perf probe: Add --bootconfig to output definition in bootconfig format
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / avic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21
22 #include <asm/irq_remapping.h>
23
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29
30 /* enable / disable AVIC */
31 bool avic;
32 module_param(avic, bool, S_IRUGO);
33
34 #define SVM_AVIC_DOORBELL       0xc001011b
35
36 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
37
38 /*
39  * 0xff is broadcast, so the max index allowed for physical APIC ID
40  * table is 0xfe.  APIC IDs above 0xff are reserved.
41  */
42 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
43
44 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
45 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
46 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
47
48 /* AVIC GATAG is encoded using VM and VCPU IDs */
49 #define AVIC_VCPU_ID_BITS               8
50 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
51
52 #define AVIC_VM_ID_BITS                 24
53 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
54 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
55
56 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
57                                                 (y & AVIC_VCPU_ID_MASK))
58 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
59 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
60
61 /* Note:
62  * This hash table is used to map VM_ID to a struct kvm_svm,
63  * when handling AMD IOMMU GALOG notification to schedule in
64  * a particular vCPU.
65  */
66 #define SVM_VM_DATA_HASH_BITS   8
67 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
68 static u32 next_vm_id = 0;
69 static bool next_vm_id_wrapped = 0;
70 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
71
72 /*
73  * This is a wrapper of struct amd_iommu_ir_data.
74  */
75 struct amd_svm_iommu_ir {
76         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
77         void *data;             /* Storing pointer to struct amd_ir_data */
78 };
79
80 enum avic_ipi_failure_cause {
81         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
82         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
83         AVIC_IPI_FAILURE_INVALID_TARGET,
84         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
85 };
86
87 /* Note:
88  * This function is called from IOMMU driver to notify
89  * SVM to schedule in a particular vCPU of a particular VM.
90  */
91 int avic_ga_log_notifier(u32 ga_tag)
92 {
93         unsigned long flags;
94         struct kvm_svm *kvm_svm;
95         struct kvm_vcpu *vcpu = NULL;
96         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
97         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
98
99         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
100         trace_kvm_avic_ga_log(vm_id, vcpu_id);
101
102         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
103         hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
104                 if (kvm_svm->avic_vm_id != vm_id)
105                         continue;
106                 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
107                 break;
108         }
109         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
110
111         /* Note:
112          * At this point, the IOMMU should have already set the pending
113          * bit in the vAPIC backing page. So, we just need to schedule
114          * in the vcpu.
115          */
116         if (vcpu)
117                 kvm_vcpu_wake_up(vcpu);
118
119         return 0;
120 }
121
122 void avic_vm_destroy(struct kvm *kvm)
123 {
124         unsigned long flags;
125         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
126
127         if (!avic)
128                 return;
129
130         if (kvm_svm->avic_logical_id_table_page)
131                 __free_page(kvm_svm->avic_logical_id_table_page);
132         if (kvm_svm->avic_physical_id_table_page)
133                 __free_page(kvm_svm->avic_physical_id_table_page);
134
135         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
136         hash_del(&kvm_svm->hnode);
137         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
138 }
139
140 int avic_vm_init(struct kvm *kvm)
141 {
142         unsigned long flags;
143         int err = -ENOMEM;
144         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
145         struct kvm_svm *k2;
146         struct page *p_page;
147         struct page *l_page;
148         u32 vm_id;
149
150         if (!avic)
151                 return 0;
152
153         /* Allocating physical APIC ID table (4KB) */
154         p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
155         if (!p_page)
156                 goto free_avic;
157
158         kvm_svm->avic_physical_id_table_page = p_page;
159
160         /* Allocating logical APIC ID table (4KB) */
161         l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
162         if (!l_page)
163                 goto free_avic;
164
165         kvm_svm->avic_logical_id_table_page = l_page;
166
167         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
168  again:
169         vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
170         if (vm_id == 0) { /* id is 1-based, zero is not okay */
171                 next_vm_id_wrapped = 1;
172                 goto again;
173         }
174         /* Is it still in use? Only possible if wrapped at least once */
175         if (next_vm_id_wrapped) {
176                 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
177                         if (k2->avic_vm_id == vm_id)
178                                 goto again;
179                 }
180         }
181         kvm_svm->avic_vm_id = vm_id;
182         hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
183         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
184
185         return 0;
186
187 free_avic:
