Merge tag 'defconfig-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44 #include "svm_ops.h"
45
46 #include "kvm_onhyperv.h"
47 #include "svm_onhyperv.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57         {}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64
65 #define SVM_FEATURE_LBRV           (1 <<  1)
66 #define SVM_FEATURE_SVML           (1 <<  2)
67 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
68 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
69 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
70 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
71 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
72
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
74
75 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
76 #define TSC_RATIO_MIN           0x0000000000000001ULL
77 #define TSC_RATIO_MAX           0x000000ffffffffffULL
78
79 static bool erratum_383_found __read_mostly;
80
81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
82
83 /*
84  * Set osvw_len to higher value when updated Revision Guides
85  * are published and we know what the new status bits are
86  */
87 static uint64_t osvw_len = 4, osvw_status;
88
89 static DEFINE_PER_CPU(u64, current_tsc_ratio);
90 #define TSC_RATIO_DEFAULT       0x0100000000ULL
91
92 static const struct svm_direct_access_msrs {
93         u32 index;   /* Index of the MSR */
94         bool always; /* True if intercept is initially cleared */
95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
96         { .index = MSR_STAR,                            .always = true  },
97         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
98         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
99         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
100 #ifdef CONFIG_X86_64
101         { .index = MSR_GS_BASE,                         .always = true  },
102         { .index = MSR_FS_BASE,                         .always = true  },
103         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
104         { .index = MSR_LSTAR,                           .always = true  },
105         { .index = MSR_CSTAR,                           .always = true  },
106         { .index = MSR_SYSCALL_MASK,                    .always = true  },
107 #endif
108         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
109         { .index = MSR_IA32_PRED_CMD,                   .always = false },
110         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
111         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
112         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
113         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
114         { .index = MSR_EFER,                            .always = false },
115         { .index = MSR_IA32_CR_PAT,                     .always = false },
116         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
117         { .index = MSR_INVALID,                         .always = false },
118 };
119
120 /*
121  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
122  * pause_filter_count: On processors that support Pause filtering(indicated
123  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
124  *      count value. On VMRUN this value is loaded into an internal counter.
125  *      Each time a pause instruction is executed, this counter is decremented
126  *      until it reaches zero at which time a #VMEXIT is generated if pause
127  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
128  *      Intercept Filtering for more details.
129  *      This also indicate if ple logic enabled.
130  *
131  * pause_filter_thresh: In addition, some processor families support advanced
132  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
133  *      the amount of time a guest is allowed to execute in a pause loop.
134  *      In this mode, a 16-bit pause filter threshold field is added in the
135  *      VMCB. The threshold value is a cycle count that is used to reset the
136  *      pause counter. As with simple pause filtering, VMRUN loads the pause
137  *      count value from VMCB into an internal counter. Then, on each pause
138  *      instruction the hardware checks the elapsed number of cycles since
139  *      the most recent pause instruction against the pause filter threshold.
140  *      If the elapsed cycle count is greater than the pause filter threshold,
141  *      then the internal pause count is reloaded from the VMCB and execution
142  *      continues. If the elapsed cycle count is less than the pause filter
143  *      threshold, then the internal pause count is decremented. If the count
144  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
145  *      triggered. If advanced pause filtering is supported and pause filter
146  *      threshold field is set to zero, the filter will operate in the simpler,
147  *      count only mode.
148  */
149
150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
151 module_param(pause_filter_thresh, ushort, 0444);
152
153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
154 module_param(pause_filter_count, ushort, 0444);
155
156 /* Default doubles per-vcpu window every exit. */
157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
158 module_param(pause_filter_count_grow, ushort, 0444);
159
160 /* Default resets per-vcpu window every exit to pause_filter_count. */
161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
162 module_param(pause_filter_count_shrink, ushort, 0444);
163
164 /* Default is to compute the maximum so we can never overflow. */
165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
166 module_param(pause_filter_count_max, ushort, 0444);
167
168 /*
169  * Use nested page tables by default.  Note, NPT may get forced off by
170  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
171  */
172 bool npt_enabled = true;
173 module_param_named(npt, npt_enabled, bool, 0444);
174
175 /* allow nested virtualization in KVM/SVM */
176 static int nested = true;
177 module_param(nested, int, S_IRUGO);
178
179 /* enable/disable Next RIP Save */
180 static int nrips = true;
181 module_param(nrips, int, 0444);
182
183 /* enable/disable Virtual VMLOAD VMSAVE */
184 static int vls = true;
185 module_param(vls, int, 0444);
186
187 /* enable/disable Virtual GIF */
188 static int vgif = true;
189 module_param(vgif, int, 0444);
190
191 /*
192  * enable / disable AVIC.  Because the defaults differ for APICv
193  * support between VMX and SVM we cannot use module_param_named.
194  */
195 static bool avic;
196 module_param(avic, bool, 0444);
197
198 bool __read_mostly dump_invalid_vmcb;
199 module_param(dump_invalid_vmcb, bool, 0644);
200
201
202 bool intercept_smi = true;
203 module_param(intercept_smi, bool, 0444);
204
205
206 static bool svm_gp_erratum_intercept = true;
207
208 static u8 rsm_ins_bytes[] = "\x0f\xaa";
209
210 static unsigned long iopm_base;
211
212 struct kvm_ldttss_desc {
213         u16 limit0;
214         u16 base0;
215         unsigned base1:8, type:5, dpl:2, p:1;
216         unsigned limit1:4, zero0:3, g:1, base2:8;
217         u32 base3;
218         u32 zero1;
219 } __attribute__((packed));
220
221 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
222
223 /*
224  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
225  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
226  *
227  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
228  * defer the restoration of TSC_AUX until the CPU returns to userspace.
229  */
230 static int tsc_aux_uret_slot __read_mostly = -1;
231
232 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
233
234 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
235 #define MSRS_RANGE_SIZE 2048
236 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
237
238 u32 svm_msrpm_offset(u32 msr)
239 {
240         u32 offset;
241         int i;
242
243         for (i = 0; i < NUM_MSR_MAPS; i++) {
244                 if (msr < msrpm_ranges[i] ||
245                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
246                         continue;
247
248                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
249                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
250
251                 /* Now we have the u8 offset - but need the u32 offset */
252                 return offset / 4;
253         }
254
255         /* MSR not in any range */
256         return MSR_INVALID;
257 }
258
259 #define MAX_INST_SIZE 15
260
261 static int get_max_npt_level(void)
262 {
263 #ifdef CONFIG_X86_64
264         return PT64_ROOT_4LEVEL;
265 #else
266         return PT32E_ROOT_LEVEL;
267 #endif
268 }
269
270 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
271 {
272         struct vcpu_svm *svm = to_svm(vcpu);
273         u64 old_efer = vcpu->arch.efer;
274         vcpu->arch.efer = efer;
275
276         if (!npt_enabled) {
277                 /* Shadow paging assumes NX to be available.  */
278                 efer |= EFER_NX;
279
280                 if (!(efer & EFER_LMA))
281                         efer &= ~EFER_LME;
282         }
283
284         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
285                 if (!(efer & EFER_SVME)) {
286                         svm_leave_nested(svm);
287                         svm_set_gif(svm, true);
288                         /* #GP intercept is still needed for vmware backdoor */
289                         if (!enable_vmware_backdoor)
290                                 clr_exception_intercept(svm, GP_VECTOR);
291
292                         /*
293                          * Free the nested guest state, unless we are in SMM.
294                          * In this case we will return to the nested guest
295                          * as soon as we leave SMM.
296                          */
297                         if (!is_smm(vcpu))
298                                 svm_free_nested(svm);
299
300                 } else {
301                         int ret = svm_allocate_nested(svm);
302
303                         if (ret) {
304                                 vcpu->arch.efer = old_efer;
305                                 return ret;
306                         }
307
308                         if (svm_gp_erratum_intercept)
309                                 set_exception_intercept(svm, GP_VECTOR);
310                 }
311         }
312
313         svm->vmcb->save.efer = efer | EFER_SVME;
314         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
315         return 0;
316 }
317
318 static int is_external_interrupt(u32 info)
319 {
320         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
321         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
322 }
323
324 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
325 {
326         struct vcpu_svm *svm = to_svm(vcpu);
327         u32 ret = 0;
328
329         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
330                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
331         return ret;
332 }
333
334 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
335 {
336         struct vcpu_svm *svm = to_svm(vcpu);
337
338         if (mask == 0)
339                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
340         else
341                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
342
343 }
344
345 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
346 {
347         struct vcpu_svm *svm = to_svm(vcpu);
348
349         /*
350          * SEV-ES does not expose the next RIP. The RIP update is controlled by
351          * the type of exit and the #VC handler in the guest.
352          */
353         if (sev_es_guest(vcpu->kvm))
354                 goto done;
355
356         if (nrips && svm->vmcb->control.next_rip != 0) {
357                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
358                 svm->next_rip = svm->vmcb->control.next_rip;
359         }
360
361         if (!svm->next_rip) {
362                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
363                         return 0;
364         } else {
365                 kvm_rip_write(vcpu, svm->next_rip);
366         }
367
368 done:
369         svm_set_interrupt_shadow(vcpu, 0);
370
371         return 1;
372 }
373
374 static void svm_queue_exception(struct kvm_vcpu *vcpu)
375 {
376         struct vcpu_svm *svm = to_svm(vcpu);
377         unsigned nr = vcpu->arch.exception.nr;
378         bool has_error_code = vcpu->arch.exception.has_error_code;
379         u32 error_code = vcpu->arch.exception.error_code;
380
381         kvm_deliver_exception_payload(vcpu);
382
383         if (nr == BP_VECTOR && !nrips) {
384                 unsigned long rip, old_rip = kvm_rip_read(vcpu);
385
386                 /*
387                  * For guest debugging where we have to reinject #BP if some
388                  * INT3 is guest-owned:
389                  * Emulate nRIP by moving RIP forward. Will fail if injection
390                  * raises a fault that is not intercepted. Still better than
391                  * failing in all cases.
392                  */
393                 (void)skip_emulated_instruction(vcpu);
394                 rip = kvm_rip_read(vcpu);
395                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
396                 svm->int3_injected = rip - old_rip;
397         }
398
399         svm->vmcb->control.event_inj = nr
400                 | SVM_EVTINJ_VALID
401                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
402                 | SVM_EVTINJ_TYPE_EXEPT;
403         svm->vmcb->control.event_inj_err = error_code;
404 }
405
406 static void svm_init_erratum_383(void)
407 {
408         u32 low, high;
409         int err;
410         u64 val;
411
412         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
413                 return;
414
415         /* Use _safe variants to not break nested virtualization */
416         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
417         if (err)
418                 return;
419
420         val |= (1ULL << 47);
421
422         low  = lower_32_bits(val);
423         high = upper_32_bits(val);
424
425         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
426
427         erratum_383_found = true;
428 }
429
430 static void svm_init_osvw(struct kvm_vcpu *vcpu)
431 {
432         /*
433          * Guests should see errata 400 and 415 as fixed (assuming that
434          * HLT and IO instructions are intercepted).
435          */
436         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
437         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
438
439         /*
440          * By increasing VCPU's osvw.length to 3 we are telling the guest that
441          * all osvw.status bits inside that length, including bit 0 (which is
442          * reserved for erratum 298), are valid. However, if host processor's
443          * osvw_len is 0 then osvw_status[0] carries no information. We need to
444          * be conservative here and therefore we tell the guest that erratum 298
445          * is present (because we really don't know).
446          */
447         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
448                 vcpu->arch.osvw.status |= 1;
449 }
450
451 static int has_svm(void)
452 {
453         const char *msg;
454
455         if (!cpu_has_svm(&msg)) {
456                 printk(KERN_INFO "has_svm: %s\n", msg);
457                 return 0;
458         }
459
460         if (sev_active()) {
461                 pr_info("KVM is unsupported when running as an SEV guest\n");
462                 return 0;
463         }
464
465         if (pgtable_l5_enabled()) {
466                 pr_info("KVM doesn't yet support 5-level paging on AMD SVM\n");
467                 return 0;
468         }
469
470         return 1;
471 }
472
473 static void svm_hardware_disable(void)
474 {
475         /* Make sure we clean up behind us */
476         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
477                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
478
479         cpu_svm_disable();
480
481         amd_pmu_disable_virt();
482 }
483
484 static int svm_hardware_enable(void)
485 {
486
487         struct svm_cpu_data *sd;
488         uint64_t efer;
489         struct desc_struct *gdt;
490         int me = raw_smp_processor_id();
491
492         rdmsrl(MSR_EFER, efer);
493         if (efer & EFER_SVME)
494                 return -EBUSY;
495
496         if (!has_svm()) {
497                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
498                 return -EINVAL;
499         }
500         sd = per_cpu(svm_data, me);
501         if (!sd) {
502                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
503                 return -EINVAL;
504         }
505
506         sd->asid_generation = 1;
507         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
508         sd->next_asid = sd->max_asid + 1;
509         sd->min_asid = max_sev_asid + 1;
510
511         gdt = get_current_gdt_rw();
512         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
513
514         wrmsrl(MSR_EFER, efer | EFER_SVME);
515
516         wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
517
518         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
519                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
520                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
521         }
522
523
524         /*
525          * Get OSVW bits.
526          *
527          * Note that it is possible to have a system with mixed processor
528          * revisions and therefore different OSVW bits. If bits are not the same
529          * on different processors then choose the worst case (i.e. if erratum
530          * is present on one processor and not on another then assume that the
531          * erratum is present everywhere).
532          */
533         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
534                 uint64_t len, status = 0;
535                 int err;
536
537                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
538                 if (!err)
539                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
540                                                       &err);
541
542                 if (err)
543                         osvw_status = osvw_len = 0;
544                 else {
545                         if (len < osvw_len)
546                                 osvw_len = len;
547                         osvw_status |= status;
548                         osvw_status &= (1ULL << osvw_len) - 1;
549                 }
550         } else
551                 osvw_status = osvw_len = 0;
552
553         svm_init_erratum_383();
554
555         amd_pmu_enable_virt();
556
557         return 0;
558 }
559
560 static void svm_cpu_uninit(int cpu)
561 {
562         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
563
564         if (!sd)
565                 return;
566
567         per_cpu(svm_data, cpu) = NULL;
568         kfree(sd->sev_vmcbs);
569         __free_page(sd->save_area);
570         kfree(sd);
571 }
572
573 static int svm_cpu_init(int cpu)
574 {
575         struct svm_cpu_data *sd;
576         int ret = -ENOMEM;
577
578         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
579         if (!sd)
580                 return ret;
581         sd->cpu = cpu;
582         sd->save_area = alloc_page(GFP_KERNEL);
583         if (!sd->save_area)
584                 goto free_cpu_data;
585
586         clear_page(page_address(sd->save_area));
587
588         ret = sev_cpu_init(sd);
589         if (ret)
590                 goto free_save_area;
591
592         per_cpu(svm_data, cpu) = sd;
593
594         return 0;
595
596 free_save_area:
597         __free_page(sd->save_area);
598 free_cpu_data:
599         kfree(sd);
600         return ret;
601
602 }
603
604 static int direct_access_msr_slot(u32 msr)
605 {
606         u32 i;
607
608         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
609                 if (direct_access_msrs[i].index == msr)
610                         return i;
611
612         return -ENOENT;
613 }
614
615 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
616                                      int write)
617 {
618         struct vcpu_svm *svm = to_svm(vcpu);
619         int slot = direct_access_msr_slot(msr);
620
621         if (slot == -ENOENT)
622                 return;
623
624         /* Set the shadow bitmaps to the desired intercept states */
625         if (read)
626                 set_bit(slot, svm->shadow_msr_intercept.read);
627         else
628                 clear_bit(slot, svm->shadow_msr_intercept.read);
629
630         if (write)
631                 set_bit(slot, svm->shadow_msr_intercept.write);
632         else
633                 clear_bit(slot, svm->shadow_msr_intercept.write);
634 }
635
636 static bool valid_msr_intercept(u32 index)
637 {
638         return direct_access_msr_slot(index) != -ENOENT;
639 }
640
641 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
642 {
643         u8 bit_write;
644         unsigned long tmp;
645         u32 offset;
646         u32 *msrpm;
647
648         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
649                                       to_svm(vcpu)->msrpm;
650
651         offset    = svm_msrpm_offset(msr);
652         bit_write = 2 * (msr & 0x0f) + 1;
653         tmp       = msrpm[offset];
654
655         BUG_ON(offset == MSR_INVALID);
656
657         return !!test_bit(bit_write,  &tmp);
658 }
659
660 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
661                                         u32 msr, int read, int write)
662 {
663         u8 bit_read, bit_write;
664         unsigned long tmp;
665         u32 offset;
666
667         /*
668          * If this warning triggers extend the direct_access_msrs list at the
669          * beginning of the file
670          */
671         WARN_ON(!valid_msr_intercept(msr));
672
673         /* Enforce non allowed MSRs to trap */
674         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
675                 read = 0;
676
677         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
678                 write = 0;
679
680         offset    = svm_msrpm_offset(msr);
681         bit_read  = 2 * (msr & 0x0f);
682         bit_write = 2 * (msr & 0x0f) + 1;
683         tmp       = msrpm[offset];
684
685         BUG_ON(offset == MSR_INVALID);
686
687         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
688         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
689
690         msrpm[offset] = tmp;
691
692         svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
693
694 }
695
696 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
697                           int read, int write)
698 {
699         set_shadow_msr_intercept(vcpu, msr, read, write);
700         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
701 }
702
703 u32 *svm_vcpu_alloc_msrpm(void)
704 {
705         unsigned int order = get_order(MSRPM_SIZE);
706         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
707         u32 *msrpm;
708
709         if (!pages)
710                 return NULL;
711
712         msrpm = page_address(pages);
713         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
714
715         return msrpm;
716 }
717
718 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
719 {
720         int i;
721
722         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
723                 if (!direct_access_msrs[i].always)
724                         continue;
725                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
726         }
727 }
728
729
730 void svm_vcpu_free_msrpm(u32 *msrpm)
731 {
732         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
733 }
734
735 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
736 {
737         struct vcpu_svm *svm = to_svm(vcpu);
738         u32 i;
739
740         /*
741          * Set intercept permissions for all direct access MSRs again. They
742          * will automatically get filtered through the MSR filter, so we are
743          * back in sync after this.
