwise ntp frequency
2883  * correction applies to one vcpu's system_timestamp but not
2884  * the others.
2885  *
2886  * So in those cases, request a kvmclock update for all vcpus.
2887  * We need to rate-limit these requests though, as they can
2888  * considerably slow guests that have a large number of vcpus.
2889  * The time for a remote vcpu to update its kvmclock is bound
2890  * by the delay we use to rate-limit the updates.
2891  */
2892
2893 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2894
2895 static void kvmclock_update_fn(struct work_struct *work)
2896 {
2897         int i;
2898         struct delayed_work *dwork = to_delayed_work(work);
2899         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2900                                            kvmclock_update_work);
2901         struct kvm *kvm = container_of(ka, struct kvm, arch);
2902         struct kvm_vcpu *vcpu;
2903
2904         kvm_for_each_vcpu(i, vcpu, kvm) {
2905                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2906                 kvm_vcpu_kick(vcpu);
2907         }
2908 }
2909
2910 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2911 {
2912         struct kvm *kvm = v->kvm;
2913
2914         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2915         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2916                                         KVMCLOCK_UPDATE_DELAY);
2917 }
2918
2919 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2920
2921 static void kvmclock_sync_fn(struct work_struct *work)
2922 {
2923         struct delayed_work *dwork = to_delayed_work(work);
2924         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2925                                            kvmclock_sync_work);
2926         struct kvm *kvm = container_of(ka, struct kvm, arch);
2927
2928         if (!kvmclock_periodic_sync)
2929                 return;
2930
2931         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2932         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2933                                         KVMCLOCK_SYNC_PERIOD);
2934 }
2935
2936 /*
2937  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2938  */
2939 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2940 {
2941         /* McStatusWrEn enabled? */
2942         if (guest_cpuid_is_amd_or_hygon(vcpu))
2943                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2944
2945         return false;
2946 }
2947
2948 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2949 {
2950         u64 mcg_cap = vcpu->arch.mcg_cap;
2951         unsigned bank_num = mcg_cap & 0xff;
2952         u32 msr = msr_info->index;
2953         u64 data = msr_info->data;
2954
2955         switch (msr) {
2956         case MSR_IA32_MCG_STATUS:
2957                 vcpu->arch.mcg_status = data;
2958                 break;
2959         case MSR_IA32_MCG_CTL:
2960                 if (!(mcg_cap & MCG_CTL_P) &&
2961                     (data || !msr_info->host_initiated))
2962                         return 1;
2963                 if (data != 0 && data != ~(u64)0)
2964                         return 1;
2965                 vcpu->arch.mcg_ctl = data;
2966                 break;
2967         default:
2968                 if (msr >= MSR_IA32_MC0_CTL &&
2969                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2970                         u32 offset = array_index_nospec(
2971                                 msr - MSR_IA32_MC0_CTL,
2972                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2973
2974                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2975                          * some Linux kernels though clear bit 10 in bank 4 to
2976                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2977                          * this to avoid an uncatched #GP in the guest
2978                          */
2979                         if ((offset & 0x3) == 0 &&
2980                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2981                                 return -1;
2982
2983                         /* MCi_STATUS */
2984                         if (!msr_info->host_initiated &&
2985                             (offset & 0x3) == 1 && data != 0) {
2986                                 if (!can_set_mci_status(vcpu))
2987                                         return -1;
2988                         }
2989
2990                         vcpu->arch.mce_banks[offset] = data;
2991                         break;
2992                 }
2993                 return 1;
2994         }
2995         return 0;
2996 }
2997
2998 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2999 {
3000         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3001
3002         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3003 }
3004
3005 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3006 {
3007         gpa_t gpa = data & ~0x3f;
3008
3009         /* Bits 4:5 are reserved, Should be zero */
3010         if (data & 0x30)
3011                 return 1;
3012
3013         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3014             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3015                 return 1;
3016
3017         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3018             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3019                 return 1;
3020
3021         if (!lapic_in_kernel(vcpu))
3022                 return data ? 1 : 0;
3023
3024         vcpu->arch.apf.msr_en_val = data;
3025
3026         if (!kvm_pv_async_pf_enabled(vcpu)) {
3027                 kvm_clear_async_pf_completion_queue(vcpu);
3028                 kvm_async_pf_hash_reset(vcpu);
3029                 return 0;
3030         }
3031
3032         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3033                                         sizeof(u64)))
3034                 return 1;
3035
3036         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3037         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3038
3039         kvm_async_pf_wakeup_all(vcpu);
3040
3041         return 0;
3042 }
3043
3044 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3045 {
3046         /* Bits 8-63 are reserved */
3047         if (data >> 8)
3048                 return 1;
3049
3050         if (!lapic_in_kernel(vcpu))
3051                 return 1;
3052
3053         vcpu->arch.apf.msr_int_val = data;
3054
3055         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3056
3057         return 0;
3058 }
3059
3060 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3061 {
3062         vcpu->arch.pv_time_enabled = false;
3063         vcpu->arch.time = 0;
3064 }
3065
3066 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3067 {
3068         ++vcpu->stat.tlb_flush;
3069         static_call(kvm_x86_tlb_flush_all)(vcpu);
3070 }
3071
3072 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3073 {
3074         ++vcpu->stat.tlb_flush;
3075
3076         if (!tdp_enabled) {
3077                /*
3078                  * A TLB flush on behalf of the guest is equivalent to
3079                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3080                  * a forced sync of the shadow page tables.  Unload the
3081                  * entire MMU here and the subsequent load will sync the
3082                  * shadow page tables, and also flush the TLB.
3083                  */
3084                 kvm_mmu_unload(vcpu);
3085                 return;
3086         }
3087
3088         static_call(kvm_x86_tlb_flush_guest)(vcpu);
3089 }
3090
3091 static void record_steal_time(struct kvm_vcpu *vcpu)
3092 {
3093         struct kvm_host_map map;
3094         struct kvm_steal_time *st;
3095
3096         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3097                 kvm_xen_runstate_set_running(vcpu);
3098                 return;
3099         }
3100
3101         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3102                 return;
3103
3104         /* -EAGAIN is returned in atomic context so we can just return. */
3105         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3106                         &map, &vcpu->arch.st.cache, false))
3107                 return;
3108
3109         st = map.hva +
3110                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3111
3112         /*
3113          * Doing a TLB flush here, on the guest's behalf, can avoid
3114          * expensive IPIs.
3115          */
3116         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3117                 u8 st_preempted = xchg(&st->preempted, 0);
3118
3119                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3120                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3121                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3122                         kvm_vcpu_flush_tlb_guest(vcpu);
3123         } else {
3124                 st->preempted = 0;
3125         }
3126
3127         vcpu->arch.st.preempted = 0;
3128
3129         if (st->version & 1)
3130                 st->version += 1;  /* first time write, random junk */
3131
3132         st->version += 1;
3133
3134         smp_wmb();
3135
3136         st->steal += current->sched_info.run_delay -
3137                 vcpu->arch.st.last_steal;
3138         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3139
3140         smp_wmb();
3141
3142         st->version += 1;
3143
3144         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3145 }
3146
3147 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3148 {
3149         bool pr = false;
3150         u32 msr = msr_info->index;
3151         u64 data = msr_info->data;
3152
3153         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3154                 return kvm_xen_write_hypercall_page(vcpu, data);
3155
3156         switch (msr) {
3157         case MSR_AMD64_NB_CFG:
3158         case MSR_IA32_UCODE_WRITE:
3159         case MSR_VM_HSAVE_PA:
3160         case MSR_AMD64_PATCH_LOADER:
3161         case MSR_AMD64_BU_CFG2:
3162         case MSR_AMD64_DC_CFG:
3163         case MSR_F15H_EX_CFG:
3164                 break;
3165
3166         case MSR_IA32_UCODE_REV:
3167                 if (msr_info->host_initiated)
3168                         vcpu->arch.microcode_version = data;
3169                 break;
3170         case MSR_IA32_ARCH_CAPABILITIES:
3171                 if (!msr_info->host_initiated)
3172                         return 1;
3173                 vcpu->arch.arch_capabilities = data;
3174                 break;
3175         case MSR_IA32_PERF_CAPABILITIES: {
3176                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3177
3178                 if (!msr_info->host_initiated)
3179                         return 1;
3180                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3181                         return 1;
3182                 if (data & ~msr_ent.data)
3183                         return 1;
3184
3185                 vcpu->arch.perf_capabilities = data;
3186
3187                 return 0;
3188                 }
3189         case MSR_EFER:
3190                 return set_efer(vcpu, msr_info);
3191         case MSR_K7_HWCR:
3192                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3193                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3194                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3195
3196                 /* Handle McStatusWrEn */
3197                 if (data == BIT_ULL(18)) {
3198                         vcpu->arch.msr_hwcr = data;
3199                 } else if (data != 0) {
3200                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3201                                     data);
3202                         return 1;
3203                 }
3204                 break;
3205         case MSR_FAM10H_MMIO_CONF_BASE:
3206                 if (data != 0) {
3207                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3208                                     "0x%llx\n", data);
3209                         return 1;
3210                 }
3211                 break;
3212         case 0x200 ... 0x2ff:
3213                 return kvm_mtrr_set_msr(vcpu, msr, data);
3214         case MSR_IA32_APICBASE:
3215                 return kvm_set_apic_base(vcpu, msr_info);
3216         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3217                 return kvm_x2apic_msr_write(vcpu, msr, data);
3218         case MSR_IA32_TSC_DEADLINE:
3219                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3220                 break;
3221         case MSR_IA32_TSC_ADJUST:
3222                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3223                         if (!msr_info->host_initiated) {
3224                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3225                                 adjust_tsc_offset_guest(vcpu, adj);
3226                         }
3227                         vcpu->arch.ia32_tsc_adjust_msr = data;
3228                 }
3229                 break;
3230         case MSR_IA32_MISC_ENABLE:
3231                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3232                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3233                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3234                                 return 1;
3235                         vcpu->arch.ia32_misc_enable_msr = data;
3236                         kvm_update_cpuid_runtime(vcpu);
3237                 } else {
3238                         vcpu->arch.ia32_misc_enable_msr = data;
3239                 }
3240                 break;
3241         case MSR_IA32_SMBASE:
3242                 if (!msr_info->host_initiated)
3243                         return 1;
3244                 vcpu->arch.smbase = data;
3245                 break;
3246         case MSR_IA32_POWER_CTL:
3247                 vcpu->arch.msr_ia32_power_ctl = data;
3248                 break;
3249         case MSR_IA32_TSC:
3250                 if (msr_info->host_initiated) {
3251                         kvm_synchronize_tsc(vcpu, data);
3252                 } else {
3253                         u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3254                         adjust_tsc_offset_guest(vcpu, adj);
3255                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3256                 }
3257                 break;
3258         case MSR_IA32_XSS:
3259                 if (!msr_info->host_initiated &&
3260                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3261                         return 1;
3262                 /*
3263                  * KVM supports exposing PT to the guest, but does not support
3264                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3265                  * XSAVES/XRSTORS to save/restore PT MSRs.
3266                  */
3267                 if (data & ~supported_xss)
3268                         return 1;
3269                 vcpu->arch.ia32_xss = data;
3270                 break;
3271         case MSR_SMI_COUNT:
3272                 if (!msr_info->host_initiated)
3273                         return 1;
3274                 vcpu->arch.smi_count = data;
3275                 break;
3276         case MSR_KVM_WALL_CLOCK_NEW:
3277                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3278                         return 1;
3279
3280                 vcpu->kvm->arch.wall_clock = data;
3281                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3282                 break;
3283         case MSR_KVM_WALL_CLOCK:
3284                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3285                         return 1;
3286
3287                 vcpu->kvm->arch.wall_clock = data;
3288                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3289                 break;
3290         case MSR_KVM_SYSTEM_TIME_NEW:
3291                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3292                         return 1;
3293
3294                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3295                 break;
3296         case MSR_KVM_SYSTEM_TIME:
3297                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3298                         return 1;
3299
3300                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3301                 break;
3302         case MSR_KVM_ASYNC_PF_EN:
3303                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3304                         return 1;
3305
3306                 if (kvm_pv_enable_async_pf(vcpu, data))
3307                         return 1;
3308                 break;
3309         case MSR_KVM_ASYNC_PF_INT:
3310                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3311                         return 1;
3312
3313                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3314                         return 1;
3315                 break;
3316         case MSR_KVM_ASYNC_PF_ACK:
3317                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3318                         return 1;
3319                 if (data & 0x1) {
3320                         vcpu->arch.apf.pageready_pending = false;
3321                         kvm_check_async_pf_completion(vcpu);
3322                 }
3323                 break;
3324         case MSR_KVM_STEAL_TIME:
3325                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3326                         return 1;
3327
3328                 if (unlikely(!sched_info_on()))
3329                         return 1;
3330
3331                 if (data & KVM_STEAL_RESERVED_MASK)
3332                         return 1;
3333
3334                 vcpu->arch.st.msr_val = data;
3335
3336                 if (!(data & KVM_MSR_ENABLED))
3337                         break;
3338
3339                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3340
3341                 break;
3342         case MSR_KVM_PV_EOI_EN:
3343                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3344                         return 1;
3345
3346                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3347                         return 1;
3348                 break;
3349
3350         case MSR_KVM_POLL_CONTROL:
3351                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3352                         return 1;
3353
3354                 /* only enable bit supported */
3355                 if (data & (-1ULL << 1))
3356                         return 1;
3357
3358                 vcpu->arch.msr_kvm_poll_control = data;
3359                 break;
3360
3361         case MSR_IA32_MCG_CTL:
3362         case MSR_IA32_MCG_STATUS:
3363         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3364                 return set_msr_mce(vcpu, msr_info);
3365
3366         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3367         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3368                 pr = true;
3369                 fallthrough;
3370         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3371         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3372                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3373                         return kvm_pmu_set_msr(vcpu, msr_info);
3374
3375                 if (pr || data != 0)
3376                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3377                                     "0x%x data 0x%llx\n", msr, data);
3378                 break;
3379         case MSR_K7_CLK_CTL:
3380                 /*
3381                  * Ignore all writes to this no longer documented MSR.
3382                  * Writes are only relevant for old K7 processors,
3383                  * all pre-dating SVM, but a recommended workaround from
3384                  * AMD for these chips. It is possible to specify the
3385                  * affected processor models on the command line, hence
3386                  * the need to ignore the workaround.
3387                  */
3388                 break;
3389         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3390         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3391         case HV_X64_MSR_SYNDBG_OPTIONS:
3392         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3393         case HV_X64_MSR_CRASH_CTL:
3394         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3395         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3396         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3397         case HV_X64_MSR_TSC_EMULATION_STATUS:
3398                 return kvm_hv_set_msr_common(vcpu, msr, data,
3399                                              msr_info->host_initiated);
3400         case MSR_IA32_BBL_CR_CTL3:
3401                 /* Drop writes to this legacy MSR -- see rdmsr
3402                  * counterpart for further detail.
3403                  */
3404                 if (report_ignored_msrs)
3405                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3406                                 msr, data);
3407                 break;
3408         case MSR_AMD64_OSVW_ID_LENGTH:
3409                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3410                         return 1;
3411                 vcpu->arch.osvw.length = data;
3412                 break;
3413         case MSR_AMD64_OSVW_STATUS:
3414                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3415                         return 1;
3416                 vcpu->arch.osvw.status = data;
3417                 break;
3418         case MSR_PLATFORM_INFO:
3419                 if (!msr_info->host_initiated ||
3420                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3421                      cpuid_fault_enabled(vcpu)))
3422                         return 1;
3423                 vcpu->arch.msr_platform_info = data;
3424                 break;
3425         case MSR_MISC_FEATURES_ENABLES:
3426                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3427                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3428                      !supports_cpuid_fault(vcpu)))
3429                         return 1;
3430                 vcpu->arch.msr_misc_features_enables = data;
3431                 break;
3432         default:
3433                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3434                         return kvm_pmu_set_msr(vcpu, msr_info);
3435                 return KVM_MSR_RET_INVALID;
3436         }
3437         return 0;
3438 }
3439 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3440
3441 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3442 {
3443         u64 data;
3444         u64 mcg_cap = vcpu->arch.mcg_cap;
3445         unsigned bank_num = mcg_cap & 0xff;
3446
3447         switch (msr) {
3448         case MSR_IA32_P5_MC_ADDR:
3449         case MSR_IA32_P5_MC_TYPE:
3450                 data = 0;
3451                 break;
3452         case MSR_IA32_MCG_CAP:
3453                 data = vcpu->arch.mcg_cap;
3454                 break;
3455         case MSR_IA32_MCG_CTL:
3456                 if (!(mcg_cap & MCG_CTL_P) && !host)
3457                         return 1;
3458                 data = vcpu->arch.mcg_ctl;
3459                 break;
3460         case MSR_IA32_MCG_STATUS:
3461                 data = vcpu->arch.mcg_status;
3462                 break;
3463         default:
3464                 if (msr >= MSR_IA32_MC0_CTL &&
3465                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3466                         u32 offset = array_index_nospec(
3467                                 msr - MSR_IA32_MC0_CTL,
3468                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3469
3470                         data = vcpu->arch.mce_banks[offset];
3471                         break;
3472                 }
3473                 return 1;
3474         }
3475         *pdata = data;
3476         return 0;
3477 }
3478
3479 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3480 {
3481         switch (msr_info->index) {
3482         case MSR_IA32_PLATFORM_ID:
3483         case MSR_IA32_EBL_CR_POWERON:
3484         case MSR_IA32_LASTBRANCHFROMIP:
3485         case MSR_IA32_LASTBRANCHTOIP:
3486         case MSR_IA32_LASTINTFROMIP:
3487         case MSR_IA32_LASTINTTOIP:
3488         case MSR_AMD64_SYSCFG:
3489         case MSR_K8_TSEG_ADDR:
3490         case MSR_K8_TSEG_MASK:
3491         case MSR_VM_HSAVE_PA:
3492         case MSR_K8_INT_PENDING_MSG:
3493         case MSR_AMD64_NB_CFG:
3494         case MSR_FAM10H_MMIO_CONF_BASE:
3495         case MSR_AMD64_BU_CFG2:
3496         case MSR_IA32_PERF_CTL:
3497         case MSR_AMD64_DC_CFG:
3498         case MSR_F15H_EX_CFG:
3499         /*
3500          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3501          * limit) MSRs. Just return 0, as we do not want to expose the host
3502          * data here. Do not conditionalize this on CPUID, as KVM does not do
3503          * so for existing CPU-specific MSRs.
3504          */
3505         case MSR_RAPL_POWER_UNIT:
3506         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3507         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3508         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3509         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3510                 msr_info->data = 0;
3511                 break;
3512         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3513                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3514                         return kvm_pmu_get_msr(vcpu, msr_info);
3515                 if (!msr_info->host_initiated)
3516                         return 1;
3517                 msr_info->data = 0;
3518                 break;
3519         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3520         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3521         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3522         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3523                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3524                         return kvm_pmu_get_msr(vcpu, msr_info);
3525                 msr_info->data = 0;
3526                 break;
3527         case MSR_IA32_UCODE_REV:
3528                 msr_info->data = vcpu->arch.microcode_version;
3529                 break;
3530         case MSR_IA32_ARCH_CAPABILITIES:
3531                 if (!msr_info->host_initiated &&
3532                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3533                         return 1;
3534                 msr_info->data = vcpu->arch.arch_capabilities;
3535                 break;
3536         case MSR_IA32_PERF_CAPABILITIES:
3537                 if (!msr_info->host_initiated &&
3538                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3539                         return 1;
3540                 msr_info->data = vcpu->arch.perf_capabilities;
3541                 break;
3542         case MSR_IA32_POWER_CTL:
3543                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3544                 break;
3545         case MSR_IA32_TSC: {
3546                 /*
3547                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3548                  * even when not intercepted. AMD manual doesn't explicitly
3549                  * state this but appears to behave the same.
3550                  *
3551                  * On userspace reads and writes, however, we unconditionally
3552                  * return L1's TSC value to ensure backwards-compatible
3553                  * behavior for migration.
3554                  */
3555                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3556                                                             vcpu->arch.tsc_offset;
3557
3558                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3559                 break;
3560         }
3561         case MSR_MTRRcap:
3562         case 0x200 ... 0x2ff:
3563                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3564         case 0xcd: /* fsb frequency */
3565                 msr_info->data = 3;
3566                 break;
3567                 /*
3568                  * MSR_EBC_FREQUENCY_ID
3569                  * Conservative value valid for even the basic CPU models.
3570                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3571                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3572                  * and 266MHz for model 3, or 4. Set Core Clock
3573                  * Frequency to System Bus Frequency Ratio to 1 (bits
3574                  * 31:24) even though these are only valid for CPU
3575                  * models > 2, however guests may end up dividing or
3576                  * multiplying by zero otherwise.
3577                  */
3578         case MSR_EBC_FREQUENCY_ID:
3579                 msr_info->data = 1 << 24;
3580                 break;
3581         case MSR_IA32_APICBASE:
3582                 msr_info->data = kvm_get_apic_base(vcpu);
3583                 break;
3584         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3585                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3586         case MSR_IA32_TSC_DEADLINE:
3587                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3588                 break;
3589         case MSR_IA32_TSC_ADJUST:
3590                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3591                 break;
3592         case MSR_IA32_MISC_ENABLE:
3593                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3594                 break;
3595         case MSR_IA32_SMBASE:
3596                 if (!msr_info->host_initiated)
3597                         return 1;
3598                 msr_info->data = vcpu->arch.smbase;
3599                 break;
3600         case MSR_SMI_COUNT:
3601                 msr_info->data = vcpu->arch.smi_count;
3602                 break;
3603         case MSR_IA32_PERF_STATUS:
3604                 /* TSC increment by tick */
3605                 msr_info->data = 1000ULL;
3606                 /* CPU multiplier */
3607                 msr_info->data |= (((uint64_t)4ULL) << 40);
3608                 break;
3609         case MSR_EFER:
3610                 msr_info->data = vcpu->arch.efer;
3611                 break;
3612         case MSR_KVM_WALL_CLOCK:
3613                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3614                         return 1;
3615
3616                 msr_info->data = vcpu->kvm->arch.wall_clock;
3617                 break;
3618         case MSR_KVM_WALL_CLOCK_NEW:
3619                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3620                         return 1;
3621
3622                 msr_info->data = vcpu->kvm->arch.wall_clock;
3623                 break;
3624         case MSR_KVM_SYSTEM_TIME:
3625                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3626                         return 1;
3627
3628                 msr_info->data = vcpu->arch.time;
3629                 break;
3630         case MSR_KVM_SYSTEM_TIME_NEW:
3631                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3632                         return 1;
3633
3634                 msr_info->data = vcpu->arch.time;
3635                 break;
3636         case MSR_KVM_ASYNC_PF_EN:
3637                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3638                         return 1;
3639
3640                 msr_info->data = vcpu->arch.apf.msr_en_val;
3641                 break;
3642         case MSR_KVM_ASYNC_PF_INT:
3643                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3644                         return 1;
3645
3646                 msr_info->data = vcpu->arch.apf.msr_int_val;
3647                 break;
3648         case MSR_KVM_ASYNC_PF_ACK:
3649                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3650                         return 1;
3651
3652                 msr_info->data = 0;
3653                 break;
3654         case MSR_KVM_STEAL_TIME:
3655                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3656                         return 1;
3657
3658                 msr_info->data = vcpu->arch.st.msr_val;
3659                 break;
3660         case MSR_KVM_PV_EOI_EN:
3661                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3662                         return 1;
3663
3664                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3665                 break;
3666         case MSR_KVM_POLL_CONTROL:
3667                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3668                         return 1;
3669
3670                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3671                 break;
3672         case MSR_IA32_P5_MC_ADDR:
3673         case MSR_IA32_P5_MC_TYPE:
3674         case MSR_IA32_MCG_CAP:
3675         case MSR_IA32_MCG_CTL:
3676         case MSR_IA32_MCG_STATUS:
3677         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3678                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3679                                    msr_info->host_initiated);
3680         case MSR_IA32_XSS:
3681                 if (!msr_info->host_initiated &&
3682                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3683                         return 1;
3684                 msr_info->data = vcpu->arch.ia32_xss;
3685                 break;
3686         case MSR_K7_CLK_CTL:
3687                 /*
3688                  * Provide expected ramp-up count for K7. All other
3689                  * are set to zero, indicating minimum divisors for
3690                  * every field.
3691                  *
3692                  * This prevents guest kernels on AMD host with CPU
3693                  * type 6, model 8 and higher from exploding due to
3694                  * the rdmsr failing.
3695                  */
3696                 msr_info->data = 0x20000000;
3697                 break;
3698         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3699         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3700         case HV_X64_MSR_SYNDBG_OPTIONS:
3701         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3702         case HV_X64_MSR_CRASH_CTL:
3703         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3704         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3705         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3706         case HV_X64_MSR_TSC_EMULATION_STATUS:
3707                 return kvm_hv_get_msr_common(vcpu,
3708                                              msr_info->index, &msr_info->data,
3709                                              msr_info->host_initiated);
3710         case MSR_IA32_BBL_CR_CTL3:
3711                 /* This legacy MSR exists but isn't fully documented in current
3712                  * silicon.  It is however accessed by winxp in very narrow
3713                  * scenarios where it sets bit #19, itself documented as
3714                  * a "reserved" bit.  Best effort attempt to source coherent
3715                  * read data here should the balance of the register be
3716                  * interpreted by the guest:
3717                  *
3718                  * L2 cache control register 3: 64GB range, 256KB size,
3719                  * enabled, latency 0x1, configured
3720                  */
3721                 msr_info->data = 0xbe702111;
3722                 break;
3723         case MSR_AMD64_OSVW_ID_LENGTH:
3724                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3725                         return 1;
3726                 msr_info->data = vcpu->arch.osvw.length;
3727                 break;
3728         case MSR_AMD64_OSVW_STATUS:
3729                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3730                         return 1;
3731                 msr_info->data = vcpu->arch.osvw.status;
3732                 break;
3733         case MSR_PLATFORM_INFO:
3734                 if (!msr_info->host_initiated &&
3735                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3736                         return 1;
3737                 msr_info->data = vcpu->arch.msr_platform_info;
3738                 break;
3739         case MSR_MISC_FEATURES_ENABLES:
3740                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3741                 break;
3742         case MSR_K7_HWCR:
3743                 msr_info->data = vcpu->arch.msr_hwcr;
3744                 break;
3745         default:
3746                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3747                         return kvm_pmu_get_msr(vcpu, msr_info);
3748                 return KVM_MSR_RET_INVALID;
3749         }
3750         return 0;
3751 }
3752 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3753
3754 /*
3755  * Read or write a bunch of msrs. All parameters are kernel addresses.
3756  *
3757  * @return number of msrs set successfully.
3758  */
3759 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3760                     struct kvm_msr_entry *entries,
3761                     int (*do_msr)(struct kvm_vcpu *vcpu,
3762                                   unsigned index, u64 *data))
3763 {
3764         int i;
3765
3766         for (i = 0; i < msrs->nmsrs; ++i)
3767                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3768                         break;
3769
3770         return i;
3771 }
3772
3773 /*
3774  * Read or write a bunch of msrs. Parameters are user addresses.
3775  *
3776  * @return number of msrs set successfully.
3777  */
3778 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3779                   int (*do_msr)(struct kvm_vcpu *vcpu,
3780                                 unsigned index, u64 *data),
3781                   int writeback)
3782 {
3783         struct kvm_msrs msrs;
3784         struct kvm_msr_entry *entries;
3785         int r, n;
3786         unsigned size;
3787
3788         r = -EFAULT;
3789         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3790                 goto out;
3791
3792         r = -E2BIG;
3793         if (msrs.nmsrs >= MAX_IO_MSRS)
3794                 goto out;
3795
3796         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3797         entries = memdup_user(user_msrs->entries, size);
3798         if (IS_ERR(entries)) {
3799                 r = PTR_ERR(entries);
3800                 goto out;
3801         }
3802
3803         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3804         if (r < 0)
3805                 goto out_free;
3806
3807         r = -EFAULT;
3808         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3809                 goto out_free;
3810
3811         r = n;
3812
3813 out_free:
3814         kfree(entries);
3815 out:
3816         return r;
3817 }
3818
3819 static inline bool kvm_can_mwait_in_guest(void)
3820 {
3821         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3822                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3823                 boot_cpu_has(X86_FEATURE_ARAT);
3824 }
3825
3826 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3827                                             struct kvm_cpuid2 __user *cpuid_arg)
3828 {
3829         struct kvm_cpuid2 cpuid;
3830         int r;
3831
3832         r = -EFAULT;
3833         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3834                 return r;
3835
3836         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3837         if (r)
3838                 return r;
3839
3840         r = -EFAULT;
3841         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3842                 return r;
3843
3844         return 0;
3845 }
3846
3847 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3848 {
3849         int r = 0;
3850
3851         switch (ext) {
3852         case KVM_CAP_IRQCHIP:
3853         case KVM_CAP_HLT:
3854         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3855         case KVM_CAP_SET_TSS_ADDR:
3856         case KVM_CAP_EXT_CPUID:
3857         case KVM_CAP_EXT_EMUL_CPUID:
3858         case KVM_CAP_CLOCKSOURCE:
3859         case KVM_CAP_PIT:
3860         case KVM_CAP_NOP_IO_DELAY:
3861         case KVM_CAP_MP_STATE:
3862         case KVM_CAP_SYNC_MMU:
3863         case KVM_CAP_USER_NMI:
3864         case KVM_CAP_REINJECT_CONTROL:
3865         case KVM_CAP_IRQ_INJECT_STATUS:
3866         case KVM_CAP_IOEVENTFD:
3867         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3868         case KVM_CAP_PIT2:
3869         case KVM_CAP_PIT_STATE2:
3870         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3871         case KVM_CAP_VCPU_EVENTS:
3872         case KVM_CAP_HYPERV:
3873         case KVM_CAP_HYPERV_VAPIC:
3874         case KVM_CAP_HYPERV_SPIN:
3875         case KVM_CAP_HYPERV_SYNIC:
3876         case KVM_CAP_HYPERV_SYNIC2:
3877         case KVM_CAP_HYPERV_VP_INDEX:
3878         case KVM_CAP_HYPERV_EVENTFD:
3879         case KVM_CAP_HYPERV_TLBFLUSH:
3880         case KVM_CAP_HYPERV_SEND_IPI:
3881         case KVM_CAP_HYPERV_CPUID:
3882         case KVM_CAP_SYS_HYPERV_CPUID:
3883         case KVM_CAP_PCI_SEGMENT:
3884         case KVM_CAP_DEBUGREGS:
3885         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3886         case KVM_CAP_XSAVE:
3887         case KVM_CAP_ASYNC_PF:
3888         case KVM_CAP_ASYNC_PF_INT:
3889         case KVM_CAP_GET_TSC_KHZ:
3890         case KVM_CAP_KVMCLOCK_CTRL:
3891         case KVM_CAP_READONLY_MEM:
3892         case KVM_CAP_HYPERV_TIME:
3893         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3894         case KVM_CAP_TSC_DEADLINE_TIMER:
3895         case KVM_CAP_DISABLE_QUIRKS:
3896         case KVM_CAP_SET_BOOT_CPU_ID:
3897         case KVM_CAP_SPLIT_IRQCHIP:
3898         case KVM_CAP_IMMEDIATE_EXIT:
3899         case KVM_CAP_PMU_EVENT_FILTER:
3900         case KVM_CAP_GET_MSR_FEATURES:
3901         case KVM_CAP_MSR_PLATFORM_INFO:
3902         case KVM_CAP_EXCEPTION_PAYLOAD:
3903         case KVM_CAP_SET_GUEST_DEBUG:
3904         case KVM_CAP_LAST_CPU:
3905         case KVM_CAP_X86_USER_SPACE_MSR:
3906         case KVM_CAP_X86_MSR_FILTER:
3907         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3908 #ifdef CONFIG_X86_SGX_KVM
3909         case KVM_CAP_SGX_ATTRIBUTE:
3910 #endif
3911         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
3912                 r = 1;
3913                 break;
3914         case KVM_CAP_SET_GUEST_DEBUG2:
3915                 return KVM_GUESTDBG_VALID_MASK;
3916 #ifdef CONFIG_KVM_XEN
3917         case KVM_CAP_XEN_HVM:
3918                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3919                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3920                     KVM_XEN_HVM_CONFIG_SHARED_INFO;
3921                 if (sched_info_on())
3922                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3923                 break;
3924 #endif
3925         case KVM_CAP_SYNC_REGS:
3926                 r = KVM_SYNC_X86_VALID_FIELDS;
3927                 break;
3928         case KVM_CAP_ADJUST_CLOCK:
3929                 r = KVM_CLOCK_TSC_STABLE;
3930                 break;
3931         case KVM_CAP_X86_DISABLE_EXITS:
3932                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3933                       KVM_X86_DISABLE_EXITS_CSTATE;
3934                 if(kvm_can_mwait_in_guest())
3935                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3936                 break;
3937         case KVM_CAP_X86_SMM:
3938                 /* SMBASE is usually relocated above 1M on modern chipsets,
3939                  * and SMM handlers might indeed rely on 4G segment limits,
3940                  * so do not report SMM to be available if real mode is
3941                  * emulated via vm86 mode.  Still, do not go to great lengths
3942                  * to avoid userspace's usage of the feature, because it is a
3943                  * fringe case that is not enabled except via specific settings
3944                  * of the module parameters.
