Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "irq.h"
56 #include "kvm_cache_regs.h"
57 #include "lapic.h"
58 #include "mmu.h"
59 #include "nested.h"
60 #include "pmu.h"
61 #include "sgx.h"
62 #include "trace.h"
63 #include "vmcs.h"
64 #include "vmcs12.h"
65 #include "vmx.h"
66 #include "x86.h"
67
68 MODULE_AUTHOR("Qumranet");
69 MODULE_LICENSE("GPL");
70
71 #ifdef MODULE
72 static const struct x86_cpu_id vmx_cpu_id[] = {
73         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
74         {}
75 };
76 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
77 #endif
78
79 bool __read_mostly enable_vpid = 1;
80 module_param_named(vpid, enable_vpid, bool, 0444);
81
82 static bool __read_mostly enable_vnmi = 1;
83 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
84
85 bool __read_mostly flexpriority_enabled = 1;
86 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
87
88 bool __read_mostly enable_ept = 1;
89 module_param_named(ept, enable_ept, bool, S_IRUGO);
90
91 bool __read_mostly enable_unrestricted_guest = 1;
92 module_param_named(unrestricted_guest,
93                         enable_unrestricted_guest, bool, S_IRUGO);
94
95 bool __read_mostly enable_ept_ad_bits = 1;
96 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
97
98 static bool __read_mostly emulate_invalid_guest_state = true;
99 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
100
101 static bool __read_mostly fasteoi = 1;
102 module_param(fasteoi, bool, S_IRUGO);
103
104 bool __read_mostly enable_apicv = 1;
105 module_param(enable_apicv, bool, S_IRUGO);
106
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120
121 #define MSR_BITMAP_MODE_X2APIC          1
122 #define MSR_BITMAP_MODE_X2APIC_APICV    2
123
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON                            \
139         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
140          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
141
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151         RTIT_STATUS_BYTECNT))
152
153 /*
154  * List of MSRs that can be directly passed to the guest.
155  * In addition to these x2apic and PT MSRs are handled specially.
156  */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158         MSR_IA32_SPEC_CTRL,
159         MSR_IA32_PRED_CMD,
160         MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162         MSR_FS_BASE,
163         MSR_GS_BASE,
164         MSR_KERNEL_GS_BASE,
165 #endif
166         MSR_IA32_SYSENTER_CS,
167         MSR_IA32_SYSENTER_ESP,
168         MSR_IA32_SYSENTER_EIP,
169         MSR_CORE_C1_RES,
170         MSR_CORE_C3_RESIDENCY,
171         MSR_CORE_C6_RESIDENCY,
172         MSR_CORE_C7_RESIDENCY,
173 };
174
175 /*
176  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
177  * ple_gap:    upper bound on the amount of time between two successive
178  *             executions of PAUSE in a loop. Also indicate if ple enabled.
179  *             According to test, this time is usually smaller than 128 cycles.
180  * ple_window: upper bound on the amount of time a guest is allowed to execute
181  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
182  *             less than 2^12 cycles
183  * Time is measured based on a counter that runs at the same rate as the TSC,
184  * refer SDM volume 3b section 21.6.13 & 22.1.3.
185  */
186 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
187 module_param(ple_gap, uint, 0444);
188
189 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
190 module_param(ple_window, uint, 0444);
191
192 /* Default doubles per-vcpu window every exit. */
193 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
194 module_param(ple_window_grow, uint, 0444);
195
196 /* Default resets per-vcpu window every exit to ple_window. */
197 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
198 module_param(ple_window_shrink, uint, 0444);
199
200 /* Default is to compute the maximum so we can never overflow. */
201 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
202 module_param(ple_window_max, uint, 0444);
203
204 /* Default is SYSTEM mode, 1 for host-guest mode */
205 int __read_mostly pt_mode = PT_MODE_SYSTEM;
206 module_param(pt_mode, int, S_IRUGO);
207
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
209 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
210 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
211
212 /* Storage for pre module init parameter parsing */
213 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
214
215 static const struct {
216         const char *option;
217         bool for_parse;
218 } vmentry_l1d_param[] = {
219         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
220         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
221         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
222         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
223         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
224         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
225 };
226
227 #define L1D_CACHE_ORDER 4
228 static void *vmx_l1d_flush_pages;
229
230 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
231 {
232         struct page *page;
233         unsigned int i;
234
235         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
236                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
237                 return 0;
238         }
239
240         if (!enable_ept) {
241                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
242                 return 0;
243         }
244
245         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
246                 u64 msr;
247
248                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
249                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
250                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
251                         return 0;
252                 }
253         }
254
255         /* If set to auto use the default l1tf mitigation method */
256         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
257                 switch (l1tf_mitigation) {
258                 case L1TF_MITIGATION_OFF:
259                         l1tf = VMENTER_L1D_FLUSH_NEVER;
260                         break;
261                 case L1TF_MITIGATION_FLUSH_NOWARN:
262                 case L1TF_MITIGATION_FLUSH:
263                 case L1TF_MITIGATION_FLUSH_NOSMT:
264                         l1tf = VMENTER_L1D_FLUSH_COND;
265                         break;
266                 case L1TF_MITIGATION_FULL:
267                 case L1TF_MITIGATION_FULL_FORCE:
268                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269                         break;
270                 }
271         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
272                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
273         }
274
275         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
276             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
277                 /*
278                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
279                  * lifetime and so should not be charged to a memcg.
280                  */
281                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
282                 if (!page)
283                         return -ENOMEM;
284                 vmx_l1d_flush_pages = page_address(page);
285
286                 /*
287                  * Initialize each page with a different pattern in
288                  * order to protect against KSM in the nested
289                  * virtualization case.
290                  */
291                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
292                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
293                                PAGE_SIZE);
294                 }
295         }
296
297         l1tf_vmx_mitigation = l1tf;
298
299         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
300                 static_branch_enable(&vmx_l1d_should_flush);
301         else
302                 static_branch_disable(&vmx_l1d_should_flush);
303
304         if (l1tf == VMENTER_L1D_FLUSH_COND)
305                 static_branch_enable(&vmx_l1d_flush_cond);
306         else
307                 static_branch_disable(&vmx_l1d_flush_cond);
308         return 0;
309 }
310
311 static int vmentry_l1d_flush_parse(const char *s)
312 {
313         unsigned int i;
314
315         if (s) {
316                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
317                         if (vmentry_l1d_param[i].for_parse &&
318                             sysfs_streq(s, vmentry_l1d_param[i].option))
319                                 return i;
320                 }
321         }
322         return -EINVAL;
323 }
324
325 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
326 {
327         int l1tf, ret;
328
329         l1tf = vmentry_l1d_flush_parse(s);
330         if (l1tf < 0)
331                 return l1tf;
332
333         if (!boot_cpu_has(X86_BUG_L1TF))
334                 return 0;
335
336         /*
337          * Has vmx_init() run already? If not then this is the pre init
338          * parameter parsing. In that case just store the value and let
339          * vmx_init() do the proper setup after enable_ept has been
340          * established.
341          */
342         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
343                 vmentry_l1d_flush_param = l1tf;
344                 return 0;
345         }
346
347         mutex_lock(&vmx_l1d_flush_mutex);
348         ret = vmx_setup_l1d_flush(l1tf);
349         mutex_unlock(&vmx_l1d_flush_mutex);
350         return ret;
351 }
352
353 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
354 {
355         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
356                 return sprintf(s, "???\n");
357
358         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
359 }
360
361 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
362         .set = vmentry_l1d_flush_set,
363         .get = vmentry_l1d_flush_get,
364 };
365 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
366
367 static u32 vmx_segment_access_rights(struct kvm_segment *var);
368
369 void vmx_vmexit(void);
370
371 #define vmx_insn_failed(fmt...)         \
372 do {                                    \
373         WARN_ONCE(1, fmt);              \
374         pr_warn_ratelimited(fmt);       \
375 } while (0)
376
377 asmlinkage void vmread_error(unsigned long field, bool fault)
378 {
379         if (fault)
380                 kvm_spurious_fault();
381         else
382                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
383 }
384
385 noinline void vmwrite_error(unsigned long field, unsigned long value)
386 {
387         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
388                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
389 }
390
391 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
392 {
393         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
394 }
395
396 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
397 {
398         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
399 }
400
401 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
402 {
403         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
404                         ext, vpid, gva);
405 }
406
407 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
408 {
409         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
410                         ext, eptp, gpa);
411 }
412
413 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
414 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
415 /*
416  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
417  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
418  */
419 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
420
421 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
422 static DEFINE_SPINLOCK(vmx_vpid_lock);
423
424 struct vmcs_config vmcs_config;
425 struct vmx_capability vmx_capability;
426
427 #define VMX_SEGMENT_FIELD(seg)                                  \
428         [VCPU_SREG_##seg] = {                                   \
429                 .selector = GUEST_##seg##_SELECTOR,             \
430                 .base = GUEST_##seg##_BASE,                     \
431                 .limit = GUEST_##seg##_LIMIT,                   \
432                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
433         }
434
435 static const struct kvm_vmx_segment_field {
436         unsigned selector;
437         unsigned base;
438         unsigned limit;
439         unsigned ar_bytes;
440 } kvm_vmx_segment_fields[] = {
441         VMX_SEGMENT_FIELD(CS),
442         VMX_SEGMENT_FIELD(DS),
443         VMX_SEGMENT_FIELD(ES),
444         VMX_SEGMENT_FIELD(FS),
445         VMX_SEGMENT_FIELD(GS),
446         VMX_SEGMENT_FIELD(SS),
447         VMX_SEGMENT_FIELD(TR),
448         VMX_SEGMENT_FIELD(LDTR),
449 };
450
451 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
452 {
453         vmx->segment_cache.bitmask = 0;
454 }
455
456 static unsigned long host_idt_base;
457
458 #if IS_ENABLED(CONFIG_HYPERV)
459 static bool __read_mostly enlightened_vmcs = true;
460 module_param(enlightened_vmcs, bool, 0444);
461
462 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
463                 void *data)
464 {
465         struct kvm_tlb_range *range = data;
466
467         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
468                         range->pages);
469 }
470
471 static inline int hv_remote_flush_root_ept(hpa_t root_ept,
472                                            struct kvm_tlb_range *range)
473 {
474         if (range)
475                 return hyperv_flush_guest_mapping_range(root_ept,
476                                 kvm_fill_hv_flush_list_func, (void *)range);
477         else
478                 return hyperv_flush_guest_mapping(root_ept);
479 }
480
481 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
482                 struct kvm_tlb_range *range)
483 {
484         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
485         struct kvm_vcpu *vcpu;
486         int ret = 0, i, nr_unique_valid_roots;
487         hpa_t root;
488
489         spin_lock(&kvm_vmx->hv_root_ept_lock);
490
491         if (!VALID_PAGE(kvm_vmx->hv_root_ept)) {
492                 nr_unique_valid_roots = 0;
493
494                 /*
495                  * Flush all valid roots, and see if all vCPUs have converged
496                  * on a common root, in which case future flushes can skip the
497                  * loop and flush the common root.
498                  */
499                 kvm_for_each_vcpu(i, vcpu, kvm) {
500                         root = to_vmx(vcpu)->hv_root_ept;
501                         if (!VALID_PAGE(root) || root == kvm_vmx->hv_root_ept)
502                                 continue;
503
504                         /*
505                          * Set the tracked root to the first valid root.  Keep
506                          * this root for the entirety of the loop even if more
507                          * roots are encountered as a low effort optimization
508                          * to avoid flushing the same (first) root again.
509                          */
510                         if (++nr_unique_valid_roots == 1)
511                                 kvm_vmx->hv_root_ept = root;
512
513                         if (!ret)
514                                 ret = hv_remote_flush_root_ept(root, range);
515
516                         /*
517                          * Stop processing roots if a failure occurred and
518                          * multiple valid roots have already been detected.
519                          */
520                         if (ret && nr_unique_valid_roots > 1)
521                                 break;
522                 }
523
524                 /*
525                  * The optimized flush of a single root can't be used if there
526                  * are multiple valid roots (obviously).
527                  */
528                 if (nr_unique_valid_roots > 1)
529                         kvm_vmx->hv_root_ept = INVALID_PAGE;
530         } else {
531                 ret = hv_remote_flush_root_ept(kvm_vmx->hv_root_ept, range);
532         }
533
534         spin_unlock(&kvm_vmx->hv_root_ept_lock);
535         return ret;
536 }
537 static int hv_remote_flush_tlb(struct kvm *kvm)
538 {
539         return hv_remote_flush_tlb_with_range(kvm, NULL);
540 }
541
542 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
543 {
544         struct hv_enlightened_vmcs *evmcs;
545         struct hv_partition_assist_pg **p_hv_pa_pg =
546                         &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
547         /*
548          * Synthetic VM-Exit is not enabled in current code and so All
549          * evmcs in singe VM shares same assist page.
550          */
551         if (!*p_hv_pa_pg)
552                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
553
554         if (!*p_hv_pa_pg)
555                 return -ENOMEM;
556
557         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
558
559         evmcs->partition_assist_page =
560                 __pa(*p_hv_pa_pg);
561         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
562         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
563
564         return 0;
565 }
566
567 #endif /* IS_ENABLED(CONFIG_HYPERV) */
568
569 static void hv_track_root_ept(struct kvm_vcpu *vcpu, hpa_t root_ept)
570 {
571 #if IS_ENABLED(CONFIG_HYPERV)
572         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
573
574         if (kvm_x86_ops.tlb_remote_flush == hv_remote_flush_tlb) {
575                 spin_lock(&kvm_vmx->hv_root_ept_lock);
576                 to_vmx(vcpu)->hv_root_ept = root_ept;
577                 if (root_ept != kvm_vmx->hv_root_ept)
578                         kvm_vmx->hv_root_ept = INVALID_PAGE;
579                 spin_unlock(&kvm_vmx->hv_root_ept_lock);
580         }
581 #endif
582 }
583
584 /*
585  * Comment's format: document - errata name - stepping - processor name.
586  * Refer from
587  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
588  */
589 static u32 vmx_preemption_cpu_tfms[] = {
590 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
591 0x000206E6,
592 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
593 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
594 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
595 0x00020652,
596 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
597 0x00020655,
598 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
599 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
600 /*
601  * 320767.pdf - AAP86  - B1 -
602  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
603  */
604 0x000106E5,
605 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
606 0x000106A0,
607 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
608 0x000106A1,
609 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
610 0x000106A4,
611  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
612  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
613  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
614 0x000106A5,
615  /* Xeon E3-1220 V2 */
616 0x000306A8,
617 };
618
619 static inline bool cpu_has_broken_vmx_preemption_timer(void)
620 {
621         u32 eax = cpuid_eax(0x00000001), i;
622
623         /* Clear the reserved bits */
624         eax &= ~(0x3U << 14 | 0xfU << 28);
625         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
626                 if (eax == vmx_preemption_cpu_tfms[i])
627                         return true;
628
629         return false;
630 }
631
632 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
633 {
634         return flexpriority_enabled && lapic_in_kernel(vcpu);
635 }
636
637 static inline bool report_flexpriority(void)
638 {
639         return flexpriority_enabled;
640 }
641
642 static int possible_passthrough_msr_slot(u32 msr)
643 {
644         u32 i;
645
646         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
647                 if (vmx_possible_passthrough_msrs[i] == msr)
648                         return i;
649
650         return -ENOENT;
651 }
652
653 static bool is_valid_passthrough_msr(u32 msr)
654 {
655         bool r;
656
657         switch (msr) {
658         case 0x800 ... 0x8ff:
659                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
660                 return true;
661         case MSR_IA32_RTIT_STATUS:
662         case MSR_IA32_RTIT_OUTPUT_BASE:
663         case MSR_IA32_RTIT_OUTPUT_MASK:
664         case MSR_IA32_RTIT_CR3_MATCH:
665         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
666                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
667         case MSR_LBR_SELECT:
668         case MSR_LBR_TOS:
669         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
670         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
671         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
672         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
673         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
674                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
675                 return true;
676         }
677
678         r = possible_passthrough_msr_slot(msr) != -ENOENT;
679
680         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
681
682         return r;
683 }
684
685 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
686 {
687         int i;
688
689         i = kvm_find_user_return_msr(msr);
690         if (i >= 0)
691                 return &vmx->guest_uret_msrs[i];
692         return NULL;
693 }
694
695 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
696                                   struct vmx_uret_msr *msr, u64 data)
697 {
698         unsigned int slot = msr - vmx->guest_uret_msrs;
699         int ret = 0;
700
701         u64 old_msr_data = msr->data;
702         msr->data = data;
703         if (msr->load_into_hardware) {
704                 preempt_disable();
705                 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
706                 preempt_enable();
707                 if (ret)
708                         msr->data = old_msr_data;
709         }
710         return ret;
711 }
712
713 #ifdef CONFIG_KEXEC_CORE
714 static void crash_vmclear_local_loaded_vmcss(void)
715 {
716         int cpu = raw_smp_processor_id();
717         struct loaded_vmcs *v;
718
719         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
720                             loaded_vmcss_on_cpu_link)
721                 vmcs_clear(v->vmcs);
722 }
723 #endif /* CONFIG_KEXEC_CORE */
724
725 static void __loaded_vmcs_clear(void *arg)
726 {
727         struct loaded_vmcs *loaded_vmcs = arg;
728         int cpu = raw_smp_processor_id();
729
730         if (loaded_vmcs->cpu != cpu)
731                 return; /* vcpu migration can race with cpu offline */
732         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
733                 per_cpu(current_vmcs, cpu) = NULL;
734
735         vmcs_clear(loaded_vmcs->vmcs);
736         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
737                 vmcs_clear(loaded_vmcs->shadow_vmcs);
738
739         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
740
741         /*
742          * Ensure all writes to loaded_vmcs, including deleting it from its
743          * current percpu list, complete before setting loaded_vmcs->vcpu to
744          * -1, otherwise a different cpu can see vcpu == -1 first and add
745          * loaded_vmcs to its percpu list before it's deleted from this cpu's
746          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
747          */
748         smp_wmb();
749
750         loaded_vmcs->cpu = -1;
751         loaded_vmcs->launched = 0;
752 }
753
754 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
755 {
756         int cpu = loaded_vmcs->cpu;
757
758         if (cpu != -1)
759                 smp_call_function_single(cpu,
760                          __loaded_vmcs_clear, loaded_vmcs, 1);
761 }
762
763 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
764                                        unsigned field)
765 {
766         bool ret;
767         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
768
769         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
770                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
771                 vmx->segment_cache.bitmask = 0;
772         }
773         ret = vmx->segment_cache.bitmask & mask;
774         vmx->segment_cache.bitmask |= mask;
775         return ret;
776 }
777
778 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
779 {
780         u16 *p = &vmx->segment_cache.seg[seg].selector;
781
782         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
783                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
784         return *p;
785 }
786
787 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
788 {
789         ulong *p = &vmx->segment_cache.seg[seg].base;
790
791         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
792                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
793         return *p;
794 }
795
796 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
797 {
798         u32 *p = &vmx->segment_cache.seg[seg].limit;
799
800         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
801                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
802         return *p;
803 }
804
805 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
806 {
807         u32 *p = &vmx->segment_cache.seg[seg].ar;
808
809         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
810                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
811         return *p;
812 }
813
814 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
815 {
816         u32 eb;
817
818         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
819              (1u << DB_VECTOR) | (1u << AC_VECTOR);
820         /*
821          * Guest access to VMware backdoor ports could legitimately
822          * trigger #GP because of TSS I/O permission bitmap.
823          * We intercept those #GP and allow access to them anyway
824          * as VMware does.
825          */
826         if (enable_vmware_backdoor)
827                 eb |= (1u << GP_VECTOR);
828         if ((vcpu->guest_debug &
829              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
830             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
831                 eb |= 1u << BP_VECTOR;
832         if (to_vmx(vcpu)->rmode.vm86_active)
833                 eb = ~0;
834         if (!vmx_need_pf_intercept(vcpu))
835                 eb &= ~(1u << PF_VECTOR);
836
837         /* When we are running a nested L2 guest and L1 specified for it a
838          * certain exception bitmap, we must trap the same exceptions and pass
839          * them to L1. When running L2, we will only handle the exceptions
840          * specified above if L1 did not want them.
841          */
842         if (is_guest_mode(vcpu))
843                 eb |= get_vmcs12(vcpu)->exception_bitmap;
844         else {
845                 /*
846                  * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
847                  * between guest and host.  In that case we only care about present
848                  * faults.  For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
849                  * prepare_vmcs02_rare.
850                  */
851                 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
852                 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
853                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
854                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
855         }
856
857         vmcs_write32(EXCEPTION_BITMAP, eb);
858 }
859
860 /*
861  * Check if MSR is intercepted for currently loaded MSR bitmap.
862  */
863 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
864 {
865         unsigned long *msr_bitmap;
866         int f = sizeof(unsigned long);
867
868         if (!cpu_has_vmx_msr_bitmap())
869                 return true;
870
871         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
872
873         if (msr <= 0x1fff) {
874                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
875         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
876                 msr &= 0x1fff;
877                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
878         }
879
880         return true;
881 }
882
883 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
884                 unsigned long entry, unsigned long exit)
885 {
886         vm_entry_controls_clearbit(vmx, entry);
887         vm_exit_controls_clearbit(vmx, exit);
888 }
889
890 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
891 {
892         unsigned int i;
893
894         for (i = 0; i < m->nr; ++i) {
895                 if (m->val[i].index == msr)
896                         return i;
897         }
898         return -ENOENT;
899 }
900
901 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
902 {
903         int i;
904         struct msr_autoload *m = &vmx->msr_autoload;
905
906         switch (msr) {
907         case MSR_EFER:
908                 if (cpu_has_load_ia32_efer()) {
909                         clear_atomic_switch_msr_special(vmx,
910                                         VM_ENTRY_LOAD_IA32_EFER,
911                                         VM_EXIT_LOAD_IA32_EFER);
912                         return;
913                 }
914                 break;
915         case MSR_CORE_PERF_GLOBAL_CTRL:
916                 if (cpu_has_load_perf_global_ctrl()) {
917                         clear_atomic_switch_msr_special(vmx,
918                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
919                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
920                         return;
921                 }
922                 break;
923         }
924         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
925         if (i < 0)
926                 goto skip_guest;
927         --m->guest.nr;
928         m->guest.val[i] = m->guest.val[m->guest.nr];
929         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
930
931 skip_guest:
932         i = vmx_find_loadstore_msr_slot(&m->host, msr);
933         if (i < 0)
934                 return;
935
936         --m->host.nr;
937         m->host.val[i] = m->host.val[m->host.nr];
938         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
939 }
940
941 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
942                 unsigned long entry, unsigned long exit,
943                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
944                 u64 guest_val, u64 host_val)
945 {
946         vmcs_write64(guest_val_vmcs, guest_val);
947         if (host_val_vmcs != HOST_IA32_EFER)
948                 vmcs_write64(host_val_vmcs, host_val);
949         vm_entry_controls_setbit(vmx, entry);
950         vm_exit_controls_setbit(vmx, exit);
951 }
952
953 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
954                                   u64 guest_val, u64 host_val, bool entry_only)
955 {
956         int i, j = 0;
957         struct msr_autoload *m = &vmx->msr_autoload;
958
959         switch (msr) {
960         case MSR_EFER:
961                 if (cpu_has_load_ia32_efer()) {
962                         add_atomic_switch_msr_special(vmx,
963                                         VM_ENTRY_LOAD_IA32_EFER,
964                                         VM_EXIT_LOAD_IA32_EFER,
965                                         GUEST_IA32_EFER,
966                                         HOST_IA32_EFER,
967                                         guest_val, host_val);
968                         return;
969                 }
970                 break;
971         case MSR_CORE_PERF_GLOBAL_CTRL:
972                 if (cpu_has_load_perf_global_ctrl()) {
973                         add_atomic_switch_msr_special(vmx,
974                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
975                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
976                                         GUEST_IA32_PERF_GLOBAL_CTRL,
977                                         HOST_IA32_PERF_GLOBAL_CTRL,
978                                         guest_val, host_val);
979                         return;
980                 }
981                 break;
982         case MSR_IA32_PEBS_ENABLE:
983                 /* PEBS needs a quiescent period after being disabled (to write
984                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
985                  * provide that period, so a CPU could write host's record into
986                  * guest's memory.
987                  */
988                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
989         }
990
991         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
992         if (!entry_only)
993                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
994
995         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
996             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
997                 printk_once(KERN_WARNING "Not enough msr switch entries. "
998                                 "Can't add msr %x\n", msr);
999                 return;
1000         }
1001         if (i < 0) {
1002                 i = m->guest.nr++;
1003                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1004         }
1005         m->guest.val[i].index = msr;
1006         m->guest.val[i].value = guest_val;
1007
1008         if (entry_only)
1009                 return;
1010
1011         if (j < 0) {
1012                 j = m->host.nr++;
1013                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1014         }
1015         m->host.val[j].index = msr;
1016         m->host.val[j].value = host_val;
1017 }
1018
1019 static bool update_transition_efer(struct vcpu_vmx *vmx)
1020 {
1021         u64 guest_efer = vmx->vcpu.arch.efer;
1022         u64 ignore_bits = 0;
1023         int i;
1024
1025         /* Shadow paging assumes NX to be available.  */
1026         if (!enable_ept)
1027                 guest_efer |= EFER_NX;
1028
1029         /*
1030          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1031          */
1032         ignore_bits |= EFER_SCE;
1033 #ifdef CONFIG_X86_64
1034         ignore_bits |= EFER_LMA | EFER_LME;
1035         /* SCE is meaningful only in long mode on Intel */
1036         if (guest_efer & EFER_LMA)
1037                 ignore_bits &= ~(u64)EFER_SCE;
1038 #endif
1039
1040         /*
1041          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1042          * On CPUs that support "load IA32_EFER", always switch EFER
1043          * atomically, since it's faster than switching it manually.
1044          */
1045         if (cpu_has_load_ia32_efer() ||
1046             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1047                 if (!(guest_efer & EFER_LMA))
1048                         guest_efer &= ~EFER_LME;
1049                 if (guest_efer != host_efer)
1050                         add_atomic_switch_msr(vmx, MSR_EFER,
1051                                               guest_efer, host_efer, false);
1052                 else
1053                         clear_atomic_switch_msr(vmx, MSR_EFER);
1054                 return false;
1055         }
1056
1057         i = kvm_find_user_return_msr(MSR_EFER);
1058         if (i < 0)
1059                 return false;
1060
1061         clear_atomic_switch_msr(vmx, MSR_EFER);
1062
1063         guest_efer &= ~ignore_bits;
1064         guest_efer |= host_efer & ignore_bits;
1065
1066         vmx->guest_uret_msrs[i].data = guest_efer;
1067         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1068
1069         return true;
1070 }
1071
1072 #ifdef CONFIG_X86_32
1073 /*
1074  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1075  * VMCS rather than the segment table.  KVM uses this helper to figure
1076  * out the current bases to poke them into the VMCS before entry.