744          */
745         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
746                 u32 msr = direct_access_msrs[i].index;
747                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
748                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
749
750                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
751         }
752 }
753
754 static void add_msr_offset(u32 offset)
755 {
756         int i;
757
758         for (i = 0; i < MSRPM_OFFSETS; ++i) {
759
760                 /* Offset already in list? */
761                 if (msrpm_offsets[i] == offset)
762                         return;
763
764                 /* Slot used by another offset? */
765                 if (msrpm_offsets[i] != MSR_INVALID)
766                         continue;
767
768                 /* Add offset to list */
769                 msrpm_offsets[i] = offset;
770
771                 return;
772         }
773
774         /*
775          * If this BUG triggers the msrpm_offsets table has an overflow. Just
776          * increase MSRPM_OFFSETS in this case.
777          */
778         BUG();
779 }
780
781 static void init_msrpm_offsets(void)
782 {
783         int i;
784
785         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
786
787         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
788                 u32 offset;
789
790                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
791                 BUG_ON(offset == MSR_INVALID);
792
793                 add_msr_offset(offset);
794         }
795 }
796
797 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
798 {
799         struct vcpu_svm *svm = to_svm(vcpu);
800
801         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
802         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
803         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
804         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
805         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
806 }
807
808 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
809 {
810         struct vcpu_svm *svm = to_svm(vcpu);
811
812         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
813         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
814         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
815         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
816         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
817 }
818
819 void disable_nmi_singlestep(struct vcpu_svm *svm)
820 {
821         svm->nmi_singlestep = false;
822
823         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
824                 /* Clear our flags if they were not set by the guest */
825                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
826                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
827                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
828                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
829         }
830 }
831
832 static void grow_ple_window(struct kvm_vcpu *vcpu)
833 {
834         struct vcpu_svm *svm = to_svm(vcpu);
835         struct vmcb_control_area *control = &svm->vmcb->control;
836         int old = control->pause_filter_count;
837
838         control->pause_filter_count = __grow_ple_window(old,
839                                                         pause_filter_count,
840                                                         pause_filter_count_grow,
841                                                         pause_filter_count_max);
842
843         if (control->pause_filter_count != old) {
844                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
845                 trace_kvm_ple_window_update(vcpu->vcpu_id,
846                                             control->pause_filter_count, old);
847         }
848 }
849
850 static void shrink_ple_window(struct kvm_vcpu *vcpu)
851 {
852         struct vcpu_svm *svm = to_svm(vcpu);
853         struct vmcb_control_area *control = &svm->vmcb->control;
854         int old = control->pause_filter_count;
855
856         control->pause_filter_count =
857                                 __shrink_ple_window(old,
858                                                     pause_filter_count,
859                                                     pause_filter_count_shrink,
860                                                     pause_filter_count);
861         if (control->pause_filter_count != old) {
862                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
863                 trace_kvm_ple_window_update(vcpu->vcpu_id,
864                                             control->pause_filter_count, old);
865         }
866 }
867
868 /*
869  * The default MMIO mask is a single bit (excluding the present bit),
870  * which could conflict with the memory encryption bit. Check for
871  * memory encryption support and override the default MMIO mask if
872  * memory encryption is enabled.
873  */
874 static __init void svm_adjust_mmio_mask(void)
875 {
876         unsigned int enc_bit, mask_bit;
877         u64 msr, mask;
878
879         /* If there is no memory encryption support, use existing mask */
880         if (cpuid_eax(0x80000000) < 0x8000001f)
881                 return;
882
883         /* If memory encryption is not enabled, use existing mask */
884         rdmsrl(MSR_AMD64_SYSCFG, msr);
885         if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
886                 return;
887
888         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
889         mask_bit = boot_cpu_data.x86_phys_bits;
890
891         /* Increment the mask bit if it is the same as the encryption bit */
892         if (enc_bit == mask_bit)
893                 mask_bit++;
894
895         /*
896          * If the mask bit location is below 52, then some bits above the
897          * physical addressing limit will always be reserved, so use the
898          * rsvd_bits() function to generate the mask. This mask, along with
899          * the present bit, will be used to generate a page fault with
900          * PFER.RSV = 1.
901          *
902          * If the mask bit location is 52 (or above), then clear the mask.
903          */
904         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
905
906         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
907 }
908
909 static void svm_hardware_teardown(void)
910 {
911         int cpu;
912
913         sev_hardware_teardown();
914
915         for_each_possible_cpu(cpu)
916                 svm_cpu_uninit(cpu);
917
918         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
919         get_order(IOPM_SIZE));
920         iopm_base = 0;
921 }
922
923 static __init void svm_set_cpu_caps(void)
924 {
925         kvm_set_cpu_caps();
926
927         supported_xss = 0;
928
929         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
930         if (nested) {
931                 kvm_cpu_cap_set(X86_FEATURE_SVM);
932
933                 if (nrips)
934                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
935
936                 if (npt_enabled)
937                         kvm_cpu_cap_set(X86_FEATURE_NPT);
938
939                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
940                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
941         }
942
943         /* CPUID 0x80000008 */
944         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
945             boot_cpu_has(X86_FEATURE_AMD_SSBD))
946                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
947
948         /* CPUID 0x8000001F (SME/SEV features) */
949         sev_set_cpu_caps();
950 }
951
952 static __init int svm_hardware_setup(void)
953 {
954         int cpu;
955         struct page *iopm_pages;
956         void *iopm_va;
957         int r;
958         unsigned int order = get_order(IOPM_SIZE);
959
960         /*
961          * NX is required for shadow paging and for NPT if the NX huge pages
962          * mitigation is enabled.
963          */
964         if (!boot_cpu_has(X86_FEATURE_NX)) {
965                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
966                 return -EOPNOTSUPP;
967         }
968         kvm_enable_efer_bits(EFER_NX);
969
970         iopm_pages = alloc_pages(GFP_KERNEL, order);
971
972         if (!iopm_pages)
973                 return -ENOMEM;
974
975         iopm_va = page_address(iopm_pages);
976         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
977         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
978
979         init_msrpm_offsets();
980
981         supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
982
983         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
984                 kvm_enable_efer_bits(EFER_FFXSR);
985
986         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
987                 kvm_has_tsc_control = true;
988                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
989                 kvm_tsc_scaling_ratio_frac_bits = 32;
990         }
991
992         tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
993
994         /* Check for pause filtering support */
995         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
996                 pause_filter_count = 0;
997                 pause_filter_thresh = 0;
998         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
999                 pause_filter_thresh = 0;
1000         }
1001
1002         if (nested) {
1003                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1004                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1005         }
1006
1007         /*
1008          * KVM's MMU doesn't support using 2-level paging for itself, and thus
1009          * NPT isn't supported if the host is using 2-level paging since host
1010          * CR4 is unchanged on VMRUN.
1011          */
1012         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
1013                 npt_enabled = false;
1014
1015         if (!boot_cpu_has(X86_FEATURE_NPT))
1016                 npt_enabled = false;
1017
1018         kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
1019         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
1020
1021         /* Note, SEV setup consumes npt_enabled. */
1022         sev_hardware_setup();
1023
1024         svm_hv_hardware_setup();
1025
1026         svm_adjust_mmio_mask();
1027
1028         for_each_possible_cpu(cpu) {
1029                 r = svm_cpu_init(cpu);
1030                 if (r)
1031                         goto err;
1032         }
1033
1034         if (nrips) {
1035                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1036                         nrips = false;
1037         }
1038
1039         enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC);
1040
1041         if (enable_apicv) {
1042                 pr_info("AVIC enabled\n");
1043
1044                 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1045         }
1046
1047         if (vls) {
1048                 if (!npt_enabled ||
1049                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1050                     !IS_ENABLED(CONFIG_X86_64)) {
1051                         vls = false;
1052                 } else {
1053                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1054                 }
1055         }
1056
1057         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1058                 svm_gp_erratum_intercept = false;
1059
1060         if (vgif) {
1061                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1062                         vgif = false;
1063                 else
1064                         pr_info("Virtual GIF supported\n");
1065         }
1066
1067         svm_set_cpu_caps();
1068
1069         /*
1070          * It seems that on AMD processors PTE's accessed bit is
1071          * being set by the CPU hardware before the NPF vmexit.
1072          * This is not expected behaviour and our tests fail because
1073          * of it.
1074          * A workaround here is to disable support for
1075          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1076          * In this case userspace can know if there is support using
1077          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1078          * it
1079          * If future AMD CPU models change the behaviour described above,
1080          * this variable can be changed accordingly
1081          */
1082         allow_smaller_maxphyaddr = !npt_enabled;
1083
1084         return 0;
1085
1086 err:
1087         svm_hardware_teardown();
1088         return r;
1089 }
1090
1091 static void init_seg(struct vmcb_seg *seg)
1092 {
1093         seg->selector = 0;
1094         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1095                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1096         seg->limit = 0xffff;
1097         seg->base = 0;
1098 }
1099
1100 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1101 {
1102         seg->selector = 0;
1103         seg->attrib = SVM_SELECTOR_P_MASK | type;
1104         seg->limit = 0xffff;
1105         seg->base = 0;
1106 }
1107
1108 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1109 {
1110         struct vcpu_svm *svm = to_svm(vcpu);
1111
1112         return svm->nested.ctl.tsc_offset;
1113 }
1114
1115 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1116 {
1117         return kvm_default_tsc_scaling_ratio;
1118 }
1119
1120 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1121 {
1122         struct vcpu_svm *svm = to_svm(vcpu);
1123
1124         svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1125         svm->vmcb->control.tsc_offset = offset;
1126         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1127 }
1128
1129 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1130 {
1131         wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
1132 }
1133
1134 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1135 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1136                                               struct vcpu_svm *svm)
1137 {
1138         /*
1139          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1140          * roots, or if INVPCID is disabled in the guest to inject #UD.
1141          */
1142         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1143                 if (!npt_enabled ||
1144                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1145                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1146                 else
1147                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1148         }
1149
1150         if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1151                 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1152                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1153                 else
1154                         svm_set_intercept(svm, INTERCEPT_RDTSCP);
1155         }
1156 }
1157
1158 static void init_vmcb(struct kvm_vcpu *vcpu)
1159 {
1160         struct vcpu_svm *svm = to_svm(vcpu);
1161         struct vmcb_control_area *control = &svm->vmcb->control;
1162         struct vmcb_save_area *save = &svm->vmcb->save;
1163
1164         vcpu->arch.hflags = 0;
1165
1166         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1167         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1168         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1169         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1170         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1171         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1172         if (!kvm_vcpu_apicv_active(vcpu))
1173                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1174
1175         set_dr_intercepts(svm);
1176
1177         set_exception_intercept(svm, PF_VECTOR);
1178         set_exception_intercept(svm, UD_VECTOR);
1179         set_exception_intercept(svm, MC_VECTOR);
1180         set_exception_intercept(svm, AC_VECTOR);
1181         set_exception_intercept(svm, DB_VECTOR);
1182         /*
1183          * Guest access to VMware backdoor ports could legitimately
1184          * trigger #GP because of TSS I/O permission bitmap.
1185          * We intercept those #GP and allow access to them anyway
1186          * as VMware does.
1187          */
1188         if (enable_vmware_backdoor)
1189                 set_exception_intercept(svm, GP_VECTOR);
1190
1191         svm_set_intercept(svm, INTERCEPT_INTR);
1192         svm_set_intercept(svm, INTERCEPT_NMI);
1193
1194         if (intercept_smi)
1195                 svm_set_intercept(svm, INTERCEPT_SMI);
1196
1197         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1198         svm_set_intercept(svm, INTERCEPT_RDPMC);
1199         svm_set_intercept(svm, INTERCEPT_CPUID);
1200         svm_set_intercept(svm, INTERCEPT_INVD);
1201         svm_set_intercept(svm, INTERCEPT_INVLPG);
1202         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1203         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1204         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1205         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1206         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1207         svm_set_intercept(svm, INTERCEPT_VMRUN);
1208         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1209         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1210         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1211         svm_set_intercept(svm, INTERCEPT_STGI);
1212         svm_set_intercept(svm, INTERCEPT_CLGI);
1213         svm_set_intercept(svm, INTERCEPT_SKINIT);
1214         svm_set_intercept(svm, INTERCEPT_WBINVD);
1215         svm_set_intercept(svm, INTERCEPT_XSETBV);
1216         svm_set_intercept(svm, INTERCEPT_RDPRU);
1217         svm_set_intercept(svm, INTERCEPT_RSM);
1218
1219         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1220                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1221                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1222         }
1223
1224         if (!kvm_hlt_in_guest(vcpu->kvm))
1225                 svm_set_intercept(svm, INTERCEPT_HLT);
1226
1227         control->iopm_base_pa = __sme_set(iopm_base);
1228         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1229         control->int_ctl = V_INTR_MASKING_MASK;
1230
1231         init_seg(&save->es);
1232         init_seg(&save->ss);
1233         init_seg(&save->ds);
1234         init_seg(&save->fs);
1235         init_seg(&save->gs);
1236
1237         save->cs.selector = 0xf000;
1238         save->cs.base = 0xffff0000;
1239         /* Executable/Readable Code Segment */
1240         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1241                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1242         save->cs.limit = 0xffff;
1243
1244         save->gdtr.limit = 0xffff;
1245         save->idtr.limit = 0xffff;
1246
1247         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1248         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1249
1250         svm_set_cr4(vcpu, 0);
1251         svm_set_efer(vcpu, 0);
1252         save->dr6 = 0xffff0ff0;
1253         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
1254         save->rip = 0x0000fff0;
1255         vcpu->arch.regs[VCPU_REGS_RIP] = save->rip;
1256
1257         /*
1258          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1259          * It also updates the guest-visible cr0 value.
1260          */
1261         svm_set_cr0(vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1262         kvm_mmu_reset_context(vcpu);
1263
1264         save->cr4 = X86_CR4_PAE;
1265         /* rdx = ?? */
1266
1267         if (npt_enabled) {
1268                 /* Setup VMCB for Nested Paging */
1269                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1270                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1271                 clr_exception_intercept(svm, PF_VECTOR);
1272                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1273                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1274                 save->g_pat = vcpu->arch.pat;
1275                 save->cr3 = 0;
1276                 save->cr4 = 0;
1277         }
1278         svm->current_vmcb->asid_generation = 0;
1279         svm->asid = 0;
1280
1281         svm->nested.vmcb12_gpa = INVALID_GPA;
1282         svm->nested.last_vmcb12_gpa = INVALID_GPA;
1283         vcpu->arch.hflags = 0;
1284
1285         if (!kvm_pause_in_guest(vcpu->kvm)) {
1286                 control->pause_filter_count = pause_filter_count;
1287                 if (pause_filter_thresh)
1288                         control->pause_filter_thresh = pause_filter_thresh;
1289                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1290         } else {
1291                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1292         }
1293
1294         svm_recalc_instruction_intercepts(vcpu, svm);
1295
1296         /*
1297          * If the host supports V_SPEC_CTRL then disable the interception
1298          * of MSR_IA32_SPEC_CTRL.