188         avic_vm_destroy(kvm);
189         return err;
190 }
191
192 void avic_init_vmcb(struct vcpu_svm *svm)
193 {
194         struct vmcb *vmcb = svm->vmcb;
195         struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
196         phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
197         phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
198         phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
199
200         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
201         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
202         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
203         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
204         if (kvm_apicv_activated(svm->vcpu.kvm))
205                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
206         else
207                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
208 }
209
210 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
211                                        unsigned int index)
212 {
213         u64 *avic_physical_id_table;
214         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
215
216         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
217                 return NULL;
218
219         avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
220
221         return &avic_physical_id_table[index];
222 }
223
224 /**
225  * Note:
226  * AVIC hardware walks the nested page table to check permissions,
227  * but does not use the SPA address specified in the leaf page
228  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
229  * field of the VMCB. Therefore, we set up the
230  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
231  */
232 static int avic_update_access_page(struct kvm *kvm, bool activate)
233 {
234         void __user *ret;
235         int r = 0;
236
237         mutex_lock(&kvm->slots_lock);
238         /*
239          * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger
240          * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
241          * memory region. So, we need to ensure that kvm->mm == current->mm.
242          */
243         if ((kvm->arch.apic_access_page_done == activate) ||
244             (kvm->mm != current->mm))
245                 goto out;
246
247         ret = __x86_set_memory_region(kvm,
248                                       APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
249                                       APIC_DEFAULT_PHYS_BASE,
250                                       activate ? PAGE_SIZE : 0);
251         if (IS_ERR(ret)) {
252                 r = PTR_ERR(ret);
253                 goto out;
254         }
255
256         kvm->arch.apic_access_page_done = activate;
257 out:
258         mutex_unlock(&kvm->slots_lock);
259         return r;
260 }
261
262 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
263 {
264         u64 *entry, new_entry;
265         int id = vcpu->vcpu_id;
266         struct vcpu_svm *svm = to_svm(vcpu);
267
268         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
269                 return -EINVAL;
270
271         if (!vcpu->arch.apic->regs)
272                 return -EINVAL;
273
274         if (kvm_apicv_activated(vcpu->kvm)) {
275                 int ret;
276
277                 ret = avic_update_access_page(vcpu->kvm, true);
278                 if (ret)
279                         return ret;
280         }
281
282         svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
283
284         /* Setting AVIC backing page address in the phy APIC ID table */
285         entry = avic_get_physical_id_entry(vcpu, id);
286         if (!entry)
287                 return -EINVAL;
288
289         new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
290                               AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
291                               AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
292         WRITE_ONCE(*entry, new_entry);
293
294         svm->avic_physical_id_cache = entry;
295
296         return 0;
297 }
298
299 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
300                                    u32 icrl, u32 icrh)
301 {
302         struct kvm_vcpu *vcpu;
303         int i;
304
305         kvm_for_each_vcpu(i, vcpu, kvm) {
306                 bool m = kvm_apic_match_dest(vcpu, source,
307                                              icrl & APIC_SHORT_MASK,
308                                              GET_APIC_DEST_FIELD(icrh),
309                                              icrl & APIC_DEST_MASK);
310
311                 if (m && !avic_vcpu_is_running(vcpu))
312                         kvm_vcpu_wake_up(vcpu);
313         }
314 }
315
316 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
317 {
318         struct vcpu_svm *svm = to_svm(vcpu);
319         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
320         u32 icrl = svm->vmcb->control.exit_info_1;
321         u32 id = svm->vmcb->control.exit_info_2 >> 32;
322         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
323         struct kvm_lapic *apic = vcpu->arch.apic;
324
325         trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
326
327         switch (id) {
328         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
329                 /*
330                  * AVIC hardware handles the generation of
331                  * IPIs when the specified Message Type is Fixed
332                  * (also known as fixed delivery mode) and
333                  * the Trigger Mode is edge-triggered. The hardware
334                  * also supports self and broadcast delivery modes
335                  * specified via the Destination Shorthand(DSH)
336                  * field of the ICRL. Logical and physical APIC ID
337                  * formats are supported. All other IPI types cause
338                  * a #VMEXIT, which needs to emulated.
