Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92         ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95  * - enable syscall per default because its emulated by KVM
96  * - enable LME and LMA per default on 64 bit KVM
97  */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func)                                             \
127         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
128                                 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32  __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64  __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
167  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
168  * advancement entirely.  Any other value is used as-is and disables adaptive
169  * tuning, i.e. allows privileged userspace to set an exact advancement time.
170  */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /*
188  * Restoring the host value for MSRs that are only consumed when running in
189  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190  * returns to userspace, i.e. the kernel can run with the guest's value.
191  */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193
194 struct kvm_user_return_msrs {
195         struct user_return_notifier urn;
196         bool registered;
197         struct kvm_user_return_msr_values {
198                 u64 host;
199                 u64 curr;
200         } values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207
208 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211                                 | XFEATURE_MASK_PKRU)
212
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228         KVM_GENERIC_VM_STATS(),
229         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230         STATS_DESC_COUNTER(VM, mmu_pte_write),
231         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232         STATS_DESC_COUNTER(VM, mmu_flooded),
233         STATS_DESC_COUNTER(VM, mmu_recycled),
234         STATS_DESC_COUNTER(VM, mmu_cache_miss),
235         STATS_DESC_ICOUNTER(VM, mmu_unsync),
236         STATS_DESC_ICOUNTER(VM, pages_4k),
237         STATS_DESC_ICOUNTER(VM, pages_2m),
238         STATS_DESC_ICOUNTER(VM, pages_1g),
239         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
240         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
241         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
242 };
243
244 const struct kvm_stats_header kvm_vm_stats_header = {
245         .name_size = KVM_STATS_NAME_SIZE,
246         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247         .id_offset = sizeof(struct kvm_stats_header),
248         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250                        sizeof(kvm_vm_stats_desc),
251 };
252
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254         KVM_GENERIC_VCPU_STATS(),
255         STATS_DESC_COUNTER(VCPU, pf_fixed),
256         STATS_DESC_COUNTER(VCPU, pf_guest),
257         STATS_DESC_COUNTER(VCPU, tlb_flush),
258         STATS_DESC_COUNTER(VCPU, invlpg),
259         STATS_DESC_COUNTER(VCPU, exits),
260         STATS_DESC_COUNTER(VCPU, io_exits),
261         STATS_DESC_COUNTER(VCPU, mmio_exits),
262         STATS_DESC_COUNTER(VCPU, signal_exits),
263         STATS_DESC_COUNTER(VCPU, irq_window_exits),
264         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265         STATS_DESC_COUNTER(VCPU, l1d_flush),
266         STATS_DESC_COUNTER(VCPU, halt_exits),
267         STATS_DESC_COUNTER(VCPU, request_irq_exits),
268         STATS_DESC_COUNTER(VCPU, irq_exits),
269         STATS_DESC_COUNTER(VCPU, host_state_reload),
270         STATS_DESC_COUNTER(VCPU, fpu_reload),
271         STATS_DESC_COUNTER(VCPU, insn_emulation),
272         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273         STATS_DESC_COUNTER(VCPU, hypercalls),
274         STATS_DESC_COUNTER(VCPU, irq_injections),
275         STATS_DESC_COUNTER(VCPU, nmi_injections),
276         STATS_DESC_COUNTER(VCPU, req_event),
277         STATS_DESC_COUNTER(VCPU, nested_run),
278         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280         STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282
283 const struct kvm_stats_header kvm_vcpu_stats_header = {
284         .name_size = KVM_STATS_NAME_SIZE,
285         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
286         .id_offset = sizeof(struct kvm_stats_header),
287         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
288         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
289                        sizeof(kvm_vcpu_stats_desc),
290 };
291
292 u64 __read_mostly host_xcr0;
293 u64 __read_mostly supported_xcr0;
294 EXPORT_SYMBOL_GPL(supported_xcr0);
295
296 static struct kmem_cache *x86_fpu_cache;
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301  * When called, it means the previous get/set msr reached an invalid msr.
302  * Return true if we want to ignore/silent this failed msr access.
303  */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306         const char *op = write ? "wrmsr" : "rdmsr";
307
308         if (ignore_msrs) {
309                 if (report_ignored_msrs)
310                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311                                       op, msr, data);
312                 /* Mask the error */
313                 return true;
314         } else {
315                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316                                       op, msr, data);
317                 return false;
318         }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324         unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326         return kmem_cache_create_usercopy("x86_emulator", size,
327                                           __alignof__(struct x86_emulate_ctxt),
328                                           SLAB_ACCOUNT, useroffset,
329                                           size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336         int i;
337         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338                 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343         unsigned slot;
344         struct kvm_user_return_msrs *msrs
345                 = container_of(urn, struct kvm_user_return_msrs, urn);
346         struct kvm_user_return_msr_values *values;
347         unsigned long flags;
348
349         /*
350          * Disabling irqs at this point since the following code could be
351          * interrupted and executed through kvm_arch_hardware_disable()
352          */
353         local_irq_save(flags);
354         if (msrs->registered) {
355                 msrs->registered = false;
356                 user_return_notifier_unregister(urn);
357         }
358         local_irq_restore(flags);
359         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360                 values = &msrs->values[slot];
361                 if (values->host != values->curr) {
362                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
363                         values->curr = values->host;
364                 }
365         }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370         u64 val;
371         int ret;
372
373         preempt_disable();
374         ret = rdmsrl_safe(msr, &val);
375         if (ret)
376                 goto out;
377         ret = wrmsrl_safe(msr, val);
378 out:
379         preempt_enable();
380         return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387         if (kvm_probe_user_return_msr(msr))
388                 return -1;
389
390         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391         return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397         int i;
398
399         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400                 if (kvm_uret_msrs_list[i] == msr)
401                         return i;
402         }
403         return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409         unsigned int cpu = smp_processor_id();
410         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411         u64 value;
412         int i;
413
414         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416                 msrs->values[i].host = value;
417                 msrs->values[i].curr = value;
418         }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423         unsigned int cpu = smp_processor_id();
424         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425         int err;
426
427         value = (value & mask) | (msrs->values[slot].host & ~mask);
428         if (value == msrs->values[slot].curr)
429                 return 0;
430         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431         if (err)
432                 return 1;
433
434         msrs->values[slot].curr = value;
435         if (!msrs->registered) {
436                 msrs->urn.on_user_return = kvm_on_user_return;
437                 user_return_notifier_register(&msrs->urn);
438                 msrs->registered = true;
439         }
440         return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446         unsigned int cpu = smp_processor_id();
447         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449         if (msrs->registered)
450                 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455         return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461         return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473                 return 1;
474         if (!msr_info->host_initiated) {
475                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476                         return 1;
477                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478                         return 1;
479         }
480
481         kvm_lapic_set_base(vcpu, msr_info->data);
482         kvm_recalculate_apic_map(vcpu->kvm);
483         return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489  *
490  * Hardware virtualization extension instructions may fault if a reboot turns
491  * off virtualization while processes are running.  Usually after catching the
492  * fault we just panic; during reboot instead the instruction is ignored.
493  */
494 noinstr void kvm_spurious_fault(void)
495 {
496         /* Fault while not rebooting.  We want the trace. */
497         BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN            0
502 #define EXCPT_CONTRIBUTORY      1
503 #define EXCPT_PF                2
504
505 static int exception_class(int vector)
506 {
507         switch (vector) {
508         case PF_VECTOR:
509                 return EXCPT_PF;
510         case DE_VECTOR:
511         case TS_VECTOR:
512         case NP_VECTOR:
513         case SS_VECTOR:
514         case GP_VECTOR:
515                 return EXCPT_CONTRIBUTORY;
516         default:
517                 break;
518         }
519         return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT             0
523 #define EXCPT_TRAP              1
524 #define EXCPT_ABORT             2
525 #define EXCPT_INTERRUPT         3
526
527 static int exception_type(int vector)
528 {
529         unsigned int mask;
530
531         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532                 return EXCPT_INTERRUPT;
533
534         mask = 1 << vector;
535
536         /* #DB is trap, as instruction watchpoints are handled elsewhere */
537         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538                 return EXCPT_TRAP;
539
540         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541                 return EXCPT_ABORT;
542
543         /* Reserved exceptions will result in fault */
544         return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549         unsigned nr = vcpu->arch.exception.nr;
550         bool has_payload = vcpu->arch.exception.has_payload;
551         unsigned long payload = vcpu->arch.exception.payload;
552
553         if (!has_payload)
554                 return;
555
556         switch (nr) {
557         case DB_VECTOR:
558                 /*
559                  * "Certain debug exceptions may clear bit 0-3.  The
560                  * remaining contents of the DR6 register are never
561                  * cleared by the processor".
562                  */
563                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564                 /*
565                  * In order to reflect the #DB exception payload in guest
566                  * dr6, three components need to be considered: active low
567                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568                  * DR6_BS and DR6_BT)
569                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570                  * In the target guest dr6:
571                  * FIXED_1 bits should always be set.
572                  * Active low bits should be cleared if 1-setting in payload.
573                  * Active high bits should be set if 1-setting in payload.
574                  *
575                  * Note, the payload is compatible with the pending debug
576                  * exceptions/exit qualification under VMX, that active_low bits
577                  * are active high in payload.
578                  * So they need to be flipped for DR6.
579                  */
580                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581                 vcpu->arch.dr6 |= payload;
582                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584                 /*
585                  * The #DB payload is defined as compatible with the 'pending
586                  * debug exceptions' field under VMX, not DR6. While bit 12 is
587                  * defined in the 'pending debug exceptions' field (enabled
588                  * breakpoint), it is reserved and must be zero in DR6.
589                  */
590                 vcpu->arch.dr6 &= ~BIT(12);
591                 break;
592         case PF_VECTOR:
593                 vcpu->arch.cr2 = payload;
594                 break;
595         }
596
597         vcpu->arch.exception.has_payload = false;
598         vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603                 unsigned nr, bool has_error, u32 error_code,
604                 bool has_payload, unsigned long payload, bool reinject)
605 {
606         u32 prev_nr;
607         int class1, class2;
608
609         kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612         queue:
613                 if (reinject) {
614                         /*
615                          * On vmentry, vcpu->arch.exception.pending is only
616                          * true if an event injection was blocked by
617                          * nested_run_pending.  In that case, however,
618                          * vcpu_enter_guest requests an immediate exit,
619                          * and the guest shouldn't proceed far enough to
620                          * need reinjection.
621                          */
622                         WARN_ON_ONCE(vcpu->arch.exception.pending);
623                         vcpu->arch.exception.injected = true;
624                         if (WARN_ON_ONCE(has_payload)) {
625                                 /*
626                                  * A reinjected event has already
627                                  * delivered its payload.
628                                  */
629                                 has_payload = false;
630                                 payload = 0;
631                         }
632                 } else {
633                         vcpu->arch.exception.pending = true;
634                         vcpu->arch.exception.injected = false;
635                 }
636                 vcpu->arch.exception.has_error_code = has_error;
637                 vcpu->arch.exception.nr = nr;
638                 vcpu->arch.exception.error_code = error_code;
639                 vcpu->arch.exception.has_payload = has_payload;
640                 vcpu->arch.exception.payload = payload;
641                 if (!is_guest_mode(vcpu))
642                         kvm_deliver_exception_payload(vcpu);
643                 return;
644         }
645
646         /* to check exception */
647         prev_nr = vcpu->arch.exception.nr;
648         if (prev_nr == DF_VECTOR) {
649                 /* triple fault -> shutdown */
650                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651                 return;
652         }
653         class1 = exception_class(prev_nr);
654         class2 = exception_class(nr);
655         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657                 /*
658                  * Generate double fault per SDM Table 5-5.  Set
659                  * exception.pending = true so that the double fault
660                  * can trigger a nested vmexit.
661                  */
662                 vcpu->arch.exception.pending = true;
663                 vcpu->arch.exception.injected = false;
664                 vcpu->arch.exception.has_error_code = true;
665                 vcpu->arch.exception.nr = DF_VECTOR;
666                 vcpu->arch.exception.error_code = 0;
667                 vcpu->arch.exception.has_payload = false;
668                 vcpu->arch.exception.payload = 0;
669         } else
670                 /* replace previous exception with a new one in a hope
671                    that instruction re-execution will regenerate lost
672                    exception */
673                 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689                            unsigned long payload)
690 {
691         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696                                     u32 error_code, unsigned long payload)
697 {
698         kvm_multiple_exception(vcpu, nr, true, error_code,
699                                true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704         if (err)
705                 kvm_inject_gp(vcpu, 0);
706         else
707                 return kvm_skip_emulated_instruction(vcpu);
708
709         return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715         ++vcpu->stat.pf_guest;
716         vcpu->arch.exception.nested_apf =
717                 is_guest_mode(vcpu) && fault->async_page_fault;
718         if (vcpu->arch.exception.nested_apf) {
719                 vcpu->arch.apf.nested_apf_token = fault->address;
720                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721         } else {
722                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723                                         fault->address);
724         }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729                                     struct x86_exception *fault)
730 {
731         struct kvm_mmu *fault_mmu;
732         WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735                                                vcpu->arch.walk_mmu;
736
737         /*
738          * Invalidate the TLB entry for the faulting address, if it exists,
739          * else the access will fault indefinitely (and to emulate hardware).
740          */
741         if ((fault->error_code & PFERR_PRESENT_MASK) &&
742             !(fault->error_code & PFERR_RSVD_MASK))
743                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744                                        fault_mmu->root_hpa);
745
746         fault_mmu->inject_page_fault(vcpu, fault);
747         return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753         atomic_inc(&vcpu->arch.nmi_queued);
754         kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
772  * a #GP and return false.
773  */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777                 return true;
778         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779         return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786                 return true;
787
788         kvm_queue_exception(vcpu, UD_VECTOR);
789         return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 /*
794  * This function will be used to read from the physical memory of the currently
795  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796  * can read from guest physical or from the guest's guest physical memory.
797  */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799                             gfn_t ngfn, void *data, int offset, int len,
800                             u32 access)
801 {
802         struct x86_exception exception;
803         gfn_t real_gfn;
804         gpa_t ngpa;
805
806         ngpa     = gfn_to_gpa(ngfn);
807         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808         if (real_gfn == UNMAPPED_GVA)
809                 return -EFAULT;
810
811         real_gfn = gpa_to_gfn(real_gfn);
812
813         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821
822 /*
823  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
824  */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829         int i;
830         int ret;
831         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834                                       offset * sizeof(u64), sizeof(pdpte),
835                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
836         if (ret < 0) {
837                 ret = 0;
838                 goto out;
839         }
840         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841                 if ((pdpte[i] & PT_PRESENT_MASK) &&
842                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843                         ret = 0;
844                         goto out;
845                 }
846         }
847         ret = 1;
848
849         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851         vcpu->arch.pdptrs_from_userspace = false;
852
853 out:
854
855         return ret;
856 }
857 EXPORT_SYMBOL_GPL(load_pdptrs);
858
859 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
860 {
861         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
862                 kvm_clear_async_pf_completion_queue(vcpu);
863                 kvm_async_pf_hash_reset(vcpu);
864         }
865
866         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
867                 kvm_mmu_reset_context(vcpu);
868
869         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
870             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
871             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
872                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
873 }
874 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
875
876 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
877 {
878         unsigned long old_cr0 = kvm_read_cr0(vcpu);
879         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
880
881         cr0 |= X86_CR0_ET;
882
883 #ifdef CONFIG_X86_64
884         if (cr0 & 0xffffffff00000000UL)
885                 return 1;
886 #endif
887
888         cr0 &= ~CR0_RESERVED_BITS;
889
890         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
891                 return 1;
892
893         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
894                 return 1;
895
896 #ifdef CONFIG_X86_64
897         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898             (cr0 & X86_CR0_PG)) {
899                 int cs_db, cs_l;
900
901                 if (!is_pae(vcpu))
902                         return 1;
903                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
904                 if (cs_l)
905                         return 1;
906         }
907 #endif
908         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
910             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
911                 return 1;
912
913         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
914                 return 1;
915
916         static_call(kvm_x86_set_cr0)(vcpu, cr0);
917
918         kvm_post_set_cr0(vcpu, old_cr0, cr0);
919
920         return 0;
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_cr0);
923
924 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
925 {
926         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
927 }
928 EXPORT_SYMBOL_GPL(kvm_lmsw);
929
930 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
931 {
932         if (vcpu->arch.guest_state_protected)
933                 return;
934
935         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936
937                 if (vcpu->arch.xcr0 != host_xcr0)
938                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
939
940                 if (vcpu->arch.xsaves_enabled &&
941                     vcpu->arch.ia32_xss != host_xss)
942                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
943         }
944
945         if (static_cpu_has(X86_FEATURE_PKU) &&
946             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
947              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
948             vcpu->arch.pkru != vcpu->arch.host_pkru)
949                 write_pkru(vcpu->arch.pkru);
950 }
951 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
952
953 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
954 {
955         if (vcpu->arch.guest_state_protected)
956                 return;
957
958         if (static_cpu_has(X86_FEATURE_PKU) &&
959             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
960              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
961                 vcpu->arch.pkru = rdpkru();
962                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
963                         write_pkru(vcpu->arch.host_pkru);
964         }
965
966         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967
968                 if (vcpu->arch.xcr0 != host_xcr0)
969                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
970
971                 if (vcpu->arch.xsaves_enabled &&
972                     vcpu->arch.ia32_xss != host_xss)
973                         wrmsrl(MSR_IA32_XSS, host_xss);
974         }
975
976 }
977 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
978
979 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981         u64 xcr0 = xcr;
982         u64 old_xcr0 = vcpu->arch.xcr0;
983         u64 valid_bits;
984
985         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
986         if (index != XCR_XFEATURE_ENABLED_MASK)
987                 return 1;
988         if (!(xcr0 & XFEATURE_MASK_FP))
989                 return 1;
990         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
991                 return 1;
992
993         /*
994          * Do not allow the guest to set bits that we do not support
995          * saving.  However, xcr0 bit 0 is always set, even if the
996          * emulated CPU does not support XSAVE (see fx_init).
997          */
998         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
999         if (xcr0 & ~valid_bits)
1000                 return 1;
1001
1002         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004                 return 1;
1005
1006         if (xcr0 & XFEATURE_MASK_AVX512) {
1007                 if (!(xcr0 & XFEATURE_MASK_YMM))
1008                         return 1;
1009                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010                         return 1;
1011         }
1012         vcpu->arch.xcr0 = xcr0;
1013
1014         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015                 kvm_update_cpuid_runtime(vcpu);
1016         return 0;
1017 }
1018
1019 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020 {
1021         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023                 kvm_inject_gp(vcpu, 0);
1024                 return 1;
1025         }
1026
1027         return kvm_skip_emulated_instruction(vcpu);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030
1031 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032 {
1033         if (cr4 & cr4_reserved_bits)
1034                 return false;
1035
1036         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037                 return false;
1038
1039         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042
1043 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044 {
1045         if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1046             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1047                 kvm_mmu_reset_context(vcpu);
1048 }
1049 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050
1051 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052 {
1053         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055                                    X86_CR4_SMEP;
1056
1057         if (!kvm_is_valid_cr4(vcpu, cr4))
1058                 return 1;
1059
1060         if (is_long_mode(vcpu)) {
1061                 if (!(cr4 & X86_CR4_PAE))
1062                         return 1;
1063                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064                         return 1;
1065         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066                    && ((cr4 ^ old_cr4) & pdptr_bits)
1067                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068                                    kvm_read_cr3(vcpu)))
1069                 return 1;
1070
1071         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073                         return 1;
1074
1075                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077                         return 1;
1078         }
1079
1080         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081
1082         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083
1084         return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087
1088 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089 {
1090         struct kvm_mmu *mmu = vcpu->arch.mmu;
1091         unsigned long roots_to_free = 0;
1092         int i;
1093
1094         /*
1095          * If neither the current CR3 nor any of the prev_roots use the given
1096          * PCID, then nothing needs to be done here because a resync will
1097          * happen anyway before switching to any other CR3.
1098          */
1099         if (kvm_get_active_pcid(vcpu) == pcid) {
1100                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1101                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1102         }
1103
1104         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1105                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1106                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1107
1108         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1109 }
1110
1111 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1112 {
1113         bool skip_tlb_flush = false;
1114         unsigned long pcid = 0;
1115 #ifdef CONFIG_X86_64
1116         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1117
1118         if (pcid_enabled) {
1119                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1120                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1121                 pcid = cr3 & X86_CR3_PCID_MASK;
1122         }
1123 #endif
1124
1125         /* PDPTRs are always reloaded for PAE paging. */
1126         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1127                 goto handle_tlb_flush;
1128
1129         /*
1130          * Do not condition the GPA check on long mode, this helper is used to
1131          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1132          * the current vCPU mode is accurate.
1133          */
1134         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1135                 return 1;
1136
1137         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1138                 return 1;
1139
1140         if (cr3 != kvm_read_cr3(vcpu))
1141                 kvm_mmu_new_pgd(vcpu, cr3);
1142
1143         vcpu->arch.cr3 = cr3;
1144         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1145
1146 handle_tlb_flush:
1147         /*
1148          * A load of CR3 that flushes the TLB flushes only the current PCID,
1149          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1150          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1151          * and it's impossible to use a non-zero PCID when PCID is disabled,
1152          * i.e. only PCID=0 can be relevant.
1153          */
1154         if (!skip_tlb_flush)
1155                 kvm_invalidate_pcid(vcpu, pcid);
1156
1157         return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1160
1161 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1162 {
1163         if (cr8 & CR8_RESERVED_BITS)
1164                 return 1;
1165         if (lapic_in_kernel(vcpu))
1166                 kvm_lapic_set_tpr(vcpu, cr8);
1167         else
1168                 vcpu->arch.cr8 = cr8;
1169         return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1172
1173 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1174 {
1175         if (lapic_in_kernel(vcpu))
1176                 return kvm_lapic_get_cr8(vcpu);
1177         else
1178                 return vcpu->arch.cr8;
1179 }
1180 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1181
1182 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1183 {
1184         int i;
1185
1186         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1187                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1188                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1189         }
1190 }
1191
1192 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1193 {
1194         unsigned long dr7;
1195
1196         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1197                 dr7 = vcpu->arch.guest_debug_dr7;
1198         else
1199                 dr7 = vcpu->arch.dr7;
1200         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1201         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1202         if (dr7 & DR7_BP_EN_MASK)
1203                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1206
1207 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1208 {
1209         u64 fixed = DR6_FIXED_1;
1210
1211         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1212                 fixed |= DR6_RTM;
1213
1214         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1215                 fixed |= DR6_BUS_LOCK;
1216         return fixed;
1217 }
1218
1219 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1220 {
1221         size_t size = ARRAY_SIZE(vcpu->arch.db);
1222
1223         switch (dr) {
1224         case 0 ... 3:
1225                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1226                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1227                         vcpu->arch.eff_db[dr] = val;
1228                 break;
1229         case 4:
1230         case 6:
1231                 if (!kvm_dr6_valid(val))
1232                         return 1; /* #GP */
1233                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1234                 break;
1235         case 5:
1236         default: /* 7 */
1237                 if (!kvm_dr7_valid(val))
1238                         return 1; /* #GP */
1239                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1240                 kvm_update_dr7(vcpu);
1241                 break;
1242         }
1243
1244         return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_dr);
1247
1248 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1249 {
1250         size_t size = ARRAY_SIZE(vcpu->arch.db);
1251
1252         switch (dr) {
1253         case 0 ... 3:
1254                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1255                 break;
1256         case 4:
1257         case 6:
1258                 *val = vcpu->arch.dr6;
1259                 break;
1260         case 5:
1261         default: /* 7 */
1262                 *val = vcpu->arch.dr7;
1263                 break;
1264         }
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_get_dr);
1267
1268 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1269 {
1270         u32 ecx = kvm_rcx_read(vcpu);
1271         u64 data;
1272
1273         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1274                 kvm_inject_gp(vcpu, 0);
1275                 return 1;
1276         }
1277
1278         kvm_rax_write(vcpu, (u32)data);
1279         kvm_rdx_write(vcpu, data >> 32);
1280         return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1283
1284 /*
1285  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1286  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1287  *
1288  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1289  * extract the supported MSRs from the related const lists.
1290  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1291  * capabilities of the host cpu. This capabilities test skips MSRs that are
1292  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1293  * may depend on host virtualization features rather than host cpu features.
1294  */
1295
1296 static const u32 msrs_to_save_all[] = {
1297         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1298         MSR_STAR,
1299 #ifdef CONFIG_X86_64
1300         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1301 #endif
1302         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1303         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1304         MSR_IA32_SPEC_CTRL,
1305         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1306         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1307         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1308         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1309         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1310         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1311         MSR_IA32_UMWAIT_CONTROL,
1312
1313         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1314         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1315         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1316         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1317         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1318         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1319         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1320         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1321         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1322         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1323         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1324         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1325         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1326         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1327         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1328         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1329         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1330         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1331         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1332         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1333         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1334         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1335 };
1336
1337 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1338 static unsigned num_msrs_to_save;
1339
1340 static const u32 emulated_msrs_all[] = {
1341         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1342         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1343         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1344         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1345         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1346         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1347         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1348         HV_X64_MSR_RESET,
1349         HV_X64_MSR_VP_INDEX,
1350         HV_X64_MSR_VP_RUNTIME,
1351         HV_X64_MSR_SCONTROL,
1352         HV_X64_MSR_STIMER0_CONFIG,
1353         HV_X64_MSR_VP_ASSIST_PAGE,
1354         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1355         HV_X64_MSR_TSC_EMULATION_STATUS,
1356         HV_X64_MSR_SYNDBG_OPTIONS,
1357         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1358         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1359         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1360
1361         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1362         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1363
1364         MSR_IA32_TSC_ADJUST,
1365         MSR_IA32_TSC_DEADLINE,
1366         MSR_IA32_ARCH_CAPABILITIES,
1367         MSR_IA32_PERF_CAPABILITIES,
1368         MSR_IA32_MISC_ENABLE,
1369         MSR_IA32_MCG_STATUS,
1370         MSR_IA32_MCG_CTL,
1371         MSR_IA32_MCG_EXT_CTL,
1372         MSR_IA32_SMBASE,
1373         MSR_SMI_COUNT,
1374         MSR_PLATFORM_INFO,
1375         MSR_MISC_FEATURES_ENABLES,
1376         MSR_AMD64_VIRT_SPEC_CTRL,
1377         MSR_IA32_POWER_CTL,
1378         MSR_IA32_UCODE_REV,
1379
1380         /*
1381          * The following list leaves out MSRs whose values are determined
1382          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1383          * We always support the "true" VMX control MSRs, even if the host
1384          * processor does not, so I am putting these registers here rather
1385          * than in msrs_to_save_all.
1386          */
1387         MSR_IA32_VMX_BASIC,
1388         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1389         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1390         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1391         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1392         MSR_IA32_VMX_MISC,
1393         MSR_IA32_VMX_CR0_FIXED0,
1394         MSR_IA32_VMX_CR4_FIXED0,
1395         MSR_IA32_VMX_VMCS_ENUM,
1396         MSR_IA32_VMX_PROCBASED_CTLS2,
1397         MSR_IA32_VMX_EPT_VPID_CAP,
1398         MSR_IA32_VMX_VMFUNC,
1399
1400         MSR_K7_HWCR,
1401         MSR_KVM_POLL_CONTROL,
1402 };
1403
1404 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1405 static unsigned num_emulated_msrs;
1406
1407 /*
1408  * List of msr numbers which are used to expose MSR-based features that
1409  * can be used by a hypervisor to validate requested CPU features.
1410  */
1411 static const u32 msr_based_features_all[] = {
1412         MSR_IA32_VMX_BASIC,
1413         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1414         MSR_IA32_VMX_PINBASED_CTLS,
1415         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1416         MSR_IA32_VMX_PROCBASED_CTLS,
1417         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1418         MSR_IA32_VMX_EXIT_CTLS,
1419         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1420         MSR_IA32_VMX_ENTRY_CTLS,
1421         MSR_IA32_VMX_MISC,
1422         MSR_IA32_VMX_CR0_FIXED0,
1423         MSR_IA32_VMX_CR0_FIXED1,
1424         MSR_IA32_VMX_CR4_FIXED0,
1425         MSR_IA32_VMX_CR4_FIXED1,
1426         MSR_IA32_VMX_VMCS_ENUM,
1427         MSR_IA32_VMX_PROCBASED_CTLS2,
1428         MSR_IA32_VMX_EPT_VPID_CAP,
1429         MSR_IA32_VMX_VMFUNC,
1430
1431         MSR_F10H_DECFG,
1432         MSR_IA32_UCODE_REV,
1433         MSR_IA32_ARCH_CAPABILITIES,
1434         MSR_IA32_PERF_CAPABILITIES,
1435 };
1436
1437 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1438 static unsigned int num_msr_based_features;
1439
1440 static u64 kvm_get_arch_capabilities(void)
1441 {
1442         u64 data = 0;
1443
1444         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1445                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1446
1447         /*
1448          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1449          * the nested hypervisor runs with NX huge pages.  If it is not,
1450          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1451          * L1 guests, so it need not worry about its own (L2) guests.
1452          */
1453         data |= ARCH_CAP_PSCHANGE_MC_NO;
1454
1455         /*
1456          * If we're doing cache flushes (either "always" or "cond")
1457          * we will do one whenever the guest does a vmlaunch/vmresume.
1458          * If an outer hypervisor is doing the cache flush for us
1459          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1460          * capability to the guest too, and if EPT is disabled we're not
1461          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1462          * require a nested hypervisor to do a flush of its own.
1463          */
1464         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1465                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1466
1467         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1468                 data |= ARCH_CAP_RDCL_NO;
1469         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1470                 data |= ARCH_CAP_SSB_NO;
1471         if (!boot_cpu_has_bug(X86_BUG_MDS))
1472                 data |= ARCH_CAP_MDS_NO;
1473
1474         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1475                 /*
1476                  * If RTM=0 because the kernel has disabled TSX, the host might
1477                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1478                  * and therefore knows that there cannot be TAA) but keep
1479                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1480                  * and we want to allow migrating those guests to tsx=off hosts.
1481                  */
1482                 data &= ~ARCH_CAP_TAA_NO;
1483         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1484                 data |= ARCH_CAP_TAA_NO;
1485         } else {
1486                 /*
1487                  * Nothing to do here; we emulate TSX_CTRL if present on the
1488                  * host so the guest can choose between disabling TSX or
1489                  * using VERW to clear CPU buffers.
1490                  */
1491         }
1492
1493         return data;
1494 }
1495
1496 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1497 {
1498         switch (msr->index) {
1499         case MSR_IA32_ARCH_CAPABILITIES:
1500                 msr->data = kvm_get_arch_capabilities();
1501                 break;
1502         case MSR_IA32_UCODE_REV:
1503                 rdmsrl_safe(msr->index, &msr->data);
1504                 break;
1505         default:
1506                 return static_call(kvm_x86_get_msr_feature)(msr);
1507         }
1508         return 0;
1509 }
1510
1511 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1512 {
1513         struct kvm_msr_entry msr;
1514         int r;
1515
1516         msr.index = index;
1517         r = kvm_get_msr_feature(&msr);
1518
1519         if (r == KVM_MSR_RET_INVALID) {
1520                 /* Unconditionally clear the output for simplicity */
1521                 *data = 0;
1522                 if (kvm_msr_ignored_check(index, 0, false))
1523                         r = 0;
1524         }
1525
1526         if (r)
1527                 return r;
1528
1529         *data = msr.data;
1530
1531         return 0;
1532 }
1533
1534 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1535 {
1536         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1537                 return false;
1538
1539         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1540                 return false;
1541
1542         if (efer & (EFER_LME | EFER_LMA) &&
1543             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1544                 return false;
1545
1546         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1547                 return false;
1548
1549         return true;
1550
1551 }
1552 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1553 {
1554         if (efer & efer_reserved_bits)
1555                 return false;
1556
1557         return __kvm_valid_efer(vcpu, efer);
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1560
1561 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1562 {
1563         u64 old_efer = vcpu->arch.efer;
1564         u64 efer = msr_info->data;
1565         int r;
1566
1567         if (efer & efer_reserved_bits)
1568                 return 1;
1569
1570         if (!msr_info->host_initiated) {
1571                 if (!__kvm_valid_efer(vcpu, efer))
1572                         return 1;
1573
1574                 if (is_paging(vcpu) &&
1575                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1576                         return 1;
1577         }
1578
1579         efer &= ~EFER_LMA;
1580         efer |= vcpu->arch.efer & EFER_LMA;
1581
1582         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1583         if (r) {
1584                 WARN_ON(r > 0);
1585                 return r;
1586         }
1587
1588         /* Update reserved bits */
1589         if ((efer ^ old_efer) & EFER_NX)
1590                 kvm_mmu_reset_context(vcpu);
1591
1592         return 0;
1593 }
1594
1595 void kvm_enable_efer_bits(u64 mask)
1596 {
1597        efer_reserved_bits &= ~mask;
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1600
1601 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1602 {
1603         struct kvm_x86_msr_filter *msr_filter;
1604         struct msr_bitmap_range *ranges;
1605         struct kvm *kvm = vcpu->kvm;
1606         bool allowed;
1607         int idx;
1608         u32 i;
1609
1610         /* x2APIC MSRs do not support filtering. */
1611         if (index >= 0x800 && index <= 0x8ff)
1612                 return true;
1613
1614         idx = srcu_read_lock(&kvm->srcu);
1615
1616         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1617         if (!msr_filter) {
1618                 allowed = true;
1619                 goto out;
1620         }
1621
1622         allowed = msr_filter->default_allow;
1623         ranges = msr_filter->ranges;
1624
1625         for (i = 0; i < msr_filter->count; i++) {
1626                 u32 start = ranges[i].base;
1627                 u32 end = start + ranges[i].nmsrs;
1628                 u32 flags = ranges[i].flags;
1629                 unsigned long *bitmap = ranges[i].bitmap;
1630
1631                 if ((index >= start) && (index < end) && (flags & type)) {
1632                         allowed = !!test_bit(index - start, bitmap);
1633                         break;
1634                 }
1635         }
1636
1637 out:
1638         srcu_read_unlock(&kvm->srcu, idx);
1639
1640         return allowed;
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1643
1644 /*
1645  * Write @data into the MSR specified by @index.  Select MSR specific fault
1646  * checks are bypassed if @host_initiated is %true.
1647  * Returns 0 on success, non-0 otherwise.
1648  * Assumes vcpu_load() was already called.
1649  */
1650 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1651                          bool host_initiated)
1652 {
1653         struct msr_data msr;
1654
1655         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1656                 return KVM_MSR_RET_FILTERED;
1657
1658         switch (index) {
1659         case MSR_FS_BASE:
1660         case MSR_GS_BASE:
1661         case MSR_KERNEL_GS_BASE:
1662         case MSR_CSTAR:
1663         case MSR_LSTAR:
1664                 if (is_noncanonical_address(data, vcpu))
1665                         return 1;
1666                 break;
1667         case MSR_IA32_SYSENTER_EIP:
1668         case MSR_IA32_SYSENTER_ESP:
1669                 /*
1670                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1671                  * non-canonical address is written on Intel but not on
1672                  * AMD (which ignores the top 32-bits, because it does
1673                  * not implement 64-bit SYSENTER).
1674                  *
1675                  * 64-bit code should hence be able to write a non-canonical
1676                  * value on AMD.  Making the address canonical ensures that
1677                  * vmentry does not fail on Intel after writing a non-canonical
1678                  * value, and that something deterministic happens if the guest
1679                  * invokes 64-bit SYSENTER.
1680                  */
1681                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1682                 break;
1683         case MSR_TSC_AUX:
1684                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1685                         return 1;
1686
1687                 if (!host_initiated &&
1688                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1689                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1690                         return 1;
1691
1692                 /*
1693                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1694                  * incomplete and conflicting architectural behavior.  Current
1695                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1696                  * reserved and always read as zeros.  Enforce Intel's reserved
1697                  * bits check if and only if the guest CPU is Intel, and clear
1698                  * the bits in all other cases.  This ensures cross-vendor
1699                  * migration will provide consistent behavior for the guest.
1700                  */
1701                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1702                         return 1;
1703
1704                 data = (u32)data;
1705                 break;
1706         }
1707
1708         msr.data = data;
1709         msr.index = index;
1710         msr.host_initiated = host_initiated;
1711
1712         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1713 }
1714
1715 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1716                                      u32 index, u64 data, bool host_initiated)
1717 {
1718         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1719
1720         if (ret == KVM_MSR_RET_INVALID)
1721                 if (kvm_msr_ignored_check(index, data, true))
1722                         ret = 0;
1723
1724         return ret;
1725 }
1726
1727 /*
1728  * Read the MSR specified by @index into @data.  Select MSR specific fault
1729  * checks are bypassed if @host_initiated is %true.
1730  * Returns 0 on success, non-0 otherwise.
1731  * Assumes vcpu_load() was already called.
1732  */
1733 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1734                   bool host_initiated)
1735 {
1736         struct msr_data msr;
1737         int ret;
1738
1739         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1740                 return KVM_MSR_RET_FILTERED;
1741
1742         switch (index) {
1743         case MSR_TSC_AUX:
1744                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1745                         return 1;
1746
1747                 if (!host_initiated &&
1748                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1749                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1750                         return 1;
1751                 break;
1752         }
1753
1754         msr.index = index;
1755         msr.host_initiated = host_initiated;
1756
1757         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1758         if (!ret)
1759                 *data = msr.data;
1760         return ret;
1761 }
1762
1763 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1764                                      u32 index, u64 *data, bool host_initiated)
1765 {
1766         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1767
1768         if (ret == KVM_MSR_RET_INVALID) {
1769                 /* Unconditionally clear *data for simplicity */
1770                 *data = 0;
1771                 if (kvm_msr_ignored_check(index, 0, false))
1772                         ret = 0;
1773         }
1774
1775         return ret;
1776 }
1777
1778 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1779 {
1780         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_get_msr);
1783
1784 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1785 {
1786         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_set_msr);
1789
1790 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1791 {
1792         int err = vcpu->run->msr.error;
1793         if (!err) {
1794                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1795                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1796         }
1797
1798         return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1799 }
1800
1801 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1802 {
1803         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1804 }
1805
1806 static u64 kvm_msr_reason(int r)
1807 {
1808         switch (r) {
1809         case KVM_MSR_RET_INVALID:
1810                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1811         case KVM_MSR_RET_FILTERED:
1812                 return KVM_MSR_EXIT_REASON_FILTER;
1813         default:
1814                 return KVM_MSR_EXIT_REASON_INVAL;
1815         }
1816 }
1817
1818 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1819                               u32 exit_reason, u64 data,
1820                               int (*completion)(struct kvm_vcpu *vcpu),
1821                               int r)
1822 {
1823         u64 msr_reason = kvm_msr_reason(r);
1824
1825         /* Check if the user wanted to know about this MSR fault */
1826         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1827                 return 0;
1828
1829         vcpu->run->exit_reason = exit_reason;
1830         vcpu->run->msr.error = 0;
1831         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1832         vcpu->run->msr.reason = msr_reason;
1833         vcpu->run->msr.index = index;
1834         vcpu->run->msr.data = data;
1835         vcpu->arch.complete_userspace_io = completion;
1836
1837         return 1;
1838 }
1839
1840 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1841 {
1842         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1843                                    complete_emulated_rdmsr, r);
1844 }
1845
1846 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1847 {
1848         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1849                                    complete_emulated_wrmsr, r);
1850 }
1851
1852 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1853 {
1854         u32 ecx = kvm_rcx_read(vcpu);
1855         u64 data;
1856         int r;
1857
1858         r = kvm_get_msr(vcpu, ecx, &data);
1859
1860         /* MSR read failed? See if we should ask user space */
1861         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1862                 /* Bounce to user space */
1863                 return 0;
1864         }
1865
1866         if (!r) {
1867                 trace_kvm_msr_read(ecx, data);
1868
1869                 kvm_rax_write(vcpu, data & -1u);
1870                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1871         } else {
1872                 trace_kvm_msr_read_ex(ecx);
1873         }
1874
1875         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1876 }
1877 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1878
1879 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1880 {
1881         u32 ecx = kvm_rcx_read(vcpu);
1882         u64 data = kvm_read_edx_eax(vcpu);
1883         int r;
1884
1885         r = kvm_set_msr(vcpu, ecx, data);
1886
1887         /* MSR write failed? See if we should ask user space */
1888         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1889                 /* Bounce to user space */
1890                 return 0;
1891
1892         /* Signal all other negative errors to userspace */
1893         if (r < 0)
1894                 return r;
1895
1896         if (!r)
1897                 trace_kvm_msr_write(ecx, data);
1898         else
1899                 trace_kvm_msr_write_ex(ecx, data);
1900
1901         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1902 }
1903 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1904
1905 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1906 {
1907         return kvm_skip_emulated_instruction(vcpu);
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1910
1911 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1912 {
1913         /* Treat an INVD instruction as a NOP and just skip it. */
1914         return kvm_emulate_as_nop(vcpu);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1917
1918 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1919 {
1920         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1921         return kvm_emulate_as_nop(vcpu);
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1924
1925 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1926 {
1927         kvm_queue_exception(vcpu, UD_VECTOR);
1928         return 1;
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1931
1932 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1933 {
1934         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1935         return kvm_emulate_as_nop(vcpu);
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1938
1939 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1940 {
1941         xfer_to_guest_mode_prepare();
1942         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1943                 xfer_to_guest_mode_work_pending();
1944 }
1945
1946 /*
1947  * The fast path for frequent and performance sensitive wrmsr emulation,
1948  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1949  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1950  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1951  * other cases which must be called after interrupts are enabled on the host.