1077  */
1078 static unsigned long segment_base(u16 selector)
1079 {
1080         struct desc_struct *table;
1081         unsigned long v;
1082
1083         if (!(selector & ~SEGMENT_RPL_MASK))
1084                 return 0;
1085
1086         table = get_current_gdt_ro();
1087
1088         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1089                 u16 ldt_selector = kvm_read_ldt();
1090
1091                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1092                         return 0;
1093
1094                 table = (struct desc_struct *)segment_base(ldt_selector);
1095         }
1096         v = get_desc_base(&table[selector >> 3]);
1097         return v;
1098 }
1099 #endif
1100
1101 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1102 {
1103         return vmx_pt_mode_is_host_guest() &&
1104                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1105 }
1106
1107 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1108 {
1109         /* The base must be 128-byte aligned and a legal physical address. */
1110         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1111 }
1112
1113 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1114 {
1115         u32 i;
1116
1117         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1118         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1119         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1120         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1121         for (i = 0; i < addr_range; i++) {
1122                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1123                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1124         }
1125 }
1126
1127 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1128 {
1129         u32 i;
1130
1131         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1132         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1133         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1134         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1135         for (i = 0; i < addr_range; i++) {
1136                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1137                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1138         }
1139 }
1140
1141 static void pt_guest_enter(struct vcpu_vmx *vmx)
1142 {
1143         if (vmx_pt_mode_is_system())
1144                 return;
1145
1146         /*
1147          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1148          * Save host state before VM entry.
1149          */
1150         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1151         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1152                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1153                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1154                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1155         }
1156 }
1157
1158 static void pt_guest_exit(struct vcpu_vmx *vmx)
1159 {
1160         if (vmx_pt_mode_is_system())
1161                 return;
1162
1163         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1164                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1165                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1166         }
1167
1168         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1169         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1170 }
1171
1172 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1173                         unsigned long fs_base, unsigned long gs_base)
1174 {
1175         if (unlikely(fs_sel != host->fs_sel)) {
1176                 if (!(fs_sel & 7))
1177                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1178                 else
1179                         vmcs_write16(HOST_FS_SELECTOR, 0);
1180                 host->fs_sel = fs_sel;
1181         }
1182         if (unlikely(gs_sel != host->gs_sel)) {
1183                 if (!(gs_sel & 7))
1184                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1185                 else
1186                         vmcs_write16(HOST_GS_SELECTOR, 0);
1187                 host->gs_sel = gs_sel;
1188         }
1189         if (unlikely(fs_base != host->fs_base)) {
1190                 vmcs_writel(HOST_FS_BASE, fs_base);
1191                 host->fs_base = fs_base;
1192         }
1193         if (unlikely(gs_base != host->gs_base)) {
1194                 vmcs_writel(HOST_GS_BASE, gs_base);
1195                 host->gs_base = gs_base;
1196         }
1197 }
1198
1199 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1200 {
1201         struct vcpu_vmx *vmx = to_vmx(vcpu);
1202         struct vmcs_host_state *host_state;
1203 #ifdef CONFIG_X86_64
1204         int cpu = raw_smp_processor_id();
1205 #endif
1206         unsigned long fs_base, gs_base;
1207         u16 fs_sel, gs_sel;
1208         int i;
1209
1210         vmx->req_immediate_exit = false;
1211
1212         /*
1213          * Note that guest MSRs to be saved/restored can also be changed
1214          * when guest state is loaded. This happens when guest transitions
1215          * to/from long-mode by setting MSR_EFER.LMA.
1216          */
1217         if (!vmx->guest_uret_msrs_loaded) {
1218                 vmx->guest_uret_msrs_loaded = true;
1219                 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1220                         if (!vmx->guest_uret_msrs[i].load_into_hardware)
1221                                 continue;
1222
1223                         kvm_set_user_return_msr(i,
1224                                                 vmx->guest_uret_msrs[i].data,
1225                                                 vmx->guest_uret_msrs[i].mask);
1226                 }
1227         }
1228
1229         if (vmx->nested.need_vmcs12_to_shadow_sync)
1230                 nested_sync_vmcs12_to_shadow(vcpu);
1231
1232         if (vmx->guest_state_loaded)
1233                 return;
1234
1235         host_state = &vmx->loaded_vmcs->host_state;
1236
1237         /*
1238          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1239          * allow segment selectors with cpl > 0 or ti == 1.
1240          */
1241         host_state->ldt_sel = kvm_read_ldt();
1242
1243 #ifdef CONFIG_X86_64
1244         savesegment(ds, host_state->ds_sel);
1245         savesegment(es, host_state->es_sel);
1246
1247         gs_base = cpu_kernelmode_gs_base(cpu);
1248         if (likely(is_64bit_mm(current->mm))) {
1249                 current_save_fsgs();
1250                 fs_sel = current->thread.fsindex;
1251                 gs_sel = current->thread.gsindex;
1252                 fs_base = current->thread.fsbase;
1253                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1254         } else {
1255                 savesegment(fs, fs_sel);
1256                 savesegment(gs, gs_sel);
1257                 fs_base = read_msr(MSR_FS_BASE);
1258                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1259         }
1260
1261         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1262 #else
1263         savesegment(fs, fs_sel);
1264         savesegment(gs, gs_sel);
1265         fs_base = segment_base(fs_sel);
1266         gs_base = segment_base(gs_sel);
1267 #endif
1268
1269         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1270         vmx->guest_state_loaded = true;
1271 }
1272
1273 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1274 {
1275         struct vmcs_host_state *host_state;
1276
1277         if (!vmx->guest_state_loaded)
1278                 return;
1279
1280         host_state = &vmx->loaded_vmcs->host_state;
1281
1282         ++vmx->vcpu.stat.host_state_reload;
1283
1284 #ifdef CONFIG_X86_64
1285         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1286 #endif
1287         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1288                 kvm_load_ldt(host_state->ldt_sel);
1289 #ifdef CONFIG_X86_64
1290                 load_gs_index(host_state->gs_sel);
1291 #else
1292                 loadsegment(gs, host_state->gs_sel);
1293 #endif
1294         }
1295         if (host_state->fs_sel & 7)
1296                 loadsegment(fs, host_state->fs_sel);
1297 #ifdef CONFIG_X86_64
1298         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1299                 loadsegment(ds, host_state->ds_sel);
1300                 loadsegment(es, host_state->es_sel);
1301         }
1302 #endif
1303         invalidate_tss_limit();
1304 #ifdef CONFIG_X86_64
1305         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1306 #endif
1307         load_fixmap_gdt(raw_smp_processor_id());
1308         vmx->guest_state_loaded = false;
1309         vmx->guest_uret_msrs_loaded = false;
1310 }
1311
1312 #ifdef CONFIG_X86_64
1313 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1314 {
1315         preempt_disable();
1316         if (vmx->guest_state_loaded)
1317                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1318         preempt_enable();
1319         return vmx->msr_guest_kernel_gs_base;
1320 }
1321
1322 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1323 {
1324         preempt_disable();
1325         if (vmx->guest_state_loaded)
1326                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1327         preempt_enable();
1328         vmx->msr_guest_kernel_gs_base = data;
1329 }
1330 #endif
1331
1332 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1333                         struct loaded_vmcs *buddy)
1334 {
1335         struct vcpu_vmx *vmx = to_vmx(vcpu);
1336         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1337         struct vmcs *prev;
1338
1339         if (!already_loaded) {
1340                 loaded_vmcs_clear(vmx->loaded_vmcs);
1341                 local_irq_disable();
1342
1343                 /*
1344                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1345                  * this cpu's percpu list, otherwise it may not yet be deleted
1346                  * from its previous cpu's percpu list.  Pairs with the
1347                  * smb_wmb() in __loaded_vmcs_clear().
1348                  */
1349                 smp_rmb();
1350
1351                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1352                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1353                 local_irq_enable();
1354         }
1355
1356         prev = per_cpu(current_vmcs, cpu);
1357         if (prev != vmx->loaded_vmcs->vmcs) {
1358                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1359                 vmcs_load(vmx->loaded_vmcs->vmcs);
1360
1361                 /*
1362                  * No indirect branch prediction barrier needed when switching
1363                  * the active VMCS within a guest, e.g. on nested VM-Enter.
1364                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1365                  */
1366                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1367                         indirect_branch_prediction_barrier();
1368         }
1369
1370         if (!already_loaded) {
1371                 void *gdt = get_current_gdt_ro();
1372                 unsigned long sysenter_esp;
1373
1374                 /*
1375                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1376                  * TLB entries from its previous association with the vCPU.
1377                  */
1378                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1379
1380                 /*
1381                  * Linux uses per-cpu TSS and GDT, so set these when switching
1382                  * processors.  See 22.2.4.
1383                  */
1384                 vmcs_writel(HOST_TR_BASE,
1385                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1386                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1387
1388                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1389                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1390
1391                 vmx->loaded_vmcs->cpu = cpu;
1392         }
1393
1394         /* Setup TSC multiplier */
1395         if (kvm_has_tsc_control &&
1396             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1397                 decache_tsc_multiplier(vmx);
1398 }
1399
1400 /*
1401  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1402  * vcpu mutex is already taken.
1403  */
1404 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1405 {
1406         struct vcpu_vmx *vmx = to_vmx(vcpu);
1407
1408         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1409
1410         vmx_vcpu_pi_load(vcpu, cpu);
1411
1412         vmx->host_debugctlmsr = get_debugctlmsr();
1413 }
1414
1415 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1416 {
1417         vmx_vcpu_pi_put(vcpu);
1418
1419         vmx_prepare_switch_to_host(to_vmx(vcpu));
1420 }
1421
1422 static bool emulation_required(struct kvm_vcpu *vcpu)
1423 {
1424         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1425 }
1426
1427 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1428 {
1429         struct vcpu_vmx *vmx = to_vmx(vcpu);
1430         unsigned long rflags, save_rflags;
1431
1432         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1433                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1434                 rflags = vmcs_readl(GUEST_RFLAGS);
1435                 if (vmx->rmode.vm86_active) {
1436                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1437                         save_rflags = vmx->rmode.save_rflags;
1438                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1439                 }
1440                 vmx->rflags = rflags;
1441         }
1442         return vmx->rflags;
1443 }
1444
1445 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1446 {
1447         struct vcpu_vmx *vmx = to_vmx(vcpu);
1448         unsigned long old_rflags;
1449
1450         if (is_unrestricted_guest(vcpu)) {
1451                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1452                 vmx->rflags = rflags;
1453                 vmcs_writel(GUEST_RFLAGS, rflags);
1454                 return;
1455         }
1456
1457         old_rflags = vmx_get_rflags(vcpu);
1458         vmx->rflags = rflags;
1459         if (vmx->rmode.vm86_active) {
1460                 vmx->rmode.save_rflags = rflags;
1461                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1462         }
1463         vmcs_writel(GUEST_RFLAGS, rflags);
1464
1465         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1466                 vmx->emulation_required = emulation_required(vcpu);
1467 }
1468
1469 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1470 {
1471         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1472         int ret = 0;
1473
1474         if (interruptibility & GUEST_INTR_STATE_STI)
1475                 ret |= KVM_X86_SHADOW_INT_STI;
1476         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1477                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1478
1479         return ret;
1480 }
1481
1482 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1483 {
1484         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1485         u32 interruptibility = interruptibility_old;
1486
1487         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1488
1489         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1490                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1491         else if (mask & KVM_X86_SHADOW_INT_STI)
1492                 interruptibility |= GUEST_INTR_STATE_STI;
1493
1494         if ((interruptibility != interruptibility_old))
1495                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1496 }
1497
1498 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1499 {
1500         struct vcpu_vmx *vmx = to_vmx(vcpu);
1501         unsigned long value;
1502
1503         /*
1504          * Any MSR write that attempts to change bits marked reserved will
1505          * case a #GP fault.
1506          */
1507         if (data & vmx->pt_desc.ctl_bitmask)
1508                 return 1;
1509
1510         /*
1511          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1512          * result in a #GP unless the same write also clears TraceEn.
1513          */
1514         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1515                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1516                 return 1;
1517
1518         /*
1519          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1520          * and FabricEn would cause #GP, if
1521          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1522          */
1523         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1524                 !(data & RTIT_CTL_FABRIC_EN) &&
1525                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1526                                         PT_CAP_single_range_output))
1527                 return 1;
1528
1529         /*
1530          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1531          * utilize encodings marked reserved will cause a #GP fault.
1532          */
1533         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1534         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1535                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1536                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1537                 return 1;
1538         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1539                                                 PT_CAP_cycle_thresholds);
1540         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1541                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1542                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1543                 return 1;
1544         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1545         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1546                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1547                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1548                 return 1;
1549
1550         /*
1551          * If ADDRx_CFG is reserved or the encodings is >2 will
1552          * cause a #GP fault.
1553          */
1554         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1555         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1556                 return 1;
1557         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1558         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1559                 return 1;
1560         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1561         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1562                 return 1;
1563         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1564         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1565                 return 1;
1566
1567         return 0;
1568 }
1569
1570 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1571 {
1572         /*
1573          * Emulation of instructions in SGX enclaves is impossible as RIP does
1574          * not point  tthe failing instruction, and even if it did, the code
1575          * stream is inaccessible.  Inject #UD instead of exiting to userspace
1576          * so that guest userspace can't DoS the guest simply by triggering
1577          * emulation (enclaves are CPL3 only).
1578          */
1579         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1580                 kvm_queue_exception(vcpu, UD_VECTOR);
1581                 return false;
1582         }
1583         return true;
1584 }
1585
1586 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1587 {
1588         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1589         unsigned long rip, orig_rip;
1590         u32 instr_len;
1591
1592         /*
1593          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1594          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1595          * set when EPT misconfig occurs.  In practice, real hardware updates
1596          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1597          * (namely Hyper-V) don't set it due to it being undefined behavior,
1598          * i.e. we end up advancing IP with some random value.
1599          */
1600         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1601             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1602                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1603
1604                 /*
1605                  * Emulating an enclave's instructions isn't supported as KVM
1606                  * cannot access the enclave's memory or its true RIP, e.g. the
1607                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
1608                  * the RIP that actually triggered the VM-Exit.  But, because
1609                  * most instructions that cause VM-Exit will #UD in an enclave,
1610                  * most instruction-based VM-Exits simply do not occur.
1611                  *
1612                  * There are a few exceptions, notably the debug instructions
1613                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1614                  * and generate #DB/#BP as expected, which KVM might intercept.
1615                  * But again, the CPU does the dirty work and saves an instr
1616                  * length of zero so VMMs don't shoot themselves in the foot.
1617                  * WARN if KVM tries to skip a non-zero length instruction on
1618                  * a VM-Exit from an enclave.
1619                  */
1620                 if (!instr_len)
1621                         goto rip_updated;
1622
1623                 WARN(exit_reason.enclave_mode,
1624                      "KVM: skipping instruction after SGX enclave VM-Exit");
1625
1626                 orig_rip = kvm_rip_read(vcpu);
1627                 rip = orig_rip + instr_len;
1628 #ifdef CONFIG_X86_64
1629                 /*
1630                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1631                  * mode, but just finding out that we are in 64-bit mode is
1632                  * quite expensive.  Only do it if there was a carry.
1633                  */
1634                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1635                         rip = (u32)rip;
1636 #endif
1637                 kvm_rip_write(vcpu, rip);
1638         } else {
1639                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1640                         return 0;
1641         }
1642
1643 rip_updated:
1644         /* skipping an emulated instruction also counts */
1645         vmx_set_interrupt_shadow(vcpu, 0);
1646
1647         return 1;
1648 }
1649
1650 /*
1651  * Recognizes a pending MTF VM-exit and records the nested state for later
1652  * delivery.
1653  */
1654 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1655 {
1656         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1657         struct vcpu_vmx *vmx = to_vmx(vcpu);
1658
1659         if (!is_guest_mode(vcpu))
1660                 return;
1661
1662         /*
1663          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1664          * T-bit traps. As instruction emulation is completed (i.e. at the
1665          * instruction boundary), any #DB exception pending delivery must be a
1666          * debug-trap. Record the pending MTF state to be delivered in
1667          * vmx_check_nested_events().
1668          */
1669         if (nested_cpu_has_mtf(vmcs12) &&
1670             (!vcpu->arch.exception.pending ||
1671              vcpu->arch.exception.nr == DB_VECTOR))
1672                 vmx->nested.mtf_pending = true;
1673         else
1674                 vmx->nested.mtf_pending = false;
1675 }
1676
1677 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1678 {
1679         vmx_update_emulated_instruction(vcpu);
1680         return skip_emulated_instruction(vcpu);
1681 }
1682
1683 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1684 {
1685         /*
1686          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1687          * explicitly skip the instruction because if the HLT state is set,
1688          * then the instruction is already executing and RIP has already been
1689          * advanced.
1690          */
1691         if (kvm_hlt_in_guest(vcpu->kvm) &&
1692                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1693                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1694 }
1695
1696 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1697 {
1698         struct vcpu_vmx *vmx = to_vmx(vcpu);
1699         unsigned nr = vcpu->arch.exception.nr;
1700         bool has_error_code = vcpu->arch.exception.has_error_code;
1701         u32 error_code = vcpu->arch.exception.error_code;
1702         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1703
1704         kvm_deliver_exception_payload(vcpu);
1705
1706         if (has_error_code) {
1707                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1708                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1709         }
1710
1711         if (vmx->rmode.vm86_active) {
1712                 int inc_eip = 0;
1713                 if (kvm_exception_is_soft(nr))
1714                         inc_eip = vcpu->arch.event_exit_inst_len;
1715                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1716                 return;
1717         }
1718
1719         WARN_ON_ONCE(vmx->emulation_required);
1720
1721         if (kvm_exception_is_soft(nr)) {
1722                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1723                              vmx->vcpu.arch.event_exit_inst_len);
1724                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1725         } else
1726                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1727
1728         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1729
1730         vmx_clear_hlt(vcpu);
1731 }
1732
1733 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1734                                bool load_into_hardware)
1735 {
1736         struct vmx_uret_msr *uret_msr;
1737
1738         uret_msr = vmx_find_uret_msr(vmx, msr);
1739         if (!uret_msr)
1740                 return;
1741
1742         uret_msr->load_into_hardware = load_into_hardware;
1743 }
1744
1745 /*
1746  * Set up the vmcs to automatically save and restore system
1747  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1748  * mode, as fiddling with msrs is very expensive.
1749  */
1750 static void setup_msrs(struct vcpu_vmx *vmx)
1751 {
1752 #ifdef CONFIG_X86_64
1753         bool load_syscall_msrs;
1754
1755         /*
1756          * The SYSCALL MSRs are only needed on long mode guests, and only
1757          * when EFER.SCE is set.
1758          */
1759         load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1760                             (vmx->vcpu.arch.efer & EFER_SCE);
1761
1762         vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1763         vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1764         vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1765 #endif
1766         vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1767
1768         vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1769                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1770                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1771
1772         /*
1773          * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1774          * kernel and old userspace.  If those guests run on a tsx=off host, do
1775          * allow guests to use TSX_CTRL, but don't change the value in hardware
1776          * so that TSX remains always disabled.
1777          */
1778         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1779
1780         if (cpu_has_vmx_msr_bitmap())
1781                 vmx_update_msr_bitmap(&vmx->vcpu);
1782
1783         /*
1784          * The set of MSRs to load may have changed, reload MSRs before the
1785          * next VM-Enter.
1786          */
1787         vmx->guest_uret_msrs_loaded = false;
1788 }
1789
1790 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1791 {
1792         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1793         u64 g_tsc_offset = 0;
1794
1795         /*
1796          * We're here if L1 chose not to trap WRMSR to TSC. According
1797          * to the spec, this should set L1's TSC; The offset that L1
1798          * set for L2 remains unchanged, and still needs to be added
1799          * to the newly set TSC to get L2's TSC.
1800          */
1801         if (is_guest_mode(vcpu) &&
1802             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1803                 g_tsc_offset = vmcs12->tsc_offset;
1804
1805         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1806                                    vcpu->arch.tsc_offset - g_tsc_offset,
1807                                    offset);
1808         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1809         return offset + g_tsc_offset;
1810 }
1811
1812 /*
1813  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1814  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1815  * all guests if the "nested" module option is off, and can also be disabled
1816  * for a single guest by disabling its VMX cpuid bit.
1817  */
1818 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1819 {
1820         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1821 }
1822
1823 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1824                                                  uint64_t val)
1825 {
1826         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1827
1828         return !(val & ~valid_bits);
1829 }
1830
1831 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1832 {
1833         switch (msr->index) {
1834         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1835                 if (!nested)
1836                         return 1;
1837                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1838         case MSR_IA32_PERF_CAPABILITIES:
1839                 msr->data = vmx_get_perf_capabilities();
1840                 return 0;
1841         default:
1842                 return KVM_MSR_RET_INVALID;
1843         }
1844 }
1845
1846 /*
1847  * Reads an msr value (of 'msr_index') into 'pdata'.
1848  * Returns 0 on success, non-0 otherwise.
1849  * Assumes vcpu_load() was already called.
1850  */
1851 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1852 {
1853         struct vcpu_vmx *vmx = to_vmx(vcpu);
1854         struct vmx_uret_msr *msr;
1855         u32 index;
1856
1857         switch (msr_info->index) {
1858 #ifdef CONFIG_X86_64
1859         case MSR_FS_BASE:
1860                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1861                 break;
1862         case MSR_GS_BASE:
1863                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1864                 break;
1865         case MSR_KERNEL_GS_BASE:
1866                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1867                 break;
1868 #endif
1869         case MSR_EFER:
1870                 return kvm_get_msr_common(vcpu, msr_info);
1871         case MSR_IA32_TSX_CTRL:
1872                 if (!msr_info->host_initiated &&
1873                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1874                         return 1;
1875                 goto find_uret_msr;
1876         case MSR_IA32_UMWAIT_CONTROL:
1877                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1878                         return 1;
1879
1880                 msr_info->data = vmx->msr_ia32_umwait_control;
1881                 break;
1882         case MSR_IA32_SPEC_CTRL:
1883                 if (!msr_info->host_initiated &&
1884                     !guest_has_spec_ctrl_msr(vcpu))
1885                         return 1;
1886
1887                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1888                 break;
1889         case MSR_IA32_SYSENTER_CS:
1890                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1891                 break;
1892         case MSR_IA32_SYSENTER_EIP:
1893                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1894                 break;
1895         case MSR_IA32_SYSENTER_ESP:
1896                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1897                 break;
1898         case MSR_IA32_BNDCFGS:
1899                 if (!kvm_mpx_supported() ||
1900                     (!msr_info->host_initiated &&
1901                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1902                         return 1;
1903                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1904                 break;
1905         case MSR_IA32_MCG_EXT_CTL:
1906                 if (!msr_info->host_initiated &&
1907                     !(vmx->msr_ia32_feature_control &
1908                       FEAT_CTL_LMCE_ENABLED))
1909                         return 1;
1910                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1911                 break;
1912         case MSR_IA32_FEAT_CTL:
1913                 msr_info->data = vmx->msr_ia32_feature_control;
1914                 break;
1915         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1916                 if (!msr_info->host_initiated &&
1917                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1918                         return 1;
1919                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1920                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1921                 break;
1922         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1923                 if (!nested_vmx_allowed(vcpu))
1924                         return 1;
1925                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1926                                     &msr_info->data))
1927                         return 1;
1928                 /*
1929                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1930                  * Hyper-V versions are still trying to use corresponding
1931                  * features when they are exposed. Filter out the essential
1932                  * minimum.
1933                  */
1934                 if (!msr_info->host_initiated &&
1935                     vmx->nested.enlightened_vmcs_enabled)
1936                         nested_evmcs_filter_control_msr(msr_info->index,
1937                                                         &msr_info->data);
1938                 break;
1939         case MSR_IA32_RTIT_CTL:
1940                 if (!vmx_pt_mode_is_host_guest())
1941                         return 1;
1942                 msr_info->data = vmx->pt_desc.guest.ctl;
1943                 break;
1944         case MSR_IA32_RTIT_STATUS:
1945                 if (!vmx_pt_mode_is_host_guest())
1946                         return 1;
1947                 msr_info->data = vmx->pt_desc.guest.status;
1948                 break;
1949         case MSR_IA32_RTIT_CR3_MATCH:
1950                 if (!vmx_pt_mode_is_host_guest() ||
1951                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1952                                                 PT_CAP_cr3_filtering))
1953                         return 1;
1954                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1955                 break;
1956         case MSR_IA32_RTIT_OUTPUT_BASE:
1957                 if (!vmx_pt_mode_is_host_guest() ||
1958                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1959                                         PT_CAP_topa_output) &&
1960                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1961                                         PT_CAP_single_range_output)))
1962                         return 1;
1963                 msr_info->data = vmx->pt_desc.guest.output_base;
1964                 break;
1965         case MSR_IA32_RTIT_OUTPUT_MASK:
1966                 if (!vmx_pt_mode_is_host_guest() ||
1967                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1968                                         PT_CAP_topa_output) &&
1969                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1970                                         PT_CAP_single_range_output)))
1971                         return 1;
1972                 msr_info->data = vmx->pt_desc.guest.output_mask;
1973                 break;
1974         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1975                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1976                 if (!vmx_pt_mode_is_host_guest() ||
1977                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1978                                         PT_CAP_num_address_ranges)))
1979                         return 1;
1980                 if (index % 2)
1981                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1982                 else
1983                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1984                 break;
1985         case MSR_IA32_DEBUGCTLMSR:
1986                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1987                 break;
1988         default:
1989         find_uret_msr:
1990                 msr = vmx_find_uret_msr(vmx, msr_info->index);
1991                 if (msr) {
1992                         msr_info->data = msr->data;
1993                         break;
1994                 }
1995                 return kvm_get_msr_common(vcpu, msr_info);
1996         }
1997
1998         return 0;
1999 }
2000
2001 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2002                                                     u64 data)
2003 {
2004 #ifdef CONFIG_X86_64
2005         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2006                 return (u32)data;
2007 #endif
2008         return (unsigned long)data;
2009 }
2010
2011 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
2012 {
2013         u64 debugctl = vmx_supported_debugctl();
2014
2015         if (!intel_pmu_lbr_is_enabled(vcpu))
2016                 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
2017
2018         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
2019                 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
2020
2021         return debugctl;
2022 }
2023
2024 /*
2025  * Writes msr value into the appropriate "register".
2026  * Returns 0 on success, non-0 otherwise.
2027  * Assumes vcpu_load() was already called.
