Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "sgx.h"
15 #include "trace.h"
16 #include "vmx.h"
17 #include "x86.h"
18
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
21
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
24
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26
27 /*
28  * Hyper-V requires all of these, so mark them as supported even though
29  * they are just treated the same as all-context.
30  */
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
32         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
33         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
34         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
35         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
36
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
38
39 enum {
40         VMX_VMREAD_BITMAP,
41         VMX_VMWRITE_BITMAP,
42         VMX_BITMAP_NR
43 };
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
45
46 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
48
49 struct shadow_vmcs_field {
50         u16     encoding;
51         u16     offset;
52 };
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
56 };
57 static int max_shadow_read_only_fields =
58         ARRAY_SIZE(shadow_read_only_fields);
59
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
63 };
64 static int max_shadow_read_write_fields =
65         ARRAY_SIZE(shadow_read_write_fields);
66
67 static void init_vmcs_shadow_fields(void)
68 {
69         int i, j;
70
71         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
73
74         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76                 u16 field = entry.encoding;
77
78                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79                     (i + 1 == max_shadow_read_only_fields ||
80                      shadow_read_only_fields[i + 1].encoding != field + 1))
81                         pr_err("Missing field from shadow_read_only_field %x\n",
82                                field + 1);
83
84                 clear_bit(field, vmx_vmread_bitmap);
85                 if (field & 1)
86 #ifdef CONFIG_X86_64
87                         continue;
88 #else
89                         entry.offset += sizeof(u32);
90 #endif
91                 shadow_read_only_fields[j++] = entry;
92         }
93         max_shadow_read_only_fields = j;
94
95         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97                 u16 field = entry.encoding;
98
99                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100                     (i + 1 == max_shadow_read_write_fields ||
101                      shadow_read_write_fields[i + 1].encoding != field + 1))
102                         pr_err("Missing field from shadow_read_write_field %x\n",
103                                field + 1);
104
105                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106                           field <= GUEST_TR_AR_BYTES,
107                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108
109                 /*
110                  * PML and the preemption timer can be emulated, but the
111                  * processor cannot vmwrite to fields that don't exist
112                  * on bare metal.
113                  */
114                 switch (field) {
115                 case GUEST_PML_INDEX:
116                         if (!cpu_has_vmx_pml())
117                                 continue;
118                         break;
119                 case VMX_PREEMPTION_TIMER_VALUE:
120                         if (!cpu_has_vmx_preemption_timer())
121                                 continue;
122                         break;
123                 case GUEST_INTR_STATUS:
124                         if (!cpu_has_vmx_apicv())
125                                 continue;
126                         break;
127                 default:
128                         break;
129                 }
130
131                 clear_bit(field, vmx_vmwrite_bitmap);
132                 clear_bit(field, vmx_vmread_bitmap);
133                 if (field & 1)
134 #ifdef CONFIG_X86_64
135                         continue;
136 #else
137                         entry.offset += sizeof(u32);
138 #endif
139                 shadow_read_write_fields[j++] = entry;
140         }
141         max_shadow_read_write_fields = j;
142 }
143
144 /*
145  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146  * set the success or error code of an emulated VMX instruction (as specified
147  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
148  * instruction.
149  */
150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
151 {
152         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155         return kvm_skip_emulated_instruction(vcpu);
156 }
157
158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
159 {
160         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162                             X86_EFLAGS_SF | X86_EFLAGS_OF))
163                         | X86_EFLAGS_CF);
164         return kvm_skip_emulated_instruction(vcpu);
165 }
166
167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168                                 u32 vm_instruction_error)
169 {
170         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172                             X86_EFLAGS_SF | X86_EFLAGS_OF))
173                         | X86_EFLAGS_ZF);
174         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
175         /*
176          * We don't need to force sync to shadow VMCS because
177          * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
178          * fields and thus must be synced.
179          */
180         if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
181                 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
182
183         return kvm_skip_emulated_instruction(vcpu);
184 }
185
186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188         struct vcpu_vmx *vmx = to_vmx(vcpu);
189
190         /*
191          * failValid writes the error number to the current VMCS, which
192          * can't be done if there isn't a current VMCS.
193          */
194         if (vmx->nested.current_vmptr == -1ull &&
195             !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
196                 return nested_vmx_failInvalid(vcpu);
197
198         return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200
201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203         /* TODO: not to reset guest simply here. */
204         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207
208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210         return fixed_bits_valid(control, low, high);
211 }
212
213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215         return low | ((u64)high << 32);
216 }
217
218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221         vmcs_write64(VMCS_LINK_POINTER, -1ull);
222         vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224
225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227         struct vcpu_vmx *vmx = to_vmx(vcpu);
228
229         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
230                 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
231                 vmx->nested.hv_evmcs = NULL;
232         }
233
234         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
235 }
236
237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238                                      struct loaded_vmcs *prev)
239 {
240         struct vmcs_host_state *dest, *src;
241
242         if (unlikely(!vmx->guest_state_loaded))
243                 return;
244
245         src = &prev->host_state;
246         dest = &vmx->loaded_vmcs->host_state;
247
248         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249         dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251         dest->ds_sel = src->ds_sel;
252         dest->es_sel = src->es_sel;
253 #endif
254 }
255
256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258         struct vcpu_vmx *vmx = to_vmx(vcpu);
259         struct loaded_vmcs *prev;
260         int cpu;
261
262         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263                 return;
264
265         cpu = get_cpu();
266         prev = vmx->loaded_vmcs;
267         vmx->loaded_vmcs = vmcs;
268         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269         vmx_sync_vmcs_host_state(vmx, prev);
270         put_cpu();
271
272         vmx_register_cache_reset(vcpu);
273 }
274
275 /*
276  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277  * just stops using VMX.
278  */
279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281         struct vcpu_vmx *vmx = to_vmx(vcpu);
282
283         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285
286         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287                 return;
288
289         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290
291         vmx->nested.vmxon = false;
292         vmx->nested.smm.vmxon = false;
293         free_vpid(vmx->nested.vpid02);
294         vmx->nested.posted_intr_nv = -1;
295         vmx->nested.current_vmptr = -1ull;
296         if (enable_shadow_vmcs) {
297                 vmx_disable_shadow_vmcs(vmx);
298                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
299                 free_vmcs(vmx->vmcs01.shadow_vmcs);
300                 vmx->vmcs01.shadow_vmcs = NULL;
301         }
302         kfree(vmx->nested.cached_vmcs12);
303         vmx->nested.cached_vmcs12 = NULL;
304         kfree(vmx->nested.cached_shadow_vmcs12);
305         vmx->nested.cached_shadow_vmcs12 = NULL;
306         /* Unpin physical memory we referred to in the vmcs02 */
307         if (vmx->nested.apic_access_page) {
308                 kvm_release_page_clean(vmx->nested.apic_access_page);
309                 vmx->nested.apic_access_page = NULL;
310         }
311         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313         vmx->nested.pi_desc = NULL;
314
315         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316
317         nested_release_evmcs(vcpu);
318
319         free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321
322 /*
323  * Ensure that the current vmcs of the logical processor is the
324  * vmcs01 of the vcpu before calling free_nested().
325  */
326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328         vcpu_load(vcpu);
329         vmx_leave_nested(vcpu);
330         vcpu_put(vcpu);
331 }
332
333 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
334
335 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
336 {
337         return VALID_PAGE(root_hpa) &&
338                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
339 }
340
341 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
342                                        gpa_t addr)
343 {
344         uint i;
345         struct kvm_mmu_root_info *cached_root;
346
347         WARN_ON_ONCE(!mmu_is_nested(vcpu));
348
349         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
350                 cached_root = &vcpu->arch.mmu->prev_roots[i];
351
352                 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
353                                             eptp))
354                         vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
355         }
356 }
357
358 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
359                 struct x86_exception *fault)
360 {
361         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
362         struct vcpu_vmx *vmx = to_vmx(vcpu);
363         u32 vm_exit_reason;
364         unsigned long exit_qualification = vcpu->arch.exit_qualification;
365
366         if (vmx->nested.pml_full) {
367                 vm_exit_reason = EXIT_REASON_PML_FULL;
368                 vmx->nested.pml_full = false;
369                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
370         } else {
371                 if (fault->error_code & PFERR_RSVD_MASK)
372                         vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
373                 else
374                         vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
375
376                 /*
377                  * Although the caller (kvm_inject_emulated_page_fault) would
378                  * have already synced the faulting address in the shadow EPT
379                  * tables for the current EPTP12, we also need to sync it for
380                  * any other cached EPTP02s based on the same EP4TA, since the
381                  * TLB associates mappings to the EP4TA rather than the full EPTP.
382                  */
383                 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
384                                            fault->address);
385         }
386
387         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
388         vmcs12->guest_physical_address = fault->address;
389 }
390
391 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
392 {
393         kvm_init_shadow_ept_mmu(vcpu,
394                                 to_vmx(vcpu)->nested.msrs.ept_caps &
395                                 VMX_EPT_EXECUTE_ONLY_BIT,
396                                 nested_ept_ad_enabled(vcpu),
397                                 nested_ept_get_eptp(vcpu));
398 }
399
400 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
401 {
402         WARN_ON(mmu_is_nested(vcpu));
403
404         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
405         nested_ept_new_eptp(vcpu);
406         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
407         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
408         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
409
410         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
411 }
412
413 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
414 {
415         vcpu->arch.mmu = &vcpu->arch.root_mmu;
416         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
417 }
418
419 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
420                                             u16 error_code)
421 {
422         bool inequality, bit;
423
424         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
425         inequality =
426                 (error_code & vmcs12->page_fault_error_code_mask) !=
427                  vmcs12->page_fault_error_code_match;
428         return inequality ^ bit;
429 }
430
431
432 /*
433  * KVM wants to inject page-faults which it got to the guest. This function
434  * checks whether in a nested guest, we need to inject them to L1 or L2.
435  */
436 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
437 {
438         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
439         unsigned int nr = vcpu->arch.exception.nr;
440         bool has_payload = vcpu->arch.exception.has_payload;
441         unsigned long payload = vcpu->arch.exception.payload;
442
443         if (nr == PF_VECTOR) {
444                 if (vcpu->arch.exception.nested_apf) {
445                         *exit_qual = vcpu->arch.apf.nested_apf_token;
446                         return 1;
447                 }
448                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
449                                                     vcpu->arch.exception.error_code)) {
450                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
451                         return 1;
452                 }
453         } else if (vmcs12->exception_bitmap & (1u << nr)) {
454                 if (nr == DB_VECTOR) {
455                         if (!has_payload) {
456                                 payload = vcpu->arch.dr6;
457                                 payload &= ~DR6_BT;
458                                 payload ^= DR6_ACTIVE_LOW;
459                         }
460                         *exit_qual = payload;
461                 } else
462                         *exit_qual = 0;
463                 return 1;
464         }
465
466         return 0;
467 }
468
469
470 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
471                 struct x86_exception *fault)
472 {
473         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
474
475         WARN_ON(!is_guest_mode(vcpu));
476
477         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
478                 !to_vmx(vcpu)->nested.nested_run_pending) {
479                 vmcs12->vm_exit_intr_error_code = fault->error_code;
480                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
481                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
482                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
483                                   fault->address);
484         } else {
485                 kvm_inject_page_fault(vcpu, fault);
486         }
487 }
488
489 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
490                                                struct vmcs12 *vmcs12)
491 {
492         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
493                 return 0;
494
495         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
496             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
497                 return -EINVAL;
498
499         return 0;
500 }
501
502 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
503                                                 struct vmcs12 *vmcs12)
504 {
505         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
506                 return 0;
507
508         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
509                 return -EINVAL;
510
511         return 0;
512 }
513
514 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
515                                                 struct vmcs12 *vmcs12)
516 {
517         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
518                 return 0;
519
520         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
521                 return -EINVAL;
522
523         return 0;
524 }
525
526 /*
527  * Check if MSR is intercepted for L01 MSR bitmap.
528  */
529 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
530 {
531         unsigned long *msr_bitmap;
532         int f = sizeof(unsigned long);
533
534         if (!cpu_has_vmx_msr_bitmap())
535                 return true;
536
537         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
538
539         if (msr <= 0x1fff) {
540                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
541         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
542                 msr &= 0x1fff;
543                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
544         }
545
546         return true;
547 }
548
549 /*
550  * If a msr is allowed by L0, we should check whether it is allowed by L1.
551  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
552  */
553 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
554                                                unsigned long *msr_bitmap_nested,
555                                                u32 msr, int type)
556 {
557         int f = sizeof(unsigned long);
558
559         /*
560          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
561          * have the write-low and read-high bitmap offsets the wrong way round.
562          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
563          */
564         if (msr <= 0x1fff) {
565                 if (type & MSR_TYPE_R &&
566                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
567                         /* read-low */
568                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
569
570                 if (type & MSR_TYPE_W &&
571                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
572                         /* write-low */
573                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
574
575         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
576                 msr &= 0x1fff;
577                 if (type & MSR_TYPE_R &&
578                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
579                         /* read-high */
580                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
581
582                 if (type & MSR_TYPE_W &&
583                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
584                         /* write-high */
585                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
586
587         }
588 }
589
590 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
591 {
592         int msr;
593
594         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595                 unsigned word = msr / BITS_PER_LONG;
596
597                 msr_bitmap[word] = ~0;
598                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
599         }
600 }
601
602 /*
603  * Merge L0's and L1's MSR bitmap, return false to indicate that
604  * we do not use the hardware.
605  */
606 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
607                                                  struct vmcs12 *vmcs12)
608 {
609         int msr;
610         unsigned long *msr_bitmap_l1;
611         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
612         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
613
614         /* Nothing to do if the MSR bitmap is not in use.  */
615         if (!cpu_has_vmx_msr_bitmap() ||
616             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
617                 return false;
618
619         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
620                 return false;
621
622         msr_bitmap_l1 = (unsigned long *)map->hva;
623
624         /*
625          * To keep the control flow simple, pay eight 8-byte writes (sixteen
626          * 4-byte writes on 32-bit systems) up front to enable intercepts for
627          * the x2APIC MSR range and selectively disable them below.
628          */
629         enable_x2apic_msr_intercepts(msr_bitmap_l0);
630
631         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
632                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
633                         /*
634                          * L0 need not intercept reads for MSRs between 0x800
635                          * and 0x8ff, it just lets the processor take the value
636                          * from the virtual-APIC page; take those 256 bits
637                          * directly from the L1 bitmap.
638                          */
639                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
640                                 unsigned word = msr / BITS_PER_LONG;
641
642                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
643                         }
644                 }
645
646                 nested_vmx_disable_intercept_for_msr(
647                         msr_bitmap_l1, msr_bitmap_l0,
648                         X2APIC_MSR(APIC_TASKPRI),
649                         MSR_TYPE_R | MSR_TYPE_W);
650
651                 if (nested_cpu_has_vid(vmcs12)) {
652                         nested_vmx_disable_intercept_for_msr(
653                                 msr_bitmap_l1, msr_bitmap_l0,
654                                 X2APIC_MSR(APIC_EOI),
655                                 MSR_TYPE_W);
656                         nested_vmx_disable_intercept_for_msr(
657                                 msr_bitmap_l1, msr_bitmap_l0,
658                                 X2APIC_MSR(APIC_SELF_IPI),
659                                 MSR_TYPE_W);
660                 }
661         }
662
663         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
664 #ifdef CONFIG_X86_64
665         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
666                                              MSR_FS_BASE, MSR_TYPE_RW);
667
668         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
669                                              MSR_GS_BASE, MSR_TYPE_RW);
670
671         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
672                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
673 #endif
674
675         /*
676          * Checking the L0->L1 bitmap is trying to verify two things:
677          *
678          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
679          *    ensures that we do not accidentally generate an L02 MSR bitmap
680          *    from the L12 MSR bitmap that is too permissive.
681          * 2. That L1 or L2s have actually used the MSR. This avoids
682          *    unnecessarily merging of the bitmap if the MSR is unused. This
683          *    works properly because we only update the L01 MSR bitmap lazily.
684          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
685          *    updated to reflect this when L1 (or its L2s) actually write to
686          *    the MSR.
687          */
688         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
689                 nested_vmx_disable_intercept_for_msr(
690                                         msr_bitmap_l1, msr_bitmap_l0,
691                                         MSR_IA32_SPEC_CTRL,
692                                         MSR_TYPE_R | MSR_TYPE_W);
693
694         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
695                 nested_vmx_disable_intercept_for_msr(
696                                         msr_bitmap_l1, msr_bitmap_l0,
697                                         MSR_IA32_PRED_CMD,
698                                         MSR_TYPE_W);
699
700         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
701
702         return true;
703 }
704
705 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
706                                        struct vmcs12 *vmcs12)
707 {
708         struct kvm_host_map map;
709         struct vmcs12 *shadow;
710
711         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
712             vmcs12->vmcs_link_pointer == -1ull)
713                 return;
714
715         shadow = get_shadow_vmcs12(vcpu);
716
717         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
718                 return;
719
720         memcpy(shadow, map.hva, VMCS12_SIZE);
721         kvm_vcpu_unmap(vcpu, &map, false);
722 }
723
724 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
725                                               struct vmcs12 *vmcs12)
726 {
727         struct vcpu_vmx *vmx = to_vmx(vcpu);
728
729         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
730             vmcs12->vmcs_link_pointer == -1ull)
731                 return;
732
733         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
734                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
735 }
736
737 /*
738  * In nested virtualization, check if L1 has set
739  * VM_EXIT_ACK_INTR_ON_EXIT
740  */
741 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
742 {
743         return get_vmcs12(vcpu)->vm_exit_controls &
744                 VM_EXIT_ACK_INTR_ON_EXIT;
745 }
746
747 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
748                                           struct vmcs12 *vmcs12)
749 {
750         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
751             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
752                 return -EINVAL;
753         else
754                 return 0;
755 }
756
757 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
758                                            struct vmcs12 *vmcs12)
759 {
760         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
761             !nested_cpu_has_apic_reg_virt(vmcs12) &&
762             !nested_cpu_has_vid(vmcs12) &&
763             !nested_cpu_has_posted_intr(vmcs12))
764                 return 0;
765
766         /*
767          * If virtualize x2apic mode is enabled,
768          * virtualize apic access must be disabled.
769          */
770         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
771                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
772                 return -EINVAL;
773
774         /*
775          * If virtual interrupt delivery is enabled,
776          * we must exit on external interrupts.
777          */
778         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
779                 return -EINVAL;
780
781         /*
782          * bits 15:8 should be zero in posted_intr_nv,
783          * the descriptor address has been already checked
784          * in nested_get_vmcs12_pages.
785          *
786          * bits 5:0 of posted_intr_desc_addr should be zero.
787          */
788         if (nested_cpu_has_posted_intr(vmcs12) &&
789            (CC(!nested_cpu_has_vid(vmcs12)) ||
790             CC(!nested_exit_intr_ack_set(vcpu)) ||
791             CC((vmcs12->posted_intr_nv & 0xff00)) ||
792             CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
793                 return -EINVAL;
794
795         /* tpr shadow is needed by all apicv features. */
796         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
797                 return -EINVAL;
798
799         return 0;
800 }
801
802 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
803                                        u32 count, u64 addr)
804 {
805         if (count == 0)
806                 return 0;
807
808         if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
809             !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
810                 return -EINVAL;
811
812         return 0;
813 }
814
815 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
816                                                      struct vmcs12 *vmcs12)
817 {
818         if (CC(nested_vmx_check_msr_switch(vcpu,
819                                            vmcs12->vm_exit_msr_load_count,
820                                            vmcs12->vm_exit_msr_load_addr)) ||
821             CC(nested_vmx_check_msr_switch(vcpu,
822                                            vmcs12->vm_exit_msr_store_count,
823                                            vmcs12->vm_exit_msr_store_addr)))
824                 return -EINVAL;
825
826         return 0;
827 }
828
829 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
830                                                       struct vmcs12 *vmcs12)
831 {
832         if (CC(nested_vmx_check_msr_switch(vcpu,
833                                            vmcs12->vm_entry_msr_load_count,
834                                            vmcs12->vm_entry_msr_load_addr)))
835                 return -EINVAL;
836
837         return 0;
838 }
839
840 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
841                                          struct vmcs12 *vmcs12)
842 {
843         if (!nested_cpu_has_pml(vmcs12))
844                 return 0;
845
846         if (CC(!nested_cpu_has_ept(vmcs12)) ||
847             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
848                 return -EINVAL;
849
850         return 0;
851 }
852
853 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
854                                                         struct vmcs12 *vmcs12)
855 {
856         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
857                !nested_cpu_has_ept(vmcs12)))
858                 return -EINVAL;
859         return 0;
860 }
861
862 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
863                                                          struct vmcs12 *vmcs12)
864 {
865         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
866                !nested_cpu_has_ept(vmcs12)))
867                 return -EINVAL;
868         return 0;
869 }
870
871 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
872                                                  struct vmcs12 *vmcs12)
873 {
874         if (!nested_cpu_has_shadow_vmcs(vmcs12))
875                 return 0;
876
877         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
878             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
879                 return -EINVAL;
880
881         return 0;
882 }
883
884 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
885                                        struct vmx_msr_entry *e)
886 {
887         /* x2APIC MSR accesses are not allowed */
888         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
889                 return -EINVAL;
890         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
891             CC(e->index == MSR_IA32_UCODE_REV))
892                 return -EINVAL;
893         if (CC(e->reserved != 0))
894                 return -EINVAL;
895         return 0;
896 }
897
898 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
899                                      struct vmx_msr_entry *e)
900 {
901         if (CC(e->index == MSR_FS_BASE) ||
902             CC(e->index == MSR_GS_BASE) ||
903             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
904             nested_vmx_msr_check_common(vcpu, e))
905                 return -EINVAL;
906         return 0;
907 }
908
909 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
910                                       struct vmx_msr_entry *e)
911 {
912         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
913             nested_vmx_msr_check_common(vcpu, e))
914                 return -EINVAL;
915         return 0;
916 }
917
918 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
919 {
920         struct vcpu_vmx *vmx = to_vmx(vcpu);
921         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
922                                        vmx->nested.msrs.misc_high);
923
924         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
925 }
926
927 /*
928  * Load guest's/host's msr at nested entry/exit.
929  * return 0 for success, entry index for failure.
930  *
931  * One of the failure modes for MSR load/store is when a list exceeds the
932  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
933  * as possible, process all valid entries before failing rather than precheck
934  * for a capacity violation.