1952  */
1953 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1954 {
1955         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1956                 return 1;
1957
1958         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1959                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1960                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1961                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1962
1963                 data &= ~(1 << 12);
1964                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1965                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1966                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1967                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1968                 return 0;
1969         }
1970
1971         return 1;
1972 }
1973
1974 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1975 {
1976         if (!kvm_can_use_hv_timer(vcpu))
1977                 return 1;
1978
1979         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1980         return 0;
1981 }
1982
1983 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1984 {
1985         u32 msr = kvm_rcx_read(vcpu);
1986         u64 data;
1987         fastpath_t ret = EXIT_FASTPATH_NONE;
1988
1989         switch (msr) {
1990         case APIC_BASE_MSR + (APIC_ICR >> 4):
1991                 data = kvm_read_edx_eax(vcpu);
1992                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1993                         kvm_skip_emulated_instruction(vcpu);
1994                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1995                 }
1996                 break;
1997         case MSR_IA32_TSC_DEADLINE:
1998                 data = kvm_read_edx_eax(vcpu);
1999                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2000                         kvm_skip_emulated_instruction(vcpu);
2001                         ret = EXIT_FASTPATH_REENTER_GUEST;
2002                 }
2003                 break;
2004         default:
2005                 break;
2006         }
2007
2008         if (ret != EXIT_FASTPATH_NONE)
2009                 trace_kvm_msr_write(msr, data);
2010
2011         return ret;
2012 }
2013 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2014
2015 /*
2016  * Adapt set_msr() to msr_io()'s calling convention
2017  */
2018 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2019 {
2020         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2021 }
2022
2023 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2024 {
2025         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2026 }
2027
2028 #ifdef CONFIG_X86_64
2029 struct pvclock_clock {
2030         int vclock_mode;
2031         u64 cycle_last;
2032         u64 mask;
2033         u32 mult;
2034         u32 shift;
2035         u64 base_cycles;
2036         u64 offset;
2037 };
2038
2039 struct pvclock_gtod_data {
2040         seqcount_t      seq;
2041
2042         struct pvclock_clock clock; /* extract of a clocksource struct */
2043         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2044
2045         ktime_t         offs_boot;
2046         u64             wall_time_sec;
2047 };
2048
2049 static struct pvclock_gtod_data pvclock_gtod_data;
2050
2051 static void update_pvclock_gtod(struct timekeeper *tk)
2052 {
2053         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2054
2055         write_seqcount_begin(&vdata->seq);
2056
2057         /* copy pvclock gtod data */
2058         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2059         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2060         vdata->clock.mask               = tk->tkr_mono.mask;
2061         vdata->clock.mult               = tk->tkr_mono.mult;
2062         vdata->clock.shift              = tk->tkr_mono.shift;
2063         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2064         vdata->clock.offset             = tk->tkr_mono.base;
2065
2066         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2067         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2068         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2069         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2070         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2071         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2072         vdata->raw_clock.offset         = tk->tkr_raw.base;
2073
2074         vdata->wall_time_sec            = tk->xtime_sec;
2075
2076         vdata->offs_boot                = tk->offs_boot;
2077
2078         write_seqcount_end(&vdata->seq);
2079 }
2080
2081 static s64 get_kvmclock_base_ns(void)
2082 {
2083         /* Count up from boot time, but with the frequency of the raw clock.  */
2084         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2085 }
2086 #else
2087 static s64 get_kvmclock_base_ns(void)
2088 {
2089         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2090         return ktime_get_boottime_ns();
2091 }
2092 #endif
2093
2094 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2095 {
2096         int version;
2097         int r;
2098         struct pvclock_wall_clock wc;
2099         u32 wc_sec_hi;
2100         u64 wall_nsec;
2101
2102         if (!wall_clock)
2103                 return;
2104
2105         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2106         if (r)
2107                 return;
2108
2109         if (version & 1)
2110                 ++version;  /* first time write, random junk */
2111
2112         ++version;
2113
2114         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2115                 return;
2116
2117         /*
2118          * The guest calculates current wall clock time by adding
2119          * system time (updated by kvm_guest_time_update below) to the
2120          * wall clock specified here.  We do the reverse here.
2121          */
2122         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2123
2124         wc.nsec = do_div(wall_nsec, 1000000000);
2125         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2126         wc.version = version;
2127
2128         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2129
2130         if (sec_hi_ofs) {
2131                 wc_sec_hi = wall_nsec >> 32;
2132                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2133                                 &wc_sec_hi, sizeof(wc_sec_hi));
2134         }
2135
2136         version++;
2137         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2138 }
2139
2140 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2141                                   bool old_msr, bool host_initiated)
2142 {
2143         struct kvm_arch *ka = &vcpu->kvm->arch;
2144
2145         if (vcpu->vcpu_id == 0 && !host_initiated) {
2146                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2147                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2148
2149                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2150         }
2151
2152         vcpu->arch.time = system_time;
2153         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2154
2155         /* we verify if the enable bit is set... */
2156         vcpu->arch.pv_time_enabled = false;
2157         if (!(system_time & 1))
2158                 return;
2159
2160         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2161                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2162                                        sizeof(struct pvclock_vcpu_time_info)))
2163                 vcpu->arch.pv_time_enabled = true;
2164
2165         return;
2166 }
2167
2168 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2169 {
2170         do_shl32_div32(dividend, divisor);
2171         return dividend;
2172 }
2173
2174 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2175                                s8 *pshift, u32 *pmultiplier)
2176 {
2177         uint64_t scaled64;
2178         int32_t  shift = 0;
2179         uint64_t tps64;
2180         uint32_t tps32;
2181
2182         tps64 = base_hz;
2183         scaled64 = scaled_hz;
2184         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2185                 tps64 >>= 1;
2186                 shift--;
2187         }
2188
2189         tps32 = (uint32_t)tps64;
2190         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2191                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2192                         scaled64 >>= 1;
2193                 else
2194                         tps32 <<= 1;
2195                 shift++;
2196         }
2197
2198         *pshift = shift;
2199         *pmultiplier = div_frac(scaled64, tps32);
2200 }
2201
2202 #ifdef CONFIG_X86_64
2203 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2204 #endif
2205
2206 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2207 static unsigned long max_tsc_khz;
2208
2209 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2210 {
2211         u64 v = (u64)khz * (1000000 + ppm);
2212         do_div(v, 1000000);
2213         return v;
2214 }
2215
2216 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2217
2218 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2219 {
2220         u64 ratio;
2221
2222         /* Guest TSC same frequency as host TSC? */
2223         if (!scale) {
2224                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2225                 return 0;
2226         }
2227
2228         /* TSC scaling supported? */
2229         if (!kvm_has_tsc_control) {
2230                 if (user_tsc_khz > tsc_khz) {
2231                         vcpu->arch.tsc_catchup = 1;
2232                         vcpu->arch.tsc_always_catchup = 1;
2233                         return 0;
2234                 } else {
2235                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2236                         return -1;
2237                 }
2238         }
2239
2240         /* TSC scaling required  - calculate ratio */
2241         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2242                                 user_tsc_khz, tsc_khz);
2243
2244         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2245                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2246                                     user_tsc_khz);
2247                 return -1;
2248         }
2249
2250         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2251         return 0;
2252 }
2253
2254 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2255 {
2256         u32 thresh_lo, thresh_hi;
2257         int use_scaling = 0;
2258
2259         /* tsc_khz can be zero if TSC calibration fails */
2260         if (user_tsc_khz == 0) {
2261                 /* set tsc_scaling_ratio to a safe value */
2262                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2263                 return -1;
2264         }
2265
2266         /* Compute a scale to convert nanoseconds in TSC cycles */
2267         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2268                            &vcpu->arch.virtual_tsc_shift,
2269                            &vcpu->arch.virtual_tsc_mult);
2270         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2271
2272         /*
2273          * Compute the variation in TSC rate which is acceptable
2274          * within the range of tolerance and decide if the
2275          * rate being applied is within that bounds of the hardware
2276          * rate.  If so, no scaling or compensation need be done.
2277          */
2278         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2279         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2280         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2281                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2282                 use_scaling = 1;
2283         }
2284         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2285 }
2286
2287 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2288 {
2289         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2290                                       vcpu->arch.virtual_tsc_mult,
2291                                       vcpu->arch.virtual_tsc_shift);
2292         tsc += vcpu->arch.this_tsc_write;
2293         return tsc;
2294 }
2295
2296 static inline int gtod_is_based_on_tsc(int mode)
2297 {
2298         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2299 }
2300
2301 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2302 {
2303 #ifdef CONFIG_X86_64
2304         bool vcpus_matched;
2305         struct kvm_arch *ka = &vcpu->kvm->arch;
2306         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2307
2308         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2309                          atomic_read(&vcpu->kvm->online_vcpus));
2310
2311         /*
2312          * Once the masterclock is enabled, always perform request in
2313          * order to update it.
2314          *
2315          * In order to enable masterclock, the host clocksource must be TSC
2316          * and the vcpus need to have matched TSCs.  When that happens,
2317          * perform request to enable masterclock.
2318          */
2319         if (ka->use_master_clock ||
2320             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2321                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2322
2323         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2324                             atomic_read(&vcpu->kvm->online_vcpus),
2325                             ka->use_master_clock, gtod->clock.vclock_mode);
2326 #endif
2327 }
2328
2329 /*
2330  * Multiply tsc by a fixed point number represented by ratio.
2331  *
2332  * The most significant 64-N bits (mult) of ratio represent the
2333  * integral part of the fixed point number; the remaining N bits
2334  * (frac) represent the fractional part, ie. ratio represents a fixed
2335  * point number (mult + frac * 2^(-N)).
2336  *
2337  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2338  */
2339 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2340 {
2341         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2342 }
2343
2344 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2345 {
2346         u64 _tsc = tsc;
2347
2348         if (ratio != kvm_default_tsc_scaling_ratio)
2349                 _tsc = __scale_tsc(ratio, tsc);
2350
2351         return _tsc;
2352 }
2353 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2354
2355 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2356 {
2357         u64 tsc;
2358
2359         tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2360
2361         return target_tsc - tsc;
2362 }
2363
2364 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2365 {
2366         return vcpu->arch.l1_tsc_offset +
2367                 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2370
2371 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2372 {
2373         u64 nested_offset;
2374
2375         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2376                 nested_offset = l1_offset;
2377         else
2378                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2379                                                 kvm_tsc_scaling_ratio_frac_bits);
2380
2381         nested_offset += l2_offset;
2382         return nested_offset;
2383 }
2384 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2385
2386 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2387 {
2388         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2389                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2390                                        kvm_tsc_scaling_ratio_frac_bits);
2391
2392         return l1_multiplier;
2393 }
2394 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2395
2396 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2397 {
2398         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2399                                    vcpu->arch.l1_tsc_offset,
2400                                    l1_offset);
2401
2402         vcpu->arch.l1_tsc_offset = l1_offset;
2403
2404         /*
2405          * If we are here because L1 chose not to trap WRMSR to TSC then
2406          * according to the spec this should set L1's TSC (as opposed to
2407          * setting L1's offset for L2).
2408          */
2409         if (is_guest_mode(vcpu))
2410                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2411                         l1_offset,
2412                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2413                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2414         else
2415                 vcpu->arch.tsc_offset = l1_offset;
2416
2417         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2418 }
2419
2420 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2421 {
2422         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2423
2424         /* Userspace is changing the multiplier while L2 is active */
2425         if (is_guest_mode(vcpu))
2426                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2427                         l1_multiplier,
2428                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2429         else
2430                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2431
2432         if (kvm_has_tsc_control)
2433                 static_call(kvm_x86_write_tsc_multiplier)(
2434                         vcpu, vcpu->arch.tsc_scaling_ratio);
2435 }
2436
2437 static inline bool kvm_check_tsc_unstable(void)
2438 {
2439 #ifdef CONFIG_X86_64
2440         /*
2441          * TSC is marked unstable when we're running on Hyper-V,
2442          * 'TSC page' clocksource is good.
2443          */
2444         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2445                 return false;
2446 #endif
2447         return check_tsc_unstable();
2448 }
2449
2450 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2451 {
2452         struct kvm *kvm = vcpu->kvm;
2453         u64 offset, ns, elapsed;
2454         unsigned long flags;
2455         bool matched;
2456         bool already_matched;
2457         bool synchronizing = false;
2458
2459         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2460         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2461         ns = get_kvmclock_base_ns();
2462         elapsed = ns - kvm->arch.last_tsc_nsec;
2463
2464         if (vcpu->arch.virtual_tsc_khz) {
2465                 if (data == 0) {
2466                         /*
2467                          * detection of vcpu initialization -- need to sync
2468                          * with other vCPUs. This particularly helps to keep
2469                          * kvm_clock stable after CPU hotplug
2470                          */
2471                         synchronizing = true;
2472                 } else {
2473                         u64 tsc_exp = kvm->arch.last_tsc_write +
2474                                                 nsec_to_cycles(vcpu, elapsed);
2475                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2476                         /*
2477                          * Special case: TSC write with a small delta (1 second)
2478                          * of virtual cycle time against real time is
2479                          * interpreted as an attempt to synchronize the CPU.
2480                          */
2481                         synchronizing = data < tsc_exp + tsc_hz &&
2482                                         data + tsc_hz > tsc_exp;
2483                 }
2484         }
2485
2486         /*
2487          * For a reliable TSC, we can match TSC offsets, and for an unstable
2488          * TSC, we add elapsed time in this computation.  We could let the
2489          * compensation code attempt to catch up if we fall behind, but
2490          * it's better to try to match offsets from the beginning.
2491          */
2492         if (synchronizing &&
2493             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2494                 if (!kvm_check_tsc_unstable()) {
2495                         offset = kvm->arch.cur_tsc_offset;
2496                 } else {
2497                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2498                         data += delta;
2499                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2500                 }
2501                 matched = true;
2502                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2503         } else {
2504                 /*
2505                  * We split periods of matched TSC writes into generations.
2506                  * For each generation, we track the original measured
2507                  * nanosecond time, offset, and write, so if TSCs are in
2508                  * sync, we can match exact offset, and if not, we can match
2509                  * exact software computation in compute_guest_tsc()
2510                  *
2511                  * These values are tracked in kvm->arch.cur_xxx variables.
2512                  */
2513                 kvm->arch.cur_tsc_generation++;
2514                 kvm->arch.cur_tsc_nsec = ns;
2515                 kvm->arch.cur_tsc_write = data;
2516                 kvm->arch.cur_tsc_offset = offset;
2517                 matched = false;
2518         }
2519
2520         /*
2521          * We also track th most recent recorded KHZ, write and time to
2522          * allow the matching interval to be extended at each write.
2523          */
2524         kvm->arch.last_tsc_nsec = ns;
2525         kvm->arch.last_tsc_write = data;
2526         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2527
2528         vcpu->arch.last_guest_tsc = data;
2529
2530         /* Keep track of which generation this VCPU has synchronized to */
2531         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2532         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2533         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2534
2535         kvm_vcpu_write_tsc_offset(vcpu, offset);
2536         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2537
2538         spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2539         if (!matched) {
2540                 kvm->arch.nr_vcpus_matched_tsc = 0;
2541         } else if (!already_matched) {
2542                 kvm->arch.nr_vcpus_matched_tsc++;
2543         }
2544
2545         kvm_track_tsc_matching(vcpu);
2546         spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2547 }
2548
2549 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2550                                            s64 adjustment)
2551 {
2552         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2553         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2554 }
2555
2556 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2557 {
2558         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2559                 WARN_ON(adjustment < 0);
2560         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2561                                    vcpu->arch.l1_tsc_scaling_ratio);
2562         adjust_tsc_offset_guest(vcpu, adjustment);
2563 }
2564
2565 #ifdef CONFIG_X86_64
2566
2567 static u64 read_tsc(void)
2568 {
2569         u64 ret = (u64)rdtsc_ordered();
2570         u64 last = pvclock_gtod_data.clock.cycle_last;
2571
2572         if (likely(ret >= last))
2573                 return ret;
2574
2575         /*
2576          * GCC likes to generate cmov here, but this branch is extremely
2577          * predictable (it's just a function of time and the likely is
2578          * very likely) and there's a data dependence, so force GCC
2579          * to generate a branch instead.  I don't barrier() because
2580          * we don't actually need a barrier, and if this function
2581          * ever gets inlined it will generate worse code.
2582          */
2583         asm volatile ("");
2584         return last;
2585 }
2586
2587 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2588                           int *mode)
2589 {
2590         long v;
2591         u64 tsc_pg_val;
2592
2593         switch (clock->vclock_mode) {
2594         case VDSO_CLOCKMODE_HVCLOCK:
2595                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2596                                                   tsc_timestamp);
2597                 if (tsc_pg_val != U64_MAX) {
2598                         /* TSC page valid */
2599                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2600                         v = (tsc_pg_val - clock->cycle_last) &
2601                                 clock->mask;
2602                 } else {
2603                         /* TSC page invalid */
2604                         *mode = VDSO_CLOCKMODE_NONE;
2605                 }
2606                 break;
2607         case VDSO_CLOCKMODE_TSC:
2608                 *mode = VDSO_CLOCKMODE_TSC;
2609                 *tsc_timestamp = read_tsc();
2610                 v = (*tsc_timestamp - clock->cycle_last) &
2611                         clock->mask;
2612                 break;
2613         default:
2614                 *mode = VDSO_CLOCKMODE_NONE;
2615         }
2616
2617         if (*mode == VDSO_CLOCKMODE_NONE)
2618                 *tsc_timestamp = v = 0;
2619
2620         return v * clock->mult;
2621 }
2622
2623 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2624 {
2625         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2626         unsigned long seq;
2627         int mode;
2628         u64 ns;
2629
2630         do {
2631                 seq = read_seqcount_begin(&gtod->seq);
2632                 ns = gtod->raw_clock.base_cycles;
2633                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2634                 ns >>= gtod->raw_clock.shift;
2635                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2636         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2637         *t = ns;
2638
2639         return mode;
2640 }
2641
2642 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2643 {
2644         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2645         unsigned long seq;
2646         int mode;
2647         u64 ns;
2648
2649         do {
2650                 seq = read_seqcount_begin(&gtod->seq);
2651                 ts->tv_sec = gtod->wall_time_sec;
2652                 ns = gtod->clock.base_cycles;
2653                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2654                 ns >>= gtod->clock.shift;
2655         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2656
2657         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2658         ts->tv_nsec = ns;
2659
2660         return mode;
2661 }
2662
2663 /* returns true if host is using TSC based clocksource */
2664 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2665 {
2666         /* checked again under seqlock below */
2667         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2668                 return false;
2669
2670         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2671                                                       tsc_timestamp));
2672 }
2673
2674 /* returns true if host is using TSC based clocksource */
2675 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2676                                            u64 *tsc_timestamp)
2677 {
2678         /* checked again under seqlock below */
2679         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2680                 return false;
2681
2682         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2683 }
2684 #endif
2685
2686 /*
2687  *
2688  * Assuming a stable TSC across physical CPUS, and a stable TSC
2689  * across virtual CPUs, the following condition is possible.
2690  * Each numbered line represents an event visible to both
2691  * CPUs at the next numbered event.
2692  *
2693  * "timespecX" represents host monotonic time. "tscX" represents
2694  * RDTSC value.
2695  *
2696  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2697  *
2698  * 1.  read timespec0,tsc0
2699  * 2.                                   | timespec1 = timespec0 + N
2700  *                                      | tsc1 = tsc0 + M
2701  * 3. transition to guest               | transition to guest
2702  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2703  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2704  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2705  *
2706  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2707  *
2708  *      - ret0 < ret1
2709  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2710  *              ...
2711  *      - 0 < N - M => M < N
2712  *
2713  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2714  * always the case (the difference between two distinct xtime instances
2715  * might be smaller then the difference between corresponding TSC reads,
2716  * when updating guest vcpus pvclock areas).
2717  *
2718  * To avoid that problem, do not allow visibility of distinct
2719  * system_timestamp/tsc_timestamp values simultaneously: use a master
2720  * copy of host monotonic time values. Update that master copy
2721  * in lockstep.
2722  *
2723  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2724  *
2725  */
2726
2727 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2728 {
2729 #ifdef CONFIG_X86_64
2730         struct kvm_arch *ka = &kvm->arch;
2731         int vclock_mode;
2732         bool host_tsc_clocksource, vcpus_matched;
2733
2734         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2735                         atomic_read(&kvm->online_vcpus));
2736
2737         /*
2738          * If the host uses TSC clock, then passthrough TSC as stable
2739          * to the guest.
2740          */
2741         host_tsc_clocksource = kvm_get_time_and_clockread(
2742                                         &ka->master_kernel_ns,
2743                                         &ka->master_cycle_now);
2744
2745         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2746                                 && !ka->backwards_tsc_observed
2747                                 && !ka->boot_vcpu_runs_old_kvmclock;
2748
2749         if (ka->use_master_clock)
2750                 atomic_set(&kvm_guest_has_master_clock, 1);
2751
2752         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2753         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2754                                         vcpus_matched);
2755 #endif
2756 }
2757
2758 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2759 {
2760         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2761 }
2762
2763 static void kvm_gen_update_masterclock(struct kvm *kvm)
2764 {
2765 #ifdef CONFIG_X86_64
2766         int i;
2767         struct kvm_vcpu *vcpu;
2768         struct kvm_arch *ka = &kvm->arch;
2769         unsigned long flags;
2770
2771         kvm_hv_invalidate_tsc_page(kvm);
2772
2773         kvm_make_mclock_inprogress_request(kvm);
2774
2775         /* no guest entries from this point */
2776         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2777         pvclock_update_vm_gtod_copy(kvm);
2778         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2779
2780         kvm_for_each_vcpu(i, vcpu, kvm)
2781                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2782
2783         /* guest entries allowed */
2784         kvm_for_each_vcpu(i, vcpu, kvm)
2785                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2786 #endif
2787 }
2788
2789 u64 get_kvmclock_ns(struct kvm *kvm)
2790 {
2791         struct kvm_arch *ka = &kvm->arch;
2792         struct pvclock_vcpu_time_info hv_clock;
2793         unsigned long flags;
2794         u64 ret;
2795
2796         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2797         if (!ka->use_master_clock) {
2798                 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2799                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2800         }
2801
2802         hv_clock.tsc_timestamp = ka->master_cycle_now;
2803         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2804         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2805
2806         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2807         get_cpu();
2808
2809         if (__this_cpu_read(cpu_tsc_khz)) {
2810                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2811                                    &hv_clock.tsc_shift,
2812                                    &hv_clock.tsc_to_system_mul);
2813                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2814         } else
2815                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2816
2817         put_cpu();
2818
2819         return ret;
2820 }
2821
2822 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2823                                    struct gfn_to_hva_cache *cache,
2824                                    unsigned int offset)
2825 {
2826         struct kvm_vcpu_arch *vcpu = &v->arch;
2827         struct pvclock_vcpu_time_info guest_hv_clock;
2828
2829         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2830                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2831                 return;
2832
2833         /* This VCPU is paused, but it's legal for a guest to read another
2834          * VCPU's kvmclock, so we really have to follow the specification where
2835          * it says that version is odd if data is being modified, and even after
2836          * it is consistent.
2837          *
2838          * Version field updates must be kept separate.  This is because
2839          * kvm_write_guest_cached might use a "rep movs" instruction, and
2840          * writes within a string instruction are weakly ordered.  So there
2841          * are three writes overall.
2842          *
2843          * As a small optimization, only write the version field in the first
2844          * and third write.  The vcpu->pv_time cache is still valid, because the
2845          * version field is the first in the struct.
2846          */
2847         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2848
2849         if (guest_hv_clock.version & 1)
2850                 ++guest_hv_clock.version;  /* first time write, random junk */
2851
2852         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2853         kvm_write_guest_offset_cached(v->kvm, cache,
2854                                       &vcpu->hv_clock, offset,
2855                                       sizeof(vcpu->hv_clock.version));
2856
2857         smp_wmb();
2858
2859         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2860         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2861
2862         if (vcpu->pvclock_set_guest_stopped_request) {
2863                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2864                 vcpu->pvclock_set_guest_stopped_request = false;
2865         }
2866
2867         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2868
2869         kvm_write_guest_offset_cached(v->kvm, cache,
2870                                       &vcpu->hv_clock, offset,
2871                                       sizeof(vcpu->hv_clock));
2872
2873         smp_wmb();
2874
2875         vcpu->hv_clock.version++;
2876         kvm_write_guest_offset_cached(v->kvm, cache,
2877                                      &vcpu->hv_clock, offset,
2878                                      sizeof(vcpu->hv_clock.version));
2879 }
2880
2881 static int kvm_guest_time_update(struct kvm_vcpu *v)
2882 {
2883         unsigned long flags, tgt_tsc_khz;
2884         struct kvm_vcpu_arch *vcpu = &v->arch;
2885         struct kvm_arch *ka = &v->kvm->arch;
2886         s64 kernel_ns;
2887         u64 tsc_timestamp, host_tsc;
2888         u8 pvclock_flags;
2889         bool use_master_clock;
2890
2891         kernel_ns = 0;
2892         host_tsc = 0;
2893
2894         /*
2895          * If the host uses TSC clock, then passthrough TSC as stable
2896          * to the guest.
2897          */
2898         spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2899         use_master_clock = ka->use_master_clock;
2900         if (use_master_clock) {
2901                 host_tsc = ka->master_cycle_now;
2902                 kernel_ns = ka->master_kernel_ns;
2903         }
2904         spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2905
2906         /* Keep irq disabled to prevent changes to the clock */
2907         local_irq_save(flags);
2908         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2909         if (unlikely(tgt_tsc_khz == 0)) {
2910                 local_irq_restore(flags);
2911                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2912                 return 1;
2913         }
2914         if (!use_master_clock) {
2915                 host_tsc = rdtsc();
2916                 kernel_ns = get_kvmclock_base_ns();
2917         }
2918
2919         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2920
2921         /*
2922          * We may have to catch up the TSC to match elapsed wall clock
2923          * time for two reasons, even if kvmclock is used.
2924          *   1) CPU could have been running below the maximum TSC rate
2925          *   2) Broken TSC compensation resets the base at each VCPU
2926          *      entry to avoid unknown leaps of TSC even when running
2927          *      again on the same CPU.  This may cause apparent elapsed
2928          *      time to disappear, and the guest to stand still or run
2929          *      very slowly.
2930          */
2931         if (vcpu->tsc_catchup) {
2932                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2933                 if (tsc > tsc_timestamp) {
2934                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2935                         tsc_timestamp = tsc;
2936                 }
2937         }
2938
2939         local_irq_restore(flags);
2940
2941         /* With all the info we got, fill in the values */
2942
2943         if (kvm_has_tsc_control)
2944                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2945                                             v->arch.l1_tsc_scaling_ratio);
2946
2947         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2948                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2949                                    &vcpu->hv_clock.tsc_shift,
2950                                    &vcpu->hv_clock.tsc_to_system_mul);
2951                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2952         }
2953
2954         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2955         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2956         vcpu->last_guest_tsc = tsc_timestamp;
2957
2958         /* If the host uses TSC clocksource, then it is stable */
2959         pvclock_flags = 0;
2960         if (use_master_clock)
2961                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2962
2963         vcpu->hv_clock.flags = pvclock_flags;
2964
2965         if (vcpu->pv_time_enabled)
2966                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2967         if (vcpu->xen.vcpu_info_set)
2968                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2969                                        offsetof(struct compat_vcpu_info, time));
2970         if (vcpu->xen.vcpu_time_info_set)
2971                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2972         if (v == kvm_get_vcpu(v->kvm, 0))
2973                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2974         return 0;
2975 }
2976
2977 /*
2978  * kvmclock updates which are isolated to a given vcpu, such as
2979  * vcpu->cpu migration, should not allow system_timestamp from
2980  * the rest of the vcpus to remain static. Otherwise ntp frequency
2981  * correction applies to one vcpu's system_timestamp but not
2982  * the others.
2983  *
2984  * So in those cases, request a kvmclock update for all vcpus.
2985  * We need to rate-limit these requests though, as they can
2986  * considerably slow guests that have a large number of vcpus.
2987  * The time for a remote vcpu to update its kvmclock is bound
2988  * by the delay we use to rate-limit the updates.
2989  */
2990
2991 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2992
2993 static void kvmclock_update_fn(struct work_struct *work)
2994 {
2995         int i;
2996         struct delayed_work *dwork = to_delayed_work(work);
2997         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2998                                            kvmclock_update_work);
2999         struct kvm *kvm = container_of(ka, struct kvm, arch);
3000         struct kvm_vcpu *vcpu;
3001
3002         kvm_for_each_vcpu(i, vcpu, kvm) {
3003                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3004                 kvm_vcpu_kick(vcpu);
3005         }
3006 }
3007
3008 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3009 {
3010         struct kvm *kvm = v->kvm;
3011
3012         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3013         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3014                                         KVMCLOCK_UPDATE_DELAY);
3015 }
3016
3017 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3018
3019 static void kvmclock_sync_fn(struct work_struct *work)
3020 {
3021         struct delayed_work *dwork = to_delayed_work(work);
3022         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3023                                            kvmclock_sync_work);
3024         struct kvm *kvm = container_of(ka, struct kvm, arch);
3025
3026         if (!kvmclock_periodic_sync)
3027                 return;
3028
3029         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3030         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3031                                         KVMCLOCK_SYNC_PERIOD);
3032 }
3033
3034 /*
3035  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3036  */
3037 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3038 {
3039         /* McStatusWrEn enabled? */
3040         if (guest_cpuid_is_amd_or_hygon(vcpu))
3041                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3042
3043         return false;
3044 }
3045
3046 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3047 {
3048         u64 mcg_cap = vcpu->arch.mcg_cap;
3049         unsigned bank_num = mcg_cap & 0xff;
3050         u32 msr = msr_info->index;
3051         u64 data = msr_info->data;
3052
3053         switch (msr) {
3054         case MSR_IA32_MCG_STATUS:
3055                 vcpu->arch.mcg_status = data;
3056                 break;
3057         case MSR_IA32_MCG_CTL:
3058                 if (!(mcg_cap & MCG_CTL_P) &&
3059                     (data || !msr_info->host_initiated))
3060                         return 1;
3061                 if (data != 0 && data != ~(u64)0)
3062                         return 1;
3063                 vcpu->arch.mcg_ctl = data;
3064                 break;
3065         default:
3066                 if (msr >= MSR_IA32_MC0_CTL &&
3067                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3068                         u32 offset = array_index_nospec(
3069                                 msr - MSR_IA32_MC0_CTL,
3070                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3071
3072                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3073                          * some Linux kernels though clear bit 10 in bank 4 to
3074                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3075                          * this to avoid an uncatched #GP in the guest
3076                          */
3077                         if ((offset & 0x3) == 0 &&
3078                             data != 0 && (data | (1 << 10)) != ~(u64)0)
3079                                 return -1;
3080
3081                         /* MCi_STATUS */
3082                         if (!msr_info->host_initiated &&
3083                             (offset & 0x3) == 1 && data != 0) {
3084                                 if (!can_set_mci_status(vcpu))
3085                                         return -1;
3086                         }
3087
3088                         vcpu->arch.mce_banks[offset] = data;
3089                         break;
3090                 }
3091                 return 1;
3092         }
3093         return 0;
3094 }
3095
3096 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3097 {
3098         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3099
3100         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3101 }
3102
3103 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3104 {
3105         gpa_t gpa = data & ~0x3f;
3106
3107         /* Bits 4:5 are reserved, Should be zero */
3108         if (data & 0x30)
3109                 return 1;
3110
3111         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3112             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3113                 return 1;
3114
3115         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3116             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3117                 return 1;
3118
3119         if (!lapic_in_kernel(vcpu))
3120                 return data ? 1 : 0;
3121
3122         vcpu->arch.apf.msr_en_val = data;
3123
3124         if (!kvm_pv_async_pf_enabled(vcpu)) {
3125                 kvm_clear_async_pf_completion_queue(vcpu);
3126                 kvm_async_pf_hash_reset(vcpu);
3127                 return 0;
3128         }
3129
3130         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3131                                         sizeof(u64)))
3132                 return 1;
3133
3134         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3135         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3136
3137         kvm_async_pf_wakeup_all(vcpu);
3138
3139         return 0;
3140 }
3141
3142 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3143 {
3144         /* Bits 8-63 are reserved */
3145         if (data >> 8)
3146                 return 1;
3147
3148         if (!lapic_in_kernel(vcpu))
3149                 return 1;
3150
3151         vcpu->arch.apf.msr_int_val = data;
3152
3153         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3154
3155         return 0;
3156 }
3157
3158 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3159 {
3160         vcpu->arch.pv_time_enabled = false;
3161         vcpu->arch.time = 0;
3162 }
3163
3164 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3165 {
3166         ++vcpu->stat.tlb_flush;
3167         static_call(kvm_x86_tlb_flush_all)(vcpu);
3168 }
3169
3170 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3171 {
3172         ++vcpu->stat.tlb_flush;
3173
3174         if (!tdp_enabled) {
3175                /*
3176                  * A TLB flush on behalf of the guest is equivalent to
3177                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3178                  * a forced sync of the shadow page tables.  Unload the
3179                  * entire MMU here and the subsequent load will sync the
3180                  * shadow page tables, and also flush the TLB.
3181                  */
3182                 kvm_mmu_unload(vcpu);
3183                 return;
3184         }
3185
3186         static_call(kvm_x86_tlb_flush_guest)(vcpu);
3187 }
3188
3189 static void record_steal_time(struct kvm_vcpu *vcpu)
3190 {
3191         struct kvm_host_map map;
3192         struct kvm_steal_time *st;
3193
3194         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3195                 kvm_xen_runstate_set_running(vcpu);
3196                 return;
3197         }
3198
3199         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3200                 return;
3201
3202         /* -EAGAIN is returned in atomic context so we can just return. */
3203         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3204                         &map, &vcpu->arch.st.cache, false))
3205                 return;
3206
3207         st = map.hva +
3208                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3209
3210         /*
3211          * Doing a TLB flush here, on the guest's behalf, can avoid
3212          * expensive IPIs.
3213          */
3214         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3215                 u8 st_preempted = xchg(&st->preempted, 0);
3216
3217                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3218                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3219                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3220                         kvm_vcpu_flush_tlb_guest(vcpu);
3221         } else {
3222                 st->preempted = 0;
3223         }
3224
3225         vcpu->arch.st.preempted = 0;
3226
3227         if (st->version & 1)
3228                 st->version += 1;  /* first time write, random junk */
3229
3230         st->version += 1;
3231
3232         smp_wmb();
3233
3234         st->steal += current->sched_info.run_delay -
3235                 vcpu->arch.st.last_steal;
3236         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3237
3238         smp_wmb();
3239
3240         st->version += 1;
3241
3242         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3243 }
3244
3245 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3246 {
3247         bool pr = false;
3248         u32 msr = msr_info->index;
3249         u64 data = msr_info->data;
3250
3251         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3252                 return kvm_xen_write_hypercall_page(vcpu, data);
3253
3254         switch (msr) {
3255         case MSR_AMD64_NB_CFG:
3256         case MSR_IA32_UCODE_WRITE:
3257         case MSR_VM_HSAVE_PA:
3258         case MSR_AMD64_PATCH_LOADER:
3259         case MSR_AMD64_BU_CFG2:
3260         case MSR_AMD64_DC_CFG:
3261         case MSR_F15H_EX_CFG:
3262                 break;
3263
3264         case MSR_IA32_UCODE_REV:
3265                 if (msr_info->host_initiated)
3266                         vcpu->arch.microcode_version = data;
3267                 break;
3268         case MSR_IA32_ARCH_CAPABILITIES:
3269                 if (!msr_info->host_initiated)
3270                         return 1;
3271                 vcpu->arch.arch_capabilities = data;
3272                 break;
3273         case MSR_IA32_PERF_CAPABILITIES: {
3274                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3275
3276                 if (!msr_info->host_initiated)
3277                         return 1;
3278                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3279                         return 1;
3280                 if (data & ~msr_ent.data)
3281                         return 1;
3282
3283                 vcpu->arch.perf_capabilities = data;
3284
3285                 return 0;
3286                 }
3287         case MSR_EFER:
3288                 return set_efer(vcpu, msr_info);
3289         case MSR_K7_HWCR:
3290                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3291                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3292                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3293
3294                 /* Handle McStatusWrEn */
3295                 if (data == BIT_ULL(18)) {
3296                         vcpu->arch.msr_hwcr = data;
3297                 } else if (data != 0) {
3298                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3299                                     data);
3300                         return 1;
3301                 }
3302                 break;
3303         case MSR_FAM10H_MMIO_CONF_BASE:
3304                 if (data != 0) {
3305                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3306                                     "0x%llx\n", data);
3307                         return 1;
3308                 }
3309                 break;
3310         case 0x200 ... 0x2ff:
3311                 return kvm_mtrr_set_msr(vcpu, msr, data);
3312         case MSR_IA32_APICBASE:
3313                 return kvm_set_apic_base(vcpu, msr_info);
3314         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3315                 return kvm_x2apic_msr_write(vcpu, msr, data);
3316         case MSR_IA32_TSC_DEADLINE:
3317                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3318                 break;
3319         case MSR_IA32_TSC_ADJUST:
3320                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3321                         if (!msr_info->host_initiated) {
3322                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3323                                 adjust_tsc_offset_guest(vcpu, adj);
3324                                 /* Before back to guest, tsc_timestamp must be adjusted
3325                                  * as well, otherwise guest's percpu pvclock time could jump.
3326                                  */
3327                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3328                         }
3329                         vcpu->arch.ia32_tsc_adjust_msr = data;
3330                 }
3331                 break;
3332         case MSR_IA32_MISC_ENABLE:
3333                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3334                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3335                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3336                                 return 1;
3337                         vcpu->arch.ia32_misc_enable_msr = data;
3338                         kvm_update_cpuid_runtime(vcpu);
3339                 } else {
3340                         vcpu->arch.ia32_misc_enable_msr = data;
3341                 }
3342                 break;
3343         case MSR_IA32_SMBASE:
3344                 if (!msr_info->host_initiated)
3345                         return 1;
3346                 vcpu->arch.smbase = data;
3347                 break;
3348         case MSR_IA32_POWER_CTL:
3349                 vcpu->arch.msr_ia32_power_ctl = data;
3350                 break;
3351         case MSR_IA32_TSC:
3352                 if (msr_info->host_initiated) {
3353                         kvm_synchronize_tsc(vcpu, data);
3354                 } else {
3355                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3356                         adjust_tsc_offset_guest(vcpu, adj);
3357                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3358                 }
3359                 break;
3360         case MSR_IA32_XSS:
3361                 if (!msr_info->host_initiated &&
3362                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3363                         return 1;
3364                 /*
3365                  * KVM supports exposing PT to the guest, but does not support
3366                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3367                  * XSAVES/XRSTORS to save/restore PT MSRs.
3368                  */
3369                 if (data & ~supported_xss)
3370                         return 1;
3371                 vcpu->arch.ia32_xss = data;
3372                 break;
3373         case MSR_SMI_COUNT:
3374                 if (!msr_info->host_initiated)
3375                         return 1;
3376                 vcpu->arch.smi_count = data;
3377                 break;
3378         case MSR_KVM_WALL_CLOCK_NEW:
3379                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3380                         return 1;
3381
3382                 vcpu->kvm->arch.wall_clock = data;
3383                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3384                 break;
3385         case MSR_KVM_WALL_CLOCK:
3386                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3387                         return 1;
3388
3389                 vcpu->kvm->arch.wall_clock = data;
3390                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3391                 break;
3392         case MSR_KVM_SYSTEM_TIME_NEW:
3393                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3394                         return 1;
3395
3396                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3397                 break;
3398         case MSR_KVM_SYSTEM_TIME:
3399                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3400                         return 1;
3401
3402                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3403                 break;
3404         case MSR_KVM_ASYNC_PF_EN:
3405                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3406                         return 1;
3407
3408                 if (kvm_pv_enable_async_pf(vcpu, data))
3409                         return 1;
3410                 break;
3411         case MSR_KVM_ASYNC_PF_INT:
3412                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3413                         return 1;
3414
3415                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3416                         return 1;
3417                 break;
3418         case MSR_KVM_ASYNC_PF_ACK:
3419                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3420                         return 1;
3421                 if (data & 0x1) {
3422                         vcpu->arch.apf.pageready_pending = false;
3423                         kvm_check_async_pf_completion(vcpu);
3424                 }
3425                 break;
3426         case MSR_KVM_STEAL_TIME:
3427                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3428                         return 1;
3429
3430                 if (unlikely(!sched_info_on()))
3431                         return 1;
3432
3433                 if (data & KVM_STEAL_RESERVED_MASK)
3434                         return 1;
3435
3436                 vcpu->arch.st.msr_val = data;
3437
3438                 if (!(data & KVM_MSR_ENABLED))
3439                         break;
3440
3441                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3442
3443                 break;
3444         case MSR_KVM_PV_EOI_EN:
3445                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3446                         return 1;
3447
3448                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3449                         return 1;
3450                 break;
3451
3452         case MSR_KVM_POLL_CONTROL:
3453                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3454                         return 1;
3455
3456                 /* only enable bit supported */
3457                 if (data & (-1ULL << 1))
3458                         return 1;
3459
3460                 vcpu->arch.msr_kvm_poll_control = data;
3461                 break;
3462
3463         case MSR_IA32_MCG_CTL:
3464         case MSR_IA32_MCG_STATUS:
3465         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3466                 return set_msr_mce(vcpu, msr_info);
3467
3468         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3469         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3470                 pr = true;
3471                 fallthrough;
3472         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3473         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3474                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3475                         return kvm_pmu_set_msr(vcpu, msr_info);
3476
3477                 if (pr || data != 0)
3478                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3479                                     "0x%x data 0x%llx\n", msr, data);
3480                 break;
3481         case MSR_K7_CLK_CTL:
3482                 /*
3483                  * Ignore all writes to this no longer documented MSR.