2028  */
2029 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2030 {
2031         struct vcpu_vmx *vmx = to_vmx(vcpu);
2032         struct vmx_uret_msr *msr;
2033         int ret = 0;
2034         u32 msr_index = msr_info->index;
2035         u64 data = msr_info->data;
2036         u32 index;
2037
2038         switch (msr_index) {
2039         case MSR_EFER:
2040                 ret = kvm_set_msr_common(vcpu, msr_info);
2041                 break;
2042 #ifdef CONFIG_X86_64
2043         case MSR_FS_BASE:
2044                 vmx_segment_cache_clear(vmx);
2045                 vmcs_writel(GUEST_FS_BASE, data);
2046                 break;
2047         case MSR_GS_BASE:
2048                 vmx_segment_cache_clear(vmx);
2049                 vmcs_writel(GUEST_GS_BASE, data);
2050                 break;
2051         case MSR_KERNEL_GS_BASE:
2052                 vmx_write_guest_kernel_gs_base(vmx, data);
2053                 break;
2054 #endif
2055         case MSR_IA32_SYSENTER_CS:
2056                 if (is_guest_mode(vcpu))
2057                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
2058                 vmcs_write32(GUEST_SYSENTER_CS, data);
2059                 break;
2060         case MSR_IA32_SYSENTER_EIP:
2061                 if (is_guest_mode(vcpu)) {
2062                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2063                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
2064                 }
2065                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2066                 break;
2067         case MSR_IA32_SYSENTER_ESP:
2068                 if (is_guest_mode(vcpu)) {
2069                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2070                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2071                 }
2072                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2073                 break;
2074         case MSR_IA32_DEBUGCTLMSR: {
2075                 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2076                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2077                         if (report_ignored_msrs)
2078                                 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2079                                             __func__, data);
2080                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2081                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2082                 }
2083
2084                 if (invalid)
2085                         return 1;
2086
2087                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2088                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2089                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2090
2091                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2092                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2093                     (data & DEBUGCTLMSR_LBR))
2094                         intel_pmu_create_guest_lbr_event(vcpu);
2095                 return 0;
2096         }
2097         case MSR_IA32_BNDCFGS:
2098                 if (!kvm_mpx_supported() ||
2099                     (!msr_info->host_initiated &&
2100                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2101                         return 1;
2102                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2103                     (data & MSR_IA32_BNDCFGS_RSVD))
2104                         return 1;
2105                 vmcs_write64(GUEST_BNDCFGS, data);
2106                 break;
2107         case MSR_IA32_UMWAIT_CONTROL:
2108                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2109                         return 1;
2110
2111                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2112                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2113                         return 1;
2114
2115                 vmx->msr_ia32_umwait_control = data;
2116                 break;
2117         case MSR_IA32_SPEC_CTRL:
2118                 if (!msr_info->host_initiated &&
2119                     !guest_has_spec_ctrl_msr(vcpu))
2120                         return 1;
2121
2122                 if (kvm_spec_ctrl_test_value(data))
2123                         return 1;
2124
2125                 vmx->spec_ctrl = data;
2126                 if (!data)
2127                         break;
2128
2129                 /*
2130                  * For non-nested:
2131                  * When it's written (to non-zero) for the first time, pass
2132                  * it through.
2133                  *
2134                  * For nested:
2135                  * The handling of the MSR bitmap for L2 guests is done in
2136                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2137                  * vmcs02.msr_bitmap here since it gets completely overwritten
2138                  * in the merging. We update the vmcs01 here for L1 as well
2139                  * since it will end up touching the MSR anyway now.
2140                  */
2141                 vmx_disable_intercept_for_msr(vcpu,
2142                                               MSR_IA32_SPEC_CTRL,
2143                                               MSR_TYPE_RW);
2144                 break;
2145         case MSR_IA32_TSX_CTRL:
2146                 if (!msr_info->host_initiated &&
2147                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2148                         return 1;
2149                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2150                         return 1;
2151                 goto find_uret_msr;
2152         case MSR_IA32_PRED_CMD:
2153                 if (!msr_info->host_initiated &&
2154                     !guest_has_pred_cmd_msr(vcpu))
2155                         return 1;
2156
2157                 if (data & ~PRED_CMD_IBPB)
2158                         return 1;
2159                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2160                         return 1;
2161                 if (!data)
2162                         break;
2163
2164                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2165
2166                 /*
2167                  * For non-nested:
2168                  * When it's written (to non-zero) for the first time, pass
2169                  * it through.
2170                  *
2171                  * For nested:
2172                  * The handling of the MSR bitmap for L2 guests is done in
2173                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2174                  * vmcs02.msr_bitmap here since it gets completely overwritten
2175                  * in the merging.
2176                  */
2177                 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2178                 break;
2179         case MSR_IA32_CR_PAT:
2180                 if (!kvm_pat_valid(data))
2181                         return 1;
2182
2183                 if (is_guest_mode(vcpu) &&
2184                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2185                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2186
2187                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2188                         vmcs_write64(GUEST_IA32_PAT, data);
2189                         vcpu->arch.pat = data;
2190                         break;
2191                 }
2192                 ret = kvm_set_msr_common(vcpu, msr_info);
2193                 break;
2194         case MSR_IA32_TSC_ADJUST:
2195                 ret = kvm_set_msr_common(vcpu, msr_info);
2196                 break;
2197         case MSR_IA32_MCG_EXT_CTL:
2198                 if ((!msr_info->host_initiated &&
2199                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2200                        FEAT_CTL_LMCE_ENABLED)) ||
2201                     (data & ~MCG_EXT_CTL_LMCE_EN))
2202                         return 1;
2203                 vcpu->arch.mcg_ext_ctl = data;
2204                 break;
2205         case MSR_IA32_FEAT_CTL:
2206                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2207                     (to_vmx(vcpu)->msr_ia32_feature_control &
2208                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2209                         return 1;
2210                 vmx->msr_ia32_feature_control = data;
2211                 if (msr_info->host_initiated && data == 0)
2212                         vmx_leave_nested(vcpu);
2213
2214                 /* SGX may be enabled/disabled by guest's firmware */
2215                 vmx_write_encls_bitmap(vcpu, NULL);
2216                 break;
2217         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2218                 /*
2219                  * On real hardware, the LE hash MSRs are writable before
2220                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2221                  * at which point SGX related bits in IA32_FEATURE_CONTROL
2222                  * become writable.
2223                  *
2224                  * KVM does not emulate SGX activation for simplicity, so
2225                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2226                  * is unlocked.  This is technically not architectural
2227                  * behavior, but it's close enough.
2228                  */
2229                 if (!msr_info->host_initiated &&
2230                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2231                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2232                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2233                         return 1;
2234                 vmx->msr_ia32_sgxlepubkeyhash
2235                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2236                 break;
2237         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2238                 if (!msr_info->host_initiated)
2239                         return 1; /* they are read-only */
2240                 if (!nested_vmx_allowed(vcpu))
2241                         return 1;
2242                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2243         case MSR_IA32_RTIT_CTL:
2244                 if (!vmx_pt_mode_is_host_guest() ||
2245                         vmx_rtit_ctl_check(vcpu, data) ||
2246                         vmx->nested.vmxon)
2247                         return 1;
2248                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2249                 vmx->pt_desc.guest.ctl = data;
2250                 pt_update_intercept_for_msr(vcpu);
2251                 break;
2252         case MSR_IA32_RTIT_STATUS:
2253                 if (!pt_can_write_msr(vmx))
2254                         return 1;
2255                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2256                         return 1;
2257                 vmx->pt_desc.guest.status = data;
2258                 break;
2259         case MSR_IA32_RTIT_CR3_MATCH:
2260                 if (!pt_can_write_msr(vmx))
2261                         return 1;
2262                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2263                                            PT_CAP_cr3_filtering))
2264                         return 1;
2265                 vmx->pt_desc.guest.cr3_match = data;
2266                 break;
2267         case MSR_IA32_RTIT_OUTPUT_BASE:
2268                 if (!pt_can_write_msr(vmx))
2269                         return 1;
2270                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2271                                            PT_CAP_topa_output) &&
2272                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2273                                            PT_CAP_single_range_output))
2274                         return 1;
2275                 if (!pt_output_base_valid(vcpu, data))
2276                         return 1;
2277                 vmx->pt_desc.guest.output_base = data;
2278                 break;
2279         case MSR_IA32_RTIT_OUTPUT_MASK:
2280                 if (!pt_can_write_msr(vmx))
2281                         return 1;
2282                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2283                                            PT_CAP_topa_output) &&
2284                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2285                                            PT_CAP_single_range_output))
2286                         return 1;
2287                 vmx->pt_desc.guest.output_mask = data;
2288                 break;
2289         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2290                 if (!pt_can_write_msr(vmx))
2291                         return 1;
2292                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2293                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2294                                                        PT_CAP_num_address_ranges))
2295                         return 1;
2296                 if (is_noncanonical_address(data, vcpu))
2297                         return 1;
2298                 if (index % 2)
2299                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2300                 else
2301                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2302                 break;
2303         case MSR_IA32_PERF_CAPABILITIES:
2304                 if (data && !vcpu_to_pmu(vcpu)->version)
2305                         return 1;
2306                 if (data & PMU_CAP_LBR_FMT) {
2307                         if ((data & PMU_CAP_LBR_FMT) !=
2308                             (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2309                                 return 1;
2310                         if (!intel_pmu_lbr_is_compatible(vcpu))
2311                                 return 1;
2312                 }
2313                 ret = kvm_set_msr_common(vcpu, msr_info);
2314                 break;
2315
2316         default:
2317         find_uret_msr:
2318                 msr = vmx_find_uret_msr(vmx, msr_index);
2319                 if (msr)
2320                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2321                 else
2322                         ret = kvm_set_msr_common(vcpu, msr_info);
2323         }
2324
2325         return ret;
2326 }
2327
2328 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2329 {
2330         unsigned long guest_owned_bits;
2331
2332         kvm_register_mark_available(vcpu, reg);
2333
2334         switch (reg) {
2335         case VCPU_REGS_RSP:
2336                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2337                 break;
2338         case VCPU_REGS_RIP:
2339                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2340                 break;
2341         case VCPU_EXREG_PDPTR:
2342                 if (enable_ept)
2343                         ept_save_pdptrs(vcpu);
2344                 break;
2345         case VCPU_EXREG_CR0:
2346                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2347
2348                 vcpu->arch.cr0 &= ~guest_owned_bits;
2349                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2350                 break;
2351         case VCPU_EXREG_CR3:
2352                 if (is_unrestricted_guest(vcpu) ||
2353                     (enable_ept && is_paging(vcpu)))
2354                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2355                 break;
2356         case VCPU_EXREG_CR4:
2357                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2358
2359                 vcpu->arch.cr4 &= ~guest_owned_bits;
2360                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2361                 break;
2362         default:
2363                 WARN_ON_ONCE(1);
2364                 break;
2365         }
2366 }
2367
2368 static __init int cpu_has_kvm_support(void)
2369 {
2370         return cpu_has_vmx();
2371 }
2372
2373 static __init int vmx_disabled_by_bios(void)
2374 {
2375         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2376                !boot_cpu_has(X86_FEATURE_VMX);
2377 }
2378
2379 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2380 {
2381         u64 msr;
2382
2383         cr4_set_bits(X86_CR4_VMXE);
2384
2385         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2386                           _ASM_EXTABLE(1b, %l[fault])
2387                           : : [vmxon_pointer] "m"(vmxon_pointer)
2388                           : : fault);
2389         return 0;
2390
2391 fault:
2392         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2393                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2394         cr4_clear_bits(X86_CR4_VMXE);
2395
2396         return -EFAULT;
2397 }
2398
2399 static int hardware_enable(void)
2400 {
2401         int cpu = raw_smp_processor_id();
2402         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2403         int r;
2404
2405         if (cr4_read_shadow() & X86_CR4_VMXE)
2406                 return -EBUSY;
2407
2408         /*
2409          * This can happen if we hot-added a CPU but failed to allocate
2410          * VP assist page for it.
2411          */
2412         if (static_branch_unlikely(&enable_evmcs) &&
2413             !hv_get_vp_assist_page(cpu))
2414                 return -EFAULT;
2415
2416         intel_pt_handle_vmx(1);
2417
2418         r = kvm_cpu_vmxon(phys_addr);
2419         if (r) {
2420                 intel_pt_handle_vmx(0);
2421                 return r;
2422         }
2423
2424         if (enable_ept)
2425                 ept_sync_global();
2426
2427         return 0;
2428 }
2429
2430 static void vmclear_local_loaded_vmcss(void)
2431 {
2432         int cpu = raw_smp_processor_id();
2433         struct loaded_vmcs *v, *n;
2434
2435         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2436                                  loaded_vmcss_on_cpu_link)
2437                 __loaded_vmcs_clear(v);
2438 }
2439
2440 static void hardware_disable(void)
2441 {
2442         vmclear_local_loaded_vmcss();
2443
2444         if (cpu_vmxoff())
2445                 kvm_spurious_fault();
2446
2447         intel_pt_handle_vmx(0);
2448 }
2449
2450 /*
2451  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2452  * directly instead of going through cpu_has(), to ensure KVM is trapping
2453  * ENCLS whenever it's supported in hardware.  It does not matter whether
2454  * the host OS supports or has enabled SGX.
2455  */
2456 static bool cpu_has_sgx(void)
2457 {
2458         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2459 }
2460
2461 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2462                                       u32 msr, u32 *result)
2463 {
2464         u32 vmx_msr_low, vmx_msr_high;
2465         u32 ctl = ctl_min | ctl_opt;
2466
2467         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2468
2469         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2470         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2471
2472         /* Ensure minimum (required) set of control bits are supported. */
2473         if (ctl_min & ~ctl)
2474                 return -EIO;
2475
2476         *result = ctl;
2477         return 0;
2478 }
2479
2480 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2481                                     struct vmx_capability *vmx_cap)
2482 {
2483         u32 vmx_msr_low, vmx_msr_high;
2484         u32 min, opt, min2, opt2;
2485         u32 _pin_based_exec_control = 0;
2486         u32 _cpu_based_exec_control = 0;
2487         u32 _cpu_based_2nd_exec_control = 0;
2488         u32 _vmexit_control = 0;
2489         u32 _vmentry_control = 0;
2490
2491         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2492         min = CPU_BASED_HLT_EXITING |
2493 #ifdef CONFIG_X86_64
2494               CPU_BASED_CR8_LOAD_EXITING |
2495               CPU_BASED_CR8_STORE_EXITING |
2496 #endif
2497               CPU_BASED_CR3_LOAD_EXITING |
2498               CPU_BASED_CR3_STORE_EXITING |
2499               CPU_BASED_UNCOND_IO_EXITING |
2500               CPU_BASED_MOV_DR_EXITING |
2501               CPU_BASED_USE_TSC_OFFSETTING |
2502               CPU_BASED_MWAIT_EXITING |
2503               CPU_BASED_MONITOR_EXITING |
2504               CPU_BASED_INVLPG_EXITING |
2505               CPU_BASED_RDPMC_EXITING;
2506
2507         opt = CPU_BASED_TPR_SHADOW |
2508               CPU_BASED_USE_MSR_BITMAPS |
2509               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2510         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2511                                 &_cpu_based_exec_control) < 0)
2512                 return -EIO;
2513 #ifdef CONFIG_X86_64
2514         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2515                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2516                                            ~CPU_BASED_CR8_STORE_EXITING;
2517 #endif
2518         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2519                 min2 = 0;
2520                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2521                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2522                         SECONDARY_EXEC_WBINVD_EXITING |
2523                         SECONDARY_EXEC_ENABLE_VPID |
2524                         SECONDARY_EXEC_ENABLE_EPT |
2525                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2526                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2527                         SECONDARY_EXEC_DESC |
2528                         SECONDARY_EXEC_ENABLE_RDTSCP |
2529                         SECONDARY_EXEC_ENABLE_INVPCID |
2530                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2531                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2532                         SECONDARY_EXEC_SHADOW_VMCS |
2533                         SECONDARY_EXEC_XSAVES |
2534                         SECONDARY_EXEC_RDSEED_EXITING |
2535                         SECONDARY_EXEC_RDRAND_EXITING |
2536                         SECONDARY_EXEC_ENABLE_PML |
2537                         SECONDARY_EXEC_TSC_SCALING |
2538                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2539                         SECONDARY_EXEC_PT_USE_GPA |
2540                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2541                         SECONDARY_EXEC_ENABLE_VMFUNC |
2542                         SECONDARY_EXEC_BUS_LOCK_DETECTION;
2543                 if (cpu_has_sgx())
2544                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2545                 if (adjust_vmx_controls(min2, opt2,
2546                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2547                                         &_cpu_based_2nd_exec_control) < 0)
2548                         return -EIO;
2549         }
2550 #ifndef CONFIG_X86_64
2551         if (!(_cpu_based_2nd_exec_control &
2552                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2553                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2554 #endif
2555
2556         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2557                 _cpu_based_2nd_exec_control &= ~(
2558                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2559                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2560                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2561
2562         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2563                 &vmx_cap->ept, &vmx_cap->vpid);
2564
2565         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2566                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2567                    enabled */
2568                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2569                                              CPU_BASED_CR3_STORE_EXITING |
2570                                              CPU_BASED_INVLPG_EXITING);
2571         } else if (vmx_cap->ept) {
2572                 vmx_cap->ept = 0;
2573                 pr_warn_once("EPT CAP should not exist if not support "
2574                                 "1-setting enable EPT VM-execution control\n");
2575         }
2576         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2577                 vmx_cap->vpid) {
2578                 vmx_cap->vpid = 0;
2579                 pr_warn_once("VPID CAP should not exist if not support "
2580                                 "1-setting enable VPID VM-execution control\n");
2581         }
2582
2583         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2584 #ifdef CONFIG_X86_64
2585         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2586 #endif
2587         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2588               VM_EXIT_LOAD_IA32_PAT |
2589               VM_EXIT_LOAD_IA32_EFER |
2590               VM_EXIT_CLEAR_BNDCFGS |
2591               VM_EXIT_PT_CONCEAL_PIP |
2592               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2593         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2594                                 &_vmexit_control) < 0)
2595                 return -EIO;
2596
2597         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2598         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2599                  PIN_BASED_VMX_PREEMPTION_TIMER;
2600         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2601                                 &_pin_based_exec_control) < 0)
2602                 return -EIO;
2603
2604         if (cpu_has_broken_vmx_preemption_timer())
2605                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2606         if (!(_cpu_based_2nd_exec_control &
2607                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2608                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2609
2610         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2611         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2612               VM_ENTRY_LOAD_IA32_PAT |
2613               VM_ENTRY_LOAD_IA32_EFER |
2614               VM_ENTRY_LOAD_BNDCFGS |
2615               VM_ENTRY_PT_CONCEAL_PIP |
2616               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2617         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2618                                 &_vmentry_control) < 0)
2619                 return -EIO;
2620
2621         /*
2622          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2623          * can't be used due to an errata where VM Exit may incorrectly clear
2624          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2625          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2626          */
2627         if (boot_cpu_data.x86 == 0x6) {
2628                 switch (boot_cpu_data.x86_model) {
2629                 case 26: /* AAK155 */
2630                 case 30: /* AAP115 */
2631                 case 37: /* AAT100 */
2632                 case 44: /* BC86,AAY89,BD102 */
2633                 case 46: /* BA97 */
2634                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2635                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2636                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2637                                         "does not work properly. Using workaround\n");
2638                         break;
2639                 default:
2640                         break;
2641                 }
2642         }
2643
2644
2645         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2646
2647         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2648         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2649                 return -EIO;
2650
2651 #ifdef CONFIG_X86_64
2652         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2653         if (vmx_msr_high & (1u<<16))
2654                 return -EIO;
2655 #endif
2656
2657         /* Require Write-Back (WB) memory type for VMCS accesses. */
2658         if (((vmx_msr_high >> 18) & 15) != 6)
2659                 return -EIO;
2660
2661         vmcs_conf->size = vmx_msr_high & 0x1fff;
2662         vmcs_conf->order = get_order(vmcs_conf->size);
2663         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2664
2665         vmcs_conf->revision_id = vmx_msr_low;
2666
2667         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2668         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2669         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2670         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2671         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2672
2673 #if IS_ENABLED(CONFIG_HYPERV)
2674         if (enlightened_vmcs)
2675                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2676 #endif
2677
2678         return 0;
2679 }
2680
2681 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2682 {
2683         int node = cpu_to_node(cpu);
2684         struct page *pages;
2685         struct vmcs *vmcs;
2686
2687         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2688         if (!pages)
2689                 return NULL;
2690         vmcs = page_address(pages);
2691         memset(vmcs, 0, vmcs_config.size);
2692
2693         /* KVM supports Enlightened VMCS v1 only */
2694         if (static_branch_unlikely(&enable_evmcs))
2695                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2696         else
2697                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2698
2699         if (shadow)
2700                 vmcs->hdr.shadow_vmcs = 1;
2701         return vmcs;
2702 }
2703
2704 void free_vmcs(struct vmcs *vmcs)
2705 {
2706         free_pages((unsigned long)vmcs, vmcs_config.order);
2707 }
2708
2709 /*
2710  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2711  */
2712 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2713 {
2714         if (!loaded_vmcs->vmcs)
2715                 return;
2716         loaded_vmcs_clear(loaded_vmcs);
2717         free_vmcs(loaded_vmcs->vmcs);
2718         loaded_vmcs->vmcs = NULL;
2719         if (loaded_vmcs->msr_bitmap)
2720                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2721         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2722 }
2723
2724 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2725 {
2726         loaded_vmcs->vmcs = alloc_vmcs(false);
2727         if (!loaded_vmcs->vmcs)
2728                 return -ENOMEM;
2729
2730         vmcs_clear(loaded_vmcs->vmcs);
2731
2732         loaded_vmcs->shadow_vmcs = NULL;
2733         loaded_vmcs->hv_timer_soft_disabled = false;
2734         loaded_vmcs->cpu = -1;
2735         loaded_vmcs->launched = 0;
2736
2737         if (cpu_has_vmx_msr_bitmap()) {
2738                 loaded_vmcs->msr_bitmap = (unsigned long *)
2739                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2740                 if (!loaded_vmcs->msr_bitmap)
2741                         goto out_vmcs;
2742                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2743
2744                 if (IS_ENABLED(CONFIG_HYPERV) &&
2745                     static_branch_unlikely(&enable_evmcs) &&
2746                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2747                         struct hv_enlightened_vmcs *evmcs =
2748                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2749
2750                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2751                 }
2752         }
2753
2754         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2755         memset(&loaded_vmcs->controls_shadow, 0,
2756                 sizeof(struct vmcs_controls_shadow));
2757
2758         return 0;
2759
2760 out_vmcs:
2761         free_loaded_vmcs(loaded_vmcs);
2762         return -ENOMEM;
2763 }
2764
2765 static void free_kvm_area(void)
2766 {
2767         int cpu;
2768
2769         for_each_possible_cpu(cpu) {
2770                 free_vmcs(per_cpu(vmxarea, cpu));
2771                 per_cpu(vmxarea, cpu) = NULL;
2772         }
2773 }
2774
2775 static __init int alloc_kvm_area(void)
2776 {
2777         int cpu;
2778
2779         for_each_possible_cpu(cpu) {
2780                 struct vmcs *vmcs;
2781
2782                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2783                 if (!vmcs) {
2784                         free_kvm_area();
2785                         return -ENOMEM;
2786                 }
2787
2788                 /*
2789                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2790                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2791                  * revision_id reported by MSR_IA32_VMX_BASIC.
2792                  *
2793                  * However, even though not explicitly documented by
2794                  * TLFS, VMXArea passed as VMXON argument should
2795                  * still be marked with revision_id reported by
2796                  * physical CPU.
2797                  */
2798                 if (static_branch_unlikely(&enable_evmcs))
2799                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2800
2801                 per_cpu(vmxarea, cpu) = vmcs;
2802         }
2803         return 0;
2804 }
2805
2806 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2807                 struct kvm_segment *save)
2808 {
2809         if (!emulate_invalid_guest_state) {
2810                 /*
2811                  * CS and SS RPL should be equal during guest entry according
2812                  * to VMX spec, but in reality it is not always so. Since vcpu
2813                  * is in the middle of the transition from real mode to
2814                  * protected mode it is safe to assume that RPL 0 is a good
2815                  * default value.
2816                  */
2817                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2818                         save->selector &= ~SEGMENT_RPL_MASK;
2819                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2820                 save->s = 1;
2821         }
2822         vmx_set_segment(vcpu, save, seg);
2823 }
2824
2825 static void enter_pmode(struct kvm_vcpu *vcpu)
2826 {
2827         unsigned long flags;
2828         struct vcpu_vmx *vmx = to_vmx(vcpu);
2829
2830         /*
2831          * Update real mode segment cache. It may be not up-to-date if segment
2832          * register was written while vcpu was in a guest mode.
2833          */
2834         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2835         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2836         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2837         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2838         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2839         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2840
2841         vmx->rmode.vm86_active = 0;
2842
2843         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2844
2845         flags = vmcs_readl(GUEST_RFLAGS);
2846         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2847         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2848         vmcs_writel(GUEST_RFLAGS, flags);
2849
2850         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2851                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2852
2853         vmx_update_exception_bitmap(vcpu);
2854
2855         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2856         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2857         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2858         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2859         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2860         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2861 }
2862
2863 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2864 {
2865         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2866         struct kvm_segment var = *save;
2867
2868         var.dpl = 0x3;
2869         if (seg == VCPU_SREG_CS)
2870                 var.type = 0x3;
2871
2872         if (!emulate_invalid_guest_state) {
2873                 var.selector = var.base >> 4;
2874                 var.base = var.base & 0xffff0;
2875                 var.limit = 0xffff;
2876                 var.g = 0;
2877                 var.db = 0;
2878                 var.present = 1;
2879                 var.s = 1;
2880                 var.l = 0;
2881                 var.unusable = 0;
2882                 var.type = 0x3;
2883                 var.avl = 0;
2884                 if (save->base & 0xf)
2885                         printk_once(KERN_WARNING "kvm: segment base is not "
2886                                         "paragraph aligned when entering "
2887                                         "protected mode (seg=%d)", seg);
2888         }
2889
2890         vmcs_write16(sf->selector, var.selector);
2891         vmcs_writel(sf->base, var.base);
2892         vmcs_write32(sf->limit, var.limit);
2893         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2894 }
2895
2896 static void enter_rmode(struct kvm_vcpu *vcpu)
2897 {
2898         unsigned long flags;
2899         struct vcpu_vmx *vmx = to_vmx(vcpu);
2900         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2901
2902         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2903         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2904         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2905         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2906         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2907         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2908         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2909
2910         vmx->rmode.vm86_active = 1;
2911
2912         /*
2913          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2914          * vcpu. Warn the user that an update is overdue.
2915          */
2916         if (!kvm_vmx->tss_addr)
2917                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2918                              "called before entering vcpu\n");
2919
2920         vmx_segment_cache_clear(vmx);
2921
2922         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2923         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2924         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2925
2926         flags = vmcs_readl(GUEST_RFLAGS);
2927         vmx->rmode.save_rflags = flags;
2928
2929         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2930
2931         vmcs_writel(GUEST_RFLAGS, flags);
2932         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2933         vmx_update_exception_bitmap(vcpu);
2934
2935         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2936         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2937         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2938         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2939         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2940         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2941
2942         kvm_mmu_reset_context(vcpu);
2943 }
2944
2945 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2946 {
2947         struct vcpu_vmx *vmx = to_vmx(vcpu);
2948         struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2949
2950         /* Nothing to do if hardware doesn't support EFER. */
2951         if (!msr)
2952                 return 0;
2953
2954         vcpu->arch.efer = efer;
2955         if (efer & EFER_LMA) {
2956                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2957                 msr->data = efer;
2958         } else {
2959                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2960
2961                 msr->data = efer & ~EFER_LME;
2962         }
2963         setup_msrs(vmx);
2964         return 0;
2965 }
2966
2967 #ifdef CONFIG_X86_64
2968
2969 static void enter_lmode(struct kvm_vcpu *vcpu)
2970 {
2971         u32 guest_tr_ar;
2972
2973         vmx_segment_cache_clear(to_vmx(vcpu));
2974
2975         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2976         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2977                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2978                                      __func__);
2979                 vmcs_write32(GUEST_TR_AR_BYTES,
2980                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2981                              | VMX_AR_TYPE_BUSY_64_TSS);
2982         }
2983         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2984 }
2985
2986 static void exit_lmode(struct kvm_vcpu *vcpu)
2987 {
2988         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2989         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2990 }
2991
2992 #endif
2993
2994 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2995 {
2996         struct vcpu_vmx *vmx = to_vmx(vcpu);
2997
2998         /*
2999          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3000          * the CPU is not required to invalidate guest-physical mappings on
3001          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3002          * associated with the root EPT structure and not any particular VPID
3003          * (INVVPID also isn't required to invalidate guest-physical mappings).
