Merge tag 'safesetid-5.10' of git://github.com/micah-morton/linux
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/mce.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53         {}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
67 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
68 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
69 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
70 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
71
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN           0x0000000000000001ULL
76 #define TSC_RATIO_MAX           0x000000ffffffffffULL
77
78 static bool erratum_383_found __read_mostly;
79
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81
82 /*
83  * Set osvw_len to higher value when updated Revision Guides
84  * are published and we know what the new status bits are
85  */
86 static uint64_t osvw_len = 4, osvw_status;
87
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT       0x0100000000ULL
90
91 static const struct svm_direct_access_msrs {
92         u32 index;   /* Index of the MSR */
93         bool always; /* True if intercept is always on */
94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
95         { .index = MSR_STAR,                            .always = true  },
96         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
97 #ifdef CONFIG_X86_64
98         { .index = MSR_GS_BASE,                         .always = true  },
99         { .index = MSR_FS_BASE,                         .always = true  },
100         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
101         { .index = MSR_LSTAR,                           .always = true  },
102         { .index = MSR_CSTAR,                           .always = true  },
103         { .index = MSR_SYSCALL_MASK,                    .always = true  },
104 #endif
105         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
106         { .index = MSR_IA32_PRED_CMD,                   .always = false },
107         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
108         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
109         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
110         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
111         { .index = MSR_INVALID,                         .always = false },
112 };
113
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120
121 /*
122  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123  * pause_filter_count: On processors that support Pause filtering(indicated
124  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125  *      count value. On VMRUN this value is loaded into an internal counter.
126  *      Each time a pause instruction is executed, this counter is decremented
127  *      until it reaches zero at which time a #VMEXIT is generated if pause
128  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
129  *      Intercept Filtering for more details.
130  *      This also indicate if ple logic enabled.
131  *
132  * pause_filter_thresh: In addition, some processor families support advanced
133  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134  *      the amount of time a guest is allowed to execute in a pause loop.
135  *      In this mode, a 16-bit pause filter threshold field is added in the
136  *      VMCB. The threshold value is a cycle count that is used to reset the
137  *      pause counter. As with simple pause filtering, VMRUN loads the pause
138  *      count value from VMCB into an internal counter. Then, on each pause
139  *      instruction the hardware checks the elapsed number of cycles since
140  *      the most recent pause instruction against the pause filter threshold.
141  *      If the elapsed cycle count is greater than the pause filter threshold,
142  *      then the internal pause count is reloaded from the VMCB and execution
143  *      continues. If the elapsed cycle count is less than the pause filter
144  *      threshold, then the internal pause count is decremented. If the count
145  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146  *      triggered. If advanced pause filtering is supported and pause filter
147  *      threshold field is set to zero, the filter will operate in the simpler,
148  *      count only mode.
149  */
150
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188
189 /* enable/disable SEV support */
190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192
193 static bool __read_mostly dump_invalid_vmcb = 0;
194 module_param(dump_invalid_vmcb, bool, 0644);
195
196 static u8 rsm_ins_bytes[] = "\x0f\xaa";
197
198 static void svm_complete_interrupts(struct vcpu_svm *svm);
199
200 static unsigned long iopm_base;
201
202 struct kvm_ldttss_desc {
203         u16 limit0;
204         u16 base0;
205         unsigned base1:8, type:5, dpl:2, p:1;
206         unsigned limit1:4, zero0:3, g:1, base2:8;
207         u32 base3;
208         u32 zero1;
209 } __attribute__((packed));
210
211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
212
213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
214
215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
216 #define MSRS_RANGE_SIZE 2048
217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218
219 u32 svm_msrpm_offset(u32 msr)
220 {
221         u32 offset;
222         int i;
223
224         for (i = 0; i < NUM_MSR_MAPS; i++) {
225                 if (msr < msrpm_ranges[i] ||
226                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
227                         continue;
228
229                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
230                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
231
232                 /* Now we have the u8 offset - but need the u32 offset */
233                 return offset / 4;
234         }
235
236         /* MSR not in any range */
237         return MSR_INVALID;
238 }
239
240 #define MAX_INST_SIZE 15
241
242 static inline void clgi(void)
243 {
244         asm volatile (__ex("clgi"));
245 }
246
247 static inline void stgi(void)
248 {
249         asm volatile (__ex("stgi"));
250 }
251
252 static inline void invlpga(unsigned long addr, u32 asid)
253 {
254         asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
255 }
256
257 static int get_max_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260         return PT64_ROOT_4LEVEL;
261 #else
262         return PT32E_ROOT_LEVEL;
263 #endif
264 }
265
266 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268         struct vcpu_svm *svm = to_svm(vcpu);
269         u64 old_efer = vcpu->arch.efer;
270         vcpu->arch.efer = efer;
271
272         if (!npt_enabled) {
273                 /* Shadow paging assumes NX to be available.  */
274                 efer |= EFER_NX;
275
276                 if (!(efer & EFER_LMA))
277                         efer &= ~EFER_LME;
278         }
279
280         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
281                 if (!(efer & EFER_SVME)) {
282                         svm_leave_nested(svm);
283                         svm_set_gif(svm, true);
284
285                         /*
286                          * Free the nested guest state, unless we are in SMM.
287                          * In this case we will return to the nested guest
288                          * as soon as we leave SMM.
289                          */
290                         if (!is_smm(&svm->vcpu))
291                                 svm_free_nested(svm);
292
293                 } else {
294                         int ret = svm_allocate_nested(svm);
295
296                         if (ret) {
297                                 vcpu->arch.efer = old_efer;
298                                 return ret;
299                         }
300                 }
301         }
302
303         svm->vmcb->save.efer = efer | EFER_SVME;
304         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
305         return 0;
306 }
307
308 static int is_external_interrupt(u32 info)
309 {
310         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
311         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
312 }
313
314 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
315 {
316         struct vcpu_svm *svm = to_svm(vcpu);
317         u32 ret = 0;
318
319         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
320                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
321         return ret;
322 }
323
324 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
325 {
326         struct vcpu_svm *svm = to_svm(vcpu);
327
328         if (mask == 0)
329                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
330         else
331                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
332
333 }
334
335 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
336 {
337         struct vcpu_svm *svm = to_svm(vcpu);
338
339         if (nrips && svm->vmcb->control.next_rip != 0) {
340                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
341                 svm->next_rip = svm->vmcb->control.next_rip;
342         }
343
344         if (!svm->next_rip) {
345                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
346                         return 0;
347         } else {
348                 kvm_rip_write(vcpu, svm->next_rip);
349         }
350         svm_set_interrupt_shadow(vcpu, 0);
351
352         return 1;
353 }
354
355 static void svm_queue_exception(struct kvm_vcpu *vcpu)
356 {
357         struct vcpu_svm *svm = to_svm(vcpu);
358         unsigned nr = vcpu->arch.exception.nr;
359         bool has_error_code = vcpu->arch.exception.has_error_code;
360         u32 error_code = vcpu->arch.exception.error_code;
361
362         kvm_deliver_exception_payload(&svm->vcpu);
363
364         if (nr == BP_VECTOR && !nrips) {
365                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
366
367                 /*
368                  * For guest debugging where we have to reinject #BP if some
369                  * INT3 is guest-owned:
370                  * Emulate nRIP by moving RIP forward. Will fail if injection
371                  * raises a fault that is not intercepted. Still better than
372                  * failing in all cases.
373                  */
374                 (void)skip_emulated_instruction(&svm->vcpu);
375                 rip = kvm_rip_read(&svm->vcpu);
376                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
377                 svm->int3_injected = rip - old_rip;
378         }
379
380         svm->vmcb->control.event_inj = nr
381                 | SVM_EVTINJ_VALID
382                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
383                 | SVM_EVTINJ_TYPE_EXEPT;
384         svm->vmcb->control.event_inj_err = error_code;
385 }
386
387 static void svm_init_erratum_383(void)
388 {
389         u32 low, high;
390         int err;
391         u64 val;
392
393         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
394                 return;
395
396         /* Use _safe variants to not break nested virtualization */
397         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
398         if (err)
399                 return;
400
401         val |= (1ULL << 47);
402
403         low  = lower_32_bits(val);
404         high = upper_32_bits(val);
405
406         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
407
408         erratum_383_found = true;
409 }
410
411 static void svm_init_osvw(struct kvm_vcpu *vcpu)
412 {
413         /*
414          * Guests should see errata 400 and 415 as fixed (assuming that
415          * HLT and IO instructions are intercepted).
416          */
417         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
418         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
419
420         /*
421          * By increasing VCPU's osvw.length to 3 we are telling the guest that
422          * all osvw.status bits inside that length, including bit 0 (which is
423          * reserved for erratum 298), are valid. However, if host processor's
424          * osvw_len is 0 then osvw_status[0] carries no information. We need to
425          * be conservative here and therefore we tell the guest that erratum 298
426          * is present (because we really don't know).
427          */
428         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
429                 vcpu->arch.osvw.status |= 1;
430 }
431
432 static int has_svm(void)
433 {
434         const char *msg;
435
436         if (!cpu_has_svm(&msg)) {
437                 printk(KERN_INFO "has_svm: %s\n", msg);
438                 return 0;
439         }
440
441         return 1;
442 }
443
444 static void svm_hardware_disable(void)
445 {
446         /* Make sure we clean up behind us */
447         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
448                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
449
450         cpu_svm_disable();
451
452         amd_pmu_disable_virt();
453 }
454
455 static int svm_hardware_enable(void)
456 {
457
458         struct svm_cpu_data *sd;
459         uint64_t efer;
460         struct desc_struct *gdt;
461         int me = raw_smp_processor_id();
462
463         rdmsrl(MSR_EFER, efer);
464         if (efer & EFER_SVME)
465                 return -EBUSY;
466
467         if (!has_svm()) {
468                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
469                 return -EINVAL;
470         }
471         sd = per_cpu(svm_data, me);
472         if (!sd) {
473                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
474                 return -EINVAL;
475         }
476
477         sd->asid_generation = 1;
478         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
479         sd->next_asid = sd->max_asid + 1;
480         sd->min_asid = max_sev_asid + 1;
481
482         gdt = get_current_gdt_rw();
483         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
484
485         wrmsrl(MSR_EFER, efer | EFER_SVME);
486
487         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
488
489         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
490                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
491                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
492         }
493
494
495         /*
496          * Get OSVW bits.
497          *
498          * Note that it is possible to have a system with mixed processor
499          * revisions and therefore different OSVW bits. If bits are not the same
500          * on different processors then choose the worst case (i.e. if erratum
501          * is present on one processor and not on another then assume that the
502          * erratum is present everywhere).
503          */
504         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
505                 uint64_t len, status = 0;
506                 int err;
507
508                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
509                 if (!err)
510                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
511                                                       &err);
512
513                 if (err)
514                         osvw_status = osvw_len = 0;
515                 else {
516                         if (len < osvw_len)
517                                 osvw_len = len;
518                         osvw_status |= status;
519                         osvw_status &= (1ULL << osvw_len) - 1;
520                 }
521         } else
522                 osvw_status = osvw_len = 0;
523
524         svm_init_erratum_383();
525
526         amd_pmu_enable_virt();
527
528         return 0;
529 }
530
531 static void svm_cpu_uninit(int cpu)
532 {
533         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
534
535         if (!sd)
536                 return;
537
538         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
539         kfree(sd->sev_vmcbs);
540         __free_page(sd->save_area);
541         kfree(sd);
542 }
543
544 static int svm_cpu_init(int cpu)
545 {
546         struct svm_cpu_data *sd;
547
548         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
549         if (!sd)
550                 return -ENOMEM;
551         sd->cpu = cpu;
552         sd->save_area = alloc_page(GFP_KERNEL);
553         if (!sd->save_area)
554                 goto free_cpu_data;
555
556         if (svm_sev_enabled()) {
557                 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
558                                               sizeof(void *),
559                                               GFP_KERNEL);
560                 if (!sd->sev_vmcbs)
561                         goto free_save_area;
562         }
563
564         per_cpu(svm_data, cpu) = sd;
565
566         return 0;
567
568 free_save_area:
569         __free_page(sd->save_area);
570 free_cpu_data:
571         kfree(sd);
572         return -ENOMEM;
573
574 }
575
576 static int direct_access_msr_slot(u32 msr)
577 {
578         u32 i;
579
580         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
581                 if (direct_access_msrs[i].index == msr)
582                         return i;
583
584         return -ENOENT;
585 }
586
587 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
588                                      int write)
589 {
590         struct vcpu_svm *svm = to_svm(vcpu);
591         int slot = direct_access_msr_slot(msr);
592
593         if (slot == -ENOENT)
594                 return;
595
596         /* Set the shadow bitmaps to the desired intercept states */
597         if (read)
598                 set_bit(slot, svm->shadow_msr_intercept.read);
599         else
600                 clear_bit(slot, svm->shadow_msr_intercept.read);
601
602         if (write)
603                 set_bit(slot, svm->shadow_msr_intercept.write);
604         else
605                 clear_bit(slot, svm->shadow_msr_intercept.write);
606 }
607
608 static bool valid_msr_intercept(u32 index)
609 {
610         return direct_access_msr_slot(index) != -ENOENT;
611 }
612
613 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
614 {
615         u8 bit_write;
616         unsigned long tmp;
617         u32 offset;
618         u32 *msrpm;
619
620         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
621                                       to_svm(vcpu)->msrpm;
622
623         offset    = svm_msrpm_offset(msr);
624         bit_write = 2 * (msr & 0x0f) + 1;
625         tmp       = msrpm[offset];
626
627         BUG_ON(offset == MSR_INVALID);
628
629         return !!test_bit(bit_write,  &tmp);
630 }
631
632 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
633                                         u32 msr, int read, int write)
634 {
635         u8 bit_read, bit_write;
636         unsigned long tmp;
637         u32 offset;
638
639         /*
640          * If this warning triggers extend the direct_access_msrs list at the
641          * beginning of the file
642          */
643         WARN_ON(!valid_msr_intercept(msr));
644
645         /* Enforce non allowed MSRs to trap */
646         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
647                 read = 0;
648
649         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
650                 write = 0;
651
652         offset    = svm_msrpm_offset(msr);
653         bit_read  = 2 * (msr & 0x0f);
654         bit_write = 2 * (msr & 0x0f) + 1;
655         tmp       = msrpm[offset];
656
657         BUG_ON(offset == MSR_INVALID);
658
659         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
660         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
661
662         msrpm[offset] = tmp;
663 }
664
665 static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
666                                  int read, int write)
667 {
668         set_shadow_msr_intercept(vcpu, msr, read, write);
669         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
670 }
671
672 u32 *svm_vcpu_alloc_msrpm(void)
673 {
674         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
675         u32 *msrpm;
676
677         if (!pages)
678                 return NULL;
679
680         msrpm = page_address(pages);
681         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
682
683         return msrpm;
684 }
685
686 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
687 {
688         int i;
689
690         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
691                 if (!direct_access_msrs[i].always)
692                         continue;
693                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
694         }
695 }
696
697
698 void svm_vcpu_free_msrpm(u32 *msrpm)
699 {
700         __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
701 }
702
703 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
704 {
705         struct vcpu_svm *svm = to_svm(vcpu);
706         u32 i;
707
708         /*
709          * Set intercept permissions for all direct access MSRs again. They
710          * will automatically get filtered through the MSR filter, so we are
711          * back in sync after this.