3484                  * Writes are only relevant for old K7 processors,
3485                  * all pre-dating SVM, but a recommended workaround from
3486                  * AMD for these chips. It is possible to specify the
3487                  * affected processor models on the command line, hence
3488                  * the need to ignore the workaround.
3489                  */
3490                 break;
3491         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3492         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3493         case HV_X64_MSR_SYNDBG_OPTIONS:
3494         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3495         case HV_X64_MSR_CRASH_CTL:
3496         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3497         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3498         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3499         case HV_X64_MSR_TSC_EMULATION_STATUS:
3500                 return kvm_hv_set_msr_common(vcpu, msr, data,
3501                                              msr_info->host_initiated);
3502         case MSR_IA32_BBL_CR_CTL3:
3503                 /* Drop writes to this legacy MSR -- see rdmsr
3504                  * counterpart for further detail.
3505                  */
3506                 if (report_ignored_msrs)
3507                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3508                                 msr, data);
3509                 break;
3510         case MSR_AMD64_OSVW_ID_LENGTH:
3511                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3512                         return 1;
3513                 vcpu->arch.osvw.length = data;
3514                 break;
3515         case MSR_AMD64_OSVW_STATUS:
3516                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3517                         return 1;
3518                 vcpu->arch.osvw.status = data;
3519                 break;
3520         case MSR_PLATFORM_INFO:
3521                 if (!msr_info->host_initiated ||
3522                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3523                      cpuid_fault_enabled(vcpu)))
3524                         return 1;
3525                 vcpu->arch.msr_platform_info = data;
3526                 break;
3527         case MSR_MISC_FEATURES_ENABLES:
3528                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3529                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3530                      !supports_cpuid_fault(vcpu)))
3531                         return 1;
3532                 vcpu->arch.msr_misc_features_enables = data;
3533                 break;
3534         default:
3535                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3536                         return kvm_pmu_set_msr(vcpu, msr_info);
3537                 return KVM_MSR_RET_INVALID;
3538         }
3539         return 0;
3540 }
3541 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3542
3543 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3544 {
3545         u64 data;
3546         u64 mcg_cap = vcpu->arch.mcg_cap;
3547         unsigned bank_num = mcg_cap & 0xff;
3548
3549         switch (msr) {
3550         case MSR_IA32_P5_MC_ADDR:
3551         case MSR_IA32_P5_MC_TYPE:
3552                 data = 0;
3553                 break;
3554         case MSR_IA32_MCG_CAP:
3555                 data = vcpu->arch.mcg_cap;
3556                 break;
3557         case MSR_IA32_MCG_CTL:
3558                 if (!(mcg_cap & MCG_CTL_P) && !host)
3559                         return 1;
3560                 data = vcpu->arch.mcg_ctl;
3561                 break;
3562         case MSR_IA32_MCG_STATUS:
3563                 data = vcpu->arch.mcg_status;
3564                 break;
3565         default:
3566                 if (msr >= MSR_IA32_MC0_CTL &&
3567                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3568                         u32 offset = array_index_nospec(
3569                                 msr - MSR_IA32_MC0_CTL,
3570                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3571
3572                         data = vcpu->arch.mce_banks[offset];
3573                         break;
3574                 }
3575                 return 1;
3576         }
3577         *pdata = data;
3578         return 0;
3579 }
3580
3581 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3582 {
3583         switch (msr_info->index) {
3584         case MSR_IA32_PLATFORM_ID:
3585         case MSR_IA32_EBL_CR_POWERON:
3586         case MSR_IA32_LASTBRANCHFROMIP:
3587         case MSR_IA32_LASTBRANCHTOIP:
3588         case MSR_IA32_LASTINTFROMIP:
3589         case MSR_IA32_LASTINTTOIP:
3590         case MSR_AMD64_SYSCFG:
3591         case MSR_K8_TSEG_ADDR:
3592         case MSR_K8_TSEG_MASK:
3593         case MSR_VM_HSAVE_PA:
3594         case MSR_K8_INT_PENDING_MSG:
3595         case MSR_AMD64_NB_CFG:
3596         case MSR_FAM10H_MMIO_CONF_BASE:
3597         case MSR_AMD64_BU_CFG2:
3598         case MSR_IA32_PERF_CTL:
3599         case MSR_AMD64_DC_CFG:
3600         case MSR_F15H_EX_CFG:
3601         /*
3602          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3603          * limit) MSRs. Just return 0, as we do not want to expose the host
3604          * data here. Do not conditionalize this on CPUID, as KVM does not do
3605          * so for existing CPU-specific MSRs.
3606          */
3607         case MSR_RAPL_POWER_UNIT:
3608         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3609         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3610         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3611         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3612                 msr_info->data = 0;
3613                 break;
3614         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3615                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3616                         return kvm_pmu_get_msr(vcpu, msr_info);
3617                 if (!msr_info->host_initiated)
3618                         return 1;
3619                 msr_info->data = 0;
3620                 break;
3621         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3622         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3623         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3624         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3625                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3626                         return kvm_pmu_get_msr(vcpu, msr_info);
3627                 msr_info->data = 0;
3628                 break;
3629         case MSR_IA32_UCODE_REV:
3630                 msr_info->data = vcpu->arch.microcode_version;
3631                 break;
3632         case MSR_IA32_ARCH_CAPABILITIES:
3633                 if (!msr_info->host_initiated &&
3634                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3635                         return 1;
3636                 msr_info->data = vcpu->arch.arch_capabilities;
3637                 break;
3638         case MSR_IA32_PERF_CAPABILITIES:
3639                 if (!msr_info->host_initiated &&
3640                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3641                         return 1;
3642                 msr_info->data = vcpu->arch.perf_capabilities;
3643                 break;
3644         case MSR_IA32_POWER_CTL:
3645                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3646                 break;
3647         case MSR_IA32_TSC: {
3648                 /*
3649                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3650                  * even when not intercepted. AMD manual doesn't explicitly
3651                  * state this but appears to behave the same.
3652                  *
3653                  * On userspace reads and writes, however, we unconditionally
3654                  * return L1's TSC value to ensure backwards-compatible
3655                  * behavior for migration.
3656                  */
3657                 u64 offset, ratio;
3658
3659                 if (msr_info->host_initiated) {
3660                         offset = vcpu->arch.l1_tsc_offset;
3661                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3662                 } else {
3663                         offset = vcpu->arch.tsc_offset;
3664                         ratio = vcpu->arch.tsc_scaling_ratio;
3665                 }
3666
3667                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3668                 break;
3669         }
3670         case MSR_MTRRcap:
3671         case 0x200 ... 0x2ff:
3672                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3673         case 0xcd: /* fsb frequency */
3674                 msr_info->data = 3;
3675                 break;
3676                 /*
3677                  * MSR_EBC_FREQUENCY_ID
3678                  * Conservative value valid for even the basic CPU models.
3679                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3680                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3681                  * and 266MHz for model 3, or 4. Set Core Clock
3682                  * Frequency to System Bus Frequency Ratio to 1 (bits
3683                  * 31:24) even though these are only valid for CPU
3684                  * models > 2, however guests may end up dividing or
3685                  * multiplying by zero otherwise.
3686                  */
3687         case MSR_EBC_FREQUENCY_ID:
3688                 msr_info->data = 1 << 24;
3689                 break;
3690         case MSR_IA32_APICBASE:
3691                 msr_info->data = kvm_get_apic_base(vcpu);
3692                 break;
3693         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3694                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3695         case MSR_IA32_TSC_DEADLINE:
3696                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3697                 break;
3698         case MSR_IA32_TSC_ADJUST:
3699                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3700                 break;
3701         case MSR_IA32_MISC_ENABLE:
3702                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3703                 break;
3704         case MSR_IA32_SMBASE:
3705                 if (!msr_info->host_initiated)
3706                         return 1;
3707                 msr_info->data = vcpu->arch.smbase;
3708                 break;
3709         case MSR_SMI_COUNT:
3710                 msr_info->data = vcpu->arch.smi_count;
3711                 break;
3712         case MSR_IA32_PERF_STATUS:
3713                 /* TSC increment by tick */
3714                 msr_info->data = 1000ULL;
3715                 /* CPU multiplier */
3716                 msr_info->data |= (((uint64_t)4ULL) << 40);
3717                 break;
3718         case MSR_EFER:
3719                 msr_info->data = vcpu->arch.efer;
3720                 break;
3721         case MSR_KVM_WALL_CLOCK:
3722                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3723                         return 1;
3724
3725                 msr_info->data = vcpu->kvm->arch.wall_clock;
3726                 break;
3727         case MSR_KVM_WALL_CLOCK_NEW:
3728                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3729                         return 1;
3730
3731                 msr_info->data = vcpu->kvm->arch.wall_clock;
3732                 break;
3733         case MSR_KVM_SYSTEM_TIME:
3734                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3735                         return 1;
3736
3737                 msr_info->data = vcpu->arch.time;
3738                 break;
3739         case MSR_KVM_SYSTEM_TIME_NEW:
3740                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3741                         return 1;
3742
3743                 msr_info->data = vcpu->arch.time;
3744                 break;
3745         case MSR_KVM_ASYNC_PF_EN:
3746                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3747                         return 1;
3748
3749                 msr_info->data = vcpu->arch.apf.msr_en_val;
3750                 break;
3751         case MSR_KVM_ASYNC_PF_INT:
3752                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3753                         return 1;
3754
3755                 msr_info->data = vcpu->arch.apf.msr_int_val;
3756                 break;
3757         case MSR_KVM_ASYNC_PF_ACK:
3758                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3759                         return 1;
3760
3761                 msr_info->data = 0;
3762                 break;
3763         case MSR_KVM_STEAL_TIME:
3764                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3765                         return 1;
3766
3767                 msr_info->data = vcpu->arch.st.msr_val;
3768                 break;
3769         case MSR_KVM_PV_EOI_EN:
3770                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3771                         return 1;
3772
3773                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3774                 break;
3775         case MSR_KVM_POLL_CONTROL:
3776                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3777                         return 1;
3778
3779                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3780                 break;
3781         case MSR_IA32_P5_MC_ADDR:
3782         case MSR_IA32_P5_MC_TYPE:
3783         case MSR_IA32_MCG_CAP:
3784         case MSR_IA32_MCG_CTL:
3785         case MSR_IA32_MCG_STATUS:
3786         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3787                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3788                                    msr_info->host_initiated);
3789         case MSR_IA32_XSS:
3790                 if (!msr_info->host_initiated &&
3791                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3792                         return 1;
3793                 msr_info->data = vcpu->arch.ia32_xss;
3794                 break;
3795         case MSR_K7_CLK_CTL:
3796                 /*
3797                  * Provide expected ramp-up count for K7. All other
3798                  * are set to zero, indicating minimum divisors for
3799                  * every field.
3800                  *
3801                  * This prevents guest kernels on AMD host with CPU
3802                  * type 6, model 8 and higher from exploding due to
3803                  * the rdmsr failing.
3804                  */
3805                 msr_info->data = 0x20000000;
3806                 break;
3807         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3808         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3809         case HV_X64_MSR_SYNDBG_OPTIONS:
3810         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3811         case HV_X64_MSR_CRASH_CTL:
3812         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3813         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3814         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3815         case HV_X64_MSR_TSC_EMULATION_STATUS:
3816                 return kvm_hv_get_msr_common(vcpu,
3817                                              msr_info->index, &msr_info->data,
3818                                              msr_info->host_initiated);
3819         case MSR_IA32_BBL_CR_CTL3:
3820                 /* This legacy MSR exists but isn't fully documented in current
3821                  * silicon.  It is however accessed by winxp in very narrow
3822                  * scenarios where it sets bit #19, itself documented as
3823                  * a "reserved" bit.  Best effort attempt to source coherent
3824                  * read data here should the balance of the register be
3825                  * interpreted by the guest:
3826                  *
3827                  * L2 cache control register 3: 64GB range, 256KB size,
3828                  * enabled, latency 0x1, configured
3829                  */
3830                 msr_info->data = 0xbe702111;
3831                 break;
3832         case MSR_AMD64_OSVW_ID_LENGTH:
3833                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3834                         return 1;
3835                 msr_info->data = vcpu->arch.osvw.length;
3836                 break;
3837         case MSR_AMD64_OSVW_STATUS:
3838                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3839                         return 1;
3840                 msr_info->data = vcpu->arch.osvw.status;
3841                 break;
3842         case MSR_PLATFORM_INFO:
3843                 if (!msr_info->host_initiated &&
3844                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3845                         return 1;
3846                 msr_info->data = vcpu->arch.msr_platform_info;
3847                 break;
3848         case MSR_MISC_FEATURES_ENABLES:
3849                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3850                 break;
3851         case MSR_K7_HWCR:
3852                 msr_info->data = vcpu->arch.msr_hwcr;
3853                 break;
3854         default:
3855                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3856                         return kvm_pmu_get_msr(vcpu, msr_info);
3857                 return KVM_MSR_RET_INVALID;
3858         }
3859         return 0;
3860 }
3861 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3862
3863 /*
3864  * Read or write a bunch of msrs. All parameters are kernel addresses.
3865  *
3866  * @return number of msrs set successfully.
3867  */
3868 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3869                     struct kvm_msr_entry *entries,
3870                     int (*do_msr)(struct kvm_vcpu *vcpu,
3871                                   unsigned index, u64 *data))
3872 {
3873         int i;
3874
3875         for (i = 0; i < msrs->nmsrs; ++i)
3876                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3877                         break;
3878
3879         return i;
3880 }
3881
3882 /*
3883  * Read or write a bunch of msrs. Parameters are user addresses.
3884  *
3885  * @return number of msrs set successfully.
3886  */
3887 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3888                   int (*do_msr)(struct kvm_vcpu *vcpu,
3889                                 unsigned index, u64 *data),
3890                   int writeback)
3891 {
3892         struct kvm_msrs msrs;
3893         struct kvm_msr_entry *entries;
3894         int r, n;
3895         unsigned size;
3896
3897         r = -EFAULT;
3898         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3899                 goto out;
3900
3901         r = -E2BIG;
3902         if (msrs.nmsrs >= MAX_IO_MSRS)
3903                 goto out;
3904
3905         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3906         entries = memdup_user(user_msrs->entries, size);
3907         if (IS_ERR(entries)) {
3908                 r = PTR_ERR(entries);
3909                 goto out;
3910         }
3911
3912         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3913         if (r < 0)
3914                 goto out_free;
3915
3916         r = -EFAULT;
3917         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3918                 goto out_free;
3919
3920         r = n;
3921
3922 out_free:
3923         kfree(entries);
3924 out:
3925         return r;
3926 }
3927
3928 static inline bool kvm_can_mwait_in_guest(void)
3929 {
3930         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3931                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3932                 boot_cpu_has(X86_FEATURE_ARAT);
3933 }
3934
3935 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3936                                             struct kvm_cpuid2 __user *cpuid_arg)
3937 {
3938         struct kvm_cpuid2 cpuid;
3939         int r;
3940
3941         r = -EFAULT;
3942         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3943                 return r;
3944
3945         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3946         if (r)
3947                 return r;
3948
3949         r = -EFAULT;
3950         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3951                 return r;
3952
3953         return 0;
3954 }
3955
3956 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3957 {
3958         int r = 0;
3959
3960         switch (ext) {
3961         case KVM_CAP_IRQCHIP:
3962         case KVM_CAP_HLT:
3963         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3964         case KVM_CAP_SET_TSS_ADDR:
3965         case KVM_CAP_EXT_CPUID:
3966         case KVM_CAP_EXT_EMUL_CPUID:
3967         case KVM_CAP_CLOCKSOURCE:
3968         case KVM_CAP_PIT:
3969         case KVM_CAP_NOP_IO_DELAY:
3970         case KVM_CAP_MP_STATE:
3971         case KVM_CAP_SYNC_MMU:
3972         case KVM_CAP_USER_NMI:
3973         case KVM_CAP_REINJECT_CONTROL:
3974         case KVM_CAP_IRQ_INJECT_STATUS:
3975         case KVM_CAP_IOEVENTFD:
3976         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3977         case KVM_CAP_PIT2:
3978         case KVM_CAP_PIT_STATE2:
3979         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3980         case KVM_CAP_VCPU_EVENTS:
3981         case KVM_CAP_HYPERV:
3982         case KVM_CAP_HYPERV_VAPIC:
3983         case KVM_CAP_HYPERV_SPIN:
3984         case KVM_CAP_HYPERV_SYNIC:
3985         case KVM_CAP_HYPERV_SYNIC2:
3986         case KVM_CAP_HYPERV_VP_INDEX:
3987         case KVM_CAP_HYPERV_EVENTFD:
3988         case KVM_CAP_HYPERV_TLBFLUSH:
3989         case KVM_CAP_HYPERV_SEND_IPI:
3990         case KVM_CAP_HYPERV_CPUID:
3991         case KVM_CAP_HYPERV_ENFORCE_CPUID:
3992         case KVM_CAP_SYS_HYPERV_CPUID:
3993         case KVM_CAP_PCI_SEGMENT:
3994         case KVM_CAP_DEBUGREGS:
3995         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3996         case KVM_CAP_XSAVE:
3997         case KVM_CAP_ASYNC_PF:
3998         case KVM_CAP_ASYNC_PF_INT:
3999         case KVM_CAP_GET_TSC_KHZ:
4000         case KVM_CAP_KVMCLOCK_CTRL:
4001         case KVM_CAP_READONLY_MEM:
4002         case KVM_CAP_HYPERV_TIME:
4003         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4004         case KVM_CAP_TSC_DEADLINE_TIMER:
4005         case KVM_CAP_DISABLE_QUIRKS:
4006         case KVM_CAP_SET_BOOT_CPU_ID:
4007         case KVM_CAP_SPLIT_IRQCHIP:
4008         case KVM_CAP_IMMEDIATE_EXIT:
4009         case KVM_CAP_PMU_EVENT_FILTER:
4010         case KVM_CAP_GET_MSR_FEATURES:
4011         case KVM_CAP_MSR_PLATFORM_INFO:
4012         case KVM_CAP_EXCEPTION_PAYLOAD:
4013         case KVM_CAP_SET_GUEST_DEBUG:
4014         case KVM_CAP_LAST_CPU:
4015         case KVM_CAP_X86_USER_SPACE_MSR:
4016         case KVM_CAP_X86_MSR_FILTER:
4017         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4018 #ifdef CONFIG_X86_SGX_KVM
4019         case KVM_CAP_SGX_ATTRIBUTE:
4020 #endif
4021         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4022         case KVM_CAP_SREGS2:
4023         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4024                 r = 1;
4025                 break;
4026         case KVM_CAP_EXIT_HYPERCALL:
4027                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4028                 break;
4029         case KVM_CAP_SET_GUEST_DEBUG2:
4030                 return KVM_GUESTDBG_VALID_MASK;
4031 #ifdef CONFIG_KVM_XEN
4032         case KVM_CAP_XEN_HVM:
4033                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4034                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4035                     KVM_XEN_HVM_CONFIG_SHARED_INFO;
4036                 if (sched_info_on())
4037                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4038                 break;
4039 #endif
4040         case KVM_CAP_SYNC_REGS:
4041                 r = KVM_SYNC_X86_VALID_FIELDS;
4042                 break;
4043         case KVM_CAP_ADJUST_CLOCK:
4044                 r = KVM_CLOCK_TSC_STABLE;
4045                 break;
4046         case KVM_CAP_X86_DISABLE_EXITS:
4047                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4048                       KVM_X86_DISABLE_EXITS_CSTATE;
4049                 if(kvm_can_mwait_in_guest())
4050                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4051                 break;
4052         case KVM_CAP_X86_SMM:
4053                 /* SMBASE is usually relocated above 1M on modern chipsets,
4054                  * and SMM handlers might indeed rely on 4G segment limits,
4055                  * so do not report SMM to be available if real mode is
4056                  * emulated via vm86 mode.  Still, do not go to great lengths
4057                  * to avoid userspace's usage of the feature, because it is a
4058                  * fringe case that is not enabled except via specific settings
4059                  * of the module parameters.
4060                  */
4061                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4062                 break;
4063         case KVM_CAP_VAPIC:
4064                 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4065                 break;
4066         case KVM_CAP_NR_VCPUS:
4067                 r = KVM_SOFT_MAX_VCPUS;
4068                 break;
4069         case KVM_CAP_MAX_VCPUS:
4070                 r = KVM_MAX_VCPUS;
4071                 break;
4072         case KVM_CAP_MAX_VCPU_ID:
4073                 r = KVM_MAX_VCPU_ID;
4074                 break;
4075         case KVM_CAP_PV_MMU:    /* obsolete */
4076                 r = 0;
4077                 break;
4078         case KVM_CAP_MCE:
4079                 r = KVM_MAX_MCE_BANKS;
4080                 break;
4081         case KVM_CAP_XCRS:
4082                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4083                 break;
4084         case KVM_CAP_TSC_CONTROL:
4085                 r = kvm_has_tsc_control;
4086                 break;
4087         case KVM_CAP_X2APIC_API:
4088                 r = KVM_X2APIC_API_VALID_FLAGS;
4089                 break;
4090         case KVM_CAP_NESTED_STATE:
4091                 r = kvm_x86_ops.nested_ops->get_state ?
4092                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4093                 break;
4094         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4095                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4096                 break;
4097         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4098                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4099                 break;
4100         case KVM_CAP_SMALLER_MAXPHYADDR:
4101                 r = (int) allow_smaller_maxphyaddr;
4102                 break;
4103         case KVM_CAP_STEAL_TIME:
4104                 r = sched_info_on();
4105                 break;
4106         case KVM_CAP_X86_BUS_LOCK_EXIT:
4107                 if (kvm_has_bus_lock_exit)
4108                         r = KVM_BUS_LOCK_DETECTION_OFF |
4109                             KVM_BUS_LOCK_DETECTION_EXIT;
4110                 else
4111                         r = 0;
4112                 break;
4113         default:
4114                 break;
4115         }
4116         return r;
4117
4118 }
4119
4120 long kvm_arch_dev_ioctl(struct file *filp,
4121                         unsigned int ioctl, unsigned long arg)
4122 {
4123         void __user *argp = (void __user *)arg;
4124         long r;
4125
4126         switch (ioctl) {
4127         case KVM_GET_MSR_INDEX_LIST: {
4128                 struct kvm_msr_list __user *user_msr_list = argp;
4129                 struct kvm_msr_list msr_list;
4130                 unsigned n;
4131
4132                 r = -EFAULT;
4133                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4134                         goto out;
4135                 n = msr_list.nmsrs;
4136                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4137                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4138                         goto out;
4139                 r = -E2BIG;
4140                 if (n < msr_list.nmsrs)
4141                         goto out;
4142                 r = -EFAULT;
4143                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4144                                  num_msrs_to_save * sizeof(u32)))
4145                         goto out;
4146                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4147                                  &emulated_msrs,
4148                                  num_emulated_msrs * sizeof(u32)))
4149                         goto out;
4150                 r = 0;
4151                 break;
4152         }
4153         case KVM_GET_SUPPORTED_CPUID:
4154         case KVM_GET_EMULATED_CPUID: {
4155                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4156                 struct kvm_cpuid2 cpuid;
4157
4158                 r = -EFAULT;
4159                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4160                         goto out;
4161
4162                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4163                                             ioctl);
4164                 if (r)
4165                         goto out;
4166
4167                 r = -EFAULT;
4168                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4169                         goto out;
4170                 r = 0;
4171                 break;
4172         }
4173         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4174                 r = -EFAULT;
4175                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4176                                  sizeof(kvm_mce_cap_supported)))
4177                         goto out;
4178                 r = 0;
4179                 break;
4180         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4181                 struct kvm_msr_list __user *user_msr_list = argp;
4182                 struct kvm_msr_list msr_list;
4183                 unsigned int n;
4184
4185                 r = -EFAULT;
4186                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4187                         goto out;
4188                 n = msr_list.nmsrs;
4189                 msr_list.nmsrs = num_msr_based_features;
4190                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4191                         goto out;
4192                 r = -E2BIG;
4193                 if (n < msr_list.nmsrs)
4194                         goto out;
4195                 r = -EFAULT;
4196                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4197                                  num_msr_based_features * sizeof(u32)))
4198                         goto out;
4199                 r = 0;
4200                 break;
4201         }
4202         case KVM_GET_MSRS:
4203                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4204                 break;
4205         case KVM_GET_SUPPORTED_HV_CPUID:
4206                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4207                 break;
4208         default:
4209                 r = -EINVAL;
4210                 break;
4211         }
4212 out:
4213         return r;
4214 }
4215
4216 static void wbinvd_ipi(void *garbage)
4217 {
4218         wbinvd();
4219 }
4220
4221 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4222 {
4223         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4224 }
4225
4226 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4227 {
4228         /* Address WBINVD may be executed by guest */
4229         if (need_emulate_wbinvd(vcpu)) {
4230                 if (static_call(kvm_x86_has_wbinvd_exit)())
4231                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4232                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4233                         smp_call_function_single(vcpu->cpu,
4234                                         wbinvd_ipi, NULL, 1);
4235         }
4236
4237         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4238
4239         /* Save host pkru register if supported */
4240         vcpu->arch.host_pkru = read_pkru();
4241
4242         /* Apply any externally detected TSC adjustments (due to suspend) */
4243         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4244                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4245                 vcpu->arch.tsc_offset_adjustment = 0;
4246                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4247         }
4248
4249         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4250                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4251                                 rdtsc() - vcpu->arch.last_host_tsc;
4252                 if (tsc_delta < 0)
4253                         mark_tsc_unstable("KVM discovered backwards TSC");
4254
4255                 if (kvm_check_tsc_unstable()) {
4256                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4257                                                 vcpu->arch.last_guest_tsc);
4258                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4259                         vcpu->arch.tsc_catchup = 1;
4260                 }
4261
4262                 if (kvm_lapic_hv_timer_in_use(vcpu))
4263                         kvm_lapic_restart_hv_timer(vcpu);
4264
4265                 /*
4266                  * On a host with synchronized TSC, there is no need to update
4267                  * kvmclock on vcpu->cpu migration
4268                  */
4269                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4270                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4271                 if (vcpu->cpu != cpu)
4272                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4273                 vcpu->cpu = cpu;
4274         }
4275
4276         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4277 }
4278
4279 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4280 {
4281         struct kvm_host_map map;
4282         struct kvm_steal_time *st;
4283
4284         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4285                 return;
4286
4287         if (vcpu->arch.st.preempted)
4288                 return;
4289
4290         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4291                         &vcpu->arch.st.cache, true))
4292                 return;
4293
4294         st = map.hva +
4295                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4296
4297         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4298
4299         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4300 }
4301
4302 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4303 {
4304         int idx;
4305
4306         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4307                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4308
4309         /*
4310          * Take the srcu lock as memslots will be accessed to check the gfn
4311          * cache generation against the memslots generation.
4312          */
4313         idx = srcu_read_lock(&vcpu->kvm->srcu);
4314         if (kvm_xen_msr_enabled(vcpu->kvm))
4315                 kvm_xen_runstate_set_preempted(vcpu);
4316         else
4317                 kvm_steal_time_set_preempted(vcpu);
4318         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4319
4320         static_call(kvm_x86_vcpu_put)(vcpu);
4321         vcpu->arch.last_host_tsc = rdtsc();
4322 }
4323
4324 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4325                                     struct kvm_lapic_state *s)
4326 {
4327         if (vcpu->arch.apicv_active)
4328                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4329
4330         return kvm_apic_get_state(vcpu, s);
4331 }
4332
4333 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4334                                     struct kvm_lapic_state *s)
4335 {
4336         int r;
4337
4338         r = kvm_apic_set_state(vcpu, s);
4339         if (r)
4340                 return r;
4341         update_cr8_intercept(vcpu);
4342
4343         return 0;
4344 }
4345
4346 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4347 {
4348         /*
4349          * We can accept userspace's request for interrupt injection
4350          * as long as we have a place to store the interrupt number.
4351          * The actual injection will happen when the CPU is able to
4352          * deliver the interrupt.
4353          */
4354         if (kvm_cpu_has_extint(vcpu))
4355                 return false;
4356
4357         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4358         return (!lapic_in_kernel(vcpu) ||
4359                 kvm_apic_accept_pic_intr(vcpu));
4360 }
4361
4362 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4363 {
4364         /*
4365          * Do not cause an interrupt window exit if an exception
4366          * is pending or an event needs reinjection; userspace
4367          * might want to inject the interrupt manually using KVM_SET_REGS
4368          * or KVM_SET_SREGS.  For that to work, we must be at an
4369          * instruction boundary and with no events half-injected.
4370          */
4371         return (kvm_arch_interrupt_allowed(vcpu) &&
4372                 kvm_cpu_accept_dm_intr(vcpu) &&
4373                 !kvm_event_needs_reinjection(vcpu) &&
4374                 !vcpu->arch.exception.pending);
4375 }
4376
4377 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4378                                     struct kvm_interrupt *irq)
4379 {
4380         if (irq->irq >= KVM_NR_INTERRUPTS)
4381                 return -EINVAL;
4382
4383         if (!irqchip_in_kernel(vcpu->kvm)) {
4384                 kvm_queue_interrupt(vcpu, irq->irq, false);
4385                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4386                 return 0;
4387         }
4388
4389         /*
4390          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4391          * fail for in-kernel 8259.
4392          */
4393         if (pic_in_kernel(vcpu->kvm))
4394                 return -ENXIO;
4395
4396         if (vcpu->arch.pending_external_vector != -1)
4397                 return -EEXIST;
4398
4399         vcpu->arch.pending_external_vector = irq->irq;
4400         kvm_make_request(KVM_REQ_EVENT, vcpu);
4401         return 0;
4402 }
4403
4404 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4405 {
4406         kvm_inject_nmi(vcpu);
4407
4408         return 0;
4409 }
4410
4411 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4412 {
4413         kvm_make_request(KVM_REQ_SMI, vcpu);
4414
4415         return 0;
4416 }
4417
4418 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4419                                            struct kvm_tpr_access_ctl *tac)
4420 {
4421         if (tac->flags)
4422                 return -EINVAL;
4423         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4424         return 0;
4425 }
4426
4427 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4428                                         u64 mcg_cap)
4429 {
4430         int r;
4431         unsigned bank_num = mcg_cap & 0xff, bank;
4432
4433         r = -EINVAL;
4434         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4435                 goto out;
4436         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4437                 goto out;
4438         r = 0;
4439         vcpu->arch.mcg_cap = mcg_cap;
4440         /* Init IA32_MCG_CTL to all 1s */
4441         if (mcg_cap & MCG_CTL_P)
4442                 vcpu->arch.mcg_ctl = ~(u64)0;
4443         /* Init IA32_MCi_CTL to all 1s */
4444         for (bank = 0; bank < bank_num; bank++)
4445                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4446
4447         static_call(kvm_x86_setup_mce)(vcpu);
4448 out:
4449         return r;
4450 }
4451
4452 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4453                                       struct kvm_x86_mce *mce)
4454 {
4455         u64 mcg_cap = vcpu->arch.mcg_cap;
4456         unsigned bank_num = mcg_cap & 0xff;
4457         u64 *banks = vcpu->arch.mce_banks;
4458
4459         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4460                 return -EINVAL;
4461         /*
4462          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4463          * reporting is disabled
4464          */
4465         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4466             vcpu->arch.mcg_ctl != ~(u64)0)
4467                 return 0;
4468         banks += 4 * mce->bank;
4469         /*
4470          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4471          * reporting is disabled for the bank
4472          */
4473         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4474                 return 0;
4475         if (mce->status & MCI_STATUS_UC) {
4476                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4477                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4478                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4479                         return 0;
4480                 }
4481                 if (banks[1] & MCI_STATUS_VAL)
4482                         mce->status |= MCI_STATUS_OVER;
4483                 banks[2] = mce->addr;
4484                 banks[3] = mce->misc;
4485                 vcpu->arch.mcg_status = mce->mcg_status;
4486                 banks[1] = mce->status;
4487                 kvm_queue_exception(vcpu, MC_VECTOR);
4488         } else if (!(banks[1] & MCI_STATUS_VAL)
4489                    || !(banks[1] & MCI_STATUS_UC)) {
4490                 if (banks[1] & MCI_STATUS_VAL)
4491                         mce->status |= MCI_STATUS_OVER;
4492                 banks[2] = mce->addr;
4493                 banks[3] = mce->misc;
4494                 banks[1] = mce->status;
4495         } else
4496                 banks[1] |= MCI_STATUS_OVER;
4497         return 0;
4498 }
4499
4500 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4501                                                struct kvm_vcpu_events *events)
4502 {
4503         process_nmi(vcpu);
4504
4505         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4506                 process_smi(vcpu);
4507
4508         /*
4509          * In guest mode, payload delivery should be deferred,
4510          * so that the L1 hypervisor can intercept #PF before
4511          * CR2 is modified (or intercept #DB before DR6 is
4512          * modified under nVMX). Unless the per-VM capability,
4513          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4514          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4515          * opportunistically defer the exception payload, deliver it if the
4516          * capability hasn't been requested before processing a
4517          * KVM_GET_VCPU_EVENTS.
4518          */
4519         if (!vcpu->kvm->arch.exception_payload_enabled &&
4520             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4521                 kvm_deliver_exception_payload(vcpu);
4522
4523         /*
4524          * The API doesn't provide the instruction length for software
4525          * exceptions, so don't report them. As long as the guest RIP
4526          * isn't advanced, we should expect to encounter the exception
4527          * again.
4528          */
4529         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4530                 events->exception.injected = 0;
4531                 events->exception.pending = 0;
4532         } else {
4533                 events->exception.injected = vcpu->arch.exception.injected;
4534                 events->exception.pending = vcpu->arch.exception.pending;
4535                 /*
4536                  * For ABI compatibility, deliberately conflate
4537                  * pending and injected exceptions when
4538                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4539                  */
4540                 if (!vcpu->kvm->arch.exception_payload_enabled)
4541                         events->exception.injected |=
4542                                 vcpu->arch.exception.pending;
4543         }
4544         events->exception.nr = vcpu->arch.exception.nr;
4545         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4546         events->exception.error_code = vcpu->arch.exception.error_code;
4547         events->exception_has_payload = vcpu->arch.exception.has_payload;
4548         events->exception_payload = vcpu->arch.exception.payload;
4549
4550         events->interrupt.injected =
4551                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4552         events->interrupt.nr = vcpu->arch.interrupt.nr;
4553         events->interrupt.soft = 0;
4554         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4555
4556         events->nmi.injected = vcpu->arch.nmi_injected;
4557         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4558         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4559         events->nmi.pad = 0;
4560
4561         events->sipi_vector = 0; /* never valid when reporting to user space */
4562
4563         events->smi.smm = is_smm(vcpu);
4564         events->smi.pending = vcpu->arch.smi_pending;
4565         events->smi.smm_inside_nmi =
4566                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4567         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4568
4569         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4570                          | KVM_VCPUEVENT_VALID_SHADOW
4571                          | KVM_VCPUEVENT_VALID_SMM);
4572         if (vcpu->kvm->arch.exception_payload_enabled)
4573                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4574
4575         memset(&events->reserved, 0, sizeof(events->reserved));
4576 }
4577
4578 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4579
4580 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4581                                               struct kvm_vcpu_events *events)
4582 {
4583         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4584                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4585                               | KVM_VCPUEVENT_VALID_SHADOW
4586                               | KVM_VCPUEVENT_VALID_SMM
4587                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4588                 return -EINVAL;
4589
4590         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4591                 if (!vcpu->kvm->arch.exception_payload_enabled)
4592                         return -EINVAL;
4593                 if (events->exception.pending)
4594                         events->exception.injected = 0;
4595                 else
4596                         events->exception_has_payload = 0;
4597         } else {
4598                 events->exception.pending = 0;
4599                 events->exception_has_payload = 0;
4600         }
4601
4602         if ((events->exception.injected || events->exception.pending) &&
4603             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4604                 return -EINVAL;
4605
4606         /* INITs are latched while in SMM */
4607         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4608             (events->smi.smm || events->smi.pending) &&
4609             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4610                 return -EINVAL;
4611
4612         process_nmi(vcpu);
4613         vcpu->arch.exception.injected = events->exception.injected;
4614         vcpu->arch.exception.pending = events->exception.pending;
4615         vcpu->arch.exception.nr = events->exception.nr;
4616         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4617         vcpu->arch.exception.error_code = events->exception.error_code;
4618         vcpu->arch.exception.has_payload = events->exception_has_payload;
4619         vcpu->arch.exception.payload = events->exception_payload;
4620
4621         vcpu->arch.interrupt.injected = events->interrupt.injected;
4622         vcpu->arch.interrupt.nr = events->interrupt.nr;
4623         vcpu->arch.interrupt.soft = events->interrupt.soft;
4624         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4625                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4626                                                 events->interrupt.shadow);
4627
4628         vcpu->arch.nmi_injected = events->nmi.injected;
4629         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4630                 vcpu->arch.nmi_pending = events->nmi.pending;
4631         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4632
4633         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4634             lapic_in_kernel(vcpu))
4635                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4636
4637         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4638                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4639                         kvm_smm_changed(vcpu, events->smi.smm);
4640
4641                 vcpu->arch.smi_pending = events->smi.pending;
4642
4643                 if (events->smi.smm) {
4644                         if (events->smi.smm_inside_nmi)
4645                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4646                         else
4647                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4648                 }
4649
4650                 if (lapic_in_kernel(vcpu)) {
4651                         if (events->smi.latched_init)
4652                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4653                         else
4654                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4655                 }
4656         }
4657
4658         kvm_make_request(KVM_REQ_EVENT, vcpu);
4659
4660         return 0;
4661 }
4662
4663 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4664                                              struct kvm_debugregs *dbgregs)
4665 {
4666         unsigned long val;
4667
4668         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4669         kvm_get_dr(vcpu, 6, &val);
4670         dbgregs->dr6 = val;
4671         dbgregs->dr7 = vcpu->arch.dr7;
4672         dbgregs->flags = 0;
4673         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4674 }
4675
4676 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4677                                             struct kvm_debugregs *dbgregs)
4678 {
4679         if (dbgregs->flags)
4680                 return -EINVAL;
4681
4682         if (!kvm_dr6_valid(dbgregs->dr6))
4683                 return -EINVAL;
4684         if (!kvm_dr7_valid(dbgregs->dr7))
4685                 return -EINVAL;
4686
4687         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4688         kvm_update_dr0123(vcpu);
4689         vcpu->arch.dr6 = dbgregs->dr6;
4690         vcpu->arch.dr7 = dbgregs->dr7;
4691         kvm_update_dr7(vcpu);
4692
4693         return 0;
4694 }
4695
4696 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4697
4698 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4699 {
4700         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4701         u64 xstate_bv = xsave->header.xfeatures;
4702         u64 valid;
4703
4704         /*
4705          * Copy legacy XSAVE area, to avoid complications with CPUID
4706          * leaves 0 and 1 in the loop below.
4707          */
4708         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4709
4710         /* Set XSTATE_BV */
4711         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4712         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4713
4714         /*
4715          * Copy each region from the possibly compacted offset to the
4716          * non-compacted offset.
4717          */
4718         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4719         while (valid) {
4720                 u32 size, offset, ecx, edx;
4721                 u64 xfeature_mask = valid & -valid;
4722                 int xfeature_nr = fls64(xfeature_mask) - 1;
4723                 void *src;
4724
4725                 cpuid_count(XSTATE_CPUID, xfeature_nr,
4726                             &size, &offset, &ecx, &edx);
4727
4728                 if (xfeature_nr == XFEATURE_PKRU) {
4729                         memcpy(dest + offset, &vcpu->arch.pkru,
4730                                sizeof(vcpu->arch.pkru));
4731                 } else {
4732                         src = get_xsave_addr(xsave, xfeature_nr);
4733                         if (src)
4734                                 memcpy(dest + offset, src, size);
4735                 }
4736
4737                 valid -= xfeature_mask;
4738         }
4739 }
4740
4741 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4742 {
4743         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4744         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4745         u64 valid;
4746
4747         /*
4748          * Copy legacy XSAVE area, to avoid complications with CPUID
4749          * leaves 0 and 1 in the loop below.
4750          */
4751         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4752
4753         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4754         xsave->header.xfeatures = xstate_bv;
4755         if (boot_cpu_has(X86_FEATURE_XSAVES))
4756                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4757
4758         /*
4759          * Copy each region from the non-compacted offset to the
4760          * possibly compacted offset.