935  */
936 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
937 {
938         u32 i;
939         struct vmx_msr_entry e;
940         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
941
942         for (i = 0; i < count; i++) {
943                 if (unlikely(i >= max_msr_list_size))
944                         goto fail;
945
946                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
947                                         &e, sizeof(e))) {
948                         pr_debug_ratelimited(
949                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
950                                 __func__, i, gpa + i * sizeof(e));
951                         goto fail;
952                 }
953                 if (nested_vmx_load_msr_check(vcpu, &e)) {
954                         pr_debug_ratelimited(
955                                 "%s check failed (%u, 0x%x, 0x%x)\n",
956                                 __func__, i, e.index, e.reserved);
957                         goto fail;
958                 }
959                 if (kvm_set_msr(vcpu, e.index, e.value)) {
960                         pr_debug_ratelimited(
961                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
962                                 __func__, i, e.index, e.value);
963                         goto fail;
964                 }
965         }
966         return 0;
967 fail:
968         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
969         return i + 1;
970 }
971
972 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
973                                             u32 msr_index,
974                                             u64 *data)
975 {
976         struct vcpu_vmx *vmx = to_vmx(vcpu);
977
978         /*
979          * If the L0 hypervisor stored a more accurate value for the TSC that
980          * does not include the time taken for emulation of the L2->L1
981          * VM-exit in L0, use the more accurate value.
982          */
983         if (msr_index == MSR_IA32_TSC) {
984                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
985                                                     MSR_IA32_TSC);
986
987                 if (i >= 0) {
988                         u64 val = vmx->msr_autostore.guest.val[i].value;
989
990                         *data = kvm_read_l1_tsc(vcpu, val);
991                         return true;
992                 }
993         }
994
995         if (kvm_get_msr(vcpu, msr_index, data)) {
996                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
997                         msr_index);
998                 return false;
999         }
1000         return true;
1001 }
1002
1003 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1004                                      struct vmx_msr_entry *e)
1005 {
1006         if (kvm_vcpu_read_guest(vcpu,
1007                                 gpa + i * sizeof(*e),
1008                                 e, 2 * sizeof(u32))) {
1009                 pr_debug_ratelimited(
1010                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
1011                         __func__, i, gpa + i * sizeof(*e));
1012                 return false;
1013         }
1014         if (nested_vmx_store_msr_check(vcpu, e)) {
1015                 pr_debug_ratelimited(
1016                         "%s check failed (%u, 0x%x, 0x%x)\n",
1017                         __func__, i, e->index, e->reserved);
1018                 return false;
1019         }
1020         return true;
1021 }
1022
1023 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1024 {
1025         u64 data;
1026         u32 i;
1027         struct vmx_msr_entry e;
1028         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1029
1030         for (i = 0; i < count; i++) {
1031                 if (unlikely(i >= max_msr_list_size))
1032                         return -EINVAL;
1033
1034                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1035                         return -EINVAL;
1036
1037                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1038                         return -EINVAL;
1039
1040                 if (kvm_vcpu_write_guest(vcpu,
1041                                          gpa + i * sizeof(e) +
1042                                              offsetof(struct vmx_msr_entry, value),
1043                                          &data, sizeof(data))) {
1044                         pr_debug_ratelimited(
1045                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1046                                 __func__, i, e.index, data);
1047                         return -EINVAL;
1048                 }
1049         }
1050         return 0;
1051 }
1052
1053 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1054 {
1055         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1056         u32 count = vmcs12->vm_exit_msr_store_count;
1057         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1058         struct vmx_msr_entry e;
1059         u32 i;
1060
1061         for (i = 0; i < count; i++) {
1062                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1063                         return false;
1064
1065                 if (e.index == msr_index)
1066                         return true;
1067         }
1068         return false;
1069 }
1070
1071 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1072                                            u32 msr_index)
1073 {
1074         struct vcpu_vmx *vmx = to_vmx(vcpu);
1075         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1076         bool in_vmcs12_store_list;
1077         int msr_autostore_slot;
1078         bool in_autostore_list;
1079         int last;
1080
1081         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1082         in_autostore_list = msr_autostore_slot >= 0;
1083         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1084
1085         if (in_vmcs12_store_list && !in_autostore_list) {
1086                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1087                         /*
1088                          * Emulated VMEntry does not fail here.  Instead a less
1089                          * accurate value will be returned by
1090                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1091                          * instead of reading the value from the vmcs02 VMExit
1092                          * MSR-store area.
1093                          */
1094                         pr_warn_ratelimited(
1095                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1096                                 msr_index);
1097                         return;
1098                 }
1099                 last = autostore->nr++;
1100                 autostore->val[last].index = msr_index;
1101         } else if (!in_vmcs12_store_list && in_autostore_list) {
1102                 last = --autostore->nr;
1103                 autostore->val[msr_autostore_slot] = autostore->val[last];
1104         }
1105 }
1106
1107 /*
1108  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1109  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1110  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1111  * @entry_failure_code.
1112  */
1113 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1114                                bool nested_ept, bool reload_pdptrs,
1115                                enum vm_entry_failure_code *entry_failure_code)
1116 {
1117         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1118                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1119                 return -EINVAL;
1120         }
1121
1122         /*
1123          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1124          * must not be dereferenced.
1125          */
1126         if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1127             CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1128                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1129                 return -EINVAL;
1130         }
1131
1132         if (!nested_ept)
1133                 kvm_mmu_new_pgd(vcpu, cr3);
1134
1135         vcpu->arch.cr3 = cr3;
1136         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1137
1138         /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1139         kvm_init_mmu(vcpu);
1140
1141         return 0;
1142 }
1143
1144 /*
1145  * Returns if KVM is able to config CPU to tag TLB entries
1146  * populated by L2 differently than TLB entries populated
1147  * by L1.
1148  *
1149  * If L0 uses EPT, L1 and L2 run with different EPTP because
1150  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1151  * are tagged with different EPTP.
1152  *
1153  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1154  * with different VPID (L1 entries are tagged with vmx->vpid
1155  * while L2 entries are tagged with vmx->nested.vpid02).
1156  */
1157 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1158 {
1159         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1160
1161         return enable_ept ||
1162                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1163 }
1164
1165 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1166                                             struct vmcs12 *vmcs12,
1167                                             bool is_vmenter)
1168 {
1169         struct vcpu_vmx *vmx = to_vmx(vcpu);
1170
1171         /*
1172          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1173          * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1174          * full TLB flush from the guest's perspective.  This is required even
1175          * if VPID is disabled in the host as KVM may need to synchronize the
1176          * MMU in response to the guest TLB flush.
1177          *
1178          * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1179          * EPT is a special snowflake, as guest-physical mappings aren't
1180          * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1181          * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1182          * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1183          * those mappings.
1184          */
1185         if (!nested_cpu_has_vpid(vmcs12)) {
1186                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1187                 return;
1188         }
1189
1190         /* L2 should never have a VPID if VPID is disabled. */
1191         WARN_ON(!enable_vpid);
1192
1193         /*
1194          * If VPID is enabled and used by vmc12, but L2 does not have a unique
1195          * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1196          * a VPID for L2, flush the current context as the effective ASID is
1197          * common to both L1 and L2.
1198          *
1199          * Defer the flush so that it runs after vmcs02.EPTP has been set by
1200          * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1201          * redundant flushes further down the nested pipeline.
1202          *
1203          * If a TLB flush isn't required due to any of the above, and vpid12 is
1204          * changing then the new "virtual" VPID (vpid12) will reuse the same
1205          * "real" VPID (vpid02), and so needs to be flushed.  There's no direct
1206          * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1207          * all nested vCPUs.  Remember, a flush on VM-Enter does not invalidate
1208          * guest-physical mappings, so there is no need to sync the nEPT MMU.
1209          */
1210         if (!nested_has_guest_tlb_tag(vcpu)) {
1211                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1212         } else if (is_vmenter &&
1213                    vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1214                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1215                 vpid_sync_context(nested_get_vpid02(vcpu));
1216         }
1217 }
1218
1219 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1220 {
1221         superset &= mask;
1222         subset &= mask;
1223
1224         return (superset | subset) == superset;
1225 }
1226
1227 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1228 {
1229         const u64 feature_and_reserved =
1230                 /* feature (except bit 48; see below) */
1231                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1232                 /* reserved */
1233                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1234         u64 vmx_basic = vmx->nested.msrs.basic;
1235
1236         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1237                 return -EINVAL;
1238
1239         /*
1240          * KVM does not emulate a version of VMX that constrains physical
1241          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1242          */
1243         if (data & BIT_ULL(48))
1244                 return -EINVAL;
1245
1246         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1247             vmx_basic_vmcs_revision_id(data))
1248                 return -EINVAL;
1249
1250         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1251                 return -EINVAL;
1252
1253         vmx->nested.msrs.basic = data;
1254         return 0;
1255 }
1256
1257 static int
1258 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1259 {
1260         u64 supported;
1261         u32 *lowp, *highp;
1262
1263         switch (msr_index) {
1264         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1265                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1266                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1267                 break;
1268         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1269                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1270                 highp = &vmx->nested.msrs.procbased_ctls_high;
1271                 break;
1272         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1273                 lowp = &vmx->nested.msrs.exit_ctls_low;
1274                 highp = &vmx->nested.msrs.exit_ctls_high;
1275                 break;
1276         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1277                 lowp = &vmx->nested.msrs.entry_ctls_low;
1278                 highp = &vmx->nested.msrs.entry_ctls_high;
1279                 break;
1280         case MSR_IA32_VMX_PROCBASED_CTLS2:
1281                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1282                 highp = &vmx->nested.msrs.secondary_ctls_high;
1283                 break;
1284         default:
1285                 BUG();
1286         }
1287
1288         supported = vmx_control_msr(*lowp, *highp);
1289
1290         /* Check must-be-1 bits are still 1. */
1291         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1292                 return -EINVAL;
1293
1294         /* Check must-be-0 bits are still 0. */
1295         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1296                 return -EINVAL;
1297
1298         *lowp = data;
1299         *highp = data >> 32;
1300         return 0;
1301 }
1302
1303 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1304 {
1305         const u64 feature_and_reserved_bits =
1306                 /* feature */
1307                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1308                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1309                 /* reserved */
1310                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1311         u64 vmx_misc;
1312
1313         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1314                                    vmx->nested.msrs.misc_high);
1315
1316         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1317                 return -EINVAL;
1318
1319         if ((vmx->nested.msrs.pinbased_ctls_high &
1320              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1321             vmx_misc_preemption_timer_rate(data) !=
1322             vmx_misc_preemption_timer_rate(vmx_misc))
1323                 return -EINVAL;
1324
1325         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1326                 return -EINVAL;
1327
1328         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1329                 return -EINVAL;
1330
1331         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1332                 return -EINVAL;
1333
1334         vmx->nested.msrs.misc_low = data;
1335         vmx->nested.msrs.misc_high = data >> 32;
1336
1337         return 0;
1338 }
1339
1340 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1341 {
1342         u64 vmx_ept_vpid_cap;
1343
1344         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1345                                            vmx->nested.msrs.vpid_caps);
1346
1347         /* Every bit is either reserved or a feature bit. */
1348         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1349                 return -EINVAL;
1350
1351         vmx->nested.msrs.ept_caps = data;
1352         vmx->nested.msrs.vpid_caps = data >> 32;
1353         return 0;
1354 }
1355
1356 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1357 {
1358         u64 *msr;
1359
1360         switch (msr_index) {
1361         case MSR_IA32_VMX_CR0_FIXED0:
1362                 msr = &vmx->nested.msrs.cr0_fixed0;
1363                 break;
1364         case MSR_IA32_VMX_CR4_FIXED0:
1365                 msr = &vmx->nested.msrs.cr4_fixed0;
1366                 break;
1367         default:
1368                 BUG();
1369         }
1370
1371         /*
1372          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1373          * must be 1 in the restored value.
1374          */
1375         if (!is_bitwise_subset(data, *msr, -1ULL))
1376                 return -EINVAL;
1377
1378         *msr = data;
1379         return 0;
1380 }
1381
1382 /*
1383  * Called when userspace is restoring VMX MSRs.
1384  *
1385  * Returns 0 on success, non-0 otherwise.
1386  */
1387 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1388 {
1389         struct vcpu_vmx *vmx = to_vmx(vcpu);
1390
1391         /*
1392          * Don't allow changes to the VMX capability MSRs while the vCPU
1393          * is in VMX operation.
1394          */
1395         if (vmx->nested.vmxon)
1396                 return -EBUSY;
1397
1398         switch (msr_index) {
1399         case MSR_IA32_VMX_BASIC:
1400                 return vmx_restore_vmx_basic(vmx, data);
1401         case MSR_IA32_VMX_PINBASED_CTLS:
1402         case MSR_IA32_VMX_PROCBASED_CTLS:
1403         case MSR_IA32_VMX_EXIT_CTLS:
1404         case MSR_IA32_VMX_ENTRY_CTLS:
1405                 /*
1406                  * The "non-true" VMX capability MSRs are generated from the
1407                  * "true" MSRs, so we do not support restoring them directly.
1408                  *
1409                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1410                  * should restore the "true" MSRs with the must-be-1 bits
1411                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1412                  * DEFAULT SETTINGS".
1413                  */
1414                 return -EINVAL;
1415         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1416         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1417         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1418         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1419         case MSR_IA32_VMX_PROCBASED_CTLS2:
1420                 return vmx_restore_control_msr(vmx, msr_index, data);
1421         case MSR_IA32_VMX_MISC:
1422                 return vmx_restore_vmx_misc(vmx, data);
1423         case MSR_IA32_VMX_CR0_FIXED0:
1424         case MSR_IA32_VMX_CR4_FIXED0:
1425                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1426         case MSR_IA32_VMX_CR0_FIXED1:
1427         case MSR_IA32_VMX_CR4_FIXED1:
1428                 /*
1429                  * These MSRs are generated based on the vCPU's CPUID, so we
1430                  * do not support restoring them directly.
1431                  */
1432                 return -EINVAL;
1433         case MSR_IA32_VMX_EPT_VPID_CAP:
1434                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1435         case MSR_IA32_VMX_VMCS_ENUM:
1436                 vmx->nested.msrs.vmcs_enum = data;
1437                 return 0;
1438         case MSR_IA32_VMX_VMFUNC:
1439                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1440                         return -EINVAL;
1441                 vmx->nested.msrs.vmfunc_controls = data;
1442                 return 0;
1443         default:
1444                 /*
1445                  * The rest of the VMX capability MSRs do not support restore.
1446                  */
1447                 return -EINVAL;
1448         }
1449 }
1450
1451 /* Returns 0 on success, non-0 otherwise. */
1452 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1453 {
1454         switch (msr_index) {
1455         case MSR_IA32_VMX_BASIC:
1456                 *pdata = msrs->basic;
1457                 break;
1458         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1459         case MSR_IA32_VMX_PINBASED_CTLS:
1460                 *pdata = vmx_control_msr(
1461                         msrs->pinbased_ctls_low,
1462                         msrs->pinbased_ctls_high);
1463                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1464                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1465                 break;
1466         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1467         case MSR_IA32_VMX_PROCBASED_CTLS:
1468                 *pdata = vmx_control_msr(
1469                         msrs->procbased_ctls_low,
1470                         msrs->procbased_ctls_high);
1471                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1472                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1473                 break;
1474         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1475         case MSR_IA32_VMX_EXIT_CTLS:
1476                 *pdata = vmx_control_msr(
1477                         msrs->exit_ctls_low,
1478                         msrs->exit_ctls_high);
1479                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1480                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1481                 break;
1482         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1483         case MSR_IA32_VMX_ENTRY_CTLS:
1484                 *pdata = vmx_control_msr(
1485                         msrs->entry_ctls_low,
1486                         msrs->entry_ctls_high);
1487                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1488                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1489                 break;
1490         case MSR_IA32_VMX_MISC:
1491                 *pdata = vmx_control_msr(
1492                         msrs->misc_low,
1493                         msrs->misc_high);
1494                 break;
1495         case MSR_IA32_VMX_CR0_FIXED0:
1496                 *pdata = msrs->cr0_fixed0;
1497                 break;
1498         case MSR_IA32_VMX_CR0_FIXED1:
1499                 *pdata = msrs->cr0_fixed1;
1500                 break;
1501         case MSR_IA32_VMX_CR4_FIXED0:
1502                 *pdata = msrs->cr4_fixed0;
1503                 break;
1504         case MSR_IA32_VMX_CR4_FIXED1:
1505                 *pdata = msrs->cr4_fixed1;
1506                 break;
1507         case MSR_IA32_VMX_VMCS_ENUM:
1508                 *pdata = msrs->vmcs_enum;
1509                 break;
1510         case MSR_IA32_VMX_PROCBASED_CTLS2:
1511                 *pdata = vmx_control_msr(
1512                         msrs->secondary_ctls_low,
1513                         msrs->secondary_ctls_high);
1514                 break;
1515         case MSR_IA32_VMX_EPT_VPID_CAP:
1516                 *pdata = msrs->ept_caps |
1517                         ((u64)msrs->vpid_caps << 32);
1518                 break;
1519         case MSR_IA32_VMX_VMFUNC:
1520                 *pdata = msrs->vmfunc_controls;
1521                 break;
1522         default:
1523                 return 1;
1524         }
1525
1526         return 0;
1527 }
1528
1529 /*
1530  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1531  * been modified by the L1 guest.  Note, "writable" in this context means
1532  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1533  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1534  * VM-exit information fields (which are actually writable if the vCPU is
1535  * configured to support "VMWRITE to any supported field in the VMCS").
1536  */
1537 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1538 {
1539         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1540         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1541         struct shadow_vmcs_field field;
1542         unsigned long val;
1543         int i;
1544
1545         if (WARN_ON(!shadow_vmcs))
1546                 return;
1547
1548         preempt_disable();
1549
1550         vmcs_load(shadow_vmcs);
1551
1552         for (i = 0; i < max_shadow_read_write_fields; i++) {
1553                 field = shadow_read_write_fields[i];
1554                 val = __vmcs_readl(field.encoding);
1555                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1556         }
1557
1558         vmcs_clear(shadow_vmcs);
1559         vmcs_load(vmx->loaded_vmcs->vmcs);
1560
1561         preempt_enable();
1562 }
1563
1564 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1565 {
1566         const struct shadow_vmcs_field *fields[] = {
1567                 shadow_read_write_fields,
1568                 shadow_read_only_fields
1569         };
1570         const int max_fields[] = {
1571                 max_shadow_read_write_fields,
1572                 max_shadow_read_only_fields
1573         };
1574         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1575         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1576         struct shadow_vmcs_field field;
1577         unsigned long val;
1578         int i, q;
1579
1580         if (WARN_ON(!shadow_vmcs))
1581                 return;
1582
1583         vmcs_load(shadow_vmcs);
1584
1585         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1586                 for (i = 0; i < max_fields[q]; i++) {
1587                         field = fields[q][i];
1588                         val = vmcs12_read_any(vmcs12, field.encoding,
1589                                               field.offset);
1590                         __vmcs_writel(field.encoding, val);
1591                 }
1592         }
1593
1594         vmcs_clear(shadow_vmcs);
1595         vmcs_load(vmx->loaded_vmcs->vmcs);
1596 }
1597
1598 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1599 {
1600         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1601         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1602
1603         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1604         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1605         vmcs12->guest_rip = evmcs->guest_rip;
1606
1607         if (unlikely(!(hv_clean_fields &
1608                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1609                 vmcs12->guest_rsp = evmcs->guest_rsp;
1610                 vmcs12->guest_rflags = evmcs->guest_rflags;
1611                 vmcs12->guest_interruptibility_info =
1612                         evmcs->guest_interruptibility_info;
1613         }
1614
1615         if (unlikely(!(hv_clean_fields &
1616                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1617                 vmcs12->cpu_based_vm_exec_control =
1618                         evmcs->cpu_based_vm_exec_control;
1619         }
1620
1621         if (unlikely(!(hv_clean_fields &
1622                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1623                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1624         }
1625
1626         if (unlikely(!(hv_clean_fields &
1627                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1628                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1629         }
1630
1631         if (unlikely(!(hv_clean_fields &
1632                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1633                 vmcs12->vm_entry_intr_info_field =
1634                         evmcs->vm_entry_intr_info_field;
1635                 vmcs12->vm_entry_exception_error_code =
1636                         evmcs->vm_entry_exception_error_code;
1637                 vmcs12->vm_entry_instruction_len =
1638                         evmcs->vm_entry_instruction_len;
1639         }
1640
1641         if (unlikely(!(hv_clean_fields &
1642                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1643                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1644                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1645                 vmcs12->host_cr0 = evmcs->host_cr0;
1646                 vmcs12->host_cr3 = evmcs->host_cr3;
1647                 vmcs12->host_cr4 = evmcs->host_cr4;
1648                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1649                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1650                 vmcs12->host_rip = evmcs->host_rip;
1651                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1652                 vmcs12->host_es_selector = evmcs->host_es_selector;
1653                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1654                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1655                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1656                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1657                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1658                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1659         }
1660
1661         if (unlikely(!(hv_clean_fields &
1662                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1663                 vmcs12->pin_based_vm_exec_control =
1664                         evmcs->pin_based_vm_exec_control;
1665                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1666                 vmcs12->secondary_vm_exec_control =
1667                         evmcs->secondary_vm_exec_control;
1668         }
1669
1670         if (unlikely(!(hv_clean_fields &
1671                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1672                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1673                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1674         }
1675
1676         if (unlikely(!(hv_clean_fields &
1677                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1678                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1679         }
1680
1681         if (unlikely(!(hv_clean_fields &
1682                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1683                 vmcs12->guest_es_base = evmcs->guest_es_base;
1684                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1685                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1686                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1687                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1688                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1689                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1690                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1691                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1692                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1693                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1694                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1695                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1696                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1697                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1698                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1699                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1700                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1701                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1702                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1703                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1704                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1705                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1706                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1707                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1708                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1709                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1710                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1711                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1712                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1713                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1714                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1715                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1716                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1717                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1718                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1719         }
1720
1721         if (unlikely(!(hv_clean_fields &
1722                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1723                 vmcs12->tsc_offset = evmcs->tsc_offset;
1724                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1725                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1726         }
1727
1728         if (unlikely(!(hv_clean_fields &
1729                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1730                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1731                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1732                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1733                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1734                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1735                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1736                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1737                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1738         }
1739
1740         if (unlikely(!(hv_clean_fields &
1741                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1742                 vmcs12->host_fs_base = evmcs->host_fs_base;
1743                 vmcs12->host_gs_base = evmcs->host_gs_base;
1744                 vmcs12->host_tr_base = evmcs->host_tr_base;
1745                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1746                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1747                 vmcs12->host_rsp = evmcs->host_rsp;
1748         }
1749
1750         if (unlikely(!(hv_clean_fields &
1751                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1752                 vmcs12->ept_pointer = evmcs->ept_pointer;
1753                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1754         }
1755
1756         if (unlikely(!(hv_clean_fields &
1757                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1758                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1759                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1760                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1761                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1762                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1763                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1764                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1765                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1766                 vmcs12->guest_pending_dbg_exceptions =
1767                         evmcs->guest_pending_dbg_exceptions;
1768                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1769                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1770                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1771                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1772                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1773         }
1774
1775         /*
1776          * Not used?