1299          */
1300         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1301                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1302
1303         if (kvm_vcpu_apicv_active(vcpu))
1304                 avic_init_vmcb(svm);
1305
1306         if (vgif) {
1307                 svm_clr_intercept(svm, INTERCEPT_STGI);
1308                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1309                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1310         }
1311
1312         if (sev_guest(vcpu->kvm)) {
1313                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1314                 clr_exception_intercept(svm, UD_VECTOR);
1315
1316                 if (sev_es_guest(vcpu->kvm)) {
1317                         /* Perform SEV-ES specific VMCB updates */
1318                         sev_es_init_vmcb(svm);
1319                 }
1320         }
1321
1322         svm_hv_init_vmcb(svm->vmcb);
1323
1324         vmcb_mark_all_dirty(svm->vmcb);
1325
1326         enable_gif(svm);
1327
1328 }
1329
1330 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1331 {
1332         struct vcpu_svm *svm = to_svm(vcpu);
1333         u32 dummy;
1334         u32 eax = 1;
1335
1336         svm->spec_ctrl = 0;
1337         svm->virt_spec_ctrl = 0;
1338
1339         if (!init_event) {
1340                 vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1341                                        MSR_IA32_APICBASE_ENABLE;
1342                 if (kvm_vcpu_is_reset_bsp(vcpu))
1343                         vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP;
1344         }
1345         init_vmcb(vcpu);
1346
1347         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1348         kvm_rdx_write(vcpu, eax);
1349
1350         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1351                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1352 }
1353
1354 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1355 {
1356         svm->current_vmcb = target_vmcb;
1357         svm->vmcb = target_vmcb->ptr;
1358 }
1359
1360 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1361 {
1362         struct vcpu_svm *svm;
1363         struct page *vmcb01_page;
1364         struct page *vmsa_page = NULL;
1365         int err;
1366
1367         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1368         svm = to_svm(vcpu);
1369
1370         err = -ENOMEM;
1371         vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1372         if (!vmcb01_page)
1373                 goto out;
1374
1375         if (sev_es_guest(vcpu->kvm)) {
1376                 /*
1377                  * SEV-ES guests require a separate VMSA page used to contain
1378                  * the encrypted register state of the guest.
1379                  */
1380                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1381                 if (!vmsa_page)
1382                         goto error_free_vmcb_page;
1383
1384                 /*
1385                  * SEV-ES guests maintain an encrypted version of their FPU
1386                  * state which is restored and saved on VMRUN and VMEXIT.
1387                  * Free the fpu structure to prevent KVM from attempting to
1388                  * access the FPU state.
1389                  */
1390                 kvm_free_guest_fpu(vcpu);
1391         }
1392
1393         err = avic_init_vcpu(svm);
1394         if (err)
1395                 goto error_free_vmsa_page;
1396
1397         /* We initialize this flag to true to make sure that the is_running
1398          * bit would be set the first time the vcpu is loaded.
1399          */
1400         if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1401                 svm->avic_is_running = true;
1402
1403         svm->msrpm = svm_vcpu_alloc_msrpm();
1404         if (!svm->msrpm) {
1405                 err = -ENOMEM;
1406                 goto error_free_vmsa_page;
1407         }
1408
1409         svm->vmcb01.ptr = page_address(vmcb01_page);
1410         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1411
1412         if (vmsa_page)
1413                 svm->vmsa = page_address(vmsa_page);
1414
1415         svm->guest_state_loaded = false;
1416
1417         svm_switch_vmcb(svm, &svm->vmcb01);
1418         init_vmcb(vcpu);
1419
1420         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1421
1422         svm_init_osvw(vcpu);
1423         vcpu->arch.microcode_version = 0x01000065;
1424
1425         if (sev_es_guest(vcpu->kvm))
1426                 /* Perform SEV-ES specific VMCB creation updates */
1427                 sev_es_create_vcpu(svm);
1428
1429         return 0;
1430
1431 error_free_vmsa_page:
1432         if (vmsa_page)
1433                 __free_page(vmsa_page);
1434 error_free_vmcb_page:
1435         __free_page(vmcb01_page);
1436 out:
1437         return err;
1438 }
1439
1440 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1441 {
1442         int i;
1443
1444         for_each_online_cpu(i)
1445                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1446 }
1447
1448 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1449 {
1450         struct vcpu_svm *svm = to_svm(vcpu);
1451
1452         /*
1453          * The vmcb page can be recycled, causing a false negative in
1454          * svm_vcpu_load(). So, ensure that no logical CPU has this
1455          * vmcb page recorded as its current vmcb.
1456          */
1457         svm_clear_current_vmcb(svm->vmcb);
1458
1459         svm_free_nested(svm);
1460
1461         sev_free_vcpu(vcpu);
1462
1463         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1464         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1465 }
1466
1467 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1468 {
1469         struct vcpu_svm *svm = to_svm(vcpu);
1470         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1471
1472         if (sev_es_guest(vcpu->kvm))
1473                 sev_es_unmap_ghcb(svm);
1474
1475         if (svm->guest_state_loaded)
1476                 return;
1477
1478         /*
1479          * Save additional host state that will be restored on VMEXIT (sev-es)
1480          * or subsequent vmload of host save area.
1481          */
1482         if (sev_es_guest(vcpu->kvm)) {
1483                 sev_es_prepare_guest_switch(svm, vcpu->cpu);
1484         } else {
1485                 vmsave(__sme_page_pa(sd->save_area));
1486         }
1487
1488         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1489                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1490                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1491                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1492                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1493                 }
1494         }
1495
1496         if (likely(tsc_aux_uret_slot >= 0))
1497                 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1498
1499         svm->guest_state_loaded = true;
1500 }
1501
1502 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1503 {
1504         to_svm(vcpu)->guest_state_loaded = false;
1505 }
1506
1507 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1508 {
1509         struct vcpu_svm *svm = to_svm(vcpu);
1510         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1511
1512         if (sd->current_vmcb != svm->vmcb) {
1513                 sd->current_vmcb = svm->vmcb;
1514                 indirect_branch_prediction_barrier();
1515         }
1516         avic_vcpu_load(vcpu, cpu);
1517 }
1518
1519 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1520 {
1521         avic_vcpu_put(vcpu);
1522         svm_prepare_host_switch(vcpu);
1523
1524         ++vcpu->stat.host_state_reload;
1525 }
1526
1527 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1528 {
1529         struct vcpu_svm *svm = to_svm(vcpu);
1530         unsigned long rflags = svm->vmcb->save.rflags;
1531
1532         if (svm->nmi_singlestep) {
1533                 /* Hide our flags if they were not set by the guest */
1534                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1535                         rflags &= ~X86_EFLAGS_TF;
1536                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1537                         rflags &= ~X86_EFLAGS_RF;
1538         }
1539         return rflags;
1540 }
1541
1542 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1543 {
1544         if (to_svm(vcpu)->nmi_singlestep)
1545                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1546
1547        /*
1548         * Any change of EFLAGS.VM is accompanied by a reload of SS
1549         * (caused by either a task switch or an inter-privilege IRET),
1550         * so we do not need to update the CPL here.
1551         */
1552         to_svm(vcpu)->vmcb->save.rflags = rflags;
1553 }
1554
1555 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1556 {
1557         switch (reg) {
1558         case VCPU_EXREG_PDPTR:
1559                 BUG_ON(!npt_enabled);
1560                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1561                 break;
1562         default:
1563                 WARN_ON_ONCE(1);
1564         }
1565 }
1566
1567 static void svm_set_vintr(struct vcpu_svm *svm)
1568 {
1569         struct vmcb_control_area *control;
1570
1571         /*
1572          * The following fields are ignored when AVIC is enabled
1573          */
1574         WARN_ON(kvm_apicv_activated(svm->vcpu.kvm));
1575
1576         svm_set_intercept(svm, INTERCEPT_VINTR);
1577
1578         /*
1579          * This is just a dummy VINTR to actually cause a vmexit to happen.
1580          * Actual injection of virtual interrupts happens through EVENTINJ.
1581          */
1582         control = &svm->vmcb->control;
1583         control->int_vector = 0x0;
1584         control->int_ctl &= ~V_INTR_PRIO_MASK;
1585         control->int_ctl |= V_IRQ_MASK |
1586                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1587         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1588 }
1589
1590 static void svm_clear_vintr(struct vcpu_svm *svm)
1591 {
1592         svm_clr_intercept(svm, INTERCEPT_VINTR);
1593
1594         /* Drop int_ctl fields related to VINTR injection.  */
1595         svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1596         if (is_guest_mode(&svm->vcpu)) {
1597                 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1598
1599                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1600                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1601
1602                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1603                         V_IRQ_INJECTION_BITS_MASK;
1604         }
1605
1606         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1607 }
1608
1609 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1610 {
1611         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1612         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1613
1614         switch (seg) {
1615         case VCPU_SREG_CS: return &save->cs;
1616         case VCPU_SREG_DS: return &save->ds;
1617         case VCPU_SREG_ES: return &save->es;
1618         case VCPU_SREG_FS: return &save01->fs;
1619         case VCPU_SREG_GS: return &save01->gs;
1620         case VCPU_SREG_SS: return &save->ss;
1621         case VCPU_SREG_TR: return &save01->tr;
1622         case VCPU_SREG_LDTR: return &save01->ldtr;
1623         }
1624         BUG();
1625         return NULL;
1626 }
1627
1628 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1629 {
1630         struct vmcb_seg *s = svm_seg(vcpu, seg);
1631
1632         return s->base;
1633 }
1634
1635 static void svm_get_segment(struct kvm_vcpu *vcpu,
1636                             struct kvm_segment *var, int seg)
1637 {
1638         struct vmcb_seg *s = svm_seg(vcpu, seg);
1639
1640         var->base = s->base;
1641         var->limit = s->limit;
1642         var->selector = s->selector;
1643         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1644         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1645         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1646         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1647         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1648         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1649         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1650
1651         /*
1652          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1653          * However, the SVM spec states that the G bit is not observed by the
1654          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1655          * So let's synthesize a legal G bit for all segments, this helps
1656          * running KVM nested. It also helps cross-vendor migration, because
1657          * Intel's vmentry has a check on the 'G' bit.
1658          */
1659         var->g = s->limit > 0xfffff;
1660
1661         /*
1662          * AMD's VMCB does not have an explicit unusable field, so emulate it
1663          * for cross vendor migration purposes by "not present"
1664          */
1665         var->unusable = !var->present;
1666
1667         switch (seg) {
1668         case VCPU_SREG_TR:
1669                 /*
1670                  * Work around a bug where the busy flag in the tr selector
1671                  * isn't exposed
1672                  */
1673                 var->type |= 0x2;
1674                 break;
1675         case VCPU_SREG_DS:
1676         case VCPU_SREG_ES:
1677         case VCPU_SREG_FS:
1678         case VCPU_SREG_GS:
1679                 /*
1680                  * The accessed bit must always be set in the segment
1681                  * descriptor cache, although it can be cleared in the
1682                  * descriptor, the cached bit always remains at 1. Since
1683                  * Intel has a check on this, set it here to support
1684                  * cross-vendor migration.
1685                  */
1686                 if (!var->unusable)
1687                         var->type |= 0x1;
1688                 break;
1689         case VCPU_SREG_SS:
1690                 /*
1691                  * On AMD CPUs sometimes the DB bit in the segment
1692                  * descriptor is left as 1, although the whole segment has
1693                  * been made unusable. Clear it here to pass an Intel VMX
1694                  * entry check when cross vendor migrating.
1695                  */
1696                 if (var->unusable)
1697                         var->db = 0;
1698                 /* This is symmetric with svm_set_segment() */
1699                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1700                 break;
1701         }
1702 }
1703
1704 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1705 {
1706         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1707
1708         return save->cpl;
1709 }
1710
1711 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1712 {
1713         struct vcpu_svm *svm = to_svm(vcpu);
1714
1715         dt->size = svm->vmcb->save.idtr.limit;
1716         dt->address = svm->vmcb->save.idtr.base;
1717 }
1718
1719 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1720 {
1721         struct vcpu_svm *svm = to_svm(vcpu);
1722
1723         svm->vmcb->save.idtr.limit = dt->size;
1724         svm->vmcb->save.idtr.base = dt->address ;
1725         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1726 }
1727
1728 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1729 {
1730         struct vcpu_svm *svm = to_svm(vcpu);
1731
1732         dt->size = svm->vmcb->save.gdtr.limit;
1733         dt->address = svm->vmcb->save.gdtr.base;
1734 }
1735
1736 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1737 {
1738         struct vcpu_svm *svm = to_svm(vcpu);
1739
1740         svm->vmcb->save.gdtr.limit = dt->size;
1741         svm->vmcb->save.gdtr.base = dt->address ;
1742         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1743 }
1744
1745 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1746 {
1747         struct vcpu_svm *svm = to_svm(vcpu);
1748         u64 hcr0 = cr0;
1749
1750 #ifdef CONFIG_X86_64
1751         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1752                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1753                         vcpu->arch.efer |= EFER_LMA;
1754                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1755                 }
1756
1757                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1758                         vcpu->arch.efer &= ~EFER_LMA;
1759                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1760                 }
1761         }
1762 #endif
1763         vcpu->arch.cr0 = cr0;
1764
1765         if (!npt_enabled)
1766                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1767
1768         /*
1769          * re-enable caching here because the QEMU bios
1770          * does not do it - this results in some delay at
1771          * reboot
1772          */
1773         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1774                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1775
1776         svm->vmcb->save.cr0 = hcr0;
1777         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1778
1779         /*
1780          * SEV-ES guests must always keep the CR intercepts cleared. CR
1781          * tracking is done using the CR write traps.
1782          */
1783         if (sev_es_guest(vcpu->kvm))
1784                 return;
1785
1786         if (hcr0 == cr0) {
1787                 /* Selective CR0 write remains on.  */
1788                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1789                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1790         } else {
1791                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1792                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1793         }
1794 }
1795
1796 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1797 {
1798         return true;
1799 }
1800
1801 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1802 {
1803         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1804         unsigned long old_cr4 = vcpu->arch.cr4;
1805
1806         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1807                 svm_flush_tlb(vcpu);
1808
1809         vcpu->arch.cr4 = cr4;
1810         if (!npt_enabled)
1811                 cr4 |= X86_CR4_PAE;
1812         cr4 |= host_cr4_mce;
1813         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1814         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1815
1816         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1817                 kvm_update_cpuid_runtime(vcpu);
1818 }
1819
1820 static void svm_set_segment(struct kvm_vcpu *vcpu,
1821                             struct kvm_segment *var, int seg)
1822 {
1823         struct vcpu_svm *svm = to_svm(vcpu);
1824         struct vmcb_seg *s = svm_seg(vcpu, seg);
1825
1826         s->base = var->base;
1827         s->limit = var->limit;
1828         s->selector = var->selector;
1829         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1830         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1831         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1832         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1833         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1834         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1835         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1836         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1837
1838         /*
1839          * This is always accurate, except if SYSRET returned to a segment
1840          * with SS.DPL != 3.  Intel does not have this quirk, and always
1841          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1842          * would entail passing the CPL to userspace and back.
1843          */
1844         if (seg == VCPU_SREG_SS)
1845                 /* This is symmetric with svm_get_segment() */
1846                 svm->vmcb->save.cpl = (var->dpl & 3);
1847
1848         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1849 }
1850
1851 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1852 {
1853         struct vcpu_svm *svm = to_svm(vcpu);
1854
1855         clr_exception_intercept(svm, BP_VECTOR);
1856
1857         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1858                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1859                         set_exception_intercept(svm, BP_VECTOR);
1860         }
1861 }
1862
1863 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1864 {
1865         if (sd->next_asid > sd->max_asid) {
1866                 ++sd->asid_generation;
1867                 sd->next_asid = sd->min_asid;
1868                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1869                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1870         }
1871
1872         svm->current_vmcb->asid_generation = sd->asid_generation;
1873         svm->asid = sd->next_asid++;
1874 }
1875
1876 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1877 {
1878         struct vmcb *vmcb = svm->vmcb;
1879
1880         if (svm->vcpu.arch.guest_state_protected)
1881                 return;
1882
1883         if (unlikely(value != vmcb->save.dr6)) {
1884                 vmcb->save.dr6 = value;
1885                 vmcb_mark_dirty(vmcb, VMCB_DR);
1886         }
1887 }
1888
1889 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1890 {
1891         struct vcpu_svm *svm = to_svm(vcpu);
1892
1893         if (vcpu->arch.guest_state_protected)
1894                 return;
1895
1896         get_debugreg(vcpu->arch.db[0], 0);
1897         get_debugreg(vcpu->arch.db[1], 1);
1898         get_debugreg(vcpu->arch.db[2], 2);
1899         get_debugreg(vcpu->arch.db[3], 3);
1900         /*
1901          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1902          * because db_interception might need it.  We can do it before vmentry.