4761          */
4762         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4763         while (valid) {
4764                 u32 size, offset, ecx, edx;
4765                 u64 xfeature_mask = valid & -valid;
4766                 int xfeature_nr = fls64(xfeature_mask) - 1;
4767
4768                 cpuid_count(XSTATE_CPUID, xfeature_nr,
4769                             &size, &offset, &ecx, &edx);
4770
4771                 if (xfeature_nr == XFEATURE_PKRU) {
4772                         memcpy(&vcpu->arch.pkru, src + offset,
4773                                sizeof(vcpu->arch.pkru));
4774                 } else {
4775                         void *dest = get_xsave_addr(xsave, xfeature_nr);
4776
4777                         if (dest)
4778                                 memcpy(dest, src + offset, size);
4779                 }
4780
4781                 valid -= xfeature_mask;
4782         }
4783 }
4784
4785 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4786                                          struct kvm_xsave *guest_xsave)
4787 {
4788         if (!vcpu->arch.guest_fpu)
4789                 return;
4790
4791         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4792                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4793                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4794         } else {
4795                 memcpy(guest_xsave->region,
4796                         &vcpu->arch.guest_fpu->state.fxsave,
4797                         sizeof(struct fxregs_state));
4798                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4799                         XFEATURE_MASK_FPSSE;
4800         }
4801 }
4802
4803 #define XSAVE_MXCSR_OFFSET 24
4804
4805 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4806                                         struct kvm_xsave *guest_xsave)
4807 {
4808         u64 xstate_bv;
4809         u32 mxcsr;
4810
4811         if (!vcpu->arch.guest_fpu)
4812                 return 0;
4813
4814         xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4815         mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4816
4817         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4818                 /*
4819                  * Here we allow setting states that are not present in
4820                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4821                  * with old userspace.
4822                  */
4823                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4824                         return -EINVAL;
4825                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4826         } else {
4827                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4828                         mxcsr & ~mxcsr_feature_mask)
4829                         return -EINVAL;
4830                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4831                         guest_xsave->region, sizeof(struct fxregs_state));
4832         }
4833         return 0;
4834 }
4835
4836 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4837                                         struct kvm_xcrs *guest_xcrs)
4838 {
4839         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4840                 guest_xcrs->nr_xcrs = 0;
4841                 return;
4842         }
4843
4844         guest_xcrs->nr_xcrs = 1;
4845         guest_xcrs->flags = 0;
4846         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4847         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4848 }
4849
4850 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4851                                        struct kvm_xcrs *guest_xcrs)
4852 {
4853         int i, r = 0;
4854
4855         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4856                 return -EINVAL;
4857
4858         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4859                 return -EINVAL;
4860
4861         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4862                 /* Only support XCR0 currently */
4863                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4864                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4865                                 guest_xcrs->xcrs[i].value);
4866                         break;
4867                 }
4868         if (r)
4869                 r = -EINVAL;
4870         return r;
4871 }
4872
4873 /*
4874  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4875  * stopped by the hypervisor.  This function will be called from the host only.
4876  * EINVAL is returned when the host attempts to set the flag for a guest that
4877  * does not support pv clocks.
4878  */
4879 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4880 {
4881         if (!vcpu->arch.pv_time_enabled)
4882                 return -EINVAL;
4883         vcpu->arch.pvclock_set_guest_stopped_request = true;
4884         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4885         return 0;
4886 }
4887
4888 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4889                                      struct kvm_enable_cap *cap)
4890 {
4891         int r;
4892         uint16_t vmcs_version;
4893         void __user *user_ptr;
4894
4895         if (cap->flags)
4896                 return -EINVAL;
4897
4898         switch (cap->cap) {
4899         case KVM_CAP_HYPERV_SYNIC2:
4900                 if (cap->args[0])
4901                         return -EINVAL;
4902                 fallthrough;
4903
4904         case KVM_CAP_HYPERV_SYNIC:
4905                 if (!irqchip_in_kernel(vcpu->kvm))
4906                         return -EINVAL;
4907                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4908                                              KVM_CAP_HYPERV_SYNIC2);
4909         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4910                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4911                         return -ENOTTY;
4912                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4913                 if (!r) {
4914                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4915                         if (copy_to_user(user_ptr, &vmcs_version,
4916                                          sizeof(vmcs_version)))
4917                                 r = -EFAULT;
4918                 }
4919                 return r;
4920         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4921                 if (!kvm_x86_ops.enable_direct_tlbflush)
4922                         return -ENOTTY;
4923
4924                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4925
4926         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4927                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4928
4929         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4930                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4931                 if (vcpu->arch.pv_cpuid.enforce)
4932                         kvm_update_pv_runtime(vcpu);
4933
4934                 return 0;
4935         default:
4936                 return -EINVAL;
4937         }
4938 }
4939
4940 long kvm_arch_vcpu_ioctl(struct file *filp,
4941                          unsigned int ioctl, unsigned long arg)
4942 {
4943         struct kvm_vcpu *vcpu = filp->private_data;
4944         void __user *argp = (void __user *)arg;
4945         int r;
4946         union {
4947                 struct kvm_sregs2 *sregs2;
4948                 struct kvm_lapic_state *lapic;
4949                 struct kvm_xsave *xsave;
4950                 struct kvm_xcrs *xcrs;
4951                 void *buffer;
4952         } u;
4953
4954         vcpu_load(vcpu);
4955
4956         u.buffer = NULL;
4957         switch (ioctl) {
4958         case KVM_GET_LAPIC: {
4959                 r = -EINVAL;
4960                 if (!lapic_in_kernel(vcpu))
4961                         goto out;
4962                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4963                                 GFP_KERNEL_ACCOUNT);
4964
4965                 r = -ENOMEM;
4966                 if (!u.lapic)
4967                         goto out;
4968                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4969                 if (r)
4970                         goto out;
4971                 r = -EFAULT;
4972                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4973                         goto out;
4974                 r = 0;
4975                 break;
4976         }
4977         case KVM_SET_LAPIC: {
4978                 r = -EINVAL;
4979                 if (!lapic_in_kernel(vcpu))
4980                         goto out;
4981                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4982                 if (IS_ERR(u.lapic)) {
4983                         r = PTR_ERR(u.lapic);
4984                         goto out_nofree;
4985                 }
4986
4987                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4988                 break;
4989         }
4990         case KVM_INTERRUPT: {
4991                 struct kvm_interrupt irq;
4992
4993                 r = -EFAULT;
4994                 if (copy_from_user(&irq, argp, sizeof(irq)))
4995                         goto out;
4996                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4997                 break;
4998         }
4999         case KVM_NMI: {
5000                 r = kvm_vcpu_ioctl_nmi(vcpu);
5001                 break;
5002         }
5003         case KVM_SMI: {
5004                 r = kvm_vcpu_ioctl_smi(vcpu);
5005                 break;
5006         }
5007         case KVM_SET_CPUID: {
5008                 struct kvm_cpuid __user *cpuid_arg = argp;
5009                 struct kvm_cpuid cpuid;
5010
5011                 r = -EFAULT;
5012                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5013                         goto out;
5014                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5015                 break;
5016         }
5017         case KVM_SET_CPUID2: {
5018                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5019                 struct kvm_cpuid2 cpuid;
5020
5021                 r = -EFAULT;
5022                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5023                         goto out;
5024                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5025                                               cpuid_arg->entries);
5026                 break;
5027         }
5028         case KVM_GET_CPUID2: {
5029                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5030                 struct kvm_cpuid2 cpuid;
5031
5032                 r = -EFAULT;
5033                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5034                         goto out;
5035                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5036                                               cpuid_arg->entries);
5037                 if (r)
5038                         goto out;
5039                 r = -EFAULT;
5040                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5041                         goto out;
5042                 r = 0;
5043                 break;
5044         }
5045         case KVM_GET_MSRS: {
5046                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5047                 r = msr_io(vcpu, argp, do_get_msr, 1);
5048                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5049                 break;
5050         }
5051         case KVM_SET_MSRS: {
5052                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5053                 r = msr_io(vcpu, argp, do_set_msr, 0);
5054                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5055                 break;
5056         }
5057         case KVM_TPR_ACCESS_REPORTING: {
5058                 struct kvm_tpr_access_ctl tac;
5059
5060                 r = -EFAULT;
5061                 if (copy_from_user(&tac, argp, sizeof(tac)))
5062                         goto out;
5063                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5064                 if (r)
5065                         goto out;
5066                 r = -EFAULT;
5067                 if (copy_to_user(argp, &tac, sizeof(tac)))
5068                         goto out;
5069                 r = 0;
5070                 break;
5071         };
5072         case KVM_SET_VAPIC_ADDR: {
5073                 struct kvm_vapic_addr va;
5074                 int idx;
5075
5076                 r = -EINVAL;
5077                 if (!lapic_in_kernel(vcpu))
5078                         goto out;
5079                 r = -EFAULT;
5080                 if (copy_from_user(&va, argp, sizeof(va)))
5081                         goto out;
5082                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5083                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5084                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5085                 break;
5086         }
5087         case KVM_X86_SETUP_MCE: {
5088                 u64 mcg_cap;
5089
5090                 r = -EFAULT;
5091                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5092                         goto out;
5093                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5094                 break;
5095         }
5096         case KVM_X86_SET_MCE: {
5097                 struct kvm_x86_mce mce;
5098
5099                 r = -EFAULT;
5100                 if (copy_from_user(&mce, argp, sizeof(mce)))
5101                         goto out;
5102                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5103                 break;
5104         }
5105         case KVM_GET_VCPU_EVENTS: {
5106                 struct kvm_vcpu_events events;
5107
5108                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5109
5110                 r = -EFAULT;
5111                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5112                         break;
5113                 r = 0;
5114                 break;
5115         }
5116         case KVM_SET_VCPU_EVENTS: {
5117                 struct kvm_vcpu_events events;
5118
5119                 r = -EFAULT;
5120                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5121                         break;
5122
5123                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5124                 break;
5125         }
5126         case KVM_GET_DEBUGREGS: {
5127                 struct kvm_debugregs dbgregs;
5128
5129                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5130
5131                 r = -EFAULT;
5132                 if (copy_to_user(argp, &dbgregs,
5133                                  sizeof(struct kvm_debugregs)))
5134                         break;
5135                 r = 0;
5136                 break;
5137         }
5138         case KVM_SET_DEBUGREGS: {
5139                 struct kvm_debugregs dbgregs;
5140
5141                 r = -EFAULT;
5142                 if (copy_from_user(&dbgregs, argp,
5143                                    sizeof(struct kvm_debugregs)))
5144                         break;
5145
5146                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5147                 break;
5148         }
5149         case KVM_GET_XSAVE: {
5150                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5151                 r = -ENOMEM;
5152                 if (!u.xsave)
5153                         break;
5154
5155                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5156
5157                 r = -EFAULT;
5158                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5159                         break;
5160                 r = 0;
5161                 break;
5162         }
5163         case KVM_SET_XSAVE: {
5164                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5165                 if (IS_ERR(u.xsave)) {
5166                         r = PTR_ERR(u.xsave);
5167                         goto out_nofree;
5168                 }
5169
5170                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5171                 break;
5172         }
5173         case KVM_GET_XCRS: {
5174                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5175                 r = -ENOMEM;
5176                 if (!u.xcrs)
5177                         break;
5178
5179                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5180
5181                 r = -EFAULT;
5182                 if (copy_to_user(argp, u.xcrs,
5183                                  sizeof(struct kvm_xcrs)))
5184                         break;
5185                 r = 0;
5186                 break;
5187         }
5188         case KVM_SET_XCRS: {
5189                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5190                 if (IS_ERR(u.xcrs)) {
5191                         r = PTR_ERR(u.xcrs);
5192                         goto out_nofree;
5193                 }
5194
5195                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5196                 break;
5197         }
5198         case KVM_SET_TSC_KHZ: {
5199                 u32 user_tsc_khz;
5200
5201                 r = -EINVAL;
5202                 user_tsc_khz = (u32)arg;
5203
5204                 if (kvm_has_tsc_control &&
5205                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5206                         goto out;
5207
5208                 if (user_tsc_khz == 0)
5209                         user_tsc_khz = tsc_khz;
5210
5211                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5212                         r = 0;
5213
5214                 goto out;
5215         }
5216         case KVM_GET_TSC_KHZ: {
5217                 r = vcpu->arch.virtual_tsc_khz;
5218                 goto out;
5219         }
5220         case KVM_KVMCLOCK_CTRL: {
5221                 r = kvm_set_guest_paused(vcpu);
5222                 goto out;
5223         }
5224         case KVM_ENABLE_CAP: {
5225                 struct kvm_enable_cap cap;
5226
5227                 r = -EFAULT;
5228                 if (copy_from_user(&cap, argp, sizeof(cap)))
5229                         goto out;
5230                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5231                 break;
5232         }
5233         case KVM_GET_NESTED_STATE: {
5234                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5235                 u32 user_data_size;
5236
5237                 r = -EINVAL;
5238                 if (!kvm_x86_ops.nested_ops->get_state)
5239                         break;
5240
5241                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5242                 r = -EFAULT;
5243                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5244                         break;
5245
5246                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5247                                                      user_data_size);
5248                 if (r < 0)
5249                         break;
5250
5251                 if (r > user_data_size) {
5252                         if (put_user(r, &user_kvm_nested_state->size))
5253                                 r = -EFAULT;
5254                         else
5255                                 r = -E2BIG;
5256                         break;
5257                 }
5258
5259                 r = 0;
5260                 break;
5261         }
5262         case KVM_SET_NESTED_STATE: {
5263                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5264                 struct kvm_nested_state kvm_state;
5265                 int idx;
5266
5267                 r = -EINVAL;
5268                 if (!kvm_x86_ops.nested_ops->set_state)
5269                         break;
5270
5271                 r = -EFAULT;
5272                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5273                         break;
5274
5275                 r = -EINVAL;
5276                 if (kvm_state.size < sizeof(kvm_state))
5277                         break;
5278
5279                 if (kvm_state.flags &
5280                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5281                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5282                       | KVM_STATE_NESTED_GIF_SET))
5283                         break;
5284
5285                 /* nested_run_pending implies guest_mode.  */
5286                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5287                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5288                         break;
5289
5290                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5291                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5292                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5293                 break;
5294         }
5295         case KVM_GET_SUPPORTED_HV_CPUID:
5296                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5297                 break;
5298 #ifdef CONFIG_KVM_XEN
5299         case KVM_XEN_VCPU_GET_ATTR: {
5300                 struct kvm_xen_vcpu_attr xva;
5301
5302                 r = -EFAULT;
5303                 if (copy_from_user(&xva, argp, sizeof(xva)))
5304                         goto out;
5305                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5306                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5307                         r = -EFAULT;
5308                 break;
5309         }
5310         case KVM_XEN_VCPU_SET_ATTR: {
5311                 struct kvm_xen_vcpu_attr xva;
5312
5313                 r = -EFAULT;
5314                 if (copy_from_user(&xva, argp, sizeof(xva)))
5315                         goto out;
5316                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5317                 break;
5318         }
5319 #endif
5320         case KVM_GET_SREGS2: {
5321                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5322                 r = -ENOMEM;
5323                 if (!u.sregs2)
5324                         goto out;
5325                 __get_sregs2(vcpu, u.sregs2);
5326                 r = -EFAULT;
5327                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5328                         goto out;
5329                 r = 0;
5330                 break;
5331         }
5332         case KVM_SET_SREGS2: {
5333                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5334                 if (IS_ERR(u.sregs2)) {
5335                         r = PTR_ERR(u.sregs2);
5336                         u.sregs2 = NULL;
5337                         goto out;
5338                 }
5339                 r = __set_sregs2(vcpu, u.sregs2);
5340                 break;
5341         }
5342         default:
5343                 r = -EINVAL;
5344         }
5345 out:
5346         kfree(u.buffer);
5347 out_nofree:
5348         vcpu_put(vcpu);
5349         return r;
5350 }
5351
5352 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5353 {
5354         return VM_FAULT_SIGBUS;
5355 }
5356
5357 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5358 {
5359         int ret;
5360
5361         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5362                 return -EINVAL;
5363         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5364         return ret;
5365 }
5366
5367 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5368                                               u64 ident_addr)
5369 {
5370         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5371 }
5372
5373 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5374                                          unsigned long kvm_nr_mmu_pages)
5375 {
5376         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5377                 return -EINVAL;
5378
5379         mutex_lock(&kvm->slots_lock);
5380
5381         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5382         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5383
5384         mutex_unlock(&kvm->slots_lock);
5385         return 0;
5386 }
5387
5388 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5389 {
5390         return kvm->arch.n_max_mmu_pages;
5391 }
5392
5393 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5394 {
5395         struct kvm_pic *pic = kvm->arch.vpic;
5396         int r;
5397
5398         r = 0;
5399         switch (chip->chip_id) {
5400         case KVM_IRQCHIP_PIC_MASTER:
5401                 memcpy(&chip->chip.pic, &pic->pics[0],
5402                         sizeof(struct kvm_pic_state));
5403                 break;
5404         case KVM_IRQCHIP_PIC_SLAVE:
5405                 memcpy(&chip->chip.pic, &pic->pics[1],
5406                         sizeof(struct kvm_pic_state));
5407                 break;
5408         case KVM_IRQCHIP_IOAPIC:
5409                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5410                 break;
5411         default:
5412                 r = -EINVAL;
5413                 break;
5414         }
5415         return r;
5416 }
5417
5418 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5419 {
5420         struct kvm_pic *pic = kvm->arch.vpic;
5421         int r;
5422
5423         r = 0;
5424         switch (chip->chip_id) {
5425         case KVM_IRQCHIP_PIC_MASTER:
5426                 spin_lock(&pic->lock);
5427                 memcpy(&pic->pics[0], &chip->chip.pic,
5428                         sizeof(struct kvm_pic_state));
5429                 spin_unlock(&pic->lock);
5430                 break;
5431         case KVM_IRQCHIP_PIC_SLAVE:
5432                 spin_lock(&pic->lock);
5433                 memcpy(&pic->pics[1], &chip->chip.pic,
5434                         sizeof(struct kvm_pic_state));
5435                 spin_unlock(&pic->lock);
5436                 break;
5437         case KVM_IRQCHIP_IOAPIC:
5438                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5439                 break;
5440         default:
5441                 r = -EINVAL;
5442                 break;
5443         }
5444         kvm_pic_update_irq(pic);
5445         return r;
5446 }
5447
5448 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5449 {
5450         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5451
5452         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5453
5454         mutex_lock(&kps->lock);
5455         memcpy(ps, &kps->channels, sizeof(*ps));
5456         mutex_unlock(&kps->lock);
5457         return 0;
5458 }
5459
5460 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5461 {
5462         int i;
5463         struct kvm_pit *pit = kvm->arch.vpit;
5464
5465         mutex_lock(&pit->pit_state.lock);
5466         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5467         for (i = 0; i < 3; i++)
5468                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5469         mutex_unlock(&pit->pit_state.lock);
5470         return 0;
5471 }
5472
5473 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5474 {
5475         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5476         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5477                 sizeof(ps->channels));
5478         ps->flags = kvm->arch.vpit->pit_state.flags;
5479         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5480         memset(&ps->reserved, 0, sizeof(ps->reserved));
5481         return 0;
5482 }
5483
5484 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5485 {
5486         int start = 0;
5487         int i;
5488         u32 prev_legacy, cur_legacy;
5489         struct kvm_pit *pit = kvm->arch.vpit;
5490
5491         mutex_lock(&pit->pit_state.lock);
5492         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5493         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5494         if (!prev_legacy && cur_legacy)
5495                 start = 1;
5496         memcpy(&pit->pit_state.channels, &ps->channels,
5497                sizeof(pit->pit_state.channels));
5498         pit->pit_state.flags = ps->flags;
5499         for (i = 0; i < 3; i++)
5500                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5501                                    start && i == 0);
5502         mutex_unlock(&pit->pit_state.lock);
5503         return 0;
5504 }
5505
5506 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5507                                  struct kvm_reinject_control *control)
5508 {
5509         struct kvm_pit *pit = kvm->arch.vpit;
5510
5511         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5512          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5513          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5514          */
5515         mutex_lock(&pit->pit_state.lock);
5516         kvm_pit_set_reinject(pit, control->pit_reinject);
5517         mutex_unlock(&pit->pit_state.lock);
5518
5519         return 0;
5520 }
5521
5522 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5523 {
5524
5525         /*
5526          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5527          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5528          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5529          * VM-Exit.
5530          */
5531         struct kvm_vcpu *vcpu;
5532         int i;
5533
5534         kvm_for_each_vcpu(i, vcpu, kvm)
5535                 kvm_vcpu_kick(vcpu);
5536 }
5537
5538 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5539                         bool line_status)
5540 {
5541         if (!irqchip_in_kernel(kvm))
5542                 return -ENXIO;
5543
5544         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5545                                         irq_event->irq, irq_event->level,
5546                                         line_status);
5547         return 0;
5548 }
5549
5550 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5551                             struct kvm_enable_cap *cap)
5552 {
5553         int r;
5554
5555         if (cap->flags)
5556                 return -EINVAL;
5557
5558         switch (cap->cap) {
5559         case KVM_CAP_DISABLE_QUIRKS:
5560                 kvm->arch.disabled_quirks = cap->args[0];
5561                 r = 0;
5562                 break;
5563         case KVM_CAP_SPLIT_IRQCHIP: {
5564                 mutex_lock(&kvm->lock);
5565                 r = -EINVAL;
5566                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5567                         goto split_irqchip_unlock;
5568                 r = -EEXIST;
5569                 if (irqchip_in_kernel(kvm))
5570                         goto split_irqchip_unlock;
5571                 if (kvm->created_vcpus)
5572                         goto split_irqchip_unlock;
5573                 r = kvm_setup_empty_irq_routing(kvm);
5574                 if (r)
5575                         goto split_irqchip_unlock;
5576                 /* Pairs with irqchip_in_kernel. */
5577                 smp_wmb();
5578                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5579                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5580                 r = 0;
5581 split_irqchip_unlock:
5582                 mutex_unlock(&kvm->lock);
5583                 break;
5584         }
5585         case KVM_CAP_X2APIC_API:
5586                 r = -EINVAL;
5587                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5588                         break;
5589
5590                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5591                         kvm->arch.x2apic_format = true;
5592                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5593                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5594
5595                 r = 0;
5596                 break;
5597         case KVM_CAP_X86_DISABLE_EXITS:
5598                 r = -EINVAL;
5599                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5600                         break;
5601
5602                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5603                         kvm_can_mwait_in_guest())
5604                         kvm->arch.mwait_in_guest = true;
5605                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5606                         kvm->arch.hlt_in_guest = true;
5607                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5608                         kvm->arch.pause_in_guest = true;
5609                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5610                         kvm->arch.cstate_in_guest = true;
5611                 r = 0;
5612                 break;
5613         case KVM_CAP_MSR_PLATFORM_INFO:
5614                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5615                 r = 0;
5616                 break;
5617         case KVM_CAP_EXCEPTION_PAYLOAD:
5618                 kvm->arch.exception_payload_enabled = cap->args[0];
5619                 r = 0;
5620                 break;
5621         case KVM_CAP_X86_USER_SPACE_MSR:
5622                 kvm->arch.user_space_msr_mask = cap->args[0];
5623                 r = 0;
5624                 break;
5625         case KVM_CAP_X86_BUS_LOCK_EXIT:
5626                 r = -EINVAL;
5627                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5628                         break;
5629
5630                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5631                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5632                         break;
5633
5634                 if (kvm_has_bus_lock_exit &&
5635                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5636                         kvm->arch.bus_lock_detection_enabled = true;
5637                 r = 0;
5638                 break;
5639 #ifdef CONFIG_X86_SGX_KVM
5640         case KVM_CAP_SGX_ATTRIBUTE: {
5641                 unsigned long allowed_attributes = 0;
5642
5643                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5644                 if (r)
5645                         break;
5646
5647                 /* KVM only supports the PROVISIONKEY privileged attribute. */
5648                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5649                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5650                         kvm->arch.sgx_provisioning_allowed = true;
5651                 else
5652                         r = -EINVAL;
5653                 break;
5654         }
5655 #endif
5656         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5657                 r = -EINVAL;
5658                 if (kvm_x86_ops.vm_copy_enc_context_from)
5659                         r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5660                 return r;
5661         case KVM_CAP_EXIT_HYPERCALL:
5662                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5663                         r = -EINVAL;
5664                         break;
5665                 }
5666                 kvm->arch.hypercall_exit_enabled = cap->args[0];
5667                 r = 0;
5668                 break;
5669         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5670                 r = -EINVAL;
5671                 if (cap->args[0] & ~1)
5672                         break;
5673                 kvm->arch.exit_on_emulation_error = cap->args[0];
5674                 r = 0;
5675                 break;
5676         default:
5677                 r = -EINVAL;
5678                 break;
5679         }
5680         return r;
5681 }
5682
5683 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5684 {
5685         struct kvm_x86_msr_filter *msr_filter;
5686
5687         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5688         if (!msr_filter)
5689                 return NULL;
5690
5691         msr_filter->default_allow = default_allow;
5692         return msr_filter;
5693 }
5694
5695 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5696 {
5697         u32 i;
5698
5699         if (!msr_filter)
5700                 return;
5701
5702         for (i = 0; i < msr_filter->count; i++)
5703                 kfree(msr_filter->ranges[i].bitmap);
5704
5705         kfree(msr_filter);
5706 }
5707
5708 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5709                               struct kvm_msr_filter_range *user_range)
5710 {
5711         unsigned long *bitmap = NULL;
5712         size_t bitmap_size;
5713
5714         if (!user_range->nmsrs)
5715                 return 0;
5716
5717         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5718                 return -EINVAL;
5719
5720         if (!user_range->flags)
5721                 return -EINVAL;
5722
5723         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5724         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5725                 return -EINVAL;
5726
5727         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5728         if (IS_ERR(bitmap))
5729                 return PTR_ERR(bitmap);
5730
5731         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5732                 .flags = user_range->flags,
5733                 .base = user_range->base,
5734                 .nmsrs = user_range->nmsrs,
5735                 .bitmap = bitmap,
5736         };
5737
5738         msr_filter->count++;
5739         return 0;
5740 }
5741
5742 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5743 {
5744         struct kvm_msr_filter __user *user_msr_filter = argp;
5745         struct kvm_x86_msr_filter *new_filter, *old_filter;
5746         struct kvm_msr_filter filter;
5747         bool default_allow;
5748         bool empty = true;
5749         int r = 0;
5750         u32 i;
5751
5752         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5753                 return -EFAULT;
5754
5755         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5756                 empty &= !filter.ranges[i].nmsrs;
5757
5758         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5759         if (empty && !default_allow)
5760                 return -EINVAL;
5761
5762         new_filter = kvm_alloc_msr_filter(default_allow);
5763         if (!new_filter)
5764                 return -ENOMEM;
5765
5766         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5767                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5768                 if (r) {
5769                         kvm_free_msr_filter(new_filter);
5770                         return r;
5771                 }
5772         }
5773
5774         mutex_lock(&kvm->lock);
5775
5776         /* The per-VM filter is protected by kvm->lock... */
5777         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5778
5779         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5780         synchronize_srcu(&kvm->srcu);
5781
5782         kvm_free_msr_filter(old_filter);
5783
5784         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5785         mutex_unlock(&kvm->lock);
5786
5787         return 0;
5788 }
5789
5790 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5791 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5792 {
5793         struct kvm_vcpu *vcpu;
5794         int i, ret = 0;
5795
5796         mutex_lock(&kvm->lock);
5797         kvm_for_each_vcpu(i, vcpu, kvm) {
5798                 if (!vcpu->arch.pv_time_enabled)
5799                         continue;
5800
5801                 ret = kvm_set_guest_paused(vcpu);
5802                 if (ret) {
5803                         kvm_err("Failed to pause guest VCPU%d: %d\n",
5804                                 vcpu->vcpu_id, ret);
5805                         break;
5806                 }
5807         }
5808         mutex_unlock(&kvm->lock);
5809
5810         return ret ? NOTIFY_BAD : NOTIFY_DONE;
5811 }
5812
5813 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5814 {
5815         switch (state) {
5816         case PM_HIBERNATION_PREPARE:
5817         case PM_SUSPEND_PREPARE:
5818                 return kvm_arch_suspend_notifier(kvm);
5819         }
5820
5821         return NOTIFY_DONE;
5822 }
5823 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5824
5825 long kvm_arch_vm_ioctl(struct file *filp,
5826                        unsigned int ioctl, unsigned long arg)
5827 {
5828         struct kvm *kvm = filp->private_data;
5829         void __user *argp = (void __user *)arg;
5830         int r = -ENOTTY;
5831         /*
5832          * This union makes it completely explicit to gcc-3.x
5833          * that these two variables' stack usage should be
5834          * combined, not added together.
5835          */
5836         union {
5837                 struct kvm_pit_state ps;
5838                 struct kvm_pit_state2 ps2;
5839                 struct kvm_pit_config pit_config;
5840         } u;
5841
5842         switch (ioctl) {
5843         case KVM_SET_TSS_ADDR:
5844                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5845                 break;
5846         case KVM_SET_IDENTITY_MAP_ADDR: {
5847                 u64 ident_addr;
5848
5849                 mutex_lock(&kvm->lock);
5850                 r = -EINVAL;
5851                 if (kvm->created_vcpus)
5852                         goto set_identity_unlock;
5853                 r = -EFAULT;
5854                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5855                         goto set_identity_unlock;
5856                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5857 set_identity_unlock:
5858                 mutex_unlock(&kvm->lock);
5859                 break;
5860         }
5861         case KVM_SET_NR_MMU_PAGES:
5862                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5863                 break;
5864         case KVM_GET_NR_MMU_PAGES:
5865                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5866                 break;
5867         case KVM_CREATE_IRQCHIP: {
5868                 mutex_lock(&kvm->lock);
5869
5870                 r = -EEXIST;
5871                 if (irqchip_in_kernel(kvm))
5872                         goto create_irqchip_unlock;
5873
5874                 r = -EINVAL;
5875                 if (kvm->created_vcpus)
5876                         goto create_irqchip_unlock;
5877
5878                 r = kvm_pic_init(kvm);
5879                 if (r)
5880                         goto create_irqchip_unlock;
5881
5882                 r = kvm_ioapic_init(kvm);
5883                 if (r) {
5884                         kvm_pic_destroy(kvm);
5885                         goto create_irqchip_unlock;
5886                 }
5887
5888                 r = kvm_setup_default_irq_routing(kvm);
5889                 if (r) {
5890                         kvm_ioapic_destroy(kvm);
5891                         kvm_pic_destroy(kvm);
5892                         goto create_irqchip_unlock;
5893                 }
5894                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5895                 smp_wmb();
5896                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5897         create_irqchip_unlock:
5898                 mutex_unlock(&kvm->lock);
5899                 break;
5900         }
5901         case KVM_CREATE_PIT:
5902                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5903                 goto create_pit;
5904         case KVM_CREATE_PIT2:
5905                 r = -EFAULT;
5906                 if (copy_from_user(&u.pit_config, argp,
5907                                    sizeof(struct kvm_pit_config)))
5908                         goto out;
5909         create_pit:
5910                 mutex_lock(&kvm->lock);
5911                 r = -EEXIST;
5912                 if (kvm->arch.vpit)
5913                         goto create_pit_unlock;
5914                 r = -ENOMEM;
5915                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5916                 if (kvm->arch.vpit)
5917                         r = 0;
5918         create_pit_unlock:
5919                 mutex_unlock(&kvm->lock);
5920                 break;
5921         case KVM_GET_IRQCHIP: {
5922                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5923                 struct kvm_irqchip *chip;
5924
5925                 chip = memdup_user(argp, sizeof(*chip));
5926                 if (IS_ERR(chip)) {
5927                         r = PTR_ERR(chip);
5928                         goto out;
5929                 }
5930
5931                 r = -ENXIO;
5932                 if (!irqchip_kernel(kvm))
5933                         goto get_irqchip_out;
5934                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5935                 if (r)
5936                         goto get_irqchip_out;
5937                 r = -EFAULT;
5938                 if (copy_to_user(argp, chip, sizeof(*chip)))
5939                         goto get_irqchip_out;
5940                 r = 0;
5941         get_irqchip_out:
5942                 kfree(chip);
5943                 break;
5944         }
5945         case KVM_SET_IRQCHIP: {
5946                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5947                 struct kvm_irqchip *chip;
5948
5949                 chip = memdup_user(argp, sizeof(*chip));
5950                 if (IS_ERR(chip)) {
5951                         r = PTR_ERR(chip);
5952                         goto out;
5953                 }
5954
5955                 r = -ENXIO;
5956                 if (!irqchip_kernel(kvm))
5957                         goto set_irqchip_out;
5958                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5959         set_irqchip_out:
5960                 kfree(chip);
5961                 break;
5962         }
5963         case KVM_GET_PIT: {
5964                 r = -EFAULT;
5965                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5966                         goto out;
5967                 r = -ENXIO;
5968                 if (!kvm->arch.vpit)
5969                         goto out;
5970                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5971                 if (r)
5972                         goto out;
5973                 r = -EFAULT;
5974                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5975                         goto out;
5976                 r = 0;
5977                 break;
5978         }
5979         case KVM_SET_PIT: {
5980                 r = -EFAULT;
5981                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5982                         goto out;
5983                 mutex_lock(&kvm->lock);
5984                 r = -ENXIO;
5985                 if (!kvm->arch.vpit)
5986                         goto set_pit_out;
5987                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5988 set_pit_out:
5989                 mutex_unlock(&kvm->lock);
5990                 break;
5991         }
5992         case KVM_GET_PIT2: {
5993                 r = -ENXIO;
5994                 if (!kvm->arch.vpit)
5995                         goto out;
5996                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5997                 if (r)
5998                         goto out;
5999                 r = -EFAULT;
6000                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6001                         goto out;
6002                 r = 0;
6003                 break;
6004         }
6005         case KVM_SET_PIT2: {
6006                 r = -EFAULT;
6007                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6008                         goto out;
6009                 mutex_lock(&kvm->lock);
6010                 r = -ENXIO;
6011                 if (!kvm->arch.vpit)
6012                         goto set_pit2_out;
6013                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6014 set_pit2_out:
6015                 mutex_unlock(&kvm->lock);
6016                 break;
6017         }
6018         case KVM_REINJECT_CONTROL: {
6019                 struct kvm_reinject_control control;
6020                 r =  -EFAULT;
6021                 if (copy_from_user(&control, argp, sizeof(control)))
6022                         goto out;
6023                 r = -ENXIO;
6024                 if (!kvm->arch.vpit)
6025                         goto out;
6026                 r = kvm_vm_ioctl_reinject(kvm, &control);
6027                 break;
6028         }
6029         case KVM_SET_BOOT_CPU_ID:
6030                 r = 0;
6031                 mutex_lock(&kvm->lock);
6032                 if (kvm->created_vcpus)
6033                         r = -EBUSY;
6034                 else
6035                         kvm->arch.bsp_vcpu_id = arg;
6036                 mutex_unlock(&kvm->lock);
6037                 break;
6038 #ifdef CONFIG_KVM_XEN
6039         case KVM_XEN_HVM_CONFIG: {
6040                 struct kvm_xen_hvm_config xhc;
6041                 r = -EFAULT;
6042                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6043                         goto out;
6044                 r = kvm_xen_hvm_config(kvm, &xhc);
6045                 break;
6046         }
6047         case KVM_XEN_HVM_GET_ATTR: {
6048                 struct kvm_xen_hvm_attr xha;
6049
6050                 r = -EFAULT;
6051                 if (copy_from_user(&xha, argp, sizeof(xha)))
6052                         goto out;
6053                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6054                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6055                         r = -EFAULT;
6056                 break;
6057         }
6058         case KVM_XEN_HVM_SET_ATTR: {
6059                 struct kvm_xen_hvm_attr xha;
6060
6061                 r = -EFAULT;
6062                 if (copy_from_user(&xha, argp, sizeof(xha)))
6063                         goto out;
6064                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6065                 break;
6066         }
6067 #endif
6068         case KVM_SET_CLOCK: {
6069                 struct kvm_arch *ka = &kvm->arch;
6070                 struct kvm_clock_data user_ns;
6071                 u64 now_ns;
6072
6073                 r = -EFAULT;
6074                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6075                         goto out;
6076
6077                 r = -EINVAL;
6078                 if (user_ns.flags)
6079                         goto out;
6080
6081                 r = 0;
6082                 /*
6083                  * TODO: userspace has to take care of races with VCPU_RUN, so
6084                  * kvm_gen_update_masterclock() can be cut down to locked
6085                  * pvclock_update_vm_gtod_copy().
6086                  */
6087                 kvm_gen_update_masterclock(kvm);
6088
6089                 /*
6090                  * This pairs with kvm_guest_time_update(): when masterclock is
6091                  * in use, we use master_kernel_ns + kvmclock_offset to set
6092                  * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6093                  * is slightly ahead) here we risk going negative on unsigned
6094                  * 'system_time' when 'user_ns.clock' is very small.
6095                  */
6096                 spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6097                 if (kvm->arch.use_master_clock)
6098                         now_ns = ka->master_kernel_ns;
6099                 else
6100                         now_ns = get_kvmclock_base_ns();
6101                 ka->kvmclock_offset = user_ns.clock - now_ns;
6102                 spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6103
6104                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6105                 break;
6106         }
6107         case KVM_GET_CLOCK: {
6108                 struct kvm_clock_data user_ns;
6109                 u64 now_ns;
6110
6111                 now_ns = get_kvmclock_ns(kvm);
6112                 user_ns.clock = now_ns;
6113                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6114                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6115
6116                 r = -EFAULT;
6117                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6118                         goto out;
6119                 r = 0;
6120                 break;
6121         }
6122         case KVM_MEMORY_ENCRYPT_OP: {
6123                 r = -ENOTTY;
6124                 if (kvm_x86_ops.mem_enc_op)
6125                         r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6126                 break;
6127         }
6128         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6129                 struct kvm_enc_region region;
6130
6131                 r = -EFAULT;
6132                 if (copy_from_user(&region, argp, sizeof(region)))
6133                         goto out;
6134
6135                 r = -ENOTTY;
6136                 if (kvm_x86_ops.mem_enc_reg_region)
6137                         r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6138                 break;
6139         }
6140         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6141                 struct kvm_enc_region region;
6142
6143                 r = -EFAULT;
6144                 if (copy_from_user(&region, argp, sizeof(region)))
6145                         goto out;
6146
6147                 r = -ENOTTY;
6148                 if (kvm_x86_ops.mem_enc_unreg_region)
6149                         r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6150                 break;
6151         }
6152         case KVM_HYPERV_EVENTFD: {
6153                 struct kvm_hyperv_eventfd hvevfd;
6154
6155                 r = -EFAULT;
6156                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6157                         goto out;
6158                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6159                 break;
6160         }
6161         case KVM_SET_PMU_EVENT_FILTER:
6162                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6163                 break;
6164         case KVM_X86_SET_MSR_FILTER:
6165                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6166                 break;
6167         default:
6168                 r = -ENOTTY;
6169         }
6170 out:
6171         return r;
6172 }
6173
6174 static void kvm_init_msr_list(void)
6175 {
6176         struct x86_pmu_capability x86_pmu;
6177         u32 dummy[2];
6178         unsigned i;
6179
6180         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6181                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6182
6183         perf_get_x86_pmu_capability(&x86_pmu);
6184
6185         num_msrs_to_save = 0;
6186         num_emulated_msrs = 0;
6187         num_msr_based_features = 0;
6188
6189         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6190                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6191                         continue;
6192
6193                 /*
6194                  * Even MSRs that are valid in the host may not be exposed
6195                  * to the guests in some cases.