1777          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1778          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1779          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1780          * vmcs12->page_fault_error_code_mask =
1781          *              evmcs->page_fault_error_code_mask;
1782          * vmcs12->page_fault_error_code_match =
1783          *              evmcs->page_fault_error_code_match;
1784          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1785          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1786          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1787          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1788          */
1789
1790         /*
1791          * Read only fields:
1792          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1793          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1794          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1795          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1796          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1797          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1798          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1799          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1800          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1801          * vmcs12->exit_qualification = evmcs->exit_qualification;
1802          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1803          *
1804          * Not present in struct vmcs12:
1805          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1806          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1807          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1808          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1809          */
1810
1811         return;
1812 }
1813
1814 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1815 {
1816         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1817         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1818
1819         /*
1820          * Should not be changed by KVM:
1821          *
1822          * evmcs->host_es_selector = vmcs12->host_es_selector;
1823          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1824          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1825          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1826          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1827          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1828          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1829          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1830          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1831          * evmcs->host_cr0 = vmcs12->host_cr0;
1832          * evmcs->host_cr3 = vmcs12->host_cr3;
1833          * evmcs->host_cr4 = vmcs12->host_cr4;
1834          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1835          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1836          * evmcs->host_rip = vmcs12->host_rip;
1837          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1838          * evmcs->host_fs_base = vmcs12->host_fs_base;
1839          * evmcs->host_gs_base = vmcs12->host_gs_base;
1840          * evmcs->host_tr_base = vmcs12->host_tr_base;
1841          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1842          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1843          * evmcs->host_rsp = vmcs12->host_rsp;
1844          * sync_vmcs02_to_vmcs12() doesn't read these:
1845          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1846          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1847          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1848          * evmcs->ept_pointer = vmcs12->ept_pointer;
1849          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1850          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1851          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1852          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1853          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1854          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1855          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1856          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1857          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1858          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1859          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1860          * evmcs->page_fault_error_code_mask =
1861          *              vmcs12->page_fault_error_code_mask;
1862          * evmcs->page_fault_error_code_match =
1863          *              vmcs12->page_fault_error_code_match;
1864          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1865          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1866          * evmcs->tsc_offset = vmcs12->tsc_offset;
1867          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1868          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1869          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1870          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1871          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1872          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1873          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1874          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1875          *
1876          * Not present in struct vmcs12:
1877          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1878          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1879          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1880          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1881          */
1882
1883         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1884         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1885         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1886         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1887         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1888         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1889         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1890         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1891
1892         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1893         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1894         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1895         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1896         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1897         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1898         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1899         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1900         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1901         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1902
1903         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1904         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1905         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1906         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1907         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1908         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1909         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1910         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1911
1912         evmcs->guest_es_base = vmcs12->guest_es_base;
1913         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1914         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1915         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1916         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1917         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1918         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1919         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1920         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1921         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1922
1923         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1924         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1925
1926         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1927         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1928         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1929         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1930
1931         evmcs->guest_pending_dbg_exceptions =
1932                 vmcs12->guest_pending_dbg_exceptions;
1933         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1934         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1935
1936         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1937         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1938
1939         evmcs->guest_cr0 = vmcs12->guest_cr0;
1940         evmcs->guest_cr3 = vmcs12->guest_cr3;
1941         evmcs->guest_cr4 = vmcs12->guest_cr4;
1942         evmcs->guest_dr7 = vmcs12->guest_dr7;
1943
1944         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1945
1946         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1947         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1948         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1949         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1950         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1951         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1952         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1953         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1954
1955         evmcs->exit_qualification = vmcs12->exit_qualification;
1956
1957         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1958         evmcs->guest_rsp = vmcs12->guest_rsp;
1959         evmcs->guest_rflags = vmcs12->guest_rflags;
1960
1961         evmcs->guest_interruptibility_info =
1962                 vmcs12->guest_interruptibility_info;
1963         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1964         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1965         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1966         evmcs->vm_entry_exception_error_code =
1967                 vmcs12->vm_entry_exception_error_code;
1968         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1969
1970         evmcs->guest_rip = vmcs12->guest_rip;
1971
1972         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1973
1974         return;
1975 }
1976
1977 /*
1978  * This is an equivalent of the nested hypervisor executing the vmptrld
1979  * instruction.
1980  */
1981 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1982         struct kvm_vcpu *vcpu, bool from_launch)
1983 {
1984         struct vcpu_vmx *vmx = to_vmx(vcpu);
1985         bool evmcs_gpa_changed = false;
1986         u64 evmcs_gpa;
1987
1988         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1989                 return EVMPTRLD_DISABLED;
1990
1991         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1992                 nested_release_evmcs(vcpu);
1993                 return EVMPTRLD_DISABLED;
1994         }
1995
1996         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1997                 vmx->nested.current_vmptr = -1ull;
1998
1999                 nested_release_evmcs(vcpu);
2000
2001                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2002                                  &vmx->nested.hv_evmcs_map))
2003                         return EVMPTRLD_ERROR;
2004
2005                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2006
2007                 /*
2008                  * Currently, KVM only supports eVMCS version 1
2009                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2010                  * value to first u32 field of eVMCS which should specify eVMCS
2011                  * VersionNumber.
2012                  *
2013                  * Guest should be aware of supported eVMCS versions by host by
2014                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2015                  * expected to set this CPUID leaf according to the value
2016                  * returned in vmcs_version from nested_enable_evmcs().
2017                  *
2018                  * However, it turns out that Microsoft Hyper-V fails to comply
2019                  * to their own invented interface: When Hyper-V use eVMCS, it
2020                  * just sets first u32 field of eVMCS to revision_id specified
2021                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2022                  * which is one of the supported versions specified in
2023                  * CPUID.0x4000000A.EAX[0:15].
2024                  *
2025                  * To overcome Hyper-V bug, we accept here either a supported
2026                  * eVMCS version or VMCS12 revision_id as valid values for first
2027                  * u32 field of eVMCS.
2028                  */
2029                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2030                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2031                         nested_release_evmcs(vcpu);
2032                         return EVMPTRLD_VMFAIL;
2033                 }
2034
2035                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2036
2037                 evmcs_gpa_changed = true;
2038                 /*
2039                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2040                  * reloaded from guest's memory (read only fields, fields not
2041                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2042                  * are no leftovers.
2043                  */
2044                 if (from_launch) {
2045                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2046                         memset(vmcs12, 0, sizeof(*vmcs12));
2047                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2048                 }
2049
2050         }
2051
2052         /*
2053          * Clean fields data can't be used on VMLAUNCH and when we switch
2054          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2055          */
2056         if (from_launch || evmcs_gpa_changed)
2057                 vmx->nested.hv_evmcs->hv_clean_fields &=
2058                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2059
2060         return EVMPTRLD_SUCCEEDED;
2061 }
2062
2063 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2064 {
2065         struct vcpu_vmx *vmx = to_vmx(vcpu);
2066
2067         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2068                 copy_vmcs12_to_enlightened(vmx);
2069         else
2070                 copy_vmcs12_to_shadow(vmx);
2071
2072         vmx->nested.need_vmcs12_to_shadow_sync = false;
2073 }
2074
2075 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2076 {
2077         struct vcpu_vmx *vmx =
2078                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2079
2080         vmx->nested.preemption_timer_expired = true;
2081         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2082         kvm_vcpu_kick(&vmx->vcpu);
2083
2084         return HRTIMER_NORESTART;
2085 }
2086
2087 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2088 {
2089         struct vcpu_vmx *vmx = to_vmx(vcpu);
2090         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2091
2092         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2093                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2094
2095         if (!vmx->nested.has_preemption_timer_deadline) {
2096                 vmx->nested.preemption_timer_deadline =
2097                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2098                 vmx->nested.has_preemption_timer_deadline = true;
2099         }
2100         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2101 }
2102
2103 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2104                                         u64 preemption_timeout)
2105 {
2106         struct vcpu_vmx *vmx = to_vmx(vcpu);
2107
2108         /*
2109          * A timer value of zero is architecturally guaranteed to cause
2110          * a VMExit prior to executing any instructions in the guest.
2111          */
2112         if (preemption_timeout == 0) {
2113                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2114                 return;
2115         }
2116
2117         if (vcpu->arch.virtual_tsc_khz == 0)
2118                 return;
2119
2120         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2121         preemption_timeout *= 1000000;
2122         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2123         hrtimer_start(&vmx->nested.preemption_timer,
2124                       ktime_add_ns(ktime_get(), preemption_timeout),
2125                       HRTIMER_MODE_ABS_PINNED);
2126 }
2127
2128 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2129 {
2130         if (vmx->nested.nested_run_pending &&
2131             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2132                 return vmcs12->guest_ia32_efer;
2133         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2134                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2135         else
2136                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2137 }
2138
2139 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2140 {
2141         /*
2142          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2143          * according to L0's settings (vmcs12 is irrelevant here).  Host
2144          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2145          * will be set as needed prior to VMLAUNCH/VMRESUME.
2146          */
2147         if (vmx->nested.vmcs02_initialized)
2148                 return;
2149         vmx->nested.vmcs02_initialized = true;
2150
2151         /*
2152          * We don't care what the EPTP value is we just need to guarantee
2153          * it's valid so we don't get a false positive when doing early
2154          * consistency checks.
2155          */
2156         if (enable_ept && nested_early_check)
2157                 vmcs_write64(EPT_POINTER,
2158                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2159
2160         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2161         if (cpu_has_vmx_vmfunc())
2162                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2163
2164         if (cpu_has_vmx_posted_intr())
2165                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2166
2167         if (cpu_has_vmx_msr_bitmap())
2168                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2169
2170         /*
2171          * PML is emulated for L2, but never enabled in hardware as the MMU
2172          * handles A/D emulation.  Disabling PML for L2 also avoids having to
2173          * deal with filtering out L2 GPAs from the buffer.
2174          */
2175         if (enable_pml) {
2176                 vmcs_write64(PML_ADDRESS, 0);
2177                 vmcs_write16(GUEST_PML_INDEX, -1);
2178         }
2179
2180         if (cpu_has_vmx_encls_vmexit())
2181                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2182
2183         /*
2184          * Set the MSR load/store lists to match L0's settings.  Only the
2185          * addresses are constant (for vmcs02), the counts can change based
2186          * on L2's behavior, e.g. switching to/from long mode.
2187          */
2188         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2189         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2190         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2191
2192         vmx_set_constant_host_state(vmx);
2193 }
2194
2195 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2196                                       struct vmcs12 *vmcs12)
2197 {
2198         prepare_vmcs02_constant_state(vmx);
2199
2200         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2201
2202         if (enable_vpid) {
2203                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2204                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2205                 else
2206                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2207         }
2208 }
2209
2210 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2211                                  struct vmcs12 *vmcs12)
2212 {
2213         u32 exec_control;
2214         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2215
2216         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2217                 prepare_vmcs02_early_rare(vmx, vmcs12);
2218
2219         /*
2220          * PIN CONTROLS
2221          */
2222         exec_control = __pin_controls_get(vmcs01);
2223         exec_control |= (vmcs12->pin_based_vm_exec_control &
2224                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2225
2226         /* Posted interrupts setting is only taken from vmcs12.  */
2227         vmx->nested.pi_pending = false;
2228         if (nested_cpu_has_posted_intr(vmcs12))
2229                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2230         else
2231                 exec_control &= ~PIN_BASED_POSTED_INTR;
2232         pin_controls_set(vmx, exec_control);
2233
2234         /*
2235          * EXEC CONTROLS
2236          */
2237         exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2238         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2239         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2240         exec_control &= ~CPU_BASED_TPR_SHADOW;
2241         exec_control |= vmcs12->cpu_based_vm_exec_control;
2242
2243         vmx->nested.l1_tpr_threshold = -1;
2244         if (exec_control & CPU_BASED_TPR_SHADOW)
2245                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2246 #ifdef CONFIG_X86_64
2247         else
2248                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2249                                 CPU_BASED_CR8_STORE_EXITING;
2250 #endif
2251
2252         /*
2253          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2254          * for I/O port accesses.
2255          */
2256         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2257         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2258
2259         /*
2260          * This bit will be computed in nested_get_vmcs12_pages, because
2261          * we do not have access to L1's MSR bitmap yet.  For now, keep
2262          * the same bit as before, hoping to avoid multiple VMWRITEs that
2263          * only set/clear this bit.
2264          */
2265         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2266         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2267
2268         exec_controls_set(vmx, exec_control);
2269
2270         /*
2271          * SECONDARY EXEC CONTROLS
2272          */
2273         if (cpu_has_secondary_exec_ctrls()) {
2274                 exec_control = __secondary_exec_controls_get(vmcs01);
2275
2276                 /* Take the following fields only from vmcs12 */
2277                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2278                                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2279                                   SECONDARY_EXEC_ENABLE_INVPCID |
2280                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2281                                   SECONDARY_EXEC_XSAVES |
2282                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2283                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2284                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2285                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2286                                   SECONDARY_EXEC_TSC_SCALING |
2287                                   SECONDARY_EXEC_DESC);
2288
2289                 if (nested_cpu_has(vmcs12,
2290                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2291                         exec_control |= vmcs12->secondary_vm_exec_control;
2292
2293                 /* PML is emulated and never enabled in hardware for L2. */
2294                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2295
2296                 /* VMCS shadowing for L2 is emulated for now */
2297                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2298
2299                 /*
2300                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2301                  * will not have to rewrite the controls just for this bit.
2302                  */
2303                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2304                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2305                         exec_control |= SECONDARY_EXEC_DESC;
2306
2307                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2308                         vmcs_write16(GUEST_INTR_STATUS,
2309                                 vmcs12->guest_intr_status);
2310
2311                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2312                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2313
2314                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2315                         vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2316
2317                 secondary_exec_controls_set(vmx, exec_control);
2318         }
2319
2320         /*
2321          * ENTRY CONTROLS
2322          *
2323          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2324          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2325          * on the related bits (if supported by the CPU) in the hope that
2326          * we can avoid VMWrites during vmx_set_efer().
2327          */
2328         exec_control = __vm_entry_controls_get(vmcs01);
2329         exec_control |= vmcs12->vm_entry_controls;
2330         exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2331         if (cpu_has_load_ia32_efer()) {
2332                 if (guest_efer & EFER_LMA)
2333                         exec_control |= VM_ENTRY_IA32E_MODE;
2334                 if (guest_efer != host_efer)
2335                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2336         }
2337         vm_entry_controls_set(vmx, exec_control);
2338
2339         /*
2340          * EXIT CONTROLS
2341          *
2342          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2343          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2344          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2345          */
2346         exec_control = __vm_exit_controls_get(vmcs01);
2347         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2348                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2349         else
2350                 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2351         vm_exit_controls_set(vmx, exec_control);
2352
2353         /*
2354          * Interrupt/Exception Fields
2355          */
2356         if (vmx->nested.nested_run_pending) {
2357                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2358                              vmcs12->vm_entry_intr_info_field);
2359                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2360                              vmcs12->vm_entry_exception_error_code);
2361                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2362                              vmcs12->vm_entry_instruction_len);
2363                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2364                              vmcs12->guest_interruptibility_info);
2365                 vmx->loaded_vmcs->nmi_known_unmasked =
2366                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2367         } else {
2368                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2369         }
2370 }
2371
2372 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2373 {
2374         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2375
2376         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2377                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2378                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2379                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2380                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2381                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2382                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2383                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2384                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2385                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2386                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2387                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2388                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2389                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2390                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2391                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2392                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2393                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2394                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2395                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2396                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2397                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2398                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2399                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2400                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2401                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2402                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2403                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2404                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2405                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2406                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2407                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2408                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2409                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2410                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2411                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2412                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2413                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2414
2415                 vmx->segment_cache.bitmask = 0;
2416         }
2417
2418         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2419                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2420                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2421                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2422                             vmcs12->guest_pending_dbg_exceptions);
2423                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2424                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2425
2426                 /*
2427                  * L1 may access the L2's PDPTR, so save them to construct
2428                  * vmcs12
2429                  */
2430                 if (enable_ept) {
2431                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2432                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2433                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2434                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2435                 }
2436
2437                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2438                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2439                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2440         }
2441
2442         if (nested_cpu_has_xsaves(vmcs12))
2443                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2444
2445         /*
2446          * Whether page-faults are trapped is determined by a combination of
2447          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2448          * doesn't care about page faults then we should set all of these to
2449          * L1's desires. However, if L0 does care about (some) page faults, it
2450          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2451          * simply ask to exit on each and every L2 page fault. This is done by
2452          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2453          * Note that below we don't need special code to set EB.PF beyond the
2454          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2455          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2456          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2457          */
2458         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2459                 /*
2460                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2461                  * go ahead and use it?
2462                  */
2463                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2464                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2465         } else {
2466                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2467                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2468         }
2469
2470         if (cpu_has_vmx_apicv()) {
2471                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2472                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2473                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2474                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2475         }
2476
2477         /*
2478          * Make sure the msr_autostore list is up to date before we set the
2479          * count in the vmcs02.
2480          */
2481         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2482
2483         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2484         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2485         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2486
2487         set_cr4_guest_host_mask(vmx);
2488 }
2489
2490 /*
2491  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2492  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2493  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2494  * guest in a way that will both be appropriate to L1's requests, and our
2495  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2496  * function also has additional necessary side-effects, like setting various
2497  * vcpu->arch fields.
2498  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2499  * is assigned to entry_failure_code on failure.
2500  */
2501 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2502                           bool from_vmentry,
2503                           enum vm_entry_failure_code *entry_failure_code)
2504 {
2505         struct vcpu_vmx *vmx = to_vmx(vcpu);
2506         bool load_guest_pdptrs_vmcs12 = false;
2507
2508         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2509                 prepare_vmcs02_rare(vmx, vmcs12);
2510                 vmx->nested.dirty_vmcs12 = false;
2511
2512                 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2513                         !(vmx->nested.hv_evmcs->hv_clean_fields &
2514                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2515         }
2516
2517         if (vmx->nested.nested_run_pending &&
2518             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2519                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2520                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2521         } else {
2522                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2523                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2524         }
2525         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2526             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2527                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2528         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2529
2530         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2531          * bitwise-or of what L1 wants to trap for L2, and what we want to
2532          * trap. Note that CR0.TS also needs updating - we do this later.
2533          */
2534         vmx_update_exception_bitmap(vcpu);
2535         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2536         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2537
2538         if (vmx->nested.nested_run_pending &&
2539             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2540                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2541                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2542         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2543                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2544         }
2545
2546         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2547                         vcpu->arch.l1_tsc_offset,
2548                         vmx_get_l2_tsc_offset(vcpu),
2549                         vmx_get_l2_tsc_multiplier(vcpu));
2550
2551         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2552                         vcpu->arch.l1_tsc_scaling_ratio,
2553                         vmx_get_l2_tsc_multiplier(vcpu));
2554
2555         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2556         if (kvm_has_tsc_control)
2557                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2558
2559         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2560
2561         if (nested_cpu_has_ept(vmcs12))
2562                 nested_ept_init_mmu_context(vcpu);
2563
2564         /*
2565          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2566          * bits which we consider mandatory enabled.
2567          * The CR0_READ_SHADOW is what L2 should have expected to read given
2568          * the specifications by L1; It's not enough to take
2569          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2570          * have more bits than L1 expected.
2571          */
2572         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2573         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2574
2575         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2576         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2577
2578         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2579         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2580         vmx_set_efer(vcpu, vcpu->arch.efer);
2581
2582         /*
2583          * Guest state is invalid and unrestricted guest is disabled,
2584          * which means L1 attempted VMEntry to L2 with invalid state.
2585          * Fail the VMEntry.
2586          */
2587         if (CC(!vmx_guest_state_valid(vcpu))) {
2588                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2589                 return -EINVAL;
2590         }
2591
2592         /* Shadow page tables on either EPT or shadow page tables. */
2593         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2594                                 from_vmentry, entry_failure_code))
2595                 return -EINVAL;
2596
2597         /*
2598          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2599          * on nested VM-Exit, which can occur without actually running L2 and
2600          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2601          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2602          * transition to HLT instead of running L2.
2603          */
2604         if (enable_ept)
2605                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2606
2607         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2608         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2609             is_pae_paging(vcpu)) {
2610                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2611                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2612                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2613                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2614         }
2615
2616         if (!enable_ept)
2617                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2618
2619         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2620             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2621                                      vmcs12->guest_ia32_perf_global_ctrl)))
2622                 return -EINVAL;
2623
2624         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2625         kvm_rip_write(vcpu, vmcs12->guest_rip);
2626
2627         /*
2628          * It was observed that genuine Hyper-V running in L1 doesn't reset
2629          * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2630          * bits when it changes a field in eVMCS. Mark all fields as clean
2631          * here.