712          */
713         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
714                 u32 msr = direct_access_msrs[i].index;
715                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
716                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
717
718                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
719         }
720 }
721
722 static void add_msr_offset(u32 offset)
723 {
724         int i;
725
726         for (i = 0; i < MSRPM_OFFSETS; ++i) {
727
728                 /* Offset already in list? */
729                 if (msrpm_offsets[i] == offset)
730                         return;
731
732                 /* Slot used by another offset? */
733                 if (msrpm_offsets[i] != MSR_INVALID)
734                         continue;
735
736                 /* Add offset to list */
737                 msrpm_offsets[i] = offset;
738
739                 return;
740         }
741
742         /*
743          * If this BUG triggers the msrpm_offsets table has an overflow. Just
744          * increase MSRPM_OFFSETS in this case.
745          */
746         BUG();
747 }
748
749 static void init_msrpm_offsets(void)
750 {
751         int i;
752
753         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
754
755         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
756                 u32 offset;
757
758                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
759                 BUG_ON(offset == MSR_INVALID);
760
761                 add_msr_offset(offset);
762         }
763 }
764
765 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
766 {
767         struct vcpu_svm *svm = to_svm(vcpu);
768
769         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
770         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
771         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
772         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
773         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
774 }
775
776 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
777 {
778         struct vcpu_svm *svm = to_svm(vcpu);
779
780         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
781         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
782         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
783         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
784         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
785 }
786
787 void disable_nmi_singlestep(struct vcpu_svm *svm)
788 {
789         svm->nmi_singlestep = false;
790
791         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
792                 /* Clear our flags if they were not set by the guest */
793                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
794                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
795                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
796                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
797         }
798 }
799
800 static void grow_ple_window(struct kvm_vcpu *vcpu)
801 {
802         struct vcpu_svm *svm = to_svm(vcpu);
803         struct vmcb_control_area *control = &svm->vmcb->control;
804         int old = control->pause_filter_count;
805
806         control->pause_filter_count = __grow_ple_window(old,
807                                                         pause_filter_count,
808                                                         pause_filter_count_grow,
809                                                         pause_filter_count_max);
810
811         if (control->pause_filter_count != old) {
812                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
813                 trace_kvm_ple_window_update(vcpu->vcpu_id,
814                                             control->pause_filter_count, old);
815         }
816 }
817
818 static void shrink_ple_window(struct kvm_vcpu *vcpu)
819 {
820         struct vcpu_svm *svm = to_svm(vcpu);
821         struct vmcb_control_area *control = &svm->vmcb->control;
822         int old = control->pause_filter_count;
823
824         control->pause_filter_count =
825                                 __shrink_ple_window(old,
826                                                     pause_filter_count,
827                                                     pause_filter_count_shrink,
828                                                     pause_filter_count);
829         if (control->pause_filter_count != old) {
830                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
831                 trace_kvm_ple_window_update(vcpu->vcpu_id,
832                                             control->pause_filter_count, old);
833         }
834 }
835
836 /*
837  * The default MMIO mask is a single bit (excluding the present bit),
838  * which could conflict with the memory encryption bit. Check for
839  * memory encryption support and override the default MMIO mask if
840  * memory encryption is enabled.
841  */
842 static __init void svm_adjust_mmio_mask(void)
843 {
844         unsigned int enc_bit, mask_bit;
845         u64 msr, mask;
846
847         /* If there is no memory encryption support, use existing mask */
848         if (cpuid_eax(0x80000000) < 0x8000001f)
849                 return;
850
851         /* If memory encryption is not enabled, use existing mask */
852         rdmsrl(MSR_K8_SYSCFG, msr);
853         if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
854                 return;
855
856         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
857         mask_bit = boot_cpu_data.x86_phys_bits;
858
859         /* Increment the mask bit if it is the same as the encryption bit */
860         if (enc_bit == mask_bit)
861                 mask_bit++;
862
863         /*
864          * If the mask bit location is below 52, then some bits above the
865          * physical addressing limit will always be reserved, so use the
866          * rsvd_bits() function to generate the mask. This mask, along with
867          * the present bit, will be used to generate a page fault with
868          * PFER.RSV = 1.
869          *
870          * If the mask bit location is 52 (or above), then clear the mask.
871          */
872         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
873
874         kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
875 }
876
877 static void svm_hardware_teardown(void)
878 {
879         int cpu;
880
881         if (svm_sev_enabled())
882                 sev_hardware_teardown();
883
884         for_each_possible_cpu(cpu)
885                 svm_cpu_uninit(cpu);
886
887         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
888         iopm_base = 0;
889 }
890
891 static __init void svm_set_cpu_caps(void)
892 {
893         kvm_set_cpu_caps();
894
895         supported_xss = 0;
896
897         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
898         if (nested) {
899                 kvm_cpu_cap_set(X86_FEATURE_SVM);
900
901                 if (nrips)
902                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
903
904                 if (npt_enabled)
905                         kvm_cpu_cap_set(X86_FEATURE_NPT);
906         }
907
908         /* CPUID 0x80000008 */
909         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
910             boot_cpu_has(X86_FEATURE_AMD_SSBD))
911                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
912
913         /* Enable INVPCID feature */
914         kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
915 }
916
917 static __init int svm_hardware_setup(void)
918 {
919         int cpu;
920         struct page *iopm_pages;
921         void *iopm_va;
922         int r;
923
924         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
925
926         if (!iopm_pages)
927                 return -ENOMEM;
928
929         iopm_va = page_address(iopm_pages);
930         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
931         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
932
933         init_msrpm_offsets();
934
935         supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
936
937         if (boot_cpu_has(X86_FEATURE_NX))
938                 kvm_enable_efer_bits(EFER_NX);
939
940         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
941                 kvm_enable_efer_bits(EFER_FFXSR);
942
943         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
944                 kvm_has_tsc_control = true;
945                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
946                 kvm_tsc_scaling_ratio_frac_bits = 32;
947         }
948
949         /* Check for pause filtering support */
950         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
951                 pause_filter_count = 0;
952                 pause_filter_thresh = 0;
953         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
954                 pause_filter_thresh = 0;
955         }
956
957         if (nested) {
958                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
959                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
960         }
961
962         if (sev) {
963                 if (boot_cpu_has(X86_FEATURE_SEV) &&
964                     IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
965                         r = sev_hardware_setup();
966                         if (r)
967                                 sev = false;
968                 } else {
969                         sev = false;
970                 }
971         }
972
973         svm_adjust_mmio_mask();
974
975         for_each_possible_cpu(cpu) {
976                 r = svm_cpu_init(cpu);
977                 if (r)
978                         goto err;
979         }
980
981         if (!boot_cpu_has(X86_FEATURE_NPT))
982                 npt_enabled = false;
983
984         if (npt_enabled && !npt)
985                 npt_enabled = false;
986
987         kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
988         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
989
990         if (nrips) {
991                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
992                         nrips = false;
993         }
994
995         if (avic) {
996                 if (!npt_enabled ||
997                     !boot_cpu_has(X86_FEATURE_AVIC) ||
998                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
999                         avic = false;
1000                 } else {
1001                         pr_info("AVIC enabled\n");
1002
1003                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1004                 }
1005         }
1006
1007         if (vls) {
1008                 if (!npt_enabled ||
1009                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1010                     !IS_ENABLED(CONFIG_X86_64)) {
1011                         vls = false;
1012                 } else {
1013                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1014                 }
1015         }
1016
1017         if (vgif) {
1018                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1019                         vgif = false;
1020                 else
1021                         pr_info("Virtual GIF supported\n");
1022         }
1023
1024         svm_set_cpu_caps();
1025
1026         /*
1027          * It seems that on AMD processors PTE's accessed bit is
1028          * being set by the CPU hardware before the NPF vmexit.
1029          * This is not expected behaviour and our tests fail because
1030          * of it.
1031          * A workaround here is to disable support for
1032          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1033          * In this case userspace can know if there is support using
1034          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1035          * it
1036          * If future AMD CPU models change the behaviour described above,
1037          * this variable can be changed accordingly
1038          */
1039         allow_smaller_maxphyaddr = !npt_enabled;
1040
1041         return 0;
1042
1043 err:
1044         svm_hardware_teardown();
1045         return r;
1046 }
1047
1048 static void init_seg(struct vmcb_seg *seg)
1049 {
1050         seg->selector = 0;
1051         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1052                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1053         seg->limit = 0xffff;
1054         seg->base = 0;
1055 }
1056
1057 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1058 {
1059         seg->selector = 0;
1060         seg->attrib = SVM_SELECTOR_P_MASK | type;
1061         seg->limit = 0xffff;
1062         seg->base = 0;
1063 }
1064
1065 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1066 {
1067         struct vcpu_svm *svm = to_svm(vcpu);
1068         u64 g_tsc_offset = 0;
1069
1070         if (is_guest_mode(vcpu)) {
1071                 /* Write L1's TSC offset.  */
1072                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1073                                svm->nested.hsave->control.tsc_offset;
1074                 svm->nested.hsave->control.tsc_offset = offset;
1075         }
1076
1077         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1078                                    svm->vmcb->control.tsc_offset - g_tsc_offset,
1079                                    offset);
1080
1081         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1082
1083         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1084         return svm->vmcb->control.tsc_offset;
1085 }
1086
1087 static void svm_check_invpcid(struct vcpu_svm *svm)
1088 {
1089         /*
1090          * Intercept INVPCID instruction only if shadow page table is
1091          * enabled. Interception is not required with nested page table
1092          * enabled.
1093          */
1094         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1095                 if (!npt_enabled)
1096                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1097                 else
1098                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1099         }
1100 }
1101
1102 static void init_vmcb(struct vcpu_svm *svm)
1103 {
1104         struct vmcb_control_area *control = &svm->vmcb->control;
1105         struct vmcb_save_area *save = &svm->vmcb->save;
1106
1107         svm->vcpu.arch.hflags = 0;
1108
1109         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1110         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1111         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1112         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1113         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1114         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1115         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1116                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1117
1118         set_dr_intercepts(svm);
1119
1120         set_exception_intercept(svm, PF_VECTOR);
1121         set_exception_intercept(svm, UD_VECTOR);
1122         set_exception_intercept(svm, MC_VECTOR);
1123         set_exception_intercept(svm, AC_VECTOR);
1124         set_exception_intercept(svm, DB_VECTOR);
1125         /*
1126          * Guest access to VMware backdoor ports could legitimately
1127          * trigger #GP because of TSS I/O permission bitmap.
1128          * We intercept those #GP and allow access to them anyway
1129          * as VMware does.
1130          */
1131         if (enable_vmware_backdoor)
1132                 set_exception_intercept(svm, GP_VECTOR);
1133
1134         svm_set_intercept(svm, INTERCEPT_INTR);
1135         svm_set_intercept(svm, INTERCEPT_NMI);
1136         svm_set_intercept(svm, INTERCEPT_SMI);
1137         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1138         svm_set_intercept(svm, INTERCEPT_RDPMC);
1139         svm_set_intercept(svm, INTERCEPT_CPUID);
1140         svm_set_intercept(svm, INTERCEPT_INVD);
1141         svm_set_intercept(svm, INTERCEPT_INVLPG);
1142         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1143         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1144         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1145         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1146         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1147         svm_set_intercept(svm, INTERCEPT_VMRUN);
1148         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1149         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1150         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1151         svm_set_intercept(svm, INTERCEPT_STGI);
1152         svm_set_intercept(svm, INTERCEPT_CLGI);
1153         svm_set_intercept(svm, INTERCEPT_SKINIT);
1154         svm_set_intercept(svm, INTERCEPT_WBINVD);
1155         svm_set_intercept(svm, INTERCEPT_XSETBV);
1156         svm_set_intercept(svm, INTERCEPT_RDPRU);
1157         svm_set_intercept(svm, INTERCEPT_RSM);
1158
1159         if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1160                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1161                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1162         }
1163
1164         if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1165                 svm_set_intercept(svm, INTERCEPT_HLT);
1166
1167         control->iopm_base_pa = __sme_set(iopm_base);
1168         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1169         control->int_ctl = V_INTR_MASKING_MASK;
1170
1171         init_seg(&save->es);
1172         init_seg(&save->ss);
1173         init_seg(&save->ds);
1174         init_seg(&save->fs);
1175         init_seg(&save->gs);
1176
1177         save->cs.selector = 0xf000;
1178         save->cs.base = 0xffff0000;
1179         /* Executable/Readable Code Segment */
1180         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1181                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1182         save->cs.limit = 0xffff;
1183
1184         save->gdtr.limit = 0xffff;
1185         save->idtr.limit = 0xffff;
1186
1187         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1188         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1189
1190         svm_set_efer(&svm->vcpu, 0);
1191         save->dr6 = 0xffff0ff0;
1192         kvm_set_rflags(&svm->vcpu, 2);
1193         save->rip = 0x0000fff0;
1194         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1195
1196         /*
1197          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1198          * It also updates the guest-visible cr0 value.
1199          */
1200         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1201         kvm_mmu_reset_context(&svm->vcpu);
1202
1203         save->cr4 = X86_CR4_PAE;
1204         /* rdx = ?? */
1205
1206         if (npt_enabled) {
1207                 /* Setup VMCB for Nested Paging */
1208                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1209                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1210                 clr_exception_intercept(svm, PF_VECTOR);
1211                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1212                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1213                 save->g_pat = svm->vcpu.arch.pat;
1214                 save->cr3 = 0;
1215                 save->cr4 = 0;
1216         }
1217         svm->asid_generation = 0;
1218
1219         svm->nested.vmcb12_gpa = 0;
1220         svm->vcpu.arch.hflags = 0;
1221
1222         if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1223                 control->pause_filter_count = pause_filter_count;
1224                 if (pause_filter_thresh)
1225                         control->pause_filter_thresh = pause_filter_thresh;
1226                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1227         } else {
1228                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1229         }
1230
1231         svm_check_invpcid(svm);
1232
1233         if (kvm_vcpu_apicv_active(&svm->vcpu))
1234                 avic_init_vmcb(svm);
1235
1236         /*
1237          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1238          * in VMCB and clear intercepts to avoid #VMEXIT.