3945                  */
3946                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3947                 break;
3948         case KVM_CAP_VAPIC:
3949                 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3950                 break;
3951         case KVM_CAP_NR_VCPUS:
3952                 r = KVM_SOFT_MAX_VCPUS;
3953                 break;
3954         case KVM_CAP_MAX_VCPUS:
3955                 r = KVM_MAX_VCPUS;
3956                 break;
3957         case KVM_CAP_MAX_VCPU_ID:
3958                 r = KVM_MAX_VCPU_ID;
3959                 break;
3960         case KVM_CAP_PV_MMU:    /* obsolete */
3961                 r = 0;
3962                 break;
3963         case KVM_CAP_MCE:
3964                 r = KVM_MAX_MCE_BANKS;
3965                 break;
3966         case KVM_CAP_XCRS:
3967                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3968                 break;
3969         case KVM_CAP_TSC_CONTROL:
3970                 r = kvm_has_tsc_control;
3971                 break;
3972         case KVM_CAP_X2APIC_API:
3973                 r = KVM_X2APIC_API_VALID_FLAGS;
3974                 break;
3975         case KVM_CAP_NESTED_STATE:
3976                 r = kvm_x86_ops.nested_ops->get_state ?
3977                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3978                 break;
3979         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3980                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3981                 break;
3982         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3983                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3984                 break;
3985         case KVM_CAP_SMALLER_MAXPHYADDR:
3986                 r = (int) allow_smaller_maxphyaddr;
3987                 break;
3988         case KVM_CAP_STEAL_TIME:
3989                 r = sched_info_on();
3990                 break;
3991         case KVM_CAP_X86_BUS_LOCK_EXIT:
3992                 if (kvm_has_bus_lock_exit)
3993                         r = KVM_BUS_LOCK_DETECTION_OFF |
3994                             KVM_BUS_LOCK_DETECTION_EXIT;
3995                 else
3996                         r = 0;
3997                 break;
3998         default:
3999                 break;
4000         }
4001         return r;
4002
4003 }
4004
4005 long kvm_arch_dev_ioctl(struct file *filp,
4006                         unsigned int ioctl, unsigned long arg)
4007 {
4008         void __user *argp = (void __user *)arg;
4009         long r;
4010
4011         switch (ioctl) {
4012         case KVM_GET_MSR_INDEX_LIST: {
4013                 struct kvm_msr_list __user *user_msr_list = argp;
4014                 struct kvm_msr_list msr_list;
4015                 unsigned n;
4016
4017                 r = -EFAULT;
4018                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4019                         goto out;
4020                 n = msr_list.nmsrs;
4021                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4022                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4023                         goto out;
4024                 r = -E2BIG;
4025                 if (n < msr_list.nmsrs)
4026                         goto out;
4027                 r = -EFAULT;
4028                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4029                                  num_msrs_to_save * sizeof(u32)))
4030                         goto out;
4031                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4032                                  &emulated_msrs,
4033                                  num_emulated_msrs * sizeof(u32)))
4034                         goto out;
4035                 r = 0;
4036                 break;
4037         }
4038         case KVM_GET_SUPPORTED_CPUID:
4039         case KVM_GET_EMULATED_CPUID: {
4040                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4041                 struct kvm_cpuid2 cpuid;
4042
4043                 r = -EFAULT;
4044                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4045                         goto out;
4046
4047                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4048                                             ioctl);
4049                 if (r)
4050                         goto out;
4051
4052                 r = -EFAULT;
4053                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4054                         goto out;
4055                 r = 0;
4056                 break;
4057         }
4058         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4059                 r = -EFAULT;
4060                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4061                                  sizeof(kvm_mce_cap_supported)))
4062                         goto out;
4063                 r = 0;
4064                 break;
4065         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4066                 struct kvm_msr_list __user *user_msr_list = argp;
4067                 struct kvm_msr_list msr_list;
4068                 unsigned int n;
4069
4070                 r = -EFAULT;
4071                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4072                         goto out;
4073                 n = msr_list.nmsrs;
4074                 msr_list.nmsrs = num_msr_based_features;
4075                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4076                         goto out;
4077                 r = -E2BIG;
4078                 if (n < msr_list.nmsrs)
4079                         goto out;
4080                 r = -EFAULT;
4081                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4082                                  num_msr_based_features * sizeof(u32)))
4083                         goto out;
4084                 r = 0;
4085                 break;
4086         }
4087         case KVM_GET_MSRS:
4088                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4089                 break;
4090         case KVM_GET_SUPPORTED_HV_CPUID:
4091                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4092                 break;
4093         default:
4094                 r = -EINVAL;
4095                 break;
4096         }
4097 out:
4098         return r;
4099 }
4100
4101 static void wbinvd_ipi(void *garbage)
4102 {
4103         wbinvd();
4104 }
4105
4106 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4107 {
4108         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4109 }
4110
4111 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4112 {
4113         /* Address WBINVD may be executed by guest */
4114         if (need_emulate_wbinvd(vcpu)) {
4115                 if (static_call(kvm_x86_has_wbinvd_exit)())
4116                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4117                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4118                         smp_call_function_single(vcpu->cpu,
4119                                         wbinvd_ipi, NULL, 1);
4120         }
4121
4122         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4123
4124         /* Save host pkru register if supported */
4125         vcpu->arch.host_pkru = read_pkru();
4126
4127         /* Apply any externally detected TSC adjustments (due to suspend) */
4128         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4129                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4130                 vcpu->arch.tsc_offset_adjustment = 0;
4131                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4132         }
4133
4134         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4135                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4136                                 rdtsc() - vcpu->arch.last_host_tsc;
4137                 if (tsc_delta < 0)
4138                         mark_tsc_unstable("KVM discovered backwards TSC");
4139
4140                 if (kvm_check_tsc_unstable()) {
4141                         u64 offset = kvm_compute_tsc_offset(vcpu,
4142                                                 vcpu->arch.last_guest_tsc);
4143                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4144                         vcpu->arch.tsc_catchup = 1;
4145                 }
4146
4147                 if (kvm_lapic_hv_timer_in_use(vcpu))
4148                         kvm_lapic_restart_hv_timer(vcpu);
4149
4150                 /*
4151                  * On a host with synchronized TSC, there is no need to update
4152                  * kvmclock on vcpu->cpu migration
4153                  */
4154                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4155                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4156                 if (vcpu->cpu != cpu)
4157                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4158                 vcpu->cpu = cpu;
4159         }
4160
4161         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4162 }
4163
4164 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4165 {
4166         struct kvm_host_map map;
4167         struct kvm_steal_time *st;
4168
4169         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4170                 return;
4171
4172         if (vcpu->arch.st.preempted)
4173                 return;
4174
4175         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4176                         &vcpu->arch.st.cache, true))
4177                 return;
4178
4179         st = map.hva +
4180                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4181
4182         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4183
4184         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4185 }
4186
4187 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4188 {
4189         int idx;
4190
4191         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4192                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4193
4194         /*
4195          * Take the srcu lock as memslots will be accessed to check the gfn
4196          * cache generation against the memslots generation.
4197          */
4198         idx = srcu_read_lock(&vcpu->kvm->srcu);
4199         if (kvm_xen_msr_enabled(vcpu->kvm))
4200                 kvm_xen_runstate_set_preempted(vcpu);
4201         else
4202                 kvm_steal_time_set_preempted(vcpu);
4203         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4204
4205         static_call(kvm_x86_vcpu_put)(vcpu);
4206         vcpu->arch.last_host_tsc = rdtsc();
4207         /*
4208          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4209          * on every vmexit, but if not, we might have a stale dr6 from the
4210          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4211          */
4212         set_debugreg(0, 6);
4213 }
4214
4215 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4216                                     struct kvm_lapic_state *s)
4217 {
4218         if (vcpu->arch.apicv_active)
4219                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4220
4221         return kvm_apic_get_state(vcpu, s);
4222 }
4223
4224 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4225                                     struct kvm_lapic_state *s)
4226 {
4227         int r;
4228
4229         r = kvm_apic_set_state(vcpu, s);
4230         if (r)
4231                 return r;
4232         update_cr8_intercept(vcpu);
4233
4234         return 0;
4235 }
4236
4237 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4238 {
4239         /*
4240          * We can accept userspace's request for interrupt injection
4241          * as long as we have a place to store the interrupt number.
4242          * The actual injection will happen when the CPU is able to
4243          * deliver the interrupt.
4244          */
4245         if (kvm_cpu_has_extint(vcpu))
4246                 return false;
4247
4248         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4249         return (!lapic_in_kernel(vcpu) ||
4250                 kvm_apic_accept_pic_intr(vcpu));
4251 }
4252
4253 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4254 {
4255         return kvm_arch_interrupt_allowed(vcpu) &&
4256                 kvm_cpu_accept_dm_intr(vcpu);
4257 }
4258
4259 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4260                                     struct kvm_interrupt *irq)
4261 {
4262         if (irq->irq >= KVM_NR_INTERRUPTS)
4263                 return -EINVAL;
4264
4265         if (!irqchip_in_kernel(vcpu->kvm)) {
4266                 kvm_queue_interrupt(vcpu, irq->irq, false);
4267                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4268                 return 0;
4269         }
4270
4271         /*
4272          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4273          * fail for in-kernel 8259.
4274          */
4275         if (pic_in_kernel(vcpu->kvm))
4276                 return -ENXIO;
4277
4278         if (vcpu->arch.pending_external_vector != -1)
4279                 return -EEXIST;
4280
4281         vcpu->arch.pending_external_vector = irq->irq;
4282         kvm_make_request(KVM_REQ_EVENT, vcpu);
4283         return 0;
4284 }
4285
4286 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4287 {
4288         kvm_inject_nmi(vcpu);
4289
4290         return 0;
4291 }
4292
4293 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4294 {
4295         kvm_make_request(KVM_REQ_SMI, vcpu);
4296
4297         return 0;
4298 }
4299
4300 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4301                                            struct kvm_tpr_access_ctl *tac)
4302 {
4303         if (tac->flags)
4304                 return -EINVAL;
4305         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4306         return 0;
4307 }
4308
4309 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4310                                         u64 mcg_cap)
4311 {
4312         int r;
4313         unsigned bank_num = mcg_cap & 0xff, bank;
4314
4315         r = -EINVAL;
4316         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4317                 goto out;
4318         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4319                 goto out;
4320         r = 0;
4321         vcpu->arch.mcg_cap = mcg_cap;
4322         /* Init IA32_MCG_CTL to all 1s */
4323         if (mcg_cap & MCG_CTL_P)
4324                 vcpu->arch.mcg_ctl = ~(u64)0;
4325         /* Init IA32_MCi_CTL to all 1s */
4326         for (bank = 0; bank < bank_num; bank++)
4327                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4328
4329         static_call(kvm_x86_setup_mce)(vcpu);
4330 out:
4331         return r;
4332 }
4333
4334 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4335                                       struct kvm_x86_mce *mce)
4336 {
4337         u64 mcg_cap = vcpu->arch.mcg_cap;
4338         unsigned bank_num = mcg_cap & 0xff;
4339         u64 *banks = vcpu->arch.mce_banks;
4340
4341         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4342                 return -EINVAL;
4343         /*
4344          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4345          * reporting is disabled
4346          */
4347         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4348             vcpu->arch.mcg_ctl != ~(u64)0)
4349                 return 0;
4350         banks += 4 * mce->bank;
4351         /*
4352          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4353          * reporting is disabled for the bank
4354          */
4355         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4356                 return 0;
4357         if (mce->status & MCI_STATUS_UC) {
4358                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4359                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4360                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4361                         return 0;
4362                 }
4363                 if (banks[1] & MCI_STATUS_VAL)
4364                         mce->status |= MCI_STATUS_OVER;
4365                 banks[2] = mce->addr;
4366                 banks[3] = mce->misc;
4367                 vcpu->arch.mcg_status = mce->mcg_status;
4368                 banks[1] = mce->status;
4369                 kvm_queue_exception(vcpu, MC_VECTOR);
4370         } else if (!(banks[1] & MCI_STATUS_VAL)
4371                    || !(banks[1] & MCI_STATUS_UC)) {
4372                 if (banks[1] & MCI_STATUS_VAL)
4373                         mce->status |= MCI_STATUS_OVER;
4374                 banks[2] = mce->addr;
4375                 banks[3] = mce->misc;
4376                 banks[1] = mce->status;
4377         } else
4378                 banks[1] |= MCI_STATUS_OVER;
4379         return 0;
4380 }
4381
4382 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4383                                                struct kvm_vcpu_events *events)
4384 {
4385         process_nmi(vcpu);
4386
4387         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4388                 process_smi(vcpu);
4389
4390         /*
4391          * In guest mode, payload delivery should be deferred,
4392          * so that the L1 hypervisor can intercept #PF before
4393          * CR2 is modified (or intercept #DB before DR6 is
4394          * modified under nVMX). Unless the per-VM capability,
4395          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4396          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4397          * opportunistically defer the exception payload, deliver it if the
4398          * capability hasn't been requested before processing a
4399          * KVM_GET_VCPU_EVENTS.
4400          */
4401         if (!vcpu->kvm->arch.exception_payload_enabled &&
4402             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4403                 kvm_deliver_exception_payload(vcpu);
4404
4405         /*
4406          * The API doesn't provide the instruction length for software
4407          * exceptions, so don't report them. As long as the guest RIP
4408          * isn't advanced, we should expect to encounter the exception
4409          * again.
4410          */
4411         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4412                 events->exception.injected = 0;
4413                 events->exception.pending = 0;
4414         } else {
4415                 events->exception.injected = vcpu->arch.exception.injected;
4416                 events->exception.pending = vcpu->arch.exception.pending;
4417                 /*
4418                  * For ABI compatibility, deliberately conflate
4419                  * pending and injected exceptions when
4420                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4421                  */
4422                 if (!vcpu->kvm->arch.exception_payload_enabled)
4423                         events->exception.injected |=
4424                                 vcpu->arch.exception.pending;
4425         }
4426         events->exception.nr = vcpu->arch.exception.nr;
4427         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4428         events->exception.error_code = vcpu->arch.exception.error_code;
4429         events->exception_has_payload = vcpu->arch.exception.has_payload;
4430         events->exception_payload = vcpu->arch.exception.payload;
4431
4432         events->interrupt.injected =
4433                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4434         events->interrupt.nr = vcpu->arch.interrupt.nr;
4435         events->interrupt.soft = 0;
4436         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4437
4438         events->nmi.injected = vcpu->arch.nmi_injected;
4439         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4440         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4441         events->nmi.pad = 0;
4442
4443         events->sipi_vector = 0; /* never valid when reporting to user space */
4444
4445         events->smi.smm = is_smm(vcpu);
4446         events->smi.pending = vcpu->arch.smi_pending;
4447         events->smi.smm_inside_nmi =
4448                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4449         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4450
4451         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4452                          | KVM_VCPUEVENT_VALID_SHADOW
4453                          | KVM_VCPUEVENT_VALID_SMM);
4454         if (vcpu->kvm->arch.exception_payload_enabled)
4455                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4456
4457         memset(&events->reserved, 0, sizeof(events->reserved));
4458 }
4459
4460 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4461
4462 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4463                                               struct kvm_vcpu_events *events)
4464 {
4465         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4466                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4467                               | KVM_VCPUEVENT_VALID_SHADOW
4468                               | KVM_VCPUEVENT_VALID_SMM
4469                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4470                 return -EINVAL;
4471
4472         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4473                 if (!vcpu->kvm->arch.exception_payload_enabled)
4474                         return -EINVAL;
4475                 if (events->exception.pending)
4476                         events->exception.injected = 0;
4477                 else
4478                         events->exception_has_payload = 0;
4479         } else {
4480                 events->exception.pending = 0;
4481                 events->exception_has_payload = 0;
4482         }
4483
4484         if ((events->exception.injected || events->exception.pending) &&
4485             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4486                 return -EINVAL;
4487
4488         /* INITs are latched while in SMM */
4489         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4490             (events->smi.smm || events->smi.pending) &&
4491             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4492                 return -EINVAL;
4493
4494         process_nmi(vcpu);
4495         vcpu->arch.exception.injected = events->exception.injected;
4496         vcpu->arch.exception.pending = events->exception.pending;
4497         vcpu->arch.exception.nr = events->exception.nr;
4498         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4499         vcpu->arch.exception.error_code = events->exception.error_code;
4500         vcpu->arch.exception.has_payload = events->exception_has_payload;
4501         vcpu->arch.exception.payload = events->exception_payload;
4502
4503         vcpu->arch.interrupt.injected = events->interrupt.injected;
4504         vcpu->arch.interrupt.nr = events->interrupt.nr;
4505         vcpu->arch.interrupt.soft = events->interrupt.soft;
4506         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4507                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4508                                                 events->interrupt.shadow);
4509
4510         vcpu->arch.nmi_injected = events->nmi.injected;
4511         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4512                 vcpu->arch.nmi_pending = events->nmi.pending;
4513         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4514
4515         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4516             lapic_in_kernel(vcpu))
4517                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4518
4519         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4520                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4521                         if (events->smi.smm)
4522                                 vcpu->arch.hflags |= HF_SMM_MASK;
4523                         else
4524                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4525                         kvm_smm_changed(vcpu);
4526                 }
4527
4528                 vcpu->arch.smi_pending = events->smi.pending;
4529
4530                 if (events->smi.smm) {
4531                         if (events->smi.smm_inside_nmi)
4532                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4533                         else
4534                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4535                 }
4536
4537                 if (lapic_in_kernel(vcpu)) {
4538                         if (events->smi.latched_init)
4539                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4540                         else
4541                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4542                 }
4543         }
4544
4545         kvm_make_request(KVM_REQ_EVENT, vcpu);
4546
4547         return 0;
4548 }
4549
4550 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4551                                              struct kvm_debugregs *dbgregs)
4552 {
4553         unsigned long val;
4554
4555         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4556         kvm_get_dr(vcpu, 6, &val);
4557         dbgregs->dr6 = val;
4558         dbgregs->dr7 = vcpu->arch.dr7;
4559         dbgregs->flags = 0;
4560         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4561 }
4562
4563 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4564                                             struct kvm_debugregs *dbgregs)
4565 {
4566         if (dbgregs->flags)
4567                 return -EINVAL;
4568
4569         if (!kvm_dr6_valid(dbgregs->dr6))
4570                 return -EINVAL;
4571         if (!kvm_dr7_valid(dbgregs->dr7))
4572                 return -EINVAL;
4573
4574         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4575         kvm_update_dr0123(vcpu);
4576         vcpu->arch.dr6 = dbgregs->dr6;
4577         vcpu->arch.dr7 = dbgregs->dr7;
4578         kvm_update_dr7(vcpu);
4579
4580         return 0;
4581 }
4582
4583 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4584
4585 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4586 {
4587         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4588         u64 xstate_bv = xsave->header.xfeatures;
4589         u64 valid;
4590
4591         /*
4592          * Copy legacy XSAVE area, to avoid complications with CPUID
4593          * leaves 0 and 1 in the loop below.
4594          */
4595         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4596
4597         /* Set XSTATE_BV */
4598         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4599         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4600
4601         /*
4602          * Copy each region from the possibly compacted offset to the
4603          * non-compacted offset.
4604          */
4605         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4606         while (valid) {
4607                 u64 xfeature_mask = valid & -valid;
4608                 int xfeature_nr = fls64(xfeature_mask) - 1;
4609                 void *src = get_xsave_addr(xsave, xfeature_nr);
4610
4611                 if (src) {
4612                         u32 size, offset, ecx, edx;
4613                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4614                                     &size, &offset, &ecx, &edx);
4615                         if (xfeature_nr == XFEATURE_PKRU)
4616                                 memcpy(dest + offset, &vcpu->arch.pkru,
4617                                        sizeof(vcpu->arch.pkru));
4618                         else
4619                                 memcpy(dest + offset, src, size);
4620
4621                 }
4622
4623                 valid -= xfeature_mask;
4624         }
4625 }
4626
4627 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4628 {
4629         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4630         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4631         u64 valid;
4632
4633         /*
4634          * Copy legacy XSAVE area, to avoid complications with CPUID
4635          * leaves 0 and 1 in the loop below.
4636          */
4637         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4638
4639         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4640         xsave->header.xfeatures = xstate_bv;
4641         if (boot_cpu_has(X86_FEATURE_XSAVES))
4642                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4643
4644         /*
4645          * Copy each region from the non-compacted offset to the
4646          * possibly compacted offset.
4647          */
4648         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4649         while (valid) {
4650                 u64 xfeature_mask = valid & -valid;
4651                 int xfeature_nr = fls64(xfeature_mask) - 1;
4652                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4653
4654                 if (dest) {
4655                         u32 size, offset, ecx, edx;
4656                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4657                                     &size, &offset, &ecx, &edx);
4658                         if (xfeature_nr == XFEATURE_PKRU)
4659                                 memcpy(&vcpu->arch.pkru, src + offset,
4660                                        sizeof(vcpu->arch.pkru));
4661                         else
4662                                 memcpy(dest, src + offset, size);
4663                 }
4664
4665                 valid -= xfeature_mask;
4666         }
4667 }
4668
4669 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4670                                          struct kvm_xsave *guest_xsave)
4671 {
4672         if (!vcpu->arch.guest_fpu)
4673                 return;
4674
4675         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4676                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4677                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4678         } else {
4679                 memcpy(guest_xsave->region,
4680                         &vcpu->arch.guest_fpu->state.fxsave,
4681                         sizeof(struct fxregs_state));
4682                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4683                         XFEATURE_MASK_FPSSE;
4684         }
4685 }
4686
4687 #define XSAVE_MXCSR_OFFSET 24
4688
4689 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4690                                         struct kvm_xsave *guest_xsave)
4691 {
4692         u64 xstate_bv;
4693         u32 mxcsr;
4694
4695         if (!vcpu->arch.guest_fpu)
4696                 return 0;
4697
4698         xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4699         mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4700
4701         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4702                 /*
4703                  * Here we allow setting states that are not present in
4704                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4705                  * with old userspace.
4706                  */
4707                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4708                         return -EINVAL;
4709                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4710         } else {
4711                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4712                         mxcsr & ~mxcsr_feature_mask)
4713                         return -EINVAL;
4714                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4715                         guest_xsave->region, sizeof(struct fxregs_state));
4716         }
4717         return 0;
4718 }
4719
4720 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4721                                         struct kvm_xcrs *guest_xcrs)
4722 {
4723         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4724                 guest_xcrs->nr_xcrs = 0;
4725                 return;
4726         }
4727
4728         guest_xcrs->nr_xcrs = 1;
4729         guest_xcrs->flags = 0;
4730         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4731         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4732 }
4733
4734 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4735                                        struct kvm_xcrs *guest_xcrs)
4736 {
4737         int i, r = 0;
4738
4739         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4740                 return -EINVAL;
4741
4742         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4743                 return -EINVAL;
4744
4745         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4746                 /* Only support XCR0 currently */
4747                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4748                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4749                                 guest_xcrs->xcrs[i].value);
4750                         break;
4751                 }
4752         if (r)
4753                 r = -EINVAL;
4754         return r;
4755 }
4756
4757 /*
4758  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4759  * stopped by the hypervisor.  This function will be called from the host only.
4760  * EINVAL is returned when the host attempts to set the flag for a guest that
4761  * does not support pv clocks.