2632          */
2633         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2634                 vmx->nested.hv_evmcs->hv_clean_fields |=
2635                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2636
2637         return 0;
2638 }
2639
2640 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2641 {
2642         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2643                nested_cpu_has_virtual_nmis(vmcs12)))
2644                 return -EINVAL;
2645
2646         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2647                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2648                 return -EINVAL;
2649
2650         return 0;
2651 }
2652
2653 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2654 {
2655         struct vcpu_vmx *vmx = to_vmx(vcpu);
2656
2657         /* Check for memory type validity */
2658         switch (new_eptp & VMX_EPTP_MT_MASK) {
2659         case VMX_EPTP_MT_UC:
2660                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2661                         return false;
2662                 break;
2663         case VMX_EPTP_MT_WB:
2664                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2665                         return false;
2666                 break;
2667         default:
2668                 return false;
2669         }
2670
2671         /* Page-walk levels validity. */
2672         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2673         case VMX_EPTP_PWL_5:
2674                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2675                         return false;
2676                 break;
2677         case VMX_EPTP_PWL_4:
2678                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2679                         return false;
2680                 break;
2681         default:
2682                 return false;
2683         }
2684
2685         /* Reserved bits should not be set */
2686         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2687                 return false;
2688
2689         /* AD, if set, should be supported */
2690         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2691                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2692                         return false;
2693         }
2694
2695         return true;
2696 }
2697
2698 /*
2699  * Checks related to VM-Execution Control Fields
2700  */
2701 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2702                                               struct vmcs12 *vmcs12)
2703 {
2704         struct vcpu_vmx *vmx = to_vmx(vcpu);
2705
2706         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2707                                    vmx->nested.msrs.pinbased_ctls_low,
2708                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2709             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2710                                    vmx->nested.msrs.procbased_ctls_low,
2711                                    vmx->nested.msrs.procbased_ctls_high)))
2712                 return -EINVAL;
2713
2714         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2715             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2716                                    vmx->nested.msrs.secondary_ctls_low,
2717                                    vmx->nested.msrs.secondary_ctls_high)))
2718                 return -EINVAL;
2719
2720         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2721             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2722             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2723             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2724             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2725             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2726             nested_vmx_check_nmi_controls(vmcs12) ||
2727             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2728             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2729             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2730             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2731             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2732                 return -EINVAL;
2733
2734         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2735             nested_cpu_has_save_preemption_timer(vmcs12))
2736                 return -EINVAL;
2737
2738         if (nested_cpu_has_ept(vmcs12) &&
2739             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2740                 return -EINVAL;
2741
2742         if (nested_cpu_has_vmfunc(vmcs12)) {
2743                 if (CC(vmcs12->vm_function_control &
2744                        ~vmx->nested.msrs.vmfunc_controls))
2745                         return -EINVAL;
2746
2747                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2748                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2749                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2750                                 return -EINVAL;
2751                 }
2752         }
2753
2754         return 0;
2755 }
2756
2757 /*
2758  * Checks related to VM-Exit Control Fields
2759  */
2760 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2761                                          struct vmcs12 *vmcs12)
2762 {
2763         struct vcpu_vmx *vmx = to_vmx(vcpu);
2764
2765         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2766                                     vmx->nested.msrs.exit_ctls_low,
2767                                     vmx->nested.msrs.exit_ctls_high)) ||
2768             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2769                 return -EINVAL;
2770
2771         return 0;
2772 }
2773
2774 /*
2775  * Checks related to VM-Entry Control Fields
2776  */
2777 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2778                                           struct vmcs12 *vmcs12)
2779 {
2780         struct vcpu_vmx *vmx = to_vmx(vcpu);
2781
2782         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2783                                     vmx->nested.msrs.entry_ctls_low,
2784                                     vmx->nested.msrs.entry_ctls_high)))
2785                 return -EINVAL;
2786
2787         /*
2788          * From the Intel SDM, volume 3:
2789          * Fields relevant to VM-entry event injection must be set properly.
2790          * These fields are the VM-entry interruption-information field, the
2791          * VM-entry exception error code, and the VM-entry instruction length.
2792          */
2793         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2794                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2795                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2796                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2797                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2798                 bool should_have_error_code;
2799                 bool urg = nested_cpu_has2(vmcs12,
2800                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2801                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2802
2803                 /* VM-entry interruption-info field: interruption type */
2804                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2805                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2806                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2807                         return -EINVAL;
2808
2809                 /* VM-entry interruption-info field: vector */
2810                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2811                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2812                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2813                         return -EINVAL;
2814
2815                 /* VM-entry interruption-info field: deliver error code */
2816                 should_have_error_code =
2817                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2818                         x86_exception_has_error_code(vector);
2819                 if (CC(has_error_code != should_have_error_code))
2820                         return -EINVAL;
2821
2822                 /* VM-entry exception error code */
2823                 if (CC(has_error_code &&
2824                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2825                         return -EINVAL;
2826
2827                 /* VM-entry interruption-info field: reserved bits */
2828                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2829                         return -EINVAL;
2830
2831                 /* VM-entry instruction length */
2832                 switch (intr_type) {
2833                 case INTR_TYPE_SOFT_EXCEPTION:
2834                 case INTR_TYPE_SOFT_INTR:
2835                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2836                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2837                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2838                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2839                                 return -EINVAL;
2840                 }
2841         }
2842
2843         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2844                 return -EINVAL;
2845
2846         return 0;
2847 }
2848
2849 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2850                                      struct vmcs12 *vmcs12)
2851 {
2852         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2853             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2854             nested_check_vm_entry_controls(vcpu, vmcs12))
2855                 return -EINVAL;
2856
2857         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2858                 return nested_evmcs_check_controls(vmcs12);
2859
2860         return 0;
2861 }
2862
2863 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2864                                        struct vmcs12 *vmcs12)
2865 {
2866         bool ia32e;
2867
2868         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2869             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2870             CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2871                 return -EINVAL;
2872
2873         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2874             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2875                 return -EINVAL;
2876
2877         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2878             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2879                 return -EINVAL;
2880
2881         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2882             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2883                                            vmcs12->host_ia32_perf_global_ctrl)))
2884                 return -EINVAL;
2885
2886 #ifdef CONFIG_X86_64
2887         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2888 #else
2889         ia32e = false;
2890 #endif
2891
2892         if (ia32e) {
2893                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2894                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2895                         return -EINVAL;
2896         } else {
2897                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2898                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2899                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2900                     CC((vmcs12->host_rip) >> 32))
2901                         return -EINVAL;
2902         }
2903
2904         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2905             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2906             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2907             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2908             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2909             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2910             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2911             CC(vmcs12->host_cs_selector == 0) ||
2912             CC(vmcs12->host_tr_selector == 0) ||
2913             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2914                 return -EINVAL;
2915
2916         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2917             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2918             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2919             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2920             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2921             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2922                 return -EINVAL;
2923
2924         /*
2925          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2926          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2927          * the values of the LMA and LME bits in the field must each be that of
2928          * the host address-space size VM-exit control.
2929          */
2930         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2931                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2932                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2933                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2934                         return -EINVAL;
2935         }
2936
2937         return 0;
2938 }
2939
2940 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2941                                           struct vmcs12 *vmcs12)
2942 {
2943         int r = 0;
2944         struct vmcs12 *shadow;
2945         struct kvm_host_map map;
2946
2947         if (vmcs12->vmcs_link_pointer == -1ull)
2948                 return 0;
2949
2950         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2951                 return -EINVAL;
2952
2953         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2954                 return -EINVAL;
2955
2956         shadow = map.hva;
2957
2958         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2959             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2960                 r = -EINVAL;
2961
2962         kvm_vcpu_unmap(vcpu, &map, false);
2963         return r;
2964 }
2965
2966 /*
2967  * Checks related to Guest Non-register State
2968  */
2969 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2970 {
2971         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2972                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2973                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2974                 return -EINVAL;
2975
2976         return 0;
2977 }
2978
2979 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2980                                         struct vmcs12 *vmcs12,
2981                                         enum vm_entry_failure_code *entry_failure_code)
2982 {
2983         bool ia32e;
2984
2985         *entry_failure_code = ENTRY_FAIL_DEFAULT;
2986
2987         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2988             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2989                 return -EINVAL;
2990
2991         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2992             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2993                 return -EINVAL;
2994
2995         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2996             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2997                 return -EINVAL;
2998
2999         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3000                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3001                 return -EINVAL;
3002         }
3003
3004         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3005             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3006                                            vmcs12->guest_ia32_perf_global_ctrl)))
3007                 return -EINVAL;
3008
3009         /*
3010          * If the load IA32_EFER VM-entry control is 1, the following checks
3011          * are performed on the field for the IA32_EFER MSR:
3012          * - Bits reserved in the IA32_EFER MSR must be 0.
3013          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3014          *   the IA-32e mode guest VM-exit control. It must also be identical
3015          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3016          *   CR0.PG) is 1.
3017          */
3018         if (to_vmx(vcpu)->nested.nested_run_pending &&
3019             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3020                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3021                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3022                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3023                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3024                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3025                         return -EINVAL;
3026         }
3027
3028         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3029             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3030              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3031                 return -EINVAL;
3032
3033         if (nested_check_guest_non_reg_state(vmcs12))
3034                 return -EINVAL;
3035
3036         return 0;
3037 }
3038
3039 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3040 {
3041         struct vcpu_vmx *vmx = to_vmx(vcpu);
3042         unsigned long cr3, cr4;
3043         bool vm_fail;
3044
3045         if (!nested_early_check)
3046                 return 0;
3047
3048         if (vmx->msr_autoload.host.nr)
3049                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3050         if (vmx->msr_autoload.guest.nr)
3051                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3052
3053         preempt_disable();
3054
3055         vmx_prepare_switch_to_guest(vcpu);
3056
3057         /*
3058          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3059          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3060          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3061          * there is no need to preserve other bits or save/restore the field.
3062          */
3063         vmcs_writel(GUEST_RFLAGS, 0);
3064
3065         cr3 = __get_current_cr3_fast();
3066         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3067                 vmcs_writel(HOST_CR3, cr3);
3068                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3069         }
3070
3071         cr4 = cr4_read_shadow();
3072         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3073                 vmcs_writel(HOST_CR4, cr4);
3074                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3075         }
3076
3077         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3078                                  vmx->loaded_vmcs->launched);
3079
3080         if (vmx->msr_autoload.host.nr)
3081                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3082         if (vmx->msr_autoload.guest.nr)
3083                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3084
3085         if (vm_fail) {
3086                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3087
3088                 preempt_enable();
3089
3090                 trace_kvm_nested_vmenter_failed(
3091                         "early hardware check VM-instruction error: ", error);
3092                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3093                 return 1;
3094         }
3095
3096         /*
3097          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3098          */
3099         if (hw_breakpoint_active())
3100                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3101         local_irq_enable();
3102         preempt_enable();
3103
3104         /*
3105          * A non-failing VMEntry means we somehow entered guest mode with
3106          * an illegal RIP, and that's just the tip of the iceberg.  There
3107          * is no telling what memory has been modified or what state has
3108          * been exposed to unknown code.  Hitting this all but guarantees
3109          * a (very critical) hardware issue.
3110          */
3111         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3112                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3113
3114         return 0;
3115 }
3116
3117 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3118 {
3119         struct vcpu_vmx *vmx = to_vmx(vcpu);
3120
3121         /*
3122          * hv_evmcs may end up being not mapped after migration (when
3123          * L2 was running), map it here to make sure vmcs12 changes are
3124          * properly reflected.
3125          */
3126         if (vmx->nested.enlightened_vmcs_enabled &&
3127             vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3128                 enum nested_evmptrld_status evmptrld_status =
3129                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3130
3131                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3132                     evmptrld_status == EVMPTRLD_ERROR)
3133                         return false;
3134
3135                 /*
3136                  * Post migration VMCS12 always provides the most actual
3137                  * information, copy it to eVMCS upon entry.
3138                  */
3139                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3140         }
3141
3142         return true;
3143 }
3144
3145 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3146 {
3147         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3148         struct vcpu_vmx *vmx = to_vmx(vcpu);
3149         struct kvm_host_map *map;
3150         struct page *page;
3151         u64 hpa;
3152
3153         if (!vcpu->arch.pdptrs_from_userspace &&
3154             !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3155                 /*
3156                  * Reload the guest's PDPTRs since after a migration
3157                  * the guest CR3 might be restored prior to setting the nested
3158                  * state which can lead to a load of wrong PDPTRs.
3159                  */
3160                 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
3161                         return false;
3162         }
3163
3164
3165         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3166                 /*
3167                  * Translate L1 physical address to host physical
3168                  * address for vmcs02. Keep the page pinned, so this
3169                  * physical address remains valid. We keep a reference
3170                  * to it so we can release it later.
3171                  */
3172                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3173                         kvm_release_page_clean(vmx->nested.apic_access_page);
3174                         vmx->nested.apic_access_page = NULL;
3175                 }
3176                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3177                 if (!is_error_page(page)) {
3178                         vmx->nested.apic_access_page = page;
3179                         hpa = page_to_phys(vmx->nested.apic_access_page);
3180                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3181                 } else {
3182                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3183                                              __func__);
3184                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3185                         vcpu->run->internal.suberror =
3186                                 KVM_INTERNAL_ERROR_EMULATION;
3187                         vcpu->run->internal.ndata = 0;
3188                         return false;
3189                 }
3190         }
3191
3192         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3193                 map = &vmx->nested.virtual_apic_map;
3194
3195                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3196                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3197                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3198                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3199                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3200                         /*
3201                          * The processor will never use the TPR shadow, simply
3202                          * clear the bit from the execution control.  Such a
3203                          * configuration is useless, but it happens in tests.
3204                          * For any other configuration, failing the vm entry is
3205                          * _not_ what the processor does but it's basically the
3206                          * only possibility we have.
3207                          */
3208                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3209                 } else {
3210                         /*
3211                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3212                          * force VM-Entry to fail.
3213                          */
3214                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3215                 }
3216         }
3217
3218         if (nested_cpu_has_posted_intr(vmcs12)) {
3219                 map = &vmx->nested.pi_desc_map;
3220
3221                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3222                         vmx->nested.pi_desc =
3223                                 (struct pi_desc *)(((void *)map->hva) +
3224                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3225                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3226                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3227                 } else {
3228                         /*
3229                          * Defer the KVM_INTERNAL_EXIT until KVM tries to
3230                          * access the contents of the VMCS12 posted interrupt
3231                          * descriptor. (Note that KVM may do this when it
3232                          * should not, per the architectural specification.)
3233                          */
3234                         vmx->nested.pi_desc = NULL;
3235                         pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3236                 }
3237         }
3238         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3239                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3240         else
3241                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3242
3243         return true;
3244 }
3245
3246 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3247 {
3248         if (!nested_get_evmcs_page(vcpu)) {
3249                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3250                                      __func__);
3251                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3252                 vcpu->run->internal.suberror =
3253                         KVM_INTERNAL_ERROR_EMULATION;
3254                 vcpu->run->internal.ndata = 0;
3255
3256                 return false;
3257         }
3258
3259         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3260                 return false;
3261
3262         return true;
3263 }
3264
3265 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3266 {
3267         struct vmcs12 *vmcs12;
3268         struct vcpu_vmx *vmx = to_vmx(vcpu);
3269         gpa_t dst;
3270
3271         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3272                 return 0;
3273
3274         if (WARN_ON_ONCE(vmx->nested.pml_full))
3275                 return 1;
3276
3277         /*
3278          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3279          * set is already checked as part of A/D emulation.
3280          */
3281         vmcs12 = get_vmcs12(vcpu);
3282         if (!nested_cpu_has_pml(vmcs12))
3283                 return 0;
3284
3285         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3286                 vmx->nested.pml_full = true;
3287                 return 1;
3288         }
3289
3290         gpa &= ~0xFFFull;
3291         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3292
3293         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3294                                  offset_in_page(dst), sizeof(gpa)))
3295                 return 0;
3296
3297         vmcs12->guest_pml_index--;
3298
3299         return 0;
3300 }
3301
3302 /*
3303  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3304  * for running VMX instructions (except VMXON, whose prerequisites are
3305  * slightly different). It also specifies what exception to inject otherwise.
3306  * Note that many of these exceptions have priority over VM exits, so they
3307  * don't have to be checked again here.
3308  */
3309 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3310 {
3311         if (!to_vmx(vcpu)->nested.vmxon) {
3312                 kvm_queue_exception(vcpu, UD_VECTOR);
3313                 return 0;
3314         }
3315
3316         if (vmx_get_cpl(vcpu)) {
3317                 kvm_inject_gp(vcpu, 0);
3318                 return 0;
3319         }
3320
3321         return 1;
3322 }
3323
3324 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3325 {
3326         u8 rvi = vmx_get_rvi();
3327         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3328
3329         return ((rvi & 0xf0) > (vppr & 0xf0));
3330 }
3331
3332 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3333                                    struct vmcs12 *vmcs12);
3334
3335 /*
3336  * If from_vmentry is false, this is being called from state restore (either RSM
3337  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3338  *
3339  * Returns:
3340  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3341  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3342  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3343  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3344  */
3345 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3346                                                         bool from_vmentry)
3347 {
3348         struct vcpu_vmx *vmx = to_vmx(vcpu);
3349         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3350         enum vm_entry_failure_code entry_failure_code;
3351         bool evaluate_pending_interrupts;
3352         union vmx_exit_reason exit_reason = {
3353                 .basic = EXIT_REASON_INVALID_STATE,
3354                 .failed_vmentry = 1,
3355         };
3356         u32 failed_index;
3357
3358         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3359                 kvm_vcpu_flush_tlb_current(vcpu);
3360
3361         evaluate_pending_interrupts = exec_controls_get(vmx) &
3362                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3363         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3364                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3365
3366         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3367                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3368         if (kvm_mpx_supported() &&
3369                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3370                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3371
3372         /*
3373          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3374          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3375          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3376          * software model to the pre-VMEntry host state.  When EPT is disabled,
3377          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3378          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3379          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3380          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3381          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3382          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3383          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3384          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3385          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3386          * path would need to manually save/restore vmcs01.GUEST_CR3.
3387          */
3388         if (!enable_ept && !nested_early_check)
3389                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3390
3391         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3392
3393         prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3394
3395         if (from_vmentry) {
3396                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3397                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3398                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3399                 }
3400
3401                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3402                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3403                         return NVMX_VMENTRY_VMFAIL;
3404                 }
3405
3406                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3407                                                  &entry_failure_code)) {
3408                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3409                         vmcs12->exit_qualification = entry_failure_code;
3410                         goto vmentry_fail_vmexit;
3411                 }
3412         }
3413
3414         enter_guest_mode(vcpu);
3415
3416         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3417                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3418                 vmcs12->exit_qualification = entry_failure_code;
3419                 goto vmentry_fail_vmexit_guest_mode;
3420         }
3421
3422         if (from_vmentry) {
3423                 failed_index = nested_vmx_load_msr(vcpu,
3424                                                    vmcs12->vm_entry_msr_load_addr,
3425                                                    vmcs12->vm_entry_msr_load_count);
3426                 if (failed_index) {
3427                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3428                         vmcs12->exit_qualification = failed_index;
3429                         goto vmentry_fail_vmexit_guest_mode;
3430                 }
3431         } else {
3432                 /*
3433                  * The MMU is not initialized to point at the right entities yet and
3434                  * "get pages" would need to read data from the guest (i.e. we will
3435                  * need to perform gpa to hpa translation). Request a call
3436                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3437                  * have already been set at vmentry time and should not be reset.
3438                  */
3439                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3440         }
3441
3442         /*
3443          * If L1 had a pending IRQ/NMI until it executed
3444          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3445          * disallowed (e.g. interrupts disabled), L0 needs to
3446          * evaluate if this pending event should cause an exit from L2
3447          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3448          * intercept EXTERNAL_INTERRUPT).
3449          *
3450          * Usually this would be handled by the processor noticing an
3451          * IRQ/NMI window request, or checking RVI during evaluation of
3452          * pending virtual interrupts.  However, this setting was done
3453          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3454          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3455          */
3456         if (unlikely(evaluate_pending_interrupts))
3457                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3458
3459         /*
3460          * Do not start the preemption timer hrtimer until after we know
3461          * we are successful, so that only nested_vmx_vmexit needs to cancel
3462          * the timer.
3463          */
3464         vmx->nested.preemption_timer_expired = false;
3465         if (nested_cpu_has_preemption_timer(vmcs12)) {
3466                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3467                 vmx_start_preemption_timer(vcpu, timer_value);
3468         }
3469
3470         /*
3471          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3472          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3473          * returned as far as L1 is concerned. It will only return (and set
3474          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3475          */
3476         return NVMX_VMENTRY_SUCCESS;
3477
3478         /*
3479          * A failed consistency check that leads to a VMExit during L1's
3480          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3481          * 26.7 "VM-entry failures during or after loading guest state".
3482          */
3483 vmentry_fail_vmexit_guest_mode:
3484         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3485                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3486         leave_guest_mode(vcpu);
3487
3488 vmentry_fail_vmexit:
3489         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3490
3491         if (!from_vmentry)
3492                 return NVMX_VMENTRY_VMEXIT;
3493
3494         load_vmcs12_host_state(vcpu, vmcs12);
3495         vmcs12->vm_exit_reason = exit_reason.full;
3496         if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3497                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3498         return NVMX_VMENTRY_VMEXIT;
3499 }
3500
3501 /*
3502  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3503  * for running an L2 nested guest.
3504  */
3505 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3506 {
3507         struct vmcs12 *vmcs12;
3508         enum nvmx_vmentry_status status;
3509         struct vcpu_vmx *vmx = to_vmx(vcpu);
3510         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3511         enum nested_evmptrld_status evmptrld_status;
3512
3513         if (!nested_vmx_check_permission(vcpu))
3514                 return 1;
3515
3516         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3517         if (evmptrld_status == EVMPTRLD_ERROR) {
3518                 kvm_queue_exception(vcpu, UD_VECTOR);
3519                 return 1;
3520         } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3521                 return nested_vmx_failInvalid(vcpu);
3522         }
3523
3524         if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3525                vmx->nested.current_vmptr == -1ull))
3526                 return nested_vmx_failInvalid(vcpu);
3527
3528         vmcs12 = get_vmcs12(vcpu);
3529
3530         /*
3531          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3532          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3533          * rather than RFLAGS.ZF, and no error number is stored to the
3534          * VM-instruction error field.
3535          */
3536         if (CC(vmcs12->hdr.shadow_vmcs))
3537                 return nested_vmx_failInvalid(vcpu);
3538
3539         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3540                 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3541                 /* Enlightened VMCS doesn't have launch state */
3542                 vmcs12->launch_state = !launch;
3543         } else if (enable_shadow_vmcs) {
3544                 copy_shadow_to_vmcs12(vmx);
3545         }
3546
3547         /*
3548          * The nested entry process starts with enforcing various prerequisites
3549          * on vmcs12 as required by the Intel SDM, and act appropriately when
3550          * they fail: As the SDM explains, some conditions should cause the
3551          * instruction to fail, while others will cause the instruction to seem
3552          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3553          * To speed up the normal (success) code path, we should avoid checking
3554          * for misconfigurations which will anyway be caught by the processor
3555          * when using the merged vmcs02.