1239          */
1240         if (vls) {
1241                 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1242                 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1243                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1244         }
1245
1246         if (vgif) {
1247                 svm_clr_intercept(svm, INTERCEPT_STGI);
1248                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1249                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1250         }
1251
1252         if (sev_guest(svm->vcpu.kvm)) {
1253                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1254                 clr_exception_intercept(svm, UD_VECTOR);
1255         }
1256
1257         vmcb_mark_all_dirty(svm->vmcb);
1258
1259         enable_gif(svm);
1260
1261 }
1262
1263 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1264 {
1265         struct vcpu_svm *svm = to_svm(vcpu);
1266         u32 dummy;
1267         u32 eax = 1;
1268
1269         svm->spec_ctrl = 0;
1270         svm->virt_spec_ctrl = 0;
1271
1272         if (!init_event) {
1273                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1274                                            MSR_IA32_APICBASE_ENABLE;
1275                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1276                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1277         }
1278         init_vmcb(svm);
1279
1280         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1281         kvm_rdx_write(vcpu, eax);
1282
1283         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1284                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1285 }
1286
1287 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1288 {
1289         struct vcpu_svm *svm;
1290         struct page *vmcb_page;
1291         int err;
1292
1293         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1294         svm = to_svm(vcpu);
1295
1296         err = -ENOMEM;
1297         vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1298         if (!vmcb_page)
1299                 goto out;
1300
1301         err = avic_init_vcpu(svm);
1302         if (err)
1303                 goto error_free_vmcb_page;
1304
1305         /* We initialize this flag to true to make sure that the is_running
1306          * bit would be set the first time the vcpu is loaded.
1307          */
1308         if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1309                 svm->avic_is_running = true;
1310
1311         svm->msrpm = svm_vcpu_alloc_msrpm();
1312         if (!svm->msrpm)
1313                 goto error_free_vmcb_page;
1314
1315         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1316
1317         svm->vmcb = page_address(vmcb_page);
1318         svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1319         svm->asid_generation = 0;
1320         init_vmcb(svm);
1321
1322         svm_init_osvw(vcpu);
1323         vcpu->arch.microcode_version = 0x01000065;
1324
1325         return 0;
1326
1327 error_free_vmcb_page:
1328         __free_page(vmcb_page);
1329 out:
1330         return err;
1331 }
1332
1333 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1334 {
1335         int i;
1336
1337         for_each_online_cpu(i)
1338                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1339 }
1340
1341 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1342 {
1343         struct vcpu_svm *svm = to_svm(vcpu);
1344
1345         /*
1346          * The vmcb page can be recycled, causing a false negative in
1347          * svm_vcpu_load(). So, ensure that no logical CPU has this
1348          * vmcb page recorded as its current vmcb.
1349          */
1350         svm_clear_current_vmcb(svm->vmcb);
1351
1352         svm_free_nested(svm);
1353
1354         __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1355         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1356 }
1357
1358 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1359 {
1360         struct vcpu_svm *svm = to_svm(vcpu);
1361         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1362         int i;
1363
1364         if (unlikely(cpu != vcpu->cpu)) {
1365                 svm->asid_generation = 0;
1366                 vmcb_mark_all_dirty(svm->vmcb);
1367         }
1368
1369 #ifdef CONFIG_X86_64
1370         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1371 #endif
1372         savesegment(fs, svm->host.fs);
1373         savesegment(gs, svm->host.gs);
1374         svm->host.ldt = kvm_read_ldt();
1375
1376         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1377                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1378
1379         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1380                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1381                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1382                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1383                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1384                 }
1385         }
1386         /* This assumes that the kernel never uses MSR_TSC_AUX */
1387         if (static_cpu_has(X86_FEATURE_RDTSCP))
1388                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1389
1390         if (sd->current_vmcb != svm->vmcb) {
1391                 sd->current_vmcb = svm->vmcb;
1392                 indirect_branch_prediction_barrier();
1393         }
1394         avic_vcpu_load(vcpu, cpu);
1395 }
1396
1397 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1398 {
1399         struct vcpu_svm *svm = to_svm(vcpu);
1400         int i;
1401
1402         avic_vcpu_put(vcpu);
1403
1404         ++vcpu->stat.host_state_reload;
1405         kvm_load_ldt(svm->host.ldt);
1406 #ifdef CONFIG_X86_64
1407         loadsegment(fs, svm->host.fs);
1408         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1409         load_gs_index(svm->host.gs);
1410 #else
1411 #ifdef CONFIG_X86_32_LAZY_GS
1412         loadsegment(gs, svm->host.gs);
1413 #endif
1414 #endif
1415         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1416                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1417 }
1418
1419 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1420 {
1421         struct vcpu_svm *svm = to_svm(vcpu);
1422         unsigned long rflags = svm->vmcb->save.rflags;
1423
1424         if (svm->nmi_singlestep) {
1425                 /* Hide our flags if they were not set by the guest */
1426                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1427                         rflags &= ~X86_EFLAGS_TF;
1428                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1429                         rflags &= ~X86_EFLAGS_RF;
1430         }
1431         return rflags;
1432 }
1433
1434 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1435 {
1436         if (to_svm(vcpu)->nmi_singlestep)
1437                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1438
1439        /*
1440         * Any change of EFLAGS.VM is accompanied by a reload of SS
1441         * (caused by either a task switch or an inter-privilege IRET),
1442         * so we do not need to update the CPL here.
1443         */
1444         to_svm(vcpu)->vmcb->save.rflags = rflags;
1445 }
1446
1447 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1448 {
1449         switch (reg) {
1450         case VCPU_EXREG_PDPTR:
1451                 BUG_ON(!npt_enabled);
1452                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1453                 break;
1454         default:
1455                 WARN_ON_ONCE(1);
1456         }
1457 }
1458
1459 static void svm_set_vintr(struct vcpu_svm *svm)
1460 {
1461         struct vmcb_control_area *control;
1462
1463         /* The following fields are ignored when AVIC is enabled */
1464         WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1465         svm_set_intercept(svm, INTERCEPT_VINTR);
1466
1467         /*
1468          * This is just a dummy VINTR to actually cause a vmexit to happen.
1469          * Actual injection of virtual interrupts happens through EVENTINJ.
1470          */
1471         control = &svm->vmcb->control;
1472         control->int_vector = 0x0;
1473         control->int_ctl &= ~V_INTR_PRIO_MASK;
1474         control->int_ctl |= V_IRQ_MASK |
1475                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1476         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1477 }
1478
1479 static void svm_clear_vintr(struct vcpu_svm *svm)
1480 {
1481         const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1482         svm_clr_intercept(svm, INTERCEPT_VINTR);
1483
1484         /* Drop int_ctl fields related to VINTR injection.  */
1485         svm->vmcb->control.int_ctl &= mask;
1486         if (is_guest_mode(&svm->vcpu)) {
1487                 svm->nested.hsave->control.int_ctl &= mask;
1488
1489                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1490                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1491                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1492         }
1493
1494         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1495 }
1496
1497 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1498 {
1499         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1500
1501         switch (seg) {
1502         case VCPU_SREG_CS: return &save->cs;
1503         case VCPU_SREG_DS: return &save->ds;
1504         case VCPU_SREG_ES: return &save->es;
1505         case VCPU_SREG_FS: return &save->fs;
1506         case VCPU_SREG_GS: return &save->gs;
1507         case VCPU_SREG_SS: return &save->ss;
1508         case VCPU_SREG_TR: return &save->tr;
1509         case VCPU_SREG_LDTR: return &save->ldtr;
1510         }
1511         BUG();
1512         return NULL;
1513 }
1514
1515 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1516 {
1517         struct vmcb_seg *s = svm_seg(vcpu, seg);
1518
1519         return s->base;
1520 }
1521
1522 static void svm_get_segment(struct kvm_vcpu *vcpu,
1523                             struct kvm_segment *var, int seg)
1524 {
1525         struct vmcb_seg *s = svm_seg(vcpu, seg);
1526
1527         var->base = s->base;
1528         var->limit = s->limit;
1529         var->selector = s->selector;
1530         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1531         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1532         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1533         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1534         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1535         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1536         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1537
1538         /*
1539          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1540          * However, the SVM spec states that the G bit is not observed by the
1541          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1542          * So let's synthesize a legal G bit for all segments, this helps
1543          * running KVM nested. It also helps cross-vendor migration, because
1544          * Intel's vmentry has a check on the 'G' bit.
1545          */
1546         var->g = s->limit > 0xfffff;
1547
1548         /*
1549          * AMD's VMCB does not have an explicit unusable field, so emulate it
1550          * for cross vendor migration purposes by "not present"
1551          */
1552         var->unusable = !var->present;
1553
1554         switch (seg) {
1555         case VCPU_SREG_TR:
1556                 /*
1557                  * Work around a bug where the busy flag in the tr selector
1558                  * isn't exposed
1559                  */
1560                 var->type |= 0x2;
1561                 break;
1562         case VCPU_SREG_DS:
1563         case VCPU_SREG_ES:
1564         case VCPU_SREG_FS:
1565         case VCPU_SREG_GS:
1566                 /*
1567                  * The accessed bit must always be set in the segment
1568                  * descriptor cache, although it can be cleared in the
1569                  * descriptor, the cached bit always remains at 1. Since
1570                  * Intel has a check on this, set it here to support
1571                  * cross-vendor migration.
1572                  */
1573                 if (!var->unusable)
1574                         var->type |= 0x1;
1575                 break;
1576         case VCPU_SREG_SS:
1577                 /*
1578                  * On AMD CPUs sometimes the DB bit in the segment
1579                  * descriptor is left as 1, although the whole segment has
1580                  * been made unusable. Clear it here to pass an Intel VMX
1581                  * entry check when cross vendor migrating.
1582                  */
1583                 if (var->unusable)
1584                         var->db = 0;
1585                 /* This is symmetric with svm_set_segment() */
1586                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1587                 break;
1588         }
1589 }
1590
1591 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1592 {
1593         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1594
1595         return save->cpl;
1596 }
1597
1598 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1599 {
1600         struct vcpu_svm *svm = to_svm(vcpu);
1601
1602         dt->size = svm->vmcb->save.idtr.limit;
1603         dt->address = svm->vmcb->save.idtr.base;
1604 }
1605
1606 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1607 {
1608         struct vcpu_svm *svm = to_svm(vcpu);
1609
1610         svm->vmcb->save.idtr.limit = dt->size;
1611         svm->vmcb->save.idtr.base = dt->address ;
1612         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1613 }
1614
1615 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1616 {
1617         struct vcpu_svm *svm = to_svm(vcpu);
1618
1619         dt->size = svm->vmcb->save.gdtr.limit;
1620         dt->address = svm->vmcb->save.gdtr.base;
1621 }
1622
1623 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1624 {
1625         struct vcpu_svm *svm = to_svm(vcpu);
1626
1627         svm->vmcb->save.gdtr.limit = dt->size;
1628         svm->vmcb->save.gdtr.base = dt->address ;
1629         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1630 }
1631
1632 static void update_cr0_intercept(struct vcpu_svm *svm)
1633 {
1634         ulong gcr0 = svm->vcpu.arch.cr0;
1635         u64 *hcr0 = &svm->vmcb->save.cr0;
1636
1637         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1638                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1639
1640         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1641
1642         if (gcr0 == *hcr0) {
1643                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1644                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1645         } else {
1646                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1647                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1648         }
1649 }
1650
1651 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1652 {
1653         struct vcpu_svm *svm = to_svm(vcpu);
1654
1655 #ifdef CONFIG_X86_64
1656         if (vcpu->arch.efer & EFER_LME) {
1657                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1658                         vcpu->arch.efer |= EFER_LMA;
1659                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1660                 }
1661
1662                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1663                         vcpu->arch.efer &= ~EFER_LMA;
1664                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1665                 }
1666         }
1667 #endif
1668         vcpu->arch.cr0 = cr0;
1669
1670         if (!npt_enabled)
1671                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1672
1673         /*
1674          * re-enable caching here because the QEMU bios
1675          * does not do it - this results in some delay at
1676          * reboot
1677          */
1678         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1679                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1680         svm->vmcb->save.cr0 = cr0;
1681         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1682         update_cr0_intercept(svm);
1683 }
1684
1685 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1686 {
1687         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1688         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1689
1690         if (cr4 & X86_CR4_VMXE)
1691                 return 1;
1692
1693         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1694                 svm_flush_tlb(vcpu);
1695
1696         vcpu->arch.cr4 = cr4;
1697         if (!npt_enabled)
1698                 cr4 |= X86_CR4_PAE;
1699         cr4 |= host_cr4_mce;
1700         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1701         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1702         return 0;
1703 }
1704
1705 static void svm_set_segment(struct kvm_vcpu *vcpu,
1706                             struct kvm_segment *var, int seg)
1707 {
1708         struct vcpu_svm *svm = to_svm(vcpu);
1709         struct vmcb_seg *s = svm_seg(vcpu, seg);
1710
1711         s->base = var->base;
1712         s->limit = var->limit;
1713         s->selector = var->selector;
1714         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1715         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1716         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1717         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1718         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1719         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1720         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1721         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1722
1723         /*
1724          * This is always accurate, except if SYSRET returned to a segment
1725          * with SS.DPL != 3.  Intel does not have this quirk, and always
1726          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1727          * would entail passing the CPL to userspace and back.
1728          */
1729         if (seg == VCPU_SREG_SS)
1730                 /* This is symmetric with svm_get_segment() */
1731                 svm->vmcb->save.cpl = (var->dpl & 3);
1732
1733         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1734 }
1735
1736 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1737 {
1738         struct vcpu_svm *svm = to_svm(vcpu);
1739
1740         clr_exception_intercept(svm, BP_VECTOR);
1741
1742         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1743                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1744                         set_exception_intercept(svm, BP_VECTOR);
1745         }
1746 }
1747
1748 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1749 {
1750         if (sd->next_asid > sd->max_asid) {
1751                 ++sd->asid_generation;
1752                 sd->next_asid = sd->min_asid;
1753                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1754         }
1755
1756         svm->asid_generation = sd->asid_generation;
1757         svm->vmcb->control.asid = sd->next_asid++;
1758
1759         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1760 }
1761
1762 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1763 {
1764         struct vmcb *vmcb = svm->vmcb;
1765
1766         if (unlikely(value != vmcb->save.dr6)) {
1767                 vmcb->save.dr6 = value;
1768                 vmcb_mark_dirty(vmcb, VMCB_DR);
1769         }
1770 }
1771
1772 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1773 {
1774         struct vcpu_svm *svm = to_svm(vcpu);
1775
1776         get_debugreg(vcpu->arch.db[0], 0);
1777         get_debugreg(vcpu->arch.db[1], 1);
1778         get_debugreg(vcpu->arch.db[2], 2);
1779         get_debugreg(vcpu->arch.db[3], 3);
1780         /*
1781          * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1782          * because db_interception might need it.  We can do it before vmentry.