6196                  */
6197                 switch (msrs_to_save_all[i]) {
6198                 case MSR_IA32_BNDCFGS:
6199                         if (!kvm_mpx_supported())
6200                                 continue;
6201                         break;
6202                 case MSR_TSC_AUX:
6203                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6204                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6205                                 continue;
6206                         break;
6207                 case MSR_IA32_UMWAIT_CONTROL:
6208                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6209                                 continue;
6210                         break;
6211                 case MSR_IA32_RTIT_CTL:
6212                 case MSR_IA32_RTIT_STATUS:
6213                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6214                                 continue;
6215                         break;
6216                 case MSR_IA32_RTIT_CR3_MATCH:
6217                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6218                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6219                                 continue;
6220                         break;
6221                 case MSR_IA32_RTIT_OUTPUT_BASE:
6222                 case MSR_IA32_RTIT_OUTPUT_MASK:
6223                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6224                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6225                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6226                                 continue;
6227                         break;
6228                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6229                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6230                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6231                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6232                                 continue;
6233                         break;
6234                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6235                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6236                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6237                                 continue;
6238                         break;
6239                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6240                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6241                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6242                                 continue;
6243                         break;
6244                 default:
6245                         break;
6246                 }
6247
6248                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6249         }
6250
6251         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6252                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6253                         continue;
6254
6255                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6256         }
6257
6258         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6259                 struct kvm_msr_entry msr;
6260
6261                 msr.index = msr_based_features_all[i];
6262                 if (kvm_get_msr_feature(&msr))
6263                         continue;
6264
6265                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6266         }
6267 }
6268
6269 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6270                            const void *v)
6271 {
6272         int handled = 0;
6273         int n;
6274
6275         do {
6276                 n = min(len, 8);
6277                 if (!(lapic_in_kernel(vcpu) &&
6278                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6279                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6280                         break;
6281                 handled += n;
6282                 addr += n;
6283                 len -= n;
6284                 v += n;
6285         } while (len);
6286
6287         return handled;
6288 }
6289
6290 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6291 {
6292         int handled = 0;
6293         int n;
6294
6295         do {
6296                 n = min(len, 8);
6297                 if (!(lapic_in_kernel(vcpu) &&
6298                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6299                                          addr, n, v))
6300                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6301                         break;
6302                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6303                 handled += n;
6304                 addr += n;
6305                 len -= n;
6306                 v += n;
6307         } while (len);
6308
6309         return handled;
6310 }
6311
6312 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6313                         struct kvm_segment *var, int seg)
6314 {
6315         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6316 }
6317
6318 void kvm_get_segment(struct kvm_vcpu *vcpu,
6319                      struct kvm_segment *var, int seg)
6320 {
6321         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6322 }
6323
6324 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6325                            struct x86_exception *exception)
6326 {
6327         gpa_t t_gpa;
6328
6329         BUG_ON(!mmu_is_nested(vcpu));
6330
6331         /* NPT walks are always user-walks */
6332         access |= PFERR_USER_MASK;
6333         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6334
6335         return t_gpa;
6336 }
6337
6338 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6339                               struct x86_exception *exception)
6340 {
6341         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6342         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6343 }
6344 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6345
6346  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6347                                 struct x86_exception *exception)
6348 {
6349         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6350         access |= PFERR_FETCH_MASK;
6351         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6352 }
6353
6354 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6355                                struct x86_exception *exception)
6356 {
6357         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6358         access |= PFERR_WRITE_MASK;
6359         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6360 }
6361 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6362
6363 /* uses this to access any guest's mapped memory without checking CPL */
6364 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6365                                 struct x86_exception *exception)
6366 {
6367         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6368 }
6369
6370 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6371                                       struct kvm_vcpu *vcpu, u32 access,
6372                                       struct x86_exception *exception)
6373 {
6374         void *data = val;
6375         int r = X86EMUL_CONTINUE;
6376
6377         while (bytes) {
6378                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6379                                                             exception);
6380                 unsigned offset = addr & (PAGE_SIZE-1);
6381                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6382                 int ret;
6383
6384                 if (gpa == UNMAPPED_GVA)
6385                         return X86EMUL_PROPAGATE_FAULT;
6386                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6387                                                offset, toread);
6388                 if (ret < 0) {
6389                         r = X86EMUL_IO_NEEDED;
6390                         goto out;
6391                 }
6392
6393                 bytes -= toread;
6394                 data += toread;
6395                 addr += toread;
6396         }
6397 out:
6398         return r;
6399 }
6400
6401 /* used for instruction fetching */
6402 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6403                                 gva_t addr, void *val, unsigned int bytes,
6404                                 struct x86_exception *exception)
6405 {
6406         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6407         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6408         unsigned offset;
6409         int ret;
6410
6411         /* Inline kvm_read_guest_virt_helper for speed.  */
6412         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6413                                                     exception);
6414         if (unlikely(gpa == UNMAPPED_GVA))
6415                 return X86EMUL_PROPAGATE_FAULT;
6416
6417         offset = addr & (PAGE_SIZE-1);
6418         if (WARN_ON(offset + bytes > PAGE_SIZE))
6419                 bytes = (unsigned)PAGE_SIZE - offset;
6420         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6421                                        offset, bytes);
6422         if (unlikely(ret < 0))
6423                 return X86EMUL_IO_NEEDED;
6424
6425         return X86EMUL_CONTINUE;
6426 }
6427
6428 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6429                                gva_t addr, void *val, unsigned int bytes,
6430                                struct x86_exception *exception)
6431 {
6432         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6433
6434         /*
6435          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6436          * is returned, but our callers are not ready for that and they blindly
6437          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6438          * uninitialized kernel stack memory into cr2 and error code.
6439          */
6440         memset(exception, 0, sizeof(*exception));
6441         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6442                                           exception);
6443 }
6444 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6445
6446 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6447                              gva_t addr, void *val, unsigned int bytes,
6448                              struct x86_exception *exception, bool system)
6449 {
6450         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6451         u32 access = 0;
6452
6453         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6454                 access |= PFERR_USER_MASK;
6455
6456         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6457 }
6458
6459 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6460                 unsigned long addr, void *val, unsigned int bytes)
6461 {
6462         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6463         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6464
6465         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6466 }
6467
6468 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6469                                       struct kvm_vcpu *vcpu, u32 access,
6470                                       struct x86_exception *exception)
6471 {
6472         void *data = val;
6473         int r = X86EMUL_CONTINUE;
6474
6475         while (bytes) {
6476                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6477                                                              access,
6478                                                              exception);
6479                 unsigned offset = addr & (PAGE_SIZE-1);
6480                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6481                 int ret;
6482
6483                 if (gpa == UNMAPPED_GVA)
6484                         return X86EMUL_PROPAGATE_FAULT;
6485                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6486                 if (ret < 0) {
6487                         r = X86EMUL_IO_NEEDED;
6488                         goto out;
6489                 }
6490
6491                 bytes -= towrite;
6492                 data += towrite;
6493                 addr += towrite;
6494         }
6495 out:
6496         return r;
6497 }
6498
6499 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6500                               unsigned int bytes, struct x86_exception *exception,
6501                               bool system)
6502 {
6503         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6504         u32 access = PFERR_WRITE_MASK;
6505
6506         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6507                 access |= PFERR_USER_MASK;
6508
6509         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6510                                            access, exception);
6511 }
6512
6513 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6514                                 unsigned int bytes, struct x86_exception *exception)
6515 {
6516         /* kvm_write_guest_virt_system can pull in tons of pages. */
6517         vcpu->arch.l1tf_flush_l1d = true;
6518
6519         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6520                                            PFERR_WRITE_MASK, exception);
6521 }
6522 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6523
6524 int handle_ud(struct kvm_vcpu *vcpu)
6525 {
6526         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6527         int emul_type = EMULTYPE_TRAP_UD;
6528         char sig[5]; /* ud2; .ascii "kvm" */
6529         struct x86_exception e;
6530
6531         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6532                 return 1;
6533
6534         if (force_emulation_prefix &&
6535             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6536                                 sig, sizeof(sig), &e) == 0 &&
6537             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6538                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6539                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6540         }
6541
6542         return kvm_emulate_instruction(vcpu, emul_type);
6543 }
6544 EXPORT_SYMBOL_GPL(handle_ud);
6545
6546 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6547                             gpa_t gpa, bool write)
6548 {
6549         /* For APIC access vmexit */
6550         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6551                 return 1;
6552
6553         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6554                 trace_vcpu_match_mmio(gva, gpa, write, true);
6555                 return 1;
6556         }
6557
6558         return 0;
6559 }
6560
6561 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6562                                 gpa_t *gpa, struct x86_exception *exception,
6563                                 bool write)
6564 {
6565         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6566                 | (write ? PFERR_WRITE_MASK : 0);
6567
6568         /*
6569          * currently PKRU is only applied to ept enabled guest so
6570          * there is no pkey in EPT page table for L1 guest or EPT
6571          * shadow page table for L2 guest.
6572          */
6573         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6574             !permission_fault(vcpu, vcpu->arch.walk_mmu,
6575                               vcpu->arch.mmio_access, 0, access))) {
6576                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6577                                         (gva & (PAGE_SIZE - 1));
6578                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6579                 return 1;
6580         }
6581
6582         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6583
6584         if (*gpa == UNMAPPED_GVA)
6585                 return -1;
6586
6587         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6588 }
6589
6590 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6591                         const void *val, int bytes)
6592 {
6593         int ret;
6594
6595         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6596         if (ret < 0)
6597                 return 0;
6598         kvm_page_track_write(vcpu, gpa, val, bytes);
6599         return 1;
6600 }
6601
6602 struct read_write_emulator_ops {
6603         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6604                                   int bytes);
6605         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6606                                   void *val, int bytes);
6607         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6608                                int bytes, void *val);
6609         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6610                                     void *val, int bytes);
6611         bool write;
6612 };
6613
6614 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6615 {
6616         if (vcpu->mmio_read_completed) {
6617                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6618                                vcpu->mmio_fragments[0].gpa, val);
6619                 vcpu->mmio_read_completed = 0;
6620                 return 1;
6621         }
6622
6623         return 0;
6624 }
6625
6626 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6627                         void *val, int bytes)
6628 {
6629         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6630 }
6631
6632 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6633                          void *val, int bytes)
6634 {
6635         return emulator_write_phys(vcpu, gpa, val, bytes);
6636 }
6637
6638 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6639 {
6640         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6641         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6642 }
6643
6644 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6645                           void *val, int bytes)
6646 {
6647         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6648         return X86EMUL_IO_NEEDED;
6649 }
6650
6651 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6652                            void *val, int bytes)
6653 {
6654         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6655
6656         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6657         return X86EMUL_CONTINUE;
6658 }
6659
6660 static const struct read_write_emulator_ops read_emultor = {
6661         .read_write_prepare = read_prepare,
6662         .read_write_emulate = read_emulate,
6663         .read_write_mmio = vcpu_mmio_read,
6664         .read_write_exit_mmio = read_exit_mmio,
6665 };
6666
6667 static const struct read_write_emulator_ops write_emultor = {
6668         .read_write_emulate = write_emulate,
6669         .read_write_mmio = write_mmio,
6670         .read_write_exit_mmio = write_exit_mmio,
6671         .write = true,
6672 };
6673
6674 static int emulator_read_write_onepage(unsigned long addr, void *val,
6675                                        unsigned int bytes,
6676                                        struct x86_exception *exception,
6677                                        struct kvm_vcpu *vcpu,
6678                                        const struct read_write_emulator_ops *ops)
6679 {
6680         gpa_t gpa;
6681         int handled, ret;
6682         bool write = ops->write;
6683         struct kvm_mmio_fragment *frag;
6684         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6685
6686         /*
6687          * If the exit was due to a NPF we may already have a GPA.
6688          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6689          * Note, this cannot be used on string operations since string
6690          * operation using rep will only have the initial GPA from the NPF
6691          * occurred.
6692          */
6693         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6694             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6695                 gpa = ctxt->gpa_val;
6696                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6697         } else {
6698                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6699                 if (ret < 0)
6700                         return X86EMUL_PROPAGATE_FAULT;
6701         }
6702
6703         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6704                 return X86EMUL_CONTINUE;
6705
6706         /*
6707          * Is this MMIO handled locally?
6708          */
6709         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6710         if (handled == bytes)
6711                 return X86EMUL_CONTINUE;
6712
6713         gpa += handled;
6714         bytes -= handled;
6715         val += handled;
6716
6717         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6718         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6719         frag->gpa = gpa;
6720         frag->data = val;
6721         frag->len = bytes;
6722         return X86EMUL_CONTINUE;
6723 }
6724
6725 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6726                         unsigned long addr,
6727                         void *val, unsigned int bytes,
6728                         struct x86_exception *exception,
6729                         const struct read_write_emulator_ops *ops)
6730 {
6731         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6732         gpa_t gpa;
6733         int rc;
6734
6735         if (ops->read_write_prepare &&
6736                   ops->read_write_prepare(vcpu, val, bytes))
6737                 return X86EMUL_CONTINUE;
6738
6739         vcpu->mmio_nr_fragments = 0;
6740
6741         /* Crossing a page boundary? */
6742         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6743                 int now;
6744
6745                 now = -addr & ~PAGE_MASK;
6746                 rc = emulator_read_write_onepage(addr, val, now, exception,
6747                                                  vcpu, ops);
6748
6749                 if (rc != X86EMUL_CONTINUE)
6750                         return rc;
6751                 addr += now;
6752                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6753                         addr = (u32)addr;
6754                 val += now;
6755                 bytes -= now;
6756         }
6757
6758         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6759                                          vcpu, ops);
6760         if (rc != X86EMUL_CONTINUE)
6761                 return rc;
6762
6763         if (!vcpu->mmio_nr_fragments)
6764                 return rc;
6765
6766         gpa = vcpu->mmio_fragments[0].gpa;
6767
6768         vcpu->mmio_needed = 1;
6769         vcpu->mmio_cur_fragment = 0;
6770
6771         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6772         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6773         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6774         vcpu->run->mmio.phys_addr = gpa;
6775
6776         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6777 }
6778
6779 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6780                                   unsigned long addr,
6781                                   void *val,
6782                                   unsigned int bytes,
6783                                   struct x86_exception *exception)
6784 {
6785         return emulator_read_write(ctxt, addr, val, bytes,
6786                                    exception, &read_emultor);
6787 }
6788
6789 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6790                             unsigned long addr,
6791                             const void *val,
6792                             unsigned int bytes,
6793                             struct x86_exception *exception)
6794 {
6795         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6796                                    exception, &write_emultor);
6797 }
6798
6799 #define CMPXCHG_TYPE(t, ptr, old, new) \
6800         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6801
6802 #ifdef CONFIG_X86_64
6803 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6804 #else
6805 #  define CMPXCHG64(ptr, old, new) \
6806         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6807 #endif
6808
6809 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6810                                      unsigned long addr,
6811                                      const void *old,
6812                                      const void *new,
6813                                      unsigned int bytes,
6814                                      struct x86_exception *exception)
6815 {
6816         struct kvm_host_map map;
6817         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6818         u64 page_line_mask;
6819         gpa_t gpa;
6820         char *kaddr;
6821         bool exchanged;
6822
6823         /* guests cmpxchg8b have to be emulated atomically */
6824         if (bytes > 8 || (bytes & (bytes - 1)))
6825                 goto emul_write;
6826
6827         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6828
6829         if (gpa == UNMAPPED_GVA ||
6830             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6831                 goto emul_write;
6832
6833         /*
6834          * Emulate the atomic as a straight write to avoid #AC if SLD is
6835          * enabled in the host and the access splits a cache line.
6836          */
6837         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6838                 page_line_mask = ~(cache_line_size() - 1);
6839         else
6840                 page_line_mask = PAGE_MASK;
6841
6842         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6843                 goto emul_write;
6844
6845         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6846                 goto emul_write;
6847
6848         kaddr = map.hva + offset_in_page(gpa);
6849
6850         switch (bytes) {
6851         case 1:
6852                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6853                 break;
6854         case 2:
6855                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6856                 break;
6857         case 4:
6858                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6859                 break;
6860         case 8:
6861                 exchanged = CMPXCHG64(kaddr, old, new);
6862                 break;
6863         default:
6864                 BUG();
6865         }
6866
6867         kvm_vcpu_unmap(vcpu, &map, true);
6868
6869         if (!exchanged)
6870                 return X86EMUL_CMPXCHG_FAILED;
6871
6872         kvm_page_track_write(vcpu, gpa, new, bytes);
6873
6874         return X86EMUL_CONTINUE;
6875
6876 emul_write:
6877         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6878
6879         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6880 }
6881
6882 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6883 {
6884         int r = 0, i;
6885
6886         for (i = 0; i < vcpu->arch.pio.count; i++) {
6887                 if (vcpu->arch.pio.in)
6888                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6889                                             vcpu->arch.pio.size, pd);
6890                 else
6891                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6892                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6893                                              pd);
6894                 if (r)
6895                         break;
6896                 pd += vcpu->arch.pio.size;
6897         }
6898         return r;
6899 }
6900
6901 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6902                                unsigned short port, void *val,
6903                                unsigned int count, bool in)
6904 {
6905         vcpu->arch.pio.port = port;
6906         vcpu->arch.pio.in = in;
6907         vcpu->arch.pio.count  = count;
6908         vcpu->arch.pio.size = size;
6909
6910         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6911                 vcpu->arch.pio.count = 0;
6912                 return 1;
6913         }
6914
6915         vcpu->run->exit_reason = KVM_EXIT_IO;
6916         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6917         vcpu->run->io.size = size;
6918         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6919         vcpu->run->io.count = count;
6920         vcpu->run->io.port = port;
6921
6922         return 0;
6923 }
6924
6925 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6926                            unsigned short port, void *val, unsigned int count)
6927 {
6928         int ret;
6929
6930         if (vcpu->arch.pio.count)
6931                 goto data_avail;
6932
6933         memset(vcpu->arch.pio_data, 0, size * count);
6934
6935         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6936         if (ret) {
6937 data_avail:
6938                 memcpy(val, vcpu->arch.pio_data, size * count);
6939                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6940                 vcpu->arch.pio.count = 0;
6941                 return 1;
6942         }
6943
6944         return 0;
6945 }
6946
6947 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6948                                     int size, unsigned short port, void *val,
6949                                     unsigned int count)
6950 {
6951         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6952
6953 }
6954
6955 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6956                             unsigned short port, const void *val,
6957                             unsigned int count)
6958 {
6959         memcpy(vcpu->arch.pio_data, val, size * count);
6960         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6961         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6962 }
6963
6964 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6965                                      int size, unsigned short port,
6966                                      const void *val, unsigned int count)
6967 {
6968         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6969 }
6970
6971 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6972 {
6973         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6974 }
6975
6976 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6977 {
6978         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6979 }
6980
6981 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6982 {
6983         if (!need_emulate_wbinvd(vcpu))
6984                 return X86EMUL_CONTINUE;
6985
6986         if (static_call(kvm_x86_has_wbinvd_exit)()) {
6987                 int cpu = get_cpu();
6988
6989                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6990                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6991                                 wbinvd_ipi, NULL, 1);
6992                 put_cpu();
6993                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6994         } else
6995                 wbinvd();
6996         return X86EMUL_CONTINUE;
6997 }
6998
6999 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7000 {
7001         kvm_emulate_wbinvd_noskip(vcpu);
7002         return kvm_skip_emulated_instruction(vcpu);
7003 }
7004 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7005
7006
7007
7008 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7009 {
7010         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7011 }
7012
7013 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7014                             unsigned long *dest)
7015 {
7016         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7017 }
7018
7019 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7020                            unsigned long value)
7021 {
7022
7023         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7024 }
7025
7026 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7027 {
7028         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7029 }
7030
7031 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7032 {
7033         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7034         unsigned long value;
7035
7036         switch (cr) {
7037         case 0:
7038                 value = kvm_read_cr0(vcpu);
7039                 break;
7040         case 2:
7041                 value = vcpu->arch.cr2;
7042                 break;
7043         case 3:
7044                 value = kvm_read_cr3(vcpu);
7045                 break;
7046         case 4:
7047                 value = kvm_read_cr4(vcpu);
7048                 break;
7049         case 8:
7050                 value = kvm_get_cr8(vcpu);
7051                 break;
7052         default:
7053                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7054                 return 0;
7055         }
7056
7057         return value;
7058 }
7059
7060 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7061 {
7062         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7063         int res = 0;
7064
7065         switch (cr) {
7066         case 0:
7067                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7068                 break;
7069         case 2:
7070                 vcpu->arch.cr2 = val;
7071                 break;
7072         case 3:
7073                 res = kvm_set_cr3(vcpu, val);
7074                 break;
7075         case 4:
7076                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7077                 break;
7078         case 8:
7079                 res = kvm_set_cr8(vcpu, val);
7080                 break;
7081         default:
7082                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7083                 res = -1;
7084         }
7085
7086         return res;
7087 }
7088
7089 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7090 {
7091         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7092 }
7093
7094 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7095 {
7096         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7097 }
7098
7099 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7100 {
7101         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7102 }
7103
7104 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7105 {
7106         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7107 }
7108
7109 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7110 {
7111         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7112 }
7113
7114 static unsigned long emulator_get_cached_segment_base(
7115         struct x86_emulate_ctxt *ctxt, int seg)
7116 {
7117         return get_segment_base(emul_to_vcpu(ctxt), seg);
7118 }
7119
7120 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7121                                  struct desc_struct *desc, u32 *base3,
7122                                  int seg)
7123 {
7124         struct kvm_segment var;
7125
7126         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7127         *selector = var.selector;
7128
7129         if (var.unusable) {
7130                 memset(desc, 0, sizeof(*desc));
7131                 if (base3)
7132                         *base3 = 0;
7133                 return false;
7134         }
7135
7136         if (var.g)
7137                 var.limit >>= 12;
7138         set_desc_limit(desc, var.limit);
7139         set_desc_base(desc, (unsigned long)var.base);
7140 #ifdef CONFIG_X86_64
7141         if (base3)
7142                 *base3 = var.base >> 32;
7143 #endif
7144         desc->type = var.type;
7145         desc->s = var.s;
7146         desc->dpl = var.dpl;
7147         desc->p = var.present;
7148         desc->avl = var.avl;
7149         desc->l = var.l;
7150         desc->d = var.db;
7151         desc->g = var.g;
7152
7153         return true;
7154 }
7155
7156 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7157                                  struct desc_struct *desc, u32 base3,
7158                                  int seg)
7159 {
7160         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7161         struct kvm_segment var;
7162
7163         var.selector = selector;
7164         var.base = get_desc_base(desc);
7165 #ifdef CONFIG_X86_64
7166         var.base |= ((u64)base3) << 32;
7167 #endif
7168         var.limit = get_desc_limit(desc);
7169         if (desc->g)
7170                 var.limit = (var.limit << 12) | 0xfff;
7171         var.type = desc->type;
7172         var.dpl = desc->dpl;
7173         var.db = desc->d;
7174         var.s = desc->s;
7175         var.l = desc->l;
7176         var.g = desc->g;
7177         var.avl = desc->avl;
7178         var.present = desc->p;
7179         var.unusable = !var.present;
7180         var.padding = 0;
7181
7182         kvm_set_segment(vcpu, &var, seg);
7183         return;
7184 }
7185
7186 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7187                             u32 msr_index, u64 *pdata)
7188 {
7189         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7190         int r;
7191
7192         r = kvm_get_msr(vcpu, msr_index, pdata);
7193
7194         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7195                 /* Bounce to user space */
7196                 return X86EMUL_IO_NEEDED;
7197         }
7198
7199         return r;
7200 }
7201
7202 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7203                             u32 msr_index, u64 data)
7204 {
7205         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7206         int r;
7207
7208         r = kvm_set_msr(vcpu, msr_index, data);
7209
7210         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7211                 /* Bounce to user space */
7212                 return X86EMUL_IO_NEEDED;
7213         }
7214
7215         return r;
7216 }
7217
7218 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7219 {
7220         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7221
7222         return vcpu->arch.smbase;
7223 }
7224
7225 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7226 {
7227         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7228
7229         vcpu->arch.smbase = smbase;
7230 }
7231
7232 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7233                               u32 pmc)
7234 {
7235         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7236 }
7237
7238 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7239                              u32 pmc, u64 *pdata)
7240 {
7241         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7242 }
7243
7244 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7245 {
7246         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7247 }
7248
7249 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7250                               struct x86_instruction_info *info,
7251                               enum x86_intercept_stage stage)
7252 {
7253         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7254                                             &ctxt->exception);
7255 }
7256
7257 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7258                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7259                               bool exact_only)
7260 {
7261         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7262 }
7263
7264 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7265 {
7266         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7267 }
7268
7269 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7270 {
7271         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7272 }
7273
7274 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7275 {
7276         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7277 }
7278
7279 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7280 {
7281         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7282 }
7283
7284 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7285 {
7286         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7287 }
7288
7289 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7290 {
7291         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7292 }
7293
7294 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7295 {
7296         return emul_to_vcpu(ctxt)->arch.hflags;
7297 }
7298
7299 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7300 {
7301         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7302
7303         kvm_smm_changed(vcpu, false);
7304 }
7305
7306 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7307                                   const char *smstate)
7308 {
7309         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7310 }
7311
7312 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7313 {
7314         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7315 }
7316
7317 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7318 {
7319         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7320 }
7321
7322 static const struct x86_emulate_ops emulate_ops = {
7323         .read_gpr            = emulator_read_gpr,
7324         .write_gpr           = emulator_write_gpr,
7325         .read_std            = emulator_read_std,
7326         .write_std           = emulator_write_std,
7327         .read_phys           = kvm_read_guest_phys_system,
7328         .fetch               = kvm_fetch_guest_virt,
7329         .read_emulated       = emulator_read_emulated,
7330         .write_emulated      = emulator_write_emulated,
7331         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7332         .invlpg              = emulator_invlpg,
7333         .pio_in_emulated     = emulator_pio_in_emulated,
7334         .pio_out_emulated    = emulator_pio_out_emulated,
7335         .get_segment         = emulator_get_segment,
7336         .set_segment         = emulator_set_segment,
7337         .get_cached_segment_base = emulator_get_cached_segment_base,
7338         .get_gdt             = emulator_get_gdt,
7339         .get_idt             = emulator_get_idt,
7340         .set_gdt             = emulator_set_gdt,
7341         .set_idt             = emulator_set_idt,
7342         .get_cr              = emulator_get_cr,
7343         .set_cr              = emulator_set_cr,
7344         .cpl                 = emulator_get_cpl,
7345         .get_dr              = emulator_get_dr,
7346         .set_dr              = emulator_set_dr,
7347         .get_smbase          = emulator_get_smbase,
7348         .set_smbase          = emulator_set_smbase,
7349         .set_msr             = emulator_set_msr,
7350         .get_msr             = emulator_get_msr,
7351         .check_pmc           = emulator_check_pmc,
7352         .read_pmc            = emulator_read_pmc,
7353         .halt                = emulator_halt,
7354         .wbinvd              = emulator_wbinvd,
7355         .fix_hypercall       = emulator_fix_hypercall,
7356         .intercept           = emulator_intercept,
7357         .get_cpuid           = emulator_get_cpuid,
7358         .guest_has_long_mode = emulator_guest_has_long_mode,
7359         .guest_has_movbe     = emulator_guest_has_movbe,
7360         .guest_has_fxsr      = emulator_guest_has_fxsr,
7361         .set_nmi_mask        = emulator_set_nmi_mask,
7362         .get_hflags          = emulator_get_hflags,
7363         .exiting_smm         = emulator_exiting_smm,
7364         .leave_smm           = emulator_leave_smm,
7365         .triple_fault        = emulator_triple_fault,
7366         .set_xcr             = emulator_set_xcr,
7367 };
7368
7369 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7370 {
7371         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7372         /*
7373          * an sti; sti; sequence only disable interrupts for the first
7374          * instruction. So, if the last instruction, be it emulated or
7375          * not, left the system with the INT_STI flag enabled, it
7376          * means that the last instruction is an sti. We should not
7377          * leave the flag on in this case. The same goes for mov ss
7378          */
7379         if (int_shadow & mask)
7380                 mask = 0;
7381         if (unlikely(int_shadow || mask)) {
7382                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7383                 if (!mask)
7384                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7385         }
7386 }
7387
7388 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7389 {
7390         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7391         if (ctxt->exception.vector == PF_VECTOR)
7392                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7393
7394         if (ctxt->exception.error_code_valid)
7395                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7396                                       ctxt->exception.error_code);
7397         else
7398                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7399         return false;
7400 }
7401
7402 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7403 {
7404         struct x86_emulate_ctxt *ctxt;
7405
7406         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7407         if (!ctxt) {
7408                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7409                 return NULL;
7410         }
7411
7412         ctxt->vcpu = vcpu;
7413         ctxt->ops = &emulate_ops;
7414         vcpu->arch.emulate_ctxt = ctxt;
7415
7416         return ctxt;
7417 }
7418
7419 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7420 {
7421         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7422         int cs_db, cs_l;
7423
7424         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7425
7426         ctxt->gpa_available = false;
7427         ctxt->eflags = kvm_get_rflags(vcpu);
7428         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7429
7430         ctxt->eip = kvm_rip_read(vcpu);
7431         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7432                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7433                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7434                      cs_db                              ? X86EMUL_MODE_PROT32 :
7435                                                           X86EMUL_MODE_PROT16;
7436         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7437         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7438         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7439
7440         ctxt->interruptibility = 0;
7441         ctxt->have_exception = false;
7442         ctxt->exception.vector = -1;
7443         ctxt->perm_ok = false;
7444
7445         init_decode_cache(ctxt);
7446         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7447 }
7448
7449 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7450 {
7451         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7452         int ret;
7453
7454         init_emulate_ctxt(vcpu);
7455
7456         ctxt->op_bytes = 2;
7457         ctxt->ad_bytes = 2;
7458         ctxt->_eip = ctxt->eip + inc_eip;
7459         ret = emulate_int_real(ctxt, irq);
7460
7461         if (ret != X86EMUL_CONTINUE) {
7462                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7463         } else {
7464                 ctxt->eip = ctxt->_eip;
7465                 kvm_rip_write(vcpu, ctxt->eip);
7466                 kvm_set_rflags(vcpu, ctxt->eflags);
7467         }
7468 }
7469 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7470
7471 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7472 {
7473         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7474         u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7475         struct kvm_run *run = vcpu->run;
7476
7477         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7478         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7479         run->emulation_failure.ndata = 0;
7480         run->emulation_failure.flags = 0;
7481
7482         if (insn_size) {
7483                 run->emulation_failure.ndata = 3;
7484                 run->emulation_failure.flags |=
7485                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7486                 run->emulation_failure.insn_size = insn_size;
7487                 memset(run->emulation_failure.insn_bytes, 0x90,
7488                        sizeof(run->emulation_failure.insn_bytes));
7489                 memcpy(run->emulation_failure.insn_bytes,
7490                        ctxt->fetch.data, insn_size);
7491         }
7492 }
7493
7494 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7495 {
7496         struct kvm *kvm = vcpu->kvm;
7497
7498         ++vcpu->stat.insn_emulation_fail;
7499         trace_kvm_emulate_insn_failed(vcpu);
7500
7501         if (emulation_type & EMULTYPE_VMWARE_GP) {
7502                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7503                 return 1;
7504         }
7505
7506         if (kvm->arch.exit_on_emulation_error ||
7507             (emulation_type & EMULTYPE_SKIP)) {
7508                 prepare_emulation_failure_exit(vcpu);
7509                 return 0;
7510         }
7511
7512         kvm_queue_exception(vcpu, UD_VECTOR);
7513
7514         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7515                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7516                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7517                 vcpu->run->internal.ndata = 0;
7518                 return 0;
7519         }
7520
7521         return 1;
7522 }
7523
7524 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7525                                   bool write_fault_to_shadow_pgtable,
7526                                   int emulation_type)
7527 {
7528         gpa_t gpa = cr2_or_gpa;
7529         kvm_pfn_t pfn;
7530
7531         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7532                 return false;
7533
7534         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7535             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7536                 return false;
7537
7538         if (!vcpu->arch.mmu->direct_map) {
7539                 /*
7540                  * Write permission should be allowed since only
7541                  * write access need to be emulated.
7542                  */
7543                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7544
7545                 /*
7546                  * If the mapping is invalid in guest, let cpu retry
7547                  * it to generate fault.
7548                  */
7549                 if (gpa == UNMAPPED_GVA)
7550                         return true;
7551         }
7552
7553         /*
7554          * Do not retry the unhandleable instruction if it faults on the
7555          * readonly host memory, otherwise it will goto a infinite loop:
7556          * retry instruction -> write #PF -> emulation fail -> retry
7557          * instruction -> ...
7558          */
7559         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7560
7561         /*
7562          * If the instruction failed on the error pfn, it can not be fixed,
7563          * report the error to userspace.
7564          */
7565         if (is_error_noslot_pfn(pfn))
7566                 return false;
7567
7568         kvm_release_pfn_clean(pfn);
7569
7570         /* The instructions are well-emulated on direct mmu. */
7571         if (vcpu->arch.mmu->direct_map) {
7572                 unsigned int indirect_shadow_pages;
7573
7574                 write_lock(&vcpu->kvm->mmu_lock);
7575                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7576                 write_unlock(&vcpu->kvm->mmu_lock);
7577
7578                 if (indirect_shadow_pages)
7579                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7580
7581                 return true;
7582         }
7583
7584         /*
7585          * if emulation was due to access to shadowed page table
7586          * and it failed try to unshadow page and re-enter the
7587          * guest to let CPU execute the instruction.
7588          */
7589         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7590
7591         /*
7592          * If the access faults on its page table, it can not
7593          * be fixed by unprotecting shadow page and it should
7594          * be reported to userspace.
7595          */
7596         return !write_fault_to_shadow_pgtable;
7597 }
7598
7599 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7600                               gpa_t cr2_or_gpa,  int emulation_type)
7601 {
7602         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7603         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7604
7605         last_retry_eip = vcpu->arch.last_retry_eip;
7606         last_retry_addr = vcpu->arch.last_retry_addr;
7607
7608         /*
7609          * If the emulation is caused by #PF and it is non-page_table
7610          * writing instruction, it means the VM-EXIT is caused by shadow
7611          * page protected, we can zap the shadow page and retry this
7612          * instruction directly.
7613          *
7614          * Note: if the guest uses a non-page-table modifying instruction
7615          * on the PDE that points to the instruction, then we will unmap
7616          * the instruction and go to an infinite loop. So, we cache the
7617          * last retried eip and the last fault address, if we meet the eip
7618          * and the address again, we can break out of the potential infinite
7619          * loop.
7620          */
7621         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7622
7623         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7624                 return false;
7625
7626         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7627             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7628                 return false;
7629
7630         if (x86_page_table_writing_insn(ctxt))
7631                 return false;
7632
7633         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7634                 return false;
7635
7636         vcpu->arch.last_retry_eip = ctxt->eip;
7637         vcpu->arch.last_retry_addr = cr2_or_gpa;
7638
7639         if (!vcpu->arch.mmu->direct_map)
7640                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7641
7642         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7643
7644         return true;
7645 }
7646
7647 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7648 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7649
7650 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7651 {
7652         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7653
7654         if (entering_smm) {
7655                 vcpu->arch.hflags |= HF_SMM_MASK;
7656         } else {
7657                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7658
7659                 /* Process a latched INIT or SMI, if any.  */
7660                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7661         }
7662
7663         kvm_mmu_reset_context(vcpu);
7664 }
7665
7666 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7667                                 unsigned long *db)
7668 {
7669         u32 dr6 = 0;
7670         int i;
7671         u32 enable, rwlen;
7672
7673         enable = dr7;
7674         rwlen = dr7 >> 16;
7675         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7676                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7677                         dr6 |= (1 << i);
7678         return dr6;
7679 }
7680
7681 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7682 {
7683         struct kvm_run *kvm_run = vcpu->run;
7684
7685         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7686                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7687                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7688                 kvm_run->debug.arch.exception = DB_VECTOR;
7689                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7690                 return 0;
7691         }
7692         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7693         return 1;
7694 }
7695
7696 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7697 {
7698         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7699         int r;
7700
7701         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7702         if (unlikely(!r))
7703                 return 0;
7704
7705         /*
7706          * rflags is the old, "raw" value of the flags.  The new value has
7707          * not been saved yet.
7708          *
7709          * This is correct even for TF set by the guest, because "the
7710          * processor will not generate this exception after the instruction
7711          * that sets the TF flag".
7712          */
7713         if (unlikely(rflags & X86_EFLAGS_TF))
7714                 r = kvm_vcpu_do_singlestep(vcpu);
7715         return r;
7716 }
7717 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7718
7719 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7720 {
7721         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7722             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7723                 struct kvm_run *kvm_run = vcpu->run;
7724                 unsigned long eip = kvm_get_linear_rip(vcpu);
7725                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7726                                            vcpu->arch.guest_debug_dr7,
7727                                            vcpu->arch.eff_db);
7728
7729                 if (dr6 != 0) {
7730                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7731                         kvm_run->debug.arch.pc = eip;
7732                         kvm_run->debug.arch.exception = DB_VECTOR;
7733                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7734                         *r = 0;
7735                         return true;
7736                 }
7737         }
7738
7739         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7740             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7741                 unsigned long eip = kvm_get_linear_rip(vcpu);
7742                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7743                                            vcpu->arch.dr7,
7744                                            vcpu->arch.db);
7745
7746                 if (dr6 != 0) {
7747                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7748                         *r = 1;
7749                         return true;
7750                 }
7751         }
7752
7753         return false;
7754 }
7755
7756 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7757 {
7758         switch (ctxt->opcode_len) {
7759         case 1:
7760                 switch (ctxt->b) {
7761                 case 0xe4:      /* IN */
7762                 case 0xe5:
7763                 case 0xec:
7764                 case 0xed:
7765                 case 0xe6:      /* OUT */
7766                 case 0xe7:
7767                 case 0xee:
7768                 case 0xef:
7769                 case 0x6c:      /* INS */
7770                 case 0x6d:
7771                 case 0x6e:      /* OUTS */
7772                 case 0x6f:
7773                         return true;
7774                 }
7775                 break;
7776         case 2:
7777                 switch (ctxt->b) {
7778                 case 0x33:      /* RDPMC */
7779                         return true;
7780                 }
7781                 break;
7782         }
7783
7784         return false;
7785 }
7786
7787 /*
7788  * Decode to be emulated instruction. Return EMULATION_OK if success.
7789  */
7790 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7791                                     void *insn, int insn_len)
7792 {
7793         int r = EMULATION_OK;
7794         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7795
7796         init_emulate_ctxt(vcpu);
7797
7798         /*
7799          * We will reenter on the same instruction since we do not set
7800          * complete_userspace_io. This does not handle watchpoints yet,
7801          * those would be handled in the emulate_ops.
7802          */
7803         if (!(emulation_type & EMULTYPE_SKIP) &&
7804             kvm_vcpu_check_breakpoint(vcpu, &r))
7805                 return r;
7806
7807         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7808
7809         trace_kvm_emulate_insn_start(vcpu);
7810         ++vcpu->stat.insn_emulation;
7811
7812         return r;
7813 }
7814 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7815
7816 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7817                             int emulation_type, void *insn, int insn_len)
7818 {
7819         int r;
7820         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7821         bool writeback = true;
7822         bool write_fault_to_spt;
7823
7824         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7825                 return 1;
7826
7827         vcpu->arch.l1tf_flush_l1d = true;
7828
7829         /*
7830          * Clear write_fault_to_shadow_pgtable here to ensure it is
7831          * never reused.
7832          */
7833         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7834         vcpu->arch.write_fault_to_shadow_pgtable = false;
7835
7836         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7837                 kvm_clear_exception_queue(vcpu);
7838
7839                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7840                                                     insn, insn_len);
7841                 if (r != EMULATION_OK)  {
7842                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7843                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7844                                 kvm_queue_exception(vcpu, UD_VECTOR);
7845                                 return 1;
7846                         }
7847                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7848                                                   write_fault_to_spt,
7849                                                   emulation_type))
7850                                 return 1;
7851                         if (ctxt->have_exception) {
7852                                 /*
7853                                  * #UD should result in just EMULATION_FAILED, and trap-like
7854                                  * exception should not be encountered during decode.
7855                                  */
7856                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7857                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7858                                 inject_emulated_exception(vcpu);
7859                                 return 1;
7860                         }
7861                         return handle_emulation_failure(vcpu, emulation_type);
7862                 }
7863         }
7864
7865         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7866             !is_vmware_backdoor_opcode(ctxt)) {
7867                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7868                 return 1;
7869         }
7870
7871         /*
7872          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7873          * for kvm_skip_emulated_instruction().  The caller is responsible for
7874          * updating interruptibility state and injecting single-step #DBs.
7875          */
7876         if (emulation_type & EMULTYPE_SKIP) {
7877                 kvm_rip_write(vcpu, ctxt->_eip);
7878                 if (ctxt->eflags & X86_EFLAGS_RF)
7879                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7880                 return 1;
7881         }
7882
7883         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7884                 return 1;
7885
7886         /* this is needed for vmware backdoor interface to work since it
7887            changes registers values  during IO operation */
7888         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7889                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7890                 emulator_invalidate_register_cache(ctxt);
7891         }
7892
7893 restart:
7894         if (emulation_type & EMULTYPE_PF) {
7895                 /* Save the faulting GPA (cr2) in the address field */
7896                 ctxt->exception.address = cr2_or_gpa;
7897
7898                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7899                 if (vcpu->arch.mmu->direct_map) {
7900                         ctxt->gpa_available = true;
7901                         ctxt->gpa_val = cr2_or_gpa;
7902                 }
7903         } else {
7904                 /* Sanitize the address out of an abundance of paranoia. */
7905                 ctxt->exception.address = 0;
7906         }
7907
7908         r = x86_emulate_insn(ctxt);
7909
7910         if (r == EMULATION_INTERCEPTED)
7911                 return 1;
7912
7913         if (r == EMULATION_FAILED) {
7914                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7915                                         emulation_type))
7916                         return 1;
7917
7918                 return handle_emulation_failure(vcpu, emulation_type);
7919         }
7920
7921         if (ctxt->have_exception) {
7922                 r = 1;
7923                 if (inject_emulated_exception(vcpu))
7924                         return r;
7925         } else if (vcpu->arch.pio.count) {
7926                 if (!vcpu->arch.pio.in) {
7927                         /* FIXME: return into emulator if single-stepping.  */
7928                         vcpu->arch.pio.count = 0;
7929                 } else {
7930                         writeback = false;
7931                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7932                 }
7933                 r = 0;
7934         } else if (vcpu->mmio_needed) {
7935                 ++vcpu->stat.mmio_exits;
7936
7937                 if (!vcpu->mmio_is_write)
7938                         writeback = false;
7939                 r = 0;
7940                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7941         } else if (r == EMULATION_RESTART)
7942                 goto restart;
7943         else
7944                 r = 1;
7945
7946         if (writeback) {
7947                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7948                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7949                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7950                 if (!ctxt->have_exception ||
7951                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7952                         kvm_rip_write(vcpu, ctxt->eip);
7953                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7954                                 r = kvm_vcpu_do_singlestep(vcpu);
7955                         if (kvm_x86_ops.update_emulated_instruction)
7956                                 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7957                         __kvm_set_rflags(vcpu, ctxt->eflags);
7958                 }
7959
7960                 /*
7961                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7962                  * do nothing, and it will be requested again as soon as
7963                  * the shadow expires.  But we still need to check here,
7964                  * because POPF has no interrupt shadow.