339                  */
340                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
341                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
342                 break;
343         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
344                 /*
345                  * At this point, we expect that the AVIC HW has already
346                  * set the appropriate IRR bits on the valid target
347                  * vcpus. So, we just need to kick the appropriate vcpu.
348                  */
349                 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh);
350                 break;
351         case AVIC_IPI_FAILURE_INVALID_TARGET:
352                 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
353                           index, vcpu->vcpu_id, icrh, icrl);
354                 break;
355         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
356                 WARN_ONCE(1, "Invalid backing page\n");
357                 break;
358         default:
359                 pr_err("Unknown IPI interception\n");
360         }
361
362         return 1;
363 }
364
365 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
366 {
367         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
368         int index;
369         u32 *logical_apic_id_table;
370         int dlid = GET_APIC_LOGICAL_ID(ldr);
371
372         if (!dlid)
373                 return NULL;
374
375         if (flat) { /* flat */
376                 index = ffs(dlid) - 1;
377                 if (index > 7)
378                         return NULL;
379         } else { /* cluster */
380                 int cluster = (dlid & 0xf0) >> 4;
381                 int apic = ffs(dlid & 0x0f) - 1;
382
383                 if ((apic < 0) || (apic > 7) ||
384                     (cluster >= 0xf))
385                         return NULL;
386                 index = (cluster << 2) + apic;
387         }
388
389         logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
390
391         return &logical_apic_id_table[index];
392 }
393
394 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
395 {
396         bool flat;
397         u32 *entry, new_entry;
398
399         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
400         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
401         if (!entry)
402                 return -EINVAL;
403
404         new_entry = READ_ONCE(*entry);
405         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
406         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
407         new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
408         WRITE_ONCE(*entry, new_entry);
409
410         return 0;
411 }
412
413 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
414 {
415         struct vcpu_svm *svm = to_svm(vcpu);
416         bool flat = svm->dfr_reg == APIC_DFR_FLAT;
417         u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
418
419         if (entry)
420                 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
421 }
422
423 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
424 {
425         int ret = 0;
426         struct vcpu_svm *svm = to_svm(vcpu);
427         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
428         u32 id = kvm_xapic_id(vcpu->arch.apic);
429
430         if (ldr == svm->ldr_reg)
431                 return 0;
432
433         avic_invalidate_logical_id_entry(vcpu);
434
435         if (ldr)
436                 ret = avic_ldr_write(vcpu, id, ldr);
437
438         if (!ret)
439                 svm->ldr_reg = ldr;
440
441         return ret;
442 }
443
444 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
445 {
446         u64 *old, *new;
447         struct vcpu_svm *svm = to_svm(vcpu);
448         u32 id = kvm_xapic_id(vcpu->arch.apic);
449
450         if (vcpu->vcpu_id == id)
451                 return 0;
452
453         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
454         new = avic_get_physical_id_entry(vcpu, id);
455         if (!new || !old)
456                 return 1;
457
458         /* We need to move physical_id_entry to new offset */
459         *new = *old;
460         *old = 0ULL;
461         to_svm(vcpu)->avic_physical_id_cache = new;
462
463         /*
464          * Also update the guest physical APIC ID in the logical
465          * APIC ID table entry if already setup the LDR.