1903          */
1904         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1905         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1906         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1907         set_dr_intercepts(svm);
1908 }
1909
1910 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1911 {
1912         struct vcpu_svm *svm = to_svm(vcpu);
1913
1914         if (vcpu->arch.guest_state_protected)
1915                 return;
1916
1917         svm->vmcb->save.dr7 = value;
1918         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1919 }
1920
1921 static int pf_interception(struct kvm_vcpu *vcpu)
1922 {
1923         struct vcpu_svm *svm = to_svm(vcpu);
1924
1925         u64 fault_address = svm->vmcb->control.exit_info_2;
1926         u64 error_code = svm->vmcb->control.exit_info_1;
1927
1928         return kvm_handle_page_fault(vcpu, error_code, fault_address,
1929                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1930                         svm->vmcb->control.insn_bytes : NULL,
1931                         svm->vmcb->control.insn_len);
1932 }
1933
1934 static int npf_interception(struct kvm_vcpu *vcpu)
1935 {
1936         struct vcpu_svm *svm = to_svm(vcpu);
1937
1938         u64 fault_address = svm->vmcb->control.exit_info_2;
1939         u64 error_code = svm->vmcb->control.exit_info_1;
1940
1941         trace_kvm_page_fault(fault_address, error_code);
1942         return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1943                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1944                         svm->vmcb->control.insn_bytes : NULL,
1945                         svm->vmcb->control.insn_len);
1946 }
1947
1948 static int db_interception(struct kvm_vcpu *vcpu)
1949 {
1950         struct kvm_run *kvm_run = vcpu->run;
1951         struct vcpu_svm *svm = to_svm(vcpu);
1952
1953         if (!(vcpu->guest_debug &
1954               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1955                 !svm->nmi_singlestep) {
1956                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1957                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1958                 return 1;
1959         }
1960
1961         if (svm->nmi_singlestep) {
1962                 disable_nmi_singlestep(svm);
1963                 /* Make sure we check for pending NMIs upon entry */
1964                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1965         }
1966
1967         if (vcpu->guest_debug &
1968             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1969                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1970                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1971                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1972                 kvm_run->debug.arch.pc =
1973                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1974                 kvm_run->debug.arch.exception = DB_VECTOR;
1975                 return 0;
1976         }
1977
1978         return 1;
1979 }
1980
1981 static int bp_interception(struct kvm_vcpu *vcpu)
1982 {
1983         struct vcpu_svm *svm = to_svm(vcpu);
1984         struct kvm_run *kvm_run = vcpu->run;
1985
1986         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1987         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1988         kvm_run->debug.arch.exception = BP_VECTOR;
1989         return 0;
1990 }
1991
1992 static int ud_interception(struct kvm_vcpu *vcpu)
1993 {
1994         return handle_ud(vcpu);
1995 }
1996
1997 static int ac_interception(struct kvm_vcpu *vcpu)
1998 {
1999         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2000         return 1;
2001 }
2002
2003 static bool is_erratum_383(void)
2004 {
2005         int err, i;
2006         u64 value;
2007
2008         if (!erratum_383_found)
2009                 return false;
2010
2011         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2012         if (err)
2013                 return false;
2014
2015         /* Bit 62 may or may not be set for this mce */
2016         value &= ~(1ULL << 62);
2017
2018         if (value != 0xb600000000010015ULL)
2019                 return false;
2020
2021         /* Clear MCi_STATUS registers */
2022         for (i = 0; i < 6; ++i)
2023                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2024
2025         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2026         if (!err) {
2027                 u32 low, high;
2028
2029                 value &= ~(1ULL << 2);
2030                 low    = lower_32_bits(value);
2031                 high   = upper_32_bits(value);
2032
2033                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2034         }
2035
2036         /* Flush tlb to evict multi-match entries */
2037         __flush_tlb_all();
2038
2039         return true;
2040 }
2041
2042 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2043 {
2044         if (is_erratum_383()) {
2045                 /*
2046                  * Erratum 383 triggered. Guest state is corrupt so kill the
2047                  * guest.
2048                  */
2049                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2050
2051                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2052
2053                 return;
2054         }
2055
2056         /*
2057          * On an #MC intercept the MCE handler is not called automatically in
2058          * the host. So do it by hand here.
2059          */
2060         kvm_machine_check();
2061 }
2062
2063 static int mc_interception(struct kvm_vcpu *vcpu)
2064 {
2065         return 1;
2066 }
2067
2068 static int shutdown_interception(struct kvm_vcpu *vcpu)
2069 {
2070         struct kvm_run *kvm_run = vcpu->run;
2071         struct vcpu_svm *svm = to_svm(vcpu);
2072
2073         /*
2074          * The VM save area has already been encrypted so it
2075          * cannot be reinitialized - just terminate.
2076          */
2077         if (sev_es_guest(vcpu->kvm))
2078                 return -EINVAL;
2079
2080         /*
2081          * VMCB is undefined after a SHUTDOWN intercept
2082          * so reinitialize it.
2083          */
2084         clear_page(svm->vmcb);
2085         init_vmcb(vcpu);
2086
2087         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2088         return 0;
2089 }
2090
2091 static int io_interception(struct kvm_vcpu *vcpu)
2092 {
2093         struct vcpu_svm *svm = to_svm(vcpu);
2094         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2095         int size, in, string;
2096         unsigned port;
2097
2098         ++vcpu->stat.io_exits;
2099         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2100         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2101         port = io_info >> 16;
2102         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2103
2104         if (string) {
2105                 if (sev_es_guest(vcpu->kvm))
2106                         return sev_es_string_io(svm, size, port, in);
2107                 else
2108                         return kvm_emulate_instruction(vcpu, 0);
2109         }
2110
2111         svm->next_rip = svm->vmcb->control.exit_info_2;
2112
2113         return kvm_fast_pio(vcpu, size, port, in);
2114 }
2115
2116 static int nmi_interception(struct kvm_vcpu *vcpu)
2117 {
2118         return 1;
2119 }
2120
2121 static int smi_interception(struct kvm_vcpu *vcpu)
2122 {
2123         return 1;
2124 }
2125
2126 static int intr_interception(struct kvm_vcpu *vcpu)
2127 {
2128         ++vcpu->stat.irq_exits;
2129         return 1;
2130 }
2131
2132 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2133 {
2134         struct vcpu_svm *svm = to_svm(vcpu);
2135         struct vmcb *vmcb12;
2136         struct kvm_host_map map;
2137         int ret;
2138
2139         if (nested_svm_check_permissions(vcpu))
2140                 return 1;
2141
2142         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2143         if (ret) {
2144                 if (ret == -EINVAL)
2145                         kvm_inject_gp(vcpu, 0);
2146                 return 1;
2147         }
2148
2149         vmcb12 = map.hva;
2150
2151         ret = kvm_skip_emulated_instruction(vcpu);
2152
2153         if (vmload) {
2154                 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2155                 svm->sysenter_eip_hi = 0;
2156                 svm->sysenter_esp_hi = 0;
2157         } else {
2158                 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2159         }
2160
2161         kvm_vcpu_unmap(vcpu, &map, true);
2162
2163         return ret;
2164 }
2165
2166 static int vmload_interception(struct kvm_vcpu *vcpu)
2167 {
2168         return vmload_vmsave_interception(vcpu, true);
2169 }
2170
2171 static int vmsave_interception(struct kvm_vcpu *vcpu)
2172 {
2173         return vmload_vmsave_interception(vcpu, false);
2174 }
2175
2176 static int vmrun_interception(struct kvm_vcpu *vcpu)
2177 {
2178         if (nested_svm_check_permissions(vcpu))
2179                 return 1;
2180
2181         return nested_svm_vmrun(vcpu);
2182 }
2183
2184 enum {
2185         NONE_SVM_INSTR,
2186         SVM_INSTR_VMRUN,
2187         SVM_INSTR_VMLOAD,
2188         SVM_INSTR_VMSAVE,
2189 };
2190
2191 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2192 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2193 {
2194         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2195
2196         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2197                 return NONE_SVM_INSTR;
2198
2199         switch (ctxt->modrm) {
2200         case 0xd8: /* VMRUN */
2201                 return SVM_INSTR_VMRUN;
2202         case 0xda: /* VMLOAD */
2203                 return SVM_INSTR_VMLOAD;
2204         case 0xdb: /* VMSAVE */
2205                 return SVM_INSTR_VMSAVE;
2206         default:
2207                 break;
2208         }
2209
2210         return NONE_SVM_INSTR;
2211 }
2212
2213 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2214 {
2215         const int guest_mode_exit_codes[] = {
2216                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2217                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2218                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2219         };
2220         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2221                 [SVM_INSTR_VMRUN] = vmrun_interception,
2222                 [SVM_INSTR_VMLOAD] = vmload_interception,
2223                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2224         };
2225         struct vcpu_svm *svm = to_svm(vcpu);
2226         int ret;
2227
2228         if (is_guest_mode(vcpu)) {
2229                 /* Returns '1' or -errno on failure, '0' on success. */
2230                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2231                 if (ret)
2232                         return ret;
2233                 return 1;
2234         }
2235         return svm_instr_handlers[opcode](vcpu);
2236 }
2237
2238 /*
2239  * #GP handling code. Note that #GP can be triggered under the following two
2240  * cases:
2241  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2242  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2243  *      regions (e.g. SMM memory on host).
2244  *   2) VMware backdoor
2245  */
2246 static int gp_interception(struct kvm_vcpu *vcpu)
2247 {
2248         struct vcpu_svm *svm = to_svm(vcpu);
2249         u32 error_code = svm->vmcb->control.exit_info_1;
2250         int opcode;
2251
2252         /* Both #GP cases have zero error_code */
2253         if (error_code)
2254                 goto reinject;
2255
2256         /* Decode the instruction for usage later */
2257         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2258                 goto reinject;
2259
2260         opcode = svm_instr_opcode(vcpu);
2261
2262         if (opcode == NONE_SVM_INSTR) {
2263                 if (!enable_vmware_backdoor)
2264                         goto reinject;
2265
2266                 /*
2267                  * VMware backdoor emulation on #GP interception only handles
2268                  * IN{S}, OUT{S}, and RDPMC.
2269                  */
2270                 if (!is_guest_mode(vcpu))
2271                         return kvm_emulate_instruction(vcpu,
2272                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2273         } else
2274                 return emulate_svm_instr(vcpu, opcode);
2275
2276 reinject:
2277         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2278         return 1;
2279 }
2280
2281 void svm_set_gif(struct vcpu_svm *svm, bool value)
2282 {
2283         if (value) {
2284                 /*
2285                  * If VGIF is enabled, the STGI intercept is only added to
2286                  * detect the opening of the SMI/NMI window; remove it now.
2287                  * Likewise, clear the VINTR intercept, we will set it
2288                  * again while processing KVM_REQ_EVENT if needed.
2289                  */
2290                 if (vgif_enabled(svm))
2291                         svm_clr_intercept(svm, INTERCEPT_STGI);
2292                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2293                         svm_clear_vintr(svm);
2294
2295                 enable_gif(svm);
2296                 if (svm->vcpu.arch.smi_pending ||
2297                     svm->vcpu.arch.nmi_pending ||
2298                     kvm_cpu_has_injectable_intr(&svm->vcpu))
2299                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2300         } else {
2301                 disable_gif(svm);
2302
2303                 /*
2304                  * After a CLGI no interrupts should come.  But if vGIF is
2305                  * in use, we still rely on the VINTR intercept (rather than
2306                  * STGI) to detect an open interrupt window.
2307                 */
2308                 if (!vgif_enabled(svm))
2309                         svm_clear_vintr(svm);
2310         }
2311 }
2312
2313 static int stgi_interception(struct kvm_vcpu *vcpu)
2314 {
2315         int ret;
2316
2317         if (nested_svm_check_permissions(vcpu))
2318                 return 1;
2319
2320         ret = kvm_skip_emulated_instruction(vcpu);
2321         svm_set_gif(to_svm(vcpu), true);
2322         return ret;
2323 }
2324
2325 static int clgi_interception(struct kvm_vcpu *vcpu)
2326 {
2327         int ret;
2328
2329         if (nested_svm_check_permissions(vcpu))
2330                 return 1;
2331
2332         ret = kvm_skip_emulated_instruction(vcpu);
2333         svm_set_gif(to_svm(vcpu), false);
2334         return ret;
2335 }
2336
2337 static int invlpga_interception(struct kvm_vcpu *vcpu)
2338 {
2339         gva_t gva = kvm_rax_read(vcpu);
2340         u32 asid = kvm_rcx_read(vcpu);
2341
2342         /* FIXME: Handle an address size prefix. */
2343         if (!is_long_mode(vcpu))
2344                 gva = (u32)gva;
2345
2346         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2347
2348         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2349         kvm_mmu_invlpg(vcpu, gva);
2350
2351         return kvm_skip_emulated_instruction(vcpu);
2352 }
2353
2354 static int skinit_interception(struct kvm_vcpu *vcpu)
2355 {
2356         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2357
2358         kvm_queue_exception(vcpu, UD_VECTOR);
2359         return 1;
2360 }
2361
2362 static int task_switch_interception(struct kvm_vcpu *vcpu)
2363 {
2364         struct vcpu_svm *svm = to_svm(vcpu);
2365         u16 tss_selector;
2366         int reason;
2367         int int_type = svm->vmcb->control.exit_int_info &
2368                 SVM_EXITINTINFO_TYPE_MASK;
2369         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2370         uint32_t type =
2371                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2372         uint32_t idt_v =
2373                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2374         bool has_error_code = false;
2375         u32 error_code = 0;
2376
2377         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2378
2379         if (svm->vmcb->control.exit_info_2 &
2380             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2381                 reason = TASK_SWITCH_IRET;
2382         else if (svm->vmcb->control.exit_info_2 &
2383                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2384                 reason = TASK_SWITCH_JMP;
2385         else if (idt_v)
2386                 reason = TASK_SWITCH_GATE;
2387         else
2388                 reason = TASK_SWITCH_CALL;
2389
2390         if (reason == TASK_SWITCH_GATE) {
2391                 switch (type) {
2392                 case SVM_EXITINTINFO_TYPE_NMI:
2393                         vcpu->arch.nmi_injected = false;
2394                         break;
2395                 case SVM_EXITINTINFO_TYPE_EXEPT:
2396                         if (svm->vmcb->control.exit_info_2 &
2397                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2398                                 has_error_code = true;
2399                                 error_code =
2400                                         (u32)svm->vmcb->control.exit_info_2;
2401                         }
2402                         kvm_clear_exception_queue(vcpu);
2403                         break;
2404                 case SVM_EXITINTINFO_TYPE_INTR:
2405                         kvm_clear_interrupt_queue(vcpu);
2406                         break;
2407                 default:
2408                         break;
2409                 }
2410         }
2411
2412         if (reason != TASK_SWITCH_GATE ||
2413             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2414             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2415              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2416                 if (!skip_emulated_instruction(vcpu))
2417                         return 0;
2418         }
2419
2420         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2421                 int_vec = -1;
2422
2423         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2424                                has_error_code, error_code);
2425 }
2426
2427 static int iret_interception(struct kvm_vcpu *vcpu)
2428 {
2429         struct vcpu_svm *svm = to_svm(vcpu);
2430
2431         ++vcpu->stat.nmi_window_exits;
2432         vcpu->arch.hflags |= HF_IRET_MASK;
2433         if (!sev_es_guest(vcpu->kvm)) {
2434                 svm_clr_intercept(svm, INTERCEPT_IRET);
2435                 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2436         }
2437         kvm_make_request(KVM_REQ_EVENT, vcpu);
2438         return 1;
2439 }
2440
2441 static int invlpg_interception(struct kvm_vcpu *vcpu)
2442 {
2443         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2444                 return kvm_emulate_instruction(vcpu, 0);
2445
2446         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2447         return kvm_skip_emulated_instruction(vcpu);
2448 }
2449
2450 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2451 {
2452         return kvm_emulate_instruction(vcpu, 0);
2453 }
2454
2455 static int rsm_interception(struct kvm_vcpu *vcpu)
2456 {
2457         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2458 }
2459
2460 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2461                                             unsigned long val)
2462 {
2463         struct vcpu_svm *svm = to_svm(vcpu);
2464         unsigned long cr0 = vcpu->arch.cr0;
2465         bool ret = false;
2466
2467         if (!is_guest_mode(vcpu) ||
2468             (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2469                 return false;
2470
2471         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2472         val &= ~SVM_CR0_SELECTIVE_MASK;
2473
2474         if (cr0 ^ val) {
2475                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2476                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2477         }
2478
2479         return ret;
2480 }
2481
2482 #define CR_VALID (1ULL << 63)
2483
2484 static int cr_interception(struct kvm_vcpu *vcpu)
2485 {
2486         struct vcpu_svm *svm = to_svm(vcpu);
2487         int reg, cr;
2488         unsigned long val;
2489         int err;
2490
2491         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2492                 return emulate_on_interception(vcpu);
2493
2494         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2495                 return emulate_on_interception(vcpu);
2496
2497         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2498         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2499                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2500         else
2501                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2502
2503         err = 0;
2504         if (cr >= 16) { /* mov to cr */
2505                 cr -= 16;
2506                 val = kvm_register_read(vcpu, reg);
2507                 trace_kvm_cr_write(cr, val);
2508                 switch (cr) {
2509                 case 0:
2510                         if (!check_selective_cr0_intercepted(vcpu, val))
2511                                 err = kvm_set_cr0(vcpu, val);
2512                         else
2513                                 return 1;
2514
2515                         break;
2516                 case 3:
2517                         err = kvm_set_cr3(vcpu, val);
2518                         break;
2519                 case 4:
2520                         err = kvm_set_cr4(vcpu, val);
2521                         break;
2522                 case 8:
2523                         err = kvm_set_cr8(vcpu, val);
2524                         break;
2525                 default:
2526                         WARN(1, "unhandled write to CR%d", cr);
2527                         kvm_queue_exception(vcpu, UD_VECTOR);
2528                         return 1;
2529                 }
2530         } else { /* mov from cr */
2531                 switch (cr) {
2532                 case 0:
2533                         val = kvm_read_cr0(vcpu);
2534                         break;
2535                 case 2:
2536                         val = vcpu->arch.cr2;
2537                         break;
2538                 case 3:
2539                         val = kvm_read_cr3(vcpu);
2540                         break;
2541                 case 4:
2542                         val = kvm_read_cr4(vcpu);
2543                         break;
2544                 case 8:
2545                         val = kvm_get_cr8(vcpu);
2546                         break;
2547                 default:
2548                         WARN(1, "unhandled read from CR%d", cr);
2549                         kvm_queue_exception(vcpu, UD_VECTOR);
2550                         return 1;
2551                 }
2552                 kvm_register_write(vcpu, reg, val);
2553                 trace_kvm_cr_read(cr, val);
2554         }
2555         return kvm_complete_insn_gp(vcpu, err);
2556 }
2557
2558 static int cr_trap(struct kvm_vcpu *vcpu)
2559 {
2560         struct vcpu_svm *svm = to_svm(vcpu);
2561         unsigned long old_value, new_value;
2562         unsigned int cr;
2563         int ret = 0;
2564
2565         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2566
2567         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2568         switch (cr) {
2569         case 0:
2570                 old_value = kvm_read_cr0(vcpu);
2571                 svm_set_cr0(vcpu, new_value);
2572
2573                 kvm_post_set_cr0(vcpu, old_value, new_value);
2574                 break;
2575         case 4:
2576                 old_value = kvm_read_cr4(vcpu);
2577                 svm_set_cr4(vcpu, new_value);
2578
2579                 kvm_post_set_cr4(vcpu, old_value, new_value);
2580                 break;
2581         case 8:
2582                 ret = kvm_set_cr8(vcpu, new_value);
2583                 break;
2584         default:
2585                 WARN(1, "unhandled CR%d write trap", cr);
2586                 kvm_queue_exception(vcpu, UD_VECTOR);
2587                 return 1;
2588         }
2589
2590         return kvm_complete_insn_gp(vcpu, ret);
2591 }
2592
2593 static int dr_interception(struct kvm_vcpu *vcpu)
2594 {
2595         struct vcpu_svm *svm = to_svm(vcpu);
2596         int reg, dr;
2597         unsigned long val;
2598         int err = 0;
2599
2600         if (vcpu->guest_debug == 0) {
2601                 /*
2602                  * No more DR vmexits; force a reload of the debug registers
2603                  * and reenter on this instruction.  The next vmexit will
2604                  * retrieve the full state of the debug registers.