4762  */
4763 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4764 {
4765         if (!vcpu->arch.pv_time_enabled)
4766                 return -EINVAL;
4767         vcpu->arch.pvclock_set_guest_stopped_request = true;
4768         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4769         return 0;
4770 }
4771
4772 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4773                                      struct kvm_enable_cap *cap)
4774 {
4775         int r;
4776         uint16_t vmcs_version;
4777         void __user *user_ptr;
4778
4779         if (cap->flags)
4780                 return -EINVAL;
4781
4782         switch (cap->cap) {
4783         case KVM_CAP_HYPERV_SYNIC2:
4784                 if (cap->args[0])
4785                         return -EINVAL;
4786                 fallthrough;
4787
4788         case KVM_CAP_HYPERV_SYNIC:
4789                 if (!irqchip_in_kernel(vcpu->kvm))
4790                         return -EINVAL;
4791                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4792                                              KVM_CAP_HYPERV_SYNIC2);
4793         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4794                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4795                         return -ENOTTY;
4796                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4797                 if (!r) {
4798                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4799                         if (copy_to_user(user_ptr, &vmcs_version,
4800                                          sizeof(vmcs_version)))
4801                                 r = -EFAULT;
4802                 }
4803                 return r;
4804         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4805                 if (!kvm_x86_ops.enable_direct_tlbflush)
4806                         return -ENOTTY;
4807
4808                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4809
4810         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4811                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4812                 if (vcpu->arch.pv_cpuid.enforce)
4813                         kvm_update_pv_runtime(vcpu);
4814
4815                 return 0;
4816         default:
4817                 return -EINVAL;
4818         }
4819 }
4820
4821 long kvm_arch_vcpu_ioctl(struct file *filp,
4822                          unsigned int ioctl, unsigned long arg)
4823 {
4824         struct kvm_vcpu *vcpu = filp->private_data;
4825         void __user *argp = (void __user *)arg;
4826         int r;
4827         union {
4828                 struct kvm_lapic_state *lapic;
4829                 struct kvm_xsave *xsave;
4830                 struct kvm_xcrs *xcrs;
4831                 void *buffer;
4832         } u;
4833
4834         vcpu_load(vcpu);
4835
4836         u.buffer = NULL;
4837         switch (ioctl) {
4838         case KVM_GET_LAPIC: {
4839                 r = -EINVAL;
4840                 if (!lapic_in_kernel(vcpu))
4841                         goto out;
4842                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4843                                 GFP_KERNEL_ACCOUNT);
4844
4845                 r = -ENOMEM;
4846                 if (!u.lapic)
4847                         goto out;
4848                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4849                 if (r)
4850                         goto out;
4851                 r = -EFAULT;
4852                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4853                         goto out;
4854                 r = 0;
4855                 break;
4856         }
4857         case KVM_SET_LAPIC: {
4858                 r = -EINVAL;
4859                 if (!lapic_in_kernel(vcpu))
4860                         goto out;
4861                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4862                 if (IS_ERR(u.lapic)) {
4863                         r = PTR_ERR(u.lapic);
4864                         goto out_nofree;
4865                 }
4866
4867                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4868                 break;
4869         }
4870         case KVM_INTERRUPT: {
4871                 struct kvm_interrupt irq;
4872
4873                 r = -EFAULT;
4874                 if (copy_from_user(&irq, argp, sizeof(irq)))
4875                         goto out;
4876                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4877                 break;
4878         }
4879         case KVM_NMI: {
4880                 r = kvm_vcpu_ioctl_nmi(vcpu);
4881                 break;
4882         }
4883         case KVM_SMI: {
4884                 r = kvm_vcpu_ioctl_smi(vcpu);
4885                 break;
4886         }
4887         case KVM_SET_CPUID: {
4888                 struct kvm_cpuid __user *cpuid_arg = argp;
4889                 struct kvm_cpuid cpuid;
4890
4891                 r = -EFAULT;
4892                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4893                         goto out;
4894                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4895                 break;
4896         }
4897         case KVM_SET_CPUID2: {
4898                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4899                 struct kvm_cpuid2 cpuid;
4900
4901                 r = -EFAULT;
4902                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4903                         goto out;
4904                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4905                                               cpuid_arg->entries);
4906                 break;
4907         }
4908         case KVM_GET_CPUID2: {
4909                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4910                 struct kvm_cpuid2 cpuid;
4911
4912                 r = -EFAULT;
4913                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4914                         goto out;
4915                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4916                                               cpuid_arg->entries);
4917                 if (r)
4918                         goto out;
4919                 r = -EFAULT;
4920                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4921                         goto out;
4922                 r = 0;
4923                 break;
4924         }
4925         case KVM_GET_MSRS: {
4926                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4927                 r = msr_io(vcpu, argp, do_get_msr, 1);
4928                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4929                 break;
4930         }
4931         case KVM_SET_MSRS: {
4932                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4933                 r = msr_io(vcpu, argp, do_set_msr, 0);
4934                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4935                 break;
4936         }
4937         case KVM_TPR_ACCESS_REPORTING: {
4938                 struct kvm_tpr_access_ctl tac;
4939
4940                 r = -EFAULT;
4941                 if (copy_from_user(&tac, argp, sizeof(tac)))
4942                         goto out;
4943                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4944                 if (r)
4945                         goto out;
4946                 r = -EFAULT;
4947                 if (copy_to_user(argp, &tac, sizeof(tac)))
4948                         goto out;
4949                 r = 0;
4950                 break;
4951         };
4952         case KVM_SET_VAPIC_ADDR: {
4953                 struct kvm_vapic_addr va;
4954                 int idx;
4955
4956                 r = -EINVAL;
4957                 if (!lapic_in_kernel(vcpu))
4958                         goto out;
4959                 r = -EFAULT;
4960                 if (copy_from_user(&va, argp, sizeof(va)))
4961                         goto out;
4962                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4963                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4964                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4965                 break;
4966         }
4967         case KVM_X86_SETUP_MCE: {
4968                 u64 mcg_cap;
4969
4970                 r = -EFAULT;
4971                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4972                         goto out;
4973                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4974                 break;
4975         }
4976         case KVM_X86_SET_MCE: {
4977                 struct kvm_x86_mce mce;
4978
4979                 r = -EFAULT;
4980                 if (copy_from_user(&mce, argp, sizeof(mce)))
4981                         goto out;
4982                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4983                 break;
4984         }
4985         case KVM_GET_VCPU_EVENTS: {
4986                 struct kvm_vcpu_events events;
4987
4988                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4989
4990                 r = -EFAULT;
4991                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4992                         break;
4993                 r = 0;
4994                 break;
4995         }
4996         case KVM_SET_VCPU_EVENTS: {
4997                 struct kvm_vcpu_events events;
4998
4999                 r = -EFAULT;
5000                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5001                         break;
5002
5003                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5004                 break;
5005         }
5006         case KVM_GET_DEBUGREGS: {
5007                 struct kvm_debugregs dbgregs;
5008
5009                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5010
5011                 r = -EFAULT;
5012                 if (copy_to_user(argp, &dbgregs,
5013                                  sizeof(struct kvm_debugregs)))
5014                         break;
5015                 r = 0;
5016                 break;
5017         }
5018         case KVM_SET_DEBUGREGS: {
5019                 struct kvm_debugregs dbgregs;
5020
5021                 r = -EFAULT;
5022                 if (copy_from_user(&dbgregs, argp,
5023                                    sizeof(struct kvm_debugregs)))
5024                         break;
5025
5026                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5027                 break;
5028         }
5029         case KVM_GET_XSAVE: {
5030                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5031                 r = -ENOMEM;
5032                 if (!u.xsave)
5033                         break;
5034
5035                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5036
5037                 r = -EFAULT;
5038                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5039                         break;
5040                 r = 0;
5041                 break;
5042         }
5043         case KVM_SET_XSAVE: {
5044                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5045                 if (IS_ERR(u.xsave)) {
5046                         r = PTR_ERR(u.xsave);
5047                         goto out_nofree;
5048                 }
5049
5050                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5051                 break;
5052         }
5053         case KVM_GET_XCRS: {
5054                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5055                 r = -ENOMEM;
5056                 if (!u.xcrs)
5057                         break;
5058
5059                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5060
5061                 r = -EFAULT;
5062                 if (copy_to_user(argp, u.xcrs,
5063                                  sizeof(struct kvm_xcrs)))
5064                         break;
5065                 r = 0;
5066                 break;
5067         }
5068         case KVM_SET_XCRS: {
5069                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5070                 if (IS_ERR(u.xcrs)) {
5071                         r = PTR_ERR(u.xcrs);
5072                         goto out_nofree;
5073                 }
5074
5075                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5076                 break;
5077         }
5078         case KVM_SET_TSC_KHZ: {
5079                 u32 user_tsc_khz;
5080
5081                 r = -EINVAL;
5082                 user_tsc_khz = (u32)arg;
5083
5084                 if (kvm_has_tsc_control &&
5085                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5086                         goto out;
5087
5088                 if (user_tsc_khz == 0)
5089                         user_tsc_khz = tsc_khz;
5090
5091                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5092                         r = 0;
5093
5094                 goto out;
5095         }
5096         case KVM_GET_TSC_KHZ: {
5097                 r = vcpu->arch.virtual_tsc_khz;
5098                 goto out;
5099         }
5100         case KVM_KVMCLOCK_CTRL: {
5101                 r = kvm_set_guest_paused(vcpu);
5102                 goto out;
5103         }
5104         case KVM_ENABLE_CAP: {
5105                 struct kvm_enable_cap cap;
5106
5107                 r = -EFAULT;
5108                 if (copy_from_user(&cap, argp, sizeof(cap)))
5109                         goto out;
5110                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5111                 break;
5112         }
5113         case KVM_GET_NESTED_STATE: {
5114                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5115                 u32 user_data_size;
5116
5117                 r = -EINVAL;
5118                 if (!kvm_x86_ops.nested_ops->get_state)
5119                         break;
5120
5121                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5122                 r = -EFAULT;
5123                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5124                         break;
5125
5126                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5127                                                      user_data_size);
5128                 if (r < 0)
5129                         break;
5130
5131                 if (r > user_data_size) {
5132                         if (put_user(r, &user_kvm_nested_state->size))
5133                                 r = -EFAULT;
5134                         else
5135                                 r = -E2BIG;
5136                         break;
5137                 }
5138
5139                 r = 0;
5140                 break;
5141         }
5142         case KVM_SET_NESTED_STATE: {
5143                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5144                 struct kvm_nested_state kvm_state;
5145                 int idx;
5146
5147                 r = -EINVAL;
5148                 if (!kvm_x86_ops.nested_ops->set_state)
5149                         break;
5150
5151                 r = -EFAULT;
5152                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5153                         break;
5154
5155                 r = -EINVAL;
5156                 if (kvm_state.size < sizeof(kvm_state))
5157                         break;
5158
5159                 if (kvm_state.flags &
5160                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5161                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5162                       | KVM_STATE_NESTED_GIF_SET))
5163                         break;
5164
5165                 /* nested_run_pending implies guest_mode.  */
5166                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5167                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5168                         break;
5169
5170                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5171                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5172                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5173                 break;
5174         }
5175         case KVM_GET_SUPPORTED_HV_CPUID:
5176                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5177                 break;
5178 #ifdef CONFIG_KVM_XEN
5179         case KVM_XEN_VCPU_GET_ATTR: {
5180                 struct kvm_xen_vcpu_attr xva;
5181
5182                 r = -EFAULT;
5183                 if (copy_from_user(&xva, argp, sizeof(xva)))
5184                         goto out;
5185                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5186                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5187                         r = -EFAULT;
5188                 break;
5189         }
5190         case KVM_XEN_VCPU_SET_ATTR: {
5191                 struct kvm_xen_vcpu_attr xva;
5192
5193                 r = -EFAULT;
5194                 if (copy_from_user(&xva, argp, sizeof(xva)))
5195                         goto out;
5196                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5197                 break;
5198         }
5199 #endif
5200         default:
5201                 r = -EINVAL;
5202         }
5203 out:
5204         kfree(u.buffer);
5205 out_nofree:
5206         vcpu_put(vcpu);
5207         return r;
5208 }
5209
5210 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5211 {
5212         return VM_FAULT_SIGBUS;
5213 }
5214
5215 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5216 {
5217         int ret;
5218
5219         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5220                 return -EINVAL;
5221         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5222         return ret;
5223 }
5224
5225 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5226                                               u64 ident_addr)
5227 {
5228         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5229 }
5230
5231 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5232                                          unsigned long kvm_nr_mmu_pages)
5233 {
5234         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5235                 return -EINVAL;
5236
5237         mutex_lock(&kvm->slots_lock);
5238
5239         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5240         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5241
5242         mutex_unlock(&kvm->slots_lock);
5243         return 0;
5244 }
5245
5246 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5247 {
5248         return kvm->arch.n_max_mmu_pages;
5249 }
5250
5251 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5252 {
5253         struct kvm_pic *pic = kvm->arch.vpic;
5254         int r;
5255
5256         r = 0;
5257         switch (chip->chip_id) {
5258         case KVM_IRQCHIP_PIC_MASTER:
5259                 memcpy(&chip->chip.pic, &pic->pics[0],
5260                         sizeof(struct kvm_pic_state));
5261                 break;
5262         case KVM_IRQCHIP_PIC_SLAVE:
5263                 memcpy(&chip->chip.pic, &pic->pics[1],
5264                         sizeof(struct kvm_pic_state));
5265                 break;
5266         case KVM_IRQCHIP_IOAPIC:
5267                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5268                 break;
5269         default:
5270                 r = -EINVAL;
5271                 break;
5272         }
5273         return r;
5274 }
5275
5276 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5277 {
5278         struct kvm_pic *pic = kvm->arch.vpic;
5279         int r;
5280
5281         r = 0;
5282         switch (chip->chip_id) {
5283         case KVM_IRQCHIP_PIC_MASTER:
5284                 spin_lock(&pic->lock);
5285                 memcpy(&pic->pics[0], &chip->chip.pic,
5286                         sizeof(struct kvm_pic_state));
5287                 spin_unlock(&pic->lock);
5288                 break;
5289         case KVM_IRQCHIP_PIC_SLAVE:
5290                 spin_lock(&pic->lock);
5291                 memcpy(&pic->pics[1], &chip->chip.pic,
5292                         sizeof(struct kvm_pic_state));
5293                 spin_unlock(&pic->lock);
5294                 break;
5295         case KVM_IRQCHIP_IOAPIC:
5296                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5297                 break;
5298         default:
5299                 r = -EINVAL;
5300                 break;
5301         }
5302         kvm_pic_update_irq(pic);
5303         return r;
5304 }
5305
5306 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5307 {
5308         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5309
5310         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5311
5312         mutex_lock(&kps->lock);
5313         memcpy(ps, &kps->channels, sizeof(*ps));
5314         mutex_unlock(&kps->lock);
5315         return 0;
5316 }
5317
5318 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5319 {
5320         int i;
5321         struct kvm_pit *pit = kvm->arch.vpit;
5322
5323         mutex_lock(&pit->pit_state.lock);
5324         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5325         for (i = 0; i < 3; i++)
5326                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5327         mutex_unlock(&pit->pit_state.lock);
5328         return 0;
5329 }
5330
5331 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5332 {
5333         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5334         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5335                 sizeof(ps->channels));
5336         ps->flags = kvm->arch.vpit->pit_state.flags;
5337         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5338         memset(&ps->reserved, 0, sizeof(ps->reserved));
5339         return 0;
5340 }
5341
5342 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5343 {
5344         int start = 0;
5345         int i;
5346         u32 prev_legacy, cur_legacy;
5347         struct kvm_pit *pit = kvm->arch.vpit;
5348
5349         mutex_lock(&pit->pit_state.lock);
5350         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5351         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5352         if (!prev_legacy && cur_legacy)
5353                 start = 1;
5354         memcpy(&pit->pit_state.channels, &ps->channels,
5355                sizeof(pit->pit_state.channels));
5356         pit->pit_state.flags = ps->flags;
5357         for (i = 0; i < 3; i++)
5358                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5359                                    start && i == 0);
5360         mutex_unlock(&pit->pit_state.lock);
5361         return 0;
5362 }
5363
5364 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5365                                  struct kvm_reinject_control *control)
5366 {
5367         struct kvm_pit *pit = kvm->arch.vpit;
5368
5369         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5370          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5371          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5372          */
5373         mutex_lock(&pit->pit_state.lock);
5374         kvm_pit_set_reinject(pit, control->pit_reinject);
5375         mutex_unlock(&pit->pit_state.lock);
5376
5377         return 0;
5378 }
5379
5380 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5381 {
5382
5383         /*
5384          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5385          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5386          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5387          * VM-Exit.
5388          */
5389         struct kvm_vcpu *vcpu;
5390         int i;
5391
5392         kvm_for_each_vcpu(i, vcpu, kvm)
5393                 kvm_vcpu_kick(vcpu);
5394 }
5395
5396 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5397                         bool line_status)
5398 {
5399         if (!irqchip_in_kernel(kvm))
5400                 return -ENXIO;
5401
5402         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5403                                         irq_event->irq, irq_event->level,
5404                                         line_status);
5405         return 0;
5406 }
5407
5408 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5409                             struct kvm_enable_cap *cap)
5410 {
5411         int r;
5412
5413         if (cap->flags)
5414                 return -EINVAL;
5415
5416         switch (cap->cap) {
5417         case KVM_CAP_DISABLE_QUIRKS:
5418                 kvm->arch.disabled_quirks = cap->args[0];
5419                 r = 0;
5420                 break;
5421         case KVM_CAP_SPLIT_IRQCHIP: {
5422                 mutex_lock(&kvm->lock);
5423                 r = -EINVAL;
5424                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5425                         goto split_irqchip_unlock;
5426                 r = -EEXIST;
5427                 if (irqchip_in_kernel(kvm))
5428                         goto split_irqchip_unlock;
5429                 if (kvm->created_vcpus)
5430                         goto split_irqchip_unlock;
5431                 r = kvm_setup_empty_irq_routing(kvm);
5432                 if (r)
5433                         goto split_irqchip_unlock;
5434                 /* Pairs with irqchip_in_kernel. */
5435                 smp_wmb();
5436                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5437                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5438                 r = 0;
5439 split_irqchip_unlock:
5440                 mutex_unlock(&kvm->lock);
5441                 break;
5442         }
5443         case KVM_CAP_X2APIC_API:
5444                 r = -EINVAL;
5445                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5446                         break;
5447
5448                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5449                         kvm->arch.x2apic_format = true;
5450                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5451                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5452
5453                 r = 0;
5454                 break;
5455         case KVM_CAP_X86_DISABLE_EXITS:
5456                 r = -EINVAL;
5457                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5458                         break;
5459
5460                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5461                         kvm_can_mwait_in_guest())
5462                         kvm->arch.mwait_in_guest = true;
5463                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5464                         kvm->arch.hlt_in_guest = true;
5465                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5466                         kvm->arch.pause_in_guest = true;
5467                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5468                         kvm->arch.cstate_in_guest = true;
5469                 r = 0;
5470                 break;
5471         case KVM_CAP_MSR_PLATFORM_INFO:
5472                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5473                 r = 0;
5474                 break;
5475         case KVM_CAP_EXCEPTION_PAYLOAD:
5476                 kvm->arch.exception_payload_enabled = cap->args[0];
5477                 r = 0;
5478                 break;
5479         case KVM_CAP_X86_USER_SPACE_MSR:
5480                 kvm->arch.user_space_msr_mask = cap->args[0];
5481                 r = 0;
5482                 break;
5483         case KVM_CAP_X86_BUS_LOCK_EXIT:
5484                 r = -EINVAL;
5485                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5486                         break;
5487
5488                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5489                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5490                         break;
5491
5492                 if (kvm_has_bus_lock_exit &&
5493                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5494                         kvm->arch.bus_lock_detection_enabled = true;
5495                 r = 0;
5496                 break;
5497 #ifdef CONFIG_X86_SGX_KVM
5498         case KVM_CAP_SGX_ATTRIBUTE: {
5499                 unsigned long allowed_attributes = 0;
5500
5501                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5502                 if (r)
5503                         break;
5504
5505                 /* KVM only supports the PROVISIONKEY privileged attribute. */
5506                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5507                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5508                         kvm->arch.sgx_provisioning_allowed = true;
5509                 else
5510                         r = -EINVAL;
5511                 break;
5512         }
5513 #endif
5514         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5515                 r = -EINVAL;
5516                 if (kvm_x86_ops.vm_copy_enc_context_from)
5517                         r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5518                 return r;
5519         default:
5520                 r = -EINVAL;
5521                 break;
5522         }
5523         return r;
5524 }
5525
5526 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5527 {
5528         struct kvm_x86_msr_filter *msr_filter;
5529
5530         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5531         if (!msr_filter)
5532                 return NULL;
5533
5534         msr_filter->default_allow = default_allow;
5535         return msr_filter;
5536 }
5537
5538 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5539 {
5540         u32 i;
5541
5542         if (!msr_filter)
5543                 return;
5544
5545         for (i = 0; i < msr_filter->count; i++)
5546                 kfree(msr_filter->ranges[i].bitmap);
5547
5548         kfree(msr_filter);
5549 }
5550
5551 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5552                               struct kvm_msr_filter_range *user_range)
5553 {
5554         unsigned long *bitmap = NULL;
5555         size_t bitmap_size;
5556
5557         if (!user_range->nmsrs)
5558                 return 0;
5559
5560         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5561                 return -EINVAL;
5562
5563         if (!user_range->flags)
5564                 return -EINVAL;
5565
5566         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5567         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5568                 return -EINVAL;
5569
5570         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5571         if (IS_ERR(bitmap))
5572                 return PTR_ERR(bitmap);
5573
5574         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5575                 .flags = user_range->flags,
5576                 .base = user_range->base,
5577                 .nmsrs = user_range->nmsrs,
5578                 .bitmap = bitmap,
5579         };
5580
5581         msr_filter->count++;
5582         return 0;
5583 }
5584
5585 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5586 {
5587         struct kvm_msr_filter __user *user_msr_filter = argp;
5588         struct kvm_x86_msr_filter *new_filter, *old_filter;
5589         struct kvm_msr_filter filter;
5590         bool default_allow;
5591         bool empty = true;
5592         int r = 0;
5593         u32 i;
5594
5595         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5596                 return -EFAULT;
5597
5598         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5599                 empty &= !filter.ranges[i].nmsrs;
5600
5601         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5602         if (empty && !default_allow)
5603                 return -EINVAL;
5604
5605         new_filter = kvm_alloc_msr_filter(default_allow);
5606         if (!new_filter)
5607                 return -ENOMEM;
5608
5609         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5610                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5611                 if (r) {
5612                         kvm_free_msr_filter(new_filter);
5613                         return r;
5614                 }
5615         }
5616
5617         mutex_lock(&kvm->lock);
5618
5619         /* The per-VM filter is protected by kvm->lock... */
5620         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5621
5622         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5623         synchronize_srcu(&kvm->srcu);
5624
5625         kvm_free_msr_filter(old_filter);
5626
5627         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5628         mutex_unlock(&kvm->lock);
5629
5630         return 0;
5631 }
5632
5633 long kvm_arch_vm_ioctl(struct file *filp,
5634                        unsigned int ioctl, unsigned long arg)
5635 {
5636         struct kvm *kvm = filp->private_data;
5637         void __user *argp = (void __user *)arg;
5638         int r = -ENOTTY;
5639         /*
5640          * This union makes it completely explicit to gcc-3.x
5641          * that these two variables' stack usage should be
5642          * combined, not added together.
5643          */
5644         union {
5645                 struct kvm_pit_state ps;
5646                 struct kvm_pit_state2 ps2;
5647                 struct kvm_pit_config pit_config;
5648         } u;
5649
5650         switch (ioctl) {
5651         case KVM_SET_TSS_ADDR:
5652                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5653                 break;
5654         case KVM_SET_IDENTITY_MAP_ADDR: {
5655                 u64 ident_addr;
5656
5657                 mutex_lock(&kvm->lock);
5658                 r = -EINVAL;
5659                 if (kvm->created_vcpus)
5660                         goto set_identity_unlock;
5661                 r = -EFAULT;
5662                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5663                         goto set_identity_unlock;
5664                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5665 set_identity_unlock:
5666                 mutex_unlock(&kvm->lock);
5667                 break;
5668         }
5669         case KVM_SET_NR_MMU_PAGES:
5670                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5671                 break;
5672         case KVM_GET_NR_MMU_PAGES:
5673                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5674                 break;
5675         case KVM_CREATE_IRQCHIP: {
5676                 mutex_lock(&kvm->lock);
5677
5678                 r = -EEXIST;
5679                 if (irqchip_in_kernel(kvm))
5680                         goto create_irqchip_unlock;
5681
5682                 r = -EINVAL;
5683                 if (kvm->created_vcpus)
5684                         goto create_irqchip_unlock;
5685
5686                 r = kvm_pic_init(kvm);
5687                 if (r)
5688                         goto create_irqchip_unlock;
5689
5690                 r = kvm_ioapic_init(kvm);
5691                 if (r) {
5692                         kvm_pic_destroy(kvm);
5693                         goto create_irqchip_unlock;
5694                 }
5695
5696                 r = kvm_setup_default_irq_routing(kvm);
5697                 if (r) {
5698                         kvm_ioapic_destroy(kvm);
5699                         kvm_pic_destroy(kvm);
5700                         goto create_irqchip_unlock;
5701                 }
5702                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5703                 smp_wmb();
5704                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5705         create_irqchip_unlock:
5706                 mutex_unlock(&kvm->lock);
5707                 break;
5708         }
5709         case KVM_CREATE_PIT:
5710                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5711                 goto create_pit;
5712         case KVM_CREATE_PIT2:
5713                 r = -EFAULT;
5714                 if (copy_from_user(&u.pit_config, argp,
5715                                    sizeof(struct kvm_pit_config)))
5716                         goto out;
5717         create_pit:
5718                 mutex_lock(&kvm->lock);
5719                 r = -EEXIST;
5720                 if (kvm->arch.vpit)
5721                         goto create_pit_unlock;
5722                 r = -ENOMEM;
5723                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5724                 if (kvm->arch.vpit)
5725                         r = 0;
5726         create_pit_unlock:
5727                 mutex_unlock(&kvm->lock);
5728                 break;
5729         case KVM_GET_IRQCHIP: {
5730                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5731                 struct kvm_irqchip *chip;
5732
5733                 chip = memdup_user(argp, sizeof(*chip));
5734                 if (IS_ERR(chip)) {
5735                         r = PTR_ERR(chip);
5736                         goto out;
5737                 }
5738
5739                 r = -ENXIO;
5740                 if (!irqchip_kernel(kvm))
5741                         goto get_irqchip_out;
5742                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5743                 if (r)
5744                         goto get_irqchip_out;
5745                 r = -EFAULT;
5746                 if (copy_to_user(argp, chip, sizeof(*chip)))
5747                         goto get_irqchip_out;
5748                 r = 0;
5749         get_irqchip_out:
5750                 kfree(chip);
5751                 break;
5752         }
5753         case KVM_SET_IRQCHIP: {
5754                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5755                 struct kvm_irqchip *chip;
5756
5757                 chip = memdup_user(argp, sizeof(*chip));
5758                 if (IS_ERR(chip)) {
5759                         r = PTR_ERR(chip);
5760                         goto out;
5761                 }
5762
5763                 r = -ENXIO;
5764                 if (!irqchip_kernel(kvm))
5765                         goto set_irqchip_out;
5766                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5767         set_irqchip_out:
5768                 kfree(chip);
5769                 break;
5770         }
5771         case KVM_GET_PIT: {
5772                 r = -EFAULT;
5773                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5774                         goto out;
5775                 r = -ENXIO;
5776                 if (!kvm->arch.vpit)
5777                         goto out;
5778                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5779                 if (r)
5780                         goto out;
5781                 r = -EFAULT;
5782                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5783                         goto out;
5784                 r = 0;
5785                 break;
5786         }
5787         case KVM_SET_PIT: {
5788                 r = -EFAULT;
5789                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5790                         goto out;
5791                 mutex_lock(&kvm->lock);
5792                 r = -ENXIO;
5793                 if (!kvm->arch.vpit)
5794                         goto set_pit_out;
5795                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5796 set_pit_out:
5797                 mutex_unlock(&kvm->lock);
5798                 break;
5799         }
5800         case KVM_GET_PIT2: {
5801                 r = -ENXIO;
5802                 if (!kvm->arch.vpit)
5803                         goto out;
5804                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5805                 if (r)
5806                         goto out;
5807                 r = -EFAULT;
5808                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5809                         goto out;
5810                 r = 0;
5811                 break;
5812         }
5813         case KVM_SET_PIT2: {
5814                 r = -EFAULT;
5815                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5816                         goto out;
5817                 mutex_lock(&kvm->lock);
5818                 r = -ENXIO;
5819                 if (!kvm->arch.vpit)
5820                         goto set_pit2_out;
5821                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5822 set_pit2_out:
5823                 mutex_unlock(&kvm->lock);
5824                 break;
5825         }
5826         case KVM_REINJECT_CONTROL: {
5827                 struct kvm_reinject_control control;
5828                 r =  -EFAULT;
5829                 if (copy_from_user(&control, argp, sizeof(control)))
5830                         goto out;
5831                 r = -ENXIO;
5832                 if (!kvm->arch.vpit)
5833                         goto out;
5834                 r = kvm_vm_ioctl_reinject(kvm, &control);
5835                 break;
5836         }
5837         case KVM_SET_BOOT_CPU_ID:
5838                 r = 0;
5839                 mutex_lock(&kvm->lock);
5840                 if (kvm->created_vcpus)
5841                         r = -EBUSY;
5842                 else
5843                         kvm->arch.bsp_vcpu_id = arg;
5844                 mutex_unlock(&kvm->lock);
5845                 break;
5846 #ifdef CONFIG_KVM_XEN
5847         case KVM_XEN_HVM_CONFIG: {
5848                 struct kvm_xen_hvm_config xhc;
5849                 r = -EFAULT;
5850                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5851                         goto out;
5852                 r = kvm_xen_hvm_config(kvm, &xhc);
5853                 break;
5854         }
5855         case KVM_XEN_HVM_GET_ATTR: {
5856                 struct kvm_xen_hvm_attr xha;
5857
5858                 r = -EFAULT;
5859                 if (copy_from_user(&xha, argp, sizeof(xha)))
5860                         goto out;
5861                 r = kvm_xen_hvm_get_attr(kvm, &xha);
5862                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5863                         r = -EFAULT;
5864                 break;
5865         }
5866         case KVM_XEN_HVM_SET_ATTR: {
5867                 struct kvm_xen_hvm_attr xha;
5868
5869                 r = -EFAULT;
5870                 if (copy_from_user(&xha, argp, sizeof(xha)))
5871                         goto out;
5872                 r = kvm_xen_hvm_set_attr(kvm, &xha);
5873                 break;
5874         }
5875 #endif
5876         case KVM_SET_CLOCK: {
5877                 struct kvm_arch *ka = &kvm->arch;
5878                 struct kvm_clock_data user_ns;
5879                 u64 now_ns;
5880
5881                 r = -EFAULT;
5882                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5883                         goto out;
5884
5885                 r = -EINVAL;
5886                 if (user_ns.flags)
5887                         goto out;
5888
5889                 r = 0;
5890                 /*
5891                  * TODO: userspace has to take care of races with VCPU_RUN, so
5892                  * kvm_gen_update_masterclock() can be cut down to locked
5893                  * pvclock_update_vm_gtod_copy().
5894                  */
5895                 kvm_gen_update_masterclock(kvm);
5896
5897                 /*
5898                  * This pairs with kvm_guest_time_update(): when masterclock is
5899                  * in use, we use master_kernel_ns + kvmclock_offset to set
5900                  * unsigned 'system_time' so if we use get_kvmclock_ns() (which
5901                  * is slightly ahead) here we risk going negative on unsigned
5902                  * 'system_time' when 'user_ns.clock' is very small.
5903                  */
5904                 spin_lock_irq(&ka->pvclock_gtod_sync_lock);
5905                 if (kvm->arch.use_master_clock)
5906                         now_ns = ka->master_kernel_ns;
5907                 else
5908                         now_ns = get_kvmclock_base_ns();
5909                 ka->kvmclock_offset = user_ns.clock - now_ns;
5910                 spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
5911
5912                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5913                 break;
5914         }
5915         case KVM_GET_CLOCK: {
5916                 struct kvm_clock_data user_ns;
5917                 u64 now_ns;
5918
5919                 now_ns = get_kvmclock_ns(kvm);
5920                 user_ns.clock = now_ns;
5921                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5922                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5923
5924                 r = -EFAULT;
5925                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5926                         goto out;
5927                 r = 0;
5928                 break;
5929         }
5930         case KVM_MEMORY_ENCRYPT_OP: {
5931                 r = -ENOTTY;
5932                 if (kvm_x86_ops.mem_enc_op)
5933                         r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5934                 break;
5935         }
5936         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5937                 struct kvm_enc_region region;
5938
5939                 r = -EFAULT;
5940                 if (copy_from_user(&region, argp, sizeof(region)))
5941                         goto out;
5942
5943                 r = -ENOTTY;
5944                 if (kvm_x86_ops.mem_enc_reg_region)
5945                         r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5946                 break;
5947         }
5948         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5949                 struct kvm_enc_region region;
5950
5951                 r = -EFAULT;
5952                 if (copy_from_user(&region, argp, sizeof(region)))
5953                         goto out;
5954
5955                 r = -ENOTTY;
5956                 if (kvm_x86_ops.mem_enc_unreg_region)
5957                         r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5958                 break;
5959         }
5960         case KVM_HYPERV_EVENTFD: {
5961                 struct kvm_hyperv_eventfd hvevfd;
5962
5963                 r = -EFAULT;
5964                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5965                         goto out;
5966                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5967                 break;
5968         }
5969         case KVM_SET_PMU_EVENT_FILTER:
5970                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5971                 break;
5972         case KVM_X86_SET_MSR_FILTER:
5973                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5974                 break;
5975         default:
5976                 r = -ENOTTY;
5977         }
5978 out:
5979         return r;
5980 }
5981
5982 static void kvm_init_msr_list(void)
5983 {
5984         struct x86_pmu_capability x86_pmu;
5985         u32 dummy[2];
5986         unsigned i;
5987
5988         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5989                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5990
5991         perf_get_x86_pmu_capability(&x86_pmu);
5992
5993         num_msrs_to_save = 0;
5994         num_emulated_msrs = 0;
5995         num_msr_based_features = 0;
5996
5997         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5998                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5999                         continue;
6000
6001                 /*
6002                  * Even MSRs that are valid in the host may not be exposed
6003                  * to the guests in some cases.
6004                  */
6005                 switch (msrs_to_save_all[i]) {
6006                 case MSR_IA32_BNDCFGS:
6007                         if (!kvm_mpx_supported())
6008                                 continue;
6009                         break;
6010                 case MSR_TSC_AUX:
6011                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6012                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6013                                 continue;
6014                         break;
6015                 case MSR_IA32_UMWAIT_CONTROL:
6016                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6017                                 continue;
6018                         break;
6019                 case MSR_IA32_RTIT_CTL:
6020                 case MSR_IA32_RTIT_STATUS:
6021                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6022                                 continue;
6023                         break;
6024                 case MSR_IA32_RTIT_CR3_MATCH:
6025                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6026                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6027                                 continue;
6028                         break;
6029                 case MSR_IA32_RTIT_OUTPUT_BASE:
6030                 case MSR_IA32_RTIT_OUTPUT_MASK:
6031                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6032                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6033                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6034                                 continue;
6035                         break;
6036                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6037                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6038                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6039                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6040                                 continue;
6041                         break;
6042                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6043                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6044                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6045                                 continue;
6046                         break;
6047                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6048                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6049                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6050                                 continue;
6051                         break;
6052                 default:
6053                         break;
6054                 }
6055
6056                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6057         }
6058
6059         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6060                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6061                         continue;
6062
6063                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6064         }
6065
6066         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6067                 struct kvm_msr_entry msr;
6068
6069                 msr.index = msr_based_features_all[i];
6070                 if (kvm_get_msr_feature(&msr))
6071                         continue;
6072
6073                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6074         }
6075 }
6076
6077 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6078                            const void *v)
6079 {
6080         int handled = 0;
6081         int n;
6082
6083         do {
6084                 n = min(len, 8);
6085                 if (!(lapic_in_kernel(vcpu) &&
6086                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6087                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6088                         break;
6089                 handled += n;
6090                 addr += n;
6091                 len -= n;
6092                 v += n;
6093         } while (len);
6094
6095         return handled;
6096 }
6097
6098 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6099 {
6100         int handled = 0;
6101         int n;
6102
6103         do {
6104                 n = min(len, 8);
6105                 if (!(lapic_in_kernel(vcpu) &&
6106                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6107                                          addr, n, v))
6108                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6109                         break;
6110                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6111                 handled += n;
6112                 addr += n;
6113                 len -= n;
6114                 v += n;
6115         } while (len);
6116
6117         return handled;
6118 }
6119
6120 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6121                         struct kvm_segment *var, int seg)
6122 {
6123         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6124 }
6125
6126 void kvm_get_segment(struct kvm_vcpu *vcpu,
6127                      struct kvm_segment *var, int seg)
6128 {
6129         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6130 }
6131
6132 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6133                            struct x86_exception *exception)
6134 {
6135         gpa_t t_gpa;
6136
6137         BUG_ON(!mmu_is_nested(vcpu));
6138
6139         /* NPT walks are always user-walks */
6140         access |= PFERR_USER_MASK;
6141         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6142
6143         return t_gpa;
6144 }
6145
6146 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6147                               struct x86_exception *exception)
6148 {
6149         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6150         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6151 }
6152 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6153
6154  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6155                                 struct x86_exception *exception)
6156 {
6157         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6158         access |= PFERR_FETCH_MASK;
6159         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6160 }
6161
6162 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6163                                struct x86_exception *exception)
6164 {
6165         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6166         access |= PFERR_WRITE_MASK;
6167         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6168 }
6169 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6170
6171 /* uses this to access any guest's mapped memory without checking CPL */
6172 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6173                                 struct x86_exception *exception)
6174 {
6175         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6176 }
6177
6178 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6179                                       struct kvm_vcpu *vcpu, u32 access,
6180                                       struct x86_exception *exception)
6181 {
6182         void *data = val;
6183         int r = X86EMUL_CONTINUE;
6184
6185         while (bytes) {
6186                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6187                                                             exception);
6188                 unsigned offset = addr & (PAGE_SIZE-1);
6189                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6190                 int ret;
6191
6192                 if (gpa == UNMAPPED_GVA)
6193                         return X86EMUL_PROPAGATE_FAULT;
6194                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6195                                                offset, toread);
6196                 if (ret < 0) {
6197                         r = X86EMUL_IO_NEEDED;
6198                         goto out;
6199                 }
6200
6201                 bytes -= toread;
6202                 data += toread;
6203                 addr += toread;
6204         }
6205 out:
6206         return r;
6207 }
6208
6209 /* used for instruction fetching */
6210 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6211                                 gva_t addr, void *val, unsigned int bytes,
6212                                 struct x86_exception *exception)
6213 {
6214         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6215         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6216         unsigned offset;
6217         int ret;
6218
6219         /* Inline kvm_read_guest_virt_helper for speed.  */
6220         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6221                                                     exception);
6222         if (unlikely(gpa == UNMAPPED_GVA))
6223                 return X86EMUL_PROPAGATE_FAULT;
6224
6225         offset = addr & (PAGE_SIZE-1);
6226         if (WARN_ON(offset + bytes > PAGE_SIZE))
6227                 bytes = (unsigned)PAGE_SIZE - offset;
6228         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6229                                        offset, bytes);
6230         if (unlikely(ret < 0))
6231                 return X86EMUL_IO_NEEDED;
6232
6233         return X86EMUL_CONTINUE;
6234 }
6235
6236 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6237                                gva_t addr, void *val, unsigned int bytes,
6238                                struct x86_exception *exception)
6239 {
6240         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6241
6242         /*
6243          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6244          * is returned, but our callers are not ready for that and they blindly
6245          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6246          * uninitialized kernel stack memory into cr2 and error code.