3004          */
3005         if (enable_ept) {
3006                 ept_sync_global();
3007         } else if (enable_vpid) {
3008                 if (cpu_has_vmx_invvpid_global()) {
3009                         vpid_sync_vcpu_global();
3010                 } else {
3011                         vpid_sync_vcpu_single(vmx->vpid);
3012                         vpid_sync_vcpu_single(vmx->nested.vpid02);
3013                 }
3014         }
3015 }
3016
3017 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3018 {
3019         struct kvm_mmu *mmu = vcpu->arch.mmu;
3020         u64 root_hpa = mmu->root_hpa;
3021
3022         /* No flush required if the current context is invalid. */
3023         if (!VALID_PAGE(root_hpa))
3024                 return;
3025
3026         if (enable_ept)
3027                 ept_sync_context(construct_eptp(vcpu, root_hpa,
3028                                                 mmu->shadow_root_level));
3029         else if (!is_guest_mode(vcpu))
3030                 vpid_sync_context(to_vmx(vcpu)->vpid);
3031         else
3032                 vpid_sync_context(nested_get_vpid02(vcpu));
3033 }
3034
3035 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3036 {
3037         /*
3038          * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
3039          * vmx_flush_tlb_guest() for an explanation of why this is ok.
3040          */
3041         vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
3042 }
3043
3044 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3045 {
3046         /*
3047          * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
3048          * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
3049          * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3050          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3051          * i.e. no explicit INVVPID is necessary.
3052          */
3053         vpid_sync_context(to_vmx(vcpu)->vpid);
3054 }
3055
3056 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3057 {
3058         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3059
3060         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3061                 return;
3062
3063         if (is_pae_paging(vcpu)) {
3064                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3065                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3066                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3067                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3068         }
3069 }
3070
3071 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3072 {
3073         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3074
3075         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3076                 return;
3077
3078         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3079         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3080         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3081         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3082
3083         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3084 }
3085
3086 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3087                                         unsigned long cr0,
3088                                         struct kvm_vcpu *vcpu)
3089 {
3090         struct vcpu_vmx *vmx = to_vmx(vcpu);
3091
3092         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3093                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3094         if (!(cr0 & X86_CR0_PG)) {
3095                 /* From paging/starting to nonpaging */
3096                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3097                                           CPU_BASED_CR3_STORE_EXITING);
3098                 vcpu->arch.cr0 = cr0;
3099                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3100         } else if (!is_paging(vcpu)) {
3101                 /* From nonpaging to paging */
3102                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3103                                             CPU_BASED_CR3_STORE_EXITING);
3104                 vcpu->arch.cr0 = cr0;
3105                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3106         }
3107
3108         if (!(cr0 & X86_CR0_WP))
3109                 *hw_cr0 &= ~X86_CR0_WP;
3110 }
3111
3112 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3113 {
3114         struct vcpu_vmx *vmx = to_vmx(vcpu);
3115         unsigned long hw_cr0;
3116
3117         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3118         if (is_unrestricted_guest(vcpu))
3119                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3120         else {
3121                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3122
3123                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3124                         enter_pmode(vcpu);
3125
3126                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3127                         enter_rmode(vcpu);
3128         }
3129
3130 #ifdef CONFIG_X86_64
3131         if (vcpu->arch.efer & EFER_LME) {
3132                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3133                         enter_lmode(vcpu);
3134                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3135                         exit_lmode(vcpu);
3136         }
3137 #endif
3138
3139         if (enable_ept && !is_unrestricted_guest(vcpu))
3140                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3141
3142         vmcs_writel(CR0_READ_SHADOW, cr0);
3143         vmcs_writel(GUEST_CR0, hw_cr0);
3144         vcpu->arch.cr0 = cr0;
3145         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3146
3147         /* depends on vcpu->arch.cr0 to be set to a new value */
3148         vmx->emulation_required = emulation_required(vcpu);
3149 }
3150
3151 static int vmx_get_max_tdp_level(void)
3152 {
3153         if (cpu_has_vmx_ept_5levels())
3154                 return 5;
3155         return 4;
3156 }
3157
3158 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3159 {
3160         u64 eptp = VMX_EPTP_MT_WB;
3161
3162         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3163
3164         if (enable_ept_ad_bits &&
3165             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3166                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3167         eptp |= root_hpa;
3168
3169         return eptp;
3170 }
3171
3172 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3173                              int root_level)
3174 {
3175         struct kvm *kvm = vcpu->kvm;
3176         bool update_guest_cr3 = true;
3177         unsigned long guest_cr3;
3178         u64 eptp;
3179
3180         if (enable_ept) {
3181                 eptp = construct_eptp(vcpu, root_hpa, root_level);
3182                 vmcs_write64(EPT_POINTER, eptp);
3183
3184                 hv_track_root_ept(vcpu, root_hpa);
3185
3186                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3187                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3188                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3189                         guest_cr3 = vcpu->arch.cr3;
3190                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3191                         update_guest_cr3 = false;
3192                 vmx_ept_load_pdptrs(vcpu);
3193         } else {
3194                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3195         }
3196
3197         if (update_guest_cr3)
3198                 vmcs_writel(GUEST_CR3, guest_cr3);
3199 }
3200
3201 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3202 {
3203         /*
3204          * We operate under the default treatment of SMM, so VMX cannot be
3205          * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3206          * handled by kvm_is_valid_cr4().
3207          */
3208         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3209                 return false;
3210
3211         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3212                 return false;
3213
3214         return true;
3215 }
3216
3217 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3218 {
3219         unsigned long old_cr4 = vcpu->arch.cr4;
3220         struct vcpu_vmx *vmx = to_vmx(vcpu);
3221         /*
3222          * Pass through host's Machine Check Enable value to hw_cr4, which
3223          * is in force while we are in guest mode.  Do not let guests control
3224          * this bit, even if host CR4.MCE == 0.
3225          */
3226         unsigned long hw_cr4;
3227
3228         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3229         if (is_unrestricted_guest(vcpu))
3230                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3231         else if (vmx->rmode.vm86_active)
3232                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3233         else
3234                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3235
3236         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3237                 if (cr4 & X86_CR4_UMIP) {
3238                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3239                         hw_cr4 &= ~X86_CR4_UMIP;
3240                 } else if (!is_guest_mode(vcpu) ||
3241                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3242                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3243                 }
3244         }
3245
3246         vcpu->arch.cr4 = cr4;
3247         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3248
3249         if (!is_unrestricted_guest(vcpu)) {
3250                 if (enable_ept) {
3251                         if (!is_paging(vcpu)) {
3252                                 hw_cr4 &= ~X86_CR4_PAE;
3253                                 hw_cr4 |= X86_CR4_PSE;
3254                         } else if (!(cr4 & X86_CR4_PAE)) {
3255                                 hw_cr4 &= ~X86_CR4_PAE;
3256                         }
3257                 }
3258
3259                 /*
3260                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3261                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3262                  * to be manually disabled when guest switches to non-paging
3263                  * mode.
3264                  *
3265                  * If !enable_unrestricted_guest, the CPU is always running
3266                  * with CR0.PG=1 and CR4 needs to be modified.
3267                  * If enable_unrestricted_guest, the CPU automatically
3268                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3269                  */
3270                 if (!is_paging(vcpu))
3271                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3272         }
3273
3274         vmcs_writel(CR4_READ_SHADOW, cr4);
3275         vmcs_writel(GUEST_CR4, hw_cr4);
3276
3277         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3278                 kvm_update_cpuid_runtime(vcpu);
3279 }
3280
3281 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3282 {
3283         struct vcpu_vmx *vmx = to_vmx(vcpu);
3284         u32 ar;
3285
3286         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3287                 *var = vmx->rmode.segs[seg];
3288                 if (seg == VCPU_SREG_TR
3289                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3290                         return;
3291                 var->base = vmx_read_guest_seg_base(vmx, seg);
3292                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3293                 return;
3294         }
3295         var->base = vmx_read_guest_seg_base(vmx, seg);
3296         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3297         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3298         ar = vmx_read_guest_seg_ar(vmx, seg);
3299         var->unusable = (ar >> 16) & 1;
3300         var->type = ar & 15;
3301         var->s = (ar >> 4) & 1;
3302         var->dpl = (ar >> 5) & 3;
3303         /*
3304          * Some userspaces do not preserve unusable property. Since usable
3305          * segment has to be present according to VMX spec we can use present
3306          * property to amend userspace bug by making unusable segment always
3307          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3308          * segment as unusable.
3309          */
3310         var->present = !var->unusable;
3311         var->avl = (ar >> 12) & 1;
3312         var->l = (ar >> 13) & 1;
3313         var->db = (ar >> 14) & 1;
3314         var->g = (ar >> 15) & 1;
3315 }
3316
3317 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3318 {
3319         struct kvm_segment s;
3320
3321         if (to_vmx(vcpu)->rmode.vm86_active) {
3322                 vmx_get_segment(vcpu, &s, seg);
3323                 return s.base;
3324         }
3325         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3326 }
3327
3328 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3329 {
3330         struct vcpu_vmx *vmx = to_vmx(vcpu);
3331
3332         if (unlikely(vmx->rmode.vm86_active))
3333                 return 0;
3334         else {
3335                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3336                 return VMX_AR_DPL(ar);
3337         }
3338 }
3339
3340 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3341 {
3342         u32 ar;
3343
3344         if (var->unusable || !var->present)
3345                 ar = 1 << 16;
3346         else {
3347                 ar = var->type & 15;
3348                 ar |= (var->s & 1) << 4;
3349                 ar |= (var->dpl & 3) << 5;
3350                 ar |= (var->present & 1) << 7;
3351                 ar |= (var->avl & 1) << 12;
3352                 ar |= (var->l & 1) << 13;
3353                 ar |= (var->db & 1) << 14;
3354                 ar |= (var->g & 1) << 15;
3355         }
3356
3357         return ar;
3358 }
3359
3360 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3361 {
3362         struct vcpu_vmx *vmx = to_vmx(vcpu);
3363         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3364
3365         vmx_segment_cache_clear(vmx);
3366
3367         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3368                 vmx->rmode.segs[seg] = *var;
3369                 if (seg == VCPU_SREG_TR)
3370                         vmcs_write16(sf->selector, var->selector);
3371                 else if (var->s)
3372                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3373                 goto out;
3374         }
3375
3376         vmcs_writel(sf->base, var->base);
3377         vmcs_write32(sf->limit, var->limit);
3378         vmcs_write16(sf->selector, var->selector);
3379
3380         /*
3381          *   Fix the "Accessed" bit in AR field of segment registers for older
3382          * qemu binaries.
3383          *   IA32 arch specifies that at the time of processor reset the
3384          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3385          * is setting it to 0 in the userland code. This causes invalid guest
3386          * state vmexit when "unrestricted guest" mode is turned on.
3387          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3388          * tree. Newer qemu binaries with that qemu fix would not need this
3389          * kvm hack.
3390          */
3391         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3392                 var->type |= 0x1; /* Accessed */
3393
3394         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3395
3396 out:
3397         vmx->emulation_required = emulation_required(vcpu);
3398 }
3399
3400 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3401 {
3402         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3403
3404         *db = (ar >> 14) & 1;
3405         *l = (ar >> 13) & 1;
3406 }
3407
3408 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3409 {
3410         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3411         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3412 }
3413
3414 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3415 {
3416         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3417         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3418 }
3419
3420 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3421 {
3422         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3423         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3424 }
3425
3426 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3427 {
3428         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3429         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3430 }
3431
3432 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3433 {
3434         struct kvm_segment var;
3435         u32 ar;
3436
3437         vmx_get_segment(vcpu, &var, seg);
3438         var.dpl = 0x3;
3439         if (seg == VCPU_SREG_CS)
3440                 var.type = 0x3;
3441         ar = vmx_segment_access_rights(&var);
3442
3443         if (var.base != (var.selector << 4))
3444                 return false;
3445         if (var.limit != 0xffff)
3446                 return false;
3447         if (ar != 0xf3)
3448                 return false;
3449
3450         return true;
3451 }
3452
3453 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3454 {
3455         struct kvm_segment cs;
3456         unsigned int cs_rpl;
3457
3458         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3459         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3460
3461         if (cs.unusable)
3462                 return false;
3463         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3464                 return false;
3465         if (!cs.s)
3466                 return false;
3467         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3468                 if (cs.dpl > cs_rpl)
3469                         return false;
3470         } else {
3471                 if (cs.dpl != cs_rpl)
3472                         return false;
3473         }
3474         if (!cs.present)
3475                 return false;
3476
3477         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3478         return true;
3479 }
3480
3481 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3482 {
3483         struct kvm_segment ss;
3484         unsigned int ss_rpl;
3485
3486         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3487         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3488
3489         if (ss.unusable)
3490                 return true;
3491         if (ss.type != 3 && ss.type != 7)
3492                 return false;
3493         if (!ss.s)
3494                 return false;
3495         if (ss.dpl != ss_rpl) /* DPL != RPL */
3496                 return false;
3497         if (!ss.present)
3498                 return false;
3499
3500         return true;
3501 }
3502
3503 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3504 {
3505         struct kvm_segment var;
3506         unsigned int rpl;
3507
3508         vmx_get_segment(vcpu, &var, seg);
3509         rpl = var.selector & SEGMENT_RPL_MASK;
3510
3511         if (var.unusable)
3512                 return true;
3513         if (!var.s)
3514                 return false;
3515         if (!var.present)
3516                 return false;
3517         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3518                 if (var.dpl < rpl) /* DPL < RPL */
3519                         return false;
3520         }
3521
3522         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3523          * rights flags
3524          */
3525         return true;
3526 }
3527
3528 static bool tr_valid(struct kvm_vcpu *vcpu)
3529 {
3530         struct kvm_segment tr;
3531
3532         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3533
3534         if (tr.unusable)
3535                 return false;
3536         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3537                 return false;
3538         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3539                 return false;
3540         if (!tr.present)
3541                 return false;
3542
3543         return true;
3544 }
3545
3546 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3547 {
3548         struct kvm_segment ldtr;
3549
3550         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3551
3552         if (ldtr.unusable)
3553                 return true;
3554         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3555                 return false;
3556         if (ldtr.type != 2)
3557                 return false;
3558         if (!ldtr.present)
3559                 return false;
3560
3561         return true;
3562 }
3563
3564 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3565 {
3566         struct kvm_segment cs, ss;
3567
3568         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3569         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3570
3571         return ((cs.selector & SEGMENT_RPL_MASK) ==
3572                  (ss.selector & SEGMENT_RPL_MASK));
3573 }
3574
3575 /*
3576  * Check if guest state is valid. Returns true if valid, false if
3577  * not.
3578  * We assume that registers are always usable
3579  */
3580 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3581 {
3582         /* real mode guest state checks */
3583         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3584                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3585                         return false;
3586                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3587                         return false;
3588                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3589                         return false;
3590                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3591                         return false;
3592                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3593                         return false;
3594                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3595                         return false;
3596         } else {
3597         /* protected mode guest state checks */
3598                 if (!cs_ss_rpl_check(vcpu))
3599                         return false;
3600                 if (!code_segment_valid(vcpu))
3601                         return false;
3602                 if (!stack_segment_valid(vcpu))
3603                         return false;
3604                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3605                         return false;
3606                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3607                         return false;
3608                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3609                         return false;
3610                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3611                         return false;
3612                 if (!tr_valid(vcpu))
3613                         return false;
3614                 if (!ldtr_valid(vcpu))
3615                         return false;
3616         }
3617         /* TODO:
3618          * - Add checks on RIP
3619          * - Add checks on RFLAGS
3620          */
3621
3622         return true;
3623 }
3624
3625 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3626 {
3627         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3628         u16 data;
3629         int i;
3630
3631         for (i = 0; i < 3; i++) {
3632                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3633                         return -EFAULT;
3634         }
3635
3636         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3637         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3638                 return -EFAULT;
3639
3640         data = ~0;
3641         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3642                 return -EFAULT;
3643
3644         return 0;
3645 }
3646
3647 static int init_rmode_identity_map(struct kvm *kvm)
3648 {
3649         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3650         int i, r = 0;
3651         void __user *uaddr;
3652         u32 tmp;
3653
3654         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3655         mutex_lock(&kvm->slots_lock);
3656
3657         if (likely(kvm_vmx->ept_identity_pagetable_done))
3658                 goto out;
3659
3660         if (!kvm_vmx->ept_identity_map_addr)
3661                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3662
3663         uaddr = __x86_set_memory_region(kvm,
3664                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3665                                         kvm_vmx->ept_identity_map_addr,
3666                                         PAGE_SIZE);
3667         if (IS_ERR(uaddr)) {
3668                 r = PTR_ERR(uaddr);
3669                 goto out;
3670         }
3671
3672         /* Set up identity-mapping pagetable for EPT in real mode */
3673         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3674                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3675                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3676                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3677                         r = -EFAULT;
3678                         goto out;
3679                 }
3680         }
3681         kvm_vmx->ept_identity_pagetable_done = true;
3682
3683 out:
3684         mutex_unlock(&kvm->slots_lock);
3685         return r;
3686 }
3687
3688 static void seg_setup(int seg)
3689 {
3690         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3691         unsigned int ar;
3692
3693         vmcs_write16(sf->selector, 0);
3694         vmcs_writel(sf->base, 0);
3695         vmcs_write32(sf->limit, 0xffff);
3696         ar = 0x93;
3697         if (seg == VCPU_SREG_CS)
3698                 ar |= 0x08; /* code segment */
3699
3700         vmcs_write32(sf->ar_bytes, ar);
3701 }
3702
3703 static int alloc_apic_access_page(struct kvm *kvm)
3704 {
3705         struct page *page;
3706         void __user *hva;
3707         int ret = 0;
3708
3709         mutex_lock(&kvm->slots_lock);
3710         if (kvm->arch.apic_access_page_done)
3711                 goto out;
3712         hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3713                                       APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3714         if (IS_ERR(hva)) {
3715                 ret = PTR_ERR(hva);
3716                 goto out;
3717         }
3718
3719         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3720         if (is_error_page(page)) {
3721                 ret = -EFAULT;
3722                 goto out;
3723         }
3724
3725         /*
3726          * Do not pin the page in memory, so that memory hot-unplug
3727          * is able to migrate it.
3728          */
3729         put_page(page);
3730         kvm->arch.apic_access_page_done = true;
3731 out:
3732         mutex_unlock(&kvm->slots_lock);
3733         return ret;
3734 }
3735
3736 int allocate_vpid(void)
3737 {
3738         int vpid;
3739
3740         if (!enable_vpid)
3741                 return 0;
3742         spin_lock(&vmx_vpid_lock);
3743         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3744         if (vpid < VMX_NR_VPIDS)
3745                 __set_bit(vpid, vmx_vpid_bitmap);
3746         else
3747                 vpid = 0;
3748         spin_unlock(&vmx_vpid_lock);
3749         return vpid;
3750 }
3751
3752 void free_vpid(int vpid)
3753 {
3754         if (!enable_vpid || vpid == 0)
3755                 return;
3756         spin_lock(&vmx_vpid_lock);
3757         __clear_bit(vpid, vmx_vpid_bitmap);
3758         spin_unlock(&vmx_vpid_lock);
3759 }
3760
3761 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3762 {
3763         int f = sizeof(unsigned long);
3764
3765         if (msr <= 0x1fff)
3766                 __clear_bit(msr, msr_bitmap + 0x000 / f);
3767         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3768                 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3769 }
3770
3771 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3772 {
3773         int f = sizeof(unsigned long);
3774
3775         if (msr <= 0x1fff)
3776                 __clear_bit(msr, msr_bitmap + 0x800 / f);
3777         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3778                 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3779 }
3780
3781 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3782 {
3783         int f = sizeof(unsigned long);
3784
3785         if (msr <= 0x1fff)
3786                 __set_bit(msr, msr_bitmap + 0x000 / f);
3787         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3788                 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3789 }
3790
3791 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3792 {
3793         int f = sizeof(unsigned long);
3794
3795         if (msr <= 0x1fff)
3796                 __set_bit(msr, msr_bitmap + 0x800 / f);
3797         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3798                 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3799 }
3800
3801 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3802 {
3803         struct vcpu_vmx *vmx = to_vmx(vcpu);
3804         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3805
3806         if (!cpu_has_vmx_msr_bitmap())
3807                 return;
3808
3809         if (static_branch_unlikely(&enable_evmcs))
3810                 evmcs_touch_msr_bitmap();
3811
3812         /*
3813          * Mark the desired intercept state in shadow bitmap, this is needed
3814          * for resync when the MSR filters change.
3815         */
3816         if (is_valid_passthrough_msr(msr)) {
3817                 int idx = possible_passthrough_msr_slot(msr);
3818
3819                 if (idx != -ENOENT) {
3820                         if (type & MSR_TYPE_R)
3821                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3822                         if (type & MSR_TYPE_W)
3823                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3824                 }
3825         }
3826
3827         if ((type & MSR_TYPE_R) &&
3828             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3829                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3830                 type &= ~MSR_TYPE_R;
3831         }
3832
3833         if ((type & MSR_TYPE_W) &&
3834             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3835                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3836                 type &= ~MSR_TYPE_W;
3837         }
3838
3839         if (type & MSR_TYPE_R)
3840                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3841
3842         if (type & MSR_TYPE_W)
3843                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3844 }
3845
3846 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3847 {
3848         struct vcpu_vmx *vmx = to_vmx(vcpu);
3849         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3850
3851         if (!cpu_has_vmx_msr_bitmap())
3852                 return;
3853
3854         if (static_branch_unlikely(&enable_evmcs))
3855                 evmcs_touch_msr_bitmap();
3856
3857         /*
3858          * Mark the desired intercept state in shadow bitmap, this is needed
3859          * for resync when the MSR filter changes.
3860         */
3861         if (is_valid_passthrough_msr(msr)) {
3862                 int idx = possible_passthrough_msr_slot(msr);
3863
3864                 if (idx != -ENOENT) {
3865                         if (type & MSR_TYPE_R)
3866                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3867                         if (type & MSR_TYPE_W)
3868                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3869                 }
3870         }
3871
3872         if (type & MSR_TYPE_R)
3873                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3874
3875         if (type & MSR_TYPE_W)
3876                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3877 }
3878
3879 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3880 {
3881         u8 mode = 0;
3882
3883         if (cpu_has_secondary_exec_ctrls() &&
3884             (secondary_exec_controls_get(to_vmx(vcpu)) &
3885              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3886                 mode |= MSR_BITMAP_MODE_X2APIC;
3887                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3888                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3889         }
3890
3891         return mode;
3892 }
3893
3894 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3895 {
3896         unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3897         unsigned long read_intercept;
3898         int msr;
3899
3900         read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3901
3902         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3903                 unsigned int read_idx = msr / BITS_PER_LONG;
3904                 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3905
3906                 msr_bitmap[read_idx] = read_intercept;
3907                 msr_bitmap[write_idx] = ~0ul;
3908         }
3909 }
3910
3911 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3912 {
3913         if (!cpu_has_vmx_msr_bitmap())
3914                 return;
3915
3916         vmx_reset_x2apic_msrs(vcpu, mode);
3917
3918         /*
3919          * TPR reads and writes can be virtualized even if virtual interrupt
3920          * delivery is not in use.
3921          */
3922         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3923                                   !(mode & MSR_BITMAP_MODE_X2APIC));
3924
3925         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3926                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3927                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3928                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3929         }
3930 }
3931
3932 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3933 {
3934         struct vcpu_vmx *vmx = to_vmx(vcpu);
3935         u8 mode = vmx_msr_bitmap_mode(vcpu);
3936         u8 changed = mode ^ vmx->msr_bitmap_mode;
3937
3938         if (!changed)
3939                 return;
3940
3941         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3942                 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3943
3944         vmx->msr_bitmap_mode = mode;
3945 }
3946
3947 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3948 {
3949         struct vcpu_vmx *vmx = to_vmx(vcpu);
3950         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3951         u32 i;
3952
3953         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3954         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3955         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3956         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3957         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3958                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3959                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3960         }
3961 }
3962
3963 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3964 {
3965         struct vcpu_vmx *vmx = to_vmx(vcpu);
3966         void *vapic_page;
3967         u32 vppr;
3968         int rvi;
3969
3970         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3971                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3972                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3973                 return false;
3974
3975         rvi = vmx_get_rvi();
3976
3977         vapic_page = vmx->nested.virtual_apic_map.hva;
3978         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3979
3980         return ((rvi & 0xf0) > (vppr & 0xf0));
3981 }
3982
3983 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3984 {
3985         struct vcpu_vmx *vmx = to_vmx(vcpu);
3986         u32 i;
3987
3988         /*
3989          * Set intercept permissions for all potentially passed through MSRs
3990          * again. They will automatically get filtered through the MSR filter,
3991          * so we are back in sync after this.
3992          */
3993         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3994                 u32 msr = vmx_possible_passthrough_msrs[i];
3995                 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3996                 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3997
3998                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3999                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
4000         }
4001
4002         pt_update_intercept_for_msr(vcpu);
4003         vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
4004 }
4005
4006 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4007                                                      bool nested)
4008 {
4009 #ifdef CONFIG_SMP
4010         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4011
4012         if (vcpu->mode == IN_GUEST_MODE) {
4013                 /*
4014                  * The vector of interrupt to be delivered to vcpu had
4015                  * been set in PIR before this function.
4016                  *
4017                  * Following cases will be reached in this block, and
4018                  * we always send a notification event in all cases as
4019                  * explained below.
4020                  *
4021                  * Case 1: vcpu keeps in non-root mode. Sending a
4022                  * notification event posts the interrupt to vcpu.
4023                  *
4024                  * Case 2: vcpu exits to root mode and is still
4025                  * runnable. PIR will be synced to vIRR before the
4026                  * next vcpu entry. Sending a notification event in
4027                  * this case has no effect, as vcpu is not in root
4028                  * mode.
4029                  *
4030                  * Case 3: vcpu exits to root mode and is blocked.
4031                  * vcpu_block() has already synced PIR to vIRR and
4032                  * never blocks vcpu if vIRR is not cleared. Therefore,
4033                  * a blocked vcpu here does not wait for any requested
4034                  * interrupts in PIR, and sending a notification event
4035                  * which has no effect is safe here.
4036                  */
4037
4038                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4039                 return true;
4040         }
4041 #endif
4042         return false;
4043 }
4044
4045 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4046                                                 int vector)
4047 {
4048         struct vcpu_vmx *vmx = to_vmx(vcpu);
4049
4050         if (is_guest_mode(vcpu) &&
4051             vector == vmx->nested.posted_intr_nv) {
4052                 /*
4053                  * If a posted intr is not recognized by hardware,
4054                  * we will accomplish it in the next vmentry.
4055                  */
4056                 vmx->nested.pi_pending = true;
4057                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4058                 /* the PIR and ON have been set by L1. */
4059                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4060                         kvm_vcpu_kick(vcpu);
4061                 return 0;
4062         }
4063         return -1;
4064 }
4065 /*
4066  * Send interrupt to vcpu via posted interrupt way.