2605                  */
2606                 clr_dr_intercepts(svm);
2607                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2608                 return 1;
2609         }
2610
2611         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2612                 return emulate_on_interception(vcpu);
2613
2614         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2615         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2616         if (dr >= 16) { /* mov to DRn  */
2617                 dr -= 16;
2618                 val = kvm_register_read(vcpu, reg);
2619                 err = kvm_set_dr(vcpu, dr, val);
2620         } else {
2621                 kvm_get_dr(vcpu, dr, &val);
2622                 kvm_register_write(vcpu, reg, val);
2623         }
2624
2625         return kvm_complete_insn_gp(vcpu, err);
2626 }
2627
2628 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2629 {
2630         int r;
2631
2632         u8 cr8_prev = kvm_get_cr8(vcpu);
2633         /* instruction emulation calls kvm_set_cr8() */
2634         r = cr_interception(vcpu);
2635         if (lapic_in_kernel(vcpu))
2636                 return r;
2637         if (cr8_prev <= kvm_get_cr8(vcpu))
2638                 return r;
2639         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2640         return 0;
2641 }
2642
2643 static int efer_trap(struct kvm_vcpu *vcpu)
2644 {
2645         struct msr_data msr_info;
2646         int ret;
2647
2648         /*
2649          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2650          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2651          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2652          * the guest doesn't have X86_FEATURE_SVM.
2653          */
2654         msr_info.host_initiated = false;
2655         msr_info.index = MSR_EFER;
2656         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2657         ret = kvm_set_msr_common(vcpu, &msr_info);
2658
2659         return kvm_complete_insn_gp(vcpu, ret);
2660 }
2661
2662 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2663 {
2664         msr->data = 0;
2665
2666         switch (msr->index) {
2667         case MSR_F10H_DECFG:
2668                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2669                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2670                 break;
2671         case MSR_IA32_PERF_CAPABILITIES:
2672                 return 0;
2673         default:
2674                 return KVM_MSR_RET_INVALID;
2675         }
2676
2677         return 0;
2678 }
2679
2680 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2681 {
2682         struct vcpu_svm *svm = to_svm(vcpu);
2683
2684         switch (msr_info->index) {
2685         case MSR_STAR:
2686                 msr_info->data = svm->vmcb01.ptr->save.star;
2687                 break;
2688 #ifdef CONFIG_X86_64
2689         case MSR_LSTAR:
2690                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2691                 break;
2692         case MSR_CSTAR:
2693                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2694                 break;
2695         case MSR_KERNEL_GS_BASE:
2696                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2697                 break;
2698         case MSR_SYSCALL_MASK:
2699                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2700                 break;
2701 #endif
2702         case MSR_IA32_SYSENTER_CS:
2703                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2704                 break;
2705         case MSR_IA32_SYSENTER_EIP:
2706                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2707                 if (guest_cpuid_is_intel(vcpu))
2708                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2709                 break;
2710         case MSR_IA32_SYSENTER_ESP:
2711                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2712                 if (guest_cpuid_is_intel(vcpu))
2713                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2714                 break;
2715         case MSR_TSC_AUX:
2716                 msr_info->data = svm->tsc_aux;
2717                 break;
2718         /*
2719          * Nobody will change the following 5 values in the VMCB so we can
2720          * safely return them on rdmsr. They will always be 0 until LBRV is
2721          * implemented.
2722          */
2723         case MSR_IA32_DEBUGCTLMSR:
2724                 msr_info->data = svm->vmcb->save.dbgctl;
2725                 break;
2726         case MSR_IA32_LASTBRANCHFROMIP:
2727                 msr_info->data = svm->vmcb->save.br_from;
2728                 break;
2729         case MSR_IA32_LASTBRANCHTOIP:
2730                 msr_info->data = svm->vmcb->save.br_to;
2731                 break;
2732         case MSR_IA32_LASTINTFROMIP:
2733                 msr_info->data = svm->vmcb->save.last_excp_from;
2734                 break;
2735         case MSR_IA32_LASTINTTOIP:
2736                 msr_info->data = svm->vmcb->save.last_excp_to;
2737                 break;
2738         case MSR_VM_HSAVE_PA:
2739                 msr_info->data = svm->nested.hsave_msr;
2740                 break;
2741         case MSR_VM_CR:
2742                 msr_info->data = svm->nested.vm_cr_msr;
2743                 break;
2744         case MSR_IA32_SPEC_CTRL:
2745                 if (!msr_info->host_initiated &&
2746                     !guest_has_spec_ctrl_msr(vcpu))
2747                         return 1;
2748
2749                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2750                         msr_info->data = svm->vmcb->save.spec_ctrl;
2751                 else
2752                         msr_info->data = svm->spec_ctrl;
2753                 break;
2754         case MSR_AMD64_VIRT_SPEC_CTRL:
2755                 if (!msr_info->host_initiated &&
2756                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2757                         return 1;
2758
2759                 msr_info->data = svm->virt_spec_ctrl;
2760                 break;
2761         case MSR_F15H_IC_CFG: {
2762
2763                 int family, model;
2764
2765                 family = guest_cpuid_family(vcpu);
2766                 model  = guest_cpuid_model(vcpu);
2767
2768                 if (family < 0 || model < 0)
2769                         return kvm_get_msr_common(vcpu, msr_info);
2770
2771                 msr_info->data = 0;
2772
2773                 if (family == 0x15 &&
2774                     (model >= 0x2 && model < 0x20))
2775                         msr_info->data = 0x1E;
2776                 }
2777                 break;
2778         case MSR_F10H_DECFG:
2779                 msr_info->data = svm->msr_decfg;
2780                 break;
2781         default:
2782                 return kvm_get_msr_common(vcpu, msr_info);
2783         }
2784         return 0;
2785 }
2786
2787 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2788 {
2789         struct vcpu_svm *svm = to_svm(vcpu);
2790         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb))
2791                 return kvm_complete_insn_gp(vcpu, err);
2792
2793         ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2794         ghcb_set_sw_exit_info_2(svm->ghcb,
2795                                 X86_TRAP_GP |
2796                                 SVM_EVTINJ_TYPE_EXEPT |
2797                                 SVM_EVTINJ_VALID);
2798         return 1;
2799 }
2800
2801 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2802 {
2803         struct vcpu_svm *svm = to_svm(vcpu);
2804         int svm_dis, chg_mask;
2805
2806         if (data & ~SVM_VM_CR_VALID_MASK)
2807                 return 1;
2808
2809         chg_mask = SVM_VM_CR_VALID_MASK;
2810
2811         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2812                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2813
2814         svm->nested.vm_cr_msr &= ~chg_mask;
2815         svm->nested.vm_cr_msr |= (data & chg_mask);
2816
2817         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2818
2819         /* check for svm_disable while efer.svme is set */
2820         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2821                 return 1;
2822
2823         return 0;
2824 }
2825
2826 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2827 {
2828         struct vcpu_svm *svm = to_svm(vcpu);
2829         int r;
2830
2831         u32 ecx = msr->index;
2832         u64 data = msr->data;
2833         switch (ecx) {
2834         case MSR_IA32_CR_PAT:
2835                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2836                         return 1;
2837                 vcpu->arch.pat = data;
2838                 svm->vmcb01.ptr->save.g_pat = data;
2839                 if (is_guest_mode(vcpu))
2840                         nested_vmcb02_compute_g_pat(svm);
2841                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2842                 break;
2843         case MSR_IA32_SPEC_CTRL:
2844                 if (!msr->host_initiated &&
2845                     !guest_has_spec_ctrl_msr(vcpu))
2846                         return 1;
2847
2848                 if (kvm_spec_ctrl_test_value(data))
2849                         return 1;
2850
2851                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2852                         svm->vmcb->save.spec_ctrl = data;
2853                 else
2854                         svm->spec_ctrl = data;
2855                 if (!data)
2856                         break;
2857
2858                 /*
2859                  * For non-nested:
2860                  * When it's written (to non-zero) for the first time, pass
2861                  * it through.
2862                  *
2863                  * For nested:
2864                  * The handling of the MSR bitmap for L2 guests is done in
2865                  * nested_svm_vmrun_msrpm.
2866                  * We update the L1 MSR bit as well since it will end up
2867                  * touching the MSR anyway now.
2868                  */
2869                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2870                 break;
2871         case MSR_IA32_PRED_CMD:
2872                 if (!msr->host_initiated &&
2873                     !guest_has_pred_cmd_msr(vcpu))
2874                         return 1;
2875
2876                 if (data & ~PRED_CMD_IBPB)
2877                         return 1;
2878                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2879                         return 1;
2880                 if (!data)
2881                         break;
2882
2883                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2884                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2885                 break;
2886         case MSR_AMD64_VIRT_SPEC_CTRL:
2887                 if (!msr->host_initiated &&
2888                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2889                         return 1;
2890
2891                 if (data & ~SPEC_CTRL_SSBD)
2892                         return 1;
2893
2894                 svm->virt_spec_ctrl = data;
2895                 break;
2896         case MSR_STAR:
2897                 svm->vmcb01.ptr->save.star = data;
2898                 break;
2899 #ifdef CONFIG_X86_64
2900         case MSR_LSTAR:
2901                 svm->vmcb01.ptr->save.lstar = data;
2902                 break;
2903         case MSR_CSTAR:
2904                 svm->vmcb01.ptr->save.cstar = data;
2905                 break;
2906         case MSR_KERNEL_GS_BASE:
2907                 svm->vmcb01.ptr->save.kernel_gs_base = data;
2908                 break;
2909         case MSR_SYSCALL_MASK:
2910                 svm->vmcb01.ptr->save.sfmask = data;
2911                 break;
2912 #endif
2913         case MSR_IA32_SYSENTER_CS:
2914                 svm->vmcb01.ptr->save.sysenter_cs = data;
2915                 break;
2916         case MSR_IA32_SYSENTER_EIP:
2917                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2918                 /*
2919                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2920                  * when we spoof an Intel vendor ID (for cross vendor migration).
2921                  * In this case we use this intercept to track the high
2922                  * 32 bit part of these msrs to support Intel's
2923                  * implementation of SYSENTER/SYSEXIT.
2924                  */
2925                 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2926                 break;
2927         case MSR_IA32_SYSENTER_ESP:
2928                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2929                 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2930                 break;
2931         case MSR_TSC_AUX:
2932                 /*
2933                  * TSC_AUX is usually changed only during boot and never read
2934                  * directly.  Intercept TSC_AUX instead of exposing it to the
2935                  * guest via direct_access_msrs, and switch it via user return.
2936                  */
2937                 preempt_disable();
2938                 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2939                 preempt_enable();
2940                 if (r)
2941                         return 1;
2942
2943                 svm->tsc_aux = data;
2944                 break;
2945         case MSR_IA32_DEBUGCTLMSR:
2946                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2947                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2948                                     __func__, data);
2949                         break;
2950                 }
2951                 if (data & DEBUGCTL_RESERVED_BITS)
2952                         return 1;
2953
2954                 svm->vmcb->save.dbgctl = data;
2955                 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2956                 if (data & (1ULL<<0))
2957                         svm_enable_lbrv(vcpu);
2958                 else
2959                         svm_disable_lbrv(vcpu);
2960                 break;
2961         case MSR_VM_HSAVE_PA:
2962                 /*
2963                  * Old kernels did not validate the value written to
2964                  * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
2965                  * value to allow live migrating buggy or malicious guests
2966                  * originating from those kernels.
2967                  */
2968                 if (!msr->host_initiated && !page_address_valid(vcpu, data))
2969                         return 1;
2970
2971                 svm->nested.hsave_msr = data & PAGE_MASK;
2972                 break;
2973         case MSR_VM_CR:
2974                 return svm_set_vm_cr(vcpu, data);
2975         case MSR_VM_IGNNE:
2976                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2977                 break;
2978         case MSR_F10H_DECFG: {
2979                 struct kvm_msr_entry msr_entry;
2980
2981                 msr_entry.index = msr->index;
2982                 if (svm_get_msr_feature(&msr_entry))
2983                         return 1;
2984
2985                 /* Check the supported bits */
2986                 if (data & ~msr_entry.data)
2987                         return 1;
2988
2989                 /* Don't allow the guest to change a bit, #GP */
2990                 if (!msr->host_initiated && (data ^ msr_entry.data))
2991                         return 1;
2992
2993                 svm->msr_decfg = data;
2994                 break;
2995         }
2996         case MSR_IA32_APICBASE:
2997                 if (kvm_vcpu_apicv_active(vcpu))
2998                         avic_update_vapic_bar(to_svm(vcpu), data);
2999                 fallthrough;
3000         default:
3001                 return kvm_set_msr_common(vcpu, msr);
3002         }
3003         return 0;
3004 }
3005
3006 static int msr_interception(struct kvm_vcpu *vcpu)
3007 {
3008         if (to_svm(vcpu)->vmcb->control.exit_info_1)
3009                 return kvm_emulate_wrmsr(vcpu);
3010         else
3011                 return kvm_emulate_rdmsr(vcpu);
3012 }
3013
3014 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3015 {
3016         kvm_make_request(KVM_REQ_EVENT, vcpu);
3017         svm_clear_vintr(to_svm(vcpu));
3018
3019         /*
3020          * For AVIC, the only reason to end up here is ExtINTs.