6247          */
6248         memset(exception, 0, sizeof(*exception));
6249         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6250                                           exception);
6251 }
6252 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6253
6254 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6255                              gva_t addr, void *val, unsigned int bytes,
6256                              struct x86_exception *exception, bool system)
6257 {
6258         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6259         u32 access = 0;
6260
6261         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6262                 access |= PFERR_USER_MASK;
6263
6264         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6265 }
6266
6267 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6268                 unsigned long addr, void *val, unsigned int bytes)
6269 {
6270         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6271         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6272
6273         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6274 }
6275
6276 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6277                                       struct kvm_vcpu *vcpu, u32 access,
6278                                       struct x86_exception *exception)
6279 {
6280         void *data = val;
6281         int r = X86EMUL_CONTINUE;
6282
6283         while (bytes) {
6284                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6285                                                              access,
6286                                                              exception);
6287                 unsigned offset = addr & (PAGE_SIZE-1);
6288                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6289                 int ret;
6290
6291                 if (gpa == UNMAPPED_GVA)
6292                         return X86EMUL_PROPAGATE_FAULT;
6293                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6294                 if (ret < 0) {
6295                         r = X86EMUL_IO_NEEDED;
6296                         goto out;
6297                 }
6298
6299                 bytes -= towrite;
6300                 data += towrite;
6301                 addr += towrite;
6302         }
6303 out:
6304         return r;
6305 }
6306
6307 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6308                               unsigned int bytes, struct x86_exception *exception,
6309                               bool system)
6310 {
6311         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6312         u32 access = PFERR_WRITE_MASK;
6313
6314         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6315                 access |= PFERR_USER_MASK;
6316
6317         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6318                                            access, exception);
6319 }
6320
6321 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6322                                 unsigned int bytes, struct x86_exception *exception)
6323 {
6324         /* kvm_write_guest_virt_system can pull in tons of pages. */
6325         vcpu->arch.l1tf_flush_l1d = true;
6326
6327         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6328                                            PFERR_WRITE_MASK, exception);
6329 }
6330 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6331
6332 int handle_ud(struct kvm_vcpu *vcpu)
6333 {
6334         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6335         int emul_type = EMULTYPE_TRAP_UD;
6336         char sig[5]; /* ud2; .ascii "kvm" */
6337         struct x86_exception e;
6338
6339         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6340                 return 1;
6341
6342         if (force_emulation_prefix &&
6343             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6344                                 sig, sizeof(sig), &e) == 0 &&
6345             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6346                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6347                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6348         }
6349
6350         return kvm_emulate_instruction(vcpu, emul_type);
6351 }
6352 EXPORT_SYMBOL_GPL(handle_ud);
6353
6354 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6355                             gpa_t gpa, bool write)
6356 {
6357         /* For APIC access vmexit */
6358         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6359                 return 1;
6360
6361         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6362                 trace_vcpu_match_mmio(gva, gpa, write, true);
6363                 return 1;
6364         }
6365
6366         return 0;
6367 }
6368
6369 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6370                                 gpa_t *gpa, struct x86_exception *exception,
6371                                 bool write)
6372 {
6373         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6374                 | (write ? PFERR_WRITE_MASK : 0);
6375
6376         /*
6377          * currently PKRU is only applied to ept enabled guest so
6378          * there is no pkey in EPT page table for L1 guest or EPT
6379          * shadow page table for L2 guest.
6380          */
6381         if (vcpu_match_mmio_gva(vcpu, gva)
6382             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6383                                  vcpu->arch.mmio_access, 0, access)) {
6384                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6385                                         (gva & (PAGE_SIZE - 1));
6386                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6387                 return 1;
6388         }
6389
6390         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6391
6392         if (*gpa == UNMAPPED_GVA)
6393                 return -1;
6394
6395         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6396 }
6397
6398 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6399                         const void *val, int bytes)
6400 {
6401         int ret;
6402
6403         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6404         if (ret < 0)
6405                 return 0;
6406         kvm_page_track_write(vcpu, gpa, val, bytes);
6407         return 1;
6408 }
6409
6410 struct read_write_emulator_ops {
6411         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6412                                   int bytes);
6413         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6414                                   void *val, int bytes);
6415         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6416                                int bytes, void *val);
6417         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6418                                     void *val, int bytes);
6419         bool write;
6420 };
6421
6422 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6423 {
6424         if (vcpu->mmio_read_completed) {
6425                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6426                                vcpu->mmio_fragments[0].gpa, val);
6427                 vcpu->mmio_read_completed = 0;
6428                 return 1;
6429         }
6430
6431         return 0;
6432 }
6433
6434 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6435                         void *val, int bytes)
6436 {
6437         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6438 }
6439
6440 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6441                          void *val, int bytes)
6442 {
6443         return emulator_write_phys(vcpu, gpa, val, bytes);
6444 }
6445
6446 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6447 {
6448         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6449         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6450 }
6451
6452 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6453                           void *val, int bytes)
6454 {
6455         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6456         return X86EMUL_IO_NEEDED;
6457 }
6458
6459 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6460                            void *val, int bytes)
6461 {
6462         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6463
6464         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6465         return X86EMUL_CONTINUE;
6466 }
6467
6468 static const struct read_write_emulator_ops read_emultor = {
6469         .read_write_prepare = read_prepare,
6470         .read_write_emulate = read_emulate,
6471         .read_write_mmio = vcpu_mmio_read,
6472         .read_write_exit_mmio = read_exit_mmio,
6473 };
6474
6475 static const struct read_write_emulator_ops write_emultor = {
6476         .read_write_emulate = write_emulate,
6477         .read_write_mmio = write_mmio,
6478         .read_write_exit_mmio = write_exit_mmio,
6479         .write = true,
6480 };
6481
6482 static int emulator_read_write_onepage(unsigned long addr, void *val,
6483                                        unsigned int bytes,
6484                                        struct x86_exception *exception,
6485                                        struct kvm_vcpu *vcpu,
6486                                        const struct read_write_emulator_ops *ops)
6487 {
6488         gpa_t gpa;
6489         int handled, ret;
6490         bool write = ops->write;
6491         struct kvm_mmio_fragment *frag;
6492         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6493
6494         /*
6495          * If the exit was due to a NPF we may already have a GPA.
6496          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6497          * Note, this cannot be used on string operations since string
6498          * operation using rep will only have the initial GPA from the NPF
6499          * occurred.
6500          */
6501         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6502             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6503                 gpa = ctxt->gpa_val;
6504                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6505         } else {
6506                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6507                 if (ret < 0)
6508                         return X86EMUL_PROPAGATE_FAULT;
6509         }
6510
6511         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6512                 return X86EMUL_CONTINUE;
6513
6514         /*
6515          * Is this MMIO handled locally?
6516          */
6517         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6518         if (handled == bytes)
6519                 return X86EMUL_CONTINUE;
6520
6521         gpa += handled;
6522         bytes -= handled;
6523         val += handled;
6524
6525         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6526         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6527         frag->gpa = gpa;
6528         frag->data = val;
6529         frag->len = bytes;
6530         return X86EMUL_CONTINUE;
6531 }
6532
6533 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6534                         unsigned long addr,
6535                         void *val, unsigned int bytes,
6536                         struct x86_exception *exception,
6537                         const struct read_write_emulator_ops *ops)
6538 {
6539         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6540         gpa_t gpa;
6541         int rc;
6542
6543         if (ops->read_write_prepare &&
6544                   ops->read_write_prepare(vcpu, val, bytes))
6545                 return X86EMUL_CONTINUE;
6546
6547         vcpu->mmio_nr_fragments = 0;
6548
6549         /* Crossing a page boundary? */
6550         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6551                 int now;
6552
6553                 now = -addr & ~PAGE_MASK;
6554                 rc = emulator_read_write_onepage(addr, val, now, exception,
6555                                                  vcpu, ops);
6556
6557                 if (rc != X86EMUL_CONTINUE)
6558                         return rc;
6559                 addr += now;
6560                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6561                         addr = (u32)addr;
6562                 val += now;
6563                 bytes -= now;
6564         }
6565
6566         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6567                                          vcpu, ops);
6568         if (rc != X86EMUL_CONTINUE)
6569                 return rc;
6570
6571         if (!vcpu->mmio_nr_fragments)
6572                 return rc;
6573
6574         gpa = vcpu->mmio_fragments[0].gpa;
6575
6576         vcpu->mmio_needed = 1;
6577         vcpu->mmio_cur_fragment = 0;
6578
6579         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6580         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6581         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6582         vcpu->run->mmio.phys_addr = gpa;
6583
6584         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6585 }
6586
6587 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6588                                   unsigned long addr,
6589                                   void *val,
6590                                   unsigned int bytes,
6591                                   struct x86_exception *exception)
6592 {
6593         return emulator_read_write(ctxt, addr, val, bytes,
6594                                    exception, &read_emultor);
6595 }
6596
6597 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6598                             unsigned long addr,
6599                             const void *val,
6600                             unsigned int bytes,
6601                             struct x86_exception *exception)
6602 {
6603         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6604                                    exception, &write_emultor);
6605 }
6606
6607 #define CMPXCHG_TYPE(t, ptr, old, new) \
6608         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6609
6610 #ifdef CONFIG_X86_64
6611 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6612 #else
6613 #  define CMPXCHG64(ptr, old, new) \
6614         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6615 #endif
6616
6617 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6618                                      unsigned long addr,
6619                                      const void *old,
6620                                      const void *new,
6621                                      unsigned int bytes,
6622                                      struct x86_exception *exception)
6623 {
6624         struct kvm_host_map map;
6625         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6626         u64 page_line_mask;
6627         gpa_t gpa;
6628         char *kaddr;
6629         bool exchanged;
6630
6631         /* guests cmpxchg8b have to be emulated atomically */
6632         if (bytes > 8 || (bytes & (bytes - 1)))
6633                 goto emul_write;
6634
6635         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6636
6637         if (gpa == UNMAPPED_GVA ||
6638             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6639                 goto emul_write;
6640
6641         /*
6642          * Emulate the atomic as a straight write to avoid #AC if SLD is
6643          * enabled in the host and the access splits a cache line.
6644          */
6645         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6646                 page_line_mask = ~(cache_line_size() - 1);
6647         else
6648                 page_line_mask = PAGE_MASK;
6649
6650         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6651                 goto emul_write;
6652
6653         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6654                 goto emul_write;
6655
6656         kaddr = map.hva + offset_in_page(gpa);
6657
6658         switch (bytes) {
6659         case 1:
6660                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6661                 break;
6662         case 2:
6663                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6664                 break;
6665         case 4:
6666                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6667                 break;
6668         case 8:
6669                 exchanged = CMPXCHG64(kaddr, old, new);
6670                 break;
6671         default:
6672                 BUG();
6673         }
6674
6675         kvm_vcpu_unmap(vcpu, &map, true);
6676
6677         if (!exchanged)
6678                 return X86EMUL_CMPXCHG_FAILED;
6679
6680         kvm_page_track_write(vcpu, gpa, new, bytes);
6681
6682         return X86EMUL_CONTINUE;
6683
6684 emul_write:
6685         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6686
6687         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6688 }
6689
6690 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6691 {
6692         int r = 0, i;
6693
6694         for (i = 0; i < vcpu->arch.pio.count; i++) {
6695                 if (vcpu->arch.pio.in)
6696                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6697                                             vcpu->arch.pio.size, pd);
6698                 else
6699                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6700                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6701                                              pd);
6702                 if (r)
6703                         break;
6704                 pd += vcpu->arch.pio.size;
6705         }
6706         return r;
6707 }
6708
6709 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6710                                unsigned short port, void *val,
6711                                unsigned int count, bool in)
6712 {
6713         vcpu->arch.pio.port = port;
6714         vcpu->arch.pio.in = in;
6715         vcpu->arch.pio.count  = count;
6716         vcpu->arch.pio.size = size;
6717
6718         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6719                 vcpu->arch.pio.count = 0;
6720                 return 1;
6721         }
6722
6723         vcpu->run->exit_reason = KVM_EXIT_IO;
6724         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6725         vcpu->run->io.size = size;
6726         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6727         vcpu->run->io.count = count;
6728         vcpu->run->io.port = port;
6729
6730         return 0;
6731 }
6732
6733 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6734                            unsigned short port, void *val, unsigned int count)
6735 {
6736         int ret;
6737
6738         if (vcpu->arch.pio.count)
6739                 goto data_avail;
6740
6741         memset(vcpu->arch.pio_data, 0, size * count);
6742
6743         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6744         if (ret) {
6745 data_avail:
6746                 memcpy(val, vcpu->arch.pio_data, size * count);
6747                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6748                 vcpu->arch.pio.count = 0;
6749                 return 1;
6750         }
6751
6752         return 0;
6753 }
6754
6755 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6756                                     int size, unsigned short port, void *val,
6757                                     unsigned int count)
6758 {
6759         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6760
6761 }
6762
6763 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6764                             unsigned short port, const void *val,
6765                             unsigned int count)
6766 {
6767         memcpy(vcpu->arch.pio_data, val, size * count);
6768         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6769         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6770 }
6771
6772 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6773                                      int size, unsigned short port,
6774                                      const void *val, unsigned int count)
6775 {
6776         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6777 }
6778
6779 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6780 {
6781         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6782 }
6783
6784 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6785 {
6786         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6787 }
6788
6789 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6790 {
6791         if (!need_emulate_wbinvd(vcpu))
6792                 return X86EMUL_CONTINUE;
6793
6794         if (static_call(kvm_x86_has_wbinvd_exit)()) {
6795                 int cpu = get_cpu();
6796
6797                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6798                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6799                                 wbinvd_ipi, NULL, 1);
6800                 put_cpu();
6801                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6802         } else
6803                 wbinvd();
6804         return X86EMUL_CONTINUE;
6805 }
6806
6807 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6808 {
6809         kvm_emulate_wbinvd_noskip(vcpu);
6810         return kvm_skip_emulated_instruction(vcpu);
6811 }
6812 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6813
6814
6815
6816 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6817 {
6818         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6819 }
6820
6821 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6822                             unsigned long *dest)
6823 {
6824         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6825 }
6826
6827 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6828                            unsigned long value)
6829 {
6830
6831         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6832 }
6833
6834 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6835 {
6836         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6837 }
6838
6839 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6840 {
6841         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6842         unsigned long value;
6843
6844         switch (cr) {
6845         case 0:
6846                 value = kvm_read_cr0(vcpu);
6847                 break;
6848         case 2:
6849                 value = vcpu->arch.cr2;
6850                 break;
6851         case 3:
6852                 value = kvm_read_cr3(vcpu);
6853                 break;
6854         case 4:
6855                 value = kvm_read_cr4(vcpu);
6856                 break;
6857         case 8:
6858                 value = kvm_get_cr8(vcpu);
6859                 break;
6860         default:
6861                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6862                 return 0;
6863         }
6864
6865         return value;
6866 }
6867
6868 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6869 {
6870         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6871         int res = 0;
6872
6873         switch (cr) {
6874         case 0:
6875                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6876                 break;
6877         case 2:
6878                 vcpu->arch.cr2 = val;
6879                 break;
6880         case 3:
6881                 res = kvm_set_cr3(vcpu, val);
6882                 break;
6883         case 4:
6884                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6885                 break;
6886         case 8:
6887                 res = kvm_set_cr8(vcpu, val);
6888                 break;
6889         default:
6890                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6891                 res = -1;
6892         }
6893
6894         return res;
6895 }
6896
6897 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6898 {
6899         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6900 }
6901
6902 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6903 {
6904         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6905 }
6906
6907 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6908 {
6909         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6910 }
6911
6912 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6913 {
6914         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6915 }
6916
6917 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6918 {
6919         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6920 }
6921
6922 static unsigned long emulator_get_cached_segment_base(
6923         struct x86_emulate_ctxt *ctxt, int seg)
6924 {
6925         return get_segment_base(emul_to_vcpu(ctxt), seg);
6926 }
6927
6928 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6929                                  struct desc_struct *desc, u32 *base3,
6930                                  int seg)
6931 {
6932         struct kvm_segment var;
6933
6934         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6935         *selector = var.selector;
6936
6937         if (var.unusable) {
6938                 memset(desc, 0, sizeof(*desc));
6939                 if (base3)
6940                         *base3 = 0;
6941                 return false;
6942         }
6943
6944         if (var.g)
6945                 var.limit >>= 12;
6946         set_desc_limit(desc, var.limit);
6947         set_desc_base(desc, (unsigned long)var.base);
6948 #ifdef CONFIG_X86_64
6949         if (base3)
6950                 *base3 = var.base >> 32;
6951 #endif
6952         desc->type = var.type;
6953         desc->s = var.s;
6954         desc->dpl = var.dpl;
6955         desc->p = var.present;
6956         desc->avl = var.avl;
6957         desc->l = var.l;
6958         desc->d = var.db;
6959         desc->g = var.g;
6960
6961         return true;
6962 }
6963
6964 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6965                                  struct desc_struct *desc, u32 base3,
6966                                  int seg)
6967 {
6968         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6969         struct kvm_segment var;
6970
6971         var.selector = selector;
6972         var.base = get_desc_base(desc);
6973 #ifdef CONFIG_X86_64
6974         var.base |= ((u64)base3) << 32;
6975 #endif
6976         var.limit = get_desc_limit(desc);
6977         if (desc->g)
6978                 var.limit = (var.limit << 12) | 0xfff;
6979         var.type = desc->type;
6980         var.dpl = desc->dpl;
6981         var.db = desc->d;
6982         var.s = desc->s;
6983         var.l = desc->l;
6984         var.g = desc->g;
6985         var.avl = desc->avl;
6986         var.present = desc->p;
6987         var.unusable = !var.present;
6988         var.padding = 0;
6989
6990         kvm_set_segment(vcpu, &var, seg);
6991         return;
6992 }
6993
6994 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6995                             u32 msr_index, u64 *pdata)
6996 {
6997         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6998         int r;
6999
7000         r = kvm_get_msr(vcpu, msr_index, pdata);
7001
7002         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7003                 /* Bounce to user space */
7004                 return X86EMUL_IO_NEEDED;
7005         }
7006
7007         return r;
7008 }
7009
7010 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7011                             u32 msr_index, u64 data)
7012 {
7013         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7014         int r;
7015
7016         r = kvm_set_msr(vcpu, msr_index, data);
7017
7018         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7019                 /* Bounce to user space */
7020                 return X86EMUL_IO_NEEDED;
7021         }
7022
7023         return r;
7024 }
7025
7026 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7027 {
7028         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7029
7030         return vcpu->arch.smbase;
7031 }
7032
7033 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7034 {
7035         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7036
7037         vcpu->arch.smbase = smbase;
7038 }
7039
7040 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7041                               u32 pmc)
7042 {
7043         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7044 }
7045
7046 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7047                              u32 pmc, u64 *pdata)
7048 {
7049         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7050 }
7051
7052 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7053 {
7054         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7055 }
7056
7057 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7058                               struct x86_instruction_info *info,
7059                               enum x86_intercept_stage stage)
7060 {
7061         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7062                                             &ctxt->exception);
7063 }
7064
7065 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7066                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7067                               bool exact_only)
7068 {
7069         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7070 }
7071
7072 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7073 {
7074         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7075 }
7076
7077 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7078 {
7079         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7080 }
7081
7082 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7083 {
7084         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7085 }
7086
7087 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7088 {
7089         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7090 }
7091
7092 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7093 {
7094         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7095 }
7096
7097 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7098 {
7099         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7100 }
7101
7102 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7103 {
7104         return emul_to_vcpu(ctxt)->arch.hflags;
7105 }
7106
7107 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7108 {
7109         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7110
7111         vcpu->arch.hflags = emul_flags;
7112         kvm_mmu_reset_context(vcpu);
7113 }
7114
7115 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7116                                   const char *smstate)
7117 {
7118         return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
7119 }
7120
7121 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7122 {
7123         kvm_smm_changed(emul_to_vcpu(ctxt));
7124 }
7125
7126 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7127 {
7128         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7129 }
7130
7131 static const struct x86_emulate_ops emulate_ops = {
7132         .read_gpr            = emulator_read_gpr,
7133         .write_gpr           = emulator_write_gpr,
7134         .read_std            = emulator_read_std,
7135         .write_std           = emulator_write_std,
7136         .read_phys           = kvm_read_guest_phys_system,
7137         .fetch               = kvm_fetch_guest_virt,
7138         .read_emulated       = emulator_read_emulated,
7139         .write_emulated      = emulator_write_emulated,
7140         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7141         .invlpg              = emulator_invlpg,
7142         .pio_in_emulated     = emulator_pio_in_emulated,
7143         .pio_out_emulated    = emulator_pio_out_emulated,
7144         .get_segment         = emulator_get_segment,
7145         .set_segment         = emulator_set_segment,
7146         .get_cached_segment_base = emulator_get_cached_segment_base,
7147         .get_gdt             = emulator_get_gdt,
7148         .get_idt             = emulator_get_idt,
7149         .set_gdt             = emulator_set_gdt,
7150         .set_idt             = emulator_set_idt,
7151         .get_cr              = emulator_get_cr,
7152         .set_cr              = emulator_set_cr,
7153         .cpl                 = emulator_get_cpl,
7154         .get_dr              = emulator_get_dr,
7155         .set_dr              = emulator_set_dr,
7156         .get_smbase          = emulator_get_smbase,
7157         .set_smbase          = emulator_set_smbase,
7158         .set_msr             = emulator_set_msr,
7159         .get_msr             = emulator_get_msr,
7160         .check_pmc           = emulator_check_pmc,
7161         .read_pmc            = emulator_read_pmc,
7162         .halt                = emulator_halt,
7163         .wbinvd              = emulator_wbinvd,
7164         .fix_hypercall       = emulator_fix_hypercall,
7165         .intercept           = emulator_intercept,
7166         .get_cpuid           = emulator_get_cpuid,
7167         .guest_has_long_mode = emulator_guest_has_long_mode,
7168         .guest_has_movbe     = emulator_guest_has_movbe,
7169         .guest_has_fxsr      = emulator_guest_has_fxsr,
7170         .set_nmi_mask        = emulator_set_nmi_mask,
7171         .get_hflags          = emulator_get_hflags,
7172         .set_hflags          = emulator_set_hflags,
7173         .pre_leave_smm       = emulator_pre_leave_smm,
7174         .post_leave_smm      = emulator_post_leave_smm,
7175         .set_xcr             = emulator_set_xcr,
7176 };
7177
7178 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7179 {
7180         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7181         /*
7182          * an sti; sti; sequence only disable interrupts for the first
7183          * instruction. So, if the last instruction, be it emulated or
7184          * not, left the system with the INT_STI flag enabled, it
7185          * means that the last instruction is an sti. We should not
7186          * leave the flag on in this case. The same goes for mov ss
7187          */
7188         if (int_shadow & mask)
7189                 mask = 0;
7190         if (unlikely(int_shadow || mask)) {
7191                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7192                 if (!mask)
7193                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7194         }
7195 }
7196
7197 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7198 {
7199         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7200         if (ctxt->exception.vector == PF_VECTOR)
7201                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7202
7203         if (ctxt->exception.error_code_valid)
7204                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7205                                       ctxt->exception.error_code);
7206         else
7207                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7208         return false;
7209 }
7210
7211 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7212 {
7213         struct x86_emulate_ctxt *ctxt;
7214
7215         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7216         if (!ctxt) {
7217                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7218                 return NULL;
7219         }
7220
7221         ctxt->vcpu = vcpu;
7222         ctxt->ops = &emulate_ops;
7223         vcpu->arch.emulate_ctxt = ctxt;
7224
7225         return ctxt;
7226 }
7227
7228 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7229 {
7230         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7231         int cs_db, cs_l;
7232
7233         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7234
7235         ctxt->gpa_available = false;
7236         ctxt->eflags = kvm_get_rflags(vcpu);
7237         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7238
7239         ctxt->eip = kvm_rip_read(vcpu);
7240         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7241                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7242                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7243                      cs_db                              ? X86EMUL_MODE_PROT32 :
7244                                                           X86EMUL_MODE_PROT16;
7245         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7246         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7247         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7248
7249         ctxt->interruptibility = 0;
7250         ctxt->have_exception = false;
7251         ctxt->exception.vector = -1;
7252         ctxt->perm_ok = false;
7253
7254         init_decode_cache(ctxt);
7255         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7256 }
7257
7258 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7259 {
7260         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7261         int ret;
7262
7263         init_emulate_ctxt(vcpu);
7264
7265         ctxt->op_bytes = 2;
7266         ctxt->ad_bytes = 2;
7267         ctxt->_eip = ctxt->eip + inc_eip;
7268         ret = emulate_int_real(ctxt, irq);
7269
7270         if (ret != X86EMUL_CONTINUE) {
7271                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7272         } else {
7273                 ctxt->eip = ctxt->_eip;
7274                 kvm_rip_write(vcpu, ctxt->eip);
7275                 kvm_set_rflags(vcpu, ctxt->eflags);
7276         }
7277 }
7278 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7279
7280 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7281 {
7282         ++vcpu->stat.insn_emulation_fail;
7283         trace_kvm_emulate_insn_failed(vcpu);
7284
7285         if (emulation_type & EMULTYPE_VMWARE_GP) {
7286                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7287                 return 1;
7288         }
7289
7290         if (emulation_type & EMULTYPE_SKIP) {
7291                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7292                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7293                 vcpu->run->internal.ndata = 0;
7294                 return 0;
7295         }
7296
7297         kvm_queue_exception(vcpu, UD_VECTOR);
7298
7299         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7300                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7301                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7302                 vcpu->run->internal.ndata = 0;
7303                 return 0;
7304         }
7305
7306         return 1;
7307 }
7308
7309 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7310                                   bool write_fault_to_shadow_pgtable,
7311                                   int emulation_type)
7312 {
7313         gpa_t gpa = cr2_or_gpa;
7314         kvm_pfn_t pfn;
7315
7316         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7317                 return false;
7318
7319         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7320             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7321                 return false;
7322
7323         if (!vcpu->arch.mmu->direct_map) {
7324                 /*
7325                  * Write permission should be allowed since only
7326                  * write access need to be emulated.
7327                  */
7328                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7329
7330                 /*
7331                  * If the mapping is invalid in guest, let cpu retry
7332                  * it to generate fault.
7333                  */
7334                 if (gpa == UNMAPPED_GVA)
7335                         return true;
7336         }
7337
7338         /*
7339          * Do not retry the unhandleable instruction if it faults on the
7340          * readonly host memory, otherwise it will goto a infinite loop:
7341          * retry instruction -> write #PF -> emulation fail -> retry
7342          * instruction -> ...
7343          */
7344         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7345
7346         /*
7347          * If the instruction failed on the error pfn, it can not be fixed,
7348          * report the error to userspace.
7349          */
7350         if (is_error_noslot_pfn(pfn))
7351                 return false;
7352
7353         kvm_release_pfn_clean(pfn);
7354
7355         /* The instructions are well-emulated on direct mmu. */
7356         if (vcpu->arch.mmu->direct_map) {
7357                 unsigned int indirect_shadow_pages;
7358
7359                 write_lock(&vcpu->kvm->mmu_lock);
7360                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7361                 write_unlock(&vcpu->kvm->mmu_lock);
7362
7363                 if (indirect_shadow_pages)
7364                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7365
7366                 return true;
7367         }
7368
7369         /*
7370          * if emulation was due to access to shadowed page table
7371          * and it failed try to unshadow page and re-enter the
7372          * guest to let CPU execute the instruction.
7373          */
7374         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7375
7376         /*
7377          * If the access faults on its page table, it can not
7378          * be fixed by unprotecting shadow page and it should
7379          * be reported to userspace.
7380          */
7381         return !write_fault_to_shadow_pgtable;
7382 }
7383
7384 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7385                               gpa_t cr2_or_gpa,  int emulation_type)
7386 {
7387         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7388         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7389
7390         last_retry_eip = vcpu->arch.last_retry_eip;
7391         last_retry_addr = vcpu->arch.last_retry_addr;
7392
7393         /*
7394          * If the emulation is caused by #PF and it is non-page_table
7395          * writing instruction, it means the VM-EXIT is caused by shadow
7396          * page protected, we can zap the shadow page and retry this
7397          * instruction directly.
7398          *
7399          * Note: if the guest uses a non-page-table modifying instruction
7400          * on the PDE that points to the instruction, then we will unmap
7401          * the instruction and go to an infinite loop. So, we cache the
7402          * last retried eip and the last fault address, if we meet the eip
7403          * and the address again, we can break out of the potential infinite
7404          * loop.