7965                  */
7966                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7967                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7968         } else
7969                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7970
7971         return r;
7972 }
7973
7974 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7975 {
7976         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7977 }
7978 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7979
7980 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7981                                         void *insn, int insn_len)
7982 {
7983         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7984 }
7985 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7986
7987 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7988 {
7989         vcpu->arch.pio.count = 0;
7990         return 1;
7991 }
7992
7993 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7994 {
7995         vcpu->arch.pio.count = 0;
7996
7997         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7998                 return 1;
7999
8000         return kvm_skip_emulated_instruction(vcpu);
8001 }
8002
8003 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8004                             unsigned short port)
8005 {
8006         unsigned long val = kvm_rax_read(vcpu);
8007         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8008
8009         if (ret)
8010                 return ret;
8011
8012         /*
8013          * Workaround userspace that relies on old KVM behavior of %rip being
8014          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8015          */
8016         if (port == 0x7e &&
8017             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8018                 vcpu->arch.complete_userspace_io =
8019                         complete_fast_pio_out_port_0x7e;
8020                 kvm_skip_emulated_instruction(vcpu);
8021         } else {
8022                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8023                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8024         }
8025         return 0;
8026 }
8027
8028 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8029 {
8030         unsigned long val;
8031
8032         /* We should only ever be called with arch.pio.count equal to 1 */
8033         BUG_ON(vcpu->arch.pio.count != 1);
8034
8035         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8036                 vcpu->arch.pio.count = 0;
8037                 return 1;
8038         }
8039
8040         /* For size less than 4 we merge, else we zero extend */
8041         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8042
8043         /*
8044          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8045          * the copy and tracing
8046          */
8047         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8048         kvm_rax_write(vcpu, val);
8049
8050         return kvm_skip_emulated_instruction(vcpu);
8051 }
8052
8053 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8054                            unsigned short port)
8055 {
8056         unsigned long val;
8057         int ret;
8058
8059         /* For size less than 4 we merge, else we zero extend */
8060         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8061
8062         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8063         if (ret) {
8064                 kvm_rax_write(vcpu, val);
8065                 return ret;
8066         }
8067
8068         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8069         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8070
8071         return 0;
8072 }
8073
8074 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8075 {
8076         int ret;
8077
8078         if (in)
8079                 ret = kvm_fast_pio_in(vcpu, size, port);
8080         else
8081                 ret = kvm_fast_pio_out(vcpu, size, port);
8082         return ret && kvm_skip_emulated_instruction(vcpu);
8083 }
8084 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8085
8086 static int kvmclock_cpu_down_prep(unsigned int cpu)
8087 {
8088         __this_cpu_write(cpu_tsc_khz, 0);
8089         return 0;
8090 }
8091
8092 static void tsc_khz_changed(void *data)
8093 {
8094         struct cpufreq_freqs *freq = data;
8095         unsigned long khz = 0;
8096
8097         if (data)
8098                 khz = freq->new;
8099         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8100                 khz = cpufreq_quick_get(raw_smp_processor_id());
8101         if (!khz)
8102                 khz = tsc_khz;
8103         __this_cpu_write(cpu_tsc_khz, khz);
8104 }
8105
8106 #ifdef CONFIG_X86_64
8107 static void kvm_hyperv_tsc_notifier(void)
8108 {
8109         struct kvm *kvm;
8110         struct kvm_vcpu *vcpu;
8111         int cpu;
8112         unsigned long flags;
8113
8114         mutex_lock(&kvm_lock);
8115         list_for_each_entry(kvm, &vm_list, vm_list)
8116                 kvm_make_mclock_inprogress_request(kvm);
8117
8118         hyperv_stop_tsc_emulation();
8119
8120         /* TSC frequency always matches when on Hyper-V */
8121         for_each_present_cpu(cpu)
8122                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8123         kvm_max_guest_tsc_khz = tsc_khz;
8124
8125         list_for_each_entry(kvm, &vm_list, vm_list) {
8126                 struct kvm_arch *ka = &kvm->arch;
8127
8128                 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8129                 pvclock_update_vm_gtod_copy(kvm);
8130                 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8131
8132                 kvm_for_each_vcpu(cpu, vcpu, kvm)
8133                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8134
8135                 kvm_for_each_vcpu(cpu, vcpu, kvm)
8136                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8137         }
8138         mutex_unlock(&kvm_lock);
8139 }
8140 #endif
8141
8142 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8143 {
8144         struct kvm *kvm;
8145         struct kvm_vcpu *vcpu;
8146         int i, send_ipi = 0;
8147
8148         /*
8149          * We allow guests to temporarily run on slowing clocks,
8150          * provided we notify them after, or to run on accelerating
8151          * clocks, provided we notify them before.  Thus time never
8152          * goes backwards.
8153          *
8154          * However, we have a problem.  We can't atomically update
8155          * the frequency of a given CPU from this function; it is
8156          * merely a notifier, which can be called from any CPU.
8157          * Changing the TSC frequency at arbitrary points in time
8158          * requires a recomputation of local variables related to
8159          * the TSC for each VCPU.  We must flag these local variables
8160          * to be updated and be sure the update takes place with the
8161          * new frequency before any guests proceed.
8162          *
8163          * Unfortunately, the combination of hotplug CPU and frequency
8164          * change creates an intractable locking scenario; the order
8165          * of when these callouts happen is undefined with respect to
8166          * CPU hotplug, and they can race with each other.  As such,
8167          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8168          * undefined; you can actually have a CPU frequency change take
8169          * place in between the computation of X and the setting of the
8170          * variable.  To protect against this problem, all updates of
8171          * the per_cpu tsc_khz variable are done in an interrupt
8172          * protected IPI, and all callers wishing to update the value
8173          * must wait for a synchronous IPI to complete (which is trivial
8174          * if the caller is on the CPU already).  This establishes the
8175          * necessary total order on variable updates.
8176          *
8177          * Note that because a guest time update may take place
8178          * anytime after the setting of the VCPU's request bit, the
8179          * correct TSC value must be set before the request.  However,
8180          * to ensure the update actually makes it to any guest which
8181          * starts running in hardware virtualization between the set
8182          * and the acquisition of the spinlock, we must also ping the
8183          * CPU after setting the request bit.
8184          *
8185          */
8186
8187         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8188
8189         mutex_lock(&kvm_lock);
8190         list_for_each_entry(kvm, &vm_list, vm_list) {
8191                 kvm_for_each_vcpu(i, vcpu, kvm) {
8192                         if (vcpu->cpu != cpu)
8193                                 continue;
8194                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8195                         if (vcpu->cpu != raw_smp_processor_id())
8196                                 send_ipi = 1;
8197                 }
8198         }
8199         mutex_unlock(&kvm_lock);
8200
8201         if (freq->old < freq->new && send_ipi) {
8202                 /*
8203                  * We upscale the frequency.  Must make the guest
8204                  * doesn't see old kvmclock values while running with
8205                  * the new frequency, otherwise we risk the guest sees
8206                  * time go backwards.
8207                  *
8208                  * In case we update the frequency for another cpu
8209                  * (which might be in guest context) send an interrupt
8210                  * to kick the cpu out of guest context.  Next time
8211                  * guest context is entered kvmclock will be updated,
8212                  * so the guest will not see stale values.
8213                  */
8214                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8215         }
8216 }
8217
8218 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8219                                      void *data)
8220 {
8221         struct cpufreq_freqs *freq = data;
8222         int cpu;
8223
8224         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8225                 return 0;
8226         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8227                 return 0;
8228
8229         for_each_cpu(cpu, freq->policy->cpus)
8230                 __kvmclock_cpufreq_notifier(freq, cpu);
8231
8232         return 0;
8233 }
8234
8235 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8236         .notifier_call  = kvmclock_cpufreq_notifier
8237 };
8238
8239 static int kvmclock_cpu_online(unsigned int cpu)
8240 {
8241         tsc_khz_changed(NULL);
8242         return 0;
8243 }
8244
8245 static void kvm_timer_init(void)
8246 {
8247         max_tsc_khz = tsc_khz;
8248
8249         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8250 #ifdef CONFIG_CPU_FREQ
8251                 struct cpufreq_policy *policy;
8252                 int cpu;
8253
8254                 cpu = get_cpu();
8255                 policy = cpufreq_cpu_get(cpu);
8256                 if (policy) {
8257                         if (policy->cpuinfo.max_freq)
8258                                 max_tsc_khz = policy->cpuinfo.max_freq;
8259                         cpufreq_cpu_put(policy);
8260                 }
8261                 put_cpu();
8262 #endif
8263                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8264                                           CPUFREQ_TRANSITION_NOTIFIER);
8265         }
8266
8267         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8268                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8269 }
8270
8271 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8272 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8273
8274 int kvm_is_in_guest(void)
8275 {
8276         return __this_cpu_read(current_vcpu) != NULL;
8277 }
8278
8279 static int kvm_is_user_mode(void)
8280 {
8281         int user_mode = 3;
8282
8283         if (__this_cpu_read(current_vcpu))
8284                 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8285
8286         return user_mode != 0;
8287 }
8288
8289 static unsigned long kvm_get_guest_ip(void)
8290 {
8291         unsigned long ip = 0;
8292
8293         if (__this_cpu_read(current_vcpu))
8294                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8295
8296         return ip;
8297 }
8298
8299 static void kvm_handle_intel_pt_intr(void)
8300 {
8301         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8302
8303         kvm_make_request(KVM_REQ_PMI, vcpu);
8304         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8305                         (unsigned long *)&vcpu->arch.pmu.global_status);
8306 }
8307
8308 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8309         .is_in_guest            = kvm_is_in_guest,
8310         .is_user_mode           = kvm_is_user_mode,
8311         .get_guest_ip           = kvm_get_guest_ip,
8312         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
8313 };
8314
8315 #ifdef CONFIG_X86_64
8316 static void pvclock_gtod_update_fn(struct work_struct *work)
8317 {
8318         struct kvm *kvm;
8319
8320         struct kvm_vcpu *vcpu;
8321         int i;
8322
8323         mutex_lock(&kvm_lock);
8324         list_for_each_entry(kvm, &vm_list, vm_list)
8325                 kvm_for_each_vcpu(i, vcpu, kvm)
8326                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8327         atomic_set(&kvm_guest_has_master_clock, 0);
8328         mutex_unlock(&kvm_lock);
8329 }
8330
8331 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8332
8333 /*
8334  * Indirection to move queue_work() out of the tk_core.seq write held
8335  * region to prevent possible deadlocks against time accessors which
8336  * are invoked with work related locks held.
8337  */
8338 static void pvclock_irq_work_fn(struct irq_work *w)
8339 {
8340         queue_work(system_long_wq, &pvclock_gtod_work);
8341 }
8342
8343 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8344
8345 /*
8346  * Notification about pvclock gtod data update.
8347  */
8348 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8349                                void *priv)
8350 {
8351         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8352         struct timekeeper *tk = priv;
8353
8354         update_pvclock_gtod(tk);
8355
8356         /*
8357          * Disable master clock if host does not trust, or does not use,
8358          * TSC based clocksource. Delegate queue_work() to irq_work as
8359          * this is invoked with tk_core.seq write held.
8360          */
8361         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8362             atomic_read(&kvm_guest_has_master_clock) != 0)
8363                 irq_work_queue(&pvclock_irq_work);
8364         return 0;
8365 }
8366
8367 static struct notifier_block pvclock_gtod_notifier = {
8368         .notifier_call = pvclock_gtod_notify,
8369 };
8370 #endif
8371
8372 int kvm_arch_init(void *opaque)
8373 {
8374         struct kvm_x86_init_ops *ops = opaque;
8375         int r;
8376
8377         if (kvm_x86_ops.hardware_enable) {
8378                 printk(KERN_ERR "kvm: already loaded the other module\n");
8379                 r = -EEXIST;
8380                 goto out;
8381         }
8382
8383         if (!ops->cpu_has_kvm_support()) {
8384                 pr_err_ratelimited("kvm: no hardware support\n");
8385                 r = -EOPNOTSUPP;
8386                 goto out;
8387         }
8388         if (ops->disabled_by_bios()) {
8389                 pr_err_ratelimited("kvm: disabled by bios\n");
8390                 r = -EOPNOTSUPP;
8391                 goto out;
8392         }
8393
8394         /*
8395          * KVM explicitly assumes that the guest has an FPU and
8396          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8397          * vCPU's FPU state as a fxregs_state struct.
8398          */
8399         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8400                 printk(KERN_ERR "kvm: inadequate fpu\n");
8401                 r = -EOPNOTSUPP;
8402                 goto out;
8403         }
8404
8405         r = -ENOMEM;
8406         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8407                                           __alignof__(struct fpu), SLAB_ACCOUNT,
8408                                           NULL);
8409         if (!x86_fpu_cache) {
8410                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8411                 goto out;
8412         }
8413
8414         x86_emulator_cache = kvm_alloc_emulator_cache();
8415         if (!x86_emulator_cache) {
8416                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8417                 goto out_free_x86_fpu_cache;
8418         }
8419
8420         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8421         if (!user_return_msrs) {
8422                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8423                 goto out_free_x86_emulator_cache;
8424         }
8425         kvm_nr_uret_msrs = 0;
8426
8427         r = kvm_mmu_module_init();
8428         if (r)
8429                 goto out_free_percpu;
8430
8431         kvm_timer_init();
8432
8433         perf_register_guest_info_callbacks(&kvm_guest_cbs);
8434
8435         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8436                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8437                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8438         }
8439
8440         if (pi_inject_timer == -1)
8441                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8442 #ifdef CONFIG_X86_64
8443         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8444
8445         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8446                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8447 #endif
8448
8449         return 0;
8450
8451 out_free_percpu:
8452         free_percpu(user_return_msrs);
8453 out_free_x86_emulator_cache:
8454         kmem_cache_destroy(x86_emulator_cache);
8455 out_free_x86_fpu_cache:
8456         kmem_cache_destroy(x86_fpu_cache);
8457 out:
8458         return r;
8459 }
8460
8461 void kvm_arch_exit(void)
8462 {
8463 #ifdef CONFIG_X86_64
8464         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8465                 clear_hv_tscchange_cb();
8466 #endif
8467         kvm_lapic_exit();
8468         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8469
8470         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8471                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8472                                             CPUFREQ_TRANSITION_NOTIFIER);
8473         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8474 #ifdef CONFIG_X86_64
8475         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8476         irq_work_sync(&pvclock_irq_work);
8477         cancel_work_sync(&pvclock_gtod_work);
8478 #endif
8479         kvm_x86_ops.hardware_enable = NULL;
8480         kvm_mmu_module_exit();
8481         free_percpu(user_return_msrs);
8482         kmem_cache_destroy(x86_emulator_cache);
8483         kmem_cache_destroy(x86_fpu_cache);
8484 #ifdef CONFIG_KVM_XEN
8485         static_key_deferred_flush(&kvm_xen_enabled);
8486         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8487 #endif
8488 }
8489
8490 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8491 {
8492         ++vcpu->stat.halt_exits;
8493         if (lapic_in_kernel(vcpu)) {
8494                 vcpu->arch.mp_state = state;
8495                 return 1;
8496         } else {
8497                 vcpu->run->exit_reason = reason;
8498                 return 0;
8499         }
8500 }
8501
8502 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8503 {
8504         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8505 }
8506 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8507
8508 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8509 {
8510         int ret = kvm_skip_emulated_instruction(vcpu);
8511         /*
8512          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8513          * KVM_EXIT_DEBUG here.
8514          */
8515         return kvm_vcpu_halt(vcpu) && ret;
8516 }
8517 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8518
8519 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8520 {
8521         int ret = kvm_skip_emulated_instruction(vcpu);
8522
8523         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8524 }
8525 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8526
8527 #ifdef CONFIG_X86_64
8528 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8529                                 unsigned long clock_type)
8530 {
8531         struct kvm_clock_pairing clock_pairing;
8532         struct timespec64 ts;
8533         u64 cycle;
8534         int ret;
8535
8536         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8537                 return -KVM_EOPNOTSUPP;
8538
8539         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8540                 return -KVM_EOPNOTSUPP;
8541
8542         clock_pairing.sec = ts.tv_sec;
8543         clock_pairing.nsec = ts.tv_nsec;
8544         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8545         clock_pairing.flags = 0;
8546         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8547
8548         ret = 0;
8549         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8550                             sizeof(struct kvm_clock_pairing)))
8551                 ret = -KVM_EFAULT;
8552
8553         return ret;
8554 }
8555 #endif
8556
8557 /*
8558  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8559  *
8560  * @apicid - apicid of vcpu to be kicked.
8561  */
8562 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8563 {
8564         struct kvm_lapic_irq lapic_irq;
8565
8566         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8567         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8568         lapic_irq.level = 0;
8569         lapic_irq.dest_id = apicid;
8570         lapic_irq.msi_redir_hint = false;
8571
8572         lapic_irq.delivery_mode = APIC_DM_REMRD;
8573         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8574 }
8575
8576 bool kvm_apicv_activated(struct kvm *kvm)
8577 {
8578         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8579 }
8580 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8581
8582 static void kvm_apicv_init(struct kvm *kvm)
8583 {
8584         mutex_init(&kvm->arch.apicv_update_lock);
8585
8586         if (enable_apicv)
8587                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8588                           &kvm->arch.apicv_inhibit_reasons);
8589         else
8590                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8591                         &kvm->arch.apicv_inhibit_reasons);
8592 }
8593
8594 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8595 {
8596         struct kvm_vcpu *target = NULL;
8597         struct kvm_apic_map *map;
8598
8599         vcpu->stat.directed_yield_attempted++;
8600
8601         if (single_task_running())
8602                 goto no_yield;
8603
8604         rcu_read_lock();
8605         map = rcu_dereference(vcpu->kvm->arch.apic_map);
8606
8607         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8608                 target = map->phys_map[dest_id]->vcpu;
8609
8610         rcu_read_unlock();
8611
8612         if (!target || !READ_ONCE(target->ready))
8613                 goto no_yield;
8614
8615         /* Ignore requests to yield to self */
8616         if (vcpu == target)
8617                 goto no_yield;
8618
8619         if (kvm_vcpu_yield_to(target) <= 0)
8620                 goto no_yield;
8621
8622         vcpu->stat.directed_yield_successful++;
8623
8624 no_yield:
8625         return;
8626 }
8627
8628 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8629 {
8630         u64 ret = vcpu->run->hypercall.ret;
8631
8632         if (!is_64_bit_mode(vcpu))
8633                 ret = (u32)ret;
8634         kvm_rax_write(vcpu, ret);
8635         ++vcpu->stat.hypercalls;
8636         return kvm_skip_emulated_instruction(vcpu);
8637 }
8638
8639 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8640 {
8641         unsigned long nr, a0, a1, a2, a3, ret;
8642         int op_64_bit;
8643
8644         if (kvm_xen_hypercall_enabled(vcpu->kvm))
8645                 return kvm_xen_hypercall(vcpu);
8646
8647         if (kvm_hv_hypercall_enabled(vcpu))
8648                 return kvm_hv_hypercall(vcpu);
8649
8650         nr = kvm_rax_read(vcpu);
8651         a0 = kvm_rbx_read(vcpu);
8652         a1 = kvm_rcx_read(vcpu);
8653         a2 = kvm_rdx_read(vcpu);
8654         a3 = kvm_rsi_read(vcpu);
8655
8656         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8657
8658         op_64_bit = is_64_bit_mode(vcpu);
8659         if (!op_64_bit) {
8660                 nr &= 0xFFFFFFFF;
8661                 a0 &= 0xFFFFFFFF;
8662                 a1 &= 0xFFFFFFFF;
8663                 a2 &= 0xFFFFFFFF;
8664                 a3 &= 0xFFFFFFFF;
8665         }
8666
8667         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8668                 ret = -KVM_EPERM;
8669                 goto out;
8670         }
8671
8672         ret = -KVM_ENOSYS;
8673
8674         switch (nr) {
8675         case KVM_HC_VAPIC_POLL_IRQ:
8676                 ret = 0;
8677                 break;
8678         case KVM_HC_KICK_CPU:
8679                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8680                         break;
8681
8682                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8683                 kvm_sched_yield(vcpu, a1);
8684                 ret = 0;
8685                 break;
8686 #ifdef CONFIG_X86_64
8687         case KVM_HC_CLOCK_PAIRING:
8688                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8689                 break;
8690 #endif
8691         case KVM_HC_SEND_IPI:
8692                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8693                         break;
8694
8695                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8696                 break;
8697         case KVM_HC_SCHED_YIELD:
8698                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8699                         break;
8700
8701                 kvm_sched_yield(vcpu, a0);
8702                 ret = 0;
8703                 break;
8704         case KVM_HC_MAP_GPA_RANGE: {
8705                 u64 gpa = a0, npages = a1, attrs = a2;
8706
8707                 ret = -KVM_ENOSYS;
8708                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8709                         break;
8710
8711                 if (!PAGE_ALIGNED(gpa) || !npages ||
8712                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8713                         ret = -KVM_EINVAL;
8714                         break;
8715                 }
8716
8717                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
8718                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
8719                 vcpu->run->hypercall.args[0]  = gpa;
8720                 vcpu->run->hypercall.args[1]  = npages;
8721                 vcpu->run->hypercall.args[2]  = attrs;
8722                 vcpu->run->hypercall.longmode = op_64_bit;
8723                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8724                 return 0;
8725         }
8726         default:
8727                 ret = -KVM_ENOSYS;
8728                 break;
8729         }
8730 out:
8731         if (!op_64_bit)
8732                 ret = (u32)ret;
8733         kvm_rax_write(vcpu, ret);
8734
8735         ++vcpu->stat.hypercalls;
8736         return kvm_skip_emulated_instruction(vcpu);
8737 }
8738 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8739
8740 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8741 {
8742         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8743         char instruction[3];
8744         unsigned long rip = kvm_rip_read(vcpu);
8745
8746         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8747
8748         return emulator_write_emulated(ctxt, rip, instruction, 3,
8749                 &ctxt->exception);
8750 }
8751
8752 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8753 {
8754         return vcpu->run->request_interrupt_window &&
8755                 likely(!pic_in_kernel(vcpu->kvm));
8756 }
8757
8758 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8759 {
8760         struct kvm_run *kvm_run = vcpu->run;
8761
8762         /*
8763          * if_flag is obsolete and useless, so do not bother
8764          * setting it for SEV-ES guests.  Userspace can just
8765          * use kvm_run->ready_for_interrupt_injection.
8766          */
8767         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8768                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8769
8770         kvm_run->cr8 = kvm_get_cr8(vcpu);
8771         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8772         kvm_run->ready_for_interrupt_injection =
8773                 pic_in_kernel(vcpu->kvm) ||
8774                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8775
8776         if (is_smm(vcpu))
8777                 kvm_run->flags |= KVM_RUN_X86_SMM;
8778 }
8779
8780 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8781 {
8782         int max_irr, tpr;
8783
8784         if (!kvm_x86_ops.update_cr8_intercept)
8785                 return;
8786
8787         if (!lapic_in_kernel(vcpu))
8788                 return;
8789
8790         if (vcpu->arch.apicv_active)
8791                 return;
8792
8793         if (!vcpu->arch.apic->vapic_addr)
8794                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8795         else
8796                 max_irr = -1;
8797
8798         if (max_irr != -1)
8799                 max_irr >>= 4;
8800
8801         tpr = kvm_lapic_get_cr8(vcpu);
8802
8803         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8804 }
8805
8806
8807 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8808 {
8809         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8810                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8811                 return 1;
8812         }
8813
8814         return kvm_x86_ops.nested_ops->check_events(vcpu);
8815 }
8816
8817 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8818 {
8819         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8820                 vcpu->arch.exception.error_code = false;
8821         static_call(kvm_x86_queue_exception)(vcpu);
8822 }
8823
8824 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8825 {
8826         int r;
8827         bool can_inject = true;
8828
8829         /* try to reinject previous events if any */
8830
8831         if (vcpu->arch.exception.injected) {
8832                 kvm_inject_exception(vcpu);
8833                 can_inject = false;
8834         }
8835         /*
8836          * Do not inject an NMI or interrupt if there is a pending
8837          * exception.  Exceptions and interrupts are recognized at
8838          * instruction boundaries, i.e. the start of an instruction.
8839          * Trap-like exceptions, e.g. #DB, have higher priority than
8840          * NMIs and interrupts, i.e. traps are recognized before an
8841          * NMI/interrupt that's pending on the same instruction.
8842          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8843          * priority, but are only generated (pended) during instruction
8844          * execution, i.e. a pending fault-like exception means the
8845          * fault occurred on the *previous* instruction and must be
8846          * serviced prior to recognizing any new events in order to
8847          * fully complete the previous instruction.
8848          */
8849         else if (!vcpu->arch.exception.pending) {
8850                 if (vcpu->arch.nmi_injected) {
8851                         static_call(kvm_x86_set_nmi)(vcpu);
8852                         can_inject = false;
8853                 } else if (vcpu->arch.interrupt.injected) {
8854                         static_call(kvm_x86_set_irq)(vcpu);
8855                         can_inject = false;
8856                 }
8857         }
8858
8859         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8860                      vcpu->arch.exception.pending);
8861
8862         /*
8863          * Call check_nested_events() even if we reinjected a previous event
8864          * in order for caller to determine if it should require immediate-exit
8865          * from L2 to L1 due to pending L1 events which require exit
8866          * from L2 to L1.
8867          */
8868         if (is_guest_mode(vcpu)) {
8869                 r = kvm_check_nested_events(vcpu);
8870                 if (r < 0)
8871                         goto out;
8872         }
8873
8874         /* try to inject new event if pending */
8875         if (vcpu->arch.exception.pending) {
8876                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8877                                         vcpu->arch.exception.has_error_code,
8878                                         vcpu->arch.exception.error_code);
8879
8880                 vcpu->arch.exception.pending = false;
8881                 vcpu->arch.exception.injected = true;
8882
8883                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8884                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8885                                              X86_EFLAGS_RF);
8886
8887                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8888                         kvm_deliver_exception_payload(vcpu);
8889                         if (vcpu->arch.dr7 & DR7_GD) {
8890                                 vcpu->arch.dr7 &= ~DR7_GD;
8891                                 kvm_update_dr7(vcpu);
8892                         }
8893                 }
8894
8895                 kvm_inject_exception(vcpu);
8896                 can_inject = false;
8897         }
8898
8899         /* Don't inject interrupts if the user asked to avoid doing so */
8900         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
8901                 return 0;
8902
8903         /*
8904          * Finally, inject interrupt events.  If an event cannot be injected
8905          * due to architectural conditions (e.g. IF=0) a window-open exit
8906          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8907          * and can architecturally be injected, but we cannot do it right now:
8908          * an interrupt could have arrived just now and we have to inject it
8909          * as a vmexit, or there could already an event in the queue, which is
8910          * indicated by can_inject.  In that case we request an immediate exit
8911          * in order to make progress and get back here for another iteration.
8912          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8913          */
8914         if (vcpu->arch.smi_pending) {
8915                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8916                 if (r < 0)
8917                         goto out;
8918                 if (r) {
8919                         vcpu->arch.smi_pending = false;
8920                         ++vcpu->arch.smi_count;
8921                         enter_smm(vcpu);
8922                         can_inject = false;
8923                 } else
8924                         static_call(kvm_x86_enable_smi_window)(vcpu);
8925         }
8926
8927         if (vcpu->arch.nmi_pending) {
8928                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8929                 if (r < 0)
8930                         goto out;
8931                 if (r) {
8932                         --vcpu->arch.nmi_pending;
8933                         vcpu->arch.nmi_injected = true;
8934                         static_call(kvm_x86_set_nmi)(vcpu);
8935                         can_inject = false;
8936                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8937                 }
8938                 if (vcpu->arch.nmi_pending)
8939                         static_call(kvm_x86_enable_nmi_window)(vcpu);
8940         }
8941
8942         if (kvm_cpu_has_injectable_intr(vcpu)) {
8943                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8944                 if (r < 0)
8945                         goto out;
8946                 if (r) {
8947                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8948                         static_call(kvm_x86_set_irq)(vcpu);
8949                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8950                 }
8951                 if (kvm_cpu_has_injectable_intr(vcpu))
8952                         static_call(kvm_x86_enable_irq_window)(vcpu);
8953         }
8954
8955         if (is_guest_mode(vcpu) &&
8956             kvm_x86_ops.nested_ops->hv_timer_pending &&
8957             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8958                 *req_immediate_exit = true;
8959
8960         WARN_ON(vcpu->arch.exception.pending);
8961         return 0;
8962
8963 out:
8964         if (r == -EBUSY) {
8965                 *req_immediate_exit = true;
8966                 r = 0;
8967         }
8968         return r;
8969 }
8970
8971 static void process_nmi(struct kvm_vcpu *vcpu)
8972 {
8973         unsigned limit = 2;
8974
8975         /*
8976          * x86 is limited to one NMI running, and one NMI pending after it.
8977          * If an NMI is already in progress, limit further NMIs to just one.
8978          * Otherwise, allow two (and we'll inject the first one immediately).
8979          */
8980         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8981                 limit = 1;
8982
8983         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8984         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8985         kvm_make_request(KVM_REQ_EVENT, vcpu);
8986 }
8987
8988 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8989 {
8990         u32 flags = 0;
8991         flags |= seg->g       << 23;
8992         flags |= seg->db      << 22;
8993         flags |= seg->l       << 21;
8994         flags |= seg->avl     << 20;
8995         flags |= seg->present << 15;
8996         flags |= seg->dpl     << 13;
8997         flags |= seg->s       << 12;
8998         flags |= seg->type    << 8;
8999         return flags;
9000 }
9001
9002 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9003 {
9004         struct kvm_segment seg;
9005         int offset;
9006
9007         kvm_get_segment(vcpu, &seg, n);
9008         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9009
9010         if (n < 3)
9011                 offset = 0x7f84 + n * 12;
9012         else
9013                 offset = 0x7f2c + (n - 3) * 12;
9014
9015         put_smstate(u32, buf, offset + 8, seg.base);
9016         put_smstate(u32, buf, offset + 4, seg.limit);
9017         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9018 }
9019
9020 #ifdef CONFIG_X86_64
9021 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9022 {
9023         struct kvm_segment seg;
9024         int offset;
9025         u16 flags;
9026
9027         kvm_get_segment(vcpu, &seg, n);
9028         offset = 0x7e00 + n * 16;
9029
9030         flags = enter_smm_get_segment_flags(&seg) >> 8;
9031         put_smstate(u16, buf, offset, seg.selector);
9032         put_smstate(u16, buf, offset + 2, flags);
9033         put_smstate(u32, buf, offset + 4, seg.limit);
9034         put_smstate(u64, buf, offset + 8, seg.base);
9035 }
9036 #endif
9037
9038 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9039 {
9040         struct desc_ptr dt;
9041         struct kvm_segment seg;
9042         unsigned long val;
9043         int i;
9044
9045         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9046         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9047         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9048         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9049
9050         for (i = 0; i < 8; i++)
9051                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9052
9053         kvm_get_dr(vcpu, 6, &val);
9054         put_smstate(u32, buf, 0x7fcc, (u32)val);
9055         kvm_get_dr(vcpu, 7, &val);
9056         put_smstate(u32, buf, 0x7fc8, (u32)val);
9057
9058         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9059         put_smstate(u32, buf, 0x7fc4, seg.selector);
9060         put_smstate(u32, buf, 0x7f64, seg.base);
9061         put_smstate(u32, buf, 0x7f60, seg.limit);
9062         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9063
9064         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9065         put_smstate(u32, buf, 0x7fc0, seg.selector);
9066         put_smstate(u32, buf, 0x7f80, seg.base);
9067         put_smstate(u32, buf, 0x7f7c, seg.limit);
9068         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9069
9070         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9071         put_smstate(u32, buf, 0x7f74, dt.address);
9072         put_smstate(u32, buf, 0x7f70, dt.size);
9073
9074         static_call(kvm_x86_get_idt)(vcpu, &dt);
9075         put_smstate(u32, buf, 0x7f58, dt.address);
9076         put_smstate(u32, buf, 0x7f54, dt.size);
9077
9078         for (i = 0; i < 6; i++)
9079                 enter_smm_save_seg_32(vcpu, buf, i);
9080
9081         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9082
9083         /* revision id */
9084         put_smstate(u32, buf, 0x7efc, 0x00020000);
9085         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9086 }
9087
9088 #ifdef CONFIG_X86_64
9089 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9090 {
9091         struct desc_ptr dt;
9092         struct kvm_segment seg;
9093         unsigned long val;
9094         int i;
9095
9096         for (i = 0; i < 16; i++)
9097                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9098
9099         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9100         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9101
9102         kvm_get_dr(vcpu, 6, &val);
9103         put_smstate(u64, buf, 0x7f68, val);
9104         kvm_get_dr(vcpu, 7, &val);
9105         put_smstate(u64, buf, 0x7f60, val);
9106
9107         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9108         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9109         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9110
9111         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9112
9113         /* revision id */
9114         put_smstate(u32, buf, 0x7efc, 0x00020064);
9115
9116         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9117
9118         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9119         put_smstate(u16, buf, 0x7e90, seg.selector);
9120         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9121         put_smstate(u32, buf, 0x7e94, seg.limit);
9122         put_smstate(u64, buf, 0x7e98, seg.base);
9123
9124         static_call(kvm_x86_get_idt)(vcpu, &dt);
9125         put_smstate(u32, buf, 0x7e84, dt.size);
9126         put_smstate(u64, buf, 0x7e88, dt.address);
9127
9128         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9129         put_smstate(u16, buf, 0x7e70, seg.selector);
9130         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9131         put_smstate(u32, buf, 0x7e74, seg.limit);
9132         put_smstate(u64, buf, 0x7e78, seg.base);
9133
9134         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9135         put_smstate(u32, buf, 0x7e64, dt.size);
9136         put_smstate(u64, buf, 0x7e68, dt.address);
9137
9138         for (i = 0; i < 6; i++)
9139                 enter_smm_save_seg_64(vcpu, buf, i);
9140 }
9141 #endif
9142
9143 static void enter_smm(struct kvm_vcpu *vcpu)
9144 {
9145         struct kvm_segment cs, ds;
9146         struct desc_ptr dt;
9147         unsigned long cr0;
9148         char buf[512];
9149
9150         memset(buf, 0, 512);
9151 #ifdef CONFIG_X86_64
9152         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9153                 enter_smm_save_state_64(vcpu, buf);
9154         else
9155 #endif
9156                 enter_smm_save_state_32(vcpu, buf);
9157
9158         /*
9159          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9160          * state (e.g. leave guest mode) after we've saved the state into the
9161          * SMM state-save area.
9162          */
9163         static_call(kvm_x86_enter_smm)(vcpu, buf);
9164
9165         kvm_smm_changed(vcpu, true);
9166         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9167
9168         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9169                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9170         else
9171                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9172
9173         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9174         kvm_rip_write(vcpu, 0x8000);
9175
9176         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9177         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9178         vcpu->arch.cr0 = cr0;
9179
9180         static_call(kvm_x86_set_cr4)(vcpu, 0);
9181
9182         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9183         dt.address = dt.size = 0;
9184         static_call(kvm_x86_set_idt)(vcpu, &dt);
9185
9186         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9187
9188         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9189         cs.base = vcpu->arch.smbase;
9190
9191         ds.selector = 0;
9192         ds.base = 0;
9193
9194         cs.limit    = ds.limit = 0xffffffff;
9195         cs.type     = ds.type = 0x3;
9196         cs.dpl      = ds.dpl = 0;
9197         cs.db       = ds.db = 0;
9198         cs.s        = ds.s = 1;
9199         cs.l        = ds.l = 0;
9200         cs.g        = ds.g = 1;
9201         cs.avl      = ds.avl = 0;
9202         cs.present  = ds.present = 1;
9203         cs.unusable = ds.unusable = 0;
9204         cs.padding  = ds.padding = 0;
9205
9206         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9207         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9208         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9209         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9210         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9211         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9212
9213 #ifdef CONFIG_X86_64
9214         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9215                 static_call(kvm_x86_set_efer)(vcpu, 0);
9216 #endif
9217
9218         kvm_update_cpuid_runtime(vcpu);
9219         kvm_mmu_reset_context(vcpu);
9220 }
9221
9222 static void process_smi(struct kvm_vcpu *vcpu)
9223 {
9224         vcpu->arch.smi_pending = true;
9225         kvm_make_request(KVM_REQ_EVENT, vcpu);
9226 }
9227
9228 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9229                                        unsigned long *vcpu_bitmap)
9230 {
9231         cpumask_var_t cpus;
9232
9233         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9234
9235         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9236                                     NULL, vcpu_bitmap, cpus);
9237
9238         free_cpumask_var(cpus);
9239 }
9240
9241 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9242 {
9243         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9244 }
9245
9246 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9247 {
9248         bool activate;
9249
9250         if (!lapic_in_kernel(vcpu))
9251                 return;
9252
9253         mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9254
9255         activate = kvm_apicv_activated(vcpu->kvm);
9256         if (vcpu->arch.apicv_active == activate)
9257                 goto out;
9258
9259         vcpu->arch.apicv_active = activate;
9260         kvm_apic_update_apicv(vcpu);
9261         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9262
9263         /*
9264          * When APICv gets disabled, we may still have injected interrupts
9265          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9266          * still active when the interrupt got accepted. Make sure
9267          * inject_pending_event() is called to check for that.
9268          */
9269         if (!vcpu->arch.apicv_active)
9270                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9271
9272 out:
9273         mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9274 }
9275 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9276
9277 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9278 {
9279         unsigned long old, new;
9280
9281         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9282             !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9283                 return;
9284
9285         old = new = kvm->arch.apicv_inhibit_reasons;
9286
9287         if (activate)
9288                 __clear_bit(bit, &new);
9289         else
9290                 __set_bit(bit, &new);
9291
9292         if (!!old != !!new) {
9293                 trace_kvm_apicv_update_request(activate, bit);
9294                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9295                 kvm->arch.apicv_inhibit_reasons = new;
9296                 if (new) {
9297                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9298                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
9299                 }
9300         } else
9301                 kvm->arch.apicv_inhibit_reasons = new;
9302 }
9303 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9304
9305 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9306 {
9307         mutex_lock(&kvm->arch.apicv_update_lock);
9308         __kvm_request_apicv_update(kvm, activate, bit);
9309         mutex_unlock(&kvm->arch.apicv_update_lock);
9310 }
9311 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9312
9313 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9314 {
9315         if (!kvm_apic_present(vcpu))
9316                 return;
9317
9318         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9319
9320         if (irqchip_split(vcpu->kvm))
9321                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9322         else {
9323                 if (vcpu->arch.apicv_active)
9324                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9325                 if (ioapic_in_kernel(vcpu->kvm))
9326                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9327         }
9328
9329         if (is_guest_mode(vcpu))
9330                 vcpu->arch.load_eoi_exitmap_pending = true;
9331         else
9332                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9333 }
9334
9335 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9336 {
9337         u64 eoi_exit_bitmap[4];
9338
9339         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9340                 return;
9341
9342         if (to_hv_vcpu(vcpu))
9343                 bitmap_or((ulong *)eoi_exit_bitmap,
9344                           vcpu->arch.ioapic_handled_vectors,
9345                           to_hv_synic(vcpu)->vec_bitmap, 256);
9346
9347         static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9348 }
9349
9350 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9351                                             unsigned long start, unsigned long end)
9352 {
9353         unsigned long apic_address;
9354
9355         /*
9356          * The physical address of apic access page is stored in the VMCS.
9357          * Update it when it becomes invalid.
9358          */
9359         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9360         if (start <= apic_address && apic_address < end)
9361                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9362 }
9363
9364 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9365 {
9366         if (!lapic_in_kernel(vcpu))
9367                 return;
9368
9369         if (!kvm_x86_ops.set_apic_access_page_addr)
9370                 return;
9371
9372         static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9373 }
9374
9375 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9376 {
9377         smp_send_reschedule(vcpu->cpu);
9378 }
9379 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9380
9381 /*
9382  * Returns 1 to let vcpu_run() continue the guest execution loop without
9383  * exiting to the userspace.  Otherwise, the value will be returned to the
9384  * userspace.