4067  * 1. If target vcpu is running(non-root mode), send posted interrupt
4068  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4069  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4070  * interrupt from PIR in next vmentry.
4071  */
4072 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4073 {
4074         struct vcpu_vmx *vmx = to_vmx(vcpu);
4075         int r;
4076
4077         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4078         if (!r)
4079                 return 0;
4080
4081         if (!vcpu->arch.apicv_active)
4082                 return -1;
4083
4084         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4085                 return 0;
4086
4087         /* If a previous notification has sent the IPI, nothing to do.  */
4088         if (pi_test_and_set_on(&vmx->pi_desc))
4089                 return 0;
4090
4091         if (vcpu != kvm_get_running_vcpu() &&
4092             !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4093                 kvm_vcpu_kick(vcpu);
4094
4095         return 0;
4096 }
4097
4098 /*
4099  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4100  * will not change in the lifetime of the guest.
4101  * Note that host-state that does change is set elsewhere. E.g., host-state
4102  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4103  */
4104 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4105 {
4106         u32 low32, high32;
4107         unsigned long tmpl;
4108         unsigned long cr0, cr3, cr4;
4109
4110         cr0 = read_cr0();
4111         WARN_ON(cr0 & X86_CR0_TS);
4112         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4113
4114         /*
4115          * Save the most likely value for this task's CR3 in the VMCS.
4116          * We can't use __get_current_cr3_fast() because we're not atomic.
4117          */
4118         cr3 = __read_cr3();
4119         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4120         vmx->loaded_vmcs->host_state.cr3 = cr3;
4121
4122         /* Save the most likely value for this task's CR4 in the VMCS. */
4123         cr4 = cr4_read_shadow();
4124         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4125         vmx->loaded_vmcs->host_state.cr4 = cr4;
4126
4127         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4128 #ifdef CONFIG_X86_64
4129         /*
4130          * Load null selectors, so we can avoid reloading them in
4131          * vmx_prepare_switch_to_host(), in case userspace uses
4132          * the null selectors too (the expected case).
4133          */
4134         vmcs_write16(HOST_DS_SELECTOR, 0);
4135         vmcs_write16(HOST_ES_SELECTOR, 0);
4136 #else
4137         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4138         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4139 #endif
4140         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4141         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4142
4143         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4144
4145         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4146
4147         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4148         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4149         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4150         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4151
4152         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4153                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4154                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4155         }
4156
4157         if (cpu_has_load_ia32_efer())
4158                 vmcs_write64(HOST_IA32_EFER, host_efer);
4159 }
4160
4161 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4162 {
4163         struct kvm_vcpu *vcpu = &vmx->vcpu;
4164
4165         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4166                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4167         if (!enable_ept)
4168                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4169         if (is_guest_mode(&vmx->vcpu))
4170                 vcpu->arch.cr4_guest_owned_bits &=
4171                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4172         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4173 }
4174
4175 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4176 {
4177         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4178
4179         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4180                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4181
4182         if (!enable_vnmi)
4183                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4184
4185         if (!enable_preemption_timer)
4186                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4187
4188         return pin_based_exec_ctrl;
4189 }
4190
4191 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4192 {
4193         struct vcpu_vmx *vmx = to_vmx(vcpu);
4194
4195         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4196         if (cpu_has_secondary_exec_ctrls()) {
4197                 if (kvm_vcpu_apicv_active(vcpu))
4198                         secondary_exec_controls_setbit(vmx,
4199                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4200                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4201                 else
4202                         secondary_exec_controls_clearbit(vmx,
4203                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4204                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4205         }
4206
4207         if (cpu_has_vmx_msr_bitmap())
4208                 vmx_update_msr_bitmap(vcpu);
4209 }
4210
4211 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4212 {
4213         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4214
4215         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4216                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4217
4218         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4219                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4220 #ifdef CONFIG_X86_64
4221                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4222                                 CPU_BASED_CR8_LOAD_EXITING;
4223 #endif
4224         }
4225         if (!enable_ept)
4226                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4227                                 CPU_BASED_CR3_LOAD_EXITING  |
4228                                 CPU_BASED_INVLPG_EXITING;
4229         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4230                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4231                                 CPU_BASED_MONITOR_EXITING);
4232         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4233                 exec_control &= ~CPU_BASED_HLT_EXITING;
4234         return exec_control;
4235 }
4236
4237 /*
4238  * Adjust a single secondary execution control bit to intercept/allow an
4239  * instruction in the guest.  This is usually done based on whether or not a
4240  * feature has been exposed to the guest in order to correctly emulate faults.
4241  */
4242 static inline void
4243 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4244                                   u32 control, bool enabled, bool exiting)
4245 {
4246         /*
4247          * If the control is for an opt-in feature, clear the control if the
4248          * feature is not exposed to the guest, i.e. not enabled.  If the
4249          * control is opt-out, i.e. an exiting control, clear the control if
4250          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4251          * disabled for the associated instruction.  Note, the caller is
4252          * responsible presetting exec_control to set all supported bits.
4253          */
4254         if (enabled == exiting)
4255                 *exec_control &= ~control;
4256
4257         /*
4258          * Update the nested MSR settings so that a nested VMM can/can't set
4259          * controls for features that are/aren't exposed to the guest.
4260          */
4261         if (nested) {
4262                 if (enabled)
4263                         vmx->nested.msrs.secondary_ctls_high |= control;
4264                 else
4265                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4266         }
4267 }
4268
4269 /*
4270  * Wrapper macro for the common case of adjusting a secondary execution control
4271  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4272  * verifies that the control is actually supported by KVM and hardware.
4273  */
4274 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4275 ({                                                                       \
4276         bool __enabled;                                                  \
4277                                                                          \
4278         if (cpu_has_vmx_##name()) {                                      \
4279                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4280                                             X86_FEATURE_##feat_name);    \
4281                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4282                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4283         }                                                                \
4284 })
4285
4286 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4287 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4288         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4289
4290 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4291         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4292
4293 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4294 {
4295         struct kvm_vcpu *vcpu = &vmx->vcpu;
4296
4297         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4298
4299         if (vmx_pt_mode_is_system())
4300                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4301         if (!cpu_need_virtualize_apic_accesses(vcpu))
4302                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4303         if (vmx->vpid == 0)
4304                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4305         if (!enable_ept) {
4306                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4307                 enable_unrestricted_guest = 0;
4308         }
4309         if (!enable_unrestricted_guest)
4310                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4311         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4312                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4313         if (!kvm_vcpu_apicv_active(vcpu))
4314                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4315                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4316         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4317
4318         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4319          * in vmx_set_cr4.  */
4320         exec_control &= ~SECONDARY_EXEC_DESC;
4321
4322         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4323            (handle_vmptrld).
4324            We can NOT enable shadow_vmcs here because we don't have yet
4325            a current VMCS12
4326         */
4327         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4328
4329         /*
4330          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4331          * it needs to be set here when dirty logging is already active, e.g.
4332          * if this vCPU was created after dirty logging was enabled.
4333          */
4334         if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4335                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4336
4337         if (cpu_has_vmx_xsaves()) {
4338                 /* Exposing XSAVES only when XSAVE is exposed */
4339                 bool xsaves_enabled =
4340                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4341                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4342                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4343
4344                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4345
4346                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4347                                                   SECONDARY_EXEC_XSAVES,
4348                                                   xsaves_enabled, false);
4349         }
4350
4351         /*
4352          * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4353          * feature is exposed to the guest.  This creates a virtualization hole
4354          * if both are supported in hardware but only one is exposed to the
4355          * guest, but letting the guest execute RDTSCP or RDPID when either one
4356          * is advertised is preferable to emulating the advertised instruction
4357          * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4358          */
4359         if (cpu_has_vmx_rdtscp()) {
4360                 bool rdpid_or_rdtscp_enabled =
4361                         guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4362                         guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4363
4364                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4365                                                   SECONDARY_EXEC_ENABLE_RDTSCP,
4366                                                   rdpid_or_rdtscp_enabled, false);
4367         }
4368         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4369
4370         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4371         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4372
4373         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4374                                     ENABLE_USR_WAIT_PAUSE, false);
4375
4376         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4377                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4378
4379         vmx->secondary_exec_control = exec_control;
4380 }
4381
4382 #define VMX_XSS_EXIT_BITMAP 0
4383
4384 /*
4385  * Noting that the initialization of Guest-state Area of VMCS is in
4386  * vmx_vcpu_reset().
4387  */
4388 static void init_vmcs(struct vcpu_vmx *vmx)
4389 {
4390         if (nested)
4391                 nested_vmx_set_vmcs_shadowing_bitmap();
4392
4393         if (cpu_has_vmx_msr_bitmap())
4394                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4395
4396         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4397
4398         /* Control */
4399         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4400
4401         exec_controls_set(vmx, vmx_exec_control(vmx));
4402
4403         if (cpu_has_secondary_exec_ctrls()) {
4404                 vmx_compute_secondary_exec_control(vmx);
4405                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4406         }
4407
4408         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4409                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4410                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4411                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4412                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4413
4414                 vmcs_write16(GUEST_INTR_STATUS, 0);
4415
4416                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4417                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4418         }
4419
4420         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4421                 vmcs_write32(PLE_GAP, ple_gap);
4422                 vmx->ple_window = ple_window;
4423                 vmx->ple_window_dirty = true;
4424         }
4425
4426         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4427         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4428         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4429
4430         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4431         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4432         vmx_set_constant_host_state(vmx);
4433         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4434         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4435
4436         if (cpu_has_vmx_vmfunc())
4437                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4438
4439         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4440         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4441         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4442         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4443         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4444
4445         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4446                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4447
4448         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4449
4450         /* 22.2.1, 20.8.1 */
4451         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4452
4453         vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4454         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4455
4456         set_cr4_guest_host_mask(vmx);
4457
4458         if (vmx->vpid != 0)
4459                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4460
4461         if (cpu_has_vmx_xsaves())
4462                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4463
4464         if (enable_pml) {
4465                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4466                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4467         }
4468
4469         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4470
4471         if (vmx_pt_mode_is_host_guest()) {
4472                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4473                 /* Bit[6~0] are forced to 1, writes are ignored. */
4474                 vmx->pt_desc.guest.output_mask = 0x7F;
4475                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4476         }
4477 }
4478
4479 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4480 {
4481         struct vcpu_vmx *vmx = to_vmx(vcpu);
4482         struct msr_data apic_base_msr;
4483         u64 cr0;
4484
4485         vmx->rmode.vm86_active = 0;
4486         vmx->spec_ctrl = 0;
4487
4488         vmx->msr_ia32_umwait_control = 0;
4489
4490         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4491         vmx->hv_deadline_tsc = -1;
4492         kvm_set_cr8(vcpu, 0);
4493
4494         if (!init_event) {
4495                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4496                                      MSR_IA32_APICBASE_ENABLE;
4497                 if (kvm_vcpu_is_reset_bsp(vcpu))
4498                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4499                 apic_base_msr.host_initiated = true;
4500                 kvm_set_apic_base(vcpu, &apic_base_msr);
4501         }
4502
4503         vmx_segment_cache_clear(vmx);
4504
4505         seg_setup(VCPU_SREG_CS);
4506         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4507         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4508
4509         seg_setup(VCPU_SREG_DS);
4510         seg_setup(VCPU_SREG_ES);
4511         seg_setup(VCPU_SREG_FS);
4512         seg_setup(VCPU_SREG_GS);
4513         seg_setup(VCPU_SREG_SS);
4514
4515         vmcs_write16(GUEST_TR_SELECTOR, 0);
4516         vmcs_writel(GUEST_TR_BASE, 0);
4517         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4518         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4519
4520         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4521         vmcs_writel(GUEST_LDTR_BASE, 0);
4522         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4523         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4524
4525         if (!init_event) {
4526                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4527                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4528                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4529                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4530         }
4531
4532         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4533         kvm_rip_write(vcpu, 0xfff0);
4534
4535         vmcs_writel(GUEST_GDTR_BASE, 0);
4536         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4537
4538         vmcs_writel(GUEST_IDTR_BASE, 0);
4539         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4540
4541         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4542         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4543         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4544         if (kvm_mpx_supported())
4545                 vmcs_write64(GUEST_BNDCFGS, 0);
4546
4547         setup_msrs(vmx);
4548
4549         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4550
4551         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4552                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4553                 if (cpu_need_tpr_shadow(vcpu))
4554                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4555                                      __pa(vcpu->arch.apic->regs));
4556                 vmcs_write32(TPR_THRESHOLD, 0);
4557         }
4558
4559         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4560
4561         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4562         vmx->vcpu.arch.cr0 = cr0;
4563         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4564         vmx_set_cr4(vcpu, 0);
4565         vmx_set_efer(vcpu, 0);
4566
4567         vmx_update_exception_bitmap(vcpu);
4568
4569         vpid_sync_context(vmx->vpid);
4570         if (init_event)
4571                 vmx_clear_hlt(vcpu);
4572 }
4573
4574 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4575 {
4576         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4577 }
4578
4579 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4580 {
4581         if (!enable_vnmi ||
4582             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4583                 vmx_enable_irq_window(vcpu);
4584                 return;
4585         }
4586
4587         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4588 }
4589
4590 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4591 {
4592         struct vcpu_vmx *vmx = to_vmx(vcpu);
4593         uint32_t intr;
4594         int irq = vcpu->arch.interrupt.nr;
4595
4596         trace_kvm_inj_virq(irq);
4597
4598         ++vcpu->stat.irq_injections;
4599         if (vmx->rmode.vm86_active) {
4600                 int inc_eip = 0;
4601                 if (vcpu->arch.interrupt.soft)
4602                         inc_eip = vcpu->arch.event_exit_inst_len;
4603                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4604                 return;
4605         }
4606         intr = irq | INTR_INFO_VALID_MASK;
4607         if (vcpu->arch.interrupt.soft) {
4608                 intr |= INTR_TYPE_SOFT_INTR;
4609                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4610                              vmx->vcpu.arch.event_exit_inst_len);
4611         } else
4612                 intr |= INTR_TYPE_EXT_INTR;
4613         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4614
4615         vmx_clear_hlt(vcpu);
4616 }
4617
4618 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4619 {
4620         struct vcpu_vmx *vmx = to_vmx(vcpu);
4621
4622         if (!enable_vnmi) {
4623                 /*
4624                  * Tracking the NMI-blocked state in software is built upon
4625                  * finding the next open IRQ window. This, in turn, depends on
4626                  * well-behaving guests: They have to keep IRQs disabled at
4627                  * least as long as the NMI handler runs. Otherwise we may
4628                  * cause NMI nesting, maybe breaking the guest. But as this is
4629                  * highly unlikely, we can live with the residual risk.
4630                  */
4631                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4632                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4633         }
4634
4635         ++vcpu->stat.nmi_injections;
4636         vmx->loaded_vmcs->nmi_known_unmasked = false;
4637
4638         if (vmx->rmode.vm86_active) {
4639                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4640                 return;
4641         }
4642
4643         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4644                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4645
4646         vmx_clear_hlt(vcpu);
4647 }
4648
4649 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4650 {
4651         struct vcpu_vmx *vmx = to_vmx(vcpu);
4652         bool masked;
4653
4654         if (!enable_vnmi)
4655                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4656         if (vmx->loaded_vmcs->nmi_known_unmasked)
4657                 return false;
4658         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4659         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4660         return masked;
4661 }
4662
4663 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4664 {
4665         struct vcpu_vmx *vmx = to_vmx(vcpu);
4666
4667         if (!enable_vnmi) {
4668                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4669                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4670                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4671                 }
4672         } else {
4673                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4674                 if (masked)
4675                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4676                                       GUEST_INTR_STATE_NMI);
4677                 else
4678                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4679                                         GUEST_INTR_STATE_NMI);
4680         }
4681 }
4682
4683 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4684 {
4685         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4686                 return false;
4687
4688         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4689                 return true;
4690
4691         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4692                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4693                  GUEST_INTR_STATE_NMI));
4694 }
4695
4696 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4697 {
4698         if (to_vmx(vcpu)->nested.nested_run_pending)
4699                 return -EBUSY;
4700
4701         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4702         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4703                 return -EBUSY;
4704
4705         return !vmx_nmi_blocked(vcpu);
4706 }
4707
4708 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4709 {
4710         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4711                 return false;
4712
4713         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4714                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4715                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4716 }
4717
4718 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4719 {
4720         if (to_vmx(vcpu)->nested.nested_run_pending)
4721                 return -EBUSY;
4722
4723        /*
4724         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4725         * e.g. if the IRQ arrived asynchronously after checking nested events.
4726         */
4727         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4728                 return -EBUSY;
4729
4730         return !vmx_interrupt_blocked(vcpu);
4731 }
4732
4733 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4734 {
4735         void __user *ret;
4736
4737         if (enable_unrestricted_guest)
4738                 return 0;
4739
4740         mutex_lock(&kvm->slots_lock);
4741         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4742                                       PAGE_SIZE * 3);
4743         mutex_unlock(&kvm->slots_lock);
4744
4745         if (IS_ERR(ret))
4746                 return PTR_ERR(ret);
4747
4748         to_kvm_vmx(kvm)->tss_addr = addr;
4749
4750         return init_rmode_tss(kvm, ret);
4751 }
4752
4753 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4754 {
4755         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4756         return 0;
4757 }
4758
4759 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4760 {
4761         switch (vec) {
4762         case BP_VECTOR:
4763                 /*
4764                  * Update instruction length as we may reinject the exception
4765                  * from user space while in guest debugging mode.
4766                  */
4767                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4768                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4769                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4770                         return false;
4771                 fallthrough;
4772         case DB_VECTOR:
4773                 return !(vcpu->guest_debug &
4774                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4775         case DE_VECTOR:
4776         case OF_VECTOR:
4777         case BR_VECTOR:
4778         case UD_VECTOR:
4779         case DF_VECTOR:
4780         case SS_VECTOR:
4781         case GP_VECTOR:
4782         case MF_VECTOR:
4783                 return true;
4784         }
4785         return false;
4786 }
4787
4788 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4789                                   int vec, u32 err_code)
4790 {
4791         /*
4792          * Instruction with address size override prefix opcode 0x67
4793          * Cause the #SS fault with 0 error code in VM86 mode.
4794          */
4795         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4796                 if (kvm_emulate_instruction(vcpu, 0)) {
4797                         if (vcpu->arch.halt_request) {
4798                                 vcpu->arch.halt_request = 0;
4799                                 return kvm_vcpu_halt(vcpu);
4800                         }
4801                         return 1;
4802                 }
4803                 return 0;
4804         }
4805
4806         /*
4807          * Forward all other exceptions that are valid in real mode.
4808          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4809          *        the required debugging infrastructure rework.
4810          */
4811         kvm_queue_exception(vcpu, vec);
4812         return 1;
4813 }
4814
4815 static int handle_machine_check(struct kvm_vcpu *vcpu)
4816 {
4817         /* handled by vmx_vcpu_run() */
4818         return 1;
4819 }
4820
4821 /*
4822  * If the host has split lock detection disabled, then #AC is
4823  * unconditionally injected into the guest, which is the pre split lock
4824  * detection behaviour.
4825  *
4826  * If the host has split lock detection enabled then #AC is
4827  * only injected into the guest when:
4828  *  - Guest CPL == 3 (user mode)
4829  *  - Guest has #AC detection enabled in CR0
4830  *  - Guest EFLAGS has AC bit set
4831  */
4832 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4833 {
4834         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4835                 return true;
4836
4837         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4838                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4839 }
4840
4841 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4842 {
4843         struct vcpu_vmx *vmx = to_vmx(vcpu);
4844         struct kvm_run *kvm_run = vcpu->run;
4845         u32 intr_info, ex_no, error_code;
4846         unsigned long cr2, dr6;
4847         u32 vect_info;
4848
4849         vect_info = vmx->idt_vectoring_info;
4850         intr_info = vmx_get_intr_info(vcpu);
4851
4852         if (is_machine_check(intr_info) || is_nmi(intr_info))
4853                 return 1; /* handled by handle_exception_nmi_irqoff() */
4854
4855         if (is_invalid_opcode(intr_info))
4856                 return handle_ud(vcpu);
4857
4858         error_code = 0;
4859         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4860                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4861
4862         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4863                 WARN_ON_ONCE(!enable_vmware_backdoor);
4864
4865                 /*
4866                  * VMware backdoor emulation on #GP interception only handles
4867                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4868                  * error code on #GP.
4869                  */
4870                 if (error_code) {
4871                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4872                         return 1;
4873                 }
4874                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4875         }
4876
4877         /*
4878          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4879          * MMIO, it is better to report an internal error.
4880          * See the comments in vmx_handle_exit.
4881          */
4882         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4883             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4884                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4885                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4886                 vcpu->run->internal.ndata = 4;
4887                 vcpu->run->internal.data[0] = vect_info;
4888                 vcpu->run->internal.data[1] = intr_info;
4889                 vcpu->run->internal.data[2] = error_code;
4890                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4891                 return 0;
4892         }
4893
4894         if (is_page_fault(intr_info)) {
4895                 cr2 = vmx_get_exit_qual(vcpu);
4896                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4897                         /*
4898                          * EPT will cause page fault only if we need to
4899                          * detect illegal GPAs.
4900                          */
4901                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4902                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4903                         return 1;
4904                 } else
4905                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4906         }
4907
4908         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4909
4910         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4911                 return handle_rmode_exception(vcpu, ex_no, error_code);
4912
4913         switch (ex_no) {
4914         case DB_VECTOR:
4915                 dr6 = vmx_get_exit_qual(vcpu);
4916                 if (!(vcpu->guest_debug &
4917                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4918                         if (is_icebp(intr_info))
4919                                 WARN_ON(!skip_emulated_instruction(vcpu));
4920
4921                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4922                         return 1;
4923                 }
4924                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4925                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4926                 fallthrough;
4927         case BP_VECTOR:
4928                 /*
4929                  * Update instruction length as we may reinject #BP from
4930                  * user space while in guest debugging mode. Reading it for
4931                  * #DB as well causes no harm, it is not used in that case.
4932                  */
4933                 vmx->vcpu.arch.event_exit_inst_len =
4934                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4935                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4936                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4937                 kvm_run->debug.arch.exception = ex_no;
4938                 break;
4939         case AC_VECTOR:
4940                 if (guest_inject_ac(vcpu)) {
4941                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4942                         return 1;
4943                 }
4944
4945                 /*
4946                  * Handle split lock. Depending on detection mode this will
4947                  * either warn and disable split lock detection for this
4948                  * task or force SIGBUS on it.
4949                  */
4950                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4951                         return 1;
4952                 fallthrough;
4953         default:
4954                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4955                 kvm_run->ex.exception = ex_no;
4956                 kvm_run->ex.error_code = error_code;
4957                 break;
4958         }
4959         return 0;
4960 }
4961
4962 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4963 {
4964         ++vcpu->stat.irq_exits;
4965         return 1;
4966 }
4967
4968 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4969 {
4970         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4971         vcpu->mmio_needed = 0;
4972         return 0;
4973 }
4974
4975 static int handle_io(struct kvm_vcpu *vcpu)
4976 {
4977         unsigned long exit_qualification;
4978         int size, in, string;
4979         unsigned port;
4980
4981         exit_qualification = vmx_get_exit_qual(vcpu);
4982         string = (exit_qualification & 16) != 0;
4983
4984         ++vcpu->stat.io_exits;
4985
4986         if (string)
4987                 return kvm_emulate_instruction(vcpu, 0);
4988
4989         port = exit_qualification >> 16;
4990         size = (exit_qualification & 7) + 1;
4991         in = (exit_qualification & 8) != 0;
4992
4993         return kvm_fast_pio(vcpu, size, port, in);
4994 }
4995
4996 static void
4997 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4998 {
4999         /*
5000          * Patch in the VMCALL instruction:
5001          */
5002         hypercall[0] = 0x0f;
5003         hypercall[1] = 0x01;
5004         hypercall[2] = 0xc1;
5005 }
5006
5007 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5008 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5009 {
5010         if (is_guest_mode(vcpu)) {
5011                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5012                 unsigned long orig_val = val;
5013
5014                 /*
5015                  * We get here when L2 changed cr0 in a way that did not change
5016                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5017                  * but did change L0 shadowed bits. So we first calculate the
5018                  * effective cr0 value that L1 would like to write into the
5019                  * hardware. It consists of the L2-owned bits from the new
5020                  * value combined with the L1-owned bits from L1's guest_cr0.
5021                  */
5022                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5023                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5024
5025                 if (!nested_guest_cr0_valid(vcpu, val))
5026                         return 1;
5027
5028                 if (kvm_set_cr0(vcpu, val))
5029                         return 1;
5030                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5031                 return 0;
5032         } else {
5033                 if (to_vmx(vcpu)->nested.vmxon &&
5034                     !nested_host_cr0_valid(vcpu, val))
5035                         return 1;
5036
5037                 return kvm_set_cr0(vcpu, val);
5038         }
5039 }
5040
5041 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5042 {
5043         if (is_guest_mode(vcpu)) {
5044                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5045                 unsigned long orig_val = val;
5046
5047                 /* analogously to handle_set_cr0 */
5048                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5049                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5050                 if (kvm_set_cr4(vcpu, val))
5051                         return 1;
5052                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5053                 return 0;
5054         } else
5055                 return kvm_set_cr4(vcpu, val);
5056 }
5057
5058 static int handle_desc(struct kvm_vcpu *vcpu)
5059 {
5060         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5061         return kvm_emulate_instruction(vcpu, 0);
5062 }
5063
5064 static int handle_cr(struct kvm_vcpu *vcpu)
5065 {
5066         unsigned long exit_qualification, val;
5067         int cr;
5068         int reg;
5069         int err;
5070         int ret;
5071
5072         exit_qualification = vmx_get_exit_qual(vcpu);
5073         cr = exit_qualification & 15;
5074         reg = (exit_qualification >> 8) & 15;
5075         switch ((exit_qualification >> 4) & 3) {
5076         case 0: /* mov to cr */
5077                 val = kvm_register_read(vcpu, reg);
5078                 trace_kvm_cr_write(cr, val);
5079                 switch (cr) {
5080                 case 0:
5081                         err = handle_set_cr0(vcpu, val);
5082                         return kvm_complete_insn_gp(vcpu, err);
5083                 case 3:
5084                         WARN_ON_ONCE(enable_unrestricted_guest);
5085                         err = kvm_set_cr3(vcpu, val);
5086                         return kvm_complete_insn_gp(vcpu, err);
5087                 case 4:
5088                         err = handle_set_cr4(vcpu, val);
5089                         return kvm_complete_insn_gp(vcpu, err);
5090                 case 8: {
5091                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5092                                 u8 cr8 = (u8)val;
5093                                 err = kvm_set_cr8(vcpu, cr8);
5094                                 ret = kvm_complete_insn_gp(vcpu, err);
5095                                 if (lapic_in_kernel(vcpu))
5096                                         return ret;
5097                                 if (cr8_prev <= cr8)
5098                                         return ret;
5099                                 /*
5100                                  * TODO: we might be squashing a
5101                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5102                                  * KVM_EXIT_DEBUG here.