3556          */
3557         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3558                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3559
3560         if (CC(vmcs12->launch_state == launch))
3561                 return nested_vmx_fail(vcpu,
3562                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3563                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3564
3565         if (nested_vmx_check_controls(vcpu, vmcs12))
3566                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3567
3568         if (nested_vmx_check_host_state(vcpu, vmcs12))
3569                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3570
3571         /*
3572          * We're finally done with prerequisite checking, and can start with
3573          * the nested entry.
3574          */
3575         vmx->nested.nested_run_pending = 1;
3576         vmx->nested.has_preemption_timer_deadline = false;
3577         status = nested_vmx_enter_non_root_mode(vcpu, true);
3578         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3579                 goto vmentry_failed;
3580
3581         /* Emulate processing of posted interrupts on VM-Enter. */
3582         if (nested_cpu_has_posted_intr(vmcs12) &&
3583             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3584                 vmx->nested.pi_pending = true;
3585                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3586                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3587         }
3588
3589         /* Hide L1D cache contents from the nested guest.  */
3590         vmx->vcpu.arch.l1tf_flush_l1d = true;
3591
3592         /*
3593          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3594          * also be used as part of restoring nVMX state for
3595          * snapshot restore (migration).
3596          *
3597          * In this flow, it is assumed that vmcs12 cache was
3598          * transferred as part of captured nVMX state and should
3599          * therefore not be read from guest memory (which may not
3600          * exist on destination host yet).
3601          */
3602         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3603
3604         switch (vmcs12->guest_activity_state) {
3605         case GUEST_ACTIVITY_HLT:
3606                 /*
3607                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3608                  * awakened by event injection or by an NMI-window VM-exit or
3609                  * by an interrupt-window VM-exit, halt the vcpu.
3610                  */
3611                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3612                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3613                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3614                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3615                         vmx->nested.nested_run_pending = 0;
3616                         return kvm_vcpu_halt(vcpu);
3617                 }
3618                 break;
3619         case GUEST_ACTIVITY_WAIT_SIPI:
3620                 vmx->nested.nested_run_pending = 0;
3621                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3622                 break;
3623         default:
3624                 break;
3625         }
3626
3627         return 1;
3628
3629 vmentry_failed:
3630         vmx->nested.nested_run_pending = 0;
3631         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3632                 return 0;
3633         if (status == NVMX_VMENTRY_VMEXIT)
3634                 return 1;
3635         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3636         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3637 }
3638
3639 /*
3640  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3641  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3642  * This function returns the new value we should put in vmcs12.guest_cr0.
3643  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3644  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3645  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3646  *     didn't trap the bit, because if L1 did, so would L0).
3647  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3648  *     been modified by L2, and L1 knows it. So just leave the old value of
3649  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3650  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3651  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3652  *     changed these bits, and therefore they need to be updated, but L0
3653  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3654  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3655  */
3656 static inline unsigned long
3657 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3658 {
3659         return
3660         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3661         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3662         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3663                         vcpu->arch.cr0_guest_owned_bits));
3664 }
3665
3666 static inline unsigned long
3667 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3668 {
3669         return
3670         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3671         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3672         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3673                         vcpu->arch.cr4_guest_owned_bits));
3674 }
3675
3676 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3677                                       struct vmcs12 *vmcs12)
3678 {
3679         u32 idt_vectoring;
3680         unsigned int nr;
3681
3682         if (vcpu->arch.exception.injected) {
3683                 nr = vcpu->arch.exception.nr;
3684                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3685
3686                 if (kvm_exception_is_soft(nr)) {
3687                         vmcs12->vm_exit_instruction_len =
3688                                 vcpu->arch.event_exit_inst_len;
3689                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3690                 } else
3691                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3692
3693                 if (vcpu->arch.exception.has_error_code) {
3694                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3695                         vmcs12->idt_vectoring_error_code =
3696                                 vcpu->arch.exception.error_code;
3697                 }
3698
3699                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3700         } else if (vcpu->arch.nmi_injected) {
3701                 vmcs12->idt_vectoring_info_field =
3702                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3703         } else if (vcpu->arch.interrupt.injected) {
3704                 nr = vcpu->arch.interrupt.nr;
3705                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3706
3707                 if (vcpu->arch.interrupt.soft) {
3708                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3709                         vmcs12->vm_entry_instruction_len =
3710                                 vcpu->arch.event_exit_inst_len;
3711                 } else
3712                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3713
3714                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3715         }
3716 }
3717
3718
3719 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3720 {
3721         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3722         gfn_t gfn;
3723
3724         /*
3725          * Don't need to mark the APIC access page dirty; it is never
3726          * written to by the CPU during APIC virtualization.
3727          */
3728
3729         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3730                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3731                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3732         }
3733
3734         if (nested_cpu_has_posted_intr(vmcs12)) {
3735                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3736                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3737         }
3738 }
3739
3740 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3741 {
3742         struct vcpu_vmx *vmx = to_vmx(vcpu);
3743         int max_irr;
3744         void *vapic_page;
3745         u16 status;
3746
3747         if (!vmx->nested.pi_pending)
3748                 return 0;
3749
3750         if (!vmx->nested.pi_desc)
3751                 goto mmio_needed;
3752
3753         vmx->nested.pi_pending = false;
3754
3755         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3756                 return 0;
3757
3758         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3759         if (max_irr != 256) {
3760                 vapic_page = vmx->nested.virtual_apic_map.hva;
3761                 if (!vapic_page)
3762                         goto mmio_needed;
3763
3764                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3765                         vapic_page, &max_irr);
3766                 status = vmcs_read16(GUEST_INTR_STATUS);
3767                 if ((u8)max_irr > ((u8)status & 0xff)) {
3768                         status &= ~0xff;
3769                         status |= (u8)max_irr;
3770                         vmcs_write16(GUEST_INTR_STATUS, status);
3771                 }
3772         }
3773
3774         nested_mark_vmcs12_pages_dirty(vcpu);
3775         return 0;
3776
3777 mmio_needed:
3778         kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3779         return -ENXIO;
3780 }
3781
3782 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3783                                                unsigned long exit_qual)
3784 {
3785         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3786         unsigned int nr = vcpu->arch.exception.nr;
3787         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3788
3789         if (vcpu->arch.exception.has_error_code) {
3790                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3791                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3792         }
3793
3794         if (kvm_exception_is_soft(nr))
3795                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3796         else
3797                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3798
3799         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3800             vmx_get_nmi_mask(vcpu))
3801                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3802
3803         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3804 }
3805
3806 /*
3807  * Returns true if a debug trap is pending delivery.
3808  *
3809  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3810  * exception may be inferred from the presence of an exception payload.
3811  */
3812 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3813 {
3814         return vcpu->arch.exception.pending &&
3815                         vcpu->arch.exception.nr == DB_VECTOR &&
3816                         vcpu->arch.exception.payload;
3817 }
3818
3819 /*
3820  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3821  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3822  * represents these debug traps with a payload that is said to be compatible
3823  * with the 'pending debug exceptions' field, write the payload to the VMCS
3824  * field if a VM-exit is delivered before the debug trap.
3825  */
3826 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3827 {
3828         if (vmx_pending_dbg_trap(vcpu))
3829                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3830                             vcpu->arch.exception.payload);
3831 }
3832
3833 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3834 {
3835         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3836                to_vmx(vcpu)->nested.preemption_timer_expired;
3837 }
3838
3839 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3840 {
3841         struct vcpu_vmx *vmx = to_vmx(vcpu);
3842         unsigned long exit_qual;
3843         bool block_nested_events =
3844             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3845         bool mtf_pending = vmx->nested.mtf_pending;
3846         struct kvm_lapic *apic = vcpu->arch.apic;
3847
3848         /*
3849          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3850          * this state is discarded.
3851          */
3852         if (!block_nested_events)
3853                 vmx->nested.mtf_pending = false;
3854
3855         if (lapic_in_kernel(vcpu) &&
3856                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3857                 if (block_nested_events)
3858                         return -EBUSY;
3859                 nested_vmx_update_pending_dbg(vcpu);
3860                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3861                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3862                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3863                 return 0;
3864         }
3865
3866         if (lapic_in_kernel(vcpu) &&
3867             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3868                 if (block_nested_events)
3869                         return -EBUSY;
3870
3871                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3872                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3873                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3874                                                 apic->sipi_vector & 0xFFUL);
3875                 return 0;
3876         }
3877
3878         /*
3879          * Process any exceptions that are not debug traps before MTF.
3880          *
3881          * Note that only a pending nested run can block a pending exception.
3882          * Otherwise an injected NMI/interrupt should either be
3883          * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3884          * while delivering the pending exception.
3885          */
3886
3887         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3888                 if (vmx->nested.nested_run_pending)
3889                         return -EBUSY;
3890                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3891                         goto no_vmexit;
3892                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3893                 return 0;
3894         }
3895
3896         if (mtf_pending) {
3897                 if (block_nested_events)
3898                         return -EBUSY;
3899                 nested_vmx_update_pending_dbg(vcpu);
3900                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3901                 return 0;
3902         }
3903
3904         if (vcpu->arch.exception.pending) {
3905                 if (vmx->nested.nested_run_pending)
3906                         return -EBUSY;
3907                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3908                         goto no_vmexit;
3909                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3910                 return 0;
3911         }
3912
3913         if (nested_vmx_preemption_timer_pending(vcpu)) {
3914                 if (block_nested_events)
3915                         return -EBUSY;
3916                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3917                 return 0;
3918         }
3919
3920         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3921                 if (block_nested_events)
3922                         return -EBUSY;
3923                 goto no_vmexit;
3924         }
3925
3926         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3927                 if (block_nested_events)
3928                         return -EBUSY;
3929                 if (!nested_exit_on_nmi(vcpu))
3930                         goto no_vmexit;
3931
3932                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3933                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3934                                   INTR_INFO_VALID_MASK, 0);
3935                 /*
3936                  * The NMI-triggered VM exit counts as injection:
3937                  * clear this one and block further NMIs.
3938                  */
3939                 vcpu->arch.nmi_pending = 0;
3940                 vmx_set_nmi_mask(vcpu, true);
3941                 return 0;
3942         }
3943
3944         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3945                 if (block_nested_events)
3946                         return -EBUSY;
3947                 if (!nested_exit_on_intr(vcpu))
3948                         goto no_vmexit;
3949                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3950                 return 0;
3951         }
3952
3953 no_vmexit:
3954         return vmx_complete_nested_posted_interrupt(vcpu);
3955 }
3956
3957 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3958 {
3959         ktime_t remaining =
3960                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3961         u64 value;
3962
3963         if (ktime_to_ns(remaining) <= 0)
3964                 return 0;
3965
3966         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3967         do_div(value, 1000000);
3968         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3969 }
3970
3971 static bool is_vmcs12_ext_field(unsigned long field)
3972 {
3973         switch (field) {
3974         case GUEST_ES_SELECTOR:
3975         case GUEST_CS_SELECTOR:
3976         case GUEST_SS_SELECTOR:
3977         case GUEST_DS_SELECTOR:
3978         case GUEST_FS_SELECTOR:
3979         case GUEST_GS_SELECTOR:
3980         case GUEST_LDTR_SELECTOR:
3981         case GUEST_TR_SELECTOR:
3982         case GUEST_ES_LIMIT:
3983         case GUEST_CS_LIMIT:
3984         case GUEST_SS_LIMIT:
3985         case GUEST_DS_LIMIT:
3986         case GUEST_FS_LIMIT:
3987         case GUEST_GS_LIMIT:
3988         case GUEST_LDTR_LIMIT:
3989         case GUEST_TR_LIMIT:
3990         case GUEST_GDTR_LIMIT:
3991         case GUEST_IDTR_LIMIT:
3992         case GUEST_ES_AR_BYTES:
3993         case GUEST_DS_AR_BYTES:
3994         case GUEST_FS_AR_BYTES:
3995         case GUEST_GS_AR_BYTES:
3996         case GUEST_LDTR_AR_BYTES:
3997         case GUEST_TR_AR_BYTES:
3998         case GUEST_ES_BASE:
3999         case GUEST_CS_BASE:
4000         case GUEST_SS_BASE:
4001         case GUEST_DS_BASE:
4002         case GUEST_FS_BASE:
4003         case GUEST_GS_BASE:
4004         case GUEST_LDTR_BASE:
4005         case GUEST_TR_BASE:
4006         case GUEST_GDTR_BASE:
4007         case GUEST_IDTR_BASE:
4008         case GUEST_PENDING_DBG_EXCEPTIONS:
4009         case GUEST_BNDCFGS:
4010                 return true;
4011         default:
4012                 break;
4013         }
4014
4015         return false;
4016 }
4017
4018 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4019                                        struct vmcs12 *vmcs12)
4020 {
4021         struct vcpu_vmx *vmx = to_vmx(vcpu);
4022
4023         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4024         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4025         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4026         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4027         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4028         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4029         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4030         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4031         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4032         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4033         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4034         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4035         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4036         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4037         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4038         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4039         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4040         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4041         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4042         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4043         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4044         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4045         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4046         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4047         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4048         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4049         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4050         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4051         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4052         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4053         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4054         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4055         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4056         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4057         vmcs12->guest_pending_dbg_exceptions =
4058                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4059         if (kvm_mpx_supported())
4060                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4061
4062         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4063 }
4064
4065 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4066                                        struct vmcs12 *vmcs12)
4067 {
4068         struct vcpu_vmx *vmx = to_vmx(vcpu);
4069         int cpu;
4070
4071         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4072                 return;
4073
4074
4075         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4076
4077         cpu = get_cpu();
4078         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4079         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4080
4081         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4082
4083         vmx->loaded_vmcs = &vmx->vmcs01;
4084         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4085         put_cpu();
4086 }
4087
4088 /*
4089  * Update the guest state fields of vmcs12 to reflect changes that
4090  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4091  * VM-entry controls is also updated, since this is really a guest
4092  * state bit.)
4093  */
4094 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4095 {
4096         struct vcpu_vmx *vmx = to_vmx(vcpu);
4097
4098         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4099                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4100
4101         vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4102                 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4103
4104         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4105         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4106
4107         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4108         vmcs12->guest_rip = kvm_rip_read(vcpu);
4109         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4110
4111         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4112         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4113
4114         vmcs12->guest_interruptibility_info =
4115                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4116
4117         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4118                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4119         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4120                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4121         else
4122                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4123
4124         if (nested_cpu_has_preemption_timer(vmcs12) &&
4125             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4126             !vmx->nested.nested_run_pending)
4127                 vmcs12->vmx_preemption_timer_value =
4128                         vmx_get_preemption_timer_value(vcpu);
4129
4130         /*
4131          * In some cases (usually, nested EPT), L2 is allowed to change its
4132          * own CR3 without exiting. If it has changed it, we must keep it.
4133          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4134          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4135          *
4136          * Additionally, restore L2's PDPTR to vmcs12.
4137          */
4138         if (enable_ept) {
4139                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4140                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4141                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4142                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4143                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4144                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4145                 }
4146         }
4147
4148         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4149
4150         if (nested_cpu_has_vid(vmcs12))
4151                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4152
4153         vmcs12->vm_entry_controls =
4154                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4155                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4156
4157         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4158                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4159
4160         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4161                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4162 }
4163
4164 /*
4165  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4166  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4167  * and this function updates it to reflect the changes to the guest state while
4168  * L2 was running (and perhaps made some exits which were handled directly by L0
4169  * without going back to L1), and to reflect the exit reason.
4170  * Note that we do not have to copy here all VMCS fields, just those that
4171  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4172  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4173  * which already writes to vmcs12 directly.
4174  */
4175 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4176                            u32 vm_exit_reason, u32 exit_intr_info,
4177                            unsigned long exit_qualification)
4178 {
4179         /* update exit information fields: */
4180         vmcs12->vm_exit_reason = vm_exit_reason;
4181         if (to_vmx(vcpu)->exit_reason.enclave_mode)
4182                 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4183         vmcs12->exit_qualification = exit_qualification;
4184         vmcs12->vm_exit_intr_info = exit_intr_info;
4185
4186         vmcs12->idt_vectoring_info_field = 0;
4187         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4188         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4189
4190         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4191                 vmcs12->launch_state = 1;
4192
4193                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4194                  * instead of reading the real value. */
4195                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4196
4197                 /*
4198                  * Transfer the event that L0 or L1 may wanted to inject into
4199                  * L2 to IDT_VECTORING_INFO_FIELD.
4200                  */
4201                 vmcs12_save_pending_event(vcpu, vmcs12);
4202
4203                 /*
4204                  * According to spec, there's no need to store the guest's
4205                  * MSRs if the exit is due to a VM-entry failure that occurs
4206                  * during or after loading the guest state. Since this exit
4207                  * does not fall in that category, we need to save the MSRs.
4208                  */
4209                 if (nested_vmx_store_msr(vcpu,
4210                                          vmcs12->vm_exit_msr_store_addr,
4211                                          vmcs12->vm_exit_msr_store_count))
4212                         nested_vmx_abort(vcpu,
4213                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4214         }
4215
4216         /*
4217          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4218          * preserved above and would only end up incorrectly in L1.
4219          */
4220         vcpu->arch.nmi_injected = false;
4221         kvm_clear_exception_queue(vcpu);
4222         kvm_clear_interrupt_queue(vcpu);
4223 }
4224
4225 /*
4226  * A part of what we need to when the nested L2 guest exits and we want to
4227  * run its L1 parent, is to reset L1's guest state to the host state specified
4228  * in vmcs12.
4229  * This function is to be called not only on normal nested exit, but also on
4230  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4231  * Failures During or After Loading Guest State").
4232  * This function should be called when the active VMCS is L1's (vmcs01).
4233  */
4234 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4235                                    struct vmcs12 *vmcs12)
4236 {
4237         enum vm_entry_failure_code ignored;
4238         struct kvm_segment seg;
4239
4240         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4241                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4242         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4243                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4244         else
4245                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4246         vmx_set_efer(vcpu, vcpu->arch.efer);
4247
4248         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4249         kvm_rip_write(vcpu, vmcs12->host_rip);
4250         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4251         vmx_set_interrupt_shadow(vcpu, 0);
4252
4253         /*
4254          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4255          * actually changed, because vmx_set_cr0 refers to efer set above.
4256          *
4257          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4258          * (KVM doesn't change it);
4259          */
4260         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4261         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4262
4263         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4264         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4265         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4266
4267         nested_ept_uninit_mmu_context(vcpu);
4268
4269         /*
4270          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4271          * couldn't have changed.
4272          */
4273         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4274                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4275
4276         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4277
4278         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4279         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4280         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4281         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4282         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4283         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4284         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4285
4286         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4287         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4288                 vmcs_write64(GUEST_BNDCFGS, 0);
4289
4290         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4291                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4292                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4293         }
4294         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4295                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4296                                          vmcs12->host_ia32_perf_global_ctrl));
4297
4298         /* Set L1 segment info according to Intel SDM
4299             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4300         seg = (struct kvm_segment) {
4301                 .base = 0,
4302                 .limit = 0xFFFFFFFF,
4303                 .selector = vmcs12->host_cs_selector,
4304                 .type = 11,
4305                 .present = 1,
4306                 .s = 1,
4307                 .g = 1
4308         };
4309         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4310                 seg.l = 1;
4311         else
4312                 seg.db = 1;
4313         __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4314         seg = (struct kvm_segment) {
4315                 .base = 0,
4316                 .limit = 0xFFFFFFFF,
4317                 .type = 3,
4318                 .present = 1,
4319                 .s = 1,
4320                 .db = 1,
4321                 .g = 1
4322         };
4323         seg.selector = vmcs12->host_ds_selector;
4324         __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4325         seg.selector = vmcs12->host_es_selector;
4326         __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4327         seg.selector = vmcs12->host_ss_selector;
4328         __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4329         seg.selector = vmcs12->host_fs_selector;
4330         seg.base = vmcs12->host_fs_base;
4331         __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4332         seg.selector = vmcs12->host_gs_selector;
4333         seg.base = vmcs12->host_gs_base;
4334         __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4335         seg = (struct kvm_segment) {
4336                 .base = vmcs12->host_tr_base,
4337                 .limit = 0x67,
4338                 .selector = vmcs12->host_tr_selector,
4339                 .type = 11,
4340                 .present = 1
4341         };
4342         __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4343
4344         memset(&seg, 0, sizeof(seg));
4345         seg.unusable = 1;
4346         __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4347
4348         kvm_set_dr(vcpu, 7, 0x400);
4349         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4350
4351         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4352                                 vmcs12->vm_exit_msr_load_count))
4353                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4354 }
4355
4356 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4357 {
4358         struct vmx_uret_msr *efer_msr;
4359         unsigned int i;
4360
4361         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4362                 return vmcs_read64(GUEST_IA32_EFER);
4363
4364         if (cpu_has_load_ia32_efer())
4365                 return host_efer;
4366
4367         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4368                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4369                         return vmx->msr_autoload.guest.val[i].value;
4370         }
4371
4372         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4373         if (efer_msr)
4374                 return efer_msr->data;
4375
4376         return host_efer;
4377 }
4378
4379 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4380 {
4381         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4382         struct vcpu_vmx *vmx = to_vmx(vcpu);
4383         struct vmx_msr_entry g, h;
4384         gpa_t gpa;
4385         u32 i, j;
4386
4387         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4388
4389         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4390                 /*
4391                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4392                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4393                  * and vcpu->arch.dr7 is not squirreled away before the
4394                  * nested VMENTER (not worth adding a variable in nested_vmx).
4395                  */
4396                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4397                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4398                 else
4399                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4400         }
4401
4402         /*
4403          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4404          * handle a variety of side effects to KVM's software model.
4405          */
4406         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4407
4408         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4409         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4410
4411         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4412         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4413
4414         nested_ept_uninit_mmu_context(vcpu);
4415         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4416         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4417
4418         /*
4419          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4420          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4421          * VMFail, like everything else we just need to ensure our
4422          * software model is up-to-date.
