perf probe: Add --bootconfig to output definition in bootconfig format
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 extern bool itlb_multihit_kvm_mitigation;
57
58 static int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70         .set = set_nx_huge_pages,
71         .get = param_get_bool,
72 };
73
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75         .set = set_nx_huge_pages_recovery_ratio,
76         .get = param_get_uint,
77 };
78
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82                 &nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
88 /*
89  * When setting this variable to true it enables Two-Dimensional-Paging
90  * where the hardware walks 2 page tables:
91  * 1. the guest-virtual to guest-physical
92  * 2. while doing 1. it walks guest-physical to host-physical
93  * If the hardware supports that we don't need to do shadow paging.
94  */
95 bool tdp_enabled = false;
96
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99
100 enum {
101         AUDIT_PRE_PAGE_FAULT,
102         AUDIT_POST_PAGE_FAULT,
103         AUDIT_PRE_PTE_WRITE,
104         AUDIT_POST_PTE_WRITE,
105         AUDIT_PRE_SYNC,
106         AUDIT_POST_SYNC
107 };
108
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113
114 #define PTE_PREFETCH_NUM                8
115
116 #define PT32_LEVEL_BITS 10
117
118 #define PT32_LEVEL_SHIFT(level) \
119                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120
121 #define PT32_LVL_OFFSET_MASK(level) \
122         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT32_LEVEL_BITS))) - 1))
124
125 #define PT32_INDEX(address, level)\
126         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #include <trace/events/kvm.h>
137
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140
141 struct pte_list_desc {
142         u64 *sptes[PTE_LIST_EXT];
143         struct pte_list_desc *more;
144 };
145
146 struct kvm_shadow_walk_iterator {
147         u64 addr;
148         hpa_t shadow_addr;
149         u64 *sptep;
150         int level;
151         unsigned index;
152 };
153
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
155         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
156                                          (_root), (_addr));                \
157              shadow_walk_okay(&(_walker));                                 \
158              shadow_walk_next(&(_walker)))
159
160 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
162              shadow_walk_okay(&(_walker));                      \
163              shadow_walk_next(&(_walker)))
164
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
166         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
167              shadow_walk_okay(&(_walker)) &&                            \
168                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
169              __shadow_walk_next(&(_walker), spte))
170
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178
179 #define CREATE_TRACE_POINTS
180 #include "mmutrace.h"
181
182
183 static inline bool kvm_available_flush_tlb_with_range(void)
184 {
185         return kvm_x86_ops.tlb_remote_flush_with_range;
186 }
187
188 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
189                 struct kvm_tlb_range *range)
190 {
191         int ret = -ENOTSUPP;
192
193         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
194                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
195
196         if (ret)
197                 kvm_flush_remote_tlbs(kvm);
198 }
199
200 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
201                 u64 start_gfn, u64 pages)
202 {
203         struct kvm_tlb_range range;
204
205         range.start_gfn = start_gfn;
206         range.pages = pages;
207
208         kvm_flush_remote_tlbs_with_range(kvm, &range);
209 }
210
211 bool is_nx_huge_page_enabled(void)
212 {
213         return READ_ONCE(nx_huge_pages);
214 }
215
216 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
217                            unsigned int access)
218 {
219         u64 spte = make_mmio_spte(vcpu, gfn, access);
220
221         trace_mark_mmio_spte(sptep, gfn, spte);
222         mmu_spte_set(sptep, spte);
223 }
224
225 static gfn_t get_mmio_spte_gfn(u64 spte)
226 {
227         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
228
229         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
230                & shadow_nonpresent_or_rsvd_mask;
231
232         return gpa >> PAGE_SHIFT;
233 }
234
235 static unsigned get_mmio_spte_access(u64 spte)
236 {
237         return spte & shadow_mmio_access_mask;
238 }
239
240 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
241 {
242         u64 kvm_gen, spte_gen, gen;
243
244         gen = kvm_vcpu_memslots(vcpu)->generation;
245         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
246                 return false;
247
248         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
249         spte_gen = get_mmio_spte_generation(spte);
250
251         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
252         return likely(kvm_gen == spte_gen);
253 }
254
255 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
256                                   struct x86_exception *exception)
257 {
258         /* Check if guest physical address doesn't exceed guest maximum */
259         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
260                 exception->error_code |= PFERR_RSVD_MASK;
261                 return UNMAPPED_GVA;
262         }
263
264         return gpa;
265 }
266
267 static int is_cpuid_PSE36(void)
268 {
269         return 1;
270 }
271
272 static int is_nx(struct kvm_vcpu *vcpu)
273 {
274         return vcpu->arch.efer & EFER_NX;
275 }
276
277 static gfn_t pse36_gfn_delta(u32 gpte)
278 {
279         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
280
281         return (gpte & PT32_DIR_PSE36_MASK) << shift;
282 }
283
284 #ifdef CONFIG_X86_64
285 static void __set_spte(u64 *sptep, u64 spte)
286 {
287         WRITE_ONCE(*sptep, spte);
288 }
289
290 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
291 {
292         WRITE_ONCE(*sptep, spte);
293 }
294
295 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
296 {
297         return xchg(sptep, spte);
298 }
299
300 static u64 __get_spte_lockless(u64 *sptep)
301 {
302         return READ_ONCE(*sptep);
303 }
304 #else
305 union split_spte {
306         struct {
307                 u32 spte_low;
308                 u32 spte_high;
309         };
310         u64 spte;
311 };
312
313 static void count_spte_clear(u64 *sptep, u64 spte)
314 {
315         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
316
317         if (is_shadow_present_pte(spte))
318                 return;
319
320         /* Ensure the spte is completely set before we increase the count */
321         smp_wmb();
322         sp->clear_spte_count++;
323 }
324
325 static void __set_spte(u64 *sptep, u64 spte)
326 {
327         union split_spte *ssptep, sspte;
328
329         ssptep = (union split_spte *)sptep;
330         sspte = (union split_spte)spte;
331
332         ssptep->spte_high = sspte.spte_high;
333
334         /*
335          * If we map the spte from nonpresent to present, We should store
336          * the high bits firstly, then set present bit, so cpu can not
337          * fetch this spte while we are setting the spte.