3021          * In this case AVIC was temporarily disabled for
3022          * requesting the IRQ window and we have to re-enable it.
3023          */
3024         svm_toggle_avic_for_irq_window(vcpu, true);
3025
3026         ++vcpu->stat.irq_window_exits;
3027         return 1;
3028 }
3029
3030 static int pause_interception(struct kvm_vcpu *vcpu)
3031 {
3032         bool in_kernel;
3033
3034         /*
3035          * CPL is not made available for an SEV-ES guest, therefore
3036          * vcpu->arch.preempted_in_kernel can never be true.  Just
3037          * set in_kernel to false as well.
3038          */
3039         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3040
3041         if (!kvm_pause_in_guest(vcpu->kvm))
3042                 grow_ple_window(vcpu);
3043
3044         kvm_vcpu_on_spin(vcpu, in_kernel);
3045         return kvm_skip_emulated_instruction(vcpu);
3046 }
3047
3048 static int invpcid_interception(struct kvm_vcpu *vcpu)
3049 {
3050         struct vcpu_svm *svm = to_svm(vcpu);
3051         unsigned long type;
3052         gva_t gva;
3053
3054         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3055                 kvm_queue_exception(vcpu, UD_VECTOR);
3056                 return 1;
3057         }
3058
3059         /*
3060          * For an INVPCID intercept:
3061          * EXITINFO1 provides the linear address of the memory operand.
3062          * EXITINFO2 provides the contents of the register operand.
3063          */
3064         type = svm->vmcb->control.exit_info_2;
3065         gva = svm->vmcb->control.exit_info_1;
3066
3067         if (type > 3) {
3068                 kvm_inject_gp(vcpu, 0);
3069                 return 1;
3070         }
3071
3072         return kvm_handle_invpcid(vcpu, type, gva);
3073 }
3074
3075 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3076         [SVM_EXIT_READ_CR0]                     = cr_interception,
3077         [SVM_EXIT_READ_CR3]                     = cr_interception,
3078         [SVM_EXIT_READ_CR4]                     = cr_interception,
3079         [SVM_EXIT_READ_CR8]                     = cr_interception,
3080         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3081         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3082         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3083         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3084         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3085         [SVM_EXIT_READ_DR0]                     = dr_interception,
3086         [SVM_EXIT_READ_DR1]                     = dr_interception,
3087         [SVM_EXIT_READ_DR2]                     = dr_interception,
3088         [SVM_EXIT_READ_DR3]                     = dr_interception,
3089         [SVM_EXIT_READ_DR4]                     = dr_interception,
3090         [SVM_EXIT_READ_DR5]                     = dr_interception,
3091         [SVM_EXIT_READ_DR6]                     = dr_interception,
3092         [SVM_EXIT_READ_DR7]                     = dr_interception,
3093         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3094         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3095         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3096         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3097         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3098         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3099         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3100         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3101         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3102         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3103         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3104         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3105         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3106         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3107         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3108         [SVM_EXIT_INTR]                         = intr_interception,
3109         [SVM_EXIT_NMI]                          = nmi_interception,
3110         [SVM_EXIT_SMI]                          = smi_interception,
3111         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3112         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
3113         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
3114         [SVM_EXIT_IRET]                         = iret_interception,
3115         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
3116         [SVM_EXIT_PAUSE]                        = pause_interception,
3117         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
3118         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3119         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3120         [SVM_EXIT_IOIO]                         = io_interception,
3121         [SVM_EXIT_MSR]                          = msr_interception,
3122         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3123         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3124         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3125         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3126         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3127         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3128         [SVM_EXIT_STGI]                         = stgi_interception,
3129         [SVM_EXIT_CLGI]                         = clgi_interception,
3130         [SVM_EXIT_SKINIT]                       = skinit_interception,
3131         [SVM_EXIT_RDTSCP]                       = kvm_handle_invalid_op,
3132         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3133         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3134         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3135         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3136         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3137         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3138         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3139         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3140         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3141         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3142         [SVM_EXIT_NPF]                          = npf_interception,
3143         [SVM_EXIT_RSM]                          = rsm_interception,
3144         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3145         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3146         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3147 };
3148
3149 static void dump_vmcb(struct kvm_vcpu *vcpu)
3150 {
3151         struct vcpu_svm *svm = to_svm(vcpu);
3152         struct vmcb_control_area *control = &svm->vmcb->control;
3153         struct vmcb_save_area *save = &svm->vmcb->save;
3154         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3155
3156         if (!dump_invalid_vmcb) {
3157                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3158                 return;
3159         }
3160
3161         pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3162                svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3163         pr_err("VMCB Control Area:\n");
3164         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3165         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3166         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3167         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3168         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3169         pr_err("%-20s%08x %08x\n", "intercepts:",
3170               control->intercepts[INTERCEPT_WORD3],
3171                control->intercepts[INTERCEPT_WORD4]);
3172         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3173         pr_err("%-20s%d\n", "pause filter threshold:",
3174                control->pause_filter_thresh);
3175         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3176         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3177         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3178         pr_err("%-20s%d\n", "asid:", control->asid);
3179         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3180         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3181         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3182         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3183         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3184         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3185         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3186         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3187         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3188         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3189         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3190         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3191         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3192         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3193         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3194         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3195         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3196         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3197         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3198         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3199         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3200         pr_err("VMCB State Save Area:\n");
3201         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3202                "es:",
3203                save->es.selector, save->es.attrib,
3204                save->es.limit, save->es.base);
3205         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3206                "cs:",
3207                save->cs.selector, save->cs.attrib,
3208                save->cs.limit, save->cs.base);
3209         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3210                "ss:",
3211                save->ss.selector, save->ss.attrib,
3212                save->ss.limit, save->ss.base);
3213         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3214                "ds:",
3215                save->ds.selector, save->ds.attrib,
3216                save->ds.limit, save->ds.base);
3217         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3218                "fs:",
3219                save01->fs.selector, save01->fs.attrib,
3220                save01->fs.limit, save01->fs.base);
3221         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3222                "gs:",
3223                save01->gs.selector, save01->gs.attrib,
3224                save01->gs.limit, save01->gs.base);
3225         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3226                "gdtr:",
3227                save->gdtr.selector, save->gdtr.attrib,
3228                save->gdtr.limit, save->gdtr.base);
3229         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3230                "ldtr:",
3231                save01->ldtr.selector, save01->ldtr.attrib,
3232                save01->ldtr.limit, save01->ldtr.base);
3233         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3234                "idtr:",
3235                save->idtr.selector, save->idtr.attrib,
3236                save->idtr.limit, save->idtr.base);
3237         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3238                "tr:",
3239                save01->tr.selector, save01->tr.attrib,
3240                save01->tr.limit, save01->tr.base);
3241         pr_err("cpl:            %d                efer:         %016llx\n",
3242                 save->cpl, save->efer);
3243         pr_err("%-15s %016llx %-13s %016llx\n",
3244                "cr0:", save->cr0, "cr2:", save->cr2);
3245         pr_err("%-15s %016llx %-13s %016llx\n",
3246                "cr3:", save->cr3, "cr4:", save->cr4);
3247         pr_err("%-15s %016llx %-13s %016llx\n",
3248                "dr6:", save->dr6, "dr7:", save->dr7);
3249         pr_err("%-15s %016llx %-13s %016llx\n",
3250                "rip:", save->rip, "rflags:", save->rflags);
3251         pr_err("%-15s %016llx %-13s %016llx\n",
3252                "rsp:", save->rsp, "rax:", save->rax);
3253         pr_err("%-15s %016llx %-13s %016llx\n",
3254                "star:", save01->star, "lstar:", save01->lstar);
3255         pr_err("%-15s %016llx %-13s %016llx\n",
3256                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3257         pr_err("%-15s %016llx %-13s %016llx\n",
3258                "kernel_gs_base:", save01->kernel_gs_base,
3259                "sysenter_cs:", save01->sysenter_cs);
3260         pr_err("%-15s %016llx %-13s %016llx\n",
3261                "sysenter_esp:", save01->sysenter_esp,
3262                "sysenter_eip:", save01->sysenter_eip);
3263         pr_err("%-15s %016llx %-13s %016llx\n",
3264                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3265         pr_err("%-15s %016llx %-13s %016llx\n",
3266                "br_from:", save->br_from, "br_to:", save->br_to);
3267         pr_err("%-15s %016llx %-13s %016llx\n",
3268                "excp_from:", save->last_excp_from,
3269                "excp_to:", save->last_excp_to);
3270 }
3271
3272 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3273 {
3274         if (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3275             svm_exit_handlers[exit_code])
3276                 return 0;
3277
3278         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3279         dump_vmcb(vcpu);
3280         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3281         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3282         vcpu->run->internal.ndata = 2;
3283         vcpu->run->internal.data[0] = exit_code;
3284         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3285
3286         return -EINVAL;
3287 }
3288
3289 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3290 {
3291         if (svm_handle_invalid_exit(vcpu, exit_code))
3292                 return 0;
3293
3294 #ifdef CONFIG_RETPOLINE
3295         if (exit_code == SVM_EXIT_MSR)
3296                 return msr_interception(vcpu);
3297         else if (exit_code == SVM_EXIT_VINTR)
3298                 return interrupt_window_interception(vcpu);
3299         else if (exit_code == SVM_EXIT_INTR)
3300                 return intr_interception(vcpu);
3301         else if (exit_code == SVM_EXIT_HLT)
3302                 return kvm_emulate_halt(vcpu);
3303         else if (exit_code == SVM_EXIT_NPF)
3304                 return npf_interception(vcpu);
3305 #endif
3306         return svm_exit_handlers[exit_code](vcpu);
3307 }
3308
3309 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3310                               u32 *intr_info, u32 *error_code)
3311 {
3312         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3313
3314         *info1 = control->exit_info_1;
3315         *info2 = control->exit_info_2;
3316         *intr_info = control->exit_int_info;
3317         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3318             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3319                 *error_code = control->exit_int_info_err;
3320         else
3321                 *error_code = 0;
3322 }
3323
3324 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3325 {
3326         struct vcpu_svm *svm = to_svm(vcpu);
3327         struct kvm_run *kvm_run = vcpu->run;
3328         u32 exit_code = svm->vmcb->control.exit_code;
3329
3330         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3331
3332         /* SEV-ES guests must use the CR write traps to track CR registers. */
3333         if (!sev_es_guest(vcpu->kvm)) {
3334                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3335                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3336                 if (npt_enabled)
3337                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3338         }
3339
3340         if (is_guest_mode(vcpu)) {
3341                 int vmexit;
3342
3343                 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3344
3345                 vmexit = nested_svm_exit_special(svm);
3346
3347                 if (vmexit == NESTED_EXIT_CONTINUE)
3348                         vmexit = nested_svm_exit_handled(svm);
3349
3350                 if (vmexit == NESTED_EXIT_DONE)
3351                         return 1;
3352         }
3353
3354         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3355                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3356                 kvm_run->fail_entry.hardware_entry_failure_reason
3357                         = svm->vmcb->control.exit_code;
3358                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3359                 dump_vmcb(vcpu);
3360                 return 0;
3361         }
3362
3363         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3364             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3365             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3366             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3367                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3368                        "exit_code 0x%x\n",
3369                        __func__, svm->vmcb->control.exit_int_info,
3370                        exit_code);
3371
3372         if (exit_fastpath != EXIT_FASTPATH_NONE)
3373                 return 1;
3374
3375         return svm_invoke_exit_handler(vcpu, exit_code);
3376 }
3377
3378 static void reload_tss(struct kvm_vcpu *vcpu)
3379 {
3380         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3381
3382         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3383         load_TR_desc();
3384 }
3385
3386 static void pre_svm_run(struct kvm_vcpu *vcpu)
3387 {
3388         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3389         struct vcpu_svm *svm = to_svm(vcpu);
3390
3391         /*
3392          * If the previous vmrun of the vmcb occurred on a different physical
3393          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3394          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3395          */
3396         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3397                 svm->current_vmcb->asid_generation = 0;
3398                 vmcb_mark_all_dirty(svm->vmcb);
3399                 svm->current_vmcb->cpu = vcpu->cpu;
3400         }
3401
3402         if (sev_guest(vcpu->kvm))
3403                 return pre_sev_run(svm, vcpu->cpu);
3404
3405         /* FIXME: handle wraparound of asid_generation */
3406         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3407                 new_asid(svm, sd);
3408 }
3409
3410 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3411 {
3412         struct vcpu_svm *svm = to_svm(vcpu);
3413
3414         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3415         vcpu->arch.hflags |= HF_NMI_MASK;
3416         if (!sev_es_guest(vcpu->kvm))
3417                 svm_set_intercept(svm, INTERCEPT_IRET);
3418         ++vcpu->stat.nmi_injections;
3419 }
3420
3421 static void svm_set_irq(struct kvm_vcpu *vcpu)
3422 {
3423         struct vcpu_svm *svm = to_svm(vcpu);
3424
3425         BUG_ON(!(gif_set(svm)));
3426
3427         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3428         ++vcpu->stat.irq_injections;
3429
3430         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3431                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3432 }
3433
3434 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3435 {
3436         struct vcpu_svm *svm = to_svm(vcpu);
3437
3438         /*
3439          * SEV-ES guests must always keep the CR intercepts cleared. CR
3440          * tracking is done using the CR write traps.
3441          */
3442         if (sev_es_guest(vcpu->kvm))
3443                 return;
3444
3445         if (nested_svm_virtualize_tpr(vcpu))
3446                 return;
3447
3448         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3449
3450         if (irr == -1)
3451                 return;
3452
3453         if (tpr >= irr)
3454                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3455 }
3456
3457 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3458 {
3459         struct vcpu_svm *svm = to_svm(vcpu);
3460         struct vmcb *vmcb = svm->vmcb;
3461         bool ret;
3462
3463         if (!gif_set(svm))
3464                 return true;
3465
3466         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3467                 return false;
3468
3469         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3470               (vcpu->arch.hflags & HF_NMI_MASK);
3471
3472         return ret;
3473 }
3474
3475 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3476 {
3477         struct vcpu_svm *svm = to_svm(vcpu);
3478         if (svm->nested.nested_run_pending)
3479                 return -EBUSY;
3480
3481         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3482         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3483                 return -EBUSY;
3484
3485         return !svm_nmi_blocked(vcpu);
3486 }
3487
3488 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3489 {
3490         return !!(vcpu->arch.hflags & HF_NMI_MASK);
3491 }
3492
3493 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3494 {
3495         struct vcpu_svm *svm = to_svm(vcpu);
3496
3497         if (masked) {
3498                 vcpu->arch.hflags |= HF_NMI_MASK;
3499                 if (!sev_es_guest(vcpu->kvm))
3500                         svm_set_intercept(svm, INTERCEPT_IRET);
3501         } else {
3502                 vcpu->arch.hflags &= ~HF_NMI_MASK;
3503                 if (!sev_es_guest(vcpu->kvm))
3504                         svm_clr_intercept(svm, INTERCEPT_IRET);
3505         }
3506 }
3507
3508 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3509 {
3510         struct vcpu_svm *svm = to_svm(vcpu);
3511         struct vmcb *vmcb = svm->vmcb;
3512
3513         if (!gif_set(svm))
3514                 return true;
3515
3516         if (sev_es_guest(vcpu->kvm)) {
3517                 /*
3518                  * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3519                  * bit to determine the state of the IF flag.
3520                  */
3521                 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3522                         return true;
3523         } else if (is_guest_mode(vcpu)) {
3524                 /* As long as interrupts are being delivered...  */
3525                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3526                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3527                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3528                         return true;
3529
3530                 /* ... vmexits aren't blocked by the interrupt shadow  */
3531                 if (nested_exit_on_intr(svm))
3532                         return false;
3533         } else {
3534                 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3535                         return true;
3536         }
3537
3538         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3539 }
3540
3541 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3542 {
3543         struct vcpu_svm *svm = to_svm(vcpu);
3544         if (svm->nested.nested_run_pending)
3545                 return -EBUSY;
3546
3547         /*
3548          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3549          * e.g. if the IRQ arrived asynchronously after checking nested events.
3550          */
3551         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3552                 return -EBUSY;
3553
3554         return !svm_interrupt_blocked(vcpu);
3555 }
3556
3557 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3558 {
3559         struct vcpu_svm *svm = to_svm(vcpu);
3560
3561         /*
3562          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3563          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3564          * get that intercept, this function will be called again though and
3565          * we'll get the vintr intercept. However, if the vGIF feature is
3566          * enabled, the STGI interception will not occur. Enable the irq
3567          * window under the assumption that the hardware will set the GIF.