1783          */
1784         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1785         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1786         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1787         set_dr_intercepts(svm);
1788 }
1789
1790 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1791 {
1792         struct vcpu_svm *svm = to_svm(vcpu);
1793
1794         svm->vmcb->save.dr7 = value;
1795         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1796 }
1797
1798 static int pf_interception(struct vcpu_svm *svm)
1799 {
1800         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1801         u64 error_code = svm->vmcb->control.exit_info_1;
1802
1803         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1804                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1805                         svm->vmcb->control.insn_bytes : NULL,
1806                         svm->vmcb->control.insn_len);
1807 }
1808
1809 static int npf_interception(struct vcpu_svm *svm)
1810 {
1811         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1812         u64 error_code = svm->vmcb->control.exit_info_1;
1813
1814         trace_kvm_page_fault(fault_address, error_code);
1815         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1816                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1817                         svm->vmcb->control.insn_bytes : NULL,
1818                         svm->vmcb->control.insn_len);
1819 }
1820
1821 static int db_interception(struct vcpu_svm *svm)
1822 {
1823         struct kvm_run *kvm_run = svm->vcpu.run;
1824         struct kvm_vcpu *vcpu = &svm->vcpu;
1825
1826         if (!(svm->vcpu.guest_debug &
1827               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1828                 !svm->nmi_singlestep) {
1829                 u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1830                 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1831                 return 1;
1832         }
1833
1834         if (svm->nmi_singlestep) {
1835                 disable_nmi_singlestep(svm);
1836                 /* Make sure we check for pending NMIs upon entry */
1837                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1838         }
1839
1840         if (svm->vcpu.guest_debug &
1841             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1842                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1843                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1844                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1845                 kvm_run->debug.arch.pc =
1846                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1847                 kvm_run->debug.arch.exception = DB_VECTOR;
1848                 return 0;
1849         }
1850
1851         return 1;
1852 }
1853
1854 static int bp_interception(struct vcpu_svm *svm)
1855 {
1856         struct kvm_run *kvm_run = svm->vcpu.run;
1857
1858         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1859         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1860         kvm_run->debug.arch.exception = BP_VECTOR;
1861         return 0;
1862 }
1863
1864 static int ud_interception(struct vcpu_svm *svm)
1865 {
1866         return handle_ud(&svm->vcpu);
1867 }
1868
1869 static int ac_interception(struct vcpu_svm *svm)
1870 {
1871         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1872         return 1;
1873 }
1874
1875 static int gp_interception(struct vcpu_svm *svm)
1876 {
1877         struct kvm_vcpu *vcpu = &svm->vcpu;
1878         u32 error_code = svm->vmcb->control.exit_info_1;
1879
1880         WARN_ON_ONCE(!enable_vmware_backdoor);
1881
1882         /*
1883          * VMware backdoor emulation on #GP interception only handles IN{S},
1884          * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1885          */
1886         if (error_code) {
1887                 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1888                 return 1;
1889         }
1890         return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1891 }
1892
1893 static bool is_erratum_383(void)
1894 {
1895         int err, i;
1896         u64 value;
1897
1898         if (!erratum_383_found)
1899                 return false;
1900
1901         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1902         if (err)
1903                 return false;
1904
1905         /* Bit 62 may or may not be set for this mce */
1906         value &= ~(1ULL << 62);
1907
1908         if (value != 0xb600000000010015ULL)
1909                 return false;
1910
1911         /* Clear MCi_STATUS registers */
1912         for (i = 0; i < 6; ++i)
1913                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1914
1915         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1916         if (!err) {
1917                 u32 low, high;
1918
1919                 value &= ~(1ULL << 2);
1920                 low    = lower_32_bits(value);
1921                 high   = upper_32_bits(value);
1922
1923                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1924         }
1925
1926         /* Flush tlb to evict multi-match entries */
1927         __flush_tlb_all();
1928
1929         return true;
1930 }
1931
1932 /*
1933  * Trigger machine check on the host. We assume all the MSRs are already set up
1934  * by the CPU and that we still run on the same CPU as the MCE occurred on.
1935  * We pass a fake environment to the machine check handler because we want
1936  * the guest to be always treated like user space, no matter what context
1937  * it used internally.
1938  */
1939 static void kvm_machine_check(void)
1940 {
1941 #if defined(CONFIG_X86_MCE)
1942         struct pt_regs regs = {
1943                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
1944                 .flags = X86_EFLAGS_IF,
1945         };
1946
1947         do_machine_check(&regs);
1948 #endif
1949 }
1950
1951 static void svm_handle_mce(struct vcpu_svm *svm)
1952 {
1953         if (is_erratum_383()) {
1954                 /*
1955                  * Erratum 383 triggered. Guest state is corrupt so kill the
1956                  * guest.
1957                  */
1958                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1959
1960                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1961
1962                 return;
1963         }
1964
1965         /*
1966          * On an #MC intercept the MCE handler is not called automatically in
1967          * the host. So do it by hand here.
1968          */
1969         kvm_machine_check();
1970 }
1971
1972 static int mc_interception(struct vcpu_svm *svm)
1973 {
1974         return 1;
1975 }
1976
1977 static int shutdown_interception(struct vcpu_svm *svm)
1978 {
1979         struct kvm_run *kvm_run = svm->vcpu.run;
1980
1981         /*
1982          * VMCB is undefined after a SHUTDOWN intercept
1983          * so reinitialize it.
1984          */
1985         clear_page(svm->vmcb);
1986         init_vmcb(svm);
1987
1988         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1989         return 0;
1990 }
1991
1992 static int io_interception(struct vcpu_svm *svm)
1993 {
1994         struct kvm_vcpu *vcpu = &svm->vcpu;
1995         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1996         int size, in, string;
1997         unsigned port;
1998
1999         ++svm->vcpu.stat.io_exits;
2000         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2001         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2002         if (string)
2003                 return kvm_emulate_instruction(vcpu, 0);
2004
2005         port = io_info >> 16;
2006         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2007         svm->next_rip = svm->vmcb->control.exit_info_2;
2008
2009         return kvm_fast_pio(&svm->vcpu, size, port, in);
2010 }
2011
2012 static int nmi_interception(struct vcpu_svm *svm)
2013 {
2014         return 1;
2015 }
2016
2017 static int intr_interception(struct vcpu_svm *svm)
2018 {
2019         ++svm->vcpu.stat.irq_exits;
2020         return 1;
2021 }
2022
2023 static int nop_on_interception(struct vcpu_svm *svm)
2024 {
2025         return 1;
2026 }
2027
2028 static int halt_interception(struct vcpu_svm *svm)
2029 {
2030         return kvm_emulate_halt(&svm->vcpu);
2031 }
2032
2033 static int vmmcall_interception(struct vcpu_svm *svm)
2034 {
2035         return kvm_emulate_hypercall(&svm->vcpu);
2036 }
2037
2038 static int vmload_interception(struct vcpu_svm *svm)
2039 {
2040         struct vmcb *nested_vmcb;
2041         struct kvm_host_map map;
2042         int ret;
2043
2044         if (nested_svm_check_permissions(svm))
2045                 return 1;
2046
2047         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2048         if (ret) {
2049                 if (ret == -EINVAL)
2050                         kvm_inject_gp(&svm->vcpu, 0);
2051                 return 1;
2052         }
2053
2054         nested_vmcb = map.hva;
2055
2056         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2057
2058         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2059         kvm_vcpu_unmap(&svm->vcpu, &map, true);
2060
2061         return ret;
2062 }
2063
2064 static int vmsave_interception(struct vcpu_svm *svm)
2065 {
2066         struct vmcb *nested_vmcb;
2067         struct kvm_host_map map;
2068         int ret;
2069
2070         if (nested_svm_check_permissions(svm))
2071                 return 1;
2072
2073         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2074         if (ret) {
2075                 if (ret == -EINVAL)
2076                         kvm_inject_gp(&svm->vcpu, 0);
2077                 return 1;
2078         }
2079
2080         nested_vmcb = map.hva;
2081
2082         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2083
2084         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2085         kvm_vcpu_unmap(&svm->vcpu, &map, true);
2086
2087         return ret;
2088 }
2089
2090 static int vmrun_interception(struct vcpu_svm *svm)
2091 {
2092         if (nested_svm_check_permissions(svm))
2093                 return 1;
2094
2095         return nested_svm_vmrun(svm);
2096 }
2097
2098 void svm_set_gif(struct vcpu_svm *svm, bool value)
2099 {
2100         if (value) {
2101                 /*
2102                  * If VGIF is enabled, the STGI intercept is only added to
2103                  * detect the opening of the SMI/NMI window; remove it now.
2104                  * Likewise, clear the VINTR intercept, we will set it
2105                  * again while processing KVM_REQ_EVENT if needed.
2106                  */
2107                 if (vgif_enabled(svm))
2108                         svm_clr_intercept(svm, INTERCEPT_STGI);
2109                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2110                         svm_clear_vintr(svm);
2111
2112                 enable_gif(svm);
2113                 if (svm->vcpu.arch.smi_pending ||
2114                     svm->vcpu.arch.nmi_pending ||
2115                     kvm_cpu_has_injectable_intr(&svm->vcpu))
2116                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2117         } else {
2118                 disable_gif(svm);
2119
2120                 /*
2121                  * After a CLGI no interrupts should come.  But if vGIF is
2122                  * in use, we still rely on the VINTR intercept (rather than
2123                  * STGI) to detect an open interrupt window.
2124                 */
2125                 if (!vgif_enabled(svm))
2126                         svm_clear_vintr(svm);
2127         }
2128 }
2129
2130 static int stgi_interception(struct vcpu_svm *svm)
2131 {
2132         int ret;
2133
2134         if (nested_svm_check_permissions(svm))
2135                 return 1;
2136
2137         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2138         svm_set_gif(svm, true);
2139         return ret;
2140 }
2141
2142 static int clgi_interception(struct vcpu_svm *svm)
2143 {
2144         int ret;
2145
2146         if (nested_svm_check_permissions(svm))
2147                 return 1;
2148
2149         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2150         svm_set_gif(svm, false);
2151         return ret;
2152 }
2153
2154 static int invlpga_interception(struct vcpu_svm *svm)
2155 {
2156         struct kvm_vcpu *vcpu = &svm->vcpu;
2157
2158         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2159                           kvm_rax_read(&svm->vcpu));
2160
2161         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2162         kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2163
2164         return kvm_skip_emulated_instruction(&svm->vcpu);
2165 }
2166
2167 static int skinit_interception(struct vcpu_svm *svm)
2168 {
2169         trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2170
2171         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2172         return 1;
2173 }
2174
2175 static int wbinvd_interception(struct vcpu_svm *svm)
2176 {
2177         return kvm_emulate_wbinvd(&svm->vcpu);
2178 }
2179
2180 static int xsetbv_interception(struct vcpu_svm *svm)
2181 {
2182         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2183         u32 index = kvm_rcx_read(&svm->vcpu);
2184
2185         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2186                 return kvm_skip_emulated_instruction(&svm->vcpu);
2187         }
2188
2189         return 1;
2190 }
2191
2192 static int rdpru_interception(struct vcpu_svm *svm)
2193 {
2194         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2195         return 1;
2196 }
2197
2198 static int task_switch_interception(struct vcpu_svm *svm)
2199 {
2200         u16 tss_selector;
2201         int reason;
2202         int int_type = svm->vmcb->control.exit_int_info &
2203                 SVM_EXITINTINFO_TYPE_MASK;
2204         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2205         uint32_t type =
2206                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2207         uint32_t idt_v =
2208                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2209         bool has_error_code = false;
2210         u32 error_code = 0;
2211
2212         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2213
2214         if (svm->vmcb->control.exit_info_2 &
2215             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2216                 reason = TASK_SWITCH_IRET;
2217         else if (svm->vmcb->control.exit_info_2 &
2218                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2219                 reason = TASK_SWITCH_JMP;
2220         else if (idt_v)
2221                 reason = TASK_SWITCH_GATE;
2222         else
2223                 reason = TASK_SWITCH_CALL;
2224
2225         if (reason == TASK_SWITCH_GATE) {
2226                 switch (type) {
2227                 case SVM_EXITINTINFO_TYPE_NMI:
2228                         svm->vcpu.arch.nmi_injected = false;
2229                         break;
2230                 case SVM_EXITINTINFO_TYPE_EXEPT:
2231                         if (svm->vmcb->control.exit_info_2 &
2232                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2233                                 has_error_code = true;
2234                                 error_code =
2235                                         (u32)svm->vmcb->control.exit_info_2;
2236                         }
2237                         kvm_clear_exception_queue(&svm->vcpu);
2238                         break;
2239                 case SVM_EXITINTINFO_TYPE_INTR:
2240                         kvm_clear_interrupt_queue(&svm->vcpu);
2241                         break;
2242                 default:
2243                         break;
2244                 }
2245         }
2246
2247         if (reason != TASK_SWITCH_GATE ||
2248             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2249             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2250              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2251                 if (!skip_emulated_instruction(&svm->vcpu))
2252                         return 0;
2253         }
2254
2255         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2256                 int_vec = -1;
2257
2258         return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2259                                has_error_code, error_code);
2260 }
2261
2262 static int cpuid_interception(struct vcpu_svm *svm)
2263 {
2264         return kvm_emulate_cpuid(&svm->vcpu);
2265 }
2266
2267 static int iret_interception(struct vcpu_svm *svm)
2268 {
2269         ++svm->vcpu.stat.nmi_window_exits;
2270         svm_clr_intercept(svm, INTERCEPT_IRET);
2271         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2272         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2273         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2274         return 1;
2275 }
2276
2277 static int invd_interception(struct vcpu_svm *svm)
2278 {
2279         /* Treat an INVD instruction as a NOP and just skip it. */
2280         return kvm_skip_emulated_instruction(&svm->vcpu);
2281 }
2282
2283 static int invlpg_interception(struct vcpu_svm *svm)
2284 {
2285         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2286                 return kvm_emulate_instruction(&svm->vcpu, 0);
2287
2288         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2289         return kvm_skip_emulated_instruction(&svm->vcpu);
2290 }
2291
2292 static int emulate_on_interception(struct vcpu_svm *svm)
2293 {
2294         return kvm_emulate_instruction(&svm->vcpu, 0);
2295 }
2296
2297 static int rsm_interception(struct vcpu_svm *svm)
2298 {
2299         return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2300 }
2301
2302 static int rdpmc_interception(struct vcpu_svm *svm)
2303 {
2304         int err;
2305
2306         if (!nrips)
2307                 return emulate_on_interception(svm);
2308
2309         err = kvm_rdpmc(&svm->vcpu);
2310         return kvm_complete_insn_gp(&svm->vcpu, err);
2311 }
2312
2313 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2314                                             unsigned long val)
2315 {
2316         unsigned long cr0 = svm->vcpu.arch.cr0;
2317         bool ret = false;
2318
2319         if (!is_guest_mode(&svm->vcpu) ||
2320             (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2321                 return false;
2322
2323         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2324         val &= ~SVM_CR0_SELECTIVE_MASK;
2325
2326         if (cr0 ^ val) {
2327                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2328                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2329         }
2330
2331         return ret;
2332 }
2333
2334 #define CR_VALID (1ULL << 63)
2335
2336 static int cr_interception(struct vcpu_svm *svm)
2337 {
2338         int reg, cr;
2339         unsigned long val;
2340         int err;
2341
2342         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2343                 return emulate_on_interception(svm);
2344
2345         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2346                 return emulate_on_interception(svm);
2347
2348         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2349         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2350                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2351         else
2352                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2353
2354         err = 0;
2355         if (cr >= 16) { /* mov to cr */
2356                 cr -= 16;
2357                 val = kvm_register_read(&svm->vcpu, reg);
2358                 trace_kvm_cr_write(cr, val);
2359                 switch (cr) {
2360                 case 0:
2361                         if (!check_selective_cr0_intercepted(svm, val))
2362                                 err = kvm_set_cr0(&svm->vcpu, val);
2363                         else
2364                                 return 1;
2365
2366                         break;
2367                 case 3:
2368                         err = kvm_set_cr3(&svm->vcpu, val);
2369                         break;
2370                 case 4:
2371                         err = kvm_set_cr4(&svm->vcpu, val);
2372                         break;
2373                 case 8:
2374                         err = kvm_set_cr8(&svm->vcpu, val);
2375                         break;
2376                 default:
2377                         WARN(1, "unhandled write to CR%d", cr);
2378                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2379                         return 1;
2380                 }
2381         } else { /* mov from cr */
2382                 switch (cr) {
2383                 case 0:
2384                         val = kvm_read_cr0(&svm->vcpu);
2385                         break;
2386                 case 2:
2387                         val = svm->vcpu.arch.cr2;
2388                         break;
2389                 case 3:
2390                         val = kvm_read_cr3(&svm->vcpu);
2391                         break;
2392                 case 4:
2393                         val = kvm_read_cr4(&svm->vcpu);
2394                         break;
2395                 case 8:
2396                         val = kvm_get_cr8(&svm->vcpu);
2397                         break;
2398                 default:
2399                         WARN(1, "unhandled read from CR%d", cr);
2400                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2401                         return 1;
2402                 }
2403                 kvm_register_write(&svm->vcpu, reg, val);
2404                 trace_kvm_cr_read(cr, val);
2405         }
2406         return kvm_complete_insn_gp(&svm->vcpu, err);
2407 }
2408
2409 static int dr_interception(struct vcpu_svm *svm)
2410 {
2411         int reg, dr;
2412         unsigned long val;
2413
2414         if (svm->vcpu.guest_debug == 0) {
2415                 /*
2416                  * No more DR vmexits; force a reload of the debug registers
2417                  * and reenter on this instruction.  The next vmexit will
2418                  * retrieve the full state of the debug registers.