338          */
339         smp_wmb();
340
341         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
342 }
343
344 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
345 {
346         union split_spte *ssptep, sspte;
347
348         ssptep = (union split_spte *)sptep;
349         sspte = (union split_spte)spte;
350
351         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352
353         /*
354          * If we map the spte from present to nonpresent, we should clear
355          * present bit firstly to avoid vcpu fetch the old high bits.
356          */
357         smp_wmb();
358
359         ssptep->spte_high = sspte.spte_high;
360         count_spte_clear(sptep, spte);
361 }
362
363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364 {
365         union split_spte *ssptep, sspte, orig;
366
367         ssptep = (union split_spte *)sptep;
368         sspte = (union split_spte)spte;
369
370         /* xchg acts as a barrier before the setting of the high bits */
371         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
372         orig.spte_high = ssptep->spte_high;
373         ssptep->spte_high = sspte.spte_high;
374         count_spte_clear(sptep, spte);
375
376         return orig.spte;
377 }
378
379 /*
380  * The idea using the light way get the spte on x86_32 guest is from
381  * gup_get_pte (mm/gup.c).
382  *
383  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
384  * coalesces them and we are running out of the MMU lock.  Therefore
385  * we need to protect against in-progress updates of the spte.
386  *
387  * Reading the spte while an update is in progress may get the old value
388  * for the high part of the spte.  The race is fine for a present->non-present
389  * change (because the high part of the spte is ignored for non-present spte),
390  * but for a present->present change we must reread the spte.
391  *
392  * All such changes are done in two steps (present->non-present and
393  * non-present->present), hence it is enough to count the number of
394  * present->non-present updates: if it changed while reading the spte,
395  * we might have hit the race.  This is done using clear_spte_count.
396  */
397 static u64 __get_spte_lockless(u64 *sptep)
398 {
399         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
400         union split_spte spte, *orig = (union split_spte *)sptep;
401         int count;
402
403 retry:
404         count = sp->clear_spte_count;
405         smp_rmb();
406
407         spte.spte_low = orig->spte_low;
408         smp_rmb();
409
410         spte.spte_high = orig->spte_high;
411         smp_rmb();
412
413         if (unlikely(spte.spte_low != orig->spte_low ||
414               count != sp->clear_spte_count))
415                 goto retry;
416
417         return spte.spte;
418 }
419 #endif
420
421 static bool spte_has_volatile_bits(u64 spte)
422 {
423         if (!is_shadow_present_pte(spte))
424                 return false;
425
426         /*
427          * Always atomically update spte if it can be updated
428          * out of mmu-lock, it can ensure dirty bit is not lost,
429          * also, it can help us to get a stable is_writable_pte()
430          * to ensure tlb flush is not missed.
431          */
432         if (spte_can_locklessly_be_made_writable(spte) ||
433             is_access_track_spte(spte))
434                 return true;
435
436         if (spte_ad_enabled(spte)) {
437                 if ((spte & shadow_accessed_mask) == 0 ||
438                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
439                         return true;
440         }
441
442         return false;
443 }
444
445 /* Rules for using mmu_spte_set:
446  * Set the sptep from nonpresent to present.
447  * Note: the sptep being assigned *must* be either not present
448  * or in a state where the hardware will not attempt to update
449  * the spte.
450  */
451 static void mmu_spte_set(u64 *sptep, u64 new_spte)
452 {
453         WARN_ON(is_shadow_present_pte(*sptep));
454         __set_spte(sptep, new_spte);
455 }
456
457 /*
458  * Update the SPTE (excluding the PFN), but do not track changes in its
459  * accessed/dirty status.