7405          */
7406         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7407
7408         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7409                 return false;
7410
7411         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7412             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7413                 return false;
7414
7415         if (x86_page_table_writing_insn(ctxt))
7416                 return false;
7417
7418         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7419                 return false;
7420
7421         vcpu->arch.last_retry_eip = ctxt->eip;
7422         vcpu->arch.last_retry_addr = cr2_or_gpa;
7423
7424         if (!vcpu->arch.mmu->direct_map)
7425                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7426
7427         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7428
7429         return true;
7430 }
7431
7432 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7433 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7434
7435 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7436 {
7437         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7438                 /* This is a good place to trace that we are exiting SMM.  */
7439                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7440
7441                 /* Process a latched INIT or SMI, if any.  */
7442                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7443         }
7444
7445         kvm_mmu_reset_context(vcpu);
7446 }
7447
7448 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7449                                 unsigned long *db)
7450 {
7451         u32 dr6 = 0;
7452         int i;
7453         u32 enable, rwlen;
7454
7455         enable = dr7;
7456         rwlen = dr7 >> 16;
7457         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7458                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7459                         dr6 |= (1 << i);
7460         return dr6;
7461 }
7462
7463 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7464 {
7465         struct kvm_run *kvm_run = vcpu->run;
7466
7467         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7468                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7469                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7470                 kvm_run->debug.arch.exception = DB_VECTOR;
7471                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7472                 return 0;
7473         }
7474         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7475         return 1;
7476 }
7477
7478 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7479 {
7480         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7481         int r;
7482
7483         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7484         if (unlikely(!r))
7485                 return 0;
7486
7487         /*
7488          * rflags is the old, "raw" value of the flags.  The new value has
7489          * not been saved yet.
7490          *
7491          * This is correct even for TF set by the guest, because "the
7492          * processor will not generate this exception after the instruction
7493          * that sets the TF flag".
7494          */
7495         if (unlikely(rflags & X86_EFLAGS_TF))
7496                 r = kvm_vcpu_do_singlestep(vcpu);
7497         return r;
7498 }
7499 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7500
7501 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7502 {
7503         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7504             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7505                 struct kvm_run *kvm_run = vcpu->run;
7506                 unsigned long eip = kvm_get_linear_rip(vcpu);
7507                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7508                                            vcpu->arch.guest_debug_dr7,
7509                                            vcpu->arch.eff_db);
7510
7511                 if (dr6 != 0) {
7512                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7513                         kvm_run->debug.arch.pc = eip;
7514                         kvm_run->debug.arch.exception = DB_VECTOR;
7515                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7516                         *r = 0;
7517                         return true;
7518                 }
7519         }
7520
7521         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7522             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7523                 unsigned long eip = kvm_get_linear_rip(vcpu);
7524                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7525                                            vcpu->arch.dr7,
7526                                            vcpu->arch.db);
7527
7528                 if (dr6 != 0) {
7529                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7530                         *r = 1;
7531                         return true;
7532                 }
7533         }
7534
7535         return false;
7536 }
7537
7538 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7539 {
7540         switch (ctxt->opcode_len) {
7541         case 1:
7542                 switch (ctxt->b) {
7543                 case 0xe4:      /* IN */
7544                 case 0xe5:
7545                 case 0xec:
7546                 case 0xed:
7547                 case 0xe6:      /* OUT */
7548                 case 0xe7:
7549                 case 0xee:
7550                 case 0xef:
7551                 case 0x6c:      /* INS */
7552                 case 0x6d:
7553                 case 0x6e:      /* OUTS */
7554                 case 0x6f:
7555                         return true;
7556                 }
7557                 break;
7558         case 2:
7559                 switch (ctxt->b) {
7560                 case 0x33:      /* RDPMC */
7561                         return true;
7562                 }
7563                 break;
7564         }
7565
7566         return false;
7567 }
7568
7569 /*
7570  * Decode to be emulated instruction. Return EMULATION_OK if success.
7571  */
7572 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7573                                     void *insn, int insn_len)
7574 {
7575         int r = EMULATION_OK;
7576         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7577
7578         init_emulate_ctxt(vcpu);
7579
7580         /*
7581          * We will reenter on the same instruction since we do not set
7582          * complete_userspace_io. This does not handle watchpoints yet,
7583          * those would be handled in the emulate_ops.
7584          */
7585         if (!(emulation_type & EMULTYPE_SKIP) &&
7586             kvm_vcpu_check_breakpoint(vcpu, &r))
7587                 return r;
7588
7589         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7590
7591         trace_kvm_emulate_insn_start(vcpu);
7592         ++vcpu->stat.insn_emulation;
7593
7594         return r;
7595 }
7596 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7597
7598 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7599                             int emulation_type, void *insn, int insn_len)
7600 {
7601         int r;
7602         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7603         bool writeback = true;
7604         bool write_fault_to_spt;
7605
7606         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7607                 return 1;
7608
7609         vcpu->arch.l1tf_flush_l1d = true;
7610
7611         /*
7612          * Clear write_fault_to_shadow_pgtable here to ensure it is
7613          * never reused.
7614          */
7615         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7616         vcpu->arch.write_fault_to_shadow_pgtable = false;
7617
7618         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7619                 kvm_clear_exception_queue(vcpu);
7620
7621                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7622                                                     insn, insn_len);
7623                 if (r != EMULATION_OK)  {
7624                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7625                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7626                                 kvm_queue_exception(vcpu, UD_VECTOR);
7627                                 return 1;
7628                         }
7629                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7630                                                   write_fault_to_spt,
7631                                                   emulation_type))
7632                                 return 1;
7633                         if (ctxt->have_exception) {
7634                                 /*
7635                                  * #UD should result in just EMULATION_FAILED, and trap-like
7636                                  * exception should not be encountered during decode.
7637                                  */
7638                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7639                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7640                                 inject_emulated_exception(vcpu);
7641                                 return 1;
7642                         }
7643                         return handle_emulation_failure(vcpu, emulation_type);
7644                 }
7645         }
7646
7647         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7648             !is_vmware_backdoor_opcode(ctxt)) {
7649                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7650                 return 1;
7651         }
7652
7653         /*
7654          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7655          * for kvm_skip_emulated_instruction().  The caller is responsible for
7656          * updating interruptibility state and injecting single-step #DBs.
7657          */
7658         if (emulation_type & EMULTYPE_SKIP) {
7659                 kvm_rip_write(vcpu, ctxt->_eip);
7660                 if (ctxt->eflags & X86_EFLAGS_RF)
7661                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7662                 return 1;
7663         }
7664
7665         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7666                 return 1;
7667
7668         /* this is needed for vmware backdoor interface to work since it
7669            changes registers values  during IO operation */
7670         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7671                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7672                 emulator_invalidate_register_cache(ctxt);
7673         }
7674
7675 restart:
7676         if (emulation_type & EMULTYPE_PF) {
7677                 /* Save the faulting GPA (cr2) in the address field */
7678                 ctxt->exception.address = cr2_or_gpa;
7679
7680                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7681                 if (vcpu->arch.mmu->direct_map) {
7682                         ctxt->gpa_available = true;
7683                         ctxt->gpa_val = cr2_or_gpa;
7684                 }
7685         } else {
7686                 /* Sanitize the address out of an abundance of paranoia. */
7687                 ctxt->exception.address = 0;
7688         }
7689
7690         r = x86_emulate_insn(ctxt);
7691
7692         if (r == EMULATION_INTERCEPTED)
7693                 return 1;
7694
7695         if (r == EMULATION_FAILED) {
7696                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7697                                         emulation_type))
7698                         return 1;
7699
7700                 return handle_emulation_failure(vcpu, emulation_type);
7701         }
7702
7703         if (ctxt->have_exception) {
7704                 r = 1;
7705                 if (inject_emulated_exception(vcpu))
7706                         return r;
7707         } else if (vcpu->arch.pio.count) {
7708                 if (!vcpu->arch.pio.in) {
7709                         /* FIXME: return into emulator if single-stepping.  */
7710                         vcpu->arch.pio.count = 0;
7711                 } else {
7712                         writeback = false;
7713                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7714                 }
7715                 r = 0;
7716         } else if (vcpu->mmio_needed) {
7717                 ++vcpu->stat.mmio_exits;
7718
7719                 if (!vcpu->mmio_is_write)
7720                         writeback = false;
7721                 r = 0;
7722                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7723         } else if (r == EMULATION_RESTART)
7724                 goto restart;
7725         else
7726                 r = 1;
7727
7728         if (writeback) {
7729                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7730                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7731                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7732                 if (!ctxt->have_exception ||
7733                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7734                         kvm_rip_write(vcpu, ctxt->eip);
7735                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7736                                 r = kvm_vcpu_do_singlestep(vcpu);
7737                         if (kvm_x86_ops.update_emulated_instruction)
7738                                 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7739                         __kvm_set_rflags(vcpu, ctxt->eflags);
7740                 }
7741
7742                 /*
7743                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7744                  * do nothing, and it will be requested again as soon as
7745                  * the shadow expires.  But we still need to check here,
7746                  * because POPF has no interrupt shadow.
7747                  */
7748                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7749                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7750         } else
7751                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7752
7753         return r;
7754 }
7755
7756 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7757 {
7758         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7759 }
7760 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7761
7762 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7763                                         void *insn, int insn_len)
7764 {
7765         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7766 }
7767 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7768
7769 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7770 {
7771         vcpu->arch.pio.count = 0;
7772         return 1;
7773 }
7774
7775 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7776 {
7777         vcpu->arch.pio.count = 0;
7778
7779         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7780                 return 1;
7781
7782         return kvm_skip_emulated_instruction(vcpu);
7783 }
7784
7785 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7786                             unsigned short port)
7787 {
7788         unsigned long val = kvm_rax_read(vcpu);
7789         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7790
7791         if (ret)
7792                 return ret;
7793
7794         /*
7795          * Workaround userspace that relies on old KVM behavior of %rip being
7796          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7797          */
7798         if (port == 0x7e &&
7799             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7800                 vcpu->arch.complete_userspace_io =
7801                         complete_fast_pio_out_port_0x7e;
7802                 kvm_skip_emulated_instruction(vcpu);
7803         } else {
7804                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7805                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7806         }
7807         return 0;
7808 }
7809
7810 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7811 {
7812         unsigned long val;
7813
7814         /* We should only ever be called with arch.pio.count equal to 1 */
7815         BUG_ON(vcpu->arch.pio.count != 1);
7816
7817         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7818                 vcpu->arch.pio.count = 0;
7819                 return 1;
7820         }
7821
7822         /* For size less than 4 we merge, else we zero extend */
7823         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7824
7825         /*
7826          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7827          * the copy and tracing
7828          */
7829         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7830         kvm_rax_write(vcpu, val);
7831
7832         return kvm_skip_emulated_instruction(vcpu);
7833 }
7834
7835 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7836                            unsigned short port)
7837 {
7838         unsigned long val;
7839         int ret;
7840
7841         /* For size less than 4 we merge, else we zero extend */
7842         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7843
7844         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7845         if (ret) {
7846                 kvm_rax_write(vcpu, val);
7847                 return ret;
7848         }
7849
7850         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7851         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7852
7853         return 0;
7854 }
7855
7856 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7857 {
7858         int ret;
7859
7860         if (in)
7861                 ret = kvm_fast_pio_in(vcpu, size, port);
7862         else
7863                 ret = kvm_fast_pio_out(vcpu, size, port);
7864         return ret && kvm_skip_emulated_instruction(vcpu);
7865 }
7866 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7867
7868 static int kvmclock_cpu_down_prep(unsigned int cpu)
7869 {
7870         __this_cpu_write(cpu_tsc_khz, 0);
7871         return 0;
7872 }
7873
7874 static void tsc_khz_changed(void *data)
7875 {
7876         struct cpufreq_freqs *freq = data;
7877         unsigned long khz = 0;
7878
7879         if (data)
7880                 khz = freq->new;
7881         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7882                 khz = cpufreq_quick_get(raw_smp_processor_id());
7883         if (!khz)
7884                 khz = tsc_khz;
7885         __this_cpu_write(cpu_tsc_khz, khz);
7886 }
7887
7888 #ifdef CONFIG_X86_64
7889 static void kvm_hyperv_tsc_notifier(void)
7890 {
7891         struct kvm *kvm;
7892         struct kvm_vcpu *vcpu;
7893         int cpu;
7894         unsigned long flags;
7895
7896         mutex_lock(&kvm_lock);
7897         list_for_each_entry(kvm, &vm_list, vm_list)
7898                 kvm_make_mclock_inprogress_request(kvm);
7899
7900         hyperv_stop_tsc_emulation();
7901
7902         /* TSC frequency always matches when on Hyper-V */
7903         for_each_present_cpu(cpu)
7904                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7905         kvm_max_guest_tsc_khz = tsc_khz;
7906
7907         list_for_each_entry(kvm, &vm_list, vm_list) {
7908                 struct kvm_arch *ka = &kvm->arch;
7909
7910                 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
7911                 pvclock_update_vm_gtod_copy(kvm);
7912                 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
7913
7914                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7915                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7916
7917                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7918                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7919         }
7920         mutex_unlock(&kvm_lock);
7921 }
7922 #endif
7923
7924 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7925 {
7926         struct kvm *kvm;
7927         struct kvm_vcpu *vcpu;
7928         int i, send_ipi = 0;
7929
7930         /*
7931          * We allow guests to temporarily run on slowing clocks,
7932          * provided we notify them after, or to run on accelerating
7933          * clocks, provided we notify them before.  Thus time never
7934          * goes backwards.
7935          *
7936          * However, we have a problem.  We can't atomically update
7937          * the frequency of a given CPU from this function; it is
7938          * merely a notifier, which can be called from any CPU.
7939          * Changing the TSC frequency at arbitrary points in time
7940          * requires a recomputation of local variables related to
7941          * the TSC for each VCPU.  We must flag these local variables
7942          * to be updated and be sure the update takes place with the
7943          * new frequency before any guests proceed.
7944          *
7945          * Unfortunately, the combination of hotplug CPU and frequency
7946          * change creates an intractable locking scenario; the order
7947          * of when these callouts happen is undefined with respect to
7948          * CPU hotplug, and they can race with each other.  As such,
7949          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7950          * undefined; you can actually have a CPU frequency change take
7951          * place in between the computation of X and the setting of the
7952          * variable.  To protect against this problem, all updates of
7953          * the per_cpu tsc_khz variable are done in an interrupt
7954          * protected IPI, and all callers wishing to update the value
7955          * must wait for a synchronous IPI to complete (which is trivial
7956          * if the caller is on the CPU already).  This establishes the
7957          * necessary total order on variable updates.
7958          *
7959          * Note that because a guest time update may take place
7960          * anytime after the setting of the VCPU's request bit, the
7961          * correct TSC value must be set before the request.  However,
7962          * to ensure the update actually makes it to any guest which
7963          * starts running in hardware virtualization between the set
7964          * and the acquisition of the spinlock, we must also ping the
7965          * CPU after setting the request bit.
7966          *
7967          */
7968
7969         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7970
7971         mutex_lock(&kvm_lock);
7972         list_for_each_entry(kvm, &vm_list, vm_list) {
7973                 kvm_for_each_vcpu(i, vcpu, kvm) {
7974                         if (vcpu->cpu != cpu)
7975                                 continue;
7976                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7977                         if (vcpu->cpu != raw_smp_processor_id())
7978                                 send_ipi = 1;
7979                 }
7980         }
7981         mutex_unlock(&kvm_lock);
7982
7983         if (freq->old < freq->new && send_ipi) {
7984                 /*
7985                  * We upscale the frequency.  Must make the guest
7986                  * doesn't see old kvmclock values while running with
7987                  * the new frequency, otherwise we risk the guest sees
7988                  * time go backwards.
7989                  *
7990                  * In case we update the frequency for another cpu
7991                  * (which might be in guest context) send an interrupt
7992                  * to kick the cpu out of guest context.  Next time
7993                  * guest context is entered kvmclock will be updated,
7994                  * so the guest will not see stale values.
7995                  */
7996                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7997         }
7998 }
7999
8000 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8001                                      void *data)
8002 {
8003         struct cpufreq_freqs *freq = data;
8004         int cpu;
8005
8006         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8007                 return 0;
8008         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8009                 return 0;
8010
8011         for_each_cpu(cpu, freq->policy->cpus)
8012                 __kvmclock_cpufreq_notifier(freq, cpu);
8013
8014         return 0;
8015 }
8016
8017 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8018         .notifier_call  = kvmclock_cpufreq_notifier
8019 };
8020
8021 static int kvmclock_cpu_online(unsigned int cpu)
8022 {
8023         tsc_khz_changed(NULL);
8024         return 0;
8025 }
8026
8027 static void kvm_timer_init(void)
8028 {
8029         max_tsc_khz = tsc_khz;
8030
8031         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8032 #ifdef CONFIG_CPU_FREQ
8033                 struct cpufreq_policy *policy;
8034                 int cpu;
8035
8036                 cpu = get_cpu();
8037                 policy = cpufreq_cpu_get(cpu);
8038                 if (policy) {
8039                         if (policy->cpuinfo.max_freq)
8040                                 max_tsc_khz = policy->cpuinfo.max_freq;
8041                         cpufreq_cpu_put(policy);
8042                 }
8043                 put_cpu();
8044 #endif
8045                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8046                                           CPUFREQ_TRANSITION_NOTIFIER);
8047         }
8048
8049         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8050                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8051 }
8052
8053 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8054 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8055
8056 int kvm_is_in_guest(void)
8057 {
8058         return __this_cpu_read(current_vcpu) != NULL;
8059 }
8060
8061 static int kvm_is_user_mode(void)
8062 {
8063         int user_mode = 3;
8064
8065         if (__this_cpu_read(current_vcpu))
8066                 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8067
8068         return user_mode != 0;
8069 }
8070
8071 static unsigned long kvm_get_guest_ip(void)
8072 {
8073         unsigned long ip = 0;
8074
8075         if (__this_cpu_read(current_vcpu))
8076                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8077
8078         return ip;
8079 }
8080
8081 static void kvm_handle_intel_pt_intr(void)
8082 {
8083         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8084
8085         kvm_make_request(KVM_REQ_PMI, vcpu);
8086         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8087                         (unsigned long *)&vcpu->arch.pmu.global_status);
8088 }
8089
8090 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8091         .is_in_guest            = kvm_is_in_guest,
8092         .is_user_mode           = kvm_is_user_mode,
8093         .get_guest_ip           = kvm_get_guest_ip,
8094         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
8095 };
8096
8097 #ifdef CONFIG_X86_64
8098 static void pvclock_gtod_update_fn(struct work_struct *work)
8099 {
8100         struct kvm *kvm;
8101
8102         struct kvm_vcpu *vcpu;
8103         int i;
8104
8105         mutex_lock(&kvm_lock);
8106         list_for_each_entry(kvm, &vm_list, vm_list)
8107                 kvm_for_each_vcpu(i, vcpu, kvm)
8108                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8109         atomic_set(&kvm_guest_has_master_clock, 0);
8110         mutex_unlock(&kvm_lock);
8111 }
8112
8113 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8114
8115 /*
8116  * Indirection to move queue_work() out of the tk_core.seq write held
8117  * region to prevent possible deadlocks against time accessors which
8118  * are invoked with work related locks held.
8119  */
8120 static void pvclock_irq_work_fn(struct irq_work *w)
8121 {
8122         queue_work(system_long_wq, &pvclock_gtod_work);
8123 }
8124
8125 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8126
8127 /*
8128  * Notification about pvclock gtod data update.
8129  */
8130 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8131                                void *priv)
8132 {
8133         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8134         struct timekeeper *tk = priv;
8135
8136         update_pvclock_gtod(tk);
8137
8138         /*
8139          * Disable master clock if host does not trust, or does not use,
8140          * TSC based clocksource. Delegate queue_work() to irq_work as
8141          * this is invoked with tk_core.seq write held.
8142          */
8143         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8144             atomic_read(&kvm_guest_has_master_clock) != 0)
8145                 irq_work_queue(&pvclock_irq_work);
8146         return 0;
8147 }
8148
8149 static struct notifier_block pvclock_gtod_notifier = {
8150         .notifier_call = pvclock_gtod_notify,
8151 };
8152 #endif
8153
8154 int kvm_arch_init(void *opaque)
8155 {
8156         struct kvm_x86_init_ops *ops = opaque;
8157         int r;
8158
8159         if (kvm_x86_ops.hardware_enable) {
8160                 printk(KERN_ERR "kvm: already loaded the other module\n");
8161                 r = -EEXIST;
8162                 goto out;
8163         }
8164
8165         if (!ops->cpu_has_kvm_support()) {
8166                 pr_err_ratelimited("kvm: no hardware support\n");
8167                 r = -EOPNOTSUPP;
8168                 goto out;
8169         }
8170         if (ops->disabled_by_bios()) {
8171                 pr_err_ratelimited("kvm: disabled by bios\n");
8172                 r = -EOPNOTSUPP;
8173                 goto out;
8174         }
8175
8176         /*
8177          * KVM explicitly assumes that the guest has an FPU and
8178          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8179          * vCPU's FPU state as a fxregs_state struct.
8180          */
8181         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8182                 printk(KERN_ERR "kvm: inadequate fpu\n");
8183                 r = -EOPNOTSUPP;
8184                 goto out;
8185         }
8186
8187         r = -ENOMEM;
8188         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8189                                           __alignof__(struct fpu), SLAB_ACCOUNT,
8190                                           NULL);
8191         if (!x86_fpu_cache) {
8192                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8193                 goto out;
8194         }
8195
8196         x86_emulator_cache = kvm_alloc_emulator_cache();
8197         if (!x86_emulator_cache) {
8198                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8199                 goto out_free_x86_fpu_cache;
8200         }
8201
8202         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8203         if (!user_return_msrs) {
8204                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8205                 goto out_free_x86_emulator_cache;
8206         }
8207         kvm_nr_uret_msrs = 0;
8208
8209         r = kvm_mmu_module_init();
8210         if (r)
8211                 goto out_free_percpu;
8212
8213         kvm_timer_init();
8214
8215         perf_register_guest_info_callbacks(&kvm_guest_cbs);
8216
8217         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8218                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8219                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8220         }
8221
8222         if (pi_inject_timer == -1)
8223                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8224 #ifdef CONFIG_X86_64
8225         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8226
8227         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8228                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8229 #endif
8230
8231         return 0;
8232
8233 out_free_percpu:
8234         free_percpu(user_return_msrs);
8235 out_free_x86_emulator_cache:
8236         kmem_cache_destroy(x86_emulator_cache);
8237 out_free_x86_fpu_cache:
8238         kmem_cache_destroy(x86_fpu_cache);
8239 out:
8240         return r;
8241 }
8242
8243 void kvm_arch_exit(void)
8244 {
8245 #ifdef CONFIG_X86_64
8246         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8247                 clear_hv_tscchange_cb();
8248 #endif
8249         kvm_lapic_exit();
8250         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8251
8252         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8253                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8254                                             CPUFREQ_TRANSITION_NOTIFIER);
8255         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8256 #ifdef CONFIG_X86_64
8257         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8258         irq_work_sync(&pvclock_irq_work);
8259         cancel_work_sync(&pvclock_gtod_work);
8260 #endif
8261         kvm_x86_ops.hardware_enable = NULL;
8262         kvm_mmu_module_exit();
8263         free_percpu(user_return_msrs);
8264         kmem_cache_destroy(x86_emulator_cache);
8265         kmem_cache_destroy(x86_fpu_cache);
8266 #ifdef CONFIG_KVM_XEN
8267         static_key_deferred_flush(&kvm_xen_enabled);
8268         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8269 #endif
8270 }
8271
8272 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8273 {
8274         ++vcpu->stat.halt_exits;
8275         if (lapic_in_kernel(vcpu)) {
8276                 vcpu->arch.mp_state = state;
8277                 return 1;
8278         } else {
8279                 vcpu->run->exit_reason = reason;
8280                 return 0;
8281         }
8282 }
8283
8284 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8285 {
8286         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8287 }
8288 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8289
8290 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8291 {
8292         int ret = kvm_skip_emulated_instruction(vcpu);
8293         /*
8294          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8295          * KVM_EXIT_DEBUG here.
8296          */
8297         return kvm_vcpu_halt(vcpu) && ret;
8298 }
8299 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8300
8301 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8302 {
8303         int ret = kvm_skip_emulated_instruction(vcpu);
8304
8305         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8306 }
8307 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8308
8309 #ifdef CONFIG_X86_64
8310 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8311                                 unsigned long clock_type)
8312 {
8313         struct kvm_clock_pairing clock_pairing;
8314         struct timespec64 ts;
8315         u64 cycle;
8316         int ret;
8317
8318         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8319                 return -KVM_EOPNOTSUPP;
8320
8321         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8322                 return -KVM_EOPNOTSUPP;
8323
8324         clock_pairing.sec = ts.tv_sec;
8325         clock_pairing.nsec = ts.tv_nsec;
8326         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8327         clock_pairing.flags = 0;
8328         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8329
8330         ret = 0;
8331         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8332                             sizeof(struct kvm_clock_pairing)))
8333                 ret = -KVM_EFAULT;
8334
8335         return ret;
8336 }
8337 #endif
8338
8339 /*
8340  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8341  *
8342  * @apicid - apicid of vcpu to be kicked.
8343  */
8344 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8345 {
8346         struct kvm_lapic_irq lapic_irq;
8347
8348         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8349         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8350         lapic_irq.level = 0;
8351         lapic_irq.dest_id = apicid;
8352         lapic_irq.msi_redir_hint = false;
8353
8354         lapic_irq.delivery_mode = APIC_DM_REMRD;
8355         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8356 }
8357
8358 bool kvm_apicv_activated(struct kvm *kvm)
8359 {
8360         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8361 }
8362 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8363
8364 void kvm_apicv_init(struct kvm *kvm, bool enable)
8365 {
8366         if (enable)
8367                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8368                           &kvm->arch.apicv_inhibit_reasons);
8369         else
8370                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8371                         &kvm->arch.apicv_inhibit_reasons);
8372 }
8373 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8374
8375 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8376 {
8377         struct kvm_vcpu *target = NULL;
8378         struct kvm_apic_map *map;
8379
8380         vcpu->stat.directed_yield_attempted++;
8381
8382         if (single_task_running())
8383                 goto no_yield;
8384
8385         rcu_read_lock();
8386         map = rcu_dereference(vcpu->kvm->arch.apic_map);
8387
8388         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8389                 target = map->phys_map[dest_id]->vcpu;
8390
8391         rcu_read_unlock();
8392
8393         if (!target || !READ_ONCE(target->ready))
8394                 goto no_yield;
8395
8396         /* Ignore requests to yield to self */
8397         if (vcpu == target)
8398                 goto no_yield;
8399
8400         if (kvm_vcpu_yield_to(target) <= 0)
8401                 goto no_yield;
8402
8403         vcpu->stat.directed_yield_successful++;
8404
8405 no_yield:
8406         return;
8407 }
8408
8409 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8410 {
8411         unsigned long nr, a0, a1, a2, a3, ret;
8412         int op_64_bit;
8413
8414         if (kvm_xen_hypercall_enabled(vcpu->kvm))
8415                 return kvm_xen_hypercall(vcpu);
8416
8417         if (kvm_hv_hypercall_enabled(vcpu))
8418                 return kvm_hv_hypercall(vcpu);
8419
8420         nr = kvm_rax_read(vcpu);
8421         a0 = kvm_rbx_read(vcpu);
8422         a1 = kvm_rcx_read(vcpu);
8423         a2 = kvm_rdx_read(vcpu);
8424         a3 = kvm_rsi_read(vcpu);
8425
8426         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8427
8428         op_64_bit = is_64_bit_mode(vcpu);
8429         if (!op_64_bit) {
8430                 nr &= 0xFFFFFFFF;
8431                 a0 &= 0xFFFFFFFF;
8432                 a1 &= 0xFFFFFFFF;
8433                 a2 &= 0xFFFFFFFF;
8434                 a3 &= 0xFFFFFFFF;
8435         }
8436
8437         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8438                 ret = -KVM_EPERM;
8439                 goto out;
8440         }
8441
8442         ret = -KVM_ENOSYS;
8443
8444         switch (nr) {
8445         case KVM_HC_VAPIC_POLL_IRQ:
8446                 ret = 0;
8447                 break;
8448         case KVM_HC_KICK_CPU:
8449                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8450                         break;
8451
8452                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8453                 kvm_sched_yield(vcpu, a1);
8454                 ret = 0;
8455                 break;
8456 #ifdef CONFIG_X86_64
8457         case KVM_HC_CLOCK_PAIRING:
8458                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8459                 break;
8460 #endif
8461         case KVM_HC_SEND_IPI:
8462                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8463                         break;
8464
8465                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8466                 break;
8467         case KVM_HC_SCHED_YIELD:
8468                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8469                         break;
8470
8471                 kvm_sched_yield(vcpu, a0);
8472                 ret = 0;
8473                 break;
8474         default:
8475                 ret = -KVM_ENOSYS;
8476                 break;
8477         }
8478 out:
8479         if (!op_64_bit)
8480                 ret = (u32)ret;
8481         kvm_rax_write(vcpu, ret);
8482
8483         ++vcpu->stat.hypercalls;
8484         return kvm_skip_emulated_instruction(vcpu);
8485 }
8486 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8487
8488 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8489 {
8490         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8491         char instruction[3];
8492         unsigned long rip = kvm_rip_read(vcpu);
8493
8494         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8495
8496         return emulator_write_emulated(ctxt, rip, instruction, 3,
8497                 &ctxt->exception);
8498 }
8499
8500 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8501 {
8502         return vcpu->run->request_interrupt_window &&
8503                 likely(!pic_in_kernel(vcpu->kvm));
8504 }
8505
8506 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8507 {
8508         struct kvm_run *kvm_run = vcpu->run;
8509
8510         /*
8511          * if_flag is obsolete and useless, so do not bother
8512          * setting it for SEV-ES guests.  Userspace can just
8513          * use kvm_run->ready_for_interrupt_injection.
8514          */
8515         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8516                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8517
8518         kvm_run->cr8 = kvm_get_cr8(vcpu);
8519         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8520         kvm_run->ready_for_interrupt_injection =
8521                 pic_in_kernel(vcpu->kvm) ||
8522                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8523
8524         if (is_smm(vcpu))
8525                 kvm_run->flags |= KVM_RUN_X86_SMM;
8526 }
8527
8528 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8529 {
8530         int max_irr, tpr;
8531
8532         if (!kvm_x86_ops.update_cr8_intercept)
8533                 return;
8534
8535         if (!lapic_in_kernel(vcpu))
8536                 return;
8537
8538         if (vcpu->arch.apicv_active)
8539                 return;
8540
8541         if (!vcpu->arch.apic->vapic_addr)
8542                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8543         else
8544                 max_irr = -1;
8545
8546         if (max_irr != -1)
8547                 max_irr >>= 4;
8548
8549         tpr = kvm_lapic_get_cr8(vcpu);
8550
8551         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8552 }
8553
8554
8555 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8556 {
8557         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
8558                 return -EIO;
8559
8560         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8561                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8562                 return 1;
8563         }
8564
8565         return kvm_x86_ops.nested_ops->check_events(vcpu);
8566 }
8567
8568 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8569 {
8570         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8571                 vcpu->arch.exception.error_code = false;
8572         static_call(kvm_x86_queue_exception)(vcpu);
8573 }
8574
8575 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8576 {
8577         int r;
8578         bool can_inject = true;
8579
8580         /* try to reinject previous events if any */
8581
8582         if (vcpu->arch.exception.injected) {
8583                 kvm_inject_exception(vcpu);
8584                 can_inject = false;
8585         }
8586         /*
8587          * Do not inject an NMI or interrupt if there is a pending
8588          * exception.  Exceptions and interrupts are recognized at
8589          * instruction boundaries, i.e. the start of an instruction.
8590          * Trap-like exceptions, e.g. #DB, have higher priority than
8591          * NMIs and interrupts, i.e. traps are recognized before an
8592          * NMI/interrupt that's pending on the same instruction.
8593          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8594          * priority, but are only generated (pended) during instruction
8595          * execution, i.e. a pending fault-like exception means the
8596          * fault occurred on the *previous* instruction and must be
8597          * serviced prior to recognizing any new events in order to
8598          * fully complete the previous instruction.