2419                  */
2420                 clr_dr_intercepts(svm);
2421                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2422                 return 1;
2423         }
2424
2425         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2426                 return emulate_on_interception(svm);
2427
2428         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2429         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2430
2431         if (dr >= 16) { /* mov to DRn */
2432                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2433                         return 1;
2434                 val = kvm_register_read(&svm->vcpu, reg);
2435                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2436         } else {
2437                 if (!kvm_require_dr(&svm->vcpu, dr))
2438                         return 1;
2439                 kvm_get_dr(&svm->vcpu, dr, &val);
2440                 kvm_register_write(&svm->vcpu, reg, val);
2441         }
2442
2443         return kvm_skip_emulated_instruction(&svm->vcpu);
2444 }
2445
2446 static int cr8_write_interception(struct vcpu_svm *svm)
2447 {
2448         struct kvm_run *kvm_run = svm->vcpu.run;
2449         int r;
2450
2451         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2452         /* instruction emulation calls kvm_set_cr8() */
2453         r = cr_interception(svm);
2454         if (lapic_in_kernel(&svm->vcpu))
2455                 return r;
2456         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2457                 return r;
2458         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2459         return 0;
2460 }
2461
2462 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2463 {
2464         msr->data = 0;
2465
2466         switch (msr->index) {
2467         case MSR_F10H_DECFG:
2468                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2469                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2470                 break;
2471         case MSR_IA32_PERF_CAPABILITIES:
2472                 return 0;
2473         default:
2474                 return KVM_MSR_RET_INVALID;
2475         }
2476
2477         return 0;
2478 }
2479
2480 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2481 {
2482         struct vcpu_svm *svm = to_svm(vcpu);
2483
2484         switch (msr_info->index) {
2485         case MSR_STAR:
2486                 msr_info->data = svm->vmcb->save.star;
2487                 break;
2488 #ifdef CONFIG_X86_64
2489         case MSR_LSTAR:
2490                 msr_info->data = svm->vmcb->save.lstar;
2491                 break;
2492         case MSR_CSTAR:
2493                 msr_info->data = svm->vmcb->save.cstar;
2494                 break;
2495         case MSR_KERNEL_GS_BASE:
2496                 msr_info->data = svm->vmcb->save.kernel_gs_base;
2497                 break;
2498         case MSR_SYSCALL_MASK:
2499                 msr_info->data = svm->vmcb->save.sfmask;
2500                 break;
2501 #endif
2502         case MSR_IA32_SYSENTER_CS:
2503                 msr_info->data = svm->vmcb->save.sysenter_cs;
2504                 break;
2505         case MSR_IA32_SYSENTER_EIP:
2506                 msr_info->data = svm->sysenter_eip;
2507                 break;
2508         case MSR_IA32_SYSENTER_ESP:
2509                 msr_info->data = svm->sysenter_esp;
2510                 break;
2511         case MSR_TSC_AUX:
2512                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2513                         return 1;
2514                 msr_info->data = svm->tsc_aux;
2515                 break;
2516         /*
2517          * Nobody will change the following 5 values in the VMCB so we can
2518          * safely return them on rdmsr. They will always be 0 until LBRV is
2519          * implemented.
2520          */
2521         case MSR_IA32_DEBUGCTLMSR:
2522                 msr_info->data = svm->vmcb->save.dbgctl;
2523                 break;
2524         case MSR_IA32_LASTBRANCHFROMIP:
2525                 msr_info->data = svm->vmcb->save.br_from;
2526                 break;
2527         case MSR_IA32_LASTBRANCHTOIP:
2528                 msr_info->data = svm->vmcb->save.br_to;
2529                 break;
2530         case MSR_IA32_LASTINTFROMIP:
2531                 msr_info->data = svm->vmcb->save.last_excp_from;
2532                 break;
2533         case MSR_IA32_LASTINTTOIP:
2534                 msr_info->data = svm->vmcb->save.last_excp_to;
2535                 break;
2536         case MSR_VM_HSAVE_PA:
2537                 msr_info->data = svm->nested.hsave_msr;
2538                 break;
2539         case MSR_VM_CR:
2540                 msr_info->data = svm->nested.vm_cr_msr;
2541                 break;
2542         case MSR_IA32_SPEC_CTRL:
2543                 if (!msr_info->host_initiated &&
2544                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2545                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2546                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2547                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2548                         return 1;
2549
2550                 msr_info->data = svm->spec_ctrl;
2551                 break;
2552         case MSR_AMD64_VIRT_SPEC_CTRL:
2553                 if (!msr_info->host_initiated &&
2554                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2555                         return 1;
2556
2557                 msr_info->data = svm->virt_spec_ctrl;
2558                 break;
2559         case MSR_F15H_IC_CFG: {
2560
2561                 int family, model;
2562
2563                 family = guest_cpuid_family(vcpu);
2564                 model  = guest_cpuid_model(vcpu);
2565
2566                 if (family < 0 || model < 0)
2567                         return kvm_get_msr_common(vcpu, msr_info);
2568
2569                 msr_info->data = 0;
2570
2571                 if (family == 0x15 &&
2572                     (model >= 0x2 && model < 0x20))
2573                         msr_info->data = 0x1E;
2574                 }
2575                 break;
2576         case MSR_F10H_DECFG:
2577                 msr_info->data = svm->msr_decfg;
2578                 break;
2579         default:
2580                 return kvm_get_msr_common(vcpu, msr_info);
2581         }
2582         return 0;
2583 }
2584
2585 static int rdmsr_interception(struct vcpu_svm *svm)
2586 {
2587         return kvm_emulate_rdmsr(&svm->vcpu);
2588 }
2589
2590 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2591 {
2592         struct vcpu_svm *svm = to_svm(vcpu);
2593         int svm_dis, chg_mask;
2594
2595         if (data & ~SVM_VM_CR_VALID_MASK)
2596                 return 1;
2597
2598         chg_mask = SVM_VM_CR_VALID_MASK;
2599
2600         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2601                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2602
2603         svm->nested.vm_cr_msr &= ~chg_mask;
2604         svm->nested.vm_cr_msr |= (data & chg_mask);
2605
2606         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2607
2608         /* check for svm_disable while efer.svme is set */
2609         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2610                 return 1;
2611
2612         return 0;
2613 }
2614
2615 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2616 {
2617         struct vcpu_svm *svm = to_svm(vcpu);
2618
2619         u32 ecx = msr->index;
2620         u64 data = msr->data;
2621         switch (ecx) {
2622         case MSR_IA32_CR_PAT:
2623                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2624                         return 1;
2625                 vcpu->arch.pat = data;
2626                 svm->vmcb->save.g_pat = data;
2627                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2628                 break;
2629         case MSR_IA32_SPEC_CTRL:
2630                 if (!msr->host_initiated &&
2631                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2632                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2633                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2634                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2635                         return 1;
2636
2637                 if (kvm_spec_ctrl_test_value(data))
2638                         return 1;
2639
2640                 svm->spec_ctrl = data;
2641                 if (!data)
2642                         break;
2643
2644                 /*
2645                  * For non-nested:
2646                  * When it's written (to non-zero) for the first time, pass
2647                  * it through.
2648                  *
2649                  * For nested:
2650                  * The handling of the MSR bitmap for L2 guests is done in
2651                  * nested_svm_vmrun_msrpm.
2652                  * We update the L1 MSR bit as well since it will end up
2653                  * touching the MSR anyway now.
2654                  */
2655                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2656                 break;
2657         case MSR_IA32_PRED_CMD:
2658                 if (!msr->host_initiated &&
2659                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
2660                         return 1;
2661
2662                 if (data & ~PRED_CMD_IBPB)
2663                         return 1;
2664                 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
2665                         return 1;
2666                 if (!data)
2667                         break;
2668
2669                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2670                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2671                 break;
2672         case MSR_AMD64_VIRT_SPEC_CTRL:
2673                 if (!msr->host_initiated &&
2674                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2675                         return 1;
2676
2677                 if (data & ~SPEC_CTRL_SSBD)
2678                         return 1;
2679
2680                 svm->virt_spec_ctrl = data;
2681                 break;
2682         case MSR_STAR:
2683                 svm->vmcb->save.star = data;
2684                 break;
2685 #ifdef CONFIG_X86_64
2686         case MSR_LSTAR:
2687                 svm->vmcb->save.lstar = data;
2688                 break;
2689         case MSR_CSTAR:
2690                 svm->vmcb->save.cstar = data;
2691                 break;
2692         case MSR_KERNEL_GS_BASE:
2693                 svm->vmcb->save.kernel_gs_base = data;
2694                 break;
2695         case MSR_SYSCALL_MASK:
2696                 svm->vmcb->save.sfmask = data;
2697                 break;
2698 #endif
2699         case MSR_IA32_SYSENTER_CS:
2700                 svm->vmcb->save.sysenter_cs = data;
2701                 break;
2702         case MSR_IA32_SYSENTER_EIP:
2703                 svm->sysenter_eip = data;
2704                 svm->vmcb->save.sysenter_eip = data;
2705                 break;
2706         case MSR_IA32_SYSENTER_ESP:
2707                 svm->sysenter_esp = data;
2708                 svm->vmcb->save.sysenter_esp = data;
2709                 break;
2710         case MSR_TSC_AUX:
2711                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2712                         return 1;
2713
2714                 /*
2715                  * This is rare, so we update the MSR here instead of using
2716                  * direct_access_msrs.  Doing that would require a rdmsr in
2717                  * svm_vcpu_put.
2718                  */
2719                 svm->tsc_aux = data;
2720                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2721                 break;
2722         case MSR_IA32_DEBUGCTLMSR:
2723                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2724                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2725                                     __func__, data);
2726                         break;
2727                 }
2728                 if (data & DEBUGCTL_RESERVED_BITS)
2729                         return 1;
2730
2731                 svm->vmcb->save.dbgctl = data;
2732                 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2733                 if (data & (1ULL<<0))
2734                         svm_enable_lbrv(vcpu);
2735                 else
2736                         svm_disable_lbrv(vcpu);
2737                 break;
2738         case MSR_VM_HSAVE_PA:
2739                 svm->nested.hsave_msr = data;
2740                 break;
2741         case MSR_VM_CR:
2742                 return svm_set_vm_cr(vcpu, data);
2743         case MSR_VM_IGNNE:
2744                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2745                 break;
2746         case MSR_F10H_DECFG: {
2747                 struct kvm_msr_entry msr_entry;
2748
2749                 msr_entry.index = msr->index;
2750                 if (svm_get_msr_feature(&msr_entry))
2751                         return 1;
2752
2753                 /* Check the supported bits */
2754                 if (data & ~msr_entry.data)
2755                         return 1;
2756
2757                 /* Don't allow the guest to change a bit, #GP */
2758                 if (!msr->host_initiated && (data ^ msr_entry.data))
2759                         return 1;
2760
2761                 svm->msr_decfg = data;
2762                 break;
2763         }
2764         case MSR_IA32_APICBASE:
2765                 if (kvm_vcpu_apicv_active(vcpu))
2766                         avic_update_vapic_bar(to_svm(vcpu), data);
2767                 fallthrough;
2768         default:
2769                 return kvm_set_msr_common(vcpu, msr);
2770         }
2771         return 0;
2772 }
2773
2774 static int wrmsr_interception(struct vcpu_svm *svm)
2775 {
2776         return kvm_emulate_wrmsr(&svm->vcpu);
2777 }
2778
2779 static int msr_interception(struct vcpu_svm *svm)
2780 {
2781         if (svm->vmcb->control.exit_info_1)
2782                 return wrmsr_interception(svm);
2783         else
2784                 return rdmsr_interception(svm);
2785 }
2786
2787 static int interrupt_window_interception(struct vcpu_svm *svm)
2788 {
2789         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2790         svm_clear_vintr(svm);
2791
2792         /*
2793          * For AVIC, the only reason to end up here is ExtINTs.
2794          * In this case AVIC was temporarily disabled for
2795          * requesting the IRQ window and we have to re-enable it.
2796          */
2797         svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2798
2799         ++svm->vcpu.stat.irq_window_exits;
2800         return 1;
2801 }
2802
2803 static int pause_interception(struct vcpu_svm *svm)
2804 {
2805         struct kvm_vcpu *vcpu = &svm->vcpu;
2806         bool in_kernel = (svm_get_cpl(vcpu) == 0);
2807
2808         if (!kvm_pause_in_guest(vcpu->kvm))
2809                 grow_ple_window(vcpu);
2810
2811         kvm_vcpu_on_spin(vcpu, in_kernel);
2812         return 1;
2813 }
2814
2815 static int nop_interception(struct vcpu_svm *svm)
2816 {
2817         return kvm_skip_emulated_instruction(&(svm->vcpu));
2818 }
2819
2820 static int monitor_interception(struct vcpu_svm *svm)
2821 {
2822         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2823         return nop_interception(svm);
2824 }
2825
2826 static int mwait_interception(struct vcpu_svm *svm)
2827 {
2828         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2829         return nop_interception(svm);
2830 }
2831
2832 static int invpcid_interception(struct vcpu_svm *svm)
2833 {
2834         struct kvm_vcpu *vcpu = &svm->vcpu;
2835         unsigned long type;
2836         gva_t gva;
2837
2838         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2839                 kvm_queue_exception(vcpu, UD_VECTOR);
2840                 return 1;
2841         }
2842
2843         /*
2844          * For an INVPCID intercept:
2845          * EXITINFO1 provides the linear address of the memory operand.