5103                                  */
5104                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5105                                 return 0;
5106                         }
5107                 }
5108                 break;
5109         case 2: /* clts */
5110                 WARN_ONCE(1, "Guest should always own CR0.TS");
5111                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5112                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5113                 return kvm_skip_emulated_instruction(vcpu);
5114         case 1: /*mov from cr*/
5115                 switch (cr) {
5116                 case 3:
5117                         WARN_ON_ONCE(enable_unrestricted_guest);
5118                         val = kvm_read_cr3(vcpu);
5119                         kvm_register_write(vcpu, reg, val);
5120                         trace_kvm_cr_read(cr, val);
5121                         return kvm_skip_emulated_instruction(vcpu);
5122                 case 8:
5123                         val = kvm_get_cr8(vcpu);
5124                         kvm_register_write(vcpu, reg, val);
5125                         trace_kvm_cr_read(cr, val);
5126                         return kvm_skip_emulated_instruction(vcpu);
5127                 }
5128                 break;
5129         case 3: /* lmsw */
5130                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5131                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5132                 kvm_lmsw(vcpu, val);
5133
5134                 return kvm_skip_emulated_instruction(vcpu);
5135         default:
5136                 break;
5137         }
5138         vcpu->run->exit_reason = 0;
5139         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5140                (int)(exit_qualification >> 4) & 3, cr);
5141         return 0;
5142 }
5143
5144 static int handle_dr(struct kvm_vcpu *vcpu)
5145 {
5146         unsigned long exit_qualification;
5147         int dr, dr7, reg;
5148         int err = 1;
5149
5150         exit_qualification = vmx_get_exit_qual(vcpu);
5151         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5152
5153         /* First, if DR does not exist, trigger UD */
5154         if (!kvm_require_dr(vcpu, dr))
5155                 return 1;
5156
5157         if (kvm_x86_ops.get_cpl(vcpu) > 0)
5158                 goto out;
5159
5160         dr7 = vmcs_readl(GUEST_DR7);
5161         if (dr7 & DR7_GD) {
5162                 /*
5163                  * As the vm-exit takes precedence over the debug trap, we
5164                  * need to emulate the latter, either for the host or the
5165                  * guest debugging itself.
5166                  */
5167                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5168                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5169                         vcpu->run->debug.arch.dr7 = dr7;
5170                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5171                         vcpu->run->debug.arch.exception = DB_VECTOR;
5172                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5173                         return 0;
5174                 } else {
5175                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5176                         return 1;
5177                 }
5178         }
5179
5180         if (vcpu->guest_debug == 0) {
5181                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5182
5183                 /*
5184                  * No more DR vmexits; force a reload of the debug registers
5185                  * and reenter on this instruction.  The next vmexit will
5186                  * retrieve the full state of the debug registers.
5187                  */
5188                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5189                 return 1;
5190         }
5191
5192         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5193         if (exit_qualification & TYPE_MOV_FROM_DR) {
5194                 unsigned long val;
5195
5196                 kvm_get_dr(vcpu, dr, &val);
5197                 kvm_register_write(vcpu, reg, val);
5198                 err = 0;
5199         } else {
5200                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5201         }
5202
5203 out:
5204         return kvm_complete_insn_gp(vcpu, err);
5205 }
5206
5207 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5208 {
5209         get_debugreg(vcpu->arch.db[0], 0);
5210         get_debugreg(vcpu->arch.db[1], 1);
5211         get_debugreg(vcpu->arch.db[2], 2);
5212         get_debugreg(vcpu->arch.db[3], 3);
5213         get_debugreg(vcpu->arch.dr6, 6);
5214         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5215
5216         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5217         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5218 }
5219
5220 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5221 {
5222         vmcs_writel(GUEST_DR7, val);
5223 }
5224
5225 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5226 {
5227         kvm_apic_update_ppr(vcpu);
5228         return 1;
5229 }
5230
5231 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5232 {
5233         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5234
5235         kvm_make_request(KVM_REQ_EVENT, vcpu);
5236
5237         ++vcpu->stat.irq_window_exits;
5238         return 1;
5239 }
5240
5241 static int handle_invlpg(struct kvm_vcpu *vcpu)
5242 {
5243         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5244
5245         kvm_mmu_invlpg(vcpu, exit_qualification);
5246         return kvm_skip_emulated_instruction(vcpu);
5247 }
5248
5249 static int handle_apic_access(struct kvm_vcpu *vcpu)
5250 {
5251         if (likely(fasteoi)) {
5252                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5253                 int access_type, offset;
5254
5255                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5256                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5257                 /*
5258                  * Sane guest uses MOV to write EOI, with written value
5259                  * not cared. So make a short-circuit here by avoiding
5260                  * heavy instruction emulation.
5261                  */
5262                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5263                     (offset == APIC_EOI)) {
5264                         kvm_lapic_set_eoi(vcpu);
5265                         return kvm_skip_emulated_instruction(vcpu);
5266                 }
5267         }
5268         return kvm_emulate_instruction(vcpu, 0);
5269 }
5270
5271 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5272 {
5273         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5274         int vector = exit_qualification & 0xff;
5275
5276         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5277         kvm_apic_set_eoi_accelerated(vcpu, vector);
5278         return 1;
5279 }
5280
5281 static int handle_apic_write(struct kvm_vcpu *vcpu)
5282 {
5283         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5284         u32 offset = exit_qualification & 0xfff;
5285
5286         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5287         kvm_apic_write_nodecode(vcpu, offset);
5288         return 1;
5289 }
5290
5291 static int handle_task_switch(struct kvm_vcpu *vcpu)
5292 {
5293         struct vcpu_vmx *vmx = to_vmx(vcpu);
5294         unsigned long exit_qualification;
5295         bool has_error_code = false;
5296         u32 error_code = 0;
5297         u16 tss_selector;
5298         int reason, type, idt_v, idt_index;
5299
5300         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5301         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5302         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5303
5304         exit_qualification = vmx_get_exit_qual(vcpu);
5305
5306         reason = (u32)exit_qualification >> 30;
5307         if (reason == TASK_SWITCH_GATE && idt_v) {
5308                 switch (type) {
5309                 case INTR_TYPE_NMI_INTR:
5310                         vcpu->arch.nmi_injected = false;
5311                         vmx_set_nmi_mask(vcpu, true);
5312                         break;
5313                 case INTR_TYPE_EXT_INTR:
5314                 case INTR_TYPE_SOFT_INTR:
5315                         kvm_clear_interrupt_queue(vcpu);
5316                         break;
5317                 case INTR_TYPE_HARD_EXCEPTION:
5318                         if (vmx->idt_vectoring_info &
5319                             VECTORING_INFO_DELIVER_CODE_MASK) {
5320                                 has_error_code = true;
5321                                 error_code =
5322                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5323                         }
5324                         fallthrough;
5325                 case INTR_TYPE_SOFT_EXCEPTION:
5326                         kvm_clear_exception_queue(vcpu);
5327                         break;
5328                 default:
5329                         break;
5330                 }
5331         }
5332         tss_selector = exit_qualification;
5333
5334         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5335                        type != INTR_TYPE_EXT_INTR &&
5336                        type != INTR_TYPE_NMI_INTR))
5337                 WARN_ON(!skip_emulated_instruction(vcpu));
5338
5339         /*
5340          * TODO: What about debug traps on tss switch?
5341          *       Are we supposed to inject them and update dr6?
5342          */
5343         return kvm_task_switch(vcpu, tss_selector,
5344                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5345                                reason, has_error_code, error_code);
5346 }
5347
5348 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5349 {
5350         unsigned long exit_qualification;
5351         gpa_t gpa;
5352         u64 error_code;
5353
5354         exit_qualification = vmx_get_exit_qual(vcpu);
5355
5356         /*
5357          * EPT violation happened while executing iret from NMI,
5358          * "blocked by NMI" bit has to be set before next VM entry.
5359          * There are errata that may cause this bit to not be set:
5360          * AAK134, BY25.
5361          */
5362         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5363                         enable_vnmi &&
5364                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5365                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5366
5367         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5368         trace_kvm_page_fault(gpa, exit_qualification);
5369
5370         /* Is it a read fault? */
5371         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5372                      ? PFERR_USER_MASK : 0;
5373         /* Is it a write fault? */
5374         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5375                       ? PFERR_WRITE_MASK : 0;
5376         /* Is it a fetch fault? */
5377         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5378                       ? PFERR_FETCH_MASK : 0;
5379         /* ept page table entry is present? */
5380         error_code |= (exit_qualification &
5381                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5382                         EPT_VIOLATION_EXECUTABLE))
5383                       ? PFERR_PRESENT_MASK : 0;
5384
5385         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5386                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5387
5388         vcpu->arch.exit_qualification = exit_qualification;
5389
5390         /*
5391          * Check that the GPA doesn't exceed physical memory limits, as that is
5392          * a guest page fault.  We have to emulate the instruction here, because
5393          * if the illegal address is that of a paging structure, then
5394          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5395          * would also use advanced VM-exit information for EPT violations to
5396          * reconstruct the page fault error code.
5397          */
5398         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5399                 return kvm_emulate_instruction(vcpu, 0);
5400
5401         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5402 }
5403
5404 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5405 {
5406         gpa_t gpa;
5407
5408         if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5409                 return 1;
5410
5411         /*
5412          * A nested guest cannot optimize MMIO vmexits, because we have an
5413          * nGPA here instead of the required GPA.
5414          */
5415         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5416         if (!is_guest_mode(vcpu) &&
5417             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5418                 trace_kvm_fast_mmio(gpa);
5419                 return kvm_skip_emulated_instruction(vcpu);
5420         }
5421
5422         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5423 }
5424
5425 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5426 {
5427         WARN_ON_ONCE(!enable_vnmi);
5428         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5429         ++vcpu->stat.nmi_window_exits;
5430         kvm_make_request(KVM_REQ_EVENT, vcpu);
5431
5432         return 1;
5433 }
5434
5435 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5436 {
5437         struct vcpu_vmx *vmx = to_vmx(vcpu);
5438         bool intr_window_requested;
5439         unsigned count = 130;
5440
5441         intr_window_requested = exec_controls_get(vmx) &
5442                                 CPU_BASED_INTR_WINDOW_EXITING;
5443
5444         while (vmx->emulation_required && count-- != 0) {
5445                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5446                         return handle_interrupt_window(&vmx->vcpu);
5447
5448                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5449                         return 1;
5450
5451                 if (!kvm_emulate_instruction(vcpu, 0))
5452                         return 0;
5453
5454                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5455                     vcpu->arch.exception.pending) {
5456                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5457                         vcpu->run->internal.suberror =
5458                                                 KVM_INTERNAL_ERROR_EMULATION;
5459                         vcpu->run->internal.ndata = 0;
5460                         return 0;
5461                 }
5462
5463                 if (vcpu->arch.halt_request) {
5464                         vcpu->arch.halt_request = 0;
5465                         return kvm_vcpu_halt(vcpu);
5466                 }
5467
5468                 /*
5469                  * Note, return 1 and not 0, vcpu_run() will invoke
5470                  * xfer_to_guest_mode() which will create a proper return
5471                  * code.
5472                  */
5473                 if (__xfer_to_guest_mode_work_pending())
5474                         return 1;
5475         }
5476
5477         return 1;
5478 }
5479
5480 static void grow_ple_window(struct kvm_vcpu *vcpu)
5481 {
5482         struct vcpu_vmx *vmx = to_vmx(vcpu);
5483         unsigned int old = vmx->ple_window;
5484
5485         vmx->ple_window = __grow_ple_window(old, ple_window,
5486                                             ple_window_grow,
5487                                             ple_window_max);
5488
5489         if (vmx->ple_window != old) {
5490                 vmx->ple_window_dirty = true;
5491                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5492                                             vmx->ple_window, old);
5493         }
5494 }
5495
5496 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5497 {
5498         struct vcpu_vmx *vmx = to_vmx(vcpu);
5499         unsigned int old = vmx->ple_window;
5500
5501         vmx->ple_window = __shrink_ple_window(old, ple_window,
5502                                               ple_window_shrink,
5503                                               ple_window);
5504
5505         if (vmx->ple_window != old) {
5506                 vmx->ple_window_dirty = true;
5507                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5508                                             vmx->ple_window, old);
5509         }
5510 }
5511
5512 /*
5513  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5514  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5515  */
5516 static int handle_pause(struct kvm_vcpu *vcpu)
5517 {
5518         if (!kvm_pause_in_guest(vcpu->kvm))
5519                 grow_ple_window(vcpu);
5520
5521         /*
5522          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5523          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5524          * never set PAUSE_EXITING and just set PLE if supported,
5525          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5526          */
5527         kvm_vcpu_on_spin(vcpu, true);
5528         return kvm_skip_emulated_instruction(vcpu);
5529 }
5530
5531 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5532 {
5533         return 1;
5534 }
5535
5536 static int handle_invpcid(struct kvm_vcpu *vcpu)
5537 {
5538         u32 vmx_instruction_info;
5539         unsigned long type;
5540         gva_t gva;
5541         struct {
5542                 u64 pcid;
5543                 u64 gla;
5544         } operand;
5545
5546         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5547                 kvm_queue_exception(vcpu, UD_VECTOR);
5548                 return 1;
5549         }
5550
5551         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5552         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5553
5554         if (type > 3) {
5555                 kvm_inject_gp(vcpu, 0);
5556                 return 1;
5557         }
5558
5559         /* According to the Intel instruction reference, the memory operand
5560          * is read even if it isn't needed (e.g., for type==all)
5561          */
5562         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5563                                 vmx_instruction_info, false,
5564                                 sizeof(operand), &gva))
5565                 return 1;
5566
5567         return kvm_handle_invpcid(vcpu, type, gva);
5568 }
5569
5570 static int handle_pml_full(struct kvm_vcpu *vcpu)
5571 {
5572         unsigned long exit_qualification;
5573
5574         trace_kvm_pml_full(vcpu->vcpu_id);
5575
5576         exit_qualification = vmx_get_exit_qual(vcpu);
5577
5578         /*
5579          * PML buffer FULL happened while executing iret from NMI,
5580          * "blocked by NMI" bit has to be set before next VM entry.
5581          */
5582         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5583                         enable_vnmi &&
5584                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5585                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5586                                 GUEST_INTR_STATE_NMI);
5587
5588         /*
5589          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5590          * here.., and there's no userspace involvement needed for PML.
5591          */
5592         return 1;
5593 }
5594
5595 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5596 {
5597         struct vcpu_vmx *vmx = to_vmx(vcpu);
5598
5599         if (!vmx->req_immediate_exit &&
5600             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5601                 kvm_lapic_expired_hv_timer(vcpu);
5602                 return EXIT_FASTPATH_REENTER_GUEST;
5603         }
5604
5605         return EXIT_FASTPATH_NONE;
5606 }
5607
5608 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5609 {
5610         handle_fastpath_preemption_timer(vcpu);
5611         return 1;
5612 }
5613
5614 /*
5615  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5616  * are overwritten by nested_vmx_setup() when nested=1.
5617  */
5618 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5619 {
5620         kvm_queue_exception(vcpu, UD_VECTOR);
5621         return 1;
5622 }
5623
5624 #ifndef CONFIG_X86_SGX_KVM
5625 static int handle_encls(struct kvm_vcpu *vcpu)
5626 {
5627         /*
5628          * SGX virtualization is disabled.  There is no software enable bit for
5629          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5630          * the guest from executing ENCLS (when SGX is supported by hardware).
5631          */
5632         kvm_queue_exception(vcpu, UD_VECTOR);
5633         return 1;
5634 }
5635 #endif /* CONFIG_X86_SGX_KVM */
5636
5637 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5638 {
5639         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5640         vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5641         return 0;
5642 }
5643
5644 /*
5645  * The exit handlers return 1 if the exit was handled fully and guest execution
5646  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5647  * to be done to userspace and return 0.
5648  */
5649 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5650         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5651         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5652         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5653         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5654         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5655         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5656         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5657         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5658         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5659         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5660         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5661         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5662         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
5663         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5664         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5665         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5666         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5667         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5668         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5669         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5670         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5671         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5672         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5673         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5674         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5675         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5676         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5677         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5678         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5679         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5680         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5681         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5682         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5683         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5684         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5685         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5686         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5687         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5688         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
5689         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5690         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5691         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5692         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5693         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5694         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5695         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5696         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5697         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5698         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5699         [EXIT_REASON_ENCLS]                   = handle_encls,
5700         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5701 };
5702
5703 static const int kvm_vmx_max_exit_handlers =
5704         ARRAY_SIZE(kvm_vmx_exit_handlers);
5705
5706 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5707                               u32 *intr_info, u32 *error_code)
5708 {
5709         struct vcpu_vmx *vmx = to_vmx(vcpu);
5710
5711         *info1 = vmx_get_exit_qual(vcpu);
5712         if (!(vmx->exit_reason.failed_vmentry)) {
5713                 *info2 = vmx->idt_vectoring_info;
5714                 *intr_info = vmx_get_intr_info(vcpu);
5715                 if (is_exception_with_error_code(*intr_info))
5716                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5717                 else
5718                         *error_code = 0;
5719         } else {
5720                 *info2 = 0;
5721                 *intr_info = 0;
5722                 *error_code = 0;
5723         }
5724 }
5725
5726 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5727 {
5728         if (vmx->pml_pg) {
5729                 __free_page(vmx->pml_pg);
5730                 vmx->pml_pg = NULL;
5731         }
5732 }
5733
5734 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5735 {
5736         struct vcpu_vmx *vmx = to_vmx(vcpu);
5737         u64 *pml_buf;
5738         u16 pml_idx;
5739
5740         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5741
5742         /* Do nothing if PML buffer is empty */
5743         if (pml_idx == (PML_ENTITY_NUM - 1))
5744                 return;
5745
5746         /* PML index always points to next available PML buffer entity */
5747         if (pml_idx >= PML_ENTITY_NUM)
5748                 pml_idx = 0;
5749         else
5750                 pml_idx++;
5751
5752         pml_buf = page_address(vmx->pml_pg);
5753         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5754                 u64 gpa;
5755
5756                 gpa = pml_buf[pml_idx];
5757                 WARN_ON(gpa & (PAGE_SIZE - 1));
5758                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5759         }
5760
5761         /* reset PML index */
5762         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5763 }
5764
5765 static void vmx_dump_sel(char *name, uint32_t sel)
5766 {
5767         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5768                name, vmcs_read16(sel),
5769                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5770                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5771                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5772 }
5773
5774 static void vmx_dump_dtsel(char *name, uint32_t limit)
5775 {
5776         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5777                name, vmcs_read32(limit),
5778                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5779 }
5780
5781 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5782 {
5783         unsigned int i;
5784         struct vmx_msr_entry *e;
5785
5786         pr_err("MSR %s:\n", name);
5787         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5788                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5789 }
5790
5791 void dump_vmcs(struct kvm_vcpu *vcpu)
5792 {
5793         struct vcpu_vmx *vmx = to_vmx(vcpu);
5794         u32 vmentry_ctl, vmexit_ctl;
5795         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5796         unsigned long cr4;
5797         int efer_slot;
5798
5799         if (!dump_invalid_vmcs) {
5800                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5801                 return;
5802         }
5803
5804         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5805         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5806         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5807         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5808         cr4 = vmcs_readl(GUEST_CR4);
5809         secondary_exec_control = 0;
5810         if (cpu_has_secondary_exec_ctrls())
5811                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5812
5813         pr_err("*** Guest State ***\n");
5814         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5815                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5816                vmcs_readl(CR0_GUEST_HOST_MASK));
5817         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5818                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5819         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5820         if (cpu_has_vmx_ept()) {
5821                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5822                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5823                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5824                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5825         }
5826         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5827                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5828         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5829                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5830         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5831                vmcs_readl(GUEST_SYSENTER_ESP),
5832                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5833         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5834         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5835         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5836         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5837         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5838         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5839         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5840         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5841         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5842         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5843         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5844         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5845                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5846         else if (efer_slot >= 0)
5847                 pr_err("EFER= 0x%016llx (autoload)\n",
5848                        vmx->msr_autoload.guest.val[efer_slot].value);
5849         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5850                 pr_err("EFER= 0x%016llx (effective)\n",
5851                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
5852         else
5853                 pr_err("EFER= 0x%016llx (effective)\n",
5854                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5855         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5856                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5857         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5858                vmcs_read64(GUEST_IA32_DEBUGCTL),
5859                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5860         if (cpu_has_load_perf_global_ctrl() &&
5861             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5862                 pr_err("PerfGlobCtl = 0x%016llx\n",
5863                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5864         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5865                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5866         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5867                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5868                vmcs_read32(GUEST_ACTIVITY_STATE));
5869         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5870                 pr_err("InterruptStatus = %04x\n",
5871                        vmcs_read16(GUEST_INTR_STATUS));
5872         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5873                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5874         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5875                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5876
5877         pr_err("*** Host State ***\n");
5878         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5879                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5880         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5881                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5882                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5883                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5884                vmcs_read16(HOST_TR_SELECTOR));
5885         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5886                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5887                vmcs_readl(HOST_TR_BASE));
5888         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5889                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5890         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5891                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5892                vmcs_readl(HOST_CR4));
5893         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5894                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5895                vmcs_read32(HOST_IA32_SYSENTER_CS),
5896                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5897         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5898                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5899         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5900                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5901         if (cpu_has_load_perf_global_ctrl() &&
5902             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5903                 pr_err("PerfGlobCtl = 0x%016llx\n",
5904                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5905         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5906                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5907
5908         pr_err("*** Control State ***\n");
5909         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5910                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5911         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5912         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5913                vmcs_read32(EXCEPTION_BITMAP),
5914                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5915                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5916         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5917                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5918                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5919                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5920         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5921                vmcs_read32(VM_EXIT_INTR_INFO),
5922                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5923                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5924         pr_err("        reason=%08x qualification=%016lx\n",
5925                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5926         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5927                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5928                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5929         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5930         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5931                 pr_err("TSC Multiplier = 0x%016llx\n",
5932                        vmcs_read64(TSC_MULTIPLIER));
5933         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5934                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5935                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5936                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5937                 }
5938                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5939                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5940                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5941                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5942         }
5943         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5944                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5945         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5946                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5947         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5948                 pr_err("PLE Gap=%08x Window=%08x\n",
5949                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5950         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5951                 pr_err("Virtual processor ID = 0x%04x\n",
5952                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5953 }
5954
5955 /*
5956  * The guest has exited.  See if we can fix it or if we need userspace
5957  * assistance.
5958  */
5959 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5960 {
5961         struct vcpu_vmx *vmx = to_vmx(vcpu);
5962         union vmx_exit_reason exit_reason = vmx->exit_reason;
5963         u32 vectoring_info = vmx->idt_vectoring_info;
5964         u16 exit_handler_index;
5965
5966         /*
5967          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5968          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5969          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5970          * mode as if vcpus is in root mode, the PML buffer must has been
5971          * flushed already.  Note, PML is never enabled in hardware while
5972          * running L2.
5973          */
5974         if (enable_pml && !is_guest_mode(vcpu))
5975                 vmx_flush_pml_buffer(vcpu);
5976
5977         /*
5978          * We should never reach this point with a pending nested VM-Enter, and
5979          * more specifically emulation of L2 due to invalid guest state (see
5980          * below) should never happen as that means we incorrectly allowed a
5981          * nested VM-Enter with an invalid vmcs12.
5982          */
5983         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5984
5985         /* If guest state is invalid, start emulating */
5986         if (vmx->emulation_required)
5987                 return handle_invalid_guest_state(vcpu);
5988
5989         if (is_guest_mode(vcpu)) {
5990                 /*
5991                  * PML is never enabled when running L2, bail immediately if a
5992                  * PML full exit occurs as something is horribly wrong.
5993                  */
5994                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
5995                         goto unexpected_vmexit;
5996
5997                 /*
5998                  * The host physical addresses of some pages of guest memory
5999                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6000                  * Page). The CPU may write to these pages via their host
6001                  * physical address while L2 is running, bypassing any
6002                  * address-translation-based dirty tracking (e.g. EPT write
6003                  * protection).
6004                  *
6005                  * Mark them dirty on every exit from L2 to prevent them from
6006                  * getting out of sync with dirty tracking.
6007                  */
6008                 nested_mark_vmcs12_pages_dirty(vcpu);
6009
6010                 if (nested_vmx_reflect_vmexit(vcpu))
6011                         return 1;
6012         }
6013
6014         if (exit_reason.failed_vmentry) {
6015                 dump_vmcs(vcpu);
6016                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6017                 vcpu->run->fail_entry.hardware_entry_failure_reason
6018                         = exit_reason.full;
6019                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6020                 return 0;
6021         }
6022
6023         if (unlikely(vmx->fail)) {
6024                 dump_vmcs(vcpu);
6025                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6026                 vcpu->run->fail_entry.hardware_entry_failure_reason
6027                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6028                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6029                 return 0;
6030         }
6031
6032         /*
6033          * Note:
6034          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6035          * delivery event since it indicates guest is accessing MMIO.
6036          * The vm-exit can be triggered again after return to guest that
6037          * will cause infinite loop.
6038          */
6039         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6040             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6041              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6042              exit_reason.basic != EXIT_REASON_PML_FULL &&
6043              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6044              exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6045                 int ndata = 3;
6046
6047                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6048                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6049                 vcpu->run->internal.data[0] = vectoring_info;
6050                 vcpu->run->internal.data[1] = exit_reason.full;
6051                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6052                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6053                         vcpu->run->internal.data[ndata++] =
6054                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6055                 }
6056                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6057                 vcpu->run->internal.ndata = ndata;
6058                 return 0;
6059         }
6060
6061         if (unlikely(!enable_vnmi &&
6062                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6063                 if (!vmx_interrupt_blocked(vcpu)) {
6064                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6065                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6066                            vcpu->arch.nmi_pending) {
6067                         /*
6068                          * This CPU don't support us in finding the end of an
6069                          * NMI-blocked window if the guest runs with IRQs
6070                          * disabled. So we pull the trigger after 1 s of
6071                          * futile waiting, but inform the user about this.
6072                          */
6073                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6074                                "state on VCPU %d after 1 s timeout\n",
6075                                __func__, vcpu->vcpu_id);
6076                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6077                 }
6078         }
6079
6080         if (exit_fastpath != EXIT_FASTPATH_NONE)
6081                 return 1;
6082
6083         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6084                 goto unexpected_vmexit;
6085 #ifdef CONFIG_RETPOLINE
6086         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6087                 return kvm_emulate_wrmsr(vcpu);
6088         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6089                 return handle_preemption_timer(vcpu);
6090         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6091                 return handle_interrupt_window(vcpu);
6092         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6093                 return handle_external_interrupt(vcpu);
6094         else if (exit_reason.basic == EXIT_REASON_HLT)
6095                 return kvm_emulate_halt(vcpu);
6096         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6097                 return handle_ept_misconfig(vcpu);
6098 #endif
6099
6100         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6101                                                 kvm_vmx_max_exit_handlers);
6102         if (!kvm_vmx_exit_handlers[exit_handler_index])
6103                 goto unexpected_vmexit;
6104
6105         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6106
6107 unexpected_vmexit:
6108         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6109                     exit_reason.full);
6110         dump_vmcs(vcpu);
6111         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6112         vcpu->run->internal.suberror =
6113                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6114         vcpu->run->internal.ndata = 2;
6115         vcpu->run->internal.data[0] = exit_reason.full;
6116         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6117         return 0;
6118 }
6119
6120 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6121 {
6122         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6123
6124         /*
6125          * Even when current exit reason is handled by KVM internally, we
6126          * still need to exit to user space when bus lock detected to inform
6127          * that there is a bus lock in guest.