8599          */
8600         else if (!vcpu->arch.exception.pending) {
8601                 if (vcpu->arch.nmi_injected) {
8602                         static_call(kvm_x86_set_nmi)(vcpu);
8603                         can_inject = false;
8604                 } else if (vcpu->arch.interrupt.injected) {
8605                         static_call(kvm_x86_set_irq)(vcpu);
8606                         can_inject = false;
8607                 }
8608         }
8609
8610         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8611                      vcpu->arch.exception.pending);
8612
8613         /*
8614          * Call check_nested_events() even if we reinjected a previous event
8615          * in order for caller to determine if it should require immediate-exit
8616          * from L2 to L1 due to pending L1 events which require exit
8617          * from L2 to L1.
8618          */
8619         if (is_guest_mode(vcpu)) {
8620                 r = kvm_check_nested_events(vcpu);
8621                 if (r < 0)
8622                         goto busy;
8623         }
8624
8625         /* try to inject new event if pending */
8626         if (vcpu->arch.exception.pending) {
8627                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8628                                         vcpu->arch.exception.has_error_code,
8629                                         vcpu->arch.exception.error_code);
8630
8631                 vcpu->arch.exception.pending = false;
8632                 vcpu->arch.exception.injected = true;
8633
8634                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8635                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8636                                              X86_EFLAGS_RF);
8637
8638                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8639                         kvm_deliver_exception_payload(vcpu);
8640                         if (vcpu->arch.dr7 & DR7_GD) {
8641                                 vcpu->arch.dr7 &= ~DR7_GD;
8642                                 kvm_update_dr7(vcpu);
8643                         }
8644                 }
8645
8646                 kvm_inject_exception(vcpu);
8647                 can_inject = false;
8648         }
8649
8650         /*
8651          * Finally, inject interrupt events.  If an event cannot be injected
8652          * due to architectural conditions (e.g. IF=0) a window-open exit
8653          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8654          * and can architecturally be injected, but we cannot do it right now:
8655          * an interrupt could have arrived just now and we have to inject it
8656          * as a vmexit, or there could already an event in the queue, which is
8657          * indicated by can_inject.  In that case we request an immediate exit
8658          * in order to make progress and get back here for another iteration.
8659          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8660          */
8661         if (vcpu->arch.smi_pending) {
8662                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8663                 if (r < 0)
8664                         goto busy;
8665                 if (r) {
8666                         vcpu->arch.smi_pending = false;
8667                         ++vcpu->arch.smi_count;
8668                         enter_smm(vcpu);
8669                         can_inject = false;
8670                 } else
8671                         static_call(kvm_x86_enable_smi_window)(vcpu);
8672         }
8673
8674         if (vcpu->arch.nmi_pending) {
8675                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8676                 if (r < 0)
8677                         goto busy;
8678                 if (r) {
8679                         --vcpu->arch.nmi_pending;
8680                         vcpu->arch.nmi_injected = true;
8681                         static_call(kvm_x86_set_nmi)(vcpu);
8682                         can_inject = false;
8683                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8684                 }
8685                 if (vcpu->arch.nmi_pending)
8686                         static_call(kvm_x86_enable_nmi_window)(vcpu);
8687         }
8688
8689         if (kvm_cpu_has_injectable_intr(vcpu)) {
8690                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8691                 if (r < 0)
8692                         goto busy;
8693                 if (r) {
8694                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8695                         static_call(kvm_x86_set_irq)(vcpu);
8696                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8697                 }
8698                 if (kvm_cpu_has_injectable_intr(vcpu))
8699                         static_call(kvm_x86_enable_irq_window)(vcpu);
8700         }
8701
8702         if (is_guest_mode(vcpu) &&
8703             kvm_x86_ops.nested_ops->hv_timer_pending &&
8704             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8705                 *req_immediate_exit = true;
8706
8707         WARN_ON(vcpu->arch.exception.pending);
8708         return;
8709
8710 busy:
8711         *req_immediate_exit = true;
8712         return;
8713 }
8714
8715 static void process_nmi(struct kvm_vcpu *vcpu)
8716 {
8717         unsigned limit = 2;
8718
8719         /*
8720          * x86 is limited to one NMI running, and one NMI pending after it.
8721          * If an NMI is already in progress, limit further NMIs to just one.
8722          * Otherwise, allow two (and we'll inject the first one immediately).
8723          */
8724         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8725                 limit = 1;
8726
8727         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8728         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8729         kvm_make_request(KVM_REQ_EVENT, vcpu);
8730 }
8731
8732 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8733 {
8734         u32 flags = 0;
8735         flags |= seg->g       << 23;
8736         flags |= seg->db      << 22;
8737         flags |= seg->l       << 21;
8738         flags |= seg->avl     << 20;
8739         flags |= seg->present << 15;
8740         flags |= seg->dpl     << 13;
8741         flags |= seg->s       << 12;
8742         flags |= seg->type    << 8;
8743         return flags;
8744 }
8745
8746 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8747 {
8748         struct kvm_segment seg;
8749         int offset;
8750
8751         kvm_get_segment(vcpu, &seg, n);
8752         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8753
8754         if (n < 3)
8755                 offset = 0x7f84 + n * 12;
8756         else
8757                 offset = 0x7f2c + (n - 3) * 12;
8758
8759         put_smstate(u32, buf, offset + 8, seg.base);
8760         put_smstate(u32, buf, offset + 4, seg.limit);
8761         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8762 }
8763
8764 #ifdef CONFIG_X86_64
8765 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8766 {
8767         struct kvm_segment seg;
8768         int offset;
8769         u16 flags;
8770
8771         kvm_get_segment(vcpu, &seg, n);
8772         offset = 0x7e00 + n * 16;
8773
8774         flags = enter_smm_get_segment_flags(&seg) >> 8;
8775         put_smstate(u16, buf, offset, seg.selector);
8776         put_smstate(u16, buf, offset + 2, flags);
8777         put_smstate(u32, buf, offset + 4, seg.limit);
8778         put_smstate(u64, buf, offset + 8, seg.base);
8779 }
8780 #endif
8781
8782 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8783 {
8784         struct desc_ptr dt;
8785         struct kvm_segment seg;
8786         unsigned long val;
8787         int i;
8788
8789         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8790         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8791         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8792         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8793
8794         for (i = 0; i < 8; i++)
8795                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
8796
8797         kvm_get_dr(vcpu, 6, &val);
8798         put_smstate(u32, buf, 0x7fcc, (u32)val);
8799         kvm_get_dr(vcpu, 7, &val);
8800         put_smstate(u32, buf, 0x7fc8, (u32)val);
8801
8802         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8803         put_smstate(u32, buf, 0x7fc4, seg.selector);
8804         put_smstate(u32, buf, 0x7f64, seg.base);
8805         put_smstate(u32, buf, 0x7f60, seg.limit);
8806         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8807
8808         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8809         put_smstate(u32, buf, 0x7fc0, seg.selector);
8810         put_smstate(u32, buf, 0x7f80, seg.base);
8811         put_smstate(u32, buf, 0x7f7c, seg.limit);
8812         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8813
8814         static_call(kvm_x86_get_gdt)(vcpu, &dt);
8815         put_smstate(u32, buf, 0x7f74, dt.address);
8816         put_smstate(u32, buf, 0x7f70, dt.size);
8817
8818         static_call(kvm_x86_get_idt)(vcpu, &dt);
8819         put_smstate(u32, buf, 0x7f58, dt.address);
8820         put_smstate(u32, buf, 0x7f54, dt.size);
8821
8822         for (i = 0; i < 6; i++)
8823                 enter_smm_save_seg_32(vcpu, buf, i);
8824
8825         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8826
8827         /* revision id */
8828         put_smstate(u32, buf, 0x7efc, 0x00020000);
8829         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8830 }
8831
8832 #ifdef CONFIG_X86_64
8833 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8834 {
8835         struct desc_ptr dt;
8836         struct kvm_segment seg;
8837         unsigned long val;
8838         int i;
8839
8840         for (i = 0; i < 16; i++)
8841                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
8842
8843         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8844         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8845
8846         kvm_get_dr(vcpu, 6, &val);
8847         put_smstate(u64, buf, 0x7f68, val);
8848         kvm_get_dr(vcpu, 7, &val);
8849         put_smstate(u64, buf, 0x7f60, val);
8850
8851         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8852         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8853         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8854
8855         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8856
8857         /* revision id */
8858         put_smstate(u32, buf, 0x7efc, 0x00020064);
8859
8860         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8861
8862         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8863         put_smstate(u16, buf, 0x7e90, seg.selector);
8864         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8865         put_smstate(u32, buf, 0x7e94, seg.limit);
8866         put_smstate(u64, buf, 0x7e98, seg.base);
8867
8868         static_call(kvm_x86_get_idt)(vcpu, &dt);
8869         put_smstate(u32, buf, 0x7e84, dt.size);
8870         put_smstate(u64, buf, 0x7e88, dt.address);
8871
8872         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8873         put_smstate(u16, buf, 0x7e70, seg.selector);
8874         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8875         put_smstate(u32, buf, 0x7e74, seg.limit);
8876         put_smstate(u64, buf, 0x7e78, seg.base);
8877
8878         static_call(kvm_x86_get_gdt)(vcpu, &dt);
8879         put_smstate(u32, buf, 0x7e64, dt.size);
8880         put_smstate(u64, buf, 0x7e68, dt.address);
8881
8882         for (i = 0; i < 6; i++)
8883                 enter_smm_save_seg_64(vcpu, buf, i);
8884 }
8885 #endif
8886
8887 static void enter_smm(struct kvm_vcpu *vcpu)
8888 {
8889         struct kvm_segment cs, ds;
8890         struct desc_ptr dt;
8891         char buf[512];
8892         u32 cr0;
8893
8894         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8895         memset(buf, 0, 512);
8896 #ifdef CONFIG_X86_64
8897         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8898                 enter_smm_save_state_64(vcpu, buf);
8899         else
8900 #endif
8901                 enter_smm_save_state_32(vcpu, buf);
8902
8903         /*
8904          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8905          * vCPU state (e.g. leave guest mode) after we've saved the state into
8906          * the SMM state-save area.
8907          */
8908         static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8909
8910         vcpu->arch.hflags |= HF_SMM_MASK;
8911         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8912
8913         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8914                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8915         else
8916                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8917
8918         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8919         kvm_rip_write(vcpu, 0x8000);
8920
8921         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8922         static_call(kvm_x86_set_cr0)(vcpu, cr0);
8923         vcpu->arch.cr0 = cr0;
8924
8925         static_call(kvm_x86_set_cr4)(vcpu, 0);
8926
8927         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8928         dt.address = dt.size = 0;
8929         static_call(kvm_x86_set_idt)(vcpu, &dt);
8930
8931         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8932
8933         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8934         cs.base = vcpu->arch.smbase;
8935
8936         ds.selector = 0;
8937         ds.base = 0;
8938
8939         cs.limit    = ds.limit = 0xffffffff;
8940         cs.type     = ds.type = 0x3;
8941         cs.dpl      = ds.dpl = 0;
8942         cs.db       = ds.db = 0;
8943         cs.s        = ds.s = 1;
8944         cs.l        = ds.l = 0;
8945         cs.g        = ds.g = 1;
8946         cs.avl      = ds.avl = 0;
8947         cs.present  = ds.present = 1;
8948         cs.unusable = ds.unusable = 0;
8949         cs.padding  = ds.padding = 0;
8950
8951         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8952         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8953         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8954         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8955         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8956         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8957
8958 #ifdef CONFIG_X86_64
8959         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8960                 static_call(kvm_x86_set_efer)(vcpu, 0);
8961 #endif
8962
8963         kvm_update_cpuid_runtime(vcpu);
8964         kvm_mmu_reset_context(vcpu);
8965 }
8966
8967 static void process_smi(struct kvm_vcpu *vcpu)
8968 {
8969         vcpu->arch.smi_pending = true;
8970         kvm_make_request(KVM_REQ_EVENT, vcpu);
8971 }
8972
8973 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8974                                        unsigned long *vcpu_bitmap)
8975 {
8976         cpumask_var_t cpus;
8977
8978         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8979
8980         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8981                                     NULL, vcpu_bitmap, cpus);
8982
8983         free_cpumask_var(cpus);
8984 }
8985
8986 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8987 {
8988         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8989 }
8990
8991 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8992 {
8993         if (!lapic_in_kernel(vcpu))
8994                 return;
8995
8996         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8997         kvm_apic_update_apicv(vcpu);
8998         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8999 }
9000 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9001
9002 /*
9003  * NOTE: Do not hold any lock prior to calling this.
9004  *
9005  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
9006  * locked, because it calls __x86_set_memory_region() which does
9007  * synchronize_srcu(&kvm->srcu).
9008  */
9009 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9010 {
9011         struct kvm_vcpu *except;
9012         unsigned long old, new, expected;
9013
9014         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9015             !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9016                 return;
9017
9018         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
9019         do {
9020                 expected = new = old;
9021                 if (activate)
9022                         __clear_bit(bit, &new);
9023                 else
9024                         __set_bit(bit, &new);
9025                 if (new == old)
9026                         break;
9027                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
9028         } while (old != expected);
9029
9030         if (!!old == !!new)
9031                 return;
9032
9033         trace_kvm_apicv_update_request(activate, bit);
9034         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
9035                 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
9036
9037         /*
9038          * Sending request to update APICV for all other vcpus,
9039          * while update the calling vcpu immediately instead of
9040          * waiting for another #VMEXIT to handle the request.
9041          */
9042         except = kvm_get_running_vcpu();
9043         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
9044                                          except);
9045         if (except)
9046                 kvm_vcpu_update_apicv(except);
9047 }
9048 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9049
9050 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9051 {
9052         if (!kvm_apic_present(vcpu))
9053                 return;
9054
9055         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9056
9057         if (irqchip_split(vcpu->kvm))
9058                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9059         else {
9060                 if (vcpu->arch.apicv_active)
9061                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9062                 if (ioapic_in_kernel(vcpu->kvm))
9063                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9064         }
9065
9066         if (is_guest_mode(vcpu))
9067                 vcpu->arch.load_eoi_exitmap_pending = true;
9068         else
9069                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9070 }
9071
9072 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9073 {
9074         u64 eoi_exit_bitmap[4];
9075
9076         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9077                 return;
9078
9079         if (to_hv_vcpu(vcpu))
9080                 bitmap_or((ulong *)eoi_exit_bitmap,
9081                           vcpu->arch.ioapic_handled_vectors,
9082                           to_hv_synic(vcpu)->vec_bitmap, 256);
9083
9084         static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9085 }
9086
9087 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9088                                             unsigned long start, unsigned long end)
9089 {
9090         unsigned long apic_address;
9091
9092         /*
9093          * The physical address of apic access page is stored in the VMCS.
9094          * Update it when it becomes invalid.
9095          */
9096         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9097         if (start <= apic_address && apic_address < end)
9098                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9099 }
9100
9101 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9102 {
9103         if (!lapic_in_kernel(vcpu))
9104                 return;
9105
9106         if (!kvm_x86_ops.set_apic_access_page_addr)
9107                 return;
9108
9109         static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9110 }
9111
9112 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9113 {
9114         smp_send_reschedule(vcpu->cpu);
9115 }
9116 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9117
9118 /*
9119  * Returns 1 to let vcpu_run() continue the guest execution loop without
9120  * exiting to the userspace.  Otherwise, the value will be returned to the
9121  * userspace.
9122  */
9123 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9124 {
9125         int r;
9126         bool req_int_win =
9127                 dm_request_for_irq_injection(vcpu) &&
9128                 kvm_cpu_accept_dm_intr(vcpu);
9129         fastpath_t exit_fastpath;
9130
9131         bool req_immediate_exit = false;
9132
9133         /* Forbid vmenter if vcpu dirty ring is soft-full */
9134         if (unlikely(vcpu->kvm->dirty_ring_size &&
9135                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9136                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9137                 trace_kvm_dirty_ring_exit(vcpu);
9138                 r = 0;
9139                 goto out;
9140         }
9141
9142         if (kvm_request_pending(vcpu)) {
9143                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9144                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9145                                 r = 0;
9146                                 goto out;
9147                         }
9148                 }
9149                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9150                         kvm_mmu_unload(vcpu);
9151                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9152                         __kvm_migrate_timers(vcpu);
9153                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9154                         kvm_gen_update_masterclock(vcpu->kvm);
9155                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9156                         kvm_gen_kvmclock_update(vcpu);
9157                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9158                         r = kvm_guest_time_update(vcpu);
9159                         if (unlikely(r))
9160                                 goto out;
9161                 }
9162                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9163                         kvm_mmu_sync_roots(vcpu);
9164                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9165                         kvm_mmu_load_pgd(vcpu);
9166                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9167                         kvm_vcpu_flush_tlb_all(vcpu);
9168
9169                         /* Flushing all ASIDs flushes the current ASID... */
9170                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9171                 }
9172                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9173                         kvm_vcpu_flush_tlb_current(vcpu);
9174                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
9175                         kvm_vcpu_flush_tlb_guest(vcpu);
9176
9177                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9178                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9179                         r = 0;
9180                         goto out;
9181                 }
9182                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9183                         if (is_guest_mode(vcpu)) {
9184                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9185                         } else {
9186                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9187                                 vcpu->mmio_needed = 0;
9188                                 r = 0;
9189                                 goto out;
9190                         }
9191                 }
9192                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9193                         /* Page is swapped out. Do synthetic halt */
9194                         vcpu->arch.apf.halted = true;
9195                         r = 1;
9196                         goto out;
9197                 }
9198                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9199                         record_steal_time(vcpu);
9200                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9201                         process_smi(vcpu);
9202                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9203                         process_nmi(vcpu);
9204                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9205                         kvm_pmu_handle_event(vcpu);
9206                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9207                         kvm_pmu_deliver_pmi(vcpu);
9208                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9209                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9210                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
9211                                      vcpu->arch.ioapic_handled_vectors)) {
9212                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9213                                 vcpu->run->eoi.vector =
9214                                                 vcpu->arch.pending_ioapic_eoi;
9215                                 r = 0;
9216                                 goto out;
9217                         }
9218                 }
9219                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9220                         vcpu_scan_ioapic(vcpu);
9221                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9222                         vcpu_load_eoi_exitmap(vcpu);
9223                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9224                         kvm_vcpu_reload_apic_access_page(vcpu);
9225                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9226                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9227                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9228                         r = 0;
9229                         goto out;
9230                 }
9231                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9232                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9233                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9234                         r = 0;
9235                         goto out;
9236                 }
9237                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9238                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9239
9240                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9241                         vcpu->run->hyperv = hv_vcpu->exit;
9242                         r = 0;
9243                         goto out;
9244                 }
9245
9246                 /*
9247                  * KVM_REQ_HV_STIMER has to be processed after
9248                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9249                  * depend on the guest clock being up-to-date
9250                  */
9251                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9252                         kvm_hv_process_stimers(vcpu);
9253                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9254                         kvm_vcpu_update_apicv(vcpu);
9255                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9256                         kvm_check_async_pf_completion(vcpu);
9257                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9258                         static_call(kvm_x86_msr_filter_changed)(vcpu);
9259
9260                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9261                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9262         }
9263
9264         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9265             kvm_xen_has_interrupt(vcpu)) {
9266                 ++vcpu->stat.req_event;
9267                 kvm_apic_accept_events(vcpu);
9268                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9269                         r = 1;
9270                         goto out;
9271                 }
9272
9273                 inject_pending_event(vcpu, &req_immediate_exit);
9274                 if (req_int_win)
9275                         static_call(kvm_x86_enable_irq_window)(vcpu);
9276
9277                 if (kvm_lapic_enabled(vcpu)) {
9278                         update_cr8_intercept(vcpu);
9279                         kvm_lapic_sync_to_vapic(vcpu);
9280                 }
9281         }
9282
9283         r = kvm_mmu_reload(vcpu);
9284         if (unlikely(r)) {
9285                 goto cancel_injection;
9286         }
9287
9288         preempt_disable();
9289
9290         static_call(kvm_x86_prepare_guest_switch)(vcpu);
9291
9292         /*
9293          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9294          * IPI are then delayed after guest entry, which ensures that they
9295          * result in virtual interrupt delivery.
9296          */
9297         local_irq_disable();
9298         vcpu->mode = IN_GUEST_MODE;
9299
9300         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9301
9302         /*
9303          * 1) We should set ->mode before checking ->requests.  Please see
9304          * the comment in kvm_vcpu_exiting_guest_mode().
9305          *
9306          * 2) For APICv, we should set ->mode before checking PID.ON. This
9307          * pairs with the memory barrier implicit in pi_test_and_set_on
9308          * (see vmx_deliver_posted_interrupt).
9309          *
9310          * 3) This also orders the write to mode from any reads to the page
9311          * tables done while the VCPU is running.  Please see the comment
9312          * in kvm_flush_remote_tlbs.
9313          */
9314         smp_mb__after_srcu_read_unlock();
9315
9316         /*
9317          * This handles the case where a posted interrupt was
9318          * notified with kvm_vcpu_kick.
9319          */
9320         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9321                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9322
9323         if (kvm_vcpu_exit_request(vcpu)) {
9324                 vcpu->mode = OUTSIDE_GUEST_MODE;
9325                 smp_wmb();
9326                 local_irq_enable();
9327                 preempt_enable();
9328                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9329                 r = 1;
9330                 goto cancel_injection;
9331         }
9332
9333         if (req_immediate_exit) {
9334                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9335                 static_call(kvm_x86_request_immediate_exit)(vcpu);
9336         }
9337
9338         fpregs_assert_state_consistent();
9339         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9340                 switch_fpu_return();
9341
9342         if (unlikely(vcpu->arch.switch_db_regs)) {
9343                 set_debugreg(0, 7);
9344                 set_debugreg(vcpu->arch.eff_db[0], 0);
9345                 set_debugreg(vcpu->arch.eff_db[1], 1);
9346                 set_debugreg(vcpu->arch.eff_db[2], 2);
9347                 set_debugreg(vcpu->arch.eff_db[3], 3);
9348                 set_debugreg(vcpu->arch.dr6, 6);
9349                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9350         }
9351
9352         for (;;) {
9353                 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9354                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9355                         break;
9356
9357                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9358                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9359                         break;
9360                 }
9361
9362                 if (vcpu->arch.apicv_active)
9363                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9364         }
9365
9366         /*
9367          * Do this here before restoring debug registers on the host.  And
9368          * since we do this before handling the vmexit, a DR access vmexit
9369          * can (a) read the correct value of the debug registers, (b) set
9370          * KVM_DEBUGREG_WONT_EXIT again.
9371          */
9372         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9373                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9374                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9375                 kvm_update_dr0123(vcpu);
9376                 kvm_update_dr7(vcpu);
9377                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9378         }
9379
9380         /*
9381          * If the guest has used debug registers, at least dr7
9382          * will be disabled while returning to the host.
9383          * If we don't have active breakpoints in the host, we don't
9384          * care about the messed up debug address registers. But if
9385          * we have some of them active, restore the old state.
9386          */
9387         if (hw_breakpoint_active())
9388                 hw_breakpoint_restore();
9389
9390         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9391         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9392
9393         vcpu->mode = OUTSIDE_GUEST_MODE;
9394         smp_wmb();
9395
9396         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9397
9398         /*
9399          * Consume any pending interrupts, including the possible source of
9400          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9401          * An instruction is required after local_irq_enable() to fully unblock
9402          * interrupts on processors that implement an interrupt shadow, the
9403          * stat.exits increment will do nicely.
9404          */
9405         kvm_before_interrupt(vcpu);
9406         local_irq_enable();
9407         ++vcpu->stat.exits;
9408         local_irq_disable();
9409         kvm_after_interrupt(vcpu);
9410
9411         /*
9412          * Wait until after servicing IRQs to account guest time so that any
9413          * ticks that occurred while running the guest are properly accounted
9414          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9415          * of accounting via context tracking, but the loss of accuracy is
9416          * acceptable for all known use cases.
9417          */
9418         vtime_account_guest_exit();
9419
9420         if (lapic_in_kernel(vcpu)) {
9421                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9422                 if (delta != S64_MIN) {
9423                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9424                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9425                 }
9426         }
9427
9428         local_irq_enable();
9429         preempt_enable();
9430
9431         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9432
9433         /*
9434          * Profile KVM exit RIPs:
9435          */
9436         if (unlikely(prof_on == KVM_PROFILING)) {
9437                 unsigned long rip = kvm_rip_read(vcpu);
9438                 profile_hit(KVM_PROFILING, (void *)rip);
9439         }
9440
9441         if (unlikely(vcpu->arch.tsc_always_catchup))
9442                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9443
9444         if (vcpu->arch.apic_attention)
9445                 kvm_lapic_sync_from_vapic(vcpu);
9446
9447         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9448         return r;
9449
9450 cancel_injection:
9451         if (req_immediate_exit)
9452                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9453         static_call(kvm_x86_cancel_injection)(vcpu);
9454         if (unlikely(vcpu->arch.apic_attention))
9455                 kvm_lapic_sync_from_vapic(vcpu);
9456 out:
9457         return r;
9458 }
9459
9460 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9461 {
9462         if (!kvm_arch_vcpu_runnable(vcpu) &&
9463             (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9464                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9465                 kvm_vcpu_block(vcpu);
9466                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9467
9468                 if (kvm_x86_ops.post_block)
9469                         static_call(kvm_x86_post_block)(vcpu);
9470
9471                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9472                         return 1;
9473         }
9474
9475         kvm_apic_accept_events(vcpu);
9476         switch(vcpu->arch.mp_state) {
9477         case KVM_MP_STATE_HALTED:
9478         case KVM_MP_STATE_AP_RESET_HOLD:
9479                 vcpu->arch.pv.pv_unhalted = false;
9480                 vcpu->arch.mp_state =
9481                         KVM_MP_STATE_RUNNABLE;
9482                 fallthrough;
9483         case KVM_MP_STATE_RUNNABLE:
9484                 vcpu->arch.apf.halted = false;
9485                 break;
9486         case KVM_MP_STATE_INIT_RECEIVED:
9487                 break;
9488         default:
9489                 return -EINTR;
9490         }
9491         return 1;
9492 }
9493
9494 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9495 {
9496         if (is_guest_mode(vcpu))
9497                 kvm_check_nested_events(vcpu);
9498
9499         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9500                 !vcpu->arch.apf.halted);
9501 }
9502
9503 static int vcpu_run(struct kvm_vcpu *vcpu)
9504 {
9505         int r;
9506         struct kvm *kvm = vcpu->kvm;
9507
9508         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9509         vcpu->arch.l1tf_flush_l1d = true;
9510
9511         for (;;) {
9512                 if (kvm_vcpu_running(vcpu)) {
9513                         r = vcpu_enter_guest(vcpu);
9514                 } else {
9515                         r = vcpu_block(kvm, vcpu);
9516                 }
9517
9518                 if (r <= 0)
9519                         break;
9520
9521                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9522                 if (kvm_cpu_has_pending_timer(vcpu))
9523                         kvm_inject_pending_timer_irqs(vcpu);
9524
9525                 if (dm_request_for_irq_injection(vcpu) &&
9526                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9527                         r = 0;
9528                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9529                         ++vcpu->stat.request_irq_exits;
9530                         break;
9531                 }
9532
9533                 if (__xfer_to_guest_mode_work_pending()) {
9534                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9535                         r = xfer_to_guest_mode_handle_work(vcpu);
9536                         if (r)
9537                                 return r;
9538                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9539                 }
9540         }
9541
9542         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9543
9544         return r;
9545 }
9546
9547 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9548 {
9549         int r;
9550
9551         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9552         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9553         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9554         return r;
9555 }
9556
9557 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9558 {
9559         BUG_ON(!vcpu->arch.pio.count);
9560
9561         return complete_emulated_io(vcpu);
9562 }
9563
9564 /*
9565  * Implements the following, as a state machine:
9566  *
9567  * read:
9568  *   for each fragment
9569  *     for each mmio piece in the fragment
9570  *       write gpa, len
9571  *       exit
9572  *       copy data
9573  *   execute insn
9574  *
9575  * write:
9576  *   for each fragment
9577  *     for each mmio piece in the fragment
9578  *       write gpa, len
9579  *       copy data
9580  *       exit
9581  */
9582 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9583 {
9584         struct kvm_run *run = vcpu->run;
9585         struct kvm_mmio_fragment *frag;
9586         unsigned len;
9587
9588         BUG_ON(!vcpu->mmio_needed);
9589
9590         /* Complete previous fragment */
9591         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9592         len = min(8u, frag->len);
9593         if (!vcpu->mmio_is_write)
9594                 memcpy(frag->data, run->mmio.data, len);
9595
9596         if (frag->len <= 8) {
9597                 /* Switch to the next fragment. */
9598                 frag++;
9599                 vcpu->mmio_cur_fragment++;
9600         } else {
9601                 /* Go forward to the next mmio piece. */
9602                 frag->data += len;
9603                 frag->gpa += len;
9604                 frag->len -= len;
9605         }
9606
9607         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9608                 vcpu->mmio_needed = 0;
9609
9610                 /* FIXME: return into emulator if single-stepping.  */
9611                 if (vcpu->mmio_is_write)
9612                         return 1;
9613                 vcpu->mmio_read_completed = 1;
9614                 return complete_emulated_io(vcpu);
9615         }
9616
9617         run->exit_reason = KVM_EXIT_MMIO;
9618         run->mmio.phys_addr = frag->gpa;
9619         if (vcpu->mmio_is_write)
9620                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9621         run->mmio.len = min(8u, frag->len);
9622         run->mmio.is_write = vcpu->mmio_is_write;
9623         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9624         return 0;
9625 }
9626
9627 static void kvm_save_current_fpu(struct fpu *fpu)
9628 {
9629         /*
9630          * If the target FPU state is not resident in the CPU registers, just
9631          * memcpy() from current, else save CPU state directly to the target.
9632          */
9633         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9634                 memcpy(&fpu->state, &current->thread.fpu.state,
9635                        fpu_kernel_xstate_size);
9636         else
9637                 copy_fpregs_to_fpstate(fpu);
9638 }
9639
9640 /* Swap (qemu) user FPU context for the guest FPU context. */
9641 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9642 {
9643         fpregs_lock();
9644
9645         kvm_save_current_fpu(vcpu->arch.user_fpu);
9646
9647         /*
9648          * Guests with protected state can't have it set by the hypervisor,
9649          * so skip trying to set it.
9650          */
9651         if (vcpu->arch.guest_fpu)
9652                 /* PKRU is separately restored in kvm_x86_ops.run. */
9653                 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9654                                         ~XFEATURE_MASK_PKRU);
9655
9656         fpregs_mark_activate();
9657         fpregs_unlock();
9658
9659         trace_kvm_fpu(1);
9660 }
9661
9662 /* When vcpu_run ends, restore user space FPU context. */
9663 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9664 {
9665         fpregs_lock();
9666
9667         /*
9668          * Guests with protected state can't have it read by the hypervisor,
9669          * so skip trying to save it.