466          */
467         if (svm->ldr_reg)
468                 avic_handle_ldr_update(vcpu);
469
470         return 0;
471 }
472
473 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
474 {
475         struct vcpu_svm *svm = to_svm(vcpu);
476         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
477
478         if (svm->dfr_reg == dfr)
479                 return;
480
481         avic_invalidate_logical_id_entry(vcpu);
482         svm->dfr_reg = dfr;
483 }
484
485 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
486 {
487         struct kvm_lapic *apic = svm->vcpu.arch.apic;
488         u32 offset = svm->vmcb->control.exit_info_1 &
489                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
490
491         switch (offset) {
492         case APIC_ID:
493                 if (avic_handle_apic_id_update(&svm->vcpu))
494                         return 0;
495                 break;
496         case APIC_LDR:
497                 if (avic_handle_ldr_update(&svm->vcpu))
498                         return 0;
499                 break;
500         case APIC_DFR:
501                 avic_handle_dfr_update(&svm->vcpu);
502                 break;
503         default:
504                 break;
505         }
506
507         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
508
509         return 1;
510 }
511
512 static bool is_avic_unaccelerated_access_trap(u32 offset)
513 {
514         bool ret = false;
515
516         switch (offset) {
517         case APIC_ID:
518         case APIC_EOI:
519         case APIC_RRR:
520         case APIC_LDR:
521         case APIC_DFR:
522         case APIC_SPIV:
523         case APIC_ESR:
524         case APIC_ICR:
525         case APIC_LVTT:
526         case APIC_LVTTHMR:
527         case APIC_LVTPC:
528         case APIC_LVT0:
529         case APIC_LVT1:
530         case APIC_LVTERR:
531         case APIC_TMICT:
532         case APIC_TDCR:
533                 ret = true;
534                 break;
535         default:
536                 break;
537         }
538         return ret;
539 }
540
541 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
542 {
543         struct vcpu_svm *svm = to_svm(vcpu);
544         int ret = 0;
545         u32 offset = svm->vmcb->control.exit_info_1 &
546                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
547         u32 vector = svm->vmcb->control.exit_info_2 &
548                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
549         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
550                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
551         bool trap = is_avic_unaccelerated_access_trap(offset);
552
553         trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
554                                             trap, write, vector);
555         if (trap) {
556                 /* Handling Trap */
557                 WARN_ONCE(!write, "svm: Handling trap read.\n");
558                 ret = avic_unaccel_trap_write(svm);
559         } else {
560                 /* Handling Fault */
561                 ret = kvm_emulate_instruction(vcpu, 0);
562         }
563
564         return ret;
565 }
566
567 int avic_init_vcpu(struct vcpu_svm *svm)
568 {
569         int ret;
570         struct kvm_vcpu *vcpu = &svm->vcpu;
571
572         if (!avic || !irqchip_in_kernel(vcpu->kvm))
573                 return 0;
574
575         ret = avic_init_backing_page(vcpu);
576         if (ret)
577                 return ret;
578
579         INIT_LIST_HEAD(&svm->ir_list);
580         spin_lock_init(&svm->ir_list_lock);
581         svm->dfr_reg = APIC_DFR_FLAT;
582
583         return ret;
584 }
585
586 void avic_post_state_restore(struct kvm_vcpu *vcpu)
587 {
588         if (avic_handle_apic_id_update(vcpu) != 0)
589                 return;
590         avic_handle_dfr_update(vcpu);
591         avic_handle_ldr_update(vcpu);
592 }
593
594 void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate)
595 {
596         if (!avic || !lapic_in_kernel(vcpu))
597                 return;
598
599         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
600         kvm_request_apicv_update(vcpu->kvm, activate,
601                                  APICV_INHIBIT_REASON_IRQWIN);
602         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
603 }
604
605 void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
606 {
607         return;
608 }
609
610 void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
611 {
612 }
613
614 void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
615 {
616 }
617
618 static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
619 {
620         int ret = 0;
621         unsigned long flags;
622         struct amd_svm_iommu_ir *ir;
623         struct vcpu_svm *svm = to_svm(vcpu);
624
625         if (!kvm_arch_has_assigned_device(vcpu->kvm))
626                 return 0;
627
628         /*
629          * Here, we go through the per-vcpu ir_list to update all existing
630          * interrupt remapping table entry targeting this vcpu.