4423          */
4424         if (enable_ept && is_pae_paging(vcpu))
4425                 ept_save_pdptrs(vcpu);
4426
4427         kvm_mmu_reset_context(vcpu);
4428
4429         /*
4430          * This nasty bit of open coding is a compromise between blindly
4431          * loading L1's MSRs using the exit load lists (incorrect emulation
4432          * of VMFail), leaving the nested VM's MSRs in the software model
4433          * (incorrect behavior) and snapshotting the modified MSRs (too
4434          * expensive since the lists are unbound by hardware).  For each
4435          * MSR that was (prematurely) loaded from the nested VMEntry load
4436          * list, reload it from the exit load list if it exists and differs
4437          * from the guest value.  The intent is to stuff host state as
4438          * silently as possible, not to fully process the exit load list.
4439          */
4440         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4441                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4442                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4443                         pr_debug_ratelimited(
4444                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4445                                 __func__, i, gpa);
4446                         goto vmabort;
4447                 }
4448
4449                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4450                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4451                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4452                                 pr_debug_ratelimited(
4453                                         "%s read MSR failed (%u, 0x%08llx)\n",
4454                                         __func__, j, gpa);
4455                                 goto vmabort;
4456                         }
4457                         if (h.index != g.index)
4458                                 continue;
4459                         if (h.value == g.value)
4460                                 break;
4461
4462                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4463                                 pr_debug_ratelimited(
4464                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4465                                         __func__, j, h.index, h.reserved);
4466                                 goto vmabort;
4467                         }
4468
4469                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4470                                 pr_debug_ratelimited(
4471                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4472                                         __func__, j, h.index, h.value);
4473                                 goto vmabort;
4474                         }
4475                 }
4476         }
4477
4478         return;
4479
4480 vmabort:
4481         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4482 }
4483
4484 /*
4485  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4486  * and modify vmcs12 to make it see what it would expect to see there if
4487  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4488  */
4489 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4490                        u32 exit_intr_info, unsigned long exit_qualification)
4491 {
4492         struct vcpu_vmx *vmx = to_vmx(vcpu);
4493         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4494
4495         /* trying to cancel vmlaunch/vmresume is a bug */
4496         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4497
4498         /* Similarly, triple faults in L2 should never escape. */
4499         WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4500
4501         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4502                 /*
4503                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4504                  * Enlightened VMCS after migration and we still need to
4505                  * do that when something is forcing L2->L1 exit prior to
4506                  * the first L2 run.
4507                  */
4508                 (void)nested_get_evmcs_page(vcpu);
4509         }
4510
4511         /* Service the TLB flush request for L2 before switching to L1. */
4512         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4513                 kvm_vcpu_flush_tlb_current(vcpu);
4514
4515         /*
4516          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4517          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4518          * up-to-date before switching to L1.
4519          */
4520         if (enable_ept && is_pae_paging(vcpu))
4521                 vmx_ept_load_pdptrs(vcpu);
4522
4523         leave_guest_mode(vcpu);
4524
4525         if (nested_cpu_has_preemption_timer(vmcs12))
4526                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4527
4528         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4529                 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4530                 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4531                         vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4532         }
4533
4534         if (likely(!vmx->fail)) {
4535                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4536
4537                 if (vm_exit_reason != -1)
4538                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4539                                        exit_intr_info, exit_qualification);
4540
4541                 /*
4542                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4543                  * also be used to capture vmcs12 cache as part of
4544                  * capturing nVMX state for snapshot (migration).
4545                  *
4546                  * Otherwise, this flush will dirty guest memory at a
4547                  * point it is already assumed by user-space to be
4548                  * immutable.
4549                  */
4550                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4551         } else {
4552                 /*
4553                  * The only expected VM-instruction error is "VM entry with
4554                  * invalid control field(s)." Anything else indicates a
4555                  * problem with L0.  And we should never get here with a
4556                  * VMFail of any type if early consistency checks are enabled.
4557                  */
4558                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4559                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4560                 WARN_ON_ONCE(nested_early_check);
4561         }
4562
4563         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4564
4565         /* Update any VMCS fields that might have changed while L2 ran */
4566         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4567         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4568         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4569         if (kvm_has_tsc_control)
4570                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4571
4572         if (vmx->nested.l1_tpr_threshold != -1)
4573                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4574
4575         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4576                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4577                 vmx_set_virtual_apic_mode(vcpu);
4578         }
4579
4580         if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4581                 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4582                 vmx_update_cpu_dirty_logging(vcpu);
4583         }
4584
4585         /* Unpin physical memory we referred to in vmcs02 */
4586         if (vmx->nested.apic_access_page) {
4587                 kvm_release_page_clean(vmx->nested.apic_access_page);
4588                 vmx->nested.apic_access_page = NULL;
4589         }
4590         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4591         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4592         vmx->nested.pi_desc = NULL;
4593
4594         if (vmx->nested.reload_vmcs01_apic_access_page) {
4595                 vmx->nested.reload_vmcs01_apic_access_page = false;
4596                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4597         }
4598
4599         if ((vm_exit_reason != -1) &&
4600             (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4601                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4602
4603         /* in case we halted in L2 */
4604         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4605
4606         if (likely(!vmx->fail)) {
4607                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4608                     nested_exit_intr_ack_set(vcpu)) {
4609                         int irq = kvm_cpu_get_interrupt(vcpu);
4610                         WARN_ON(irq < 0);
4611                         vmcs12->vm_exit_intr_info = irq |
4612                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4613                 }
4614
4615                 if (vm_exit_reason != -1)
4616                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4617                                                        vmcs12->exit_qualification,
4618                                                        vmcs12->idt_vectoring_info_field,
4619                                                        vmcs12->vm_exit_intr_info,
4620                                                        vmcs12->vm_exit_intr_error_code,
4621                                                        KVM_ISA_VMX);
4622
4623                 load_vmcs12_host_state(vcpu, vmcs12);
4624
4625                 return;
4626         }
4627
4628         /*
4629          * After an early L2 VM-entry failure, we're now back
4630          * in L1 which thinks it just finished a VMLAUNCH or
4631          * VMRESUME instruction, so we need to set the failure
4632          * flag and the VM-instruction error field of the VMCS
4633          * accordingly, and skip the emulated instruction.
4634          */
4635         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4636
4637         /*
4638          * Restore L1's host state to KVM's software model.  We're here
4639          * because a consistency check was caught by hardware, which
4640          * means some amount of guest state has been propagated to KVM's
4641          * model and needs to be unwound to the host's state.
4642          */
4643         nested_vmx_restore_host_state(vcpu);
4644
4645         vmx->fail = 0;
4646 }
4647
4648 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4649 {
4650         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4651 }
4652
4653 /*
4654  * Decode the memory-address operand of a vmx instruction, as recorded on an
4655  * exit caused by such an instruction (run by a guest hypervisor).
4656  * On success, returns 0. When the operand is invalid, returns 1 and throws
4657  * #UD, #GP, or #SS.
4658  */
4659 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4660                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4661 {
4662         gva_t off;
4663         bool exn;
4664         struct kvm_segment s;
4665
4666         /*
4667          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4668          * Execution", on an exit, vmx_instruction_info holds most of the
4669          * addressing components of the operand. Only the displacement part
4670          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4671          * For how an actual address is calculated from all these components,
4672          * refer to Vol. 1, "Operand Addressing".
4673          */
4674         int  scaling = vmx_instruction_info & 3;
4675         int  addr_size = (vmx_instruction_info >> 7) & 7;
4676         bool is_reg = vmx_instruction_info & (1u << 10);
4677         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4678         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4679         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4680         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4681         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4682
4683         if (is_reg) {
4684                 kvm_queue_exception(vcpu, UD_VECTOR);
4685                 return 1;
4686         }
4687
4688         /* Addr = segment_base + offset */
4689         /* offset = base + [index * scale] + displacement */
4690         off = exit_qualification; /* holds the displacement */
4691         if (addr_size == 1)
4692                 off = (gva_t)sign_extend64(off, 31);
4693         else if (addr_size == 0)
4694                 off = (gva_t)sign_extend64(off, 15);
4695         if (base_is_valid)
4696                 off += kvm_register_read(vcpu, base_reg);
4697         if (index_is_valid)
4698                 off += kvm_register_read(vcpu, index_reg) << scaling;
4699         vmx_get_segment(vcpu, &s, seg_reg);
4700
4701         /*
4702          * The effective address, i.e. @off, of a memory operand is truncated
4703          * based on the address size of the instruction.  Note that this is
4704          * the *effective address*, i.e. the address prior to accounting for
4705          * the segment's base.
4706          */
4707         if (addr_size == 1) /* 32 bit */
4708                 off &= 0xffffffff;
4709         else if (addr_size == 0) /* 16 bit */
4710                 off &= 0xffff;
4711
4712         /* Checks for #GP/#SS exceptions. */
4713         exn = false;
4714         if (is_long_mode(vcpu)) {
4715                 /*
4716                  * The virtual/linear address is never truncated in 64-bit
4717                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4718                  * address when using FS/GS with a non-zero base.
4719                  */
4720                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4721                         *ret = s.base + off;
4722                 else
4723                         *ret = off;
4724
4725                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4726                  * non-canonical form. This is the only check on the memory
4727                  * destination for long mode!
4728                  */
4729                 exn = is_noncanonical_address(*ret, vcpu);
4730         } else {
4731                 /*
4732                  * When not in long mode, the virtual/linear address is
4733                  * unconditionally truncated to 32 bits regardless of the
4734                  * address size.
4735                  */
4736                 *ret = (s.base + off) & 0xffffffff;
4737
4738                 /* Protected mode: apply checks for segment validity in the
4739                  * following order:
4740                  * - segment type check (#GP(0) may be thrown)
4741                  * - usability check (#GP(0)/#SS(0))
4742                  * - limit check (#GP(0)/#SS(0))
4743                  */
4744                 if (wr)
4745                         /* #GP(0) if the destination operand is located in a
4746                          * read-only data segment or any code segment.
4747                          */
4748                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4749                 else
4750                         /* #GP(0) if the source operand is located in an
4751                          * execute-only code segment
4752                          */
4753                         exn = ((s.type & 0xa) == 8);
4754                 if (exn) {
4755                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4756                         return 1;
4757                 }
4758                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4759                  */
4760                 exn = (s.unusable != 0);
4761
4762                 /*
4763                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4764                  * outside the segment limit.  All CPUs that support VMX ignore
4765                  * limit checks for flat segments, i.e. segments with base==0,
4766                  * limit==0xffffffff and of type expand-up data or code.
4767                  */
4768                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4769                      ((s.type & 8) || !(s.type & 4))))
4770                         exn = exn || ((u64)off + len - 1 > s.limit);
4771         }
4772         if (exn) {
4773                 kvm_queue_exception_e(vcpu,
4774                                       seg_reg == VCPU_SREG_SS ?
4775                                                 SS_VECTOR : GP_VECTOR,
4776                                       0);
4777                 return 1;
4778         }
4779
4780         return 0;
4781 }
4782
4783 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4784 {
4785         struct vcpu_vmx *vmx;
4786
4787         if (!nested_vmx_allowed(vcpu))
4788                 return;
4789
4790         vmx = to_vmx(vcpu);
4791         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4792                 vmx->nested.msrs.entry_ctls_high |=
4793                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4794                 vmx->nested.msrs.exit_ctls_high |=
4795                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4796         } else {
4797                 vmx->nested.msrs.entry_ctls_high &=
4798                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4799                 vmx->nested.msrs.exit_ctls_high &=
4800                                 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4801         }
4802 }
4803
4804 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4805                                 int *ret)
4806 {
4807         gva_t gva;
4808         struct x86_exception e;
4809         int r;
4810
4811         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4812                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4813                                 sizeof(*vmpointer), &gva)) {
4814                 *ret = 1;
4815                 return -EINVAL;
4816         }
4817
4818         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4819         if (r != X86EMUL_CONTINUE) {
4820                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4821                 return -EINVAL;
4822         }
4823
4824         return 0;
4825 }
4826
4827 /*
4828  * Allocate a shadow VMCS and associate it with the currently loaded
4829  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4830  * VMCS is also VMCLEARed, so that it is ready for use.
4831  */
4832 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4833 {
4834         struct vcpu_vmx *vmx = to_vmx(vcpu);
4835         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4836
4837         /*
4838          * We should allocate a shadow vmcs for vmcs01 only when L1
4839          * executes VMXON and free it when L1 executes VMXOFF.
4840          * As it is invalid to execute VMXON twice, we shouldn't reach
4841          * here when vmcs01 already have an allocated shadow vmcs.
4842          */
4843         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4844
4845         if (!loaded_vmcs->shadow_vmcs) {
4846                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4847                 if (loaded_vmcs->shadow_vmcs)
4848                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4849         }
4850         return loaded_vmcs->shadow_vmcs;
4851 }
4852
4853 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4854 {
4855         struct vcpu_vmx *vmx = to_vmx(vcpu);
4856         int r;
4857
4858         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4859         if (r < 0)
4860                 goto out_vmcs02;
4861
4862         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4863         if (!vmx->nested.cached_vmcs12)
4864                 goto out_cached_vmcs12;
4865
4866         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4867         if (!vmx->nested.cached_shadow_vmcs12)
4868                 goto out_cached_shadow_vmcs12;
4869
4870         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4871                 goto out_shadow_vmcs;
4872
4873         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4874                      HRTIMER_MODE_ABS_PINNED);
4875         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4876
4877         vmx->nested.vpid02 = allocate_vpid();
4878
4879         vmx->nested.vmcs02_initialized = false;
4880         vmx->nested.vmxon = true;
4881
4882         if (vmx_pt_mode_is_host_guest()) {
4883                 vmx->pt_desc.guest.ctl = 0;
4884                 pt_update_intercept_for_msr(vcpu);
4885         }
4886
4887         return 0;
4888
4889 out_shadow_vmcs:
4890         kfree(vmx->nested.cached_shadow_vmcs12);
4891
4892 out_cached_shadow_vmcs12:
4893         kfree(vmx->nested.cached_vmcs12);
4894
4895 out_cached_vmcs12:
4896         free_loaded_vmcs(&vmx->nested.vmcs02);
4897
4898 out_vmcs02:
4899         return -ENOMEM;
4900 }
4901
4902 /*
4903  * Emulate the VMXON instruction.
4904  * Currently, we just remember that VMX is active, and do not save or even
4905  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4906  * do not currently need to store anything in that guest-allocated memory
4907  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4908  * argument is different from the VMXON pointer (which the spec says they do).
4909  */
4910 static int handle_vmon(struct kvm_vcpu *vcpu)
4911 {
4912         int ret;
4913         gpa_t vmptr;
4914         uint32_t revision;
4915         struct vcpu_vmx *vmx = to_vmx(vcpu);
4916         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4917                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4918
4919         /*
4920          * The Intel VMX Instruction Reference lists a bunch of bits that are
4921          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4922          * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4923          * Otherwise, we should fail with #UD.  But most faulting conditions
4924          * have already been checked by hardware, prior to the VM-exit for
4925          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4926          * that bit set to 1 in non-root mode.
4927          */
4928         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4929                 kvm_queue_exception(vcpu, UD_VECTOR);
4930                 return 1;
4931         }
4932
4933         /* CPL=0 must be checked manually. */
4934         if (vmx_get_cpl(vcpu)) {
4935                 kvm_inject_gp(vcpu, 0);
4936                 return 1;
4937         }
4938
4939         if (vmx->nested.vmxon)
4940                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4941
4942         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4943                         != VMXON_NEEDED_FEATURES) {
4944                 kvm_inject_gp(vcpu, 0);
4945                 return 1;
4946         }
4947
4948         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4949                 return ret;
4950
4951         /*
4952          * SDM 3: 24.11.5
4953          * The first 4 bytes of VMXON region contain the supported
4954          * VMCS revision identifier
4955          *
4956          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4957          * which replaces physical address width with 32
4958          */
4959         if (!page_address_valid(vcpu, vmptr))
4960                 return nested_vmx_failInvalid(vcpu);
4961
4962         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4963             revision != VMCS12_REVISION)
4964                 return nested_vmx_failInvalid(vcpu);
4965
4966         vmx->nested.vmxon_ptr = vmptr;
4967         ret = enter_vmx_operation(vcpu);
4968         if (ret)
4969                 return ret;
4970
4971         return nested_vmx_succeed(vcpu);
4972 }
4973
4974 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4975 {
4976         struct vcpu_vmx *vmx = to_vmx(vcpu);
4977
4978         if (vmx->nested.current_vmptr == -1ull)
4979                 return;
4980
4981         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4982
4983         if (enable_shadow_vmcs) {
4984                 /* copy to memory all shadowed fields in case
4985                    they were modified */
4986                 copy_shadow_to_vmcs12(vmx);
4987                 vmx_disable_shadow_vmcs(vmx);
4988         }
4989         vmx->nested.posted_intr_nv = -1;
4990
4991         /* Flush VMCS12 to guest memory */
4992         kvm_vcpu_write_guest_page(vcpu,
4993                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4994                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4995
4996         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4997
4998         vmx->nested.current_vmptr = -1ull;
4999 }
5000
5001 /* Emulate the VMXOFF instruction */
5002 static int handle_vmoff(struct kvm_vcpu *vcpu)
5003 {
5004         if (!nested_vmx_check_permission(vcpu))
5005                 return 1;
5006
5007         free_nested(vcpu);
5008
5009         /* Process a latched INIT during time CPU was in VMX operation */
5010         kvm_make_request(KVM_REQ_EVENT, vcpu);
5011
5012         return nested_vmx_succeed(vcpu);
5013 }
5014
5015 /* Emulate the VMCLEAR instruction */
5016 static int handle_vmclear(struct kvm_vcpu *vcpu)
5017 {
5018         struct vcpu_vmx *vmx = to_vmx(vcpu);
5019         u32 zero = 0;
5020         gpa_t vmptr;
5021         u64 evmcs_gpa;
5022         int r;
5023
5024         if (!nested_vmx_check_permission(vcpu))
5025                 return 1;
5026
5027         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5028                 return r;
5029
5030         if (!page_address_valid(vcpu, vmptr))
5031                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5032
5033         if (vmptr == vmx->nested.vmxon_ptr)
5034                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5035
5036         /*
5037          * When Enlightened VMEntry is enabled on the calling CPU we treat
5038          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5039          * way to distinguish it from VMCS12) and we must not corrupt it by
5040          * writing to the non-existent 'launch_state' field. The area doesn't
5041          * have to be the currently active EVMCS on the calling CPU and there's
5042          * nothing KVM has to do to transition it from 'active' to 'non-active'
5043          * state. It is possible that the area will stay mapped as
5044          * vmx->nested.hv_evmcs but this shouldn't be a problem.
5045          */
5046         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5047                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5048                 if (vmptr == vmx->nested.current_vmptr)
5049                         nested_release_vmcs12(vcpu);
5050
5051                 kvm_vcpu_write_guest(vcpu,
5052                                      vmptr + offsetof(struct vmcs12,
5053                                                       launch_state),
5054                                      &zero, sizeof(zero));
5055         } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5056                 nested_release_evmcs(vcpu);
5057         }
5058
5059         return nested_vmx_succeed(vcpu);
5060 }
5061
5062 /* Emulate the VMLAUNCH instruction */
5063 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5064 {
5065         return nested_vmx_run(vcpu, true);
5066 }
5067
5068 /* Emulate the VMRESUME instruction */
5069 static int handle_vmresume(struct kvm_vcpu *vcpu)
5070 {
5071
5072         return nested_vmx_run(vcpu, false);
5073 }
5074
5075 static int handle_vmread(struct kvm_vcpu *vcpu)
5076 {
5077         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5078                                                     : get_vmcs12(vcpu);
5079         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5080         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5081         struct vcpu_vmx *vmx = to_vmx(vcpu);
5082         struct x86_exception e;
5083         unsigned long field;
5084         u64 value;
5085         gva_t gva = 0;
5086         short offset;
5087         int len, r;
5088
5089         if (!nested_vmx_check_permission(vcpu))
5090                 return 1;
5091
5092         /*
5093          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5094          * any VMREAD sets the ALU flags for VMfailInvalid.
5095          */
5096         if (vmx->nested.current_vmptr == -1ull ||
5097             (is_guest_mode(vcpu) &&
5098              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5099                 return nested_vmx_failInvalid(vcpu);
5100
5101         /* Decode instruction info and find the field to read */
5102         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5103
5104         offset = vmcs_field_to_offset(field);
5105         if (offset < 0)
5106                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5107
5108         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5109                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5110
5111         /* Read the field, zero-extended to a u64 value */
5112         value = vmcs12_read_any(vmcs12, field, offset);
5113
5114         /*
5115          * Now copy part of this value to register or memory, as requested.
5116          * Note that the number of bits actually copied is 32 or 64 depending
5117          * on the guest's mode (32 or 64 bit), not on the given field's length.
5118          */
5119         if (instr_info & BIT(10)) {
5120                 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5121         } else {
5122                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5123                 if (get_vmx_mem_address(vcpu, exit_qualification,
5124                                         instr_info, true, len, &gva))
5125                         return 1;
5126                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5127                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5128                 if (r != X86EMUL_CONTINUE)
5129                         return kvm_handle_memory_failure(vcpu, r, &e);
5130         }
5131
5132         return nested_vmx_succeed(vcpu);
5133 }
5134
5135 static bool is_shadow_field_rw(unsigned long field)
5136 {
5137         switch (field) {
5138 #define SHADOW_FIELD_RW(x, y) case x:
5139 #include "vmcs_shadow_fields.h"
5140                 return true;
5141         default:
5142                 break;
5143         }
5144         return false;
5145 }
5146
5147 static bool is_shadow_field_ro(unsigned long field)
5148 {
5149         switch (field) {
5150 #define SHADOW_FIELD_RO(x, y) case x:
5151 #include "vmcs_shadow_fields.h"
5152                 return true;
5153         default:
5154                 break;
5155         }
5156         return false;
5157 }
5158
5159 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5160 {
5161         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5162                                                     : get_vmcs12(vcpu);
5163         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5164         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5165         struct vcpu_vmx *vmx = to_vmx(vcpu);
5166         struct x86_exception e;
5167         unsigned long field;
5168         short offset;
5169         gva_t gva;
5170         int len, r;
5171
5172         /*
5173          * The value to write might be 32 or 64 bits, depending on L1's long
5174          * mode, and eventually we need to write that into a field of several
5175          * possible lengths. The code below first zero-extends the value to 64
5176          * bit (value), and then copies only the appropriate number of
5177          * bits into the vmcs12 field.