9670          */
9671         if (vcpu->arch.guest_fpu)
9672                 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9673
9674         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9675
9676         fpregs_mark_activate();
9677         fpregs_unlock();
9678
9679         ++vcpu->stat.fpu_reload;
9680         trace_kvm_fpu(0);
9681 }
9682
9683 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9684 {
9685         struct kvm_run *kvm_run = vcpu->run;
9686         int r;
9687
9688         vcpu_load(vcpu);
9689         kvm_sigset_activate(vcpu);
9690         kvm_run->flags = 0;
9691         kvm_load_guest_fpu(vcpu);
9692
9693         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9694                 if (kvm_run->immediate_exit) {
9695                         r = -EINTR;
9696                         goto out;
9697                 }
9698                 kvm_vcpu_block(vcpu);
9699                 kvm_apic_accept_events(vcpu);
9700                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9701                 r = -EAGAIN;
9702                 if (signal_pending(current)) {
9703                         r = -EINTR;
9704                         kvm_run->exit_reason = KVM_EXIT_INTR;
9705                         ++vcpu->stat.signal_exits;
9706                 }
9707                 goto out;
9708         }
9709
9710         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9711                 r = -EINVAL;
9712                 goto out;
9713         }
9714
9715         if (kvm_run->kvm_dirty_regs) {
9716                 r = sync_regs(vcpu);
9717                 if (r != 0)
9718                         goto out;
9719         }
9720
9721         /* re-sync apic's tpr */
9722         if (!lapic_in_kernel(vcpu)) {
9723                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9724                         r = -EINVAL;
9725                         goto out;
9726                 }
9727         }
9728
9729         if (unlikely(vcpu->arch.complete_userspace_io)) {
9730                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9731                 vcpu->arch.complete_userspace_io = NULL;
9732                 r = cui(vcpu);
9733                 if (r <= 0)
9734                         goto out;
9735         } else
9736                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9737
9738         if (kvm_run->immediate_exit)
9739                 r = -EINTR;
9740         else
9741                 r = vcpu_run(vcpu);
9742
9743 out:
9744         kvm_put_guest_fpu(vcpu);
9745         if (kvm_run->kvm_valid_regs)
9746                 store_regs(vcpu);
9747         post_kvm_run_save(vcpu);
9748         kvm_sigset_deactivate(vcpu);
9749
9750         vcpu_put(vcpu);
9751         return r;
9752 }
9753
9754 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9755 {
9756         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9757                 /*
9758                  * We are here if userspace calls get_regs() in the middle of
9759                  * instruction emulation. Registers state needs to be copied
9760                  * back from emulation context to vcpu. Userspace shouldn't do
9761                  * that usually, but some bad designed PV devices (vmware
9762                  * backdoor interface) need this to work
9763                  */
9764                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9765                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9766         }
9767         regs->rax = kvm_rax_read(vcpu);
9768         regs->rbx = kvm_rbx_read(vcpu);
9769         regs->rcx = kvm_rcx_read(vcpu);
9770         regs->rdx = kvm_rdx_read(vcpu);
9771         regs->rsi = kvm_rsi_read(vcpu);
9772         regs->rdi = kvm_rdi_read(vcpu);
9773         regs->rsp = kvm_rsp_read(vcpu);
9774         regs->rbp = kvm_rbp_read(vcpu);
9775 #ifdef CONFIG_X86_64
9776         regs->r8 = kvm_r8_read(vcpu);
9777         regs->r9 = kvm_r9_read(vcpu);
9778         regs->r10 = kvm_r10_read(vcpu);
9779         regs->r11 = kvm_r11_read(vcpu);
9780         regs->r12 = kvm_r12_read(vcpu);
9781         regs->r13 = kvm_r13_read(vcpu);
9782         regs->r14 = kvm_r14_read(vcpu);
9783         regs->r15 = kvm_r15_read(vcpu);
9784 #endif
9785
9786         regs->rip = kvm_rip_read(vcpu);
9787         regs->rflags = kvm_get_rflags(vcpu);
9788 }
9789
9790 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9791 {
9792         vcpu_load(vcpu);
9793         __get_regs(vcpu, regs);
9794         vcpu_put(vcpu);
9795         return 0;
9796 }
9797
9798 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9799 {
9800         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9801         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9802
9803         kvm_rax_write(vcpu, regs->rax);
9804         kvm_rbx_write(vcpu, regs->rbx);
9805         kvm_rcx_write(vcpu, regs->rcx);
9806         kvm_rdx_write(vcpu, regs->rdx);
9807         kvm_rsi_write(vcpu, regs->rsi);
9808         kvm_rdi_write(vcpu, regs->rdi);
9809         kvm_rsp_write(vcpu, regs->rsp);
9810         kvm_rbp_write(vcpu, regs->rbp);
9811 #ifdef CONFIG_X86_64
9812         kvm_r8_write(vcpu, regs->r8);
9813         kvm_r9_write(vcpu, regs->r9);
9814         kvm_r10_write(vcpu, regs->r10);
9815         kvm_r11_write(vcpu, regs->r11);
9816         kvm_r12_write(vcpu, regs->r12);
9817         kvm_r13_write(vcpu, regs->r13);
9818         kvm_r14_write(vcpu, regs->r14);
9819         kvm_r15_write(vcpu, regs->r15);
9820 #endif
9821
9822         kvm_rip_write(vcpu, regs->rip);
9823         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9824
9825         vcpu->arch.exception.pending = false;
9826
9827         kvm_make_request(KVM_REQ_EVENT, vcpu);
9828 }
9829
9830 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9831 {
9832         vcpu_load(vcpu);
9833         __set_regs(vcpu, regs);
9834         vcpu_put(vcpu);
9835         return 0;
9836 }
9837
9838 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9839 {
9840         struct kvm_segment cs;
9841
9842         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9843         *db = cs.db;
9844         *l = cs.l;
9845 }
9846 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9847
9848 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9849 {
9850         struct desc_ptr dt;
9851
9852         if (vcpu->arch.guest_state_protected)
9853                 goto skip_protected_regs;
9854
9855         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9856         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9857         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9858         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9859         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9860         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9861
9862         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9863         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9864
9865         static_call(kvm_x86_get_idt)(vcpu, &dt);
9866         sregs->idt.limit = dt.size;
9867         sregs->idt.base = dt.address;
9868         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9869         sregs->gdt.limit = dt.size;
9870         sregs->gdt.base = dt.address;
9871
9872         sregs->cr2 = vcpu->arch.cr2;
9873         sregs->cr3 = kvm_read_cr3(vcpu);
9874
9875 skip_protected_regs:
9876         sregs->cr0 = kvm_read_cr0(vcpu);
9877         sregs->cr4 = kvm_read_cr4(vcpu);
9878         sregs->cr8 = kvm_get_cr8(vcpu);
9879         sregs->efer = vcpu->arch.efer;
9880         sregs->apic_base = kvm_get_apic_base(vcpu);
9881
9882         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9883
9884         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9885                 set_bit(vcpu->arch.interrupt.nr,
9886                         (unsigned long *)sregs->interrupt_bitmap);
9887 }
9888
9889 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9890                                   struct kvm_sregs *sregs)
9891 {
9892         vcpu_load(vcpu);
9893         __get_sregs(vcpu, sregs);
9894         vcpu_put(vcpu);
9895         return 0;
9896 }
9897
9898 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9899                                     struct kvm_mp_state *mp_state)
9900 {
9901         vcpu_load(vcpu);
9902         if (kvm_mpx_supported())
9903                 kvm_load_guest_fpu(vcpu);
9904
9905         kvm_apic_accept_events(vcpu);
9906         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9907              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9908             vcpu->arch.pv.pv_unhalted)
9909                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9910         else
9911                 mp_state->mp_state = vcpu->arch.mp_state;
9912
9913         if (kvm_mpx_supported())
9914                 kvm_put_guest_fpu(vcpu);
9915         vcpu_put(vcpu);
9916         return 0;
9917 }
9918
9919 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9920                                     struct kvm_mp_state *mp_state)
9921 {
9922         int ret = -EINVAL;
9923
9924         vcpu_load(vcpu);
9925
9926         if (!lapic_in_kernel(vcpu) &&
9927             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9928                 goto out;
9929
9930         /*
9931          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9932          * INIT state; latched init should be reported using
9933          * KVM_SET_VCPU_EVENTS, so reject it here.
9934          */
9935         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9936             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9937              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9938                 goto out;
9939
9940         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9941                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9942                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9943         } else
9944                 vcpu->arch.mp_state = mp_state->mp_state;
9945         kvm_make_request(KVM_REQ_EVENT, vcpu);
9946
9947         ret = 0;
9948 out:
9949         vcpu_put(vcpu);
9950         return ret;
9951 }
9952
9953 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9954                     int reason, bool has_error_code, u32 error_code)
9955 {
9956         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9957         int ret;
9958
9959         init_emulate_ctxt(vcpu);
9960
9961         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9962                                    has_error_code, error_code);
9963         if (ret) {
9964                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9965                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9966                 vcpu->run->internal.ndata = 0;
9967                 return 0;
9968         }
9969
9970         kvm_rip_write(vcpu, ctxt->eip);
9971         kvm_set_rflags(vcpu, ctxt->eflags);
9972         return 1;
9973 }
9974 EXPORT_SYMBOL_GPL(kvm_task_switch);
9975
9976 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9977 {
9978         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9979                 /*
9980                  * When EFER.LME and CR0.PG are set, the processor is in
9981                  * 64-bit mode (though maybe in a 32-bit code segment).
9982                  * CR4.PAE and EFER.LMA must be set.
9983                  */
9984                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9985                         return false;
9986                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9987                         return false;
9988         } else {
9989                 /*
9990                  * Not in 64-bit mode: EFER.LMA is clear and the code
9991                  * segment cannot be 64-bit.
9992                  */
9993                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9994                         return false;
9995         }
9996
9997         return kvm_is_valid_cr4(vcpu, sregs->cr4);
9998 }
9999
10000 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10001 {
10002         struct msr_data apic_base_msr;
10003         int mmu_reset_needed = 0;
10004         int pending_vec, max_bits, idx;
10005         struct desc_ptr dt;
10006         int ret = -EINVAL;
10007
10008         if (!kvm_is_valid_sregs(vcpu, sregs))
10009                 goto out;
10010
10011         apic_base_msr.data = sregs->apic_base;
10012         apic_base_msr.host_initiated = true;
10013         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10014                 goto out;
10015
10016         if (vcpu->arch.guest_state_protected)
10017                 goto skip_protected_regs;
10018
10019         dt.size = sregs->idt.limit;
10020         dt.address = sregs->idt.base;
10021         static_call(kvm_x86_set_idt)(vcpu, &dt);
10022         dt.size = sregs->gdt.limit;
10023         dt.address = sregs->gdt.base;
10024         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10025
10026         vcpu->arch.cr2 = sregs->cr2;
10027         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10028         vcpu->arch.cr3 = sregs->cr3;
10029         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10030
10031         kvm_set_cr8(vcpu, sregs->cr8);
10032
10033         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10034         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10035
10036         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10037         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10038         vcpu->arch.cr0 = sregs->cr0;
10039
10040         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10041         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10042
10043         idx = srcu_read_lock(&vcpu->kvm->srcu);
10044         if (is_pae_paging(vcpu)) {
10045                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10046                 mmu_reset_needed = 1;
10047         }
10048         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10049
10050         if (mmu_reset_needed)
10051                 kvm_mmu_reset_context(vcpu);
10052
10053         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10054         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10055         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10056         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10057         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10058         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10059
10060         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10061         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10062
10063         update_cr8_intercept(vcpu);
10064
10065         /* Older userspace won't unhalt the vcpu on reset. */
10066         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10067             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10068             !is_protmode(vcpu))
10069                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10070
10071 skip_protected_regs:
10072         max_bits = KVM_NR_INTERRUPTS;
10073         pending_vec = find_first_bit(
10074                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10075         if (pending_vec < max_bits) {
10076                 kvm_queue_interrupt(vcpu, pending_vec, false);
10077                 pr_debug("Set back pending irq %d\n", pending_vec);
10078         }
10079
10080         kvm_make_request(KVM_REQ_EVENT, vcpu);
10081
10082         ret = 0;
10083 out:
10084         return ret;
10085 }
10086
10087 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10088                                   struct kvm_sregs *sregs)
10089 {
10090         int ret;
10091
10092         vcpu_load(vcpu);
10093         ret = __set_sregs(vcpu, sregs);
10094         vcpu_put(vcpu);
10095         return ret;
10096 }
10097
10098 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10099                                         struct kvm_guest_debug *dbg)
10100 {
10101         unsigned long rflags;
10102         int i, r;
10103
10104         if (vcpu->arch.guest_state_protected)
10105                 return -EINVAL;
10106
10107         vcpu_load(vcpu);
10108
10109         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10110                 r = -EBUSY;
10111                 if (vcpu->arch.exception.pending)
10112                         goto out;
10113                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10114                         kvm_queue_exception(vcpu, DB_VECTOR);
10115                 else
10116                         kvm_queue_exception(vcpu, BP_VECTOR);
10117         }
10118
10119         /*
10120          * Read rflags as long as potentially injected trace flags are still
10121          * filtered out.
10122          */
10123         rflags = kvm_get_rflags(vcpu);
10124
10125         vcpu->guest_debug = dbg->control;
10126         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10127                 vcpu->guest_debug = 0;
10128
10129         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10130                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10131                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10132                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10133         } else {
10134                 for (i = 0; i < KVM_NR_DB_REGS; i++)
10135                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10136         }
10137         kvm_update_dr7(vcpu);
10138
10139         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10140                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10141
10142         /*
10143          * Trigger an rflags update that will inject or remove the trace
10144          * flags.
10145          */
10146         kvm_set_rflags(vcpu, rflags);
10147
10148         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10149
10150         r = 0;
10151
10152 out:
10153         vcpu_put(vcpu);
10154         return r;
10155 }
10156
10157 /*
10158  * Translate a guest virtual address to a guest physical address.
10159  */
10160 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10161                                     struct kvm_translation *tr)
10162 {
10163         unsigned long vaddr = tr->linear_address;
10164         gpa_t gpa;
10165         int idx;
10166
10167         vcpu_load(vcpu);
10168
10169         idx = srcu_read_lock(&vcpu->kvm->srcu);
10170         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10171         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10172         tr->physical_address = gpa;
10173         tr->valid = gpa != UNMAPPED_GVA;
10174         tr->writeable = 1;
10175         tr->usermode = 0;
10176
10177         vcpu_put(vcpu);
10178         return 0;
10179 }
10180
10181 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10182 {
10183         struct fxregs_state *fxsave;
10184
10185         if (!vcpu->arch.guest_fpu)
10186                 return 0;
10187
10188         vcpu_load(vcpu);
10189
10190         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10191         memcpy(fpu->fpr, fxsave->st_space, 128);
10192         fpu->fcw = fxsave->cwd;
10193         fpu->fsw = fxsave->swd;
10194         fpu->ftwx = fxsave->twd;
10195         fpu->last_opcode = fxsave->fop;
10196         fpu->last_ip = fxsave->rip;
10197         fpu->last_dp = fxsave->rdp;
10198         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10199
10200         vcpu_put(vcpu);
10201         return 0;
10202 }
10203
10204 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10205 {
10206         struct fxregs_state *fxsave;
10207
10208         if (!vcpu->arch.guest_fpu)
10209                 return 0;
10210
10211         vcpu_load(vcpu);
10212
10213         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10214
10215         memcpy(fxsave->st_space, fpu->fpr, 128);
10216         fxsave->cwd = fpu->fcw;
10217         fxsave->swd = fpu->fsw;
10218         fxsave->twd = fpu->ftwx;
10219         fxsave->fop = fpu->last_opcode;
10220         fxsave->rip = fpu->last_ip;
10221         fxsave->rdp = fpu->last_dp;
10222         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10223
10224         vcpu_put(vcpu);
10225         return 0;
10226 }
10227
10228 static void store_regs(struct kvm_vcpu *vcpu)
10229 {
10230         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10231
10232         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10233                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10234
10235         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10236                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10237
10238         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10239                 kvm_vcpu_ioctl_x86_get_vcpu_events(
10240                                 vcpu, &vcpu->run->s.regs.events);
10241 }
10242
10243 static int sync_regs(struct kvm_vcpu *vcpu)
10244 {
10245         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10246                 return -EINVAL;
10247
10248         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10249                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10250                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10251         }
10252         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10253                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10254                         return -EINVAL;
10255                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10256         }
10257         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10258                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10259                                 vcpu, &vcpu->run->s.regs.events))
10260                         return -EINVAL;
10261                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10262         }
10263
10264         return 0;
10265 }
10266
10267 static void fx_init(struct kvm_vcpu *vcpu)
10268 {
10269         if (!vcpu->arch.guest_fpu)
10270                 return;
10271
10272         fpstate_init(&vcpu->arch.guest_fpu->state);
10273         if (boot_cpu_has(X86_FEATURE_XSAVES))
10274                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10275                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
10276
10277         /*
10278          * Ensure guest xcr0 is valid for loading
10279          */
10280         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10281
10282         vcpu->arch.cr0 |= X86_CR0_ET;
10283 }
10284
10285 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10286 {
10287         if (vcpu->arch.guest_fpu) {
10288                 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10289                 vcpu->arch.guest_fpu = NULL;
10290         }
10291 }
10292 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10293
10294 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10295 {
10296         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10297                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10298                              "guest TSC will not be reliable\n");
10299
10300         return 0;
10301 }
10302
10303 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10304 {
10305         struct page *page;
10306         int r;
10307
10308         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10309                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10310         else
10311                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10312
10313         kvm_set_tsc_khz(vcpu, max_tsc_khz);
10314
10315         r = kvm_mmu_create(vcpu);
10316         if (r < 0)
10317                 return r;
10318
10319         if (irqchip_in_kernel(vcpu->kvm)) {
10320                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10321                 if (r < 0)
10322                         goto fail_mmu_destroy;
10323                 if (kvm_apicv_activated(vcpu->kvm))
10324                         vcpu->arch.apicv_active = true;
10325         } else
10326                 static_branch_inc(&kvm_has_noapic_vcpu);
10327
10328         r = -ENOMEM;
10329
10330         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10331         if (!page)
10332                 goto fail_free_lapic;
10333         vcpu->arch.pio_data = page_address(page);
10334
10335         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10336                                        GFP_KERNEL_ACCOUNT);
10337         if (!vcpu->arch.mce_banks)
10338                 goto fail_free_pio_data;
10339         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10340
10341         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10342                                 GFP_KERNEL_ACCOUNT))
10343                 goto fail_free_mce_banks;
10344
10345         if (!alloc_emulate_ctxt(vcpu))
10346                 goto free_wbinvd_dirty_mask;
10347
10348         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10349                                                 GFP_KERNEL_ACCOUNT);
10350         if (!vcpu->arch.user_fpu) {
10351                 pr_err("kvm: failed to allocate userspace's fpu\n");
10352                 goto free_emulate_ctxt;
10353         }
10354
10355         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10356                                                  GFP_KERNEL_ACCOUNT);
10357         if (!vcpu->arch.guest_fpu) {
10358                 pr_err("kvm: failed to allocate vcpu's fpu\n");
10359                 goto free_user_fpu;
10360         }
10361         fx_init(vcpu);
10362
10363         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10364         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10365
10366         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10367
10368         kvm_async_pf_hash_reset(vcpu);
10369         kvm_pmu_init(vcpu);
10370
10371         vcpu->arch.pending_external_vector = -1;
10372         vcpu->arch.preempted_in_kernel = false;
10373
10374         r = static_call(kvm_x86_vcpu_create)(vcpu);
10375         if (r)
10376                 goto free_guest_fpu;
10377
10378         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10379         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10380         kvm_vcpu_mtrr_init(vcpu);
10381         vcpu_load(vcpu);
10382         kvm_vcpu_reset(vcpu, false);
10383         kvm_init_mmu(vcpu, false);
10384         vcpu_put(vcpu);
10385         return 0;
10386
10387 free_guest_fpu:
10388         kvm_free_guest_fpu(vcpu);
10389 free_user_fpu:
10390         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10391 free_emulate_ctxt:
10392         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10393 free_wbinvd_dirty_mask:
10394         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10395 fail_free_mce_banks:
10396         kfree(vcpu->arch.mce_banks);
10397 fail_free_pio_data:
10398         free_page((unsigned long)vcpu->arch.pio_data);
10399 fail_free_lapic:
10400         kvm_free_lapic(vcpu);
10401 fail_mmu_destroy:
10402         kvm_mmu_destroy(vcpu);
10403         return r;
10404 }
10405
10406 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10407 {
10408         struct kvm *kvm = vcpu->kvm;
10409
10410         if (mutex_lock_killable(&vcpu->mutex))
10411                 return;
10412         vcpu_load(vcpu);
10413         kvm_synchronize_tsc(vcpu, 0);
10414         vcpu_put(vcpu);
10415
10416         /* poll control enabled by default */
10417         vcpu->arch.msr_kvm_poll_control = 1;
10418
10419         mutex_unlock(&vcpu->mutex);
10420
10421         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10422                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10423                                                 KVMCLOCK_SYNC_PERIOD);
10424 }
10425
10426 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10427 {
10428         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10429         int idx;
10430
10431         kvm_release_pfn(cache->pfn, cache->dirty, cache);
10432
10433         kvmclock_reset(vcpu);
10434
10435         static_call(kvm_x86_vcpu_free)(vcpu);
10436
10437         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10438         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10439         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10440         kvm_free_guest_fpu(vcpu);
10441
10442         kvm_hv_vcpu_uninit(vcpu);
10443         kvm_pmu_destroy(vcpu);
10444         kfree(vcpu->arch.mce_banks);
10445         kvm_free_lapic(vcpu);
10446         idx = srcu_read_lock(&vcpu->kvm->srcu);
10447         kvm_mmu_destroy(vcpu);
10448         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10449         free_page((unsigned long)vcpu->arch.pio_data);
10450         kvfree(vcpu->arch.cpuid_entries);
10451         if (!lapic_in_kernel(vcpu))
10452                 static_branch_dec(&kvm_has_noapic_vcpu);
10453 }
10454
10455 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10456 {
10457         kvm_lapic_reset(vcpu, init_event);
10458
10459         vcpu->arch.hflags = 0;
10460
10461         vcpu->arch.smi_pending = 0;
10462         vcpu->arch.smi_count = 0;
10463         atomic_set(&vcpu->arch.nmi_queued, 0);
10464         vcpu->arch.nmi_pending = 0;
10465         vcpu->arch.nmi_injected = false;
10466         kvm_clear_interrupt_queue(vcpu);
10467         kvm_clear_exception_queue(vcpu);
10468
10469         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10470         kvm_update_dr0123(vcpu);
10471         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10472         vcpu->arch.dr7 = DR7_FIXED_1;
10473         kvm_update_dr7(vcpu);
10474
10475         vcpu->arch.cr2 = 0;
10476
10477         kvm_make_request(KVM_REQ_EVENT, vcpu);
10478         vcpu->arch.apf.msr_en_val = 0;
10479         vcpu->arch.apf.msr_int_val = 0;
10480         vcpu->arch.st.msr_val = 0;
10481
10482         kvmclock_reset(vcpu);
10483
10484         kvm_clear_async_pf_completion_queue(vcpu);
10485         kvm_async_pf_hash_reset(vcpu);
10486         vcpu->arch.apf.halted = false;
10487
10488         if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10489                 void *mpx_state_buffer;
10490
10491                 /*
10492                  * To avoid have the INIT path from kvm_apic_has_events() that be
10493                  * called with loaded FPU and does not let userspace fix the state.
10494                  */
10495                 if (init_event)
10496                         kvm_put_guest_fpu(vcpu);
10497                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10498                                         XFEATURE_BNDREGS);
10499                 if (mpx_state_buffer)
10500                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10501                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10502                                         XFEATURE_BNDCSR);
10503                 if (mpx_state_buffer)
10504                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10505                 if (init_event)
10506                         kvm_load_guest_fpu(vcpu);
10507         }
10508
10509         if (!init_event) {
10510                 kvm_pmu_reset(vcpu);
10511                 vcpu->arch.smbase = 0x30000;
10512
10513                 vcpu->arch.msr_misc_features_enables = 0;
10514
10515                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10516         }
10517
10518         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10519         vcpu->arch.regs_avail = ~0;
10520         vcpu->arch.regs_dirty = ~0;
10521
10522         vcpu->arch.ia32_xss = 0;
10523
10524         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10525 }
10526
10527 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10528 {
10529         struct kvm_segment cs;
10530
10531         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10532         cs.selector = vector << 8;
10533         cs.base = vector << 12;
10534         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10535         kvm_rip_write(vcpu, 0);
10536 }
10537 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10538
10539 int kvm_arch_hardware_enable(void)
10540 {
10541         struct kvm *kvm;
10542         struct kvm_vcpu *vcpu;
10543         int i;
10544         int ret;
10545         u64 local_tsc;
10546         u64 max_tsc = 0;
10547         bool stable, backwards_tsc = false;
10548
10549         kvm_user_return_msr_cpu_online();
10550         ret = static_call(kvm_x86_hardware_enable)();
10551         if (ret != 0)
10552                 return ret;
10553
10554         local_tsc = rdtsc();
10555         stable = !kvm_check_tsc_unstable();
10556         list_for_each_entry(kvm, &vm_list, vm_list) {
10557                 kvm_for_each_vcpu(i, vcpu, kvm) {
10558                         if (!stable && vcpu->cpu == smp_processor_id())
10559                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10560                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10561                                 backwards_tsc = true;
10562                                 if (vcpu->arch.last_host_tsc > max_tsc)
10563                                         max_tsc = vcpu->arch.last_host_tsc;
10564                         }
10565                 }
10566         }
10567
10568         /*
10569          * Sometimes, even reliable TSCs go backwards.  This happens on
10570          * platforms that reset TSC during suspend or hibernate actions, but
10571          * maintain synchronization.  We must compensate.  Fortunately, we can
10572          * detect that condition here, which happens early in CPU bringup,
10573          * before any KVM threads can be running.  Unfortunately, we can't
10574          * bring the TSCs fully up to date with real time, as we aren't yet far
10575          * enough into CPU bringup that we know how much real time has actually
10576          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10577          * variables that haven't been updated yet.
10578          *
10579          * So we simply find the maximum observed TSC above, then record the
10580          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10581          * the adjustment will be applied.  Note that we accumulate
10582          * adjustments, in case multiple suspend cycles happen before some VCPU
10583          * gets a chance to run again.  In the event that no KVM threads get a
10584          * chance to run, we will miss the entire elapsed period, as we'll have
10585          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10586          * loose cycle time.  This isn't too big a deal, since the loss will be
10587          * uniform across all VCPUs (not to mention the scenario is extremely
10588          * unlikely). It is possible that a second hibernate recovery happens
10589          * much faster than a first, causing the observed TSC here to be
10590          * smaller; this would require additional padding adjustment, which is
10591          * why we set last_host_tsc to the local tsc observed here.
10592          *
10593          * N.B. - this code below runs only on platforms with reliable TSC,
10594          * as that is the only way backwards_tsc is set above.  Also note
10595          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10596          * have the same delta_cyc adjustment applied if backwards_tsc
10597          * is detected.  Note further, this adjustment is only done once,
10598          * as we reset last_host_tsc on all VCPUs to stop this from being
10599          * called multiple times (one for each physical CPU bringup).
10600          *
10601          * Platforms with unreliable TSCs don't have to deal with this, they
10602          * will be compensated by the logic in vcpu_load, which sets the TSC to
10603          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10604          * guarantee that they stay in perfect synchronization.
10605          */
10606         if (backwards_tsc) {
10607                 u64 delta_cyc = max_tsc - local_tsc;
10608                 list_for_each_entry(kvm, &vm_list, vm_list) {
10609                         kvm->arch.backwards_tsc_observed = true;
10610                         kvm_for_each_vcpu(i, vcpu, kvm) {
10611                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10612                                 vcpu->arch.last_host_tsc = local_tsc;
10613                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10614                         }
10615
10616                         /*
10617                          * We have to disable TSC offset matching.. if you were
10618                          * booting a VM while issuing an S4 host suspend....
10619                          * you may have some problem.  Solving this issue is
10620                          * left as an exercise to the reader.
10621                          */
10622                         kvm->arch.last_tsc_nsec = 0;
10623                         kvm->arch.last_tsc_write = 0;
10624                 }
10625
10626         }
10627         return 0;
10628 }
10629
10630 void kvm_arch_hardware_disable(void)
10631 {
10632         static_call(kvm_x86_hardware_disable)();
10633         drop_user_return_notifiers();
10634 }
10635
10636 int kvm_arch_hardware_setup(void *opaque)
10637 {
10638         struct kvm_x86_init_ops *ops = opaque;
10639         int r;
10640
10641         rdmsrl_safe(MSR_EFER, &host_efer);
10642
10643         if (boot_cpu_has(X86_FEATURE_XSAVES))
10644                 rdmsrl(MSR_IA32_XSS, host_xss);
10645
10646         r = ops->hardware_setup();
10647         if (r != 0)
10648                 return r;
10649
10650         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10651         kvm_ops_static_call_update();
10652
10653         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10654                 supported_xss = 0;
10655
10656 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10657         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10658 #undef __kvm_cpu_cap_has
10659
10660         if (kvm_has_tsc_control) {
10661                 /*
10662                  * Make sure the user can only configure tsc_khz values that
10663                  * fit into a signed integer.
10664                  * A min value is not calculated because it will always
10665                  * be 1 on all machines.
10666                  */
10667                 u64 max = min(0x7fffffffULL,
10668                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10669                 kvm_max_guest_tsc_khz = max;
10670
10671                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10672         }
10673
10674         kvm_init_msr_list();
10675         return 0;
10676 }
10677
10678 void kvm_arch_hardware_unsetup(void)
10679 {
10680         static_call(kvm_x86_hardware_unsetup)();
10681 }
10682
10683 int kvm_arch_check_processor_compat(void *opaque)
10684 {
10685         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10686         struct kvm_x86_init_ops *ops = opaque;
10687
10688         WARN_ON(!irqs_disabled());
10689
10690         if (__cr4_reserved_bits(cpu_has, c) !=
10691             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10692                 return -EIO;
10693
10694         return ops->check_processor_compatibility();
10695 }
10696
10697 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10698 {
10699         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10700 }
10701 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10702
10703 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10704 {
10705         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10706 }
10707
10708 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10709 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10710
10711 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10712 {
10713         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10714
10715         vcpu->arch.l1tf_flush_l1d = true;
10716         if (pmu->version && unlikely(pmu->event_count)) {
10717                 pmu->need_cleanup = true;
10718                 kvm_make_request(KVM_REQ_PMU, vcpu);
10719         }
10720         static_call(kvm_x86_sched_in)(vcpu, cpu);
10721 }
10722
10723 void kvm_arch_free_vm(struct kvm *kvm)
10724 {
10725         kfree(to_kvm_hv(kvm)->hv_pa_pg);
10726         vfree(kvm);
10727 }
10728
10729
10730 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10731 {
10732         if (type)
10733                 return -EINVAL;
10734
10735         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10736         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10737         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10738         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10739         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10740         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10741
10742         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10743         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10744         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10745         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10746                 &kvm->arch.irq_sources_bitmap);
10747
10748         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10749         mutex_init(&kvm->arch.apic_map_lock);
10750         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10751
10752         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10753         pvclock_update_vm_gtod_copy(kvm);
10754
10755         kvm->arch.guest_can_read_msr_platform_info = true;
10756
10757         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10758         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10759
10760         kvm_hv_init_vm(kvm);
10761         kvm_page_track_init(kvm);
10762         kvm_mmu_init_vm(kvm);
10763
10764         return static_call(kvm_x86_vm_init)(kvm);
10765 }
10766
10767 int kvm_arch_post_init_vm(struct kvm *kvm)
10768 {
10769         return kvm_mmu_post_init_vm(kvm);
10770 }
10771
10772 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10773 {
10774         vcpu_load(vcpu);
10775         kvm_mmu_unload(vcpu);
10776         vcpu_put(vcpu);
10777 }
10778
10779 static void kvm_free_vcpus(struct kvm *kvm)
10780 {
10781         unsigned int i;
10782         struct kvm_vcpu *vcpu;
10783
10784         /*
10785          * Unpin any mmu pages first.