631          */
632         spin_lock_irqsave(&svm->ir_list_lock, flags);
633
634         if (list_empty(&svm->ir_list))
635                 goto out;
636
637         list_for_each_entry(ir, &svm->ir_list, node) {
638                 if (activate)
639                         ret = amd_iommu_activate_guest_mode(ir->data);
640                 else
641                         ret = amd_iommu_deactivate_guest_mode(ir->data);
642                 if (ret)
643                         break;
644         }
645 out:
646         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
647         return ret;
648 }
649
650 void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
651 {
652         struct vcpu_svm *svm = to_svm(vcpu);
653         struct vmcb *vmcb = svm->vmcb;
654         bool activated = kvm_vcpu_apicv_active(vcpu);
655
656         if (!avic)
657                 return;
658
659         if (activated) {
660                 /**
661                  * During AVIC temporary deactivation, guest could update
662                  * APIC ID, DFR and LDR registers, which would not be trapped
663                  * by avic_unaccelerated_access_interception(). In this case,
664                  * we need to check and update the AVIC logical APIC ID table
665                  * accordingly before re-activating.
666                  */
667                 avic_post_state_restore(vcpu);
668                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
669         } else {
670                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
671         }
672         vmcb_mark_dirty(vmcb, VMCB_AVIC);
673
674         svm_set_pi_irte_mode(vcpu, activated);
675 }
676
677 void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
678 {
679         return;
680 }
681
682 int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
683 {
684         if (!vcpu->arch.apicv_active)
685                 return -1;
686
687         kvm_lapic_set_irr(vec, vcpu->arch.apic);
688         smp_mb__after_atomic();
689
690         if (avic_vcpu_is_running(vcpu)) {
691                 int cpuid = vcpu->cpu;
692
693                 if (cpuid != get_cpu())
694                         wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
695                 put_cpu();
696         } else
697                 kvm_vcpu_wake_up(vcpu);
698
699         return 0;
700 }
701
702 bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
703 {
704         return false;
705 }
706
707 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
708 {
709         unsigned long flags;
710         struct amd_svm_iommu_ir *cur;
711
712         spin_lock_irqsave(&svm->ir_list_lock, flags);
713         list_for_each_entry(cur, &svm->ir_list, node) {
714                 if (cur->data != pi->ir_data)
715                         continue;
716                 list_del(&cur->node);
717                 kfree(cur);
718                 break;
719         }
720         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
721 }
722
723 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
724 {
725         int ret = 0;
726         unsigned long flags;
727         struct amd_svm_iommu_ir *ir;
728
729         /**
730          * In some cases, the existing irte is updated and re-set,
731          * so we need to check here if it's already been * added
732          * to the ir_list.
733          */
734         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
735                 struct kvm *kvm = svm->vcpu.kvm;
736                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
737                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
738                 struct vcpu_svm *prev_svm;
739
740                 if (!prev_vcpu) {
741                         ret = -EINVAL;
742                         goto out;
743                 }
744
745                 prev_svm = to_svm(prev_vcpu);
746                 svm_ir_list_del(prev_svm, pi);
747         }
748
749         /**
750          * Allocating new amd_iommu_pi_data, which will get
751          * add to the per-vcpu ir_list.
752          */
753         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
754         if (!ir) {
755                 ret = -ENOMEM;
756                 goto out;
757         }
758         ir->data = pi->ir_data;
759
760         spin_lock_irqsave(&svm->ir_list_lock, flags);
761         list_add(&ir->node, &svm->ir_list);
762         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
763 out:
764         return ret;
765 }
766
767 /**
768  * Note:
769  * The HW cannot support posting multicast/broadcast
770  * interrupts to a vCPU. So, we still use legacy interrupt
771  * remapping for these kind of interrupts.