5178          */
5179         u64 value = 0;
5180
5181         if (!nested_vmx_check_permission(vcpu))
5182                 return 1;
5183
5184         /*
5185          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5186          * any VMWRITE sets the ALU flags for VMfailInvalid.
5187          */
5188         if (vmx->nested.current_vmptr == -1ull ||
5189             (is_guest_mode(vcpu) &&
5190              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5191                 return nested_vmx_failInvalid(vcpu);
5192
5193         if (instr_info & BIT(10))
5194                 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5195         else {
5196                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5197                 if (get_vmx_mem_address(vcpu, exit_qualification,
5198                                         instr_info, false, len, &gva))
5199                         return 1;
5200                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5201                 if (r != X86EMUL_CONTINUE)
5202                         return kvm_handle_memory_failure(vcpu, r, &e);
5203         }
5204
5205         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5206
5207         offset = vmcs_field_to_offset(field);
5208         if (offset < 0)
5209                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5210
5211         /*
5212          * If the vCPU supports "VMWRITE to any supported field in the
5213          * VMCS," then the "read-only" fields are actually read/write.
5214          */
5215         if (vmcs_field_readonly(field) &&
5216             !nested_cpu_has_vmwrite_any_field(vcpu))
5217                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5218
5219         /*
5220          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5221          * vmcs12, else we may crush a field or consume a stale value.
5222          */
5223         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5224                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5225
5226         /*
5227          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5228          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5229          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5230          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5231          * from L1 will return a different value than VMREAD from L2 (L1 sees
5232          * the stripped down value, L2 sees the full value as stored by KVM).
5233          */
5234         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5235                 value &= 0x1f0ff;
5236
5237         vmcs12_write_any(vmcs12, field, offset, value);
5238
5239         /*
5240          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5241          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5242          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5243          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5244          */
5245         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5246                 /*
5247                  * L1 can read these fields without exiting, ensure the
5248                  * shadow VMCS is up-to-date.
5249                  */
5250                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5251                         preempt_disable();
5252                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5253
5254                         __vmcs_writel(field, value);
5255
5256                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5257                         vmcs_load(vmx->loaded_vmcs->vmcs);
5258                         preempt_enable();
5259                 }
5260                 vmx->nested.dirty_vmcs12 = true;
5261         }
5262
5263         return nested_vmx_succeed(vcpu);
5264 }
5265
5266 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5267 {
5268         vmx->nested.current_vmptr = vmptr;
5269         if (enable_shadow_vmcs) {
5270                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5271                 vmcs_write64(VMCS_LINK_POINTER,
5272                              __pa(vmx->vmcs01.shadow_vmcs));
5273                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5274         }
5275         vmx->nested.dirty_vmcs12 = true;
5276 }
5277
5278 /* Emulate the VMPTRLD instruction */
5279 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5280 {
5281         struct vcpu_vmx *vmx = to_vmx(vcpu);
5282         gpa_t vmptr;
5283         int r;
5284
5285         if (!nested_vmx_check_permission(vcpu))
5286                 return 1;
5287
5288         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5289                 return r;
5290
5291         if (!page_address_valid(vcpu, vmptr))
5292                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5293
5294         if (vmptr == vmx->nested.vmxon_ptr)
5295                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5296
5297         /* Forbid normal VMPTRLD if Enlightened version was used */
5298         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5299                 return 1;
5300
5301         if (vmx->nested.current_vmptr != vmptr) {
5302                 struct kvm_host_map map;
5303                 struct vmcs12 *new_vmcs12;
5304
5305                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5306                         /*
5307                          * Reads from an unbacked page return all 1s,
5308                          * which means that the 32 bits located at the
5309                          * given physical address won't match the required
5310                          * VMCS12_REVISION identifier.
5311                          */
5312                         return nested_vmx_fail(vcpu,
5313                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5314                 }
5315
5316                 new_vmcs12 = map.hva;
5317
5318                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5319                     (new_vmcs12->hdr.shadow_vmcs &&
5320                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5321                         kvm_vcpu_unmap(vcpu, &map, false);
5322                         return nested_vmx_fail(vcpu,
5323                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5324                 }
5325
5326                 nested_release_vmcs12(vcpu);
5327
5328                 /*
5329                  * Load VMCS12 from guest memory since it is not already
5330                  * cached.
5331                  */
5332                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5333                 kvm_vcpu_unmap(vcpu, &map, false);
5334
5335                 set_current_vmptr(vmx, vmptr);
5336         }
5337
5338         return nested_vmx_succeed(vcpu);
5339 }
5340
5341 /* Emulate the VMPTRST instruction */
5342 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5343 {
5344         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5345         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5346         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5347         struct x86_exception e;
5348         gva_t gva;
5349         int r;
5350
5351         if (!nested_vmx_check_permission(vcpu))
5352                 return 1;
5353
5354         if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5355                 return 1;
5356
5357         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5358                                 true, sizeof(gpa_t), &gva))
5359                 return 1;
5360         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5361         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5362                                         sizeof(gpa_t), &e);
5363         if (r != X86EMUL_CONTINUE)
5364                 return kvm_handle_memory_failure(vcpu, r, &e);
5365
5366         return nested_vmx_succeed(vcpu);
5367 }
5368
5369 /* Emulate the INVEPT instruction */
5370 static int handle_invept(struct kvm_vcpu *vcpu)
5371 {
5372         struct vcpu_vmx *vmx = to_vmx(vcpu);
5373         u32 vmx_instruction_info, types;
5374         unsigned long type, roots_to_free;
5375         struct kvm_mmu *mmu;
5376         gva_t gva;
5377         struct x86_exception e;
5378         struct {
5379                 u64 eptp, gpa;
5380         } operand;
5381         int i, r;
5382
5383         if (!(vmx->nested.msrs.secondary_ctls_high &
5384               SECONDARY_EXEC_ENABLE_EPT) ||
5385             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5386                 kvm_queue_exception(vcpu, UD_VECTOR);
5387                 return 1;
5388         }
5389
5390         if (!nested_vmx_check_permission(vcpu))
5391                 return 1;
5392
5393         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5394         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5395
5396         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5397
5398         if (type >= 32 || !(types & (1 << type)))
5399                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5400
5401         /* According to the Intel VMX instruction reference, the memory
5402          * operand is read even if it isn't needed (e.g., for type==global)
5403          */
5404         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5405                         vmx_instruction_info, false, sizeof(operand), &gva))
5406                 return 1;
5407         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5408         if (r != X86EMUL_CONTINUE)
5409                 return kvm_handle_memory_failure(vcpu, r, &e);
5410
5411         /*
5412          * Nested EPT roots are always held through guest_mmu,
5413          * not root_mmu.
5414          */
5415         mmu = &vcpu->arch.guest_mmu;
5416
5417         switch (type) {
5418         case VMX_EPT_EXTENT_CONTEXT:
5419                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5420                         return nested_vmx_fail(vcpu,
5421                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5422
5423                 roots_to_free = 0;
5424                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5425                                             operand.eptp))
5426                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5427
5428                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5429                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5430                                                     mmu->prev_roots[i].pgd,
5431                                                     operand.eptp))
5432                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5433                 }
5434                 break;
5435         case VMX_EPT_EXTENT_GLOBAL:
5436                 roots_to_free = KVM_MMU_ROOTS_ALL;
5437                 break;
5438         default:
5439                 BUG();
5440                 break;
5441         }
5442
5443         if (roots_to_free)
5444                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5445
5446         return nested_vmx_succeed(vcpu);
5447 }
5448
5449 static int handle_invvpid(struct kvm_vcpu *vcpu)
5450 {
5451         struct vcpu_vmx *vmx = to_vmx(vcpu);
5452         u32 vmx_instruction_info;
5453         unsigned long type, types;
5454         gva_t gva;
5455         struct x86_exception e;
5456         struct {
5457                 u64 vpid;
5458                 u64 gla;
5459         } operand;
5460         u16 vpid02;
5461         int r;
5462
5463         if (!(vmx->nested.msrs.secondary_ctls_high &
5464               SECONDARY_EXEC_ENABLE_VPID) ||
5465                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5466                 kvm_queue_exception(vcpu, UD_VECTOR);
5467                 return 1;
5468         }
5469
5470         if (!nested_vmx_check_permission(vcpu))
5471                 return 1;
5472
5473         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5474         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5475
5476         types = (vmx->nested.msrs.vpid_caps &
5477                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5478
5479         if (type >= 32 || !(types & (1 << type)))
5480                 return nested_vmx_fail(vcpu,
5481                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5482
5483         /* according to the intel vmx instruction reference, the memory
5484          * operand is read even if it isn't needed (e.g., for type==global)
5485          */
5486         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5487                         vmx_instruction_info, false, sizeof(operand), &gva))
5488                 return 1;
5489         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5490         if (r != X86EMUL_CONTINUE)
5491                 return kvm_handle_memory_failure(vcpu, r, &e);
5492
5493         if (operand.vpid >> 16)
5494                 return nested_vmx_fail(vcpu,
5495                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5496
5497         vpid02 = nested_get_vpid02(vcpu);
5498         switch (type) {
5499         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5500                 if (!operand.vpid ||
5501                     is_noncanonical_address(operand.gla, vcpu))
5502                         return nested_vmx_fail(vcpu,
5503                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5504                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5505                 break;
5506         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5507         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5508                 if (!operand.vpid)
5509                         return nested_vmx_fail(vcpu,
5510                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5511                 vpid_sync_context(vpid02);
5512                 break;
5513         case VMX_VPID_EXTENT_ALL_CONTEXT:
5514                 vpid_sync_context(vpid02);
5515                 break;
5516         default:
5517                 WARN_ON_ONCE(1);
5518                 return kvm_skip_emulated_instruction(vcpu);
5519         }
5520
5521         /*
5522          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5523          * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5524          * roots as VPIDs are not tracked in the MMU role.
5525          *
5526          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5527          * an MMU when EPT is disabled.
5528          *
5529          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5530          */
5531         if (!enable_ept)
5532                 kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5533
5534         return nested_vmx_succeed(vcpu);
5535 }
5536
5537 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5538                                      struct vmcs12 *vmcs12)
5539 {
5540         u32 index = kvm_rcx_read(vcpu);
5541         u64 new_eptp;
5542
5543         if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5544                 return 1;
5545         if (index >= VMFUNC_EPTP_ENTRIES)
5546                 return 1;
5547
5548         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5549                                      &new_eptp, index * 8, 8))
5550                 return 1;
5551
5552         /*
5553          * If the (L2) guest does a vmfunc to the currently
5554          * active ept pointer, we don't have to do anything else
5555          */
5556         if (vmcs12->ept_pointer != new_eptp) {
5557                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5558                         return 1;
5559
5560                 vmcs12->ept_pointer = new_eptp;
5561                 nested_ept_new_eptp(vcpu);
5562
5563                 if (!nested_cpu_has_vpid(vmcs12))
5564                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5565         }
5566
5567         return 0;
5568 }
5569
5570 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5571 {
5572         struct vcpu_vmx *vmx = to_vmx(vcpu);
5573         struct vmcs12 *vmcs12;
5574         u32 function = kvm_rax_read(vcpu);
5575
5576         /*
5577          * VMFUNC is only supported for nested guests, but we always enable the
5578          * secondary control for simplicity; for non-nested mode, fake that we
5579          * didn't by injecting #UD.
5580          */
5581         if (!is_guest_mode(vcpu)) {
5582                 kvm_queue_exception(vcpu, UD_VECTOR);
5583                 return 1;
5584         }
5585
5586         vmcs12 = get_vmcs12(vcpu);
5587
5588         /*
5589          * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5590          * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5591          */
5592         if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5593                 kvm_queue_exception(vcpu, UD_VECTOR);
5594                 return 1;
5595         }
5596
5597         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5598                 goto fail;
5599
5600         switch (function) {
5601         case 0:
5602                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5603                         goto fail;
5604                 break;
5605         default:
5606                 goto fail;
5607         }
5608         return kvm_skip_emulated_instruction(vcpu);
5609
5610 fail:
5611         /*
5612          * This is effectively a reflected VM-Exit, as opposed to a synthesized
5613          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5614          * EXIT_REASON_VMFUNC as the exit reason.
5615          */
5616         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5617                           vmx_get_intr_info(vcpu),
5618                           vmx_get_exit_qual(vcpu));
5619         return 1;
5620 }
5621
5622 /*
5623  * Return true if an IO instruction with the specified port and size should cause
5624  * a VM-exit into L1.
5625  */
5626 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5627                                  int size)
5628 {
5629         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5630         gpa_t bitmap, last_bitmap;
5631         u8 b;
5632
5633         last_bitmap = (gpa_t)-1;
5634         b = -1;
5635
5636         while (size > 0) {
5637                 if (port < 0x8000)
5638                         bitmap = vmcs12->io_bitmap_a;
5639                 else if (port < 0x10000)
5640                         bitmap = vmcs12->io_bitmap_b;
5641                 else
5642                         return true;
5643                 bitmap += (port & 0x7fff) / 8;
5644
5645                 if (last_bitmap != bitmap)
5646                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5647                                 return true;
5648                 if (b & (1 << (port & 7)))
5649                         return true;
5650
5651                 port++;
5652                 size--;
5653                 last_bitmap = bitmap;
5654         }
5655
5656         return false;
5657 }
5658
5659 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5660                                        struct vmcs12 *vmcs12)
5661 {
5662         unsigned long exit_qualification;
5663         unsigned short port;
5664         int size;
5665
5666         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5667                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5668
5669         exit_qualification = vmx_get_exit_qual(vcpu);
5670
5671         port = exit_qualification >> 16;
5672         size = (exit_qualification & 7) + 1;
5673
5674         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5675 }
5676
5677 /*
5678  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5679  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5680  * disinterest in the current event (read or write a specific MSR) by using an
5681  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5682  */
5683 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5684                                         struct vmcs12 *vmcs12,
5685                                         union vmx_exit_reason exit_reason)
5686 {
5687         u32 msr_index = kvm_rcx_read(vcpu);
5688         gpa_t bitmap;
5689
5690         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5691                 return true;
5692
5693         /*
5694          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5695          * for the four combinations of read/write and low/high MSR numbers.
5696          * First we need to figure out which of the four to use:
5697          */
5698         bitmap = vmcs12->msr_bitmap;
5699         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5700                 bitmap += 2048;
5701         if (msr_index >= 0xc0000000) {
5702                 msr_index -= 0xc0000000;
5703                 bitmap += 1024;
5704         }
5705
5706         /* Then read the msr_index'th bit from this bitmap: */
5707         if (msr_index < 1024*8) {
5708                 unsigned char b;
5709                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5710                         return true;
5711                 return 1 & (b >> (msr_index & 7));
5712         } else
5713                 return true; /* let L1 handle the wrong parameter */
5714 }
5715
5716 /*
5717  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5718  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5719  * intercept (via guest_host_mask etc.) the current event.
5720  */
5721 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5722         struct vmcs12 *vmcs12)
5723 {
5724         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5725         int cr = exit_qualification & 15;
5726         int reg;
5727         unsigned long val;
5728
5729         switch ((exit_qualification >> 4) & 3) {
5730         case 0: /* mov to cr */
5731                 reg = (exit_qualification >> 8) & 15;
5732                 val = kvm_register_read(vcpu, reg);
5733                 switch (cr) {
5734                 case 0:
5735                         if (vmcs12->cr0_guest_host_mask &
5736                             (val ^ vmcs12->cr0_read_shadow))
5737                                 return true;
5738                         break;
5739                 case 3:
5740                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5741                                 return true;
5742                         break;
5743                 case 4:
5744                         if (vmcs12->cr4_guest_host_mask &
5745                             (vmcs12->cr4_read_shadow ^ val))
5746                                 return true;
5747                         break;
5748                 case 8:
5749                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5750                                 return true;
5751                         break;
5752                 }
5753                 break;
5754         case 2: /* clts */
5755                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5756                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5757                         return true;
5758                 break;
5759         case 1: /* mov from cr */
5760                 switch (cr) {
5761                 case 3:
5762                         if (vmcs12->cpu_based_vm_exec_control &
5763                             CPU_BASED_CR3_STORE_EXITING)
5764                                 return true;
5765                         break;
5766                 case 8:
5767                         if (vmcs12->cpu_based_vm_exec_control &
5768                             CPU_BASED_CR8_STORE_EXITING)
5769                                 return true;
5770                         break;
5771                 }
5772                 break;
5773         case 3: /* lmsw */
5774                 /*
5775                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5776                  * cr0. Other attempted changes are ignored, with no exit.
5777                  */
5778                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5779                 if (vmcs12->cr0_guest_host_mask & 0xe &
5780                     (val ^ vmcs12->cr0_read_shadow))
5781                         return true;
5782                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5783                     !(vmcs12->cr0_read_shadow & 0x1) &&
5784                     (val & 0x1))
5785                         return true;
5786                 break;
5787         }
5788         return false;
5789 }
5790
5791 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5792                                           struct vmcs12 *vmcs12)
5793 {
5794         u32 encls_leaf;
5795
5796         if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5797             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5798                 return false;
5799
5800         encls_leaf = kvm_rax_read(vcpu);
5801         if (encls_leaf > 62)
5802                 encls_leaf = 63;
5803         return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5804 }
5805
5806 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5807         struct vmcs12 *vmcs12, gpa_t bitmap)
5808 {
5809         u32 vmx_instruction_info;
5810         unsigned long field;
5811         u8 b;
5812
5813         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5814                 return true;
5815
5816         /* Decode instruction info and find the field to access */
5817         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5818         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5819
5820         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5821         if (field >> 15)
5822                 return true;
5823
5824         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5825                 return true;
5826
5827         return 1 & (b >> (field & 7));
5828 }
5829
5830 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5831 {
5832         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5833
5834         if (nested_cpu_has_mtf(vmcs12))
5835                 return true;
5836
5837         /*
5838          * An MTF VM-exit may be injected into the guest by setting the
5839          * interruption-type to 7 (other event) and the vector field to 0. Such
5840          * is the case regardless of the 'monitor trap flag' VM-execution
5841          * control.
5842          */
5843         return entry_intr_info == (INTR_INFO_VALID_MASK
5844                                    | INTR_TYPE_OTHER_EVENT);
5845 }
5846
5847 /*
5848  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5849  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5850  */
5851 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5852                                      union vmx_exit_reason exit_reason)
5853 {
5854         u32 intr_info;
5855
5856         switch ((u16)exit_reason.basic) {
5857         case EXIT_REASON_EXCEPTION_NMI:
5858                 intr_info = vmx_get_intr_info(vcpu);
5859                 if (is_nmi(intr_info))
5860                         return true;
5861                 else if (is_page_fault(intr_info))
5862                         return vcpu->arch.apf.host_apf_flags ||
5863                                vmx_need_pf_intercept(vcpu);
5864                 else if (is_debug(intr_info) &&
5865                          vcpu->guest_debug &
5866                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5867                         return true;
5868                 else if (is_breakpoint(intr_info) &&
5869                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5870                         return true;
5871                 else if (is_alignment_check(intr_info) &&
5872                          !vmx_guest_inject_ac(vcpu))
5873                         return true;
5874                 return false;
5875         case EXIT_REASON_EXTERNAL_INTERRUPT:
5876                 return true;
5877         case EXIT_REASON_MCE_DURING_VMENTRY:
5878                 return true;
5879         case EXIT_REASON_EPT_VIOLATION:
5880                 /*
5881                  * L0 always deals with the EPT violation. If nested EPT is
5882                  * used, and the nested mmu code discovers that the address is
5883                  * missing in the guest EPT table (EPT12), the EPT violation
5884                  * will be injected with nested_ept_inject_page_fault()
5885                  */
5886                 return true;
5887         case EXIT_REASON_EPT_MISCONFIG:
5888                 /*
5889                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5890                  * table (shadow on EPT) or a merged EPT table that L0 built
5891                  * (EPT on EPT). So any problems with the structure of the
5892                  * table is L0's fault.
5893                  */
5894                 return true;
5895         case EXIT_REASON_PREEMPTION_TIMER:
5896                 return true;
5897         case EXIT_REASON_PML_FULL:
5898                 /*
5899                  * PML is emulated for an L1 VMM and should never be enabled in
5900                  * vmcs02, always "handle" PML_FULL by exiting to userspace.
5901                  */
5902                 return true;
5903         case EXIT_REASON_VMFUNC:
5904                 /* VM functions are emulated through L2->L0 vmexits. */
5905                 return true;
5906         default:
5907                 break;
5908         }
5909         return false;
5910 }
5911
5912 /*
5913  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5914  * is_guest_mode (L2).
5915  */
5916 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5917                                      union vmx_exit_reason exit_reason)
5918 {
5919         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5920         u32 intr_info;
5921
5922         switch ((u16)exit_reason.basic) {
5923         case EXIT_REASON_EXCEPTION_NMI:
5924                 intr_info = vmx_get_intr_info(vcpu);
5925                 if (is_nmi(intr_info))
5926                         return true;
5927                 else if (is_page_fault(intr_info))
5928                         return true;
5929                 return vmcs12->exception_bitmap &
5930                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5931         case EXIT_REASON_EXTERNAL_INTERRUPT:
5932                 return nested_exit_on_intr(vcpu);
5933         case EXIT_REASON_TRIPLE_FAULT:
5934                 return true;
5935         case EXIT_REASON_INTERRUPT_WINDOW:
5936                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5937         case EXIT_REASON_NMI_WINDOW:
5938                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5939         case EXIT_REASON_TASK_SWITCH:
5940                 return true;
5941         case EXIT_REASON_CPUID:
5942                 return true;
5943         case EXIT_REASON_HLT:
5944                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5945         case EXIT_REASON_INVD:
5946                 return true;
5947         case EXIT_REASON_INVLPG:
5948                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5949         case EXIT_REASON_RDPMC:
5950                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5951         case EXIT_REASON_RDRAND:
5952                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5953         case EXIT_REASON_RDSEED:
5954                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5955         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5956                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5957         case EXIT_REASON_VMREAD:
5958                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5959                         vmcs12->vmread_bitmap);
5960         case EXIT_REASON_VMWRITE:
5961                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5962                         vmcs12->vmwrite_bitmap);
5963         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5964         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5965         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5966         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5967         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5968                 /*
5969                  * VMX instructions trap unconditionally. This allows L1 to
5970                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5971                  */
5972                 return true;
5973         case EXIT_REASON_CR_ACCESS:
5974                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5975         case EXIT_REASON_DR_ACCESS:
5976                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5977         case EXIT_REASON_IO_INSTRUCTION:
5978                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5979         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5980                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5981         case EXIT_REASON_MSR_READ:
5982         case EXIT_REASON_MSR_WRITE:
5983                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5984         case EXIT_REASON_INVALID_STATE:
5985                 return true;
5986         case EXIT_REASON_MWAIT_INSTRUCTION:
5987                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5988         case EXIT_REASON_MONITOR_TRAP_FLAG:
5989                 return nested_vmx_exit_handled_mtf(vmcs12);
5990         case EXIT_REASON_MONITOR_INSTRUCTION:
5991                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5992         case EXIT_REASON_PAUSE_INSTRUCTION:
5993                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5994                         nested_cpu_has2(vmcs12,
5995                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5996         case EXIT_REASON_MCE_DURING_VMENTRY:
5997                 return true;
5998         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5999                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6000         case EXIT_REASON_APIC_ACCESS:
6001         case EXIT_REASON_APIC_WRITE:
6002         case EXIT_REASON_EOI_INDUCED:
6003                 /*
6004                  * The controls for "virtualize APIC accesses," "APIC-
6005                  * register virtualization," and "virtual-interrupt
6006                  * delivery" only come from vmcs12.