9385  */
9386 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9387 {
9388         int r;
9389         bool req_int_win =
9390                 dm_request_for_irq_injection(vcpu) &&
9391                 kvm_cpu_accept_dm_intr(vcpu);
9392         fastpath_t exit_fastpath;
9393
9394         bool req_immediate_exit = false;
9395
9396         /* Forbid vmenter if vcpu dirty ring is soft-full */
9397         if (unlikely(vcpu->kvm->dirty_ring_size &&
9398                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9399                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9400                 trace_kvm_dirty_ring_exit(vcpu);
9401                 r = 0;
9402                 goto out;
9403         }
9404
9405         if (kvm_request_pending(vcpu)) {
9406                 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9407                         r = -EIO;
9408                         goto out;
9409                 }
9410                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9411                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9412                                 r = 0;
9413                                 goto out;
9414                         }
9415                 }
9416                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9417                         kvm_mmu_unload(vcpu);
9418                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9419                         __kvm_migrate_timers(vcpu);
9420                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9421                         kvm_gen_update_masterclock(vcpu->kvm);
9422                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9423                         kvm_gen_kvmclock_update(vcpu);
9424                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9425                         r = kvm_guest_time_update(vcpu);
9426                         if (unlikely(r))
9427                                 goto out;
9428                 }
9429                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9430                         kvm_mmu_sync_roots(vcpu);
9431                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9432                         kvm_mmu_load_pgd(vcpu);
9433                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9434                         kvm_vcpu_flush_tlb_all(vcpu);
9435
9436                         /* Flushing all ASIDs flushes the current ASID... */
9437                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9438                 }
9439                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9440                         kvm_vcpu_flush_tlb_current(vcpu);
9441                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9442                         kvm_vcpu_flush_tlb_guest(vcpu);
9443
9444                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9445                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9446                         r = 0;
9447                         goto out;
9448                 }
9449                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9450                         if (is_guest_mode(vcpu)) {
9451                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9452                         } else {
9453                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9454                                 vcpu->mmio_needed = 0;
9455                                 r = 0;
9456                                 goto out;
9457                         }
9458                 }
9459                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9460                         /* Page is swapped out. Do synthetic halt */
9461                         vcpu->arch.apf.halted = true;
9462                         r = 1;
9463                         goto out;
9464                 }
9465                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9466                         record_steal_time(vcpu);
9467                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9468                         process_smi(vcpu);
9469                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9470                         process_nmi(vcpu);
9471                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9472                         kvm_pmu_handle_event(vcpu);
9473                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9474                         kvm_pmu_deliver_pmi(vcpu);
9475                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9476                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9477                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
9478                                      vcpu->arch.ioapic_handled_vectors)) {
9479                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9480                                 vcpu->run->eoi.vector =
9481                                                 vcpu->arch.pending_ioapic_eoi;
9482                                 r = 0;
9483                                 goto out;
9484                         }
9485                 }
9486                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9487                         vcpu_scan_ioapic(vcpu);
9488                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9489                         vcpu_load_eoi_exitmap(vcpu);
9490                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9491                         kvm_vcpu_reload_apic_access_page(vcpu);
9492                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9493                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9494                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9495                         r = 0;
9496                         goto out;
9497                 }
9498                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9499                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9500                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9501                         r = 0;
9502                         goto out;
9503                 }
9504                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9505                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9506
9507                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9508                         vcpu->run->hyperv = hv_vcpu->exit;
9509                         r = 0;
9510                         goto out;
9511                 }
9512
9513                 /*
9514                  * KVM_REQ_HV_STIMER has to be processed after
9515                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9516                  * depend on the guest clock being up-to-date
9517                  */
9518                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9519                         kvm_hv_process_stimers(vcpu);
9520                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9521                         kvm_vcpu_update_apicv(vcpu);
9522                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9523                         kvm_check_async_pf_completion(vcpu);
9524                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9525                         static_call(kvm_x86_msr_filter_changed)(vcpu);
9526
9527                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9528                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9529         }
9530
9531         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9532             kvm_xen_has_interrupt(vcpu)) {
9533                 ++vcpu->stat.req_event;
9534                 r = kvm_apic_accept_events(vcpu);
9535                 if (r < 0) {
9536                         r = 0;
9537                         goto out;
9538                 }
9539                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9540                         r = 1;
9541                         goto out;
9542                 }
9543
9544                 r = inject_pending_event(vcpu, &req_immediate_exit);
9545                 if (r < 0) {
9546                         r = 0;
9547                         goto out;
9548                 }
9549                 if (req_int_win)
9550                         static_call(kvm_x86_enable_irq_window)(vcpu);
9551
9552                 if (kvm_lapic_enabled(vcpu)) {
9553                         update_cr8_intercept(vcpu);
9554                         kvm_lapic_sync_to_vapic(vcpu);
9555                 }
9556         }
9557
9558         r = kvm_mmu_reload(vcpu);
9559         if (unlikely(r)) {
9560                 goto cancel_injection;
9561         }
9562
9563         preempt_disable();
9564
9565         static_call(kvm_x86_prepare_guest_switch)(vcpu);
9566
9567         /*
9568          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9569          * IPI are then delayed after guest entry, which ensures that they
9570          * result in virtual interrupt delivery.
9571          */
9572         local_irq_disable();
9573         vcpu->mode = IN_GUEST_MODE;
9574
9575         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9576
9577         /*
9578          * 1) We should set ->mode before checking ->requests.  Please see
9579          * the comment in kvm_vcpu_exiting_guest_mode().
9580          *
9581          * 2) For APICv, we should set ->mode before checking PID.ON. This
9582          * pairs with the memory barrier implicit in pi_test_and_set_on
9583          * (see vmx_deliver_posted_interrupt).
9584          *
9585          * 3) This also orders the write to mode from any reads to the page
9586          * tables done while the VCPU is running.  Please see the comment
9587          * in kvm_flush_remote_tlbs.
9588          */
9589         smp_mb__after_srcu_read_unlock();
9590
9591         /*
9592          * This handles the case where a posted interrupt was
9593          * notified with kvm_vcpu_kick.
9594          */
9595         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9596                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9597
9598         if (kvm_vcpu_exit_request(vcpu)) {
9599                 vcpu->mode = OUTSIDE_GUEST_MODE;
9600                 smp_wmb();
9601                 local_irq_enable();
9602                 preempt_enable();
9603                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9604                 r = 1;
9605                 goto cancel_injection;
9606         }
9607
9608         if (req_immediate_exit) {
9609                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9610                 static_call(kvm_x86_request_immediate_exit)(vcpu);
9611         }
9612
9613         fpregs_assert_state_consistent();
9614         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9615                 switch_fpu_return();
9616
9617         if (unlikely(vcpu->arch.switch_db_regs)) {
9618                 set_debugreg(0, 7);
9619                 set_debugreg(vcpu->arch.eff_db[0], 0);
9620                 set_debugreg(vcpu->arch.eff_db[1], 1);
9621                 set_debugreg(vcpu->arch.eff_db[2], 2);
9622                 set_debugreg(vcpu->arch.eff_db[3], 3);
9623         } else if (unlikely(hw_breakpoint_active())) {
9624                 set_debugreg(0, 7);
9625         }
9626
9627         for (;;) {
9628                 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9629                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9630                         break;
9631
9632                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9633                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9634                         break;
9635                 }
9636
9637                 if (vcpu->arch.apicv_active)
9638                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9639         }
9640
9641         /*
9642          * Do this here before restoring debug registers on the host.  And
9643          * since we do this before handling the vmexit, a DR access vmexit
9644          * can (a) read the correct value of the debug registers, (b) set
9645          * KVM_DEBUGREG_WONT_EXIT again.
9646          */
9647         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9648                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9649                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9650                 kvm_update_dr0123(vcpu);
9651                 kvm_update_dr7(vcpu);
9652         }
9653
9654         /*
9655          * If the guest has used debug registers, at least dr7
9656          * will be disabled while returning to the host.
9657          * If we don't have active breakpoints in the host, we don't
9658          * care about the messed up debug address registers. But if
9659          * we have some of them active, restore the old state.
9660          */
9661         if (hw_breakpoint_active())
9662                 hw_breakpoint_restore();
9663
9664         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9665         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9666
9667         vcpu->mode = OUTSIDE_GUEST_MODE;
9668         smp_wmb();
9669
9670         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9671
9672         /*
9673          * Consume any pending interrupts, including the possible source of
9674          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9675          * An instruction is required after local_irq_enable() to fully unblock
9676          * interrupts on processors that implement an interrupt shadow, the
9677          * stat.exits increment will do nicely.
9678          */
9679         kvm_before_interrupt(vcpu);
9680         local_irq_enable();
9681         ++vcpu->stat.exits;
9682         local_irq_disable();
9683         kvm_after_interrupt(vcpu);
9684
9685         /*
9686          * Wait until after servicing IRQs to account guest time so that any
9687          * ticks that occurred while running the guest are properly accounted
9688          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9689          * of accounting via context tracking, but the loss of accuracy is
9690          * acceptable for all known use cases.
9691          */
9692         vtime_account_guest_exit();
9693
9694         if (lapic_in_kernel(vcpu)) {
9695                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9696                 if (delta != S64_MIN) {
9697                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9698                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9699                 }
9700         }
9701
9702         local_irq_enable();
9703         preempt_enable();
9704
9705         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9706
9707         /*
9708          * Profile KVM exit RIPs:
9709          */
9710         if (unlikely(prof_on == KVM_PROFILING)) {
9711                 unsigned long rip = kvm_rip_read(vcpu);
9712                 profile_hit(KVM_PROFILING, (void *)rip);
9713         }
9714
9715         if (unlikely(vcpu->arch.tsc_always_catchup))
9716                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9717
9718         if (vcpu->arch.apic_attention)
9719                 kvm_lapic_sync_from_vapic(vcpu);
9720
9721         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9722         return r;
9723
9724 cancel_injection:
9725         if (req_immediate_exit)
9726                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9727         static_call(kvm_x86_cancel_injection)(vcpu);
9728         if (unlikely(vcpu->arch.apic_attention))
9729                 kvm_lapic_sync_from_vapic(vcpu);
9730 out:
9731         return r;
9732 }
9733
9734 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9735 {
9736         if (!kvm_arch_vcpu_runnable(vcpu) &&
9737             (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9738                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9739                 kvm_vcpu_block(vcpu);
9740                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9741
9742                 if (kvm_x86_ops.post_block)
9743                         static_call(kvm_x86_post_block)(vcpu);
9744
9745                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9746                         return 1;
9747         }
9748
9749         if (kvm_apic_accept_events(vcpu) < 0)
9750                 return 0;
9751         switch(vcpu->arch.mp_state) {
9752         case KVM_MP_STATE_HALTED:
9753         case KVM_MP_STATE_AP_RESET_HOLD:
9754                 vcpu->arch.pv.pv_unhalted = false;
9755                 vcpu->arch.mp_state =
9756                         KVM_MP_STATE_RUNNABLE;
9757                 fallthrough;
9758         case KVM_MP_STATE_RUNNABLE:
9759                 vcpu->arch.apf.halted = false;
9760                 break;
9761         case KVM_MP_STATE_INIT_RECEIVED:
9762                 break;
9763         default:
9764                 return -EINTR;
9765         }
9766         return 1;
9767 }
9768
9769 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9770 {
9771         if (is_guest_mode(vcpu))
9772                 kvm_check_nested_events(vcpu);
9773
9774         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9775                 !vcpu->arch.apf.halted);
9776 }
9777
9778 static int vcpu_run(struct kvm_vcpu *vcpu)
9779 {
9780         int r;
9781         struct kvm *kvm = vcpu->kvm;
9782
9783         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9784         vcpu->arch.l1tf_flush_l1d = true;
9785
9786         for (;;) {
9787                 if (kvm_vcpu_running(vcpu)) {
9788                         r = vcpu_enter_guest(vcpu);
9789                 } else {
9790                         r = vcpu_block(kvm, vcpu);
9791                 }
9792
9793                 if (r <= 0)
9794                         break;
9795
9796                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9797                 if (kvm_cpu_has_pending_timer(vcpu))
9798                         kvm_inject_pending_timer_irqs(vcpu);
9799
9800                 if (dm_request_for_irq_injection(vcpu) &&
9801                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9802                         r = 0;
9803                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9804                         ++vcpu->stat.request_irq_exits;
9805                         break;
9806                 }
9807
9808                 if (__xfer_to_guest_mode_work_pending()) {
9809                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9810                         r = xfer_to_guest_mode_handle_work(vcpu);
9811                         if (r)
9812                                 return r;
9813                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9814                 }
9815         }
9816
9817         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9818
9819         return r;
9820 }
9821
9822 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9823 {
9824         int r;
9825
9826         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9827         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9828         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9829         return r;
9830 }
9831
9832 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9833 {
9834         BUG_ON(!vcpu->arch.pio.count);
9835
9836         return complete_emulated_io(vcpu);
9837 }
9838
9839 /*
9840  * Implements the following, as a state machine:
9841  *
9842  * read:
9843  *   for each fragment
9844  *     for each mmio piece in the fragment
9845  *       write gpa, len
9846  *       exit
9847  *       copy data
9848  *   execute insn
9849  *
9850  * write:
9851  *   for each fragment
9852  *     for each mmio piece in the fragment
9853  *       write gpa, len
9854  *       copy data
9855  *       exit
9856  */
9857 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9858 {
9859         struct kvm_run *run = vcpu->run;
9860         struct kvm_mmio_fragment *frag;
9861         unsigned len;
9862
9863         BUG_ON(!vcpu->mmio_needed);
9864
9865         /* Complete previous fragment */
9866         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9867         len = min(8u, frag->len);
9868         if (!vcpu->mmio_is_write)
9869                 memcpy(frag->data, run->mmio.data, len);
9870
9871         if (frag->len <= 8) {
9872                 /* Switch to the next fragment. */
9873                 frag++;
9874                 vcpu->mmio_cur_fragment++;
9875         } else {
9876                 /* Go forward to the next mmio piece. */
9877                 frag->data += len;
9878                 frag->gpa += len;
9879                 frag->len -= len;
9880         }
9881
9882         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9883                 vcpu->mmio_needed = 0;
9884
9885                 /* FIXME: return into emulator if single-stepping.  */
9886                 if (vcpu->mmio_is_write)
9887                         return 1;
9888                 vcpu->mmio_read_completed = 1;
9889                 return complete_emulated_io(vcpu);
9890         }
9891
9892         run->exit_reason = KVM_EXIT_MMIO;
9893         run->mmio.phys_addr = frag->gpa;
9894         if (vcpu->mmio_is_write)
9895                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9896         run->mmio.len = min(8u, frag->len);
9897         run->mmio.is_write = vcpu->mmio_is_write;
9898         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9899         return 0;
9900 }
9901
9902 static void kvm_save_current_fpu(struct fpu *fpu)
9903 {
9904         /*
9905          * If the target FPU state is not resident in the CPU registers, just
9906          * memcpy() from current, else save CPU state directly to the target.
9907          */
9908         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9909                 memcpy(&fpu->state, &current->thread.fpu.state,
9910                        fpu_kernel_xstate_size);
9911         else
9912                 save_fpregs_to_fpstate(fpu);
9913 }
9914
9915 /* Swap (qemu) user FPU context for the guest FPU context. */
9916 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9917 {
9918         fpregs_lock();
9919
9920         kvm_save_current_fpu(vcpu->arch.user_fpu);
9921
9922         /*
9923          * Guests with protected state can't have it set by the hypervisor,
9924          * so skip trying to set it.
9925          */
9926         if (vcpu->arch.guest_fpu)
9927                 /* PKRU is separately restored in kvm_x86_ops.run. */
9928                 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
9929                                         ~XFEATURE_MASK_PKRU);
9930
9931         fpregs_mark_activate();
9932         fpregs_unlock();
9933
9934         trace_kvm_fpu(1);
9935 }
9936
9937 /* When vcpu_run ends, restore user space FPU context. */
9938 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9939 {
9940         fpregs_lock();
9941
9942         /*
9943          * Guests with protected state can't have it read by the hypervisor,
9944          * so skip trying to save it.
9945          */
9946         if (vcpu->arch.guest_fpu)
9947                 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9948
9949         restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
9950
9951         fpregs_mark_activate();
9952         fpregs_unlock();
9953
9954         ++vcpu->stat.fpu_reload;
9955         trace_kvm_fpu(0);
9956 }
9957
9958 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9959 {
9960         struct kvm_run *kvm_run = vcpu->run;
9961         int r;
9962
9963         vcpu_load(vcpu);
9964         kvm_sigset_activate(vcpu);
9965         kvm_run->flags = 0;
9966         kvm_load_guest_fpu(vcpu);
9967
9968         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9969                 if (kvm_run->immediate_exit) {
9970                         r = -EINTR;
9971                         goto out;
9972                 }
9973                 kvm_vcpu_block(vcpu);
9974                 if (kvm_apic_accept_events(vcpu) < 0) {
9975                         r = 0;
9976                         goto out;
9977                 }
9978                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9979                 r = -EAGAIN;
9980                 if (signal_pending(current)) {
9981                         r = -EINTR;
9982                         kvm_run->exit_reason = KVM_EXIT_INTR;
9983                         ++vcpu->stat.signal_exits;
9984                 }
9985                 goto out;
9986         }
9987
9988         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
9989             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
9990                 r = -EINVAL;
9991                 goto out;
9992         }
9993
9994         if (kvm_run->kvm_dirty_regs) {
9995                 r = sync_regs(vcpu);
9996                 if (r != 0)
9997                         goto out;
9998         }
9999
10000         /* re-sync apic's tpr */
10001         if (!lapic_in_kernel(vcpu)) {
10002                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10003                         r = -EINVAL;
10004                         goto out;
10005                 }
10006         }
10007
10008         if (unlikely(vcpu->arch.complete_userspace_io)) {
10009                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10010                 vcpu->arch.complete_userspace_io = NULL;
10011                 r = cui(vcpu);
10012                 if (r <= 0)
10013                         goto out;
10014         } else
10015                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10016
10017         if (kvm_run->immediate_exit)
10018                 r = -EINTR;
10019         else
10020                 r = vcpu_run(vcpu);
10021
10022 out:
10023         kvm_put_guest_fpu(vcpu);
10024         if (kvm_run->kvm_valid_regs)
10025                 store_regs(vcpu);
10026         post_kvm_run_save(vcpu);
10027         kvm_sigset_deactivate(vcpu);
10028
10029         vcpu_put(vcpu);
10030         return r;
10031 }
10032
10033 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10034 {
10035         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10036                 /*
10037                  * We are here if userspace calls get_regs() in the middle of
10038                  * instruction emulation. Registers state needs to be copied
10039                  * back from emulation context to vcpu. Userspace shouldn't do
10040                  * that usually, but some bad designed PV devices (vmware
10041                  * backdoor interface) need this to work
10042                  */
10043                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10044                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10045         }
10046         regs->rax = kvm_rax_read(vcpu);
10047         regs->rbx = kvm_rbx_read(vcpu);
10048         regs->rcx = kvm_rcx_read(vcpu);
10049         regs->rdx = kvm_rdx_read(vcpu);
10050         regs->rsi = kvm_rsi_read(vcpu);
10051         regs->rdi = kvm_rdi_read(vcpu);
10052         regs->rsp = kvm_rsp_read(vcpu);
10053         regs->rbp = kvm_rbp_read(vcpu);
10054 #ifdef CONFIG_X86_64
10055         regs->r8 = kvm_r8_read(vcpu);
10056         regs->r9 = kvm_r9_read(vcpu);
10057         regs->r10 = kvm_r10_read(vcpu);
10058         regs->r11 = kvm_r11_read(vcpu);
10059         regs->r12 = kvm_r12_read(vcpu);
10060         regs->r13 = kvm_r13_read(vcpu);
10061         regs->r14 = kvm_r14_read(vcpu);
10062         regs->r15 = kvm_r15_read(vcpu);
10063 #endif
10064
10065         regs->rip = kvm_rip_read(vcpu);
10066         regs->rflags = kvm_get_rflags(vcpu);
10067 }
10068
10069 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10070 {
10071         vcpu_load(vcpu);
10072         __get_regs(vcpu, regs);
10073         vcpu_put(vcpu);
10074         return 0;
10075 }
10076
10077 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10078 {
10079         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10080         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10081
10082         kvm_rax_write(vcpu, regs->rax);
10083         kvm_rbx_write(vcpu, regs->rbx);
10084         kvm_rcx_write(vcpu, regs->rcx);
10085         kvm_rdx_write(vcpu, regs->rdx);
10086         kvm_rsi_write(vcpu, regs->rsi);
10087         kvm_rdi_write(vcpu, regs->rdi);
10088         kvm_rsp_write(vcpu, regs->rsp);
10089         kvm_rbp_write(vcpu, regs->rbp);
10090 #ifdef CONFIG_X86_64
10091         kvm_r8_write(vcpu, regs->r8);
10092         kvm_r9_write(vcpu, regs->r9);
10093         kvm_r10_write(vcpu, regs->r10);
10094         kvm_r11_write(vcpu, regs->r11);
10095         kvm_r12_write(vcpu, regs->r12);
10096         kvm_r13_write(vcpu, regs->r13);
10097         kvm_r14_write(vcpu, regs->r14);
10098         kvm_r15_write(vcpu, regs->r15);
10099 #endif
10100
10101         kvm_rip_write(vcpu, regs->rip);
10102         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10103
10104         vcpu->arch.exception.pending = false;
10105
10106         kvm_make_request(KVM_REQ_EVENT, vcpu);
10107 }
10108
10109 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10110 {
10111         vcpu_load(vcpu);
10112         __set_regs(vcpu, regs);
10113         vcpu_put(vcpu);
10114         return 0;
10115 }
10116
10117 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10118 {
10119         struct kvm_segment cs;
10120
10121         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10122         *db = cs.db;
10123         *l = cs.l;
10124 }
10125 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10126
10127 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10128 {
10129         struct desc_ptr dt;
10130
10131         if (vcpu->arch.guest_state_protected)
10132                 goto skip_protected_regs;
10133
10134         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10135         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10136         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10137         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10138         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10139         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10140
10141         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10142         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10143
10144         static_call(kvm_x86_get_idt)(vcpu, &dt);
10145         sregs->idt.limit = dt.size;
10146         sregs->idt.base = dt.address;
10147         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10148         sregs->gdt.limit = dt.size;
10149         sregs->gdt.base = dt.address;
10150
10151         sregs->cr2 = vcpu->arch.cr2;
10152         sregs->cr3 = kvm_read_cr3(vcpu);
10153
10154 skip_protected_regs:
10155         sregs->cr0 = kvm_read_cr0(vcpu);
10156         sregs->cr4 = kvm_read_cr4(vcpu);
10157         sregs->cr8 = kvm_get_cr8(vcpu);
10158         sregs->efer = vcpu->arch.efer;
10159         sregs->apic_base = kvm_get_apic_base(vcpu);
10160 }
10161
10162 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10163 {
10164         __get_sregs_common(vcpu, sregs);
10165
10166         if (vcpu->arch.guest_state_protected)
10167                 return;
10168
10169         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10170                 set_bit(vcpu->arch.interrupt.nr,
10171                         (unsigned long *)sregs->interrupt_bitmap);
10172 }
10173
10174 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10175 {
10176         int i;
10177
10178         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10179
10180         if (vcpu->arch.guest_state_protected)
10181                 return;
10182
10183         if (is_pae_paging(vcpu)) {
10184                 for (i = 0 ; i < 4 ; i++)
10185                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10186                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10187         }
10188 }
10189
10190 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10191                                   struct kvm_sregs *sregs)
10192 {
10193         vcpu_load(vcpu);
10194         __get_sregs(vcpu, sregs);
10195         vcpu_put(vcpu);
10196         return 0;
10197 }
10198
10199 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10200                                     struct kvm_mp_state *mp_state)
10201 {
10202         int r;
10203
10204         vcpu_load(vcpu);
10205         if (kvm_mpx_supported())
10206                 kvm_load_guest_fpu(vcpu);
10207
10208         r = kvm_apic_accept_events(vcpu);
10209         if (r < 0)
10210                 goto out;
10211         r = 0;
10212
10213         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10214              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10215             vcpu->arch.pv.pv_unhalted)
10216                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10217         else
10218                 mp_state->mp_state = vcpu->arch.mp_state;
10219
10220 out:
10221         if (kvm_mpx_supported())
10222                 kvm_put_guest_fpu(vcpu);
10223         vcpu_put(vcpu);
10224         return r;
10225 }
10226
10227 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10228                                     struct kvm_mp_state *mp_state)
10229 {
10230         int ret = -EINVAL;
10231
10232         vcpu_load(vcpu);
10233
10234         if (!lapic_in_kernel(vcpu) &&
10235             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10236                 goto out;
10237
10238         /*
10239          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10240          * INIT state; latched init should be reported using
10241          * KVM_SET_VCPU_EVENTS, so reject it here.
10242          */
10243         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10244             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10245              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10246                 goto out;
10247
10248         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10249                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10250                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10251         } else
10252                 vcpu->arch.mp_state = mp_state->mp_state;
10253         kvm_make_request(KVM_REQ_EVENT, vcpu);
10254
10255         ret = 0;
10256 out:
10257         vcpu_put(vcpu);
10258         return ret;
10259 }
10260
10261 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10262                     int reason, bool has_error_code, u32 error_code)
10263 {
10264         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10265         int ret;
10266
10267         init_emulate_ctxt(vcpu);
10268
10269         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10270                                    has_error_code, error_code);
10271         if (ret) {
10272                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10273                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10274                 vcpu->run->internal.ndata = 0;
10275                 return 0;
10276         }
10277
10278         kvm_rip_write(vcpu, ctxt->eip);
10279         kvm_set_rflags(vcpu, ctxt->eflags);
10280         return 1;
10281 }
10282 EXPORT_SYMBOL_GPL(kvm_task_switch);
10283
10284 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10285 {
10286         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10287                 /*
10288                  * When EFER.LME and CR0.PG are set, the processor is in
10289                  * 64-bit mode (though maybe in a 32-bit code segment).
10290                  * CR4.PAE and EFER.LMA must be set.
10291                  */
10292                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10293                         return false;
10294                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10295                         return false;
10296         } else {
10297                 /*
10298                  * Not in 64-bit mode: EFER.LMA is clear and the code
10299                  * segment cannot be 64-bit.
10300                  */
10301                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10302                         return false;
10303         }
10304
10305         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10306 }
10307
10308 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10309                 int *mmu_reset_needed, bool update_pdptrs)
10310 {
10311         struct msr_data apic_base_msr;
10312         int idx;
10313         struct desc_ptr dt;
10314
10315         if (!kvm_is_valid_sregs(vcpu, sregs))
10316                 return -EINVAL;
10317
10318         apic_base_msr.data = sregs->apic_base;
10319         apic_base_msr.host_initiated = true;
10320         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10321                 return -EINVAL;
10322
10323         if (vcpu->arch.guest_state_protected)
10324                 return 0;
10325
10326         dt.size = sregs->idt.limit;
10327         dt.address = sregs->idt.base;
10328         static_call(kvm_x86_set_idt)(vcpu, &dt);
10329         dt.size = sregs->gdt.limit;
10330         dt.address = sregs->gdt.base;
10331         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10332
10333         vcpu->arch.cr2 = sregs->cr2;
10334         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10335         vcpu->arch.cr3 = sregs->cr3;
10336         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10337
10338         kvm_set_cr8(vcpu, sregs->cr8);
10339
10340         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10341         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10342
10343         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10344         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10345         vcpu->arch.cr0 = sregs->cr0;
10346
10347         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10348         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10349
10350         if (update_pdptrs) {
10351                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10352                 if (is_pae_paging(vcpu)) {
10353                         load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10354                         *mmu_reset_needed = 1;
10355                 }
10356                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10357         }
10358
10359         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10360         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10361         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10362         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10363         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10364         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10365
10366         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10367         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10368
10369         update_cr8_intercept(vcpu);
10370
10371         /* Older userspace won't unhalt the vcpu on reset. */
10372         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10373             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10374             !is_protmode(vcpu))
10375                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10376
10377         return 0;
10378 }
10379
10380 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10381 {
10382         int pending_vec, max_bits;
10383         int mmu_reset_needed = 0;
10384         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10385
10386         if (ret)
10387                 return ret;
10388
10389         if (mmu_reset_needed)
10390                 kvm_mmu_reset_context(vcpu);
10391
10392         max_bits = KVM_NR_INTERRUPTS;
10393         pending_vec = find_first_bit(
10394                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10395
10396         if (pending_vec < max_bits) {
10397                 kvm_queue_interrupt(vcpu, pending_vec, false);
10398                 pr_debug("Set back pending irq %d\n", pending_vec);
10399                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10400         }
10401         return 0;
10402 }
10403
10404 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10405 {
10406         int mmu_reset_needed = 0;
10407         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10408         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10409                 !(sregs2->efer & EFER_LMA);
10410         int i, ret;
10411
10412         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10413                 return -EINVAL;
10414
10415         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10416                 return -EINVAL;
10417
10418         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10419                                  &mmu_reset_needed, !valid_pdptrs);
10420         if (ret)
10421                 return ret;
10422
10423         if (valid_pdptrs) {
10424                 for (i = 0; i < 4 ; i++)
10425                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10426
10427                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10428                 mmu_reset_needed = 1;
10429                 vcpu->arch.pdptrs_from_userspace = true;
10430         }
10431         if (mmu_reset_needed)
10432                 kvm_mmu_reset_context(vcpu);
10433         return 0;
10434 }
10435
10436 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10437                                   struct kvm_sregs *sregs)
10438 {
10439         int ret;
10440
10441         vcpu_load(vcpu);
10442         ret = __set_sregs(vcpu, sregs);
10443         vcpu_put(vcpu);
10444         return ret;
10445 }
10446
10447 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10448                                         struct kvm_guest_debug *dbg)
10449 {
10450         unsigned long rflags;
10451         int i, r;
10452
10453         if (vcpu->arch.guest_state_protected)
10454                 return -EINVAL;
10455
10456         vcpu_load(vcpu);
10457
10458         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10459                 r = -EBUSY;
10460                 if (vcpu->arch.exception.pending)
10461                         goto out;
10462                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10463                         kvm_queue_exception(vcpu, DB_VECTOR);
10464                 else
10465                         kvm_queue_exception(vcpu, BP_VECTOR);
10466         }
10467
10468         /*
10469          * Read rflags as long as potentially injected trace flags are still
10470          * filtered out.
10471          */
10472         rflags = kvm_get_rflags(vcpu);
10473
10474         vcpu->guest_debug = dbg->control;
10475         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10476                 vcpu->guest_debug = 0;
10477
10478         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10479                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10480                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10481                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10482         } else {
10483                 for (i = 0; i < KVM_NR_DB_REGS; i++)
10484                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10485         }
10486         kvm_update_dr7(vcpu);
10487
10488         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10489                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10490
10491         /*
10492          * Trigger an rflags update that will inject or remove the trace
10493          * flags.
10494          */
10495         kvm_set_rflags(vcpu, rflags);
10496
10497         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10498
10499         r = 0;
10500
10501 out:
10502         vcpu_put(vcpu);
10503         return r;
10504 }
10505
10506 /*
10507  * Translate a guest virtual address to a guest physical address.
10508  */
10509 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10510                                     struct kvm_translation *tr)
10511 {
10512         unsigned long vaddr = tr->linear_address;
10513         gpa_t gpa;
10514         int idx;
10515
10516         vcpu_load(vcpu);
10517
10518         idx = srcu_read_lock(&vcpu->kvm->srcu);
10519         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10520         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10521         tr->physical_address = gpa;
10522         tr->valid = gpa != UNMAPPED_GVA;
10523         tr->writeable = 1;
10524         tr->usermode = 0;
10525
10526         vcpu_put(vcpu);
10527         return 0;
10528 }
10529
10530 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10531 {
10532         struct fxregs_state *fxsave;
10533
10534         if (!vcpu->arch.guest_fpu)
10535                 return 0;
10536
10537         vcpu_load(vcpu);
10538
10539         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10540         memcpy(fpu->fpr, fxsave->st_space, 128);
10541         fpu->fcw = fxsave->cwd;
10542         fpu->fsw = fxsave->swd;
10543         fpu->ftwx = fxsave->twd;
10544         fpu->last_opcode = fxsave->fop;
10545         fpu->last_ip = fxsave->rip;
10546         fpu->last_dp = fxsave->rdp;
10547         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10548
10549         vcpu_put(vcpu);
10550         return 0;
10551 }
10552
10553 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10554 {
10555         struct fxregs_state *fxsave;
10556
10557         if (!vcpu->arch.guest_fpu)
10558                 return 0;
10559
10560         vcpu_load(vcpu);
10561
10562         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10563
10564         memcpy(fxsave->st_space, fpu->fpr, 128);
10565         fxsave->cwd = fpu->fcw;
10566         fxsave->swd = fpu->fsw;
10567         fxsave->twd = fpu->ftwx;
10568         fxsave->fop = fpu->last_opcode;
10569         fxsave->rip = fpu->last_ip;
10570         fxsave->rdp = fpu->last_dp;
10571         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10572
10573         vcpu_put(vcpu);
10574         return 0;
10575 }
10576
10577 static void store_regs(struct kvm_vcpu *vcpu)
10578 {
10579         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10580
10581         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10582                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10583
10584         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10585                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10586
10587         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10588                 kvm_vcpu_ioctl_x86_get_vcpu_events(
10589                                 vcpu, &vcpu->run->s.regs.events);
10590 }
10591
10592 static int sync_regs(struct kvm_vcpu *vcpu)
10593 {
10594         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10595                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10596                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10597         }
10598         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10599                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10600                         return -EINVAL;
10601                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10602         }
10603         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10604                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10605                                 vcpu, &vcpu->run->s.regs.events))
10606                         return -EINVAL;
10607                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10608         }
10609
10610         return 0;
10611 }
10612
10613 static void fx_init(struct kvm_vcpu *vcpu)
10614 {
10615         if (!vcpu->arch.guest_fpu)
10616                 return;
10617
10618         fpstate_init(&vcpu->arch.guest_fpu->state);
10619         if (boot_cpu_has(X86_FEATURE_XSAVES))
10620                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10621                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
10622
10623         /*
10624          * Ensure guest xcr0 is valid for loading
10625          */
10626         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10627
10628         vcpu->arch.cr0 |= X86_CR0_ET;
10629 }
10630
10631 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10632 {
10633         if (vcpu->arch.guest_fpu) {
10634                 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10635                 vcpu->arch.guest_fpu = NULL;
10636         }
10637 }
10638 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10639
10640 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10641 {
10642         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10643                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10644                              "guest TSC will not be reliable\n");
10645
10646         return 0;
10647 }
10648
10649 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10650 {
10651         struct page *page;
10652         int r;
10653
10654         vcpu->arch.last_vmentry_cpu = -1;
10655
10656         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10657                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10658         else
10659                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10660
10661         r = kvm_mmu_create(vcpu);
10662         if (r < 0)
10663                 return r;
10664
10665         if (irqchip_in_kernel(vcpu->kvm)) {
10666                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10667                 if (r < 0)
10668                         goto fail_mmu_destroy;
10669                 if (kvm_apicv_activated(vcpu->kvm))
10670                         vcpu->arch.apicv_active = true;
10671         } else
10672                 static_branch_inc(&kvm_has_noapic_vcpu);
10673
10674         r = -ENOMEM;
10675
10676         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10677         if (!page)
10678                 goto fail_free_lapic;
10679         vcpu->arch.pio_data = page_address(page);
10680
10681         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10682                                        GFP_KERNEL_ACCOUNT);
10683         if (!vcpu->arch.mce_banks)
10684                 goto fail_free_pio_data;
10685         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10686
10687         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10688                                 GFP_KERNEL_ACCOUNT))
10689                 goto fail_free_mce_banks;
10690
10691         if (!alloc_emulate_ctxt(vcpu))
10692                 goto free_wbinvd_dirty_mask;
10693
10694         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10695                                                 GFP_KERNEL_ACCOUNT);
10696         if (!vcpu->arch.user_fpu) {
10697                 pr_err("kvm: failed to allocate userspace's fpu\n");
10698                 goto free_emulate_ctxt;
10699         }
10700
10701         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10702                                                  GFP_KERNEL_ACCOUNT);
10703         if (!vcpu->arch.guest_fpu) {
10704                 pr_err("kvm: failed to allocate vcpu's fpu\n");
10705                 goto free_user_fpu;
10706         }
10707         fx_init(vcpu);
10708
10709         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10710         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10711
10712         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10713
10714         kvm_async_pf_hash_reset(vcpu);
10715         kvm_pmu_init(vcpu);
10716
10717         vcpu->arch.pending_external_vector = -1;
10718         vcpu->arch.preempted_in_kernel = false;
10719
10720 #if IS_ENABLED(CONFIG_HYPERV)
10721         vcpu->arch.hv_root_tdp = INVALID_PAGE;
10722 #endif
10723
10724         r = static_call(kvm_x86_vcpu_create)(vcpu);
10725         if (r)
10726                 goto free_guest_fpu;
10727
10728         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10729         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10730         kvm_vcpu_mtrr_init(vcpu);
10731         vcpu_load(vcpu);
10732         kvm_set_tsc_khz(vcpu, max_tsc_khz);
10733         kvm_vcpu_reset(vcpu, false);
10734         kvm_init_mmu(vcpu);
10735         vcpu_put(vcpu);
10736         return 0;
10737
10738 free_guest_fpu:
10739         kvm_free_guest_fpu(vcpu);
10740 free_user_fpu:
10741         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10742 free_emulate_ctxt:
10743         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10744 free_wbinvd_dirty_mask:
10745         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10746 fail_free_mce_banks:
10747         kfree(vcpu->arch.mce_banks);
10748 fail_free_pio_data:
10749         free_page((unsigned long)vcpu->arch.pio_data);
10750 fail_free_lapic:
10751         kvm_free_lapic(vcpu);
10752 fail_mmu_destroy:
10753         kvm_mmu_destroy(vcpu);
10754         return r;
10755 }
10756
10757 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10758 {
10759         struct kvm *kvm = vcpu->kvm;
10760
10761         if (mutex_lock_killable(&vcpu->mutex))
10762                 return;
10763         vcpu_load(vcpu);
10764         kvm_synchronize_tsc(vcpu, 0);
10765         vcpu_put(vcpu);
10766
10767         /* poll control enabled by default */
10768         vcpu->arch.msr_kvm_poll_control = 1;
10769
10770         mutex_unlock(&vcpu->mutex);
10771
10772         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10773                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10774                                                 KVMCLOCK_SYNC_PERIOD);
10775 }
10776
10777 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10778 {
10779         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10780         int idx;
10781
10782         kvm_release_pfn(cache->pfn, cache->dirty, cache);
10783
10784         kvmclock_reset(vcpu);
10785
10786         static_call(kvm_x86_vcpu_free)(vcpu);
10787
10788         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10789         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10790         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10791         kvm_free_guest_fpu(vcpu);
10792
10793         kvm_hv_vcpu_uninit(vcpu);
10794         kvm_pmu_destroy(vcpu);
10795         kfree(vcpu->arch.mce_banks);
10796         kvm_free_lapic(vcpu);
10797         idx = srcu_read_lock(&vcpu->kvm->srcu);
10798         kvm_mmu_destroy(vcpu);
10799         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10800         free_page((unsigned long)vcpu->arch.pio_data);
10801         kvfree(vcpu->arch.cpuid_entries);
10802         if (!lapic_in_kernel(vcpu))
10803                 static_branch_dec(&kvm_has_noapic_vcpu);
10804 }
10805
10806 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10807 {
10808         unsigned long old_cr0 = kvm_read_cr0(vcpu);
10809         unsigned long new_cr0;
10810         u32 eax, dummy;
10811
10812         kvm_lapic_reset(vcpu, init_event);
10813
10814         vcpu->arch.hflags = 0;
10815
10816         vcpu->arch.smi_pending = 0;
10817         vcpu->arch.smi_count = 0;
10818         atomic_set(&vcpu->arch.nmi_queued, 0);
10819         vcpu->arch.nmi_pending = 0;
10820         vcpu->arch.nmi_injected = false;
10821         kvm_clear_interrupt_queue(vcpu);
10822         kvm_clear_exception_queue(vcpu);
10823
10824         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10825         kvm_update_dr0123(vcpu);
10826         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10827         vcpu->arch.dr7 = DR7_FIXED_1;
10828         kvm_update_dr7(vcpu);
10829
10830         vcpu->arch.cr2 = 0;
10831
10832         kvm_make_request(KVM_REQ_EVENT, vcpu);
10833         vcpu->arch.apf.msr_en_val = 0;
10834         vcpu->arch.apf.msr_int_val = 0;
10835         vcpu->arch.st.msr_val = 0;
10836
10837         kvmclock_reset(vcpu);
10838
10839         kvm_clear_async_pf_completion_queue(vcpu);
10840         kvm_async_pf_hash_reset(vcpu);
10841         vcpu->arch.apf.halted = false;
10842
10843         if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10844                 void *mpx_state_buffer;
10845
10846                 /*
10847                  * To avoid have the INIT path from kvm_apic_has_events() that be
10848                  * called with loaded FPU and does not let userspace fix the state.
10849                  */
10850                 if (init_event)
10851                         kvm_put_guest_fpu(vcpu);
10852                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10853                                         XFEATURE_BNDREGS);
10854                 if (mpx_state_buffer)
10855                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10856                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10857                                         XFEATURE_BNDCSR);
10858                 if (mpx_state_buffer)
10859                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10860                 if (init_event)
10861                         kvm_load_guest_fpu(vcpu);
10862         }
10863
10864         if (!init_event) {
10865                 kvm_pmu_reset(vcpu);
10866                 vcpu->arch.smbase = 0x30000;
10867
10868                 vcpu->arch.msr_misc_features_enables = 0;
10869
10870                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10871         }
10872
10873         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10874         vcpu->arch.regs_avail = ~0;
10875         vcpu->arch.regs_dirty = ~0;
10876
10877         /*
10878          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10879          * if no CPUID match is found.  Note, it's impossible to get a match at
10880          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10881          * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10882          * But, go through the motions in case that's ever remedied.