772  *
773  * For lowest-priority interrupts, we only support
774  * those with single CPU as the destination, e.g. user
775  * configures the interrupts via /proc/irq or uses
776  * irqbalance to make the interrupts single-CPU.
777  */
778 static int
779 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
780                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
781 {
782         struct kvm_lapic_irq irq;
783         struct kvm_vcpu *vcpu = NULL;
784
785         kvm_set_msi_irq(kvm, e, &irq);
786
787         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
788             !kvm_irq_is_postable(&irq)) {
789                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
790                          __func__, irq.vector);
791                 return -1;
792         }
793
794         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
795                  irq.vector);
796         *svm = to_svm(vcpu);
797         vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
798         vcpu_info->vector = irq.vector;
799
800         return 0;
801 }
802
803 /*
804  * svm_update_pi_irte - set IRTE for Posted-Interrupts
805  *
806  * @kvm: kvm
807  * @host_irq: host irq of the interrupt
808  * @guest_irq: gsi of the interrupt
809  * @set: set or unset PI
810  * returns 0 on success, < 0 on failure
811  */
812 int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
813                        uint32_t guest_irq, bool set)
814 {
815         struct kvm_kernel_irq_routing_entry *e;
816         struct kvm_irq_routing_table *irq_rt;
817         int idx, ret = -EINVAL;
818
819         if (!kvm_arch_has_assigned_device(kvm) ||
820             !irq_remapping_cap(IRQ_POSTING_CAP))
821                 return 0;
822
823         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
824                  __func__, host_irq, guest_irq, set);
825
826         idx = srcu_read_lock(&kvm->irq_srcu);
827         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
828         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
829
830         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
831                 struct vcpu_data vcpu_info;
832                 struct vcpu_svm *svm = NULL;
833
834                 if (e->type != KVM_IRQ_ROUTING_MSI)
835                         continue;
836
837                 /**
838                  * Here, we setup with legacy mode in the following cases:
839                  * 1. When cannot target interrupt to a specific vcpu.
840                  * 2. Unsetting posted interrupt.
841                  * 3. APIC virtualization is disabled for the vcpu.
842                  * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
843                  */
844                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
845                     kvm_vcpu_apicv_active(&svm->vcpu)) {
846                         struct amd_iommu_pi_data pi;
847
848                         /* Try to enable guest_mode in IRTE */
849                         pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
850                                             AVIC_HPA_MASK);
851                         pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
852                                                      svm->vcpu.vcpu_id);
853                         pi.is_guest_mode = true;
854                         pi.vcpu_data = &vcpu_info;
855                         ret = irq_set_vcpu_affinity(host_irq, &pi);
856
857                         /**
858                          * Here, we successfully setting up vcpu affinity in
859                          * IOMMU guest mode. Now, we need to store the posted
860                          * interrupt information in a per-vcpu ir_list so that
861                          * we can reference to them directly when we update vcpu
862                          * scheduling information in IOMMU irte.
863                          */
864                         if (!ret && pi.is_guest_mode)
865                                 svm_ir_list_add(svm, &pi);
866                 } else {
867                         /* Use legacy mode in IRTE */
868                         struct amd_iommu_pi_data pi;
869
870                         /**
871                          * Here, pi is used to:
872                          * - Tell IOMMU to use legacy mode for this interrupt.
873                          * - Retrieve ga_tag of prior interrupt remapping data.
874                          */
875                         pi.prev_ga_tag = 0;
876                         pi.is_guest_mode = false;
877                         ret = irq_set_vcpu_affinity(host_irq, &pi);
878
879                         /**
880                          * Check if the posted interrupt was previously
881                          * setup with the guest_mode by checking if the ga_tag
882                          * was cached. If so, we need to clean up the per-vcpu
883                          * ir_list.