2846          * EXITINFO2 provides the contents of the register operand.
2847          */
2848         type = svm->vmcb->control.exit_info_2;
2849         gva = svm->vmcb->control.exit_info_1;
2850
2851         if (type > 3) {
2852                 kvm_inject_gp(vcpu, 0);
2853                 return 1;
2854         }
2855
2856         return kvm_handle_invpcid(vcpu, type, gva);
2857 }
2858
2859 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2860         [SVM_EXIT_READ_CR0]                     = cr_interception,
2861         [SVM_EXIT_READ_CR3]                     = cr_interception,
2862         [SVM_EXIT_READ_CR4]                     = cr_interception,
2863         [SVM_EXIT_READ_CR8]                     = cr_interception,
2864         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
2865         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
2866         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
2867         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
2868         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2869         [SVM_EXIT_READ_DR0]                     = dr_interception,
2870         [SVM_EXIT_READ_DR1]                     = dr_interception,
2871         [SVM_EXIT_READ_DR2]                     = dr_interception,
2872         [SVM_EXIT_READ_DR3]                     = dr_interception,
2873         [SVM_EXIT_READ_DR4]                     = dr_interception,
2874         [SVM_EXIT_READ_DR5]                     = dr_interception,
2875         [SVM_EXIT_READ_DR6]                     = dr_interception,
2876         [SVM_EXIT_READ_DR7]                     = dr_interception,
2877         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
2878         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
2879         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
2880         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
2881         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
2882         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
2883         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
2884         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
2885         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2886         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2887         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2888         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2889         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2890         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
2891         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
2892         [SVM_EXIT_INTR]                         = intr_interception,
2893         [SVM_EXIT_NMI]                          = nmi_interception,
2894         [SVM_EXIT_SMI]                          = nop_on_interception,
2895         [SVM_EXIT_INIT]                         = nop_on_interception,
2896         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2897         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
2898         [SVM_EXIT_CPUID]                        = cpuid_interception,
2899         [SVM_EXIT_IRET]                         = iret_interception,
2900         [SVM_EXIT_INVD]                         = invd_interception,
2901         [SVM_EXIT_PAUSE]                        = pause_interception,
2902         [SVM_EXIT_HLT]                          = halt_interception,
2903         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2904         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2905         [SVM_EXIT_IOIO]                         = io_interception,
2906         [SVM_EXIT_MSR]                          = msr_interception,
2907         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2908         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2909         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2910         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2911         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2912         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2913         [SVM_EXIT_STGI]                         = stgi_interception,
2914         [SVM_EXIT_CLGI]                         = clgi_interception,
2915         [SVM_EXIT_SKINIT]                       = skinit_interception,
2916         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
2917         [SVM_EXIT_MONITOR]                      = monitor_interception,
2918         [SVM_EXIT_MWAIT]                        = mwait_interception,
2919         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
2920         [SVM_EXIT_RDPRU]                        = rdpru_interception,
2921         [SVM_EXIT_INVPCID]                      = invpcid_interception,
2922         [SVM_EXIT_NPF]                          = npf_interception,
2923         [SVM_EXIT_RSM]                          = rsm_interception,
2924         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
2925         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
2926 };
2927
2928 static void dump_vmcb(struct kvm_vcpu *vcpu)
2929 {
2930         struct vcpu_svm *svm = to_svm(vcpu);
2931         struct vmcb_control_area *control = &svm->vmcb->control;
2932         struct vmcb_save_area *save = &svm->vmcb->save;
2933
2934         if (!dump_invalid_vmcb) {
2935                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2936                 return;
2937         }
2938
2939         pr_err("VMCB Control Area:\n");
2940         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
2941         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
2942         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
2943         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
2944         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
2945         pr_err("%-20s%08x %08x\n", "intercepts:",
2946               control->intercepts[INTERCEPT_WORD3],
2947                control->intercepts[INTERCEPT_WORD4]);
2948         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2949         pr_err("%-20s%d\n", "pause filter threshold:",
2950                control->pause_filter_thresh);
2951         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2952         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2953         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2954         pr_err("%-20s%d\n", "asid:", control->asid);
2955         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2956         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2957         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2958         pr_err("%-20s%08x\n", "int_state:", control->int_state);
2959         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2960         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2961         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2962         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2963         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2964         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2965         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2966         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2967         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2968         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2969         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2970         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2971         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2972         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2973         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2974         pr_err("VMCB State Save Area:\n");
2975         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2976                "es:",
2977                save->es.selector, save->es.attrib,
2978                save->es.limit, save->es.base);
2979         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2980                "cs:",
2981                save->cs.selector, save->cs.attrib,
2982                save->cs.limit, save->cs.base);
2983         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2984                "ss:",
2985                save->ss.selector, save->ss.attrib,
2986                save->ss.limit, save->ss.base);
2987         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2988                "ds:",
2989                save->ds.selector, save->ds.attrib,
2990                save->ds.limit, save->ds.base);
2991         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2992                "fs:",
2993                save->fs.selector, save->fs.attrib,
2994                save->fs.limit, save->fs.base);
2995         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2996                "gs:",
2997                save->gs.selector, save->gs.attrib,
2998                save->gs.limit, save->gs.base);
2999         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3000                "gdtr:",
3001                save->gdtr.selector, save->gdtr.attrib,
3002                save->gdtr.limit, save->gdtr.base);
3003         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3004                "ldtr:",
3005                save->ldtr.selector, save->ldtr.attrib,
3006                save->ldtr.limit, save->ldtr.base);
3007         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3008                "idtr:",
3009                save->idtr.selector, save->idtr.attrib,
3010                save->idtr.limit, save->idtr.base);
3011         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3012                "tr:",
3013                save->tr.selector, save->tr.attrib,
3014                save->tr.limit, save->tr.base);
3015         pr_err("cpl:            %d                efer:         %016llx\n",
3016                 save->cpl, save->efer);
3017         pr_err("%-15s %016llx %-13s %016llx\n",
3018                "cr0:", save->cr0, "cr2:", save->cr2);
3019         pr_err("%-15s %016llx %-13s %016llx\n",
3020                "cr3:", save->cr3, "cr4:", save->cr4);
3021         pr_err("%-15s %016llx %-13s %016llx\n",
3022                "dr6:", save->dr6, "dr7:", save->dr7);
3023         pr_err("%-15s %016llx %-13s %016llx\n",
3024                "rip:", save->rip, "rflags:", save->rflags);
3025         pr_err("%-15s %016llx %-13s %016llx\n",
3026                "rsp:", save->rsp, "rax:", save->rax);
3027         pr_err("%-15s %016llx %-13s %016llx\n",
3028                "star:", save->star, "lstar:", save->lstar);
3029         pr_err("%-15s %016llx %-13s %016llx\n",
3030                "cstar:", save->cstar, "sfmask:", save->sfmask);
3031         pr_err("%-15s %016llx %-13s %016llx\n",
3032                "kernel_gs_base:", save->kernel_gs_base,
3033                "sysenter_cs:", save->sysenter_cs);
3034         pr_err("%-15s %016llx %-13s %016llx\n",
3035                "sysenter_esp:", save->sysenter_esp,
3036                "sysenter_eip:", save->sysenter_eip);
3037         pr_err("%-15s %016llx %-13s %016llx\n",
3038                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3039         pr_err("%-15s %016llx %-13s %016llx\n",
3040                "br_from:", save->br_from, "br_to:", save->br_to);
3041         pr_err("%-15s %016llx %-13s %016llx\n",
3042                "excp_from:", save->last_excp_from,
3043                "excp_to:", save->last_excp_to);
3044 }
3045
3046 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3047                               u32 *intr_info, u32 *error_code)
3048 {
3049         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3050
3051         *info1 = control->exit_info_1;
3052         *info2 = control->exit_info_2;
3053         *intr_info = control->exit_int_info;
3054         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3055             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3056                 *error_code = control->exit_int_info_err;
3057         else
3058                 *error_code = 0;
3059 }
3060
3061 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3062 {
3063         struct vcpu_svm *svm = to_svm(vcpu);
3064         struct kvm_run *kvm_run = vcpu->run;
3065         u32 exit_code = svm->vmcb->control.exit_code;
3066
3067         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3068
3069         if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3070                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3071         if (npt_enabled)
3072                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3073
3074         if (is_guest_mode(vcpu)) {
3075                 int vmexit;
3076
3077                 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3078
3079                 vmexit = nested_svm_exit_special(svm);
3080
3081                 if (vmexit == NESTED_EXIT_CONTINUE)
3082                         vmexit = nested_svm_exit_handled(svm);
3083
3084                 if (vmexit == NESTED_EXIT_DONE)
3085                         return 1;
3086         }
3087
3088         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3089                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3090                 kvm_run->fail_entry.hardware_entry_failure_reason
3091                         = svm->vmcb->control.exit_code;
3092                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3093                 dump_vmcb(vcpu);
3094                 return 0;
3095         }
3096
3097         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3098             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3099             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3100             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3101                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3102                        "exit_code 0x%x\n",
3103                        __func__, svm->vmcb->control.exit_int_info,
3104                        exit_code);
3105
3106         if (exit_fastpath != EXIT_FASTPATH_NONE)
3107                 return 1;
3108
3109         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3110             || !svm_exit_handlers[exit_code]) {
3111                 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
3112                 dump_vmcb(vcpu);
3113                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3114                 vcpu->run->internal.suberror =
3115                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3116                 vcpu->run->internal.ndata = 2;
3117                 vcpu->run->internal.data[0] = exit_code;
3118                 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3119                 return 0;
3120         }
3121
3122 #ifdef CONFIG_RETPOLINE
3123         if (exit_code == SVM_EXIT_MSR)
3124                 return msr_interception(svm);
3125         else if (exit_code == SVM_EXIT_VINTR)
3126                 return interrupt_window_interception(svm);
3127         else if (exit_code == SVM_EXIT_INTR)
3128                 return intr_interception(svm);
3129         else if (exit_code == SVM_EXIT_HLT)
3130                 return halt_interception(svm);
3131         else if (exit_code == SVM_EXIT_NPF)
3132                 return npf_interception(svm);
3133 #endif
3134         return svm_exit_handlers[exit_code](svm);
3135 }
3136
3137 static void reload_tss(struct kvm_vcpu *vcpu)
3138 {
3139         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3140
3141         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3142         load_TR_desc();
3143 }
3144
3145 static void pre_svm_run(struct vcpu_svm *svm)
3146 {
3147         struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3148
3149         if (sev_guest(svm->vcpu.kvm))
3150                 return pre_sev_run(svm, svm->vcpu.cpu);
3151
3152         /* FIXME: handle wraparound of asid_generation */
3153         if (svm->asid_generation != sd->asid_generation)
3154                 new_asid(svm, sd);
3155 }
3156
3157 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3158 {
3159         struct vcpu_svm *svm = to_svm(vcpu);
3160
3161         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3162         vcpu->arch.hflags |= HF_NMI_MASK;
3163         svm_set_intercept(svm, INTERCEPT_IRET);
3164         ++vcpu->stat.nmi_injections;
3165 }
3166
3167 static void svm_set_irq(struct kvm_vcpu *vcpu)
3168 {
3169         struct vcpu_svm *svm = to_svm(vcpu);
3170
3171         BUG_ON(!(gif_set(svm)));
3172
3173         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3174         ++vcpu->stat.irq_injections;
3175
3176         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3177                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3178 }
3179
3180 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3181 {
3182         struct vcpu_svm *svm = to_svm(vcpu);
3183
3184         if (nested_svm_virtualize_tpr(vcpu))
3185                 return;
3186
3187         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3188
3189         if (irr == -1)
3190                 return;
3191
3192         if (tpr >= irr)
3193                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3194 }
3195
3196 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3197 {
3198         struct vcpu_svm *svm = to_svm(vcpu);
3199         struct vmcb *vmcb = svm->vmcb;
3200         bool ret;
3201
3202         if (!gif_set(svm))
3203                 return true;
3204
3205         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3206                 return false;
3207
3208         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3209               (svm->vcpu.arch.hflags & HF_NMI_MASK);
3210
3211         return ret;
3212 }
3213
3214 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3215 {
3216         struct vcpu_svm *svm = to_svm(vcpu);
3217         if (svm->nested.nested_run_pending)
3218                 return -EBUSY;
3219
3220         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3221         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3222                 return -EBUSY;
3223
3224         return !svm_nmi_blocked(vcpu);
3225 }
3226
3227 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3228 {
3229         struct vcpu_svm *svm = to_svm(vcpu);
3230
3231         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3232 }
3233
3234 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3235 {
3236         struct vcpu_svm *svm = to_svm(vcpu);
3237
3238         if (masked) {
3239                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3240                 svm_set_intercept(svm, INTERCEPT_IRET);
3241         } else {
3242                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3243                 svm_clr_intercept(svm, INTERCEPT_IRET);
3244         }
3245 }
3246
3247 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3248 {
3249         struct vcpu_svm *svm = to_svm(vcpu);
3250         struct vmcb *vmcb = svm->vmcb;
3251
3252         if (!gif_set(svm))
3253                 return true;
3254
3255         if (is_guest_mode(vcpu)) {
3256                 /* As long as interrupts are being delivered...  */
3257                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3258                     ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3259                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3260                         return true;
3261
3262                 /* ... vmexits aren't blocked by the interrupt shadow  */
3263                 if (nested_exit_on_intr(svm))
3264                         return false;
3265         } else {
3266                 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3267                         return true;
3268         }
3269
3270         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3271 }
3272
3273 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3274 {
3275         struct vcpu_svm *svm = to_svm(vcpu);
3276         if (svm->nested.nested_run_pending)
3277                 return -EBUSY;
3278
3279         /*
3280          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3281          * e.g. if the IRQ arrived asynchronously after checking nested events.
3282          */
3283         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3284                 return -EBUSY;
3285
3286         return !svm_interrupt_blocked(vcpu);
3287 }
3288
3289 static void enable_irq_window(struct kvm_vcpu *vcpu)
3290 {
3291         struct vcpu_svm *svm = to_svm(vcpu);
3292
3293         /*
3294          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3295          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3296          * get that intercept, this function will be called again though and
3297          * we'll get the vintr intercept. However, if the vGIF feature is
3298          * enabled, the STGI interception will not occur. Enable the irq
3299          * window under the assumption that the hardware will set the GIF.
3300          */
3301         if (vgif_enabled(svm) || gif_set(svm)) {
3302                 /*
3303                  * IRQ window is not needed when AVIC is enabled,
3304                  * unless we have pending ExtINT since it cannot be injected
3305                  * via AVIC. In such case, we need to temporarily disable AVIC,
3306                  * and fallback to injecting IRQ via V_IRQ.