10883          */
10884         eax = 1;
10885         if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10886                 eax = 0x600;
10887         kvm_rdx_write(vcpu, eax);
10888
10889         vcpu->arch.ia32_xss = 0;
10890
10891         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10892
10893         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10894         kvm_rip_write(vcpu, 0xfff0);
10895
10896         /*
10897          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
10898          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10899          * (or qualify) that with a footnote stating that CD/NW are preserved.
10900          */
10901         new_cr0 = X86_CR0_ET;
10902         if (init_event)
10903                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10904         else
10905                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10906
10907         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
10908         static_call(kvm_x86_set_cr4)(vcpu, 0);
10909         static_call(kvm_x86_set_efer)(vcpu, 0);
10910         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10911
10912         /*
10913          * Reset the MMU context if paging was enabled prior to INIT (which is
10914          * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
10915          * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10916          * checked because it is unconditionally cleared on INIT and all other
10917          * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10918          * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10919          */
10920         if (old_cr0 & X86_CR0_PG)
10921                 kvm_mmu_reset_context(vcpu);
10922
10923         /*
10924          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
10925          * APM states the TLBs are untouched by INIT, but it also states that
10926          * the TLBs are flushed on "External initialization of the processor."
10927          * Flush the guest TLB regardless of vendor, there is no meaningful
10928          * benefit in relying on the guest to flush the TLB immediately after
10929          * INIT.  A spurious TLB flush is benign and likely negligible from a
10930          * performance perspective.
10931          */
10932         if (init_event)
10933                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
10934 }
10935 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
10936
10937 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10938 {
10939         struct kvm_segment cs;
10940
10941         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10942         cs.selector = vector << 8;
10943         cs.base = vector << 12;
10944         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10945         kvm_rip_write(vcpu, 0);
10946 }
10947 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10948
10949 int kvm_arch_hardware_enable(void)
10950 {
10951         struct kvm *kvm;
10952         struct kvm_vcpu *vcpu;
10953         int i;
10954         int ret;
10955         u64 local_tsc;
10956         u64 max_tsc = 0;
10957         bool stable, backwards_tsc = false;
10958
10959         kvm_user_return_msr_cpu_online();
10960         ret = static_call(kvm_x86_hardware_enable)();
10961         if (ret != 0)
10962                 return ret;
10963
10964         local_tsc = rdtsc();
10965         stable = !kvm_check_tsc_unstable();
10966         list_for_each_entry(kvm, &vm_list, vm_list) {
10967                 kvm_for_each_vcpu(i, vcpu, kvm) {
10968                         if (!stable && vcpu->cpu == smp_processor_id())
10969                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10970                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10971                                 backwards_tsc = true;
10972                                 if (vcpu->arch.last_host_tsc > max_tsc)
10973                                         max_tsc = vcpu->arch.last_host_tsc;
10974                         }
10975                 }
10976         }
10977
10978         /*
10979          * Sometimes, even reliable TSCs go backwards.  This happens on
10980          * platforms that reset TSC during suspend or hibernate actions, but
10981          * maintain synchronization.  We must compensate.  Fortunately, we can
10982          * detect that condition here, which happens early in CPU bringup,
10983          * before any KVM threads can be running.  Unfortunately, we can't
10984          * bring the TSCs fully up to date with real time, as we aren't yet far
10985          * enough into CPU bringup that we know how much real time has actually
10986          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10987          * variables that haven't been updated yet.
10988          *
10989          * So we simply find the maximum observed TSC above, then record the
10990          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10991          * the adjustment will be applied.  Note that we accumulate
10992          * adjustments, in case multiple suspend cycles happen before some VCPU
10993          * gets a chance to run again.  In the event that no KVM threads get a
10994          * chance to run, we will miss the entire elapsed period, as we'll have
10995          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10996          * loose cycle time.  This isn't too big a deal, since the loss will be
10997          * uniform across all VCPUs (not to mention the scenario is extremely
10998          * unlikely). It is possible that a second hibernate recovery happens
10999          * much faster than a first, causing the observed TSC here to be
11000          * smaller; this would require additional padding adjustment, which is
11001          * why we set last_host_tsc to the local tsc observed here.
11002          *
11003          * N.B. - this code below runs only on platforms with reliable TSC,
11004          * as that is the only way backwards_tsc is set above.  Also note
11005          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11006          * have the same delta_cyc adjustment applied if backwards_tsc
11007          * is detected.  Note further, this adjustment is only done once,
11008          * as we reset last_host_tsc on all VCPUs to stop this from being
11009          * called multiple times (one for each physical CPU bringup).
11010          *
11011          * Platforms with unreliable TSCs don't have to deal with this, they
11012          * will be compensated by the logic in vcpu_load, which sets the TSC to
11013          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11014          * guarantee that they stay in perfect synchronization.
11015          */
11016         if (backwards_tsc) {
11017                 u64 delta_cyc = max_tsc - local_tsc;
11018                 list_for_each_entry(kvm, &vm_list, vm_list) {
11019                         kvm->arch.backwards_tsc_observed = true;
11020                         kvm_for_each_vcpu(i, vcpu, kvm) {
11021                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11022                                 vcpu->arch.last_host_tsc = local_tsc;
11023                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11024                         }
11025
11026                         /*
11027                          * We have to disable TSC offset matching.. if you were
11028                          * booting a VM while issuing an S4 host suspend....
11029                          * you may have some problem.  Solving this issue is
11030                          * left as an exercise to the reader.
11031                          */
11032                         kvm->arch.last_tsc_nsec = 0;
11033                         kvm->arch.last_tsc_write = 0;
11034                 }
11035
11036         }
11037         return 0;
11038 }
11039
11040 void kvm_arch_hardware_disable(void)
11041 {
11042         static_call(kvm_x86_hardware_disable)();
11043         drop_user_return_notifiers();
11044 }
11045
11046 int kvm_arch_hardware_setup(void *opaque)
11047 {
11048         struct kvm_x86_init_ops *ops = opaque;
11049         int r;
11050
11051         rdmsrl_safe(MSR_EFER, &host_efer);
11052
11053         if (boot_cpu_has(X86_FEATURE_XSAVES))
11054                 rdmsrl(MSR_IA32_XSS, host_xss);
11055
11056         r = ops->hardware_setup();
11057         if (r != 0)
11058                 return r;
11059
11060         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11061         kvm_ops_static_call_update();
11062
11063         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11064                 supported_xss = 0;
11065
11066 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11067         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11068 #undef __kvm_cpu_cap_has
11069
11070         if (kvm_has_tsc_control) {
11071                 /*
11072                  * Make sure the user can only configure tsc_khz values that
11073                  * fit into a signed integer.
11074                  * A min value is not calculated because it will always
11075                  * be 1 on all machines.
11076                  */
11077                 u64 max = min(0x7fffffffULL,
11078                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11079                 kvm_max_guest_tsc_khz = max;
11080
11081                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11082         }
11083
11084         kvm_init_msr_list();
11085         return 0;
11086 }
11087
11088 void kvm_arch_hardware_unsetup(void)
11089 {
11090         static_call(kvm_x86_hardware_unsetup)();
11091 }
11092
11093 int kvm_arch_check_processor_compat(void *opaque)
11094 {
11095         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11096         struct kvm_x86_init_ops *ops = opaque;
11097
11098         WARN_ON(!irqs_disabled());
11099
11100         if (__cr4_reserved_bits(cpu_has, c) !=
11101             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11102                 return -EIO;
11103
11104         return ops->check_processor_compatibility();
11105 }
11106
11107 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11108 {
11109         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11110 }
11111 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11112
11113 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11114 {
11115         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11116 }
11117
11118 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11119 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11120
11121 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11122 {
11123         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11124
11125         vcpu->arch.l1tf_flush_l1d = true;
11126         if (pmu->version && unlikely(pmu->event_count)) {
11127                 pmu->need_cleanup = true;
11128                 kvm_make_request(KVM_REQ_PMU, vcpu);
11129         }
11130         static_call(kvm_x86_sched_in)(vcpu, cpu);
11131 }
11132
11133 void kvm_arch_free_vm(struct kvm *kvm)
11134 {
11135         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11136         vfree(kvm);
11137 }
11138
11139
11140 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11141 {
11142         if (type)
11143                 return -EINVAL;
11144
11145         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11146         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11147         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11148         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11149         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11150         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11151
11152         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11153         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11154         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11155         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11156                 &kvm->arch.irq_sources_bitmap);
11157
11158         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11159         mutex_init(&kvm->arch.apic_map_lock);
11160         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11161
11162         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11163         pvclock_update_vm_gtod_copy(kvm);
11164
11165         kvm->arch.guest_can_read_msr_platform_info = true;
11166
11167 #if IS_ENABLED(CONFIG_HYPERV)
11168         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11169         kvm->arch.hv_root_tdp = INVALID_PAGE;
11170 #endif
11171
11172         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11173         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11174
11175         kvm_apicv_init(kvm);
11176         kvm_hv_init_vm(kvm);
11177         kvm_page_track_init(kvm);
11178         kvm_mmu_init_vm(kvm);
11179         kvm_xen_init_vm(kvm);
11180
11181         return static_call(kvm_x86_vm_init)(kvm);
11182 }
11183
11184 int kvm_arch_post_init_vm(struct kvm *kvm)
11185 {
11186         return kvm_mmu_post_init_vm(kvm);
11187 }
11188
11189 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11190 {
11191         vcpu_load(vcpu);
11192         kvm_mmu_unload(vcpu);
11193         vcpu_put(vcpu);
11194 }
11195
11196 static void kvm_free_vcpus(struct kvm *kvm)
11197 {
11198         unsigned int i;
11199         struct kvm_vcpu *vcpu;
11200
11201         /*
11202          * Unpin any mmu pages first.
11203          */
11204         kvm_for_each_vcpu(i, vcpu, kvm) {
11205                 kvm_clear_async_pf_completion_queue(vcpu);
11206                 kvm_unload_vcpu_mmu(vcpu);
11207         }
11208         kvm_for_each_vcpu(i, vcpu, kvm)
11209                 kvm_vcpu_destroy(vcpu);
11210
11211         mutex_lock(&kvm->lock);
11212         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11213                 kvm->vcpus[i] = NULL;
11214
11215         atomic_set(&kvm->online_vcpus, 0);
11216         mutex_unlock(&kvm->lock);
11217 }
11218
11219 void kvm_arch_sync_events(struct kvm *kvm)
11220 {
11221         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11222         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11223         kvm_free_pit(kvm);
11224 }
11225
11226 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11227
11228 /**
11229  * __x86_set_memory_region: Setup KVM internal memory slot
11230  *
11231  * @kvm: the kvm pointer to the VM.
11232  * @id: the slot ID to setup.
11233  * @gpa: the GPA to install the slot (unused when @size == 0).
11234  * @size: the size of the slot. Set to zero to uninstall a slot.
11235  *
11236  * This function helps to setup a KVM internal memory slot.  Specify
11237  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11238  * slot.  The return code can be one of the following:
11239  *
11240  *   HVA:           on success (uninstall will return a bogus HVA)
11241  *   -errno:        on error
11242  *
11243  * The caller should always use IS_ERR() to check the return value
11244  * before use.  Note, the KVM internal memory slots are guaranteed to
11245  * remain valid and unchanged until the VM is destroyed, i.e., the
11246  * GPA->HVA translation will not change.  However, the HVA is a user
11247  * address, i.e. its accessibility is not guaranteed, and must be
11248  * accessed via __copy_{to,from}_user().
11249  */
11250 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11251                                       u32 size)
11252 {
11253         int i, r;
11254         unsigned long hva, old_npages;
11255         struct kvm_memslots *slots = kvm_memslots(kvm);
11256         struct kvm_memory_slot *slot;
11257
11258         /* Called with kvm->slots_lock held.  */
11259         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11260                 return ERR_PTR_USR(-EINVAL);
11261
11262         slot = id_to_memslot(slots, id);
11263         if (size) {
11264                 if (slot && slot->npages)
11265                         return ERR_PTR_USR(-EEXIST);
11266
11267                 /*
11268                  * MAP_SHARED to prevent internal slot pages from being moved
11269                  * by fork()/COW.
11270                  */
11271                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11272                               MAP_SHARED | MAP_ANONYMOUS, 0);
11273                 if (IS_ERR((void *)hva))
11274                         return (void __user *)hva;
11275         } else {
11276                 if (!slot || !slot->npages)
11277                         return NULL;
11278
11279                 old_npages = slot->npages;
11280                 hva = slot->userspace_addr;
11281         }
11282
11283         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11284                 struct kvm_userspace_memory_region m;
11285
11286                 m.slot = id | (i << 16);
11287                 m.flags = 0;
11288                 m.guest_phys_addr = gpa;
11289                 m.userspace_addr = hva;
11290                 m.memory_size = size;
11291                 r = __kvm_set_memory_region(kvm, &m);
11292                 if (r < 0)
11293                         return ERR_PTR_USR(r);
11294         }
11295
11296         if (!size)
11297                 vm_munmap(hva, old_npages * PAGE_SIZE);
11298
11299         return (void __user *)hva;
11300 }
11301 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11302
11303 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11304 {
11305         kvm_mmu_pre_destroy_vm(kvm);
11306 }
11307
11308 void kvm_arch_destroy_vm(struct kvm *kvm)
11309 {
11310         if (current->mm == kvm->mm) {
11311                 /*
11312                  * Free memory regions allocated on behalf of userspace,
11313                  * unless the the memory map has changed due to process exit
11314                  * or fd copying.
11315                  */
11316                 mutex_lock(&kvm->slots_lock);
11317                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11318                                         0, 0);
11319                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11320                                         0, 0);
11321                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11322                 mutex_unlock(&kvm->slots_lock);
11323         }
11324         static_call_cond(kvm_x86_vm_destroy)(kvm);
11325         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11326         kvm_pic_destroy(kvm);
11327         kvm_ioapic_destroy(kvm);
11328         kvm_free_vcpus(kvm);
11329         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11330         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11331         kvm_mmu_uninit_vm(kvm);
11332         kvm_page_track_cleanup(kvm);
11333         kvm_xen_destroy_vm(kvm);
11334         kvm_hv_destroy_vm(kvm);
11335 }
11336
11337 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11338 {
11339         int i;
11340
11341         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11342                 kvfree(slot->arch.rmap[i]);
11343                 slot->arch.rmap[i] = NULL;
11344         }
11345 }
11346
11347 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11348 {
11349         int i;
11350
11351         memslot_rmap_free(slot);
11352
11353         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11354                 kvfree(slot->arch.lpage_info[i - 1]);
11355                 slot->arch.lpage_info[i - 1] = NULL;
11356         }
11357
11358         kvm_page_track_free_memslot(slot);
11359 }
11360
11361 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11362                               unsigned long npages)
11363 {
11364         const int sz = sizeof(*slot->arch.rmap[0]);
11365         int i;
11366
11367         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11368                 int level = i + 1;
11369                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11370
11371                 WARN_ON(slot->arch.rmap[i]);
11372
11373                 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11374                 if (!slot->arch.rmap[i]) {
11375                         memslot_rmap_free(slot);
11376                         return -ENOMEM;
11377                 }
11378         }
11379
11380         return 0;
11381 }
11382
11383 int alloc_all_memslots_rmaps(struct kvm *kvm)
11384 {
11385         struct kvm_memslots *slots;
11386         struct kvm_memory_slot *slot;
11387         int r, i;
11388
11389         /*
11390          * Check if memslots alreday have rmaps early before acquiring
11391          * the slots_arch_lock below.
11392          */
11393         if (kvm_memslots_have_rmaps(kvm))
11394                 return 0;
11395
11396         mutex_lock(&kvm->slots_arch_lock);
11397
11398         /*
11399          * Read memslots_have_rmaps again, under the slots arch lock,
11400          * before allocating the rmaps
11401          */
11402         if (kvm_memslots_have_rmaps(kvm)) {
11403                 mutex_unlock(&kvm->slots_arch_lock);
11404                 return 0;
11405         }
11406
11407         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11408                 slots = __kvm_memslots(kvm, i);
11409                 kvm_for_each_memslot(slot, slots) {
11410                         r = memslot_rmap_alloc(slot, slot->npages);
11411                         if (r) {
11412                                 mutex_unlock(&kvm->slots_arch_lock);
11413                                 return r;
11414                         }
11415                 }
11416         }
11417
11418         /*
11419          * Ensure that memslots_have_rmaps becomes true strictly after
11420          * all the rmap pointers are set.
11421          */
11422         smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11423         mutex_unlock(&kvm->slots_arch_lock);
11424         return 0;
11425 }
11426
11427 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11428                                       struct kvm_memory_slot *slot,
11429                                       unsigned long npages)
11430 {
11431         int i, r;
11432
11433         /*
11434          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11435          * old arrays will be freed by __kvm_set_memory_region() if installing
11436          * the new memslot is successful.
11437          */
11438         memset(&slot->arch, 0, sizeof(slot->arch));
11439
11440         if (kvm_memslots_have_rmaps(kvm)) {
11441                 r = memslot_rmap_alloc(slot, npages);
11442                 if (r)
11443                         return r;
11444         }
11445
11446         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11447                 struct kvm_lpage_info *linfo;
11448                 unsigned long ugfn;
11449                 int lpages;
11450                 int level = i + 1;
11451
11452                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11453
11454                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11455                 if (!linfo)
11456                         goto out_free;
11457
11458                 slot->arch.lpage_info[i - 1] = linfo;
11459
11460                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11461                         linfo[0].disallow_lpage = 1;
11462                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11463                         linfo[lpages - 1].disallow_lpage = 1;
11464                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11465                 /*
11466                  * If the gfn and userspace address are not aligned wrt each
11467                  * other, disable large page support for this slot.
11468                  */
11469                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11470                         unsigned long j;
11471
11472                         for (j = 0; j < lpages; ++j)
11473                                 linfo[j].disallow_lpage = 1;
11474                 }
11475         }
11476
11477         if (kvm_page_track_create_memslot(slot, npages))
11478                 goto out_free;
11479
11480         return 0;
11481
11482 out_free:
11483         memslot_rmap_free(slot);
11484
11485         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11486                 kvfree(slot->arch.lpage_info[i - 1]);
11487                 slot->arch.lpage_info[i - 1] = NULL;
11488         }
11489         return -ENOMEM;
11490 }
11491
11492 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11493 {
11494         struct kvm_vcpu *vcpu;
11495         int i;
11496
11497         /*
11498          * memslots->generation has been incremented.
11499          * mmio generation may have reached its maximum value.
11500          */
11501         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11502
11503         /* Force re-initialization of steal_time cache */
11504         kvm_for_each_vcpu(i, vcpu, kvm)
11505                 kvm_vcpu_kick(vcpu);
11506 }
11507
11508 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11509                                 struct kvm_memory_slot *memslot,
11510                                 const struct kvm_userspace_memory_region *mem,
11511                                 enum kvm_mr_change change)
11512 {
11513         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11514                 return kvm_alloc_memslot_metadata(kvm, memslot,
11515                                                   mem->memory_size >> PAGE_SHIFT);
11516         return 0;
11517 }
11518
11519
11520 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11521 {
11522         struct kvm_arch *ka = &kvm->arch;
11523
11524         if (!kvm_x86_ops.cpu_dirty_log_size)
11525                 return;
11526
11527         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11528             (!enable && --ka->cpu_dirty_logging_count == 0))
11529                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11530
11531         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11532 }
11533
11534 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11535                                      struct kvm_memory_slot *old,
11536                                      const struct kvm_memory_slot *new,
11537                                      enum kvm_mr_change change)
11538 {
11539         bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11540
11541         /*
11542          * Update CPU dirty logging if dirty logging is being toggled.  This
11543          * applies to all operations.
11544          */
11545         if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11546                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11547
11548         /*
11549          * Nothing more to do for RO slots (which can't be dirtied and can't be
11550          * made writable) or CREATE/MOVE/DELETE of a slot.
11551          *
11552          * For a memslot with dirty logging disabled:
11553          * CREATE:      No dirty mappings will already exist.
11554          * MOVE/DELETE: The old mappings will already have been cleaned up by
11555          *              kvm_arch_flush_shadow_memslot()
11556          *
11557          * For a memslot with dirty logging enabled:
11558          * CREATE:      No shadow pages exist, thus nothing to write-protect
11559          *              and no dirty bits to clear.
11560          * MOVE/DELETE: The old mappings will already have been cleaned up by
11561          *              kvm_arch_flush_shadow_memslot().
11562          */
11563         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11564                 return;
11565
11566         /*
11567          * READONLY and non-flags changes were filtered out above, and the only
11568          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11569          * logging isn't being toggled on or off.
11570          */
11571         if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11572                 return;
11573
11574         if (!log_dirty_pages) {
11575                 /*
11576                  * Dirty logging tracks sptes in 4k granularity, meaning that
11577                  * large sptes have to be split.  If live migration succeeds,
11578                  * the guest in the source machine will be destroyed and large
11579                  * sptes will be created in the destination.  However, if the
11580                  * guest continues to run in the source machine (for example if
11581                  * live migration fails), small sptes will remain around and
11582                  * cause bad performance.
11583                  *
11584                  * Scan sptes if dirty logging has been stopped, dropping those
11585                  * which can be collapsed into a single large-page spte.  Later
11586                  * page faults will create the large-page sptes.
11587                  */
11588                 kvm_mmu_zap_collapsible_sptes(kvm, new);
11589         } else {
11590                 /*
11591                  * Initially-all-set does not require write protecting any page,
11592                  * because they're all assumed to be dirty.
11593                  */
11594                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11595                         return;
11596
11597                 if (kvm_x86_ops.cpu_dirty_log_size) {
11598                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11599                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11600                 } else {
11601                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11602                 }
11603         }
11604 }
11605
11606 void kvm_arch_commit_memory_region(struct kvm *kvm,
11607                                 const struct kvm_userspace_memory_region *mem,
11608                                 struct kvm_memory_slot *old,
11609                                 const struct kvm_memory_slot *new,
11610                                 enum kvm_mr_change change)
11611 {
11612         if (!kvm->arch.n_requested_mmu_pages)
11613                 kvm_mmu_change_mmu_pages(kvm,
11614                                 kvm_mmu_calculate_default_mmu_pages(kvm));
11615
11616         kvm_mmu_slot_apply_flags(kvm, old, new, change);
11617
11618         /* Free the arrays associated with the old memslot. */
11619         if (change == KVM_MR_MOVE)
11620                 kvm_arch_free_memslot(kvm, old);
11621 }
11622
11623 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11624 {
11625         kvm_mmu_zap_all(kvm);
11626 }
11627
11628 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11629                                    struct kvm_memory_slot *slot)
11630 {
11631         kvm_page_track_flush_slot(kvm, slot);
11632 }
11633
11634 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11635 {
11636         return (is_guest_mode(vcpu) &&
11637                         kvm_x86_ops.guest_apic_has_interrupt &&
11638                         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11639 }
11640
11641 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11642 {
11643         if (!list_empty_careful(&vcpu->async_pf.done))
11644                 return true;
11645
11646         if (kvm_apic_has_events(vcpu))
11647                 return true;
11648
11649         if (vcpu->arch.pv.pv_unhalted)
11650                 return true;
11651
11652         if (vcpu->arch.exception.pending)
11653                 return true;
11654
11655         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11656             (vcpu->arch.nmi_pending &&
11657              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11658                 return true;
11659
11660         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11661             (vcpu->arch.smi_pending &&
11662              static_call(kvm_x86_smi_allowed)(vcpu, false)))
11663                 return true;
11664
11665         if (kvm_arch_interrupt_allowed(vcpu) &&
11666             (kvm_cpu_has_interrupt(vcpu) ||
11667             kvm_guest_apic_has_interrupt(vcpu)))
11668                 return true;
11669
11670         if (kvm_hv_has_stimer_pending(vcpu))
11671                 return true;
11672
11673         if (is_guest_mode(vcpu) &&
11674             kvm_x86_ops.nested_ops->hv_timer_pending &&
11675             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11676                 return true;
11677
11678         return false;
11679 }
11680
11681 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11682 {
11683         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11684 }
11685
11686 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11687 {
11688         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11689                 return true;
11690
11691         return false;
11692 }
11693
11694 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11695 {
11696         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11697                 return true;
11698
11699         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11700                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11701                  kvm_test_request(KVM_REQ_EVENT, vcpu))
11702                 return true;
11703
11704         return kvm_arch_dy_has_pending_interrupt(vcpu);
11705 }
11706
11707 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11708 {
11709         if (vcpu->arch.guest_state_protected)
11710                 return true;
11711
11712         return vcpu->arch.preempted_in_kernel;
11713 }
11714
11715 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11716 {
11717         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11718 }
11719
11720 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11721 {
11722         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11723 }
11724
11725 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11726 {
11727         /* Can't read the RIP when guest state is protected, just return 0 */
11728         if (vcpu->arch.guest_state_protected)
11729                 return 0;
11730
11731         if (is_64_bit_mode(vcpu))
11732                 return kvm_rip_read(vcpu);
11733         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11734                      kvm_rip_read(vcpu));
11735 }
11736 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11737
11738 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11739 {
11740         return kvm_get_linear_rip(vcpu) == linear_rip;
11741 }
11742 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11743
11744 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11745 {
11746         unsigned long rflags;
11747
11748         rflags = static_call(kvm_x86_get_rflags)(vcpu);
11749         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11750                 rflags &= ~X86_EFLAGS_TF;
11751         return rflags;
11752 }
11753 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11754
11755 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11756 {
11757         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11758             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11759                 rflags |= X86_EFLAGS_TF;
11760         static_call(kvm_x86_set_rflags)(vcpu, rflags);
11761 }
11762
11763 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11764 {
11765         __kvm_set_rflags(vcpu, rflags);
11766         kvm_make_request(KVM_REQ_EVENT, vcpu);
11767 }
11768 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11769
11770 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11771 {
11772         int r;
11773
11774         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11775               work->wakeup_all)
11776                 return;
11777
11778         r = kvm_mmu_reload(vcpu);
11779         if (unlikely(r))
11780                 return;
11781
11782         if (!vcpu->arch.mmu->direct_map &&
11783               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11784                 return;
11785
11786         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11787 }
11788
11789 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11790 {
11791         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11792
11793         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11794 }
11795
11796 static inline u32 kvm_async_pf_next_probe(u32 key)
11797 {
11798         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11799 }
11800
11801 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11802 {
11803         u32 key = kvm_async_pf_hash_fn(gfn);
11804
11805         while (vcpu->arch.apf.gfns[key] != ~0)
11806                 key = kvm_async_pf_next_probe(key);
11807
11808         vcpu->arch.apf.gfns[key] = gfn;
11809 }
11810
11811 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11812 {
11813         int i;
11814         u32 key = kvm_async_pf_hash_fn(gfn);
11815
11816         for (i = 0; i < ASYNC_PF_PER_VCPU &&
11817                      (vcpu->arch.apf.gfns[key] != gfn &&
11818                       vcpu->arch.apf.gfns[key] != ~0); i++)
11819                 key = kvm_async_pf_next_probe(key);
11820
11821         return key;
11822 }
11823
11824 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11825 {
11826         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11827 }
11828
11829 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11830 {
11831         u32 i, j, k;
11832
11833         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11834
11835         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11836                 return;
11837
11838         while (true) {
11839                 vcpu->arch.apf.gfns[i] = ~0;
11840                 do {
11841                         j = kvm_async_pf_next_probe(j);
11842                         if (vcpu->arch.apf.gfns[j] == ~0)
11843                                 return;
11844                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11845                         /*
11846                          * k lies cyclically in ]i,j]
11847                          * |    i.k.j |
11848                          * |....j i.k.| or  |.k..j i...|
11849                          */
11850                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11851                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11852                 i = j;
11853         }
11854 }
11855
11856 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11857 {
11858         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11859
11860         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11861                                       sizeof(reason));
11862 }
11863
11864 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11865 {
11866         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11867
11868         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11869                                              &token, offset, sizeof(token));
11870 }
11871
11872 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11873 {
11874         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11875         u32 val;
11876
11877         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11878                                          &val, offset, sizeof(val)))
11879                 return false;
11880
11881         return !val;
11882 }
11883
11884 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11885 {
11886         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11887                 return false;
11888
11889         if (!kvm_pv_async_pf_enabled(vcpu) ||
11890             (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11891                 return false;
11892
11893         return true;
11894 }
11895
11896 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11897 {
11898         if (unlikely(!lapic_in_kernel(vcpu) ||
11899                      kvm_event_needs_reinjection(vcpu) ||
11900                      vcpu->arch.exception.pending))
11901                 return false;
11902
11903         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11904                 return false;
11905
11906         /*
11907          * If interrupts are off we cannot even use an artificial
11908          * halt state.
11909          */
11910         return kvm_arch_interrupt_allowed(vcpu);
11911 }
11912
11913 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11914                                      struct kvm_async_pf *work)
11915 {
11916         struct x86_exception fault;
11917
11918         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11919         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11920
11921         if (kvm_can_deliver_async_pf(vcpu) &&
11922             !apf_put_user_notpresent(vcpu)) {
11923                 fault.vector = PF_VECTOR;
11924                 fault.error_code_valid = true;
11925                 fault.error_code = 0;
11926                 fault.nested_page_fault = false;
11927                 fault.address = work->arch.token;
11928                 fault.async_page_fault = true;
11929                 kvm_inject_page_fault(vcpu, &fault);
11930                 return true;
11931         } else {
11932                 /*
11933                  * It is not possible to deliver a paravirtualized asynchronous
11934                  * page fault, but putting the guest in an artificial halt state
11935                  * can be beneficial nevertheless: if an interrupt arrives, we
11936                  * can deliver it timely and perhaps the guest will schedule
11937                  * another process.  When the instruction that triggered a page
11938                  * fault is retried, hopefully the page will be ready in the host.
11939                  */
11940                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11941                 return false;
11942         }
11943 }
11944
11945 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11946                                  struct kvm_async_pf *work)
11947 {
11948         struct kvm_lapic_irq irq = {
11949                 .delivery_mode = APIC_DM_FIXED,
11950                 .vector = vcpu->arch.apf.vec
11951         };
11952
11953         if (work->wakeup_all)
11954                 work->arch.token = ~0; /* broadcast wakeup */
11955         else
11956                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11957         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11958
11959         if ((work->wakeup_all || work->notpresent_injected) &&
11960             kvm_pv_async_pf_enabled(vcpu) &&
11961             !apf_put_user_ready(vcpu, work->arch.token)) {
11962                 vcpu->arch.apf.pageready_pending = true;
11963                 kvm_apic_set_irq(vcpu, &irq, NULL);
11964         }
11965
11966         vcpu->arch.apf.halted = false;
11967         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11968 }
11969
11970 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11971 {
11972         kvm_make_request(KVM_REQ_APF_READY, vcpu);
11973         if (!vcpu->arch.apf.pageready_pending)
11974                 kvm_vcpu_kick(vcpu);
11975 }
11976
11977 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11978 {
11979         if (!kvm_pv_async_pf_enabled(vcpu))
11980                 return true;
11981         else
11982                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11983 }
11984
11985 void kvm_arch_start_assignment(struct kvm *kvm)
11986 {
11987         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11988                 static_call_cond(kvm_x86_start_assignment)(kvm);
11989 }
11990 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11991
11992 void kvm_arch_end_assignment(struct kvm *kvm)
11993 {
11994         atomic_dec(&kvm->arch.assigned_device_count);
11995 }
11996 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11997
11998 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11999 {
12000         return atomic_read(&kvm->arch.assigned_device_count);
12001 }
12002 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12003
12004 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12005 {
12006         atomic_inc(&kvm->arch.noncoherent_dma_count);
12007 }
12008 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12009
12010 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12011 {
12012         atomic_dec(&kvm->arch.noncoherent_dma_count);
12013 }
12014 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12015
12016 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12017 {
12018         return atomic_read(&kvm->arch.noncoherent_dma_count);
12019 }
12020 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12021
12022 bool kvm_arch_has_irq_bypass(void)
12023 {
12024         return true;
12025 }
12026
12027 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12028                                       struct irq_bypass_producer *prod)
12029 {
12030         struct kvm_kernel_irqfd *irqfd =
12031                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12032         int ret;
12033
12034         irqfd->producer = prod;
12035         kvm_arch_start_assignment(irqfd->kvm);
12036         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12037                                          prod->irq, irqfd->gsi, 1);
12038
12039         if (ret)
12040                 kvm_arch_end_assignment(irqfd->kvm);
12041
12042         return ret;
12043 }
12044
12045 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12046                                       struct irq_bypass_producer *prod)
12047 {
12048         int ret;
12049         struct kvm_kernel_irqfd *irqfd =
12050                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12051
12052         WARN_ON(irqfd->producer != prod);
12053         irqfd->producer = NULL;
12054
12055         /*
12056          * When producer of consumer is unregistered, we change back to
12057          * remapped mode, so we can re-use the current implementation
12058          * when the irq is masked/disabled or the consumer side (KVM
12059          * int this case doesn't want to receive the interrupts.
12060         */
12061         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12062         if (ret)
12063                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12064                        " fails: %d\n", irqfd->consumer.token, ret);
12065
12066         kvm_arch_end_assignment(irqfd->kvm);
12067 }
12068
12069 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12070                                    uint32_t guest_irq, bool set)
12071 {
12072         return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12073 }
12074
12075 bool kvm_vector_hashing_enabled(void)
12076 {
12077         return vector_hashing;
12078 }
12079
12080 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12081 {
12082         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12083 }
12084 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12085
12086
12087 int kvm_spec_ctrl_test_value(u64 value)
12088 {
12089         /*
12090          * test that setting IA32_SPEC_CTRL to given value
12091          * is allowed by the host processor
12092          */
12093
12094         u64 saved_value;
12095         unsigned long flags;
12096         int ret = 0;
12097
12098         local_irq_save(flags);
12099
12100         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12101                 ret = 1;
12102         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12103                 ret = 1;
12104         else
12105                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12106
12107         local_irq_restore(flags);
12108
12109         return ret;
12110 }
12111 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12112
12113 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12114 {
12115         struct x86_exception fault;
12116         u32 access = error_code &
12117                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12118
12119         if (!(error_code & PFERR_PRESENT_MASK) ||
12120             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12121                 /*
12122                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12123                  * tables probably do not match the TLB.  Just proceed
12124                  * with the error code that the processor gave.
12125                  */
12126                 fault.vector = PF_VECTOR;
12127                 fault.error_code_valid = true;
12128                 fault.error_code = error_code;
12129                 fault.nested_page_fault = false;
12130                 fault.address = gva;
12131         }
12132         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12133 }
12134 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12135
12136 /*
12137  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12138  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12139  * indicates whether exit to userspace is needed.
12140  */
12141 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12142                               struct x86_exception *e)
12143 {
12144         if (r == X86EMUL_PROPAGATE_FAULT) {
12145                 kvm_inject_emulated_page_fault(vcpu, e);
12146                 return 1;
12147         }
12148
12149         /*
12150          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12151          * while handling a VMX instruction KVM could've handled the request
12152          * correctly by exiting to userspace and performing I/O but there
12153          * doesn't seem to be a real use-case behind such requests, just return
12154          * KVM_EXIT_INTERNAL_ERROR for now.
12155          */
12156         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12157         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12158         vcpu->run->internal.ndata = 0;
12159
12160         return 0;
12161 }
12162 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12163
12164 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12165 {
12166         bool pcid_enabled;
12167         struct x86_exception e;
12168         struct {
12169                 u64 pcid;
12170                 u64 gla;
12171         } operand;
12172         int r;
12173
12174         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12175         if (r != X86EMUL_CONTINUE)
12176                 return kvm_handle_memory_failure(vcpu, r, &e);
12177
12178         if (operand.pcid >> 12 != 0) {
12179                 kvm_inject_gp(vcpu, 0);
12180                 return 1;
12181         }
12182
12183         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12184
12185         switch (type) {
12186         case INVPCID_TYPE_INDIV_ADDR:
12187                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12188                     is_noncanonical_address(operand.gla, vcpu)) {
12189                         kvm_inject_gp(vcpu, 0);
12190                         return 1;
12191                 }
12192                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12193                 return kvm_skip_emulated_instruction(vcpu);
12194
12195         case INVPCID_TYPE_SINGLE_CTXT:
12196                 if (!pcid_enabled && (operand.pcid != 0)) {
12197                         kvm_inject_gp(vcpu, 0);
12198                         return 1;
12199                 }
12200
12201                 kvm_invalidate_pcid(vcpu, operand.pcid);
12202                 return kvm_skip_emulated_instruction(vcpu);
12203
12204         case INVPCID_TYPE_ALL_NON_GLOBAL:
12205                 /*
12206                  * Currently, KVM doesn't mark global entries in the shadow
12207                  * page tables, so a non-global flush just degenerates to a
12208                  * global flush. If needed, we could optimize this later by
12209                  * keeping track of global entries in shadow page tables.
12210                  */
12211
12212                 fallthrough;
12213         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12214                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12215                 return kvm_skip_emulated_instruction(vcpu);
12216
12217         default:
12218                 BUG(); /* We have already checked above that type <= 3 */
12219         }
12220 }
12221 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12222
12223 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12224 {
12225         struct kvm_run *run = vcpu->run;
12226         struct kvm_mmio_fragment *frag;
12227         unsigned int len;
12228
12229         BUG_ON(!vcpu->mmio_needed);
12230
12231         /* Complete previous fragment */
12232         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12233         len = min(8u, frag->len);
12234         if (!vcpu->mmio_is_write)
12235                 memcpy(frag->data, run->mmio.data, len);
12236
12237         if (frag->len <= 8) {
12238                 /* Switch to the next fragment. */
12239                 frag++;
12240                 vcpu->mmio_cur_fragment++;
12241         } else {
12242                 /* Go forward to the next mmio piece. */
12243                 frag->data += len;
12244                 frag->gpa += len;
12245                 frag->len -= len;
12246         }
12247
12248         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12249                 vcpu->mmio_needed = 0;
12250
12251                 // VMG change, at this point, we're always done
12252                 // RIP has already been advanced
12253                 return 1;
12254         }
12255
12256         // More MMIO is needed
12257         run->mmio.phys_addr = frag->gpa;
12258         run->mmio.len = min(8u, frag->len);
12259         run->mmio.is_write = vcpu->mmio_is_write;
12260         if (run->mmio.is_write)
12261                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12262         run->exit_reason = KVM_EXIT_MMIO;
12263
12264         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12265
12266         return 0;
12267 }
12268
12269 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12270                           void *data)
12271 {
12272         int handled;
12273         struct kvm_mmio_fragment *frag;
12274
12275         if (!data)
12276                 return -EINVAL;
12277
12278         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12279         if (handled == bytes)
12280                 return 1;
12281
12282         bytes -= handled;
12283         gpa += handled;
12284         data += handled;
12285
12286         /*TODO: Check if need to increment number of frags */
12287         frag = vcpu->mmio_fragments;
12288         vcpu->mmio_nr_fragments = 1;
12289         frag->len = bytes;
12290         frag->gpa = gpa;
12291         frag->data = data;
12292
12293         vcpu->mmio_needed = 1;
12294         vcpu->mmio_cur_fragment = 0;
12295
12296         vcpu->run->mmio.phys_addr = gpa;
12297         vcpu->run->mmio.len = min(8u, frag->len);
12298         vcpu->run->mmio.is_write = 1;
12299         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12300         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12301
12302         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12303
12304         return 0;
12305 }
12306 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12307
12308 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12309                          void *data)
12310 {
12311         int handled;
12312         struct kvm_mmio_fragment *frag;
12313
12314         if (!data)
12315                 return -EINVAL;
12316
12317         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12318         if (handled == bytes)
12319                 return 1;
12320
12321         bytes -= handled;
12322         gpa += handled;
12323         data += handled;
12324
12325         /*TODO: Check if need to increment number of frags */
12326         frag = vcpu->mmio_fragments;
12327         vcpu->mmio_nr_fragments = 1;
12328         frag->len = bytes;
12329         frag->gpa = gpa;
12330         frag->data = data;
12331
12332         vcpu->mmio_needed = 1;
12333         vcpu->mmio_cur_fragment = 0;
12334
12335         vcpu->run->mmio.phys_addr = gpa;
12336         vcpu->run->mmio.len = min(8u, frag->len);
12337         vcpu->run->mmio.is_write = 0;
12338         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12339
12340         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12341
12342         return 0;
12343 }
12344 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12345
12346 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12347 {
12348         memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
12349                vcpu->arch.pio.count * vcpu->arch.pio.size);
12350         vcpu->arch.pio.count = 0;
12351
12352         return 1;
12353 }
12354
12355 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12356                            unsigned int port, void *data,  unsigned int count)
12357 {
12358         int ret;
12359
12360         ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
12361                                         data, count);
12362         if (ret)
12363                 return ret;
12364
12365         vcpu->arch.pio.count = 0;
12366
12367         return 0;
12368 }
12369
12370 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12371                           unsigned int port, void *data, unsigned int count)
12372 {
12373         int ret;
12374
12375         ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
12376                                        data, count);
12377         if (ret) {
12378                 vcpu->arch.pio.count = 0;
12379         } else {
12380                 vcpu->arch.guest_ins_data = data;
12381                 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12382         }
12383
12384         return 0;
12385 }
12386
12387 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12388                          unsigned int port, void *data,  unsigned int count,
12389                          int in)
12390 {
12391         return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
12392                   : kvm_sev_es_outs(vcpu, size, port, data, count);
12393 }
12394 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12395
12396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);