6007                  */
6008                 return true;
6009         case EXIT_REASON_INVPCID:
6010                 return
6011                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6012                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6013         case EXIT_REASON_WBINVD:
6014                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6015         case EXIT_REASON_XSETBV:
6016                 return true;
6017         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6018                 /*
6019                  * This should never happen, since it is not possible to
6020                  * set XSS to a non-zero value---neither in L1 nor in L2.
6021                  * If if it were, XSS would have to be checked against
6022                  * the XSS exit bitmap in vmcs12.
6023                  */
6024                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6025         case EXIT_REASON_UMWAIT:
6026         case EXIT_REASON_TPAUSE:
6027                 return nested_cpu_has2(vmcs12,
6028                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6029         case EXIT_REASON_ENCLS:
6030                 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6031         default:
6032                 return true;
6033         }
6034 }
6035
6036 /*
6037  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6038  * reflected into L1.
6039  */
6040 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6041 {
6042         struct vcpu_vmx *vmx = to_vmx(vcpu);
6043         union vmx_exit_reason exit_reason = vmx->exit_reason;
6044         unsigned long exit_qual;
6045         u32 exit_intr_info;
6046
6047         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6048
6049         /*
6050          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6051          * has already loaded L2's state.
6052          */
6053         if (unlikely(vmx->fail)) {
6054                 trace_kvm_nested_vmenter_failed(
6055                         "hardware VM-instruction error: ",
6056                         vmcs_read32(VM_INSTRUCTION_ERROR));
6057                 exit_intr_info = 0;
6058                 exit_qual = 0;
6059                 goto reflect_vmexit;
6060         }
6061
6062         trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6063
6064         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6065         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6066                 return false;
6067
6068         /* If L1 doesn't want the exit, handle it in L0. */
6069         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6070                 return false;
6071
6072         /*
6073          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6074          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6075          * need to be synthesized by querying the in-kernel LAPIC, but external
6076          * interrupts are never reflected to L1 so it's a non-issue.
6077          */
6078         exit_intr_info = vmx_get_intr_info(vcpu);
6079         if (is_exception_with_error_code(exit_intr_info)) {
6080                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6081
6082                 vmcs12->vm_exit_intr_error_code =
6083                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6084         }
6085         exit_qual = vmx_get_exit_qual(vcpu);
6086
6087 reflect_vmexit:
6088         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6089         return true;
6090 }
6091
6092 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6093                                 struct kvm_nested_state __user *user_kvm_nested_state,
6094                                 u32 user_data_size)
6095 {
6096         struct vcpu_vmx *vmx;
6097         struct vmcs12 *vmcs12;
6098         struct kvm_nested_state kvm_state = {
6099                 .flags = 0,
6100                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6101                 .size = sizeof(kvm_state),
6102                 .hdr.vmx.flags = 0,
6103                 .hdr.vmx.vmxon_pa = -1ull,
6104                 .hdr.vmx.vmcs12_pa = -1ull,
6105                 .hdr.vmx.preemption_timer_deadline = 0,
6106         };
6107         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6108                 &user_kvm_nested_state->data.vmx[0];
6109
6110         if (!vcpu)
6111                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6112
6113         vmx = to_vmx(vcpu);
6114         vmcs12 = get_vmcs12(vcpu);
6115
6116         if (nested_vmx_allowed(vcpu) &&
6117             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6118                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6119                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6120
6121                 if (vmx_has_valid_vmcs12(vcpu)) {
6122                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6123
6124                         /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6125                         if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6126                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6127
6128                         if (is_guest_mode(vcpu) &&
6129                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6130                             vmcs12->vmcs_link_pointer != -1ull)
6131                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6132                 }
6133
6134                 if (vmx->nested.smm.vmxon)
6135                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6136
6137                 if (vmx->nested.smm.guest_mode)
6138                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6139
6140                 if (is_guest_mode(vcpu)) {
6141                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6142
6143                         if (vmx->nested.nested_run_pending)
6144                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6145
6146                         if (vmx->nested.mtf_pending)
6147                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6148
6149                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6150                             vmx->nested.has_preemption_timer_deadline) {
6151                                 kvm_state.hdr.vmx.flags |=
6152                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6153                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6154                                         vmx->nested.preemption_timer_deadline;
6155                         }
6156                 }
6157         }
6158
6159         if (user_data_size < kvm_state.size)
6160                 goto out;
6161
6162         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6163                 return -EFAULT;
6164
6165         if (!vmx_has_valid_vmcs12(vcpu))
6166                 goto out;
6167
6168         /*
6169          * When running L2, the authoritative vmcs12 state is in the
6170          * vmcs02. When running L1, the authoritative vmcs12 state is
6171          * in the shadow or enlightened vmcs linked to vmcs01, unless
6172          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6173          * vmcs12 state is in the vmcs12 already.
6174          */
6175         if (is_guest_mode(vcpu)) {
6176                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6177                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6178         } else  {
6179                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6180                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6181                         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6182                                 /*
6183                                  * L1 hypervisor is not obliged to keep eVMCS
6184                                  * clean fields data always up-to-date while
6185                                  * not in guest mode, 'hv_clean_fields' is only
6186                                  * supposed to be actual upon vmentry so we need
6187                                  * to ignore it here and do full copy.
6188                                  */
6189                                 copy_enlightened_to_vmcs12(vmx, 0);
6190                         else if (enable_shadow_vmcs)
6191                                 copy_shadow_to_vmcs12(vmx);
6192                 }
6193         }
6194
6195         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6196         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6197
6198         /*
6199          * Copy over the full allocated size of vmcs12 rather than just the size
6200          * of the struct.
6201          */
6202         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6203                 return -EFAULT;
6204
6205         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6206             vmcs12->vmcs_link_pointer != -1ull) {
6207                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6208                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6209                         return -EFAULT;
6210         }
6211 out:
6212         return kvm_state.size;
6213 }
6214
6215 /*
6216  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6217  */
6218 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6219 {
6220         if (is_guest_mode(vcpu)) {
6221                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6222                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6223         }
6224         free_nested(vcpu);
6225 }
6226
6227 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6228                                 struct kvm_nested_state __user *user_kvm_nested_state,
6229                                 struct kvm_nested_state *kvm_state)
6230 {
6231         struct vcpu_vmx *vmx = to_vmx(vcpu);
6232         struct vmcs12 *vmcs12;
6233         enum vm_entry_failure_code ignored;
6234         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6235                 &user_kvm_nested_state->data.vmx[0];
6236         int ret;
6237
6238         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6239                 return -EINVAL;
6240
6241         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6242                 if (kvm_state->hdr.vmx.smm.flags)
6243                         return -EINVAL;
6244
6245                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6246                         return -EINVAL;
6247
6248                 /*
6249                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6250                  * enable eVMCS capability on vCPU. However, since then
6251                  * code was changed such that flag signals vmcs12 should
6252                  * be copied into eVMCS in guest memory.
6253                  *
6254                  * To preserve backwards compatability, allow user
6255                  * to set this flag even when there is no VMXON region.
6256                  */
6257                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6258                         return -EINVAL;
6259         } else {
6260                 if (!nested_vmx_allowed(vcpu))
6261                         return -EINVAL;
6262
6263                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6264                         return -EINVAL;
6265         }
6266
6267         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6268             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6269                 return -EINVAL;
6270
6271         if (kvm_state->hdr.vmx.smm.flags &
6272             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6273                 return -EINVAL;
6274
6275         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6276                 return -EINVAL;
6277
6278         /*
6279          * SMM temporarily disables VMX, so we cannot be in guest mode,
6280          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6281          * must be zero.
6282          */
6283         if (is_smm(vcpu) ?
6284                 (kvm_state->flags &
6285                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6286                 : kvm_state->hdr.vmx.smm.flags)
6287                 return -EINVAL;
6288
6289         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6290             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6291                 return -EINVAL;
6292
6293         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6294                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6295                         return -EINVAL;
6296
6297         vmx_leave_nested(vcpu);
6298
6299         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6300                 return 0;
6301
6302         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6303         ret = enter_vmx_operation(vcpu);
6304         if (ret)
6305                 return ret;
6306
6307         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6308         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6309                 /* See vmx_has_valid_vmcs12.  */
6310                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6311                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6312                     (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6313                         return -EINVAL;
6314                 else
6315                         return 0;
6316         }
6317
6318         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6319                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6320                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6321                         return -EINVAL;
6322
6323                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6324         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6325                 /*
6326                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6327                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6328                  * restored yet. EVMCS will be mapped from
6329                  * nested_get_vmcs12_pages().
6330                  */
6331                 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6332                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6333         } else {
6334                 return -EINVAL;
6335         }
6336
6337         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6338                 vmx->nested.smm.vmxon = true;
6339                 vmx->nested.vmxon = false;
6340
6341                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6342                         vmx->nested.smm.guest_mode = true;
6343         }
6344
6345         vmcs12 = get_vmcs12(vcpu);
6346         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6347                 return -EFAULT;
6348
6349         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6350                 return -EINVAL;
6351
6352         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6353                 return 0;
6354
6355         vmx->nested.nested_run_pending =
6356                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6357
6358         vmx->nested.mtf_pending =
6359                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6360
6361         ret = -EINVAL;
6362         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6363             vmcs12->vmcs_link_pointer != -1ull) {
6364                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6365
6366                 if (kvm_state->size <
6367                     sizeof(*kvm_state) +
6368                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6369                         goto error_guest_mode;
6370
6371                 if (copy_from_user(shadow_vmcs12,
6372                                    user_vmx_nested_state->shadow_vmcs12,
6373                                    sizeof(*shadow_vmcs12))) {
6374                         ret = -EFAULT;
6375                         goto error_guest_mode;
6376                 }
6377
6378                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6379                     !shadow_vmcs12->hdr.shadow_vmcs)
6380                         goto error_guest_mode;
6381         }
6382
6383         vmx->nested.has_preemption_timer_deadline = false;
6384         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6385                 vmx->nested.has_preemption_timer_deadline = true;
6386                 vmx->nested.preemption_timer_deadline =
6387                         kvm_state->hdr.vmx.preemption_timer_deadline;
6388         }
6389
6390         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6391             nested_vmx_check_host_state(vcpu, vmcs12) ||
6392             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6393                 goto error_guest_mode;
6394
6395         vmx->nested.dirty_vmcs12 = true;
6396         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6397         if (ret)
6398                 goto error_guest_mode;
6399
6400         return 0;
6401
6402 error_guest_mode:
6403         vmx->nested.nested_run_pending = 0;
6404         return ret;
6405 }
6406
6407 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6408 {
6409         if (enable_shadow_vmcs) {
6410                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6411                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6412         }
6413 }
6414
6415 /*
6416  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6417  * that madness to get the encoding for comparison.
6418  */
6419 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6420
6421 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6422 {
6423         /*
6424          * Note these are the so called "index" of the VMCS field encoding, not
6425          * the index into vmcs12.
6426          */
6427         unsigned int max_idx, idx;
6428         int i;
6429
6430         /*
6431          * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6432          * vmcs12, regardless of whether or not the associated feature is
6433          * exposed to L1.  Simply find the field with the highest index.
6434          */
6435         max_idx = 0;
6436         for (i = 0; i < nr_vmcs12_fields; i++) {
6437                 /* The vmcs12 table is very, very sparsely populated. */
6438                 if (!vmcs_field_to_offset_table[i])
6439                         continue;
6440
6441                 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6442                 if (idx > max_idx)
6443                         max_idx = idx;
6444         }
6445
6446         return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6447 }
6448
6449 /*
6450  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6451  * returned for the various VMX controls MSRs when nested VMX is enabled.
6452  * The same values should also be used to verify that vmcs12 control fields are
6453  * valid during nested entry from L1 to L2.
6454  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6455  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6456  * bit in the high half is on if the corresponding bit in the control field
6457  * may be on. See also vmx_control_verify().
6458  */
6459 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6460 {
6461         /*
6462          * Note that as a general rule, the high half of the MSRs (bits in
6463          * the control fields which may be 1) should be initialized by the
6464          * intersection of the underlying hardware's MSR (i.e., features which
6465          * can be supported) and the list of features we want to expose -
6466          * because they are known to be properly supported in our code.
6467          * Also, usually, the low half of the MSRs (bits which must be 1) can
6468          * be set to 0, meaning that L1 may turn off any of these bits. The
6469          * reason is that if one of these bits is necessary, it will appear
6470          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6471          * fields of vmcs01 and vmcs02, will turn these bits off - and
6472          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6473          * These rules have exceptions below.
6474          */
6475
6476         /* pin-based controls */
6477         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6478                 msrs->pinbased_ctls_low,
6479                 msrs->pinbased_ctls_high);
6480         msrs->pinbased_ctls_low |=
6481                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6482         msrs->pinbased_ctls_high &=
6483                 PIN_BASED_EXT_INTR_MASK |
6484                 PIN_BASED_NMI_EXITING |
6485                 PIN_BASED_VIRTUAL_NMIS |
6486                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6487         msrs->pinbased_ctls_high |=
6488                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6489                 PIN_BASED_VMX_PREEMPTION_TIMER;
6490
6491         /* exit controls */
6492         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6493                 msrs->exit_ctls_low,
6494                 msrs->exit_ctls_high);
6495         msrs->exit_ctls_low =
6496                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6497
6498         msrs->exit_ctls_high &=
6499 #ifdef CONFIG_X86_64
6500                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6501 #endif
6502                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6503                 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6504         msrs->exit_ctls_high |=
6505                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6506                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6507                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6508
6509         /* We support free control of debug control saving. */
6510         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6511
6512         /* entry controls */
6513         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6514                 msrs->entry_ctls_low,
6515                 msrs->entry_ctls_high);
6516         msrs->entry_ctls_low =
6517                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6518         msrs->entry_ctls_high &=
6519 #ifdef CONFIG_X86_64
6520                 VM_ENTRY_IA32E_MODE |
6521 #endif
6522                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6523                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6524         msrs->entry_ctls_high |=
6525                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6526
6527         /* We support free control of debug control loading. */
6528         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6529
6530         /* cpu-based controls */
6531         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6532                 msrs->procbased_ctls_low,
6533                 msrs->procbased_ctls_high);
6534         msrs->procbased_ctls_low =
6535                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6536         msrs->procbased_ctls_high &=
6537                 CPU_BASED_INTR_WINDOW_EXITING |
6538                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6539                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6540                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6541                 CPU_BASED_CR3_STORE_EXITING |
6542 #ifdef CONFIG_X86_64
6543                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6544 #endif
6545                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6546                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6547                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6548                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6549                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6550         /*
6551          * We can allow some features even when not supported by the
6552          * hardware. For example, L1 can specify an MSR bitmap - and we
6553          * can use it to avoid exits to L1 - even when L0 runs L2
6554          * without MSR bitmaps.
6555          */
6556         msrs->procbased_ctls_high |=
6557                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6558                 CPU_BASED_USE_MSR_BITMAPS;
6559
6560         /* We support free control of CR3 access interception. */
6561         msrs->procbased_ctls_low &=
6562                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6563
6564         /*
6565          * secondary cpu-based controls.  Do not include those that
6566          * depend on CPUID bits, they are added later by
6567          * vmx_vcpu_after_set_cpuid.
6568          */
6569         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6570                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6571                       msrs->secondary_ctls_low,
6572                       msrs->secondary_ctls_high);
6573
6574         msrs->secondary_ctls_low = 0;
6575         msrs->secondary_ctls_high &=
6576                 SECONDARY_EXEC_DESC |
6577                 SECONDARY_EXEC_ENABLE_RDTSCP |
6578                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6579                 SECONDARY_EXEC_WBINVD_EXITING |
6580                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6581                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6582                 SECONDARY_EXEC_RDRAND_EXITING |
6583                 SECONDARY_EXEC_ENABLE_INVPCID |
6584                 SECONDARY_EXEC_RDSEED_EXITING |
6585                 SECONDARY_EXEC_XSAVES |
6586                 SECONDARY_EXEC_TSC_SCALING;
6587
6588         /*
6589          * We can emulate "VMCS shadowing," even if the hardware
6590          * doesn't support it.
6591          */
6592         msrs->secondary_ctls_high |=
6593                 SECONDARY_EXEC_SHADOW_VMCS;
6594
6595         if (enable_ept) {
6596                 /* nested EPT: emulate EPT also to L1 */
6597                 msrs->secondary_ctls_high |=
6598                         SECONDARY_EXEC_ENABLE_EPT;
6599                 msrs->ept_caps =
6600                         VMX_EPT_PAGE_WALK_4_BIT |
6601                         VMX_EPT_PAGE_WALK_5_BIT |
6602                         VMX_EPTP_WB_BIT |
6603                         VMX_EPT_INVEPT_BIT |
6604                         VMX_EPT_EXECUTE_ONLY_BIT;
6605
6606                 msrs->ept_caps &= ept_caps;
6607                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6608                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6609                         VMX_EPT_1GB_PAGE_BIT;
6610                 if (enable_ept_ad_bits) {
6611                         msrs->secondary_ctls_high |=
6612                                 SECONDARY_EXEC_ENABLE_PML;
6613                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6614                 }
6615         }
6616
6617         if (cpu_has_vmx_vmfunc()) {
6618                 msrs->secondary_ctls_high |=
6619                         SECONDARY_EXEC_ENABLE_VMFUNC;
6620                 /*
6621                  * Advertise EPTP switching unconditionally
6622                  * since we emulate it
6623                  */
6624                 if (enable_ept)
6625                         msrs->vmfunc_controls =
6626                                 VMX_VMFUNC_EPTP_SWITCHING;
6627         }
6628
6629         /*
6630          * Old versions of KVM use the single-context version without
6631          * checking for support, so declare that it is supported even
6632          * though it is treated as global context.  The alternative is
6633          * not failing the single-context invvpid, and it is worse.
6634          */
6635         if (enable_vpid) {
6636                 msrs->secondary_ctls_high |=
6637                         SECONDARY_EXEC_ENABLE_VPID;
6638                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6639                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6640         }
6641
6642         if (enable_unrestricted_guest)
6643                 msrs->secondary_ctls_high |=
6644                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6645
6646         if (flexpriority_enabled)
6647                 msrs->secondary_ctls_high |=
6648                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6649
6650         if (enable_sgx)
6651                 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6652
6653         /* miscellaneous data */
6654         rdmsr(MSR_IA32_VMX_MISC,
6655                 msrs->misc_low,
6656                 msrs->misc_high);
6657         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6658         msrs->misc_low |=
6659                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6660                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6661                 VMX_MISC_ACTIVITY_HLT |
6662                 VMX_MISC_ACTIVITY_WAIT_SIPI;
6663         msrs->misc_high = 0;
6664
6665         /*
6666          * This MSR reports some information about VMX support. We
6667          * should return information about the VMX we emulate for the
6668          * guest, and the VMCS structure we give it - not about the
6669          * VMX support of the underlying hardware.
6670          */
6671         msrs->basic =
6672                 VMCS12_REVISION |
6673                 VMX_BASIC_TRUE_CTLS |
6674                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6675                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6676
6677         if (cpu_has_vmx_basic_inout())
6678                 msrs->basic |= VMX_BASIC_INOUT;
6679
6680         /*
6681          * These MSRs specify bits which the guest must keep fixed on
6682          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6683          * We picked the standard core2 setting.
6684          */
6685 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6686 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6687         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6688         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6689
6690         /* These MSRs specify bits which the guest must keep fixed off. */
6691         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6692         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6693
6694         msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6695 }
6696
6697 void nested_vmx_hardware_unsetup(void)
6698 {
6699         int i;
6700
6701         if (enable_shadow_vmcs) {
6702                 for (i = 0; i < VMX_BITMAP_NR; i++)
6703                         free_page((unsigned long)vmx_bitmap[i]);
6704         }
6705 }
6706
6707 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6708 {
6709         int i;
6710
6711         if (!cpu_has_vmx_shadow_vmcs())
6712                 enable_shadow_vmcs = 0;
6713         if (enable_shadow_vmcs) {
6714                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6715                         /*
6716                          * The vmx_bitmap is not tied to a VM and so should
6717                          * not be charged to a memcg.
6718                          */
6719                         vmx_bitmap[i] = (unsigned long *)
6720                                 __get_free_page(GFP_KERNEL);
6721                         if (!vmx_bitmap[i]) {
6722                                 nested_vmx_hardware_unsetup();
6723                                 return -ENOMEM;
6724                         }
6725                 }
6726
6727                 init_vmcs_shadow_fields();
6728         }
6729
6730         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6731         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6732         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6733         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6734         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6735         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6736         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6737         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6738         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6739         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6740         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6741         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6742
6743         return 0;
6744 }
6745
6746 struct kvm_x86_nested_ops vmx_nested_ops = {
6747         .check_events = vmx_check_nested_events,
6748         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6749         .triple_fault = nested_vmx_triple_fault,
6750         .get_state = vmx_get_nested_state,
6751         .set_state = vmx_set_nested_state,
6752         .get_nested_state_pages = vmx_get_nested_state_pages,
6753         .write_log_dirty = nested_vmx_write_pml_buffer,
6754         .enable_evmcs = nested_enable_evmcs,
6755         .get_evmcs_version = nested_get_evmcs_version,
6756 };