3307                  */
3308                 svm_toggle_avic_for_irq_window(vcpu, false);
3309                 svm_set_vintr(svm);
3310         }
3311 }
3312
3313 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3314 {
3315         struct vcpu_svm *svm = to_svm(vcpu);
3316
3317         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3318             == HF_NMI_MASK)
3319                 return; /* IRET will cause a vm exit */
3320
3321         if (!gif_set(svm)) {
3322                 if (vgif_enabled(svm))
3323                         svm_set_intercept(svm, INTERCEPT_STGI);
3324                 return; /* STGI will cause a vm exit */
3325         }
3326
3327         /*
3328          * Something prevents NMI from been injected. Single step over possible
3329          * problem (IRET or exception injection or interrupt shadow)
3330          */
3331         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3332         svm->nmi_singlestep = true;
3333         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3334 }
3335
3336 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3337 {
3338         return 0;
3339 }
3340
3341 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3342 {
3343         return 0;
3344 }
3345
3346 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3347 {
3348         struct vcpu_svm *svm = to_svm(vcpu);
3349
3350         /*
3351          * Flush only the current ASID even if the TLB flush was invoked via
3352          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3353          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3354          * unconditionally does a TLB flush on both nested VM-Enter and nested
3355          * VM-Exit (via kvm_mmu_reset_context()).
3356          */
3357         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3358                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3359         else
3360                 svm->asid_generation--;
3361 }
3362
3363 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3364 {
3365         struct vcpu_svm *svm = to_svm(vcpu);
3366
3367         invlpga(gva, svm->vmcb->control.asid);
3368 }
3369
3370 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3371 {
3372 }
3373
3374 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3375 {
3376         struct vcpu_svm *svm = to_svm(vcpu);
3377
3378         if (nested_svm_virtualize_tpr(vcpu))
3379                 return;
3380
3381         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3382                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3383                 kvm_set_cr8(vcpu, cr8);
3384         }
3385 }
3386
3387 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3388 {
3389         struct vcpu_svm *svm = to_svm(vcpu);
3390         u64 cr8;
3391
3392         if (nested_svm_virtualize_tpr(vcpu) ||
3393             kvm_vcpu_apicv_active(vcpu))
3394                 return;
3395
3396         cr8 = kvm_get_cr8(vcpu);
3397         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3398         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3399 }
3400
3401 static void svm_complete_interrupts(struct vcpu_svm *svm)
3402 {
3403         u8 vector;
3404         int type;
3405         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3406         unsigned int3_injected = svm->int3_injected;
3407
3408         svm->int3_injected = 0;
3409
3410         /*
3411          * If we've made progress since setting HF_IRET_MASK, we've
3412          * executed an IRET and can allow NMI injection.
3413          */
3414         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3415             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3416                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3417                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3418         }
3419
3420         svm->vcpu.arch.nmi_injected = false;
3421         kvm_clear_exception_queue(&svm->vcpu);
3422         kvm_clear_interrupt_queue(&svm->vcpu);
3423
3424         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3425                 return;
3426
3427         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3428
3429         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3430         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3431
3432         switch (type) {
3433         case SVM_EXITINTINFO_TYPE_NMI:
3434                 svm->vcpu.arch.nmi_injected = true;
3435                 break;
3436         case SVM_EXITINTINFO_TYPE_EXEPT:
3437                 /*
3438                  * In case of software exceptions, do not reinject the vector,
3439                  * but re-execute the instruction instead. Rewind RIP first
3440                  * if we emulated INT3 before.
3441                  */
3442                 if (kvm_exception_is_soft(vector)) {
3443                         if (vector == BP_VECTOR && int3_injected &&
3444                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3445                                 kvm_rip_write(&svm->vcpu,
3446                                               kvm_rip_read(&svm->vcpu) -
3447                                               int3_injected);
3448                         break;
3449                 }
3450                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3451                         u32 err = svm->vmcb->control.exit_int_info_err;
3452                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3453
3454                 } else
3455                         kvm_requeue_exception(&svm->vcpu, vector);
3456                 break;
3457         case SVM_EXITINTINFO_TYPE_INTR:
3458                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3459                 break;
3460         default:
3461                 break;
3462         }
3463 }
3464
3465 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3466 {
3467         struct vcpu_svm *svm = to_svm(vcpu);
3468         struct vmcb_control_area *control = &svm->vmcb->control;
3469
3470         control->exit_int_info = control->event_inj;
3471         control->exit_int_info_err = control->event_inj_err;
3472         control->event_inj = 0;
3473         svm_complete_interrupts(svm);
3474 }
3475
3476 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3477 {
3478         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3479             to_svm(vcpu)->vmcb->control.exit_info_1)
3480                 return handle_fastpath_set_msr_irqoff(vcpu);
3481
3482         return EXIT_FASTPATH_NONE;
3483 }
3484
3485 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3486
3487 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3488                                         struct vcpu_svm *svm)
3489 {
3490         /*
3491          * VMENTER enables interrupts (host state), but the kernel state is
3492          * interrupts disabled when this is invoked. Also tell RCU about
3493          * it. This is the same logic as for exit_to_user_mode().
3494          *
3495          * This ensures that e.g. latency analysis on the host observes
3496          * guest mode as interrupt enabled.
3497          *
3498          * guest_enter_irqoff() informs context tracking about the
3499          * transition to guest mode and if enabled adjusts RCU state
3500          * accordingly.
3501          */
3502         instrumentation_begin();
3503         trace_hardirqs_on_prepare();
3504         lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3505         instrumentation_end();
3506
3507         guest_enter_irqoff();
3508         lockdep_hardirqs_on(CALLER_ADDR0);
3509
3510         __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3511
3512 #ifdef CONFIG_X86_64
3513         native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3514 #else
3515         loadsegment(fs, svm->host.fs);
3516 #ifndef CONFIG_X86_32_LAZY_GS
3517         loadsegment(gs, svm->host.gs);
3518 #endif
3519 #endif
3520
3521         /*
3522          * VMEXIT disables interrupts (host state), but tracing and lockdep
3523          * have them in state 'on' as recorded before entering guest mode.
3524          * Same as enter_from_user_mode().
3525          *
3526          * guest_exit_irqoff() restores host context and reinstates RCU if
3527          * enabled and required.
3528          *
3529          * This needs to be done before the below as native_read_msr()
3530          * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3531          * into world and some more.
3532          */
3533         lockdep_hardirqs_off(CALLER_ADDR0);
3534         guest_exit_irqoff();
3535
3536         instrumentation_begin();
3537         trace_hardirqs_off_finish();
3538         instrumentation_end();
3539 }
3540
3541 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3542 {
3543         struct vcpu_svm *svm = to_svm(vcpu);
3544
3545         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3546         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3547         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3548
3549         /*
3550          * Disable singlestep if we're injecting an interrupt/exception.
3551          * We don't want our modified rflags to be pushed on the stack where
3552          * we might not be able to easily reset them if we disabled NMI
3553          * singlestep later.
3554          */
3555         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3556                 /*
3557                  * Event injection happens before external interrupts cause a
3558                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3559                  * is enough to force an immediate vmexit.
3560                  */
3561                 disable_nmi_singlestep(svm);
3562                 smp_send_reschedule(vcpu->cpu);
3563         }
3564
3565         pre_svm_run(svm);
3566
3567         sync_lapic_to_cr8(vcpu);
3568
3569         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3570
3571         /*
3572          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3573          * of a #DB.
3574          */
3575         if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3576                 svm_set_dr6(svm, vcpu->arch.dr6);
3577         else
3578                 svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3579
3580         clgi();
3581         kvm_load_guest_xsave_state(vcpu);
3582
3583         kvm_wait_lapic_expire(vcpu);
3584
3585         /*
3586          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3587          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3588          * is no need to worry about the conditional branch over the wrmsr
3589          * being speculatively taken.
3590          */
3591         x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3592
3593         svm_vcpu_enter_exit(vcpu, svm);
3594
3595         /*
3596          * We do not use IBRS in the kernel. If this vCPU has used the
3597          * SPEC_CTRL MSR it may have left it on; save the value and
3598          * turn it off. This is much more efficient than blindly adding
3599          * it to the atomic save/restore list. Especially as the former
3600          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3601          *
3602          * For non-nested case:
3603          * If the L01 MSR bitmap does not intercept the MSR, then we need to
3604          * save it.
3605          *
3606          * For nested case:
3607          * If the L02 MSR bitmap does not intercept the MSR, then we need to
3608          * save it.
3609          */
3610         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3611                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3612
3613         reload_tss(vcpu);
3614
3615         x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3616
3617         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3618         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3619         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3620         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3621
3622         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3623                 kvm_before_interrupt(&svm->vcpu);
3624
3625         kvm_load_host_xsave_state(vcpu);
3626         stgi();
3627
3628         /* Any pending NMI will happen here */
3629
3630         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3631                 kvm_after_interrupt(&svm->vcpu);
3632
3633         sync_cr8_to_lapic(vcpu);
3634
3635         svm->next_rip = 0;
3636         if (is_guest_mode(&svm->vcpu)) {
3637                 sync_nested_vmcb_control(svm);
3638                 svm->nested.nested_run_pending = 0;
3639         }
3640
3641         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3642         vmcb_mark_all_clean(svm->vmcb);
3643
3644         /* if exit due to PF check for async PF */
3645         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3646                 svm->vcpu.arch.apf.host_apf_flags =
3647                         kvm_read_and_reset_apf_flags();
3648
3649         if (npt_enabled) {
3650                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3651                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3652         }
3653
3654         /*
3655          * We need to handle MC intercepts here before the vcpu has a chance to
3656          * change the physical cpu
3657          */
3658         if (unlikely(svm->vmcb->control.exit_code ==
3659                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3660                 svm_handle_mce(svm);
3661
3662         svm_complete_interrupts(svm);
3663
3664         if (is_guest_mode(vcpu))
3665                 return EXIT_FASTPATH_NONE;
3666
3667         return svm_exit_handlers_fastpath(vcpu);
3668 }
3669
3670 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3671                              int root_level)
3672 {
3673         struct vcpu_svm *svm = to_svm(vcpu);
3674         unsigned long cr3;
3675
3676         cr3 = __sme_set(root);
3677         if (npt_enabled) {
3678                 svm->vmcb->control.nested_cr3 = cr3;
3679                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3680
3681                 /* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3682                 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3683                         return;
3684                 cr3 = vcpu->arch.cr3;
3685         }
3686
3687         svm->vmcb->save.cr3 = cr3;
3688         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3689 }
3690
3691 static int is_disabled(void)
3692 {
3693         u64 vm_cr;
3694
3695         rdmsrl(MSR_VM_CR, vm_cr);
3696         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3697                 return 1;
3698
3699         return 0;
3700 }
3701
3702 static void
3703 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3704 {
3705         /*
3706          * Patch in the VMMCALL instruction:
3707          */
3708         hypercall[0] = 0x0f;
3709         hypercall[1] = 0x01;
3710         hypercall[2] = 0xd9;
3711 }
3712
3713 static int __init svm_check_processor_compat(void)
3714 {
3715         return 0;
3716 }
3717
3718 static bool svm_cpu_has_accelerated_tpr(void)
3719 {
3720         return false;
3721 }
3722
3723 static bool svm_has_emulated_msr(u32 index)
3724 {
3725         switch (index) {
3726         case MSR_IA32_MCG_EXT_CTL:
3727         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3728                 return false;
3729         default:
3730                 break;
3731         }
3732
3733         return true;
3734 }
3735
3736 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3737 {
3738         return 0;
3739 }
3740
3741 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3742 {
3743         struct vcpu_svm *svm = to_svm(vcpu);
3744
3745         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3746                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
3747                                     boot_cpu_has(X86_FEATURE_XSAVES);
3748
3749         /* Update nrips enabled cache */
3750         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3751                              guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3752
3753         /* Check again if INVPCID interception if required */
3754         svm_check_invpcid(svm);
3755
3756         if (!kvm_vcpu_apicv_active(vcpu))
3757                 return;
3758
3759         /*
3760          * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3761          * is exposed to the guest, disable AVIC.
3762          */
3763         if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3764                 kvm_request_apicv_update(vcpu->kvm, false,
3765                                          APICV_INHIBIT_REASON_X2APIC);
3766
3767         /*
3768          * Currently, AVIC does not work with nested virtualization.