10786          */
10787         kvm_for_each_vcpu(i, vcpu, kvm) {
10788                 kvm_clear_async_pf_completion_queue(vcpu);
10789                 kvm_unload_vcpu_mmu(vcpu);
10790         }
10791         kvm_for_each_vcpu(i, vcpu, kvm)
10792                 kvm_vcpu_destroy(vcpu);
10793
10794         mutex_lock(&kvm->lock);
10795         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10796                 kvm->vcpus[i] = NULL;
10797
10798         atomic_set(&kvm->online_vcpus, 0);
10799         mutex_unlock(&kvm->lock);
10800 }
10801
10802 void kvm_arch_sync_events(struct kvm *kvm)
10803 {
10804         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10805         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10806         kvm_free_pit(kvm);
10807 }
10808
10809 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10810
10811 /**
10812  * __x86_set_memory_region: Setup KVM internal memory slot
10813  *
10814  * @kvm: the kvm pointer to the VM.
10815  * @id: the slot ID to setup.
10816  * @gpa: the GPA to install the slot (unused when @size == 0).
10817  * @size: the size of the slot. Set to zero to uninstall a slot.
10818  *
10819  * This function helps to setup a KVM internal memory slot.  Specify
10820  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10821  * slot.  The return code can be one of the following:
10822  *
10823  *   HVA:           on success (uninstall will return a bogus HVA)
10824  *   -errno:        on error
10825  *
10826  * The caller should always use IS_ERR() to check the return value
10827  * before use.  Note, the KVM internal memory slots are guaranteed to
10828  * remain valid and unchanged until the VM is destroyed, i.e., the
10829  * GPA->HVA translation will not change.  However, the HVA is a user
10830  * address, i.e. its accessibility is not guaranteed, and must be
10831  * accessed via __copy_{to,from}_user().
10832  */
10833 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10834                                       u32 size)
10835 {
10836         int i, r;
10837         unsigned long hva, old_npages;
10838         struct kvm_memslots *slots = kvm_memslots(kvm);
10839         struct kvm_memory_slot *slot;
10840
10841         /* Called with kvm->slots_lock held.  */
10842         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10843                 return ERR_PTR_USR(-EINVAL);
10844
10845         slot = id_to_memslot(slots, id);
10846         if (size) {
10847                 if (slot && slot->npages)
10848                         return ERR_PTR_USR(-EEXIST);
10849
10850                 /*
10851                  * MAP_SHARED to prevent internal slot pages from being moved
10852                  * by fork()/COW.
10853                  */
10854                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10855                               MAP_SHARED | MAP_ANONYMOUS, 0);
10856                 if (IS_ERR((void *)hva))
10857                         return (void __user *)hva;
10858         } else {
10859                 if (!slot || !slot->npages)
10860                         return NULL;
10861
10862                 old_npages = slot->npages;
10863                 hva = slot->userspace_addr;
10864         }
10865
10866         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10867                 struct kvm_userspace_memory_region m;
10868
10869                 m.slot = id | (i << 16);
10870                 m.flags = 0;
10871                 m.guest_phys_addr = gpa;
10872                 m.userspace_addr = hva;
10873                 m.memory_size = size;
10874                 r = __kvm_set_memory_region(kvm, &m);
10875                 if (r < 0)
10876                         return ERR_PTR_USR(r);
10877         }
10878
10879         if (!size)
10880                 vm_munmap(hva, old_npages * PAGE_SIZE);
10881
10882         return (void __user *)hva;
10883 }
10884 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10885
10886 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10887 {
10888         kvm_mmu_pre_destroy_vm(kvm);
10889 }
10890
10891 void kvm_arch_destroy_vm(struct kvm *kvm)
10892 {
10893         if (current->mm == kvm->mm) {
10894                 /*
10895                  * Free memory regions allocated on behalf of userspace,
10896                  * unless the the memory map has changed due to process exit
10897                  * or fd copying.
10898                  */
10899                 mutex_lock(&kvm->slots_lock);
10900                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10901                                         0, 0);
10902                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10903                                         0, 0);
10904                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10905                 mutex_unlock(&kvm->slots_lock);
10906         }
10907         static_call_cond(kvm_x86_vm_destroy)(kvm);
10908         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10909         kvm_pic_destroy(kvm);
10910         kvm_ioapic_destroy(kvm);
10911         kvm_free_vcpus(kvm);
10912         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10913         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10914         kvm_mmu_uninit_vm(kvm);
10915         kvm_page_track_cleanup(kvm);
10916         kvm_xen_destroy_vm(kvm);
10917         kvm_hv_destroy_vm(kvm);
10918 }
10919
10920 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10921 {
10922         int i;
10923
10924         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10925                 kvfree(slot->arch.rmap[i]);
10926                 slot->arch.rmap[i] = NULL;
10927
10928                 if (i == 0)
10929                         continue;
10930
10931                 kvfree(slot->arch.lpage_info[i - 1]);
10932                 slot->arch.lpage_info[i - 1] = NULL;
10933         }
10934
10935         kvm_page_track_free_memslot(slot);
10936 }
10937
10938 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10939                                       unsigned long npages)
10940 {
10941         int i;
10942
10943         /*
10944          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10945          * old arrays will be freed by __kvm_set_memory_region() if installing
10946          * the new memslot is successful.
10947          */
10948         memset(&slot->arch, 0, sizeof(slot->arch));
10949
10950         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10951                 struct kvm_lpage_info *linfo;
10952                 unsigned long ugfn;
10953                 int lpages;
10954                 int level = i + 1;
10955
10956                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10957                                       slot->base_gfn, level) + 1;
10958
10959                 slot->arch.rmap[i] =
10960                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10961                                  GFP_KERNEL_ACCOUNT);
10962                 if (!slot->arch.rmap[i])
10963                         goto out_free;
10964                 if (i == 0)
10965                         continue;
10966
10967                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10968                 if (!linfo)
10969                         goto out_free;
10970
10971                 slot->arch.lpage_info[i - 1] = linfo;
10972
10973                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10974                         linfo[0].disallow_lpage = 1;
10975                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10976                         linfo[lpages - 1].disallow_lpage = 1;
10977                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10978                 /*
10979                  * If the gfn and userspace address are not aligned wrt each
10980                  * other, disable large page support for this slot.
10981                  */
10982                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10983                         unsigned long j;
10984
10985                         for (j = 0; j < lpages; ++j)
10986                                 linfo[j].disallow_lpage = 1;
10987                 }
10988         }
10989
10990         if (kvm_page_track_create_memslot(slot, npages))
10991                 goto out_free;
10992
10993         return 0;
10994
10995 out_free:
10996         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10997                 kvfree(slot->arch.rmap[i]);
10998                 slot->arch.rmap[i] = NULL;
10999                 if (i == 0)
11000                         continue;
11001
11002                 kvfree(slot->arch.lpage_info[i - 1]);
11003                 slot->arch.lpage_info[i - 1] = NULL;
11004         }
11005         return -ENOMEM;
11006 }
11007
11008 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11009 {
11010         struct kvm_vcpu *vcpu;
11011         int i;
11012
11013         /*
11014          * memslots->generation has been incremented.
11015          * mmio generation may have reached its maximum value.
11016          */
11017         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11018
11019         /* Force re-initialization of steal_time cache */
11020         kvm_for_each_vcpu(i, vcpu, kvm)
11021                 kvm_vcpu_kick(vcpu);
11022 }
11023
11024 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11025                                 struct kvm_memory_slot *memslot,
11026                                 const struct kvm_userspace_memory_region *mem,
11027                                 enum kvm_mr_change change)
11028 {
11029         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11030                 return kvm_alloc_memslot_metadata(memslot,
11031                                                   mem->memory_size >> PAGE_SHIFT);
11032         return 0;
11033 }
11034
11035
11036 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11037 {
11038         struct kvm_arch *ka = &kvm->arch;
11039
11040         if (!kvm_x86_ops.cpu_dirty_log_size)
11041                 return;
11042
11043         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11044             (!enable && --ka->cpu_dirty_logging_count == 0))
11045                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11046
11047         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11048 }
11049
11050 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11051                                      struct kvm_memory_slot *old,
11052                                      struct kvm_memory_slot *new,
11053                                      enum kvm_mr_change change)
11054 {
11055         bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11056
11057         /*
11058          * Update CPU dirty logging if dirty logging is being toggled.  This
11059          * applies to all operations.
11060          */
11061         if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11062                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11063
11064         /*
11065          * Nothing more to do for RO slots (which can't be dirtied and can't be
11066          * made writable) or CREATE/MOVE/DELETE of a slot.
11067          *
11068          * For a memslot with dirty logging disabled:
11069          * CREATE:      No dirty mappings will already exist.
11070          * MOVE/DELETE: The old mappings will already have been cleaned up by
11071          *              kvm_arch_flush_shadow_memslot()
11072          *
11073          * For a memslot with dirty logging enabled:
11074          * CREATE:      No shadow pages exist, thus nothing to write-protect
11075          *              and no dirty bits to clear.
11076          * MOVE/DELETE: The old mappings will already have been cleaned up by
11077          *              kvm_arch_flush_shadow_memslot().
11078          */
11079         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11080                 return;
11081
11082         /*
11083          * READONLY and non-flags changes were filtered out above, and the only
11084          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11085          * logging isn't being toggled on or off.
11086          */
11087         if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11088                 return;
11089
11090         if (!log_dirty_pages) {
11091                 /*
11092                  * Dirty logging tracks sptes in 4k granularity, meaning that
11093                  * large sptes have to be split.  If live migration succeeds,
11094                  * the guest in the source machine will be destroyed and large
11095                  * sptes will be created in the destination.  However, if the
11096                  * guest continues to run in the source machine (for example if
11097                  * live migration fails), small sptes will remain around and
11098                  * cause bad performance.
11099                  *
11100                  * Scan sptes if dirty logging has been stopped, dropping those
11101                  * which can be collapsed into a single large-page spte.  Later
11102                  * page faults will create the large-page sptes.
11103                  */
11104                 kvm_mmu_zap_collapsible_sptes(kvm, new);
11105         } else {
11106                 /* By default, write-protect everything to log writes. */
11107                 int level = PG_LEVEL_4K;
11108
11109                 if (kvm_x86_ops.cpu_dirty_log_size) {
11110                         /*
11111                          * Clear all dirty bits, unless pages are treated as
11112                          * dirty from the get-go.
11113                          */
11114                         if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
11115                                 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11116
11117                         /*
11118                          * Write-protect large pages on write so that dirty
11119                          * logging happens at 4k granularity.  No need to
11120                          * write-protect small SPTEs since write accesses are
11121                          * logged by the CPU via dirty bits.
11122                          */
11123                         level = PG_LEVEL_2M;
11124                 } else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
11125                         /*
11126                          * If we're with initial-all-set, we don't need
11127                          * to write protect any small page because
11128                          * they're reported as dirty already.  However
11129                          * we still need to write-protect huge pages
11130                          * so that the page split can happen lazily on
11131                          * the first write to the huge page.
11132                          */
11133                         level = PG_LEVEL_2M;
11134                 }
11135                 kvm_mmu_slot_remove_write_access(kvm, new, level);
11136         }
11137 }
11138
11139 void kvm_arch_commit_memory_region(struct kvm *kvm,
11140                                 const struct kvm_userspace_memory_region *mem,
11141                                 struct kvm_memory_slot *old,
11142                                 const struct kvm_memory_slot *new,
11143                                 enum kvm_mr_change change)
11144 {
11145         if (!kvm->arch.n_requested_mmu_pages)
11146                 kvm_mmu_change_mmu_pages(kvm,
11147                                 kvm_mmu_calculate_default_mmu_pages(kvm));
11148
11149         /*
11150          * FIXME: const-ify all uses of struct kvm_memory_slot.
11151          */
11152         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11153
11154         /* Free the arrays associated with the old memslot. */
11155         if (change == KVM_MR_MOVE)
11156                 kvm_arch_free_memslot(kvm, old);
11157 }
11158
11159 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11160 {
11161         kvm_mmu_zap_all(kvm);
11162 }
11163
11164 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11165                                    struct kvm_memory_slot *slot)
11166 {
11167         kvm_page_track_flush_slot(kvm, slot);
11168 }
11169
11170 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11171 {
11172         return (is_guest_mode(vcpu) &&
11173                         kvm_x86_ops.guest_apic_has_interrupt &&
11174                         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11175 }
11176
11177 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11178 {
11179         if (!list_empty_careful(&vcpu->async_pf.done))
11180                 return true;
11181
11182         if (kvm_apic_has_events(vcpu))
11183                 return true;
11184
11185         if (vcpu->arch.pv.pv_unhalted)
11186                 return true;
11187
11188         if (vcpu->arch.exception.pending)
11189                 return true;
11190
11191         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11192             (vcpu->arch.nmi_pending &&
11193              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11194                 return true;
11195
11196         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11197             (vcpu->arch.smi_pending &&
11198              static_call(kvm_x86_smi_allowed)(vcpu, false)))
11199                 return true;
11200
11201         if (kvm_arch_interrupt_allowed(vcpu) &&
11202             (kvm_cpu_has_interrupt(vcpu) ||
11203             kvm_guest_apic_has_interrupt(vcpu)))
11204                 return true;
11205
11206         if (kvm_hv_has_stimer_pending(vcpu))
11207                 return true;
11208
11209         if (is_guest_mode(vcpu) &&
11210             kvm_x86_ops.nested_ops->hv_timer_pending &&
11211             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11212                 return true;
11213
11214         return false;
11215 }
11216
11217 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11218 {
11219         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11220 }
11221
11222 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11223 {
11224         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11225                 return true;
11226
11227         return false;
11228 }
11229
11230 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11231 {
11232         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11233                 return true;
11234
11235         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11236                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11237                  kvm_test_request(KVM_REQ_EVENT, vcpu))
11238                 return true;
11239
11240         return kvm_arch_dy_has_pending_interrupt(vcpu);
11241 }
11242
11243 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11244 {
11245         if (vcpu->arch.guest_state_protected)
11246                 return true;
11247
11248         return vcpu->arch.preempted_in_kernel;
11249 }
11250
11251 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11252 {
11253         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11254 }
11255
11256 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11257 {
11258         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11259 }
11260
11261 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11262 {
11263         /* Can't read the RIP when guest state is protected, just return 0 */
11264         if (vcpu->arch.guest_state_protected)
11265                 return 0;
11266
11267         if (is_64_bit_mode(vcpu))
11268                 return kvm_rip_read(vcpu);
11269         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11270                      kvm_rip_read(vcpu));
11271 }
11272 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11273
11274 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11275 {
11276         return kvm_get_linear_rip(vcpu) == linear_rip;
11277 }
11278 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11279
11280 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11281 {
11282         unsigned long rflags;
11283
11284         rflags = static_call(kvm_x86_get_rflags)(vcpu);
11285         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11286                 rflags &= ~X86_EFLAGS_TF;
11287         return rflags;
11288 }
11289 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11290
11291 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11292 {
11293         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11294             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11295                 rflags |= X86_EFLAGS_TF;
11296         static_call(kvm_x86_set_rflags)(vcpu, rflags);
11297 }
11298
11299 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11300 {
11301         __kvm_set_rflags(vcpu, rflags);
11302         kvm_make_request(KVM_REQ_EVENT, vcpu);
11303 }
11304 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11305
11306 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11307 {
11308         int r;
11309
11310         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11311               work->wakeup_all)
11312                 return;
11313
11314         r = kvm_mmu_reload(vcpu);
11315         if (unlikely(r))
11316                 return;
11317
11318         if (!vcpu->arch.mmu->direct_map &&
11319               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11320                 return;
11321
11322         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11323 }
11324
11325 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11326 {
11327         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11328
11329         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11330 }
11331
11332 static inline u32 kvm_async_pf_next_probe(u32 key)
11333 {
11334         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11335 }
11336
11337 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11338 {
11339         u32 key = kvm_async_pf_hash_fn(gfn);
11340
11341         while (vcpu->arch.apf.gfns[key] != ~0)
11342                 key = kvm_async_pf_next_probe(key);
11343
11344         vcpu->arch.apf.gfns[key] = gfn;
11345 }
11346
11347 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11348 {
11349         int i;
11350         u32 key = kvm_async_pf_hash_fn(gfn);
11351
11352         for (i = 0; i < ASYNC_PF_PER_VCPU &&
11353                      (vcpu->arch.apf.gfns[key] != gfn &&
11354                       vcpu->arch.apf.gfns[key] != ~0); i++)
11355                 key = kvm_async_pf_next_probe(key);
11356
11357         return key;
11358 }
11359
11360 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11361 {
11362         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11363 }
11364
11365 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11366 {
11367         u32 i, j, k;
11368
11369         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11370
11371         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11372                 return;
11373
11374         while (true) {
11375                 vcpu->arch.apf.gfns[i] = ~0;
11376                 do {
11377                         j = kvm_async_pf_next_probe(j);
11378                         if (vcpu->arch.apf.gfns[j] == ~0)
11379                                 return;
11380                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11381                         /*
11382                          * k lies cyclically in ]i,j]
11383                          * |    i.k.j |
11384                          * |....j i.k.| or  |.k..j i...|
11385                          */
11386                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11387                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11388                 i = j;
11389         }
11390 }
11391
11392 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11393 {
11394         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11395
11396         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11397                                       sizeof(reason));
11398 }
11399
11400 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11401 {
11402         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11403
11404         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11405                                              &token, offset, sizeof(token));
11406 }
11407
11408 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11409 {
11410         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11411         u32 val;
11412
11413         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11414                                          &val, offset, sizeof(val)))
11415                 return false;
11416
11417         return !val;
11418 }
11419
11420 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11421 {
11422         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11423                 return false;
11424
11425         if (!kvm_pv_async_pf_enabled(vcpu) ||
11426             (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11427                 return false;
11428
11429         return true;
11430 }
11431
11432 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11433 {
11434         if (unlikely(!lapic_in_kernel(vcpu) ||
11435                      kvm_event_needs_reinjection(vcpu) ||
11436                      vcpu->arch.exception.pending))
11437                 return false;
11438
11439         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11440                 return false;
11441
11442         /*
11443          * If interrupts are off we cannot even use an artificial
11444          * halt state.
11445          */
11446         return kvm_arch_interrupt_allowed(vcpu);
11447 }
11448
11449 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11450                                      struct kvm_async_pf *work)
11451 {
11452         struct x86_exception fault;
11453
11454         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11455         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11456
11457         if (kvm_can_deliver_async_pf(vcpu) &&
11458             !apf_put_user_notpresent(vcpu)) {
11459                 fault.vector = PF_VECTOR;
11460                 fault.error_code_valid = true;
11461                 fault.error_code = 0;
11462                 fault.nested_page_fault = false;
11463                 fault.address = work->arch.token;
11464                 fault.async_page_fault = true;
11465                 kvm_inject_page_fault(vcpu, &fault);
11466                 return true;
11467         } else {
11468                 /*
11469                  * It is not possible to deliver a paravirtualized asynchronous
11470                  * page fault, but putting the guest in an artificial halt state
11471                  * can be beneficial nevertheless: if an interrupt arrives, we
11472                  * can deliver it timely and perhaps the guest will schedule
11473                  * another process.  When the instruction that triggered a page
11474                  * fault is retried, hopefully the page will be ready in the host.
11475                  */
11476                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11477                 return false;
11478         }
11479 }
11480
11481 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11482                                  struct kvm_async_pf *work)
11483 {
11484         struct kvm_lapic_irq irq = {
11485                 .delivery_mode = APIC_DM_FIXED,
11486                 .vector = vcpu->arch.apf.vec
11487         };
11488
11489         if (work->wakeup_all)
11490                 work->arch.token = ~0; /* broadcast wakeup */
11491         else
11492                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11493         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11494
11495         if ((work->wakeup_all || work->notpresent_injected) &&
11496             kvm_pv_async_pf_enabled(vcpu) &&
11497             !apf_put_user_ready(vcpu, work->arch.token)) {
11498                 vcpu->arch.apf.pageready_pending = true;
11499                 kvm_apic_set_irq(vcpu, &irq, NULL);
11500         }
11501
11502         vcpu->arch.apf.halted = false;
11503         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11504 }
11505
11506 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11507 {
11508         kvm_make_request(KVM_REQ_APF_READY, vcpu);
11509         if (!vcpu->arch.apf.pageready_pending)
11510                 kvm_vcpu_kick(vcpu);
11511 }
11512
11513 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11514 {
11515         if (!kvm_pv_async_pf_enabled(vcpu))
11516                 return true;
11517         else
11518                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11519 }
11520
11521 void kvm_arch_start_assignment(struct kvm *kvm)
11522 {
11523         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11524                 static_call_cond(kvm_x86_start_assignment)(kvm);
11525 }
11526 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11527
11528 void kvm_arch_end_assignment(struct kvm *kvm)
11529 {
11530         atomic_dec(&kvm->arch.assigned_device_count);
11531 }
11532 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11533
11534 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11535 {
11536         return atomic_read(&kvm->arch.assigned_device_count);
11537 }
11538 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11539
11540 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11541 {
11542         atomic_inc(&kvm->arch.noncoherent_dma_count);
11543 }
11544 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11545
11546 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11547 {
11548         atomic_dec(&kvm->arch.noncoherent_dma_count);
11549 }
11550 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11551
11552 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11553 {
11554         return atomic_read(&kvm->arch.noncoherent_dma_count);
11555 }
11556 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11557
11558 bool kvm_arch_has_irq_bypass(void)
11559 {
11560         return true;
11561 }
11562
11563 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11564                                       struct irq_bypass_producer *prod)
11565 {
11566         struct kvm_kernel_irqfd *irqfd =
11567                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11568         int ret;
11569
11570         irqfd->producer = prod;
11571         kvm_arch_start_assignment(irqfd->kvm);
11572         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11573                                          prod->irq, irqfd->gsi, 1);
11574
11575         if (ret)
11576                 kvm_arch_end_assignment(irqfd->kvm);
11577
11578         return ret;
11579 }
11580
11581 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11582                                       struct irq_bypass_producer *prod)
11583 {
11584         int ret;
11585         struct kvm_kernel_irqfd *irqfd =
11586                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11587
11588         WARN_ON(irqfd->producer != prod);
11589         irqfd->producer = NULL;
11590
11591         /*
11592          * When producer of consumer is unregistered, we change back to
11593          * remapped mode, so we can re-use the current implementation
11594          * when the irq is masked/disabled or the consumer side (KVM
11595          * int this case doesn't want to receive the interrupts.
11596         */
11597         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11598         if (ret)
11599                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11600                        " fails: %d\n", irqfd->consumer.token, ret);
11601
11602         kvm_arch_end_assignment(irqfd->kvm);
11603 }
11604
11605 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11606                                    uint32_t guest_irq, bool set)
11607 {
11608         return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11609 }
11610
11611 bool kvm_vector_hashing_enabled(void)
11612 {
11613         return vector_hashing;
11614 }
11615
11616 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11617 {
11618         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11619 }
11620 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11621
11622
11623 int kvm_spec_ctrl_test_value(u64 value)
11624 {
11625         /*
11626          * test that setting IA32_SPEC_CTRL to given value
11627          * is allowed by the host processor
11628          */
11629
11630         u64 saved_value;
11631         unsigned long flags;
11632         int ret = 0;
11633
11634         local_irq_save(flags);
11635
11636         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11637                 ret = 1;
11638         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11639                 ret = 1;
11640         else
11641                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11642
11643         local_irq_restore(flags);
11644
11645         return ret;
11646 }
11647 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11648
11649 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11650 {
11651         struct x86_exception fault;
11652         u32 access = error_code &
11653                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11654
11655         if (!(error_code & PFERR_PRESENT_MASK) ||
11656             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11657                 /*
11658                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11659                  * tables probably do not match the TLB.  Just proceed
11660                  * with the error code that the processor gave.
11661                  */
11662                 fault.vector = PF_VECTOR;
11663                 fault.error_code_valid = true;
11664                 fault.error_code = error_code;
11665                 fault.nested_page_fault = false;
11666                 fault.address = gva;
11667         }
11668         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11669 }
11670 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11671
11672 /*
11673  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11674  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11675  * indicates whether exit to userspace is needed.
11676  */
11677 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11678                               struct x86_exception *e)
11679 {
11680         if (r == X86EMUL_PROPAGATE_FAULT) {
11681                 kvm_inject_emulated_page_fault(vcpu, e);
11682                 return 1;
11683         }
11684
11685         /*
11686          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11687          * while handling a VMX instruction KVM could've handled the request
11688          * correctly by exiting to userspace and performing I/O but there
11689          * doesn't seem to be a real use-case behind such requests, just return
11690          * KVM_EXIT_INTERNAL_ERROR for now.
11691          */
11692         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11693         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11694         vcpu->run->internal.ndata = 0;
11695
11696         return 0;
11697 }
11698 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11699
11700 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11701 {
11702         bool pcid_enabled;
11703         struct x86_exception e;
11704         unsigned i;
11705         unsigned long roots_to_free = 0;
11706         struct {
11707                 u64 pcid;
11708                 u64 gla;
11709         } operand;
11710         int r;
11711
11712         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11713         if (r != X86EMUL_CONTINUE)
11714                 return kvm_handle_memory_failure(vcpu, r, &e);
11715
11716         if (operand.pcid >> 12 != 0) {
11717                 kvm_inject_gp(vcpu, 0);
11718                 return 1;
11719         }
11720
11721         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11722
11723         switch (type) {
11724         case INVPCID_TYPE_INDIV_ADDR:
11725                 if ((!pcid_enabled && (operand.pcid != 0)) ||
11726                     is_noncanonical_address(operand.gla, vcpu)) {
11727                         kvm_inject_gp(vcpu, 0);
11728                         return 1;
11729                 }
11730                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11731                 return kvm_skip_emulated_instruction(vcpu);
11732
11733         case INVPCID_TYPE_SINGLE_CTXT:
11734                 if (!pcid_enabled && (operand.pcid != 0)) {
11735                         kvm_inject_gp(vcpu, 0);
11736                         return 1;
11737                 }
11738
11739                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11740                         kvm_mmu_sync_roots(vcpu);
11741                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11742                 }
11743
11744                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11745                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11746                             == operand.pcid)
11747                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11748
11749                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11750                 /*
11751                  * If neither the current cr3 nor any of the prev_roots use the
11752                  * given PCID, then nothing needs to be done here because a
11753                  * resync will happen anyway before switching to any other CR3.
11754                  */
11755
11756                 return kvm_skip_emulated_instruction(vcpu);
11757
11758         case INVPCID_TYPE_ALL_NON_GLOBAL:
11759                 /*
11760                  * Currently, KVM doesn't mark global entries in the shadow
11761                  * page tables, so a non-global flush just degenerates to a
11762                  * global flush. If needed, we could optimize this later by
11763                  * keeping track of global entries in shadow page tables.
11764                  */
11765
11766                 fallthrough;
11767         case INVPCID_TYPE_ALL_INCL_GLOBAL:
11768                 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11769                 return kvm_skip_emulated_instruction(vcpu);
11770
11771         default:
11772                 BUG(); /* We have already checked above that type <= 3 */
11773         }
11774 }
11775 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11776
11777 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11778 {
11779         struct kvm_run *run = vcpu->run;
11780         struct kvm_mmio_fragment *frag;
11781         unsigned int len;
11782
11783         BUG_ON(!vcpu->mmio_needed);
11784
11785         /* Complete previous fragment */
11786         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11787         len = min(8u, frag->len);
11788         if (!vcpu->mmio_is_write)
11789                 memcpy(frag->data, run->mmio.data, len);
11790
11791         if (frag->len <= 8) {
11792                 /* Switch to the next fragment. */
11793                 frag++;
11794                 vcpu->mmio_cur_fragment++;
11795         } else {
11796                 /* Go forward to the next mmio piece. */
11797                 frag->data += len;
11798                 frag->gpa += len;
11799                 frag->len -= len;
11800         }
11801
11802         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11803                 vcpu->mmio_needed = 0;
11804
11805                 // VMG change, at this point, we're always done
11806                 // RIP has already been advanced
11807                 return 1;
11808         }
11809
11810         // More MMIO is needed
11811         run->mmio.phys_addr = frag->gpa;
11812         run->mmio.len = min(8u, frag->len);
11813         run->mmio.is_write = vcpu->mmio_is_write;
11814         if (run->mmio.is_write)
11815                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11816         run->exit_reason = KVM_EXIT_MMIO;
11817
11818         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11819
11820         return 0;
11821 }
11822
11823 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11824                           void *data)
11825 {
11826         int handled;
11827         struct kvm_mmio_fragment *frag;
11828
11829         if (!data)
11830                 return -EINVAL;
11831
11832         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11833         if (handled == bytes)
11834                 return 1;
11835
11836         bytes -= handled;
11837         gpa += handled;
11838         data += handled;
11839
11840         /*TODO: Check if need to increment number of frags */
11841         frag = vcpu->mmio_fragments;
11842         vcpu->mmio_nr_fragments = 1;
11843         frag->len = bytes;
11844         frag->gpa = gpa;
11845         frag->data = data;
11846
11847         vcpu->mmio_needed = 1;
11848         vcpu->mmio_cur_fragment = 0;
11849
11850         vcpu->run->mmio.phys_addr = gpa;
11851         vcpu->run->mmio.len = min(8u, frag->len);
11852         vcpu->run->mmio.is_write = 1;
11853         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11854         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11855
11856         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11857
11858         return 0;
11859 }
11860 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11861
11862 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11863                          void *data)
11864 {
11865         int handled;
11866         struct kvm_mmio_fragment *frag;
11867
11868         if (!data)
11869                 return -EINVAL;
11870
11871         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11872         if (handled == bytes)
11873                 return 1;
11874
11875         bytes -= handled;
11876         gpa += handled;
11877         data += handled;
11878
11879         /*TODO: Check if need to increment number of frags */
11880         frag = vcpu->mmio_fragments;
11881         vcpu->mmio_nr_fragments = 1;
11882         frag->len = bytes;
11883         frag->gpa = gpa;
11884         frag->data = data;
11885
11886         vcpu->mmio_needed = 1;
11887         vcpu->mmio_cur_fragment = 0;
11888
11889         vcpu->run->mmio.phys_addr = gpa;
11890         vcpu->run->mmio.len = min(8u, frag->len);
11891         vcpu->run->mmio.is_write = 0;
11892         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11893
11894         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11895
11896         return 0;
11897 }
11898 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11899
11900 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11901 {
11902         memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11903                vcpu->arch.pio.count * vcpu->arch.pio.size);
11904         vcpu->arch.pio.count = 0;
11905
11906         return 1;
11907 }
11908
11909 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11910                            unsigned int port, void *data,  unsigned int count)
11911 {
11912         int ret;
11913
11914         ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11915                                         data, count);
11916         if (ret)
11917                 return ret;
11918
11919         vcpu->arch.pio.count = 0;
11920
11921         return 0;
11922 }
11923
11924 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11925                           unsigned int port, void *data, unsigned int count)
11926 {
11927         int ret;
11928
11929         ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11930                                        data, count);
11931         if (ret) {
11932                 vcpu->arch.pio.count = 0;
11933         } else {
11934                 vcpu->arch.guest_ins_data = data;
11935                 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11936         }
11937
11938         return 0;
11939 }
11940
11941 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11942                          unsigned int port, void *data,  unsigned int count,
11943                          int in)
11944 {
11945         return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11946                   : kvm_sev_es_outs(vcpu, size, port, data, count);
11947 }
11948 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11949
11950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11957 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);