6128          */
6129         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6130                 if (ret > 0)
6131                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6132
6133                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6134                 return 0;
6135         }
6136         return ret;
6137 }
6138
6139 /*
6140  * Software based L1D cache flush which is used when microcode providing
6141  * the cache control MSR is not loaded.
6142  *
6143  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6144  * flush it is required to read in 64 KiB because the replacement algorithm
6145  * is not exactly LRU. This could be sized at runtime via topology
6146  * information but as all relevant affected CPUs have 32KiB L1D cache size
6147  * there is no point in doing so.
6148  */
6149 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6150 {
6151         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6152
6153         /*
6154          * This code is only executed when the the flush mode is 'cond' or
6155          * 'always'
6156          */
6157         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6158                 bool flush_l1d;
6159
6160                 /*
6161                  * Clear the per-vcpu flush bit, it gets set again
6162                  * either from vcpu_run() or from one of the unsafe
6163                  * VMEXIT handlers.
6164                  */
6165                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6166                 vcpu->arch.l1tf_flush_l1d = false;
6167
6168                 /*
6169                  * Clear the per-cpu flush bit, it gets set again from
6170                  * the interrupt handlers.
6171                  */
6172                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6173                 kvm_clear_cpu_l1tf_flush_l1d();
6174
6175                 if (!flush_l1d)
6176                         return;
6177         }
6178
6179         vcpu->stat.l1d_flush++;
6180
6181         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6182                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6183                 return;
6184         }
6185
6186         asm volatile(
6187                 /* First ensure the pages are in the TLB */
6188                 "xorl   %%eax, %%eax\n"
6189                 ".Lpopulate_tlb:\n\t"
6190                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6191                 "addl   $4096, %%eax\n\t"
6192                 "cmpl   %%eax, %[size]\n\t"
6193                 "jne    .Lpopulate_tlb\n\t"
6194                 "xorl   %%eax, %%eax\n\t"
6195                 "cpuid\n\t"
6196                 /* Now fill the cache */
6197                 "xorl   %%eax, %%eax\n"
6198                 ".Lfill_cache:\n"
6199                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6200                 "addl   $64, %%eax\n\t"
6201                 "cmpl   %%eax, %[size]\n\t"
6202                 "jne    .Lfill_cache\n\t"
6203                 "lfence\n"
6204                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6205                     [size] "r" (size)
6206                 : "eax", "ebx", "ecx", "edx");
6207 }
6208
6209 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6210 {
6211         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6212         int tpr_threshold;
6213
6214         if (is_guest_mode(vcpu) &&
6215                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6216                 return;
6217
6218         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6219         if (is_guest_mode(vcpu))
6220                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6221         else
6222                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6223 }
6224
6225 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6226 {
6227         struct vcpu_vmx *vmx = to_vmx(vcpu);
6228         u32 sec_exec_control;
6229
6230         if (!lapic_in_kernel(vcpu))
6231                 return;
6232
6233         if (!flexpriority_enabled &&
6234             !cpu_has_vmx_virtualize_x2apic_mode())
6235                 return;
6236
6237         /* Postpone execution until vmcs01 is the current VMCS. */
6238         if (is_guest_mode(vcpu)) {
6239                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6240                 return;
6241         }
6242
6243         sec_exec_control = secondary_exec_controls_get(vmx);
6244         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6245                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6246
6247         switch (kvm_get_apic_mode(vcpu)) {
6248         case LAPIC_MODE_INVALID:
6249                 WARN_ONCE(true, "Invalid local APIC state");
6250                 break;
6251         case LAPIC_MODE_DISABLED:
6252                 break;
6253         case LAPIC_MODE_XAPIC:
6254                 if (flexpriority_enabled) {
6255                         sec_exec_control |=
6256                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6257                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6258
6259                         /*
6260                          * Flush the TLB, reloading the APIC access page will
6261                          * only do so if its physical address has changed, but
6262                          * the guest may have inserted a non-APIC mapping into
6263                          * the TLB while the APIC access page was disabled.
6264                          */
6265                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6266                 }
6267                 break;
6268         case LAPIC_MODE_X2APIC:
6269                 if (cpu_has_vmx_virtualize_x2apic_mode())
6270                         sec_exec_control |=
6271                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6272                 break;
6273         }
6274         secondary_exec_controls_set(vmx, sec_exec_control);
6275
6276         vmx_update_msr_bitmap(vcpu);
6277 }
6278
6279 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6280 {
6281         struct page *page;
6282
6283         /* Defer reload until vmcs01 is the current VMCS. */
6284         if (is_guest_mode(vcpu)) {
6285                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6286                 return;
6287         }
6288
6289         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6290             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6291                 return;
6292
6293         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6294         if (is_error_page(page))
6295                 return;
6296
6297         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6298         vmx_flush_tlb_current(vcpu);
6299
6300         /*
6301          * Do not pin apic access page in memory, the MMU notifier
6302          * will call us again if it is migrated or swapped out.
6303          */
6304         put_page(page);
6305 }
6306
6307 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6308 {
6309         u16 status;
6310         u8 old;
6311
6312         if (max_isr == -1)
6313                 max_isr = 0;
6314
6315         status = vmcs_read16(GUEST_INTR_STATUS);
6316         old = status >> 8;
6317         if (max_isr != old) {
6318                 status &= 0xff;
6319                 status |= max_isr << 8;
6320                 vmcs_write16(GUEST_INTR_STATUS, status);
6321         }
6322 }
6323
6324 static void vmx_set_rvi(int vector)
6325 {
6326         u16 status;
6327         u8 old;
6328
6329         if (vector == -1)
6330                 vector = 0;
6331
6332         status = vmcs_read16(GUEST_INTR_STATUS);
6333         old = (u8)status & 0xff;
6334         if ((u8)vector != old) {
6335                 status &= ~0xff;
6336                 status |= (u8)vector;
6337                 vmcs_write16(GUEST_INTR_STATUS, status);
6338         }
6339 }
6340
6341 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6342 {
6343         /*
6344          * When running L2, updating RVI is only relevant when
6345          * vmcs12 virtual-interrupt-delivery enabled.
6346          * However, it can be enabled only when L1 also
6347          * intercepts external-interrupts and in that case
6348          * we should not update vmcs02 RVI but instead intercept
6349          * interrupt. Therefore, do nothing when running L2.
6350          */
6351         if (!is_guest_mode(vcpu))
6352                 vmx_set_rvi(max_irr);
6353 }
6354
6355 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6356 {
6357         struct vcpu_vmx *vmx = to_vmx(vcpu);
6358         int max_irr;
6359         bool max_irr_updated;
6360
6361         WARN_ON(!vcpu->arch.apicv_active);
6362         if (pi_test_on(&vmx->pi_desc)) {
6363                 pi_clear_on(&vmx->pi_desc);
6364                 /*
6365                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6366                  * But on x86 this is just a compiler barrier anyway.
6367                  */
6368                 smp_mb__after_atomic();
6369                 max_irr_updated =
6370                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6371
6372                 /*
6373                  * If we are running L2 and L1 has a new pending interrupt
6374                  * which can be injected, we should re-evaluate
6375                  * what should be done with this new L1 interrupt.
6376                  * If L1 intercepts external-interrupts, we should
6377                  * exit from L2 to L1. Otherwise, interrupt should be
6378                  * delivered directly to L2.
6379                  */
6380                 if (is_guest_mode(vcpu) && max_irr_updated) {
6381                         if (nested_exit_on_intr(vcpu))
6382                                 kvm_vcpu_exiting_guest_mode(vcpu);
6383                         else
6384                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6385                 }
6386         } else {
6387                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6388         }
6389         vmx_hwapic_irr_update(vcpu, max_irr);
6390         return max_irr;
6391 }
6392
6393 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6394 {
6395         if (!kvm_vcpu_apicv_active(vcpu))
6396                 return;
6397
6398         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6399         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6400         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6401         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6402 }
6403
6404 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6405 {
6406         struct vcpu_vmx *vmx = to_vmx(vcpu);
6407
6408         pi_clear_on(&vmx->pi_desc);
6409         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6410 }
6411
6412 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6413
6414 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6415                                         unsigned long entry)
6416 {
6417         kvm_before_interrupt(vcpu);
6418         vmx_do_interrupt_nmi_irqoff(entry);
6419         kvm_after_interrupt(vcpu);
6420 }
6421
6422 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6423 {
6424         const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6425         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6426
6427         /* if exit due to PF check for async PF */
6428         if (is_page_fault(intr_info))
6429                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6430         /* Handle machine checks before interrupts are enabled */
6431         else if (is_machine_check(intr_info))
6432                 kvm_machine_check();
6433         /* We need to handle NMIs before interrupts are enabled */
6434         else if (is_nmi(intr_info))
6435                 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6436 }
6437
6438 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6439 {
6440         u32 intr_info = vmx_get_intr_info(vcpu);
6441         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6442         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6443
6444         if (WARN_ONCE(!is_external_intr(intr_info),
6445             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6446                 return;
6447
6448         handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6449 }
6450
6451 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6452 {
6453         struct vcpu_vmx *vmx = to_vmx(vcpu);
6454
6455         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6456                 handle_external_interrupt_irqoff(vcpu);
6457         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6458                 handle_exception_nmi_irqoff(vmx);
6459 }
6460
6461 /*
6462  * The kvm parameter can be NULL (module initialization, or invocation before
6463  * VM creation). Be sure to check the kvm parameter before using it.
6464  */
6465 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6466 {
6467         switch (index) {
6468         case MSR_IA32_SMBASE:
6469                 /*
6470                  * We cannot do SMM unless we can run the guest in big
6471                  * real mode.
6472                  */
6473                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6474         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6475                 return nested;
6476         case MSR_AMD64_VIRT_SPEC_CTRL:
6477                 /* This is AMD only.  */
6478                 return false;
6479         default:
6480                 return true;
6481         }
6482 }
6483
6484 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6485 {
6486         u32 exit_intr_info;
6487         bool unblock_nmi;
6488         u8 vector;
6489         bool idtv_info_valid;
6490
6491         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6492
6493         if (enable_vnmi) {
6494                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6495                         return;
6496
6497                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6498                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6499                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6500                 /*
6501                  * SDM 3: 27.7.1.2 (September 2008)
6502                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6503                  * a guest IRET fault.
6504                  * SDM 3: 23.2.2 (September 2008)
6505                  * Bit 12 is undefined in any of the following cases:
6506                  *  If the VM exit sets the valid bit in the IDT-vectoring
6507                  *   information field.
6508                  *  If the VM exit is due to a double fault.
6509                  */
6510                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6511                     vector != DF_VECTOR && !idtv_info_valid)
6512                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6513                                       GUEST_INTR_STATE_NMI);
6514                 else
6515                         vmx->loaded_vmcs->nmi_known_unmasked =
6516                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6517                                   & GUEST_INTR_STATE_NMI);
6518         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6519                 vmx->loaded_vmcs->vnmi_blocked_time +=
6520                         ktime_to_ns(ktime_sub(ktime_get(),
6521                                               vmx->loaded_vmcs->entry_time));
6522 }
6523
6524 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6525                                       u32 idt_vectoring_info,
6526                                       int instr_len_field,
6527                                       int error_code_field)
6528 {
6529         u8 vector;
6530         int type;
6531         bool idtv_info_valid;
6532
6533         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6534
6535         vcpu->arch.nmi_injected = false;
6536         kvm_clear_exception_queue(vcpu);
6537         kvm_clear_interrupt_queue(vcpu);
6538
6539         if (!idtv_info_valid)
6540                 return;
6541
6542         kvm_make_request(KVM_REQ_EVENT, vcpu);
6543
6544         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6545         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6546
6547         switch (type) {
6548         case INTR_TYPE_NMI_INTR:
6549                 vcpu->arch.nmi_injected = true;
6550                 /*
6551                  * SDM 3: 27.7.1.2 (September 2008)
6552                  * Clear bit "block by NMI" before VM entry if a NMI
6553                  * delivery faulted.
6554                  */
6555                 vmx_set_nmi_mask(vcpu, false);
6556                 break;
6557         case INTR_TYPE_SOFT_EXCEPTION:
6558                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6559                 fallthrough;
6560         case INTR_TYPE_HARD_EXCEPTION:
6561                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6562                         u32 err = vmcs_read32(error_code_field);
6563                         kvm_requeue_exception_e(vcpu, vector, err);
6564                 } else
6565                         kvm_requeue_exception(vcpu, vector);
6566                 break;
6567         case INTR_TYPE_SOFT_INTR:
6568                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6569                 fallthrough;
6570         case INTR_TYPE_EXT_INTR:
6571                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6572                 break;
6573         default:
6574                 break;
6575         }
6576 }
6577
6578 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6579 {
6580         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6581                                   VM_EXIT_INSTRUCTION_LEN,
6582                                   IDT_VECTORING_ERROR_CODE);
6583 }
6584
6585 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6586 {
6587         __vmx_complete_interrupts(vcpu,
6588                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6589                                   VM_ENTRY_INSTRUCTION_LEN,
6590                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6591
6592         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6593 }
6594
6595 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6596 {
6597         int i, nr_msrs;
6598         struct perf_guest_switch_msr *msrs;
6599
6600         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6601         msrs = perf_guest_get_msrs(&nr_msrs);
6602         if (!msrs)
6603                 return;
6604
6605         for (i = 0; i < nr_msrs; i++)
6606                 if (msrs[i].host == msrs[i].guest)
6607                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6608                 else
6609                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6610                                         msrs[i].host, false);
6611 }
6612
6613 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6614 {
6615         struct vcpu_vmx *vmx = to_vmx(vcpu);
6616         u64 tscl;
6617         u32 delta_tsc;
6618
6619         if (vmx->req_immediate_exit) {
6620                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6621                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6622         } else if (vmx->hv_deadline_tsc != -1) {
6623                 tscl = rdtsc();
6624                 if (vmx->hv_deadline_tsc > tscl)
6625                         /* set_hv_timer ensures the delta fits in 32-bits */
6626                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6627                                 cpu_preemption_timer_multi);
6628                 else
6629                         delta_tsc = 0;
6630
6631                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6632                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6633         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6634                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6635                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6636         }
6637 }
6638
6639 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6640 {
6641         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6642                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6643                 vmcs_writel(HOST_RSP, host_rsp);
6644         }
6645 }
6646
6647 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6648 {
6649         switch (to_vmx(vcpu)->exit_reason.basic) {
6650         case EXIT_REASON_MSR_WRITE:
6651                 return handle_fastpath_set_msr_irqoff(vcpu);
6652         case EXIT_REASON_PREEMPTION_TIMER:
6653                 return handle_fastpath_preemption_timer(vcpu);
6654         default:
6655                 return EXIT_FASTPATH_NONE;
6656         }
6657 }
6658
6659 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6660                                         struct vcpu_vmx *vmx)
6661 {
6662         kvm_guest_enter_irqoff();
6663
6664         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6665         if (static_branch_unlikely(&vmx_l1d_should_flush))
6666                 vmx_l1d_flush(vcpu);
6667         else if (static_branch_unlikely(&mds_user_clear))
6668                 mds_clear_cpu_buffers();
6669
6670         if (vcpu->arch.cr2 != native_read_cr2())
6671                 native_write_cr2(vcpu->arch.cr2);
6672
6673         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6674                                    vmx->loaded_vmcs->launched);
6675
6676         vcpu->arch.cr2 = native_read_cr2();
6677
6678         kvm_guest_exit_irqoff();
6679 }
6680
6681 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6682 {
6683         struct vcpu_vmx *vmx = to_vmx(vcpu);
6684         unsigned long cr3, cr4;
6685
6686         /* Record the guest's net vcpu time for enforced NMI injections. */
6687         if (unlikely(!enable_vnmi &&
6688                      vmx->loaded_vmcs->soft_vnmi_blocked))
6689                 vmx->loaded_vmcs->entry_time = ktime_get();
6690
6691         /* Don't enter VMX if guest state is invalid, let the exit handler
6692            start emulation until we arrive back to a valid state */
6693         if (vmx->emulation_required)
6694                 return EXIT_FASTPATH_NONE;
6695
6696         trace_kvm_entry(vcpu);
6697
6698         if (vmx->ple_window_dirty) {
6699                 vmx->ple_window_dirty = false;
6700                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6701         }
6702
6703         /*
6704          * We did this in prepare_switch_to_guest, because it needs to
6705          * be within srcu_read_lock.
6706          */
6707         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6708
6709         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6710                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6711         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6712                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6713
6714         cr3 = __get_current_cr3_fast();
6715         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6716                 vmcs_writel(HOST_CR3, cr3);
6717                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6718         }
6719
6720         cr4 = cr4_read_shadow();
6721         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6722                 vmcs_writel(HOST_CR4, cr4);
6723                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6724         }
6725
6726         /* When single-stepping over STI and MOV SS, we must clear the
6727          * corresponding interruptibility bits in the guest state. Otherwise
6728          * vmentry fails as it then expects bit 14 (BS) in pending debug
6729          * exceptions being set, but that's not correct for the guest debugging
6730          * case. */
6731         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6732                 vmx_set_interrupt_shadow(vcpu, 0);
6733
6734         kvm_load_guest_xsave_state(vcpu);
6735
6736         pt_guest_enter(vmx);
6737
6738         atomic_switch_perf_msrs(vmx);
6739         if (intel_pmu_lbr_is_enabled(vcpu))
6740                 vmx_passthrough_lbr_msrs(vcpu);
6741
6742         if (enable_preemption_timer)
6743                 vmx_update_hv_timer(vcpu);
6744
6745         kvm_wait_lapic_expire(vcpu);
6746
6747         /*
6748          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6749          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6750          * is no need to worry about the conditional branch over the wrmsr
6751          * being speculatively taken.
6752          */
6753         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6754
6755         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6756         vmx_vcpu_enter_exit(vcpu, vmx);
6757
6758         /*
6759          * We do not use IBRS in the kernel. If this vCPU has used the
6760          * SPEC_CTRL MSR it may have left it on; save the value and
6761          * turn it off. This is much more efficient than blindly adding
6762          * it to the atomic save/restore list. Especially as the former
6763          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6764          *
6765          * For non-nested case:
6766          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6767          * save it.
6768          *
6769          * For nested case:
6770          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6771          * save it.
6772          */
6773         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6774                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6775
6776         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6777
6778         /* All fields are clean at this point */
6779         if (static_branch_unlikely(&enable_evmcs)) {
6780                 current_evmcs->hv_clean_fields |=
6781                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6782
6783                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6784         }
6785
6786         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6787         if (vmx->host_debugctlmsr)
6788                 update_debugctlmsr(vmx->host_debugctlmsr);
6789
6790 #ifndef CONFIG_X86_64
6791         /*
6792          * The sysexit path does not restore ds/es, so we must set them to
6793          * a reasonable value ourselves.
6794          *
6795          * We can't defer this to vmx_prepare_switch_to_host() since that
6796          * function may be executed in interrupt context, which saves and
6797          * restore segments around it, nullifying its effect.
6798          */
6799         loadsegment(ds, __USER_DS);
6800         loadsegment(es, __USER_DS);
6801 #endif
6802
6803         vmx_register_cache_reset(vcpu);
6804
6805         pt_guest_exit(vmx);
6806
6807         kvm_load_host_xsave_state(vcpu);
6808
6809         vmx->nested.nested_run_pending = 0;
6810         vmx->idt_vectoring_info = 0;
6811
6812         if (unlikely(vmx->fail)) {
6813                 vmx->exit_reason.full = 0xdead;
6814                 return EXIT_FASTPATH_NONE;
6815         }
6816
6817         vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6818         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6819                 kvm_machine_check();
6820
6821         if (likely(!vmx->exit_reason.failed_vmentry))
6822                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6823
6824         trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6825
6826         if (unlikely(vmx->exit_reason.failed_vmentry))
6827                 return EXIT_FASTPATH_NONE;
6828
6829         vmx->loaded_vmcs->launched = 1;
6830
6831         vmx_recover_nmi_blocking(vmx);
6832         vmx_complete_interrupts(vmx);
6833
6834         if (is_guest_mode(vcpu))
6835                 return EXIT_FASTPATH_NONE;
6836
6837         return vmx_exit_handlers_fastpath(vcpu);
6838 }
6839
6840 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6841 {
6842         struct vcpu_vmx *vmx = to_vmx(vcpu);
6843
6844         if (enable_pml)
6845                 vmx_destroy_pml_buffer(vmx);
6846         free_vpid(vmx->vpid);
6847         nested_vmx_free_vcpu(vcpu);
6848         free_loaded_vmcs(vmx->loaded_vmcs);
6849 }
6850
6851 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6852 {
6853         struct vmx_uret_msr *tsx_ctrl;
6854         struct vcpu_vmx *vmx;
6855         int i, cpu, err;
6856
6857         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6858         vmx = to_vmx(vcpu);
6859
6860         err = -ENOMEM;
6861
6862         vmx->vpid = allocate_vpid();
6863
6864         /*
6865          * If PML is turned on, failure on enabling PML just results in failure
6866          * of creating the vcpu, therefore we can simplify PML logic (by
6867          * avoiding dealing with cases, such as enabling PML partially on vcpus
6868          * for the guest), etc.
6869          */
6870         if (enable_pml) {
6871                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6872                 if (!vmx->pml_pg)
6873                         goto free_vpid;
6874         }
6875
6876         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
6877                 vmx->guest_uret_msrs[i].data = 0;
6878                 vmx->guest_uret_msrs[i].mask = -1ull;
6879         }
6880         if (boot_cpu_has(X86_FEATURE_RTM)) {
6881                 /*
6882                  * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6883                  * Keep the host value unchanged to avoid changing CPUID bits
6884                  * under the host kernel's feet.
6885                  */
6886                 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6887                 if (tsx_ctrl)
6888                         vmx->guest_uret_msrs[i].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6889         }
6890
6891         err = alloc_loaded_vmcs(&vmx->vmcs01);
6892         if (err < 0)
6893                 goto free_pml;
6894
6895         /* The MSR bitmap starts with all ones */
6896         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6897         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6898
6899         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6900 #ifdef CONFIG_X86_64
6901         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6902         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6903         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6904 #endif
6905         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6906         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6907         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6908         if (kvm_cstate_in_guest(vcpu->kvm)) {
6909                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6910                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6911                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6912                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6913         }
6914         vmx->msr_bitmap_mode = 0;
6915
6916         vmx->loaded_vmcs = &vmx->vmcs01;
6917         cpu = get_cpu();
6918         vmx_vcpu_load(vcpu, cpu);
6919         vcpu->cpu = cpu;
6920         init_vmcs(vmx);
6921         vmx_vcpu_put(vcpu);
6922         put_cpu();
6923         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6924                 err = alloc_apic_access_page(vcpu->kvm);
6925                 if (err)
6926                         goto free_vmcs;
6927         }
6928
6929         if (enable_ept && !enable_unrestricted_guest) {
6930                 err = init_rmode_identity_map(vcpu->kvm);
6931                 if (err)
6932                         goto free_vmcs;
6933         }
6934
6935         if (nested)
6936                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6937         else
6938                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6939
6940         vcpu_setup_sgx_lepubkeyhash(vcpu);
6941
6942         vmx->nested.posted_intr_nv = -1;
6943         vmx->nested.current_vmptr = -1ull;
6944
6945         vcpu->arch.microcode_version = 0x100000000ULL;
6946         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6947
6948         /*
6949          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6950          * or POSTED_INTR_WAKEUP_VECTOR.
6951          */
6952         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6953         vmx->pi_desc.sn = 1;
6954
6955 #if IS_ENABLED(CONFIG_HYPERV)
6956         vmx->hv_root_ept = INVALID_PAGE;
6957 #endif
6958         return 0;
6959
6960 free_vmcs:
6961         free_loaded_vmcs(vmx->loaded_vmcs);
6962 free_pml:
6963         vmx_destroy_pml_buffer(vmx);
6964 free_vpid:
6965         free_vpid(vmx->vpid);
6966         return err;
6967 }
6968
6969 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6970 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6971
6972 static int vmx_vm_init(struct kvm *kvm)
6973 {
6974 #if IS_ENABLED(CONFIG_HYPERV)
6975         spin_lock_init(&to_kvm_vmx(kvm)->hv_root_ept_lock);
6976 #endif
6977
6978         if (!ple_gap)
6979                 kvm->arch.pause_in_guest = true;
6980
6981         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6982                 switch (l1tf_mitigation) {
6983                 case L1TF_MITIGATION_OFF:
6984                 case L1TF_MITIGATION_FLUSH_NOWARN:
6985                         /* 'I explicitly don't care' is set */
6986                         break;
6987                 case L1TF_MITIGATION_FLUSH:
6988                 case L1TF_MITIGATION_FLUSH_NOSMT:
6989                 case L1TF_MITIGATION_FULL:
6990                         /*
6991                          * Warn upon starting the first VM in a potentially
6992                          * insecure environment.
6993                          */
6994                         if (sched_smt_active())
6995                                 pr_warn_once(L1TF_MSG_SMT);
6996                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6997                                 pr_warn_once(L1TF_MSG_L1D);
6998                         break;
6999                 case L1TF_MITIGATION_FULL_FORCE:
7000                         /* Flush is enforced */
7001                         break;
7002                 }
7003         }
7004         kvm_apicv_init(kvm, enable_apicv);
7005         return 0;
7006 }
7007
7008 static int __init vmx_check_processor_compat(void)
7009 {
7010         struct vmcs_config vmcs_conf;
7011         struct vmx_capability vmx_cap;
7012
7013         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7014             !this_cpu_has(X86_FEATURE_VMX)) {
7015                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7016                 return -EIO;
7017         }
7018
7019         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7020                 return -EIO;
7021         if (nested)
7022                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7023         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7024                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7025                                 smp_processor_id());
7026                 return -EIO;
7027         }
7028         return 0;
7029 }
7030
7031 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7032 {
7033         u8 cache;
7034         u64 ipat = 0;
7035
7036         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7037          * memory aliases with conflicting memory types and sometimes MCEs.
7038          * We have to be careful as to what are honored and when.
7039          *
7040          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7041          * UC.  The effective memory type is UC or WC depending on guest PAT.
7042          * This was historically the source of MCEs and we want to be
7043          * conservative.
7044          *
7045          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7046          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7047          * EPT memory type is set to WB.  The effective memory type is forced
7048          * WB.
7049          *
7050          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7051          * EPT memory type is used to emulate guest CD/MTRR.
7052          */
7053
7054         if (is_mmio) {
7055                 cache = MTRR_TYPE_UNCACHABLE;
7056                 goto exit;
7057         }
7058
7059         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7060                 ipat = VMX_EPT_IPAT_BIT;
7061                 cache = MTRR_TYPE_WRBACK;
7062                 goto exit;
7063         }
7064
7065         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7066                 ipat = VMX_EPT_IPAT_BIT;
7067                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7068                         cache = MTRR_TYPE_WRBACK;
7069                 else
7070                         cache = MTRR_TYPE_UNCACHABLE;
7071                 goto exit;
7072         }
7073
7074         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7075
7076 exit:
7077         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7078 }
7079
7080 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7081 {
7082         /*
7083          * These bits in the secondary execution controls field
7084          * are dynamic, the others are mostly based on the hypervisor
7085          * architecture and the guest's CPUID.  Do not touch the
7086          * dynamic bits.