884                          */
885                         if (!ret && pi.prev_ga_tag) {
886                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
887                                 struct kvm_vcpu *vcpu;
888
889                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
890                                 if (vcpu)
891                                         svm_ir_list_del(to_svm(vcpu), &pi);
892                         }
893                 }
894
895                 if (!ret && svm) {
896                         trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
897                                                  e->gsi, vcpu_info.vector,
898                                                  vcpu_info.pi_desc_addr, set);
899                 }
900
901                 if (ret < 0) {
902                         pr_err("%s: failed to update PI IRTE\n", __func__);
903                         goto out;
904                 }
905         }
906
907         ret = 0;
908 out:
909         srcu_read_unlock(&kvm->irq_srcu, idx);
910         return ret;
911 }
912
913 bool svm_check_apicv_inhibit_reasons(ulong bit)
914 {
915         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
916                           BIT(APICV_INHIBIT_REASON_HYPERV) |
917                           BIT(APICV_INHIBIT_REASON_NESTED) |
918                           BIT(APICV_INHIBIT_REASON_IRQWIN) |
919                           BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
920                           BIT(APICV_INHIBIT_REASON_X2APIC);
921
922         return supported & BIT(bit);
923 }
924
925 void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate)
926 {
927         avic_update_access_page(kvm, activate);
928 }
929
930 static inline int
931 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
932 {
933         int ret = 0;
934         unsigned long flags;
935         struct amd_svm_iommu_ir *ir;
936         struct vcpu_svm *svm = to_svm(vcpu);
937
938         if (!kvm_arch_has_assigned_device(vcpu->kvm))
939                 return 0;
940
941         /*
942          * Here, we go through the per-vcpu ir_list to update all existing
943          * interrupt remapping table entry targeting this vcpu.
944          */
945         spin_lock_irqsave(&svm->ir_list_lock, flags);
946
947         if (list_empty(&svm->ir_list))
948                 goto out;
949
950         list_for_each_entry(ir, &svm->ir_list, node) {
951                 ret = amd_iommu_update_ga(cpu, r, ir->data);
952                 if (ret)
953                         break;
954         }
955 out:
956         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
957         return ret;
958 }
959
960 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
961 {
962         u64 entry;
963         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
964         int h_physical_id = kvm_cpu_get_apicid(cpu);
965         struct vcpu_svm *svm = to_svm(vcpu);
966
967         if (!kvm_vcpu_apicv_active(vcpu))
968                 return;
969
970         /*
971          * Since the host physical APIC id is 8 bits,
972          * we can support host APIC ID upto 255.
973          */
974         if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
975                 return;
976
977         entry = READ_ONCE(*(svm->avic_physical_id_cache));
978         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
979
980         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
981         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
982
983         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
984         if (svm->avic_is_running)
985                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
986
987         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
988         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
989                                         svm->avic_is_running);
990 }
991
992 void avic_vcpu_put(struct kvm_vcpu *vcpu)
993 {
994         u64 entry;
995         struct vcpu_svm *svm = to_svm(vcpu);
996
997         if (!kvm_vcpu_apicv_active(vcpu))
998                 return;
999
1000         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1001         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1002                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1003
1004         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1005         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1006 }
1007
1008 /**
1009  * This function is called during VCPU halt/unhalt.
1010  */
1011 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1012 {
1013         struct vcpu_svm *svm = to_svm(vcpu);
1014
1015         svm->avic_is_running = is_run;
1016         if (is_run)
1017                 avic_vcpu_load(vcpu, vcpu->cpu);
1018         else
1019                 avic_vcpu_put(vcpu);
1020 }
1021
1022 void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1023 {
1024         avic_set_running(vcpu, false);
1025 }
1026
1027 void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1028 {
1029         if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
1030                 kvm_vcpu_update_apicv(vcpu);
1031         avic_set_running(vcpu, true);
1032 }