3568          */
3569         if (vgif_enabled(svm) || gif_set(svm)) {
3570                 /*
3571                  * IRQ window is not needed when AVIC is enabled,
3572                  * unless we have pending ExtINT since it cannot be injected
3573                  * via AVIC. In such case, we need to temporarily disable AVIC,
3574                  * and fallback to injecting IRQ via V_IRQ.
3575                  */
3576                 svm_toggle_avic_for_irq_window(vcpu, false);
3577                 svm_set_vintr(svm);
3578         }
3579 }
3580
3581 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3582 {
3583         struct vcpu_svm *svm = to_svm(vcpu);
3584
3585         if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3586                 return; /* IRET will cause a vm exit */
3587
3588         if (!gif_set(svm)) {
3589                 if (vgif_enabled(svm))
3590                         svm_set_intercept(svm, INTERCEPT_STGI);
3591                 return; /* STGI will cause a vm exit */
3592         }
3593
3594         /*
3595          * Something prevents NMI from been injected. Single step over possible
3596          * problem (IRET or exception injection or interrupt shadow)
3597          */
3598         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3599         svm->nmi_singlestep = true;
3600         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3601 }
3602
3603 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3604 {
3605         return 0;
3606 }
3607
3608 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3609 {
3610         return 0;
3611 }
3612
3613 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3614 {
3615         struct vcpu_svm *svm = to_svm(vcpu);
3616
3617         /*
3618          * Flush only the current ASID even if the TLB flush was invoked via
3619          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3620          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3621          * unconditionally does a TLB flush on both nested VM-Enter and nested
3622          * VM-Exit (via kvm_mmu_reset_context()).
3623          */
3624         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3625                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3626         else
3627                 svm->current_vmcb->asid_generation--;
3628 }
3629
3630 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3631 {
3632         struct vcpu_svm *svm = to_svm(vcpu);
3633
3634         invlpga(gva, svm->vmcb->control.asid);
3635 }
3636
3637 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3638 {
3639         struct vcpu_svm *svm = to_svm(vcpu);
3640
3641         if (nested_svm_virtualize_tpr(vcpu))
3642                 return;
3643
3644         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3645                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3646                 kvm_set_cr8(vcpu, cr8);
3647         }
3648 }
3649
3650 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3651 {
3652         struct vcpu_svm *svm = to_svm(vcpu);
3653         u64 cr8;
3654
3655         if (nested_svm_virtualize_tpr(vcpu) ||
3656             kvm_vcpu_apicv_active(vcpu))
3657                 return;
3658
3659         cr8 = kvm_get_cr8(vcpu);
3660         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3661         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3662 }
3663
3664 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3665 {
3666         struct vcpu_svm *svm = to_svm(vcpu);
3667         u8 vector;
3668         int type;
3669         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3670         unsigned int3_injected = svm->int3_injected;
3671
3672         svm->int3_injected = 0;
3673
3674         /*
3675          * If we've made progress since setting HF_IRET_MASK, we've
3676          * executed an IRET and can allow NMI injection.
3677          */
3678         if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3679             (sev_es_guest(vcpu->kvm) ||
3680              kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3681                 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3682                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3683         }
3684
3685         vcpu->arch.nmi_injected = false;
3686         kvm_clear_exception_queue(vcpu);
3687         kvm_clear_interrupt_queue(vcpu);
3688
3689         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3690                 return;
3691
3692         kvm_make_request(KVM_REQ_EVENT, vcpu);
3693
3694         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3695         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3696
3697         switch (type) {
3698         case SVM_EXITINTINFO_TYPE_NMI:
3699                 vcpu->arch.nmi_injected = true;
3700                 break;
3701         case SVM_EXITINTINFO_TYPE_EXEPT:
3702                 /*
3703                  * Never re-inject a #VC exception.
3704                  */
3705                 if (vector == X86_TRAP_VC)
3706                         break;
3707
3708                 /*
3709                  * In case of software exceptions, do not reinject the vector,
3710                  * but re-execute the instruction instead. Rewind RIP first
3711                  * if we emulated INT3 before.
3712                  */
3713                 if (kvm_exception_is_soft(vector)) {
3714                         if (vector == BP_VECTOR && int3_injected &&
3715                             kvm_is_linear_rip(vcpu, svm->int3_rip))
3716                                 kvm_rip_write(vcpu,
3717                                               kvm_rip_read(vcpu) - int3_injected);
3718                         break;
3719                 }
3720                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3721                         u32 err = svm->vmcb->control.exit_int_info_err;
3722                         kvm_requeue_exception_e(vcpu, vector, err);
3723
3724                 } else
3725                         kvm_requeue_exception(vcpu, vector);
3726                 break;
3727         case SVM_EXITINTINFO_TYPE_INTR:
3728                 kvm_queue_interrupt(vcpu, vector, false);
3729                 break;
3730         default:
3731                 break;
3732         }
3733 }
3734
3735 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3736 {
3737         struct vcpu_svm *svm = to_svm(vcpu);
3738         struct vmcb_control_area *control = &svm->vmcb->control;
3739
3740         control->exit_int_info = control->event_inj;
3741         control->exit_int_info_err = control->event_inj_err;
3742         control->event_inj = 0;
3743         svm_complete_interrupts(vcpu);
3744 }
3745
3746 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3747 {
3748         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3749             to_svm(vcpu)->vmcb->control.exit_info_1)
3750                 return handle_fastpath_set_msr_irqoff(vcpu);
3751
3752         return EXIT_FASTPATH_NONE;
3753 }
3754
3755 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3756 {
3757         struct vcpu_svm *svm = to_svm(vcpu);
3758         unsigned long vmcb_pa = svm->current_vmcb->pa;
3759
3760         kvm_guest_enter_irqoff();
3761
3762         if (sev_es_guest(vcpu->kvm)) {
3763                 __svm_sev_es_vcpu_run(vmcb_pa);
3764         } else {
3765                 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3766
3767                 /*
3768                  * Use a single vmcb (vmcb01 because it's always valid) for
3769                  * context switching guest state via VMLOAD/VMSAVE, that way
3770                  * the state doesn't need to be copied between vmcb01 and
3771                  * vmcb02 when switching vmcbs for nested virtualization.
3772                  */
3773                 vmload(svm->vmcb01.pa);
3774                 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3775                 vmsave(svm->vmcb01.pa);
3776
3777                 vmload(__sme_page_pa(sd->save_area));
3778         }
3779
3780         kvm_guest_exit_irqoff();
3781 }
3782
3783 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3784 {
3785         struct vcpu_svm *svm = to_svm(vcpu);
3786
3787         trace_kvm_entry(vcpu);
3788
3789         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3790         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3791         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3792
3793         /*
3794          * Disable singlestep if we're injecting an interrupt/exception.
3795          * We don't want our modified rflags to be pushed on the stack where
3796          * we might not be able to easily reset them if we disabled NMI
3797          * singlestep later.
3798          */
3799         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3800                 /*
3801                  * Event injection happens before external interrupts cause a
3802                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3803                  * is enough to force an immediate vmexit.
3804                  */
3805                 disable_nmi_singlestep(svm);
3806                 smp_send_reschedule(vcpu->cpu);
3807         }
3808
3809         pre_svm_run(vcpu);
3810
3811         sync_lapic_to_cr8(vcpu);
3812
3813         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3814                 svm->vmcb->control.asid = svm->asid;
3815                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3816         }
3817         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3818
3819         svm_hv_update_vp_id(svm->vmcb, vcpu);
3820
3821         /*
3822          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3823          * of a #DB.
3824          */
3825         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3826                 svm_set_dr6(svm, vcpu->arch.dr6);
3827         else
3828                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3829
3830         clgi();
3831         kvm_load_guest_xsave_state(vcpu);
3832
3833         kvm_wait_lapic_expire(vcpu);
3834
3835         /*
3836          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3837          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3838          * is no need to worry about the conditional branch over the wrmsr
3839          * being speculatively taken.
3840          */
3841         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3842                 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3843
3844         svm_vcpu_enter_exit(vcpu);
3845
3846         /*
3847          * We do not use IBRS in the kernel. If this vCPU has used the
3848          * SPEC_CTRL MSR it may have left it on; save the value and
3849          * turn it off. This is much more efficient than blindly adding
3850          * it to the atomic save/restore list. Especially as the former
3851          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3852          *
3853          * For non-nested case:
3854          * If the L01 MSR bitmap does not intercept the MSR, then we need to
3855          * save it.
3856          *
3857          * For nested case:
3858          * If the L02 MSR bitmap does not intercept the MSR, then we need to
3859          * save it.
3860          */
3861         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3862             unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3863                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3864
3865         if (!sev_es_guest(vcpu->kvm))
3866                 reload_tss(vcpu);
3867
3868         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3869                 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3870
3871         if (!sev_es_guest(vcpu->kvm)) {
3872                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3873                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3874                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3875                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3876         }
3877
3878         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3879                 kvm_before_interrupt(vcpu);
3880
3881         kvm_load_host_xsave_state(vcpu);
3882         stgi();
3883
3884         /* Any pending NMI will happen here */
3885
3886         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3887                 kvm_after_interrupt(vcpu);
3888
3889         sync_cr8_to_lapic(vcpu);
3890
3891         svm->next_rip = 0;
3892         if (is_guest_mode(vcpu)) {
3893                 nested_sync_control_from_vmcb02(svm);
3894
3895                 /* Track VMRUNs that have made past consistency checking */
3896                 if (svm->nested.nested_run_pending &&
3897                     svm->vmcb->control.exit_code != SVM_EXIT_ERR)
3898                         ++vcpu->stat.nested_run;
3899
3900                 svm->nested.nested_run_pending = 0;
3901         }
3902
3903         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3904         vmcb_mark_all_clean(svm->vmcb);
3905
3906         /* if exit due to PF check for async PF */
3907         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3908                 vcpu->arch.apf.host_apf_flags =
3909                         kvm_read_and_reset_apf_flags();
3910
3911         if (npt_enabled)
3912                 kvm_register_clear_available(vcpu, VCPU_EXREG_PDPTR);
3913
3914         /*
3915          * We need to handle MC intercepts here before the vcpu has a chance to
3916          * change the physical cpu
3917          */
3918         if (unlikely(svm->vmcb->control.exit_code ==
3919                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3920                 svm_handle_mce(vcpu);
3921
3922         svm_complete_interrupts(vcpu);
3923
3924         if (is_guest_mode(vcpu))
3925                 return EXIT_FASTPATH_NONE;
3926
3927         return svm_exit_handlers_fastpath(vcpu);
3928 }
3929
3930 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3931                              int root_level)
3932 {
3933         struct vcpu_svm *svm = to_svm(vcpu);
3934         unsigned long cr3;
3935
3936         if (npt_enabled) {
3937                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3938                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3939
3940                 hv_track_root_tdp(vcpu, root_hpa);
3941
3942                 /* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3943                 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3944                         return;
3945                 cr3 = vcpu->arch.cr3;
3946         } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3947                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3948         } else {
3949                 /* PCID in the guest should be impossible with a 32-bit MMU. */
3950                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3951                 cr3 = root_hpa;
3952         }
3953
3954         svm->vmcb->save.cr3 = cr3;
3955         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3956 }
3957
3958 static int is_disabled(void)
3959 {
3960         u64 vm_cr;
3961
3962         rdmsrl(MSR_VM_CR, vm_cr);
3963         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3964                 return 1;
3965
3966         return 0;
3967 }
3968
3969 static void
3970 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3971 {
3972         /*
3973          * Patch in the VMMCALL instruction:
3974          */
3975         hypercall[0] = 0x0f;
3976         hypercall[1] = 0x01;
3977         hypercall[2] = 0xd9;
3978 }
3979
3980 static int __init svm_check_processor_compat(void)
3981 {
3982         return 0;
3983 }
3984
3985 static bool svm_cpu_has_accelerated_tpr(void)
3986 {
3987         return false;
3988 }
3989
3990 /*
3991  * The kvm parameter can be NULL (module initialization, or invocation before
3992  * VM creation). Be sure to check the kvm parameter before using it.
3993  */
3994 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3995 {
3996         switch (index) {
3997         case MSR_IA32_MCG_EXT_CTL:
3998         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3999                 return false;
4000         case MSR_IA32_SMBASE:
4001                 /* SEV-ES guests do not support SMM, so report false */
4002                 if (kvm && sev_es_guest(kvm))
4003                         return false;
4004                 break;
4005         default:
4006                 break;
4007         }
4008
4009         return true;
4010 }
4011
4012 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4013 {
4014         return 0;
4015 }
4016
4017 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4018 {
4019         struct vcpu_svm *svm = to_svm(vcpu);
4020         struct kvm_cpuid_entry2 *best;
4021
4022         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4023                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
4024                                     boot_cpu_has(X86_FEATURE_XSAVES);
4025
4026         /* Update nrips enabled cache */
4027         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4028                              guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4029
4030         svm_recalc_instruction_intercepts(vcpu, svm);
4031
4032         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
4033         if (sev_guest(vcpu->kvm)) {
4034                 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
4035                 if (best)
4036                         vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4037         }
4038
4039         if (kvm_vcpu_apicv_active(vcpu)) {
4040                 /*
4041                  * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
4042                  * is exposed to the guest, disable AVIC.
4043                  */
4044                 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
4045                         kvm_request_apicv_update(vcpu->kvm, false,
4046                                                  APICV_INHIBIT_REASON_X2APIC);
4047
4048                 /*
4049                  * Currently, AVIC does not work with nested virtualization.
4050                  * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
4051                  */
4052                 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4053                         kvm_request_apicv_update(vcpu->kvm, false,
4054                                                  APICV_INHIBIT_REASON_NESTED);
4055         }
4056
4057         if (guest_cpuid_is_intel(vcpu)) {
4058                 /*
4059                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
4060                  * accesses because the processor only stores 32 bits.
4061                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
4062                  */
4063                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
4064                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
4065                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4066
4067                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
4068                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
4069         } else {
4070                 /*
4071                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
4072                  * in VMCB and clear intercepts to avoid #VMEXIT.