7087          */
7088         u32 mask =
7089                 SECONDARY_EXEC_SHADOW_VMCS |
7090                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7091                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7092                 SECONDARY_EXEC_DESC;
7093
7094         u32 new_ctl = vmx->secondary_exec_control;
7095         u32 cur_ctl = secondary_exec_controls_get(vmx);
7096
7097         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7098 }
7099
7100 /*
7101  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7102  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7103  */
7104 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7105 {
7106         struct vcpu_vmx *vmx = to_vmx(vcpu);
7107         struct kvm_cpuid_entry2 *entry;
7108
7109         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7110         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7111
7112 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7113         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7114                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7115 } while (0)
7116
7117         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7118         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7119         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7120         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7121         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7122         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7123         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7124         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7125         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7126         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7127         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7128         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7129         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7130         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7131         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7132
7133         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7134         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7135         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7136         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7137         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7138         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7139         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7140
7141 #undef cr4_fixed1_update
7142 }
7143
7144 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7145 {
7146         struct vcpu_vmx *vmx = to_vmx(vcpu);
7147
7148         if (kvm_mpx_supported()) {
7149                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7150
7151                 if (mpx_enabled) {
7152                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7153                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7154                 } else {
7155                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7156                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7157                 }
7158         }
7159 }
7160
7161 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7162 {
7163         struct vcpu_vmx *vmx = to_vmx(vcpu);
7164         struct kvm_cpuid_entry2 *best = NULL;
7165         int i;
7166
7167         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7168                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7169                 if (!best)
7170                         return;
7171                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7172                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7173                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7174                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7175         }
7176
7177         /* Get the number of configurable Address Ranges for filtering */
7178         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7179                                                 PT_CAP_num_address_ranges);
7180
7181         /* Initialize and clear the no dependency bits */
7182         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7183                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7184
7185         /*
7186          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7187          * will inject an #GP
7188          */
7189         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7190                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7191
7192         /*
7193          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7194          * PSBFreq can be set
7195          */
7196         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7197                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7198                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7199
7200         /*
7201          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7202          * MTCFreq can be set
7203          */
7204         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7205                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7206                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7207
7208         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7209         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7210                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7211                                                         RTIT_CTL_PTW_EN);
7212
7213         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7214         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7215                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7216
7217         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7218         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7219                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7220
7221         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7222         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7223                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7224
7225         /* unmask address range configure area */
7226         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7227                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7228 }
7229
7230 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7231 {
7232         struct vcpu_vmx *vmx = to_vmx(vcpu);
7233
7234         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7235         vcpu->arch.xsaves_enabled = false;
7236
7237         if (cpu_has_secondary_exec_ctrls()) {
7238                 vmx_compute_secondary_exec_control(vmx);
7239                 vmcs_set_secondary_exec_control(vmx);
7240         }
7241
7242         if (nested_vmx_allowed(vcpu))
7243                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7244                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7245                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7246         else
7247                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7248                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7249                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7250
7251         if (nested_vmx_allowed(vcpu)) {
7252                 nested_vmx_cr_fixed1_bits_update(vcpu);
7253                 nested_vmx_entry_exit_ctls_update(vcpu);
7254         }
7255
7256         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7257                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7258                 update_intel_pt_cfg(vcpu);
7259
7260         if (boot_cpu_has(X86_FEATURE_RTM)) {
7261                 struct vmx_uret_msr *msr;
7262                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7263                 if (msr) {
7264                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7265                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7266                 }
7267         }
7268
7269         set_cr4_guest_host_mask(vmx);
7270
7271         vmx_write_encls_bitmap(vcpu, NULL);
7272         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7273                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7274         else
7275                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7276
7277         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7278                 vmx->msr_ia32_feature_control_valid_bits |=
7279                         FEAT_CTL_SGX_LC_ENABLED;
7280         else
7281                 vmx->msr_ia32_feature_control_valid_bits &=
7282                         ~FEAT_CTL_SGX_LC_ENABLED;
7283
7284         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7285         vmx_update_exception_bitmap(vcpu);
7286 }
7287
7288 static __init void vmx_set_cpu_caps(void)
7289 {
7290         kvm_set_cpu_caps();
7291
7292         /* CPUID 0x1 */
7293         if (nested)
7294                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7295
7296         /* CPUID 0x7 */
7297         if (kvm_mpx_supported())
7298                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7299         if (!cpu_has_vmx_invpcid())
7300                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7301         if (vmx_pt_mode_is_host_guest())
7302                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7303
7304         if (!enable_sgx) {
7305                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7306                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7307                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7308                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7309         }
7310
7311         if (vmx_umip_emulated())
7312                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7313
7314         /* CPUID 0xD.1 */
7315         supported_xss = 0;
7316         if (!cpu_has_vmx_xsaves())
7317                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7318
7319         /* CPUID 0x80000001 and 0x7 (RDPID) */
7320         if (!cpu_has_vmx_rdtscp()) {
7321                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7322                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7323         }
7324
7325         if (cpu_has_vmx_waitpkg())
7326                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7327 }
7328
7329 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7330 {
7331         to_vmx(vcpu)->req_immediate_exit = true;
7332 }
7333
7334 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7335                                   struct x86_instruction_info *info)
7336 {
7337         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7338         unsigned short port;
7339         bool intercept;
7340         int size;
7341
7342         if (info->intercept == x86_intercept_in ||
7343             info->intercept == x86_intercept_ins) {
7344                 port = info->src_val;
7345                 size = info->dst_bytes;
7346         } else {
7347                 port = info->dst_val;
7348                 size = info->src_bytes;
7349         }
7350
7351         /*
7352          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7353          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7354          * control.
7355          *
7356          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7357          */
7358         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7359                 intercept = nested_cpu_has(vmcs12,
7360                                            CPU_BASED_UNCOND_IO_EXITING);
7361         else
7362                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7363
7364         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7365         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7366 }
7367
7368 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7369                                struct x86_instruction_info *info,
7370                                enum x86_intercept_stage stage,
7371                                struct x86_exception *exception)
7372 {
7373         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7374
7375         switch (info->intercept) {
7376         /*
7377          * RDPID causes #UD if disabled through secondary execution controls.
7378          * Because it is marked as EmulateOnUD, we need to intercept it here.
7379          * Note, RDPID is hidden behind ENABLE_RDTSCP.
7380          */
7381         case x86_intercept_rdpid:
7382                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7383                         exception->vector = UD_VECTOR;
7384                         exception->error_code_valid = false;
7385                         return X86EMUL_PROPAGATE_FAULT;
7386                 }
7387                 break;
7388
7389         case x86_intercept_in:
7390         case x86_intercept_ins:
7391         case x86_intercept_out:
7392         case x86_intercept_outs:
7393                 return vmx_check_intercept_io(vcpu, info);
7394
7395         case x86_intercept_lgdt:
7396         case x86_intercept_lidt:
7397         case x86_intercept_lldt:
7398         case x86_intercept_ltr:
7399         case x86_intercept_sgdt:
7400         case x86_intercept_sidt:
7401         case x86_intercept_sldt:
7402         case x86_intercept_str:
7403                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7404                         return X86EMUL_CONTINUE;
7405
7406                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7407                 break;
7408
7409         /* TODO: check more intercepts... */
7410         default:
7411                 break;
7412         }
7413
7414         return X86EMUL_UNHANDLEABLE;
7415 }
7416
7417 #ifdef CONFIG_X86_64
7418 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7419 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7420                                   u64 divisor, u64 *result)
7421 {
7422         u64 low = a << shift, high = a >> (64 - shift);
7423
7424         /* To avoid the overflow on divq */
7425         if (high >= divisor)
7426                 return 1;
7427
7428         /* Low hold the result, high hold rem which is discarded */
7429         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7430             "rm" (divisor), "0" (low), "1" (high));
7431         *result = low;
7432
7433         return 0;
7434 }
7435
7436 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7437                             bool *expired)
7438 {
7439         struct vcpu_vmx *vmx;
7440         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7441         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7442
7443         vmx = to_vmx(vcpu);
7444         tscl = rdtsc();
7445         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7446         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7447         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7448                                                     ktimer->timer_advance_ns);
7449
7450         if (delta_tsc > lapic_timer_advance_cycles)
7451                 delta_tsc -= lapic_timer_advance_cycles;
7452         else
7453                 delta_tsc = 0;
7454
7455         /* Convert to host delta tsc if tsc scaling is enabled */
7456         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7457             delta_tsc && u64_shl_div_u64(delta_tsc,
7458                                 kvm_tsc_scaling_ratio_frac_bits,
7459                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7460                 return -ERANGE;
7461
7462         /*
7463          * If the delta tsc can't fit in the 32 bit after the multi shift,
7464          * we can't use the preemption timer.
7465          * It's possible that it fits on later vmentries, but checking
7466          * on every vmentry is costly so we just use an hrtimer.
7467          */
7468         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7469                 return -ERANGE;
7470
7471         vmx->hv_deadline_tsc = tscl + delta_tsc;
7472         *expired = !delta_tsc;
7473         return 0;
7474 }
7475
7476 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7477 {
7478         to_vmx(vcpu)->hv_deadline_tsc = -1;
7479 }
7480 #endif
7481
7482 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7483 {
7484         if (!kvm_pause_in_guest(vcpu->kvm))
7485                 shrink_ple_window(vcpu);
7486 }
7487
7488 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7489 {
7490         struct vcpu_vmx *vmx = to_vmx(vcpu);
7491
7492         if (is_guest_mode(vcpu)) {
7493                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7494                 return;
7495         }
7496
7497         /*
7498          * Note, cpu_dirty_logging_count can be changed concurrent with this
7499          * code, but in that case another update request will be made and so
7500          * the guest will never run with a stale PML value.
7501          */
7502         if (vcpu->kvm->arch.cpu_dirty_logging_count)
7503                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7504         else
7505                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7506 }
7507
7508 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7509 {
7510         if (pi_pre_block(vcpu))
7511                 return 1;
7512
7513         if (kvm_lapic_hv_timer_in_use(vcpu))
7514                 kvm_lapic_switch_to_sw_timer(vcpu);
7515
7516         return 0;
7517 }
7518
7519 static void vmx_post_block(struct kvm_vcpu *vcpu)
7520 {
7521         if (kvm_x86_ops.set_hv_timer)
7522                 kvm_lapic_switch_to_hv_timer(vcpu);
7523
7524         pi_post_block(vcpu);
7525 }
7526
7527 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7528 {
7529         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7530                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7531                         FEAT_CTL_LMCE_ENABLED;
7532         else
7533                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7534                         ~FEAT_CTL_LMCE_ENABLED;
7535 }
7536
7537 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7538 {
7539         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7540         if (to_vmx(vcpu)->nested.nested_run_pending)
7541                 return -EBUSY;
7542         return !is_smm(vcpu);
7543 }
7544
7545 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7546 {
7547         struct vcpu_vmx *vmx = to_vmx(vcpu);
7548
7549         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7550         if (vmx->nested.smm.guest_mode)
7551                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7552
7553         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7554         vmx->nested.vmxon = false;
7555         vmx_clear_hlt(vcpu);
7556         return 0;
7557 }
7558
7559 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7560 {
7561         struct vcpu_vmx *vmx = to_vmx(vcpu);
7562         int ret;
7563
7564         if (vmx->nested.smm.vmxon) {
7565                 vmx->nested.vmxon = true;
7566                 vmx->nested.smm.vmxon = false;
7567         }
7568
7569         if (vmx->nested.smm.guest_mode) {
7570                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7571                 if (ret)
7572                         return ret;
7573
7574                 vmx->nested.smm.guest_mode = false;
7575         }
7576         return 0;
7577 }
7578
7579 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7580 {
7581         /* RSM will cause a vmexit anyway.  */
7582 }
7583
7584 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7585 {
7586         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7587 }
7588
7589 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7590 {
7591         if (is_guest_mode(vcpu)) {
7592                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7593
7594                 if (hrtimer_try_to_cancel(timer) == 1)
7595                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7596         }
7597 }
7598
7599 static void hardware_unsetup(void)
7600 {
7601         if (nested)
7602                 nested_vmx_hardware_unsetup();
7603
7604         free_kvm_area();
7605 }
7606
7607 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7608 {
7609         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7610                           BIT(APICV_INHIBIT_REASON_HYPERV);
7611
7612         return supported & BIT(bit);
7613 }
7614
7615 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7616         .hardware_unsetup = hardware_unsetup,
7617
7618         .hardware_enable = hardware_enable,
7619         .hardware_disable = hardware_disable,
7620         .cpu_has_accelerated_tpr = report_flexpriority,
7621         .has_emulated_msr = vmx_has_emulated_msr,
7622
7623         .vm_size = sizeof(struct kvm_vmx),
7624         .vm_init = vmx_vm_init,
7625
7626         .vcpu_create = vmx_create_vcpu,
7627         .vcpu_free = vmx_free_vcpu,
7628         .vcpu_reset = vmx_vcpu_reset,
7629
7630         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7631         .vcpu_load = vmx_vcpu_load,
7632         .vcpu_put = vmx_vcpu_put,
7633
7634         .update_exception_bitmap = vmx_update_exception_bitmap,
7635         .get_msr_feature = vmx_get_msr_feature,
7636         .get_msr = vmx_get_msr,
7637         .set_msr = vmx_set_msr,
7638         .get_segment_base = vmx_get_segment_base,
7639         .get_segment = vmx_get_segment,
7640         .set_segment = vmx_set_segment,
7641         .get_cpl = vmx_get_cpl,
7642         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7643         .set_cr0 = vmx_set_cr0,
7644         .is_valid_cr4 = vmx_is_valid_cr4,
7645         .set_cr4 = vmx_set_cr4,
7646         .set_efer = vmx_set_efer,
7647         .get_idt = vmx_get_idt,
7648         .set_idt = vmx_set_idt,
7649         .get_gdt = vmx_get_gdt,
7650         .set_gdt = vmx_set_gdt,
7651         .set_dr7 = vmx_set_dr7,
7652         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7653         .cache_reg = vmx_cache_reg,
7654         .get_rflags = vmx_get_rflags,
7655         .set_rflags = vmx_set_rflags,
7656
7657         .tlb_flush_all = vmx_flush_tlb_all,
7658         .tlb_flush_current = vmx_flush_tlb_current,
7659         .tlb_flush_gva = vmx_flush_tlb_gva,
7660         .tlb_flush_guest = vmx_flush_tlb_guest,
7661
7662         .run = vmx_vcpu_run,
7663         .handle_exit = vmx_handle_exit,
7664         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7665         .update_emulated_instruction = vmx_update_emulated_instruction,
7666         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7667         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7668         .patch_hypercall = vmx_patch_hypercall,
7669         .set_irq = vmx_inject_irq,
7670         .set_nmi = vmx_inject_nmi,
7671         .queue_exception = vmx_queue_exception,
7672         .cancel_injection = vmx_cancel_injection,
7673         .interrupt_allowed = vmx_interrupt_allowed,
7674         .nmi_allowed = vmx_nmi_allowed,
7675         .get_nmi_mask = vmx_get_nmi_mask,
7676         .set_nmi_mask = vmx_set_nmi_mask,
7677         .enable_nmi_window = vmx_enable_nmi_window,
7678         .enable_irq_window = vmx_enable_irq_window,
7679         .update_cr8_intercept = vmx_update_cr8_intercept,
7680         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7681         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7682         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7683         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7684         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7685         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7686         .hwapic_irr_update = vmx_hwapic_irr_update,
7687         .hwapic_isr_update = vmx_hwapic_isr_update,
7688         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7689         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7690         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7691         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7692
7693         .set_tss_addr = vmx_set_tss_addr,
7694         .set_identity_map_addr = vmx_set_identity_map_addr,
7695         .get_mt_mask = vmx_get_mt_mask,
7696
7697         .get_exit_info = vmx_get_exit_info,
7698
7699         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7700
7701         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7702
7703         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7704
7705         .load_mmu_pgd = vmx_load_mmu_pgd,
7706
7707         .check_intercept = vmx_check_intercept,
7708         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7709
7710         .request_immediate_exit = vmx_request_immediate_exit,
7711
7712         .sched_in = vmx_sched_in,
7713
7714         .cpu_dirty_log_size = PML_ENTITY_NUM,
7715         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7716
7717         .pre_block = vmx_pre_block,
7718         .post_block = vmx_post_block,
7719
7720         .pmu_ops = &intel_pmu_ops,
7721         .nested_ops = &vmx_nested_ops,
7722
7723         .update_pi_irte = pi_update_irte,
7724         .start_assignment = vmx_pi_start_assignment,
7725
7726 #ifdef CONFIG_X86_64
7727         .set_hv_timer = vmx_set_hv_timer,
7728         .cancel_hv_timer = vmx_cancel_hv_timer,
7729 #endif
7730
7731         .setup_mce = vmx_setup_mce,
7732
7733         .smi_allowed = vmx_smi_allowed,
7734         .pre_enter_smm = vmx_pre_enter_smm,
7735         .pre_leave_smm = vmx_pre_leave_smm,
7736         .enable_smi_window = vmx_enable_smi_window,
7737
7738         .can_emulate_instruction = vmx_can_emulate_instruction,
7739         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7740         .migrate_timers = vmx_migrate_timers,
7741
7742         .msr_filter_changed = vmx_msr_filter_changed,
7743         .complete_emulated_msr = kvm_complete_insn_gp,
7744
7745         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7746 };
7747
7748 static __init void vmx_setup_user_return_msrs(void)
7749 {
7750
7751         /*
7752          * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7753          * will emulate SYSCALL in legacy mode if the vendor string in guest
7754          * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7755          * support this emulation, MSR_STAR is included in the list for i386,
7756          * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7757          * into hardware and is here purely for emulation purposes.
7758          */
7759         const u32 vmx_uret_msrs_list[] = {
7760         #ifdef CONFIG_X86_64
7761                 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7762         #endif
7763                 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7764                 MSR_IA32_TSX_CTRL,
7765         };
7766         int i;
7767
7768         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7769
7770         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7771                 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7772 }
7773
7774 static __init int hardware_setup(void)
7775 {
7776         unsigned long host_bndcfgs;
7777         struct desc_ptr dt;
7778         int r, ept_lpage_level;
7779
7780         store_idt(&dt);
7781         host_idt_base = dt.address;
7782
7783         vmx_setup_user_return_msrs();
7784
7785         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7786                 return -EIO;
7787
7788         if (boot_cpu_has(X86_FEATURE_NX))
7789                 kvm_enable_efer_bits(EFER_NX);
7790
7791         if (boot_cpu_has(X86_FEATURE_MPX)) {
7792                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7793                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7794         }
7795
7796         if (!cpu_has_vmx_mpx())
7797                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7798                                     XFEATURE_MASK_BNDCSR);
7799
7800         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7801             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7802                 enable_vpid = 0;
7803
7804         if (!cpu_has_vmx_ept() ||
7805             !cpu_has_vmx_ept_4levels() ||
7806             !cpu_has_vmx_ept_mt_wb() ||
7807             !cpu_has_vmx_invept_global())
7808                 enable_ept = 0;
7809
7810         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7811                 enable_ept_ad_bits = 0;
7812
7813         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7814                 enable_unrestricted_guest = 0;
7815
7816         if (!cpu_has_vmx_flexpriority())
7817                 flexpriority_enabled = 0;
7818
7819         if (!cpu_has_virtual_nmis())
7820                 enable_vnmi = 0;
7821
7822         /*
7823          * set_apic_access_page_addr() is used to reload apic access
7824          * page upon invalidation.  No need to do anything if not
7825          * using the APIC_ACCESS_ADDR VMCS field.
7826          */
7827         if (!flexpriority_enabled)
7828                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7829
7830         if (!cpu_has_vmx_tpr_shadow())
7831                 vmx_x86_ops.update_cr8_intercept = NULL;
7832
7833 #if IS_ENABLED(CONFIG_HYPERV)
7834         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7835             && enable_ept) {
7836                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7837                 vmx_x86_ops.tlb_remote_flush_with_range =
7838                                 hv_remote_flush_tlb_with_range;
7839         }
7840 #endif
7841
7842         if (!cpu_has_vmx_ple()) {
7843                 ple_gap = 0;
7844                 ple_window = 0;
7845                 ple_window_grow = 0;
7846                 ple_window_max = 0;
7847                 ple_window_shrink = 0;
7848         }
7849
7850         if (!cpu_has_vmx_apicv()) {
7851                 enable_apicv = 0;
7852                 vmx_x86_ops.sync_pir_to_irr = NULL;
7853         }
7854
7855         if (cpu_has_vmx_tsc_scaling()) {
7856                 kvm_has_tsc_control = true;
7857                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7858                 kvm_tsc_scaling_ratio_frac_bits = 48;
7859         }
7860
7861         kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7862
7863         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7864
7865         if (enable_ept)
7866                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7867                                       cpu_has_vmx_ept_execute_only());
7868
7869         if (!enable_ept)
7870                 ept_lpage_level = 0;
7871         else if (cpu_has_vmx_ept_1g_page())
7872                 ept_lpage_level = PG_LEVEL_1G;
7873         else if (cpu_has_vmx_ept_2m_page())
7874                 ept_lpage_level = PG_LEVEL_2M;
7875         else
7876                 ept_lpage_level = PG_LEVEL_4K;
7877         kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7878
7879         /*
7880          * Only enable PML when hardware supports PML feature, and both EPT
7881          * and EPT A/D bit features are enabled -- PML depends on them to work.
7882          */
7883         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7884                 enable_pml = 0;
7885
7886         if (!enable_pml)
7887                 vmx_x86_ops.cpu_dirty_log_size = 0;
7888
7889         if (!cpu_has_vmx_preemption_timer())
7890                 enable_preemption_timer = false;
7891
7892         if (enable_preemption_timer) {
7893                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7894                 u64 vmx_msr;
7895
7896                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7897                 cpu_preemption_timer_multi =
7898                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7899
7900                 if (tsc_khz)
7901                         use_timer_freq = (u64)tsc_khz * 1000;
7902                 use_timer_freq >>= cpu_preemption_timer_multi;
7903
7904                 /*
7905                  * KVM "disables" the preemption timer by setting it to its max
7906                  * value.  Don't use the timer if it might cause spurious exits
7907                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7908                  */
7909                 if (use_timer_freq > 0xffffffffu / 10)
7910                         enable_preemption_timer = false;
7911         }
7912
7913         if (!enable_preemption_timer) {
7914                 vmx_x86_ops.set_hv_timer = NULL;
7915                 vmx_x86_ops.cancel_hv_timer = NULL;
7916                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7917         }
7918
7919         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7920
7921         kvm_mce_cap_supported |= MCG_LMCE_P;
7922
7923         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7924                 return -EINVAL;
7925         if (!enable_ept || !cpu_has_vmx_intel_pt())
7926                 pt_mode = PT_MODE_SYSTEM;
7927
7928         setup_default_sgx_lepubkeyhash();
7929
7930         if (nested) {
7931                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7932                                            vmx_capability.ept);
7933
7934                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7935                 if (r)
7936                         return r;
7937         }
7938
7939         vmx_set_cpu_caps();
7940
7941         r = alloc_kvm_area();
7942         if (r)
7943                 nested_vmx_hardware_unsetup();
7944         return r;
7945 }
7946
7947 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7948         .cpu_has_kvm_support = cpu_has_kvm_support,
7949         .disabled_by_bios = vmx_disabled_by_bios,
7950         .check_processor_compatibility = vmx_check_processor_compat,
7951         .hardware_setup = hardware_setup,
7952
7953         .runtime_ops = &vmx_x86_ops,
7954 };
7955
7956 static void vmx_cleanup_l1d_flush(void)
7957 {
7958         if (vmx_l1d_flush_pages) {
7959                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7960                 vmx_l1d_flush_pages = NULL;
7961         }
7962         /* Restore state so sysfs ignores VMX */
7963         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7964 }
7965
7966 static void vmx_exit(void)
7967 {
7968 #ifdef CONFIG_KEXEC_CORE
7969         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7970         synchronize_rcu();
7971 #endif
7972
7973         kvm_exit();
7974
7975 #if IS_ENABLED(CONFIG_HYPERV)
7976         if (static_branch_unlikely(&enable_evmcs)) {
7977                 int cpu;
7978                 struct hv_vp_assist_page *vp_ap;
7979                 /*
7980                  * Reset everything to support using non-enlightened VMCS
7981                  * access later (e.g. when we reload the module with
7982                  * enlightened_vmcs=0)
7983                  */
7984                 for_each_online_cpu(cpu) {
7985                         vp_ap = hv_get_vp_assist_page(cpu);
7986
7987                         if (!vp_ap)
7988                                 continue;
7989
7990                         vp_ap->nested_control.features.directhypercall = 0;
7991                         vp_ap->current_nested_vmcs = 0;
7992                         vp_ap->enlighten_vmentry = 0;
7993                 }
7994
7995                 static_branch_disable(&enable_evmcs);
7996         }
7997 #endif
7998         vmx_cleanup_l1d_flush();
7999 }
8000 module_exit(vmx_exit);
8001
8002 static int __init vmx_init(void)
8003 {
8004         int r, cpu;
8005
8006 #if IS_ENABLED(CONFIG_HYPERV)
8007         /*
8008          * Enlightened VMCS usage should be recommended and the host needs
8009          * to support eVMCS v1 or above. We can also disable eVMCS support
8010          * with module parameter.
8011          */
8012         if (enlightened_vmcs &&
8013             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8014             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8015             KVM_EVMCS_VERSION) {
8016                 int cpu;
8017
8018                 /* Check that we have assist pages on all online CPUs */
8019                 for_each_online_cpu(cpu) {
8020                         if (!hv_get_vp_assist_page(cpu)) {
8021                                 enlightened_vmcs = false;
8022                                 break;
8023                         }
8024                 }
8025
8026                 if (enlightened_vmcs) {
8027                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8028                         static_branch_enable(&enable_evmcs);
8029                 }
8030
8031                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8032                         vmx_x86_ops.enable_direct_tlbflush
8033                                 = hv_enable_direct_tlbflush;
8034
8035         } else {
8036                 enlightened_vmcs = false;
8037         }
8038 #endif
8039
8040         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8041                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8042         if (r)
8043                 return r;
8044
8045         /*
8046          * Must be called after kvm_init() so enable_ept is properly set
8047          * up. Hand the parameter mitigation value in which was stored in
8048          * the pre module init parser. If no parameter was given, it will
8049          * contain 'auto' which will be turned into the default 'cond'
8050          * mitigation mode.
8051          */
8052         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8053         if (r) {
8054                 vmx_exit();
8055                 return r;
8056         }
8057
8058         for_each_possible_cpu(cpu) {
8059                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8060
8061                 pi_init_cpu(cpu);
8062         }
8063
8064 #ifdef CONFIG_KEXEC_CORE
8065         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8066                            crash_vmclear_local_loaded_vmcss);
8067 #endif
8068         vmx_check_vmcs12_offsets();
8069
8070         /*
8071          * Shadow paging doesn't have a (further) performance penalty
8072          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8073          * by default
8074          */
8075         if (!enable_ept)
8076                 allow_smaller_maxphyaddr = true;
8077
8078         return 0;
8079 }
8080 module_init(vmx_init);