3769          * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3770          */
3771         if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3772                 kvm_request_apicv_update(vcpu->kvm, false,
3773                                          APICV_INHIBIT_REASON_NESTED);
3774 }
3775
3776 static bool svm_has_wbinvd_exit(void)
3777 {
3778         return true;
3779 }
3780
3781 #define PRE_EX(exit)  { .exit_code = (exit), \
3782                         .stage = X86_ICPT_PRE_EXCEPT, }
3783 #define POST_EX(exit) { .exit_code = (exit), \
3784                         .stage = X86_ICPT_POST_EXCEPT, }
3785 #define POST_MEM(exit) { .exit_code = (exit), \
3786                         .stage = X86_ICPT_POST_MEMACCESS, }
3787
3788 static const struct __x86_intercept {
3789         u32 exit_code;
3790         enum x86_intercept_stage stage;
3791 } x86_intercept_map[] = {
3792         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
3793         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
3794         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
3795         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
3796         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
3797         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
3798         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
3799         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
3800         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
3801         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
3802         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
3803         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
3804         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
3805         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
3806         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
3807         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
3808         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
3809         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
3810         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
3811         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
3812         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
3813         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
3814         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
3815         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
3816         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
3817         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
3818         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
3819         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
3820         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
3821         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
3822         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
3823         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
3824         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
3825         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
3826         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
3827         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
3828         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
3829         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
3830         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
3831         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
3832         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
3833         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
3834         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
3835         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
3836         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
3837         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
3838         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
3839 };
3840
3841 #undef PRE_EX
3842 #undef POST_EX
3843 #undef POST_MEM
3844
3845 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3846                                struct x86_instruction_info *info,
3847                                enum x86_intercept_stage stage,
3848                                struct x86_exception *exception)
3849 {
3850         struct vcpu_svm *svm = to_svm(vcpu);
3851         int vmexit, ret = X86EMUL_CONTINUE;
3852         struct __x86_intercept icpt_info;
3853         struct vmcb *vmcb = svm->vmcb;
3854
3855         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3856                 goto out;
3857
3858         icpt_info = x86_intercept_map[info->intercept];
3859
3860         if (stage != icpt_info.stage)
3861                 goto out;
3862
3863         switch (icpt_info.exit_code) {
3864         case SVM_EXIT_READ_CR0:
3865                 if (info->intercept == x86_intercept_cr_read)
3866                         icpt_info.exit_code += info->modrm_reg;
3867                 break;
3868         case SVM_EXIT_WRITE_CR0: {
3869                 unsigned long cr0, val;
3870
3871                 if (info->intercept == x86_intercept_cr_write)
3872                         icpt_info.exit_code += info->modrm_reg;
3873
3874                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3875                     info->intercept == x86_intercept_clts)
3876                         break;
3877
3878                 if (!(vmcb_is_intercept(&svm->nested.ctl,
3879                                         INTERCEPT_SELECTIVE_CR0)))
3880                         break;
3881
3882                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3883                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3884
3885                 if (info->intercept == x86_intercept_lmsw) {
3886                         cr0 &= 0xfUL;
3887                         val &= 0xfUL;
3888                         /* lmsw can't clear PE - catch this here */
3889                         if (cr0 & X86_CR0_PE)
3890                                 val |= X86_CR0_PE;
3891                 }
3892
3893                 if (cr0 ^ val)
3894                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3895
3896                 break;
3897         }
3898         case SVM_EXIT_READ_DR0:
3899         case SVM_EXIT_WRITE_DR0:
3900                 icpt_info.exit_code += info->modrm_reg;
3901                 break;
3902         case SVM_EXIT_MSR:
3903                 if (info->intercept == x86_intercept_wrmsr)
3904                         vmcb->control.exit_info_1 = 1;
3905                 else
3906                         vmcb->control.exit_info_1 = 0;
3907                 break;
3908         case SVM_EXIT_PAUSE:
3909                 /*
3910                  * We get this for NOP only, but pause
3911                  * is rep not, check this here
3912                  */
3913                 if (info->rep_prefix != REPE_PREFIX)
3914                         goto out;
3915                 break;
3916         case SVM_EXIT_IOIO: {
3917                 u64 exit_info;
3918                 u32 bytes;
3919
3920                 if (info->intercept == x86_intercept_in ||
3921                     info->intercept == x86_intercept_ins) {
3922                         exit_info = ((info->src_val & 0xffff) << 16) |
3923                                 SVM_IOIO_TYPE_MASK;
3924                         bytes = info->dst_bytes;
3925                 } else {
3926                         exit_info = (info->dst_val & 0xffff) << 16;
3927                         bytes = info->src_bytes;
3928                 }
3929
3930                 if (info->intercept == x86_intercept_outs ||
3931                     info->intercept == x86_intercept_ins)
3932                         exit_info |= SVM_IOIO_STR_MASK;
3933
3934                 if (info->rep_prefix)
3935                         exit_info |= SVM_IOIO_REP_MASK;
3936
3937                 bytes = min(bytes, 4u);
3938
3939                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3940
3941                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3942
3943                 vmcb->control.exit_info_1 = exit_info;
3944                 vmcb->control.exit_info_2 = info->next_rip;
3945
3946                 break;
3947         }
3948         default:
3949                 break;
3950         }
3951
3952         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3953         if (static_cpu_has(X86_FEATURE_NRIPS))
3954                 vmcb->control.next_rip  = info->next_rip;
3955         vmcb->control.exit_code = icpt_info.exit_code;
3956         vmexit = nested_svm_exit_handled(svm);
3957
3958         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3959                                            : X86EMUL_CONTINUE;
3960
3961 out:
3962         return ret;
3963 }
3964
3965 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3966 {
3967 }
3968
3969 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3970 {
3971         if (!kvm_pause_in_guest(vcpu->kvm))
3972                 shrink_ple_window(vcpu);
3973 }
3974
3975 static void svm_setup_mce(struct kvm_vcpu *vcpu)
3976 {
3977         /* [63:9] are reserved. */
3978         vcpu->arch.mcg_cap &= 0x1ff;
3979 }
3980
3981 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
3982 {
3983         struct vcpu_svm *svm = to_svm(vcpu);
3984
3985         /* Per APM Vol.2 15.22.2 "Response to SMI" */
3986         if (!gif_set(svm))
3987                 return true;
3988
3989         return is_smm(vcpu);
3990 }
3991
3992 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3993 {
3994         struct vcpu_svm *svm = to_svm(vcpu);
3995         if (svm->nested.nested_run_pending)
3996                 return -EBUSY;
3997
3998         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
3999         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4000                 return -EBUSY;
4001
4002         return !svm_smi_blocked(vcpu);
4003 }
4004
4005 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4006 {
4007         struct vcpu_svm *svm = to_svm(vcpu);
4008         int ret;
4009
4010         if (is_guest_mode(vcpu)) {
4011                 /* FED8h - SVM Guest */
4012                 put_smstate(u64, smstate, 0x7ed8, 1);
4013                 /* FEE0h - SVM Guest VMCB Physical Address */
4014                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4015
4016                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4017                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4018                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4019
4020                 ret = nested_svm_vmexit(svm);
4021                 if (ret)
4022                         return ret;
4023         }
4024         return 0;
4025 }
4026
4027 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4028 {
4029         struct vcpu_svm *svm = to_svm(vcpu);
4030         struct kvm_host_map map;
4031         int ret = 0;
4032
4033         if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4034                 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4035                 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4036                 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4037
4038                 if (guest) {
4039                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4040                                 return 1;
4041
4042                         if (!(saved_efer & EFER_SVME))
4043                                 return 1;
4044
4045                         if (kvm_vcpu_map(&svm->vcpu,
4046                                          gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4047                                 return 1;
4048
4049                         if (svm_allocate_nested(svm))
4050                                 return 1;
4051
4052                         ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4053                         kvm_vcpu_unmap(&svm->vcpu, &map, true);
4054                 }
4055         }
4056
4057         return ret;
4058 }
4059
4060 static void enable_smi_window(struct kvm_vcpu *vcpu)
4061 {
4062         struct vcpu_svm *svm = to_svm(vcpu);
4063
4064         if (!gif_set(svm)) {
4065                 if (vgif_enabled(svm))
4066                         svm_set_intercept(svm, INTERCEPT_STGI);
4067                 /* STGI will cause a vm exit */
4068         } else {
4069                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4070         }
4071 }
4072
4073 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4074 {
4075         bool smep, smap, is_user;
4076         unsigned long cr4;
4077
4078         /*
4079          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4080          *
4081          * Errata:
4082          * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4083          * possible that CPU microcode implementing DecodeAssist will fail
4084          * to read bytes of instruction which caused #NPF. In this case,
4085          * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4086          * return 0 instead of the correct guest instruction bytes.
4087          *
4088          * This happens because CPU microcode reading instruction bytes
4089          * uses a special opcode which attempts to read data using CPL=0
4090          * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4091          * fault, it gives up and returns no instruction bytes.
4092          *
4093          * Detection:
4094          * We reach here in case CPU supports DecodeAssist, raised #NPF and
4095          * returned 0 in GuestIntrBytes field of the VMCB.
4096          * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4097          * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4098          * in case vCPU CPL==3 (Because otherwise guest would have triggered
4099          * a SMEP fault instead of #NPF).
4100          * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4101          * As most guests enable SMAP if they have also enabled SMEP, use above
4102          * logic in order to attempt minimize false-positive of detecting errata
4103          * while still preserving all cases semantic correctness.
4104          *
4105          * Workaround:
4106          * To determine what instruction the guest was executing, the hypervisor
4107          * will have to decode the instruction at the instruction pointer.
4108          *
4109          * In non SEV guest, hypervisor will be able to read the guest
4110          * memory to decode the instruction pointer when insn_len is zero
4111          * so we return true to indicate that decoding is possible.
4112          *
4113          * But in the SEV guest, the guest memory is encrypted with the
4114          * guest specific key and hypervisor will not be able to decode the
4115          * instruction pointer so we will not able to workaround it. Lets
4116          * print the error and request to kill the guest.
4117          */
4118         if (likely(!insn || insn_len))
4119                 return true;
4120
4121         /*
4122          * If RIP is invalid, go ahead with emulation which will cause an
4123          * internal error exit.
4124          */
4125         if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4126                 return true;
4127
4128         cr4 = kvm_read_cr4(vcpu);
4129         smep = cr4 & X86_CR4_SMEP;
4130         smap = cr4 & X86_CR4_SMAP;
4131         is_user = svm_get_cpl(vcpu) == 3;
4132         if (smap && (!smep || is_user)) {
4133                 if (!sev_guest(vcpu->kvm))
4134                         return true;
4135
4136                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4137                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4138         }
4139
4140         return false;
4141 }
4142
4143 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4144 {
4145         struct vcpu_svm *svm = to_svm(vcpu);
4146
4147         /*
4148          * TODO: Last condition latch INIT signals on vCPU when
4149          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4150          * To properly emulate the INIT intercept,
4151          * svm_check_nested_events() should call nested_svm_vmexit()
4152          * if an INIT signal is pending.
4153          */
4154         return !gif_set(svm) ||
4155                    (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4156 }
4157
4158 static void svm_vm_destroy(struct kvm *kvm)
4159 {
4160         avic_vm_destroy(kvm);
4161         sev_vm_destroy(kvm);
4162 }
4163
4164 static int svm_vm_init(struct kvm *kvm)
4165 {
4166         if (!pause_filter_count || !pause_filter_thresh)
4167                 kvm->arch.pause_in_guest = true;
4168
4169         if (avic) {
4170                 int ret = avic_vm_init(kvm);
4171                 if (ret)
4172                         return ret;
4173         }
4174
4175         kvm_apicv_init(kvm, avic);
4176         return 0;
4177 }
4178
4179 static struct kvm_x86_ops svm_x86_ops __initdata = {
4180         .hardware_unsetup = svm_hardware_teardown,
4181         .hardware_enable = svm_hardware_enable,
4182         .hardware_disable = svm_hardware_disable,
4183         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4184         .has_emulated_msr = svm_has_emulated_msr,
4185
4186         .vcpu_create = svm_create_vcpu,
4187         .vcpu_free = svm_free_vcpu,
4188         .vcpu_reset = svm_vcpu_reset,
4189
4190         .vm_size = sizeof(struct kvm_svm),
4191         .vm_init = svm_vm_init,
4192         .vm_destroy = svm_vm_destroy,
4193
4194         .prepare_guest_switch = svm_prepare_guest_switch,
4195         .vcpu_load = svm_vcpu_load,
4196         .vcpu_put = svm_vcpu_put,
4197         .vcpu_blocking = svm_vcpu_blocking,
4198         .vcpu_unblocking = svm_vcpu_unblocking,
4199
4200         .update_exception_bitmap = update_exception_bitmap,
4201         .get_msr_feature = svm_get_msr_feature,
4202         .get_msr = svm_get_msr,
4203         .set_msr = svm_set_msr,
4204         .get_segment_base = svm_get_segment_base,
4205         .get_segment = svm_get_segment,
4206         .set_segment = svm_set_segment,
4207         .get_cpl = svm_get_cpl,
4208         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4209         .set_cr0 = svm_set_cr0,
4210         .set_cr4 = svm_set_cr4,
4211         .set_efer = svm_set_efer,
4212         .get_idt = svm_get_idt,
4213         .set_idt = svm_set_idt,
4214         .get_gdt = svm_get_gdt,
4215         .set_gdt = svm_set_gdt,
4216         .set_dr7 = svm_set_dr7,
4217         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4218         .cache_reg = svm_cache_reg,
4219         .get_rflags = svm_get_rflags,
4220         .set_rflags = svm_set_rflags,
4221
4222         .tlb_flush_all = svm_flush_tlb,
4223         .tlb_flush_current = svm_flush_tlb,
4224         .tlb_flush_gva = svm_flush_tlb_gva,
4225         .tlb_flush_guest = svm_flush_tlb,
4226
4227         .run = svm_vcpu_run,
4228         .handle_exit = handle_exit,
4229         .skip_emulated_instruction = skip_emulated_instruction,
4230         .update_emulated_instruction = NULL,
4231         .set_interrupt_shadow = svm_set_interrupt_shadow,
4232         .get_interrupt_shadow = svm_get_interrupt_shadow,
4233         .patch_hypercall = svm_patch_hypercall,
4234         .set_irq = svm_set_irq,
4235         .set_nmi = svm_inject_nmi,
4236         .queue_exception = svm_queue_exception,
4237         .cancel_injection = svm_cancel_injection,
4238         .interrupt_allowed = svm_interrupt_allowed,
4239         .nmi_allowed = svm_nmi_allowed,
4240         .get_nmi_mask = svm_get_nmi_mask,
4241         .set_nmi_mask = svm_set_nmi_mask,
4242         .enable_nmi_window = enable_nmi_window,
4243         .enable_irq_window = enable_irq_window,
4244         .update_cr8_intercept = update_cr8_intercept,
4245         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4246         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4247         .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4248         .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4249         .load_eoi_exitmap = svm_load_eoi_exitmap,
4250         .hwapic_irr_update = svm_hwapic_irr_update,
4251         .hwapic_isr_update = svm_hwapic_isr_update,
4252         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4253         .apicv_post_state_restore = avic_post_state_restore,
4254
4255         .set_tss_addr = svm_set_tss_addr,
4256         .set_identity_map_addr = svm_set_identity_map_addr,
4257         .get_mt_mask = svm_get_mt_mask,
4258
4259         .get_exit_info = svm_get_exit_info,
4260
4261         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4262
4263         .has_wbinvd_exit = svm_has_wbinvd_exit,
4264
4265         .write_l1_tsc_offset = svm_write_l1_tsc_offset,
4266
4267         .load_mmu_pgd = svm_load_mmu_pgd,
4268
4269         .check_intercept = svm_check_intercept,
4270         .handle_exit_irqoff = svm_handle_exit_irqoff,
4271
4272         .request_immediate_exit = __kvm_request_immediate_exit,
4273
4274         .sched_in = svm_sched_in,
4275
4276         .pmu_ops = &amd_pmu_ops,
4277         .nested_ops = &svm_nested_ops,
4278
4279         .deliver_posted_interrupt = svm_deliver_avic_intr,
4280         .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4281         .update_pi_irte = svm_update_pi_irte,
4282         .setup_mce = svm_setup_mce,
4283
4284         .smi_allowed = svm_smi_allowed,
4285         .pre_enter_smm = svm_pre_enter_smm,
4286         .pre_leave_smm = svm_pre_leave_smm,
4287         .enable_smi_window = enable_smi_window,
4288
4289         .mem_enc_op = svm_mem_enc_op,
4290         .mem_enc_reg_region = svm_register_enc_region,
4291         .mem_enc_unreg_region = svm_unregister_enc_region,
4292
4293         .can_emulate_instruction = svm_can_emulate_instruction,
4294
4295         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4296
4297         .msr_filter_changed = svm_msr_filter_changed,
4298 };
4299
4300 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4301         .cpu_has_kvm_support = has_svm,
4302         .disabled_by_bios = is_disabled,
4303         .hardware_setup = svm_hardware_setup,
4304         .check_processor_compatibility = svm_check_processor_compat,
4305
4306         .runtime_ops = &svm_x86_ops,
4307 };
4308
4309 static int __init svm_init(void)
4310 {
4311         __unused_size_checks();
4312
4313         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4314                         __alignof__(struct vcpu_svm), THIS_MODULE);
4315 }
4316
4317 static void __exit svm_exit(void)
4318 {
4319         kvm_exit();
4320 }
4321
4322 module_init(svm_init)
4323 module_exit(svm_exit)