4073                  */
4074                 if (vls) {
4075                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
4076                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
4077                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4078                 }
4079                 /* No need to intercept these MSRs */
4080                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
4081                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
4082         }
4083 }
4084
4085 static bool svm_has_wbinvd_exit(void)
4086 {
4087         return true;
4088 }
4089
4090 #define PRE_EX(exit)  { .exit_code = (exit), \
4091                         .stage = X86_ICPT_PRE_EXCEPT, }
4092 #define POST_EX(exit) { .exit_code = (exit), \
4093                         .stage = X86_ICPT_POST_EXCEPT, }
4094 #define POST_MEM(exit) { .exit_code = (exit), \
4095                         .stage = X86_ICPT_POST_MEMACCESS, }
4096
4097 static const struct __x86_intercept {
4098         u32 exit_code;
4099         enum x86_intercept_stage stage;
4100 } x86_intercept_map[] = {
4101         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4102         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4103         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4104         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4105         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4106         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4107         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4108         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4109         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4110         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4111         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4112         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4113         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4114         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4115         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4116         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4117         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4118         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4119         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4120         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4121         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4122         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4123         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4124         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4125         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4126         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4127         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4128         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4129         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4130         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4131         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4132         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4133         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4134         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4135         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4136         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4137         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4138         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4139         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4140         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4141         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4142         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4143         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4144         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4145         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4146         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4147         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4148 };
4149
4150 #undef PRE_EX
4151 #undef POST_EX
4152 #undef POST_MEM
4153
4154 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4155                                struct x86_instruction_info *info,
4156                                enum x86_intercept_stage stage,
4157                                struct x86_exception *exception)
4158 {
4159         struct vcpu_svm *svm = to_svm(vcpu);
4160         int vmexit, ret = X86EMUL_CONTINUE;
4161         struct __x86_intercept icpt_info;
4162         struct vmcb *vmcb = svm->vmcb;
4163
4164         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4165                 goto out;
4166
4167         icpt_info = x86_intercept_map[info->intercept];
4168
4169         if (stage != icpt_info.stage)
4170                 goto out;
4171
4172         switch (icpt_info.exit_code) {
4173         case SVM_EXIT_READ_CR0:
4174                 if (info->intercept == x86_intercept_cr_read)
4175                         icpt_info.exit_code += info->modrm_reg;
4176                 break;
4177         case SVM_EXIT_WRITE_CR0: {
4178                 unsigned long cr0, val;
4179
4180                 if (info->intercept == x86_intercept_cr_write)
4181                         icpt_info.exit_code += info->modrm_reg;
4182
4183                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4184                     info->intercept == x86_intercept_clts)
4185                         break;
4186
4187                 if (!(vmcb_is_intercept(&svm->nested.ctl,
4188                                         INTERCEPT_SELECTIVE_CR0)))
4189                         break;
4190
4191                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4192                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4193
4194                 if (info->intercept == x86_intercept_lmsw) {
4195                         cr0 &= 0xfUL;
4196                         val &= 0xfUL;
4197                         /* lmsw can't clear PE - catch this here */
4198                         if (cr0 & X86_CR0_PE)
4199                                 val |= X86_CR0_PE;
4200                 }
4201
4202                 if (cr0 ^ val)
4203                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4204
4205                 break;
4206         }
4207         case SVM_EXIT_READ_DR0:
4208         case SVM_EXIT_WRITE_DR0:
4209                 icpt_info.exit_code += info->modrm_reg;
4210                 break;
4211         case SVM_EXIT_MSR:
4212                 if (info->intercept == x86_intercept_wrmsr)
4213                         vmcb->control.exit_info_1 = 1;
4214                 else
4215                         vmcb->control.exit_info_1 = 0;
4216                 break;
4217         case SVM_EXIT_PAUSE:
4218                 /*
4219                  * We get this for NOP only, but pause
4220                  * is rep not, check this here
4221                  */
4222                 if (info->rep_prefix != REPE_PREFIX)
4223                         goto out;
4224                 break;
4225         case SVM_EXIT_IOIO: {
4226                 u64 exit_info;
4227                 u32 bytes;
4228
4229                 if (info->intercept == x86_intercept_in ||
4230                     info->intercept == x86_intercept_ins) {
4231                         exit_info = ((info->src_val & 0xffff) << 16) |
4232                                 SVM_IOIO_TYPE_MASK;
4233                         bytes = info->dst_bytes;
4234                 } else {
4235                         exit_info = (info->dst_val & 0xffff) << 16;
4236                         bytes = info->src_bytes;
4237                 }
4238
4239                 if (info->intercept == x86_intercept_outs ||
4240                     info->intercept == x86_intercept_ins)
4241                         exit_info |= SVM_IOIO_STR_MASK;
4242
4243                 if (info->rep_prefix)
4244                         exit_info |= SVM_IOIO_REP_MASK;
4245
4246                 bytes = min(bytes, 4u);
4247
4248                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4249
4250                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4251
4252                 vmcb->control.exit_info_1 = exit_info;
4253                 vmcb->control.exit_info_2 = info->next_rip;
4254
4255                 break;
4256         }
4257         default:
4258                 break;
4259         }
4260
4261         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4262         if (static_cpu_has(X86_FEATURE_NRIPS))
4263                 vmcb->control.next_rip  = info->next_rip;
4264         vmcb->control.exit_code = icpt_info.exit_code;
4265         vmexit = nested_svm_exit_handled(svm);
4266
4267         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4268                                            : X86EMUL_CONTINUE;
4269
4270 out:
4271         return ret;
4272 }
4273
4274 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4275 {
4276 }
4277
4278 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4279 {
4280         if (!kvm_pause_in_guest(vcpu->kvm))
4281                 shrink_ple_window(vcpu);
4282 }
4283
4284 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4285 {
4286         /* [63:9] are reserved. */
4287         vcpu->arch.mcg_cap &= 0x1ff;
4288 }
4289
4290 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4291 {
4292         struct vcpu_svm *svm = to_svm(vcpu);
4293
4294         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4295         if (!gif_set(svm))
4296                 return true;
4297
4298         return is_smm(vcpu);
4299 }
4300
4301 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4302 {
4303         struct vcpu_svm *svm = to_svm(vcpu);
4304         if (svm->nested.nested_run_pending)
4305                 return -EBUSY;
4306
4307         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4308         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4309                 return -EBUSY;
4310
4311         return !svm_smi_blocked(vcpu);
4312 }
4313
4314 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4315 {
4316         struct vcpu_svm *svm = to_svm(vcpu);
4317         struct kvm_host_map map_save;
4318         int ret;
4319
4320         if (is_guest_mode(vcpu)) {
4321                 /* FED8h - SVM Guest */
4322                 put_smstate(u64, smstate, 0x7ed8, 1);
4323                 /* FEE0h - SVM Guest VMCB Physical Address */
4324                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4325
4326                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4327                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4328                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4329
4330                 ret = nested_svm_vmexit(svm);
4331                 if (ret)
4332                         return ret;
4333
4334                 /*
4335                  * KVM uses VMCB01 to store L1 host state while L2 runs but
4336                  * VMCB01 is going to be used during SMM and thus the state will
4337                  * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4338                  * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4339                  * format of the area is identical to guest save area offsetted
4340                  * by 0x400 (matches the offset of 'struct vmcb_save_area'
4341                  * within 'struct vmcb'). Note: HSAVE area may also be used by
4342                  * L1 hypervisor to save additional host context (e.g. KVM does
4343                  * that, see svm_prepare_guest_switch()) which must be
4344                  * preserved.
4345                  */
4346                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4347                                  &map_save) == -EINVAL)
4348                         return 1;
4349
4350                 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4351
4352                 svm_copy_vmrun_state(map_save.hva + 0x400,
4353                                      &svm->vmcb01.ptr->save);
4354
4355                 kvm_vcpu_unmap(vcpu, &map_save, true);
4356         }
4357         return 0;
4358 }
4359
4360 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4361 {
4362         struct vcpu_svm *svm = to_svm(vcpu);
4363         struct kvm_host_map map, map_save;
4364         int ret = 0;
4365
4366         if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4367                 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4368                 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4369                 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4370                 struct vmcb *vmcb12;
4371
4372                 if (guest) {
4373                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4374                                 return 1;
4375
4376                         if (!(saved_efer & EFER_SVME))
4377                                 return 1;
4378
4379                         if (kvm_vcpu_map(vcpu,
4380                                          gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4381                                 return 1;
4382
4383                         if (svm_allocate_nested(svm))
4384                                 return 1;
4385
4386                         vmcb12 = map.hva;
4387
4388                         nested_load_control_from_vmcb12(svm, &vmcb12->control);
4389
4390                         ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12);
4391                         kvm_vcpu_unmap(vcpu, &map, true);
4392
4393                         /*
4394                          * Restore L1 host state from L1 HSAVE area as VMCB01 was
4395                          * used during SMM (see svm_enter_smm())
4396                          */
4397                         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4398                                          &map_save) == -EINVAL)
4399                                 return 1;
4400
4401                         svm_copy_vmrun_state(&svm->vmcb01.ptr->save,
4402                                              map_save.hva + 0x400);
4403
4404                         kvm_vcpu_unmap(vcpu, &map_save, true);
4405                 }
4406         }
4407
4408         return ret;
4409 }
4410
4411 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4412 {
4413         struct vcpu_svm *svm = to_svm(vcpu);
4414
4415         if (!gif_set(svm)) {
4416                 if (vgif_enabled(svm))
4417                         svm_set_intercept(svm, INTERCEPT_STGI);
4418                 /* STGI will cause a vm exit */
4419         } else {
4420                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4421         }
4422 }
4423
4424 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4425 {
4426         bool smep, smap, is_user;
4427         unsigned long cr4;
4428
4429         /*
4430          * When the guest is an SEV-ES guest, emulation is not possible.
4431          */
4432         if (sev_es_guest(vcpu->kvm))
4433                 return false;
4434
4435         /*
4436          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4437          *
4438          * Errata:
4439          * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4440          * possible that CPU microcode implementing DecodeAssist will fail
4441          * to read bytes of instruction which caused #NPF. In this case,
4442          * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4443          * return 0 instead of the correct guest instruction bytes.
4444          *
4445          * This happens because CPU microcode reading instruction bytes
4446          * uses a special opcode which attempts to read data using CPL=0
4447          * privileges. The microcode reads CS:RIP and if it hits a SMAP
4448          * fault, it gives up and returns no instruction bytes.
4449          *
4450          * Detection:
4451          * We reach here in case CPU supports DecodeAssist, raised #NPF and
4452          * returned 0 in GuestIntrBytes field of the VMCB.
4453          * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4454          * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4455          * in case vCPU CPL==3 (Because otherwise guest would have triggered
4456          * a SMEP fault instead of #NPF).
4457          * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4458          * As most guests enable SMAP if they have also enabled SMEP, use above
4459          * logic in order to attempt minimize false-positive of detecting errata
4460          * while still preserving all cases semantic correctness.
4461          *
4462          * Workaround:
4463          * To determine what instruction the guest was executing, the hypervisor
4464          * will have to decode the instruction at the instruction pointer.
4465          *
4466          * In non SEV guest, hypervisor will be able to read the guest
4467          * memory to decode the instruction pointer when insn_len is zero
4468          * so we return true to indicate that decoding is possible.
4469          *
4470          * But in the SEV guest, the guest memory is encrypted with the
4471          * guest specific key and hypervisor will not be able to decode the
4472          * instruction pointer so we will not able to workaround it. Lets
4473          * print the error and request to kill the guest.
4474          */
4475         if (likely(!insn || insn_len))
4476                 return true;
4477
4478         /*
4479          * If RIP is invalid, go ahead with emulation which will cause an
4480          * internal error exit.
4481          */
4482         if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4483                 return true;
4484
4485         cr4 = kvm_read_cr4(vcpu);
4486         smep = cr4 & X86_CR4_SMEP;
4487         smap = cr4 & X86_CR4_SMAP;
4488         is_user = svm_get_cpl(vcpu) == 3;
4489         if (smap && (!smep || is_user)) {
4490                 if (!sev_guest(vcpu->kvm))
4491                         return true;
4492
4493                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4494                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4495         }
4496
4497         return false;
4498 }
4499
4500 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4501 {
4502         struct vcpu_svm *svm = to_svm(vcpu);
4503
4504         /*
4505          * TODO: Last condition latch INIT signals on vCPU when
4506          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4507          * To properly emulate the INIT intercept,
4508          * svm_check_nested_events() should call nested_svm_vmexit()
4509          * if an INIT signal is pending.
4510          */
4511         return !gif_set(svm) ||
4512                    (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4513 }
4514
4515 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4516 {
4517         if (!sev_es_guest(vcpu->kvm))
4518                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4519
4520         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4521 }
4522
4523 static void svm_vm_destroy(struct kvm *kvm)
4524 {
4525         avic_vm_destroy(kvm);
4526         sev_vm_destroy(kvm);
4527 }
4528
4529 static int svm_vm_init(struct kvm *kvm)
4530 {
4531         if (!pause_filter_count || !pause_filter_thresh)
4532                 kvm->arch.pause_in_guest = true;
4533
4534         if (enable_apicv) {
4535                 int ret = avic_vm_init(kvm);
4536                 if (ret)
4537                         return ret;
4538         }
4539
4540         return 0;
4541 }
4542
4543 static struct kvm_x86_ops svm_x86_ops __initdata = {
4544         .hardware_unsetup = svm_hardware_teardown,
4545         .hardware_enable = svm_hardware_enable,
4546         .hardware_disable = svm_hardware_disable,
4547         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4548         .has_emulated_msr = svm_has_emulated_msr,
4549
4550         .vcpu_create = svm_create_vcpu,
4551         .vcpu_free = svm_free_vcpu,
4552         .vcpu_reset = svm_vcpu_reset,
4553
4554         .vm_size = sizeof(struct kvm_svm),
4555         .vm_init = svm_vm_init,
4556         .vm_destroy = svm_vm_destroy,
4557
4558         .prepare_guest_switch = svm_prepare_guest_switch,
4559         .vcpu_load = svm_vcpu_load,
4560         .vcpu_put = svm_vcpu_put,
4561         .vcpu_blocking = svm_vcpu_blocking,
4562         .vcpu_unblocking = svm_vcpu_unblocking,
4563
4564         .update_exception_bitmap = svm_update_exception_bitmap,
4565         .get_msr_feature = svm_get_msr_feature,
4566         .get_msr = svm_get_msr,
4567         .set_msr = svm_set_msr,
4568         .get_segment_base = svm_get_segment_base,
4569         .get_segment = svm_get_segment,
4570         .set_segment = svm_set_segment,
4571         .get_cpl = svm_get_cpl,
4572         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4573         .set_cr0 = svm_set_cr0,
4574         .is_valid_cr4 = svm_is_valid_cr4,
4575         .set_cr4 = svm_set_cr4,
4576         .set_efer = svm_set_efer,
4577         .get_idt = svm_get_idt,
4578         .set_idt = svm_set_idt,
4579         .get_gdt = svm_get_gdt,
4580         .set_gdt = svm_set_gdt,
4581         .set_dr7 = svm_set_dr7,
4582         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4583         .cache_reg = svm_cache_reg,
4584         .get_rflags = svm_get_rflags,
4585         .set_rflags = svm_set_rflags,
4586
4587         .tlb_flush_all = svm_flush_tlb,
4588         .tlb_flush_current = svm_flush_tlb,
4589         .tlb_flush_gva = svm_flush_tlb_gva,
4590         .tlb_flush_guest = svm_flush_tlb,
4591
4592         .run = svm_vcpu_run,
4593         .handle_exit = handle_exit,
4594         .skip_emulated_instruction = skip_emulated_instruction,
4595         .update_emulated_instruction = NULL,
4596         .set_interrupt_shadow = svm_set_interrupt_shadow,
4597         .get_interrupt_shadow = svm_get_interrupt_shadow,
4598         .patch_hypercall = svm_patch_hypercall,
4599         .set_irq = svm_set_irq,
4600         .set_nmi = svm_inject_nmi,
4601         .queue_exception = svm_queue_exception,
4602         .cancel_injection = svm_cancel_injection,
4603         .interrupt_allowed = svm_interrupt_allowed,
4604         .nmi_allowed = svm_nmi_allowed,
4605         .get_nmi_mask = svm_get_nmi_mask,
4606         .set_nmi_mask = svm_set_nmi_mask,
4607         .enable_nmi_window = svm_enable_nmi_window,
4608         .enable_irq_window = svm_enable_irq_window,
4609         .update_cr8_intercept = svm_update_cr8_intercept,
4610         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4611         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4612         .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4613         .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4614         .load_eoi_exitmap = svm_load_eoi_exitmap,
4615         .hwapic_irr_update = svm_hwapic_irr_update,
4616         .hwapic_isr_update = svm_hwapic_isr_update,
4617         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4618         .apicv_post_state_restore = avic_post_state_restore,
4619
4620         .set_tss_addr = svm_set_tss_addr,
4621         .set_identity_map_addr = svm_set_identity_map_addr,
4622         .get_mt_mask = svm_get_mt_mask,
4623
4624         .get_exit_info = svm_get_exit_info,
4625
4626         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4627
4628         .has_wbinvd_exit = svm_has_wbinvd_exit,
4629
4630         .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4631         .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4632         .write_tsc_offset = svm_write_tsc_offset,
4633         .write_tsc_multiplier = svm_write_tsc_multiplier,
4634
4635         .load_mmu_pgd = svm_load_mmu_pgd,
4636
4637         .check_intercept = svm_check_intercept,
4638         .handle_exit_irqoff = svm_handle_exit_irqoff,
4639
4640         .request_immediate_exit = __kvm_request_immediate_exit,
4641
4642         .sched_in = svm_sched_in,
4643
4644         .pmu_ops = &amd_pmu_ops,
4645         .nested_ops = &svm_nested_ops,
4646
4647         .deliver_posted_interrupt = svm_deliver_avic_intr,
4648         .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4649         .update_pi_irte = svm_update_pi_irte,
4650         .setup_mce = svm_setup_mce,
4651
4652         .smi_allowed = svm_smi_allowed,
4653         .enter_smm = svm_enter_smm,
4654         .leave_smm = svm_leave_smm,
4655         .enable_smi_window = svm_enable_smi_window,
4656
4657         .mem_enc_op = svm_mem_enc_op,
4658         .mem_enc_reg_region = svm_register_enc_region,
4659         .mem_enc_unreg_region = svm_unregister_enc_region,
4660
4661         .vm_copy_enc_context_from = svm_vm_copy_asid_from,
4662
4663         .can_emulate_instruction = svm_can_emulate_instruction,
4664
4665         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4666
4667         .msr_filter_changed = svm_msr_filter_changed,
4668         .complete_emulated_msr = svm_complete_emulated_msr,
4669
4670         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4671 };
4672
4673 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4674         .cpu_has_kvm_support = has_svm,
4675         .disabled_by_bios = is_disabled,
4676         .hardware_setup = svm_hardware_setup,
4677         .check_processor_compatibility = svm_check_processor_compat,
4678
4679         .runtime_ops = &svm_x86_ops,
4680 };
4681
4682 static int __init svm_init(void)
4683 {
4684         __unused_size_checks();
4685
4686         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4687                         __alignof__(struct vcpu_svm), THIS_MODULE);
4688 }
4689
4690 static void __exit svm_exit(void)
4691 {
4692         kvm_exit();
4693 }
4694
4695 module_init(svm_init)
4696 module_exit(svm_exit)