460  */
461 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
462 {
463         u64 old_spte = *sptep;
464
465         WARN_ON(!is_shadow_present_pte(new_spte));
466
467         if (!is_shadow_present_pte(old_spte)) {
468                 mmu_spte_set(sptep, new_spte);
469                 return old_spte;
470         }
471
472         if (!spte_has_volatile_bits(old_spte))
473                 __update_clear_spte_fast(sptep, new_spte);
474         else
475                 old_spte = __update_clear_spte_slow(sptep, new_spte);
476
477         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
478
479         return old_spte;
480 }
481
482 /* Rules for using mmu_spte_update:
483  * Update the state bits, it means the mapped pfn is not changed.
484  *
485  * Whenever we overwrite a writable spte with a read-only one we
486  * should flush remote TLBs. Otherwise rmap_write_protect
487  * will find a read-only spte, even though the writable spte
488  * might be cached on a CPU's TLB, the return value indicates this
489  * case.
490  *
491  * Returns true if the TLB needs to be flushed
492  */
493 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
494 {
495         bool flush = false;
496         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
497
498         if (!is_shadow_present_pte(old_spte))
499                 return false;
500
501         /*
502          * For the spte updated out of mmu-lock is safe, since
503          * we always atomically update it, see the comments in
504          * spte_has_volatile_bits().
505          */
506         if (spte_can_locklessly_be_made_writable(old_spte) &&
507               !is_writable_pte(new_spte))
508                 flush = true;
509
510         /*
511          * Flush TLB when accessed/dirty states are changed in the page tables,
512          * to guarantee consistency between TLB and page tables.
513          */
514
515         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
516                 flush = true;
517                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
518         }
519
520         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
521                 flush = true;
522                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
523         }
524
525         return flush;
526 }
527
528 /*
529  * Rules for using mmu_spte_clear_track_bits:
530  * It sets the sptep from present to nonpresent, and track the
531  * state bits, it is used to clear the last level sptep.
532  * Returns non-zero if the PTE was previously valid.
533  */
534 static int mmu_spte_clear_track_bits(u64 *sptep)
535 {
536         kvm_pfn_t pfn;
537         u64 old_spte = *sptep;
538
539         if (!spte_has_volatile_bits(old_spte))
540                 __update_clear_spte_fast(sptep, 0ull);
541         else
542                 old_spte = __update_clear_spte_slow(sptep, 0ull);
543
544         if (!is_shadow_present_pte(old_spte))
545                 return 0;
546
547         pfn = spte_to_pfn(old_spte);
548
549         /*
550          * KVM does not hold the refcount of the page used by
551          * kvm mmu, before reclaiming the page, we should
552          * unmap it from mmu first.
553          */
554         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
555
556         if (is_accessed_spte(old_spte))
557                 kvm_set_pfn_accessed(pfn);
558
559         if (is_dirty_spte(old_spte))
560                 kvm_set_pfn_dirty(pfn);
561
562         return 1;
563 }
564
565 /*
566  * Rules for using mmu_spte_clear_no_track:
567  * Directly clear spte without caring the state bits of sptep,
568  * it is used to set the upper level spte.
569  */
570 static void mmu_spte_clear_no_track(u64 *sptep)
571 {
572         __update_clear_spte_fast(sptep, 0ull);
573 }
574
575 static u64 mmu_spte_get_lockless(u64 *sptep)
576 {
577         return __get_spte_lockless(sptep);
578 }
579
580 /* Restore an acc-track PTE back to a regular PTE */
581 static u64 restore_acc_track_spte(u64 spte)
582 {
583         u64 new_spte = spte;
584         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
585                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
586
587         WARN_ON_ONCE(spte_ad_enabled(spte));
588         WARN_ON_ONCE(!is_access_track_spte(spte));
589
590         new_spte &= ~shadow_acc_track_mask;
591         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
592                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
593         new_spte |= saved_bits;
594
595         return new_spte;
596 }
597
598 /* Returns the Accessed status of the PTE and resets it at the same time. */
599 static bool mmu_spte_age(u64 *sptep)
600 {
601         u64 spte = mmu_spte_get_lockless(sptep);
602
603         if (!is_accessed_spte(spte))
604                 return false;
605
606         if (spte_ad_enabled(spte)) {
607                 clear_bit((ffs(shadow_accessed_mask) - 1),
608                           (unsigned long *)sptep);
609         } else {
610                 /*
611                  * Capture the dirty status of the page, so that it doesn't get
612                  * lost when the SPTE is marked for access tracking.
613                  */
614                 if (is_writable_pte(spte))
615                         kvm_set_pfn_dirty(spte_to_pfn(spte));
616
617                 spte = mark_spte_for_access_track(spte);
618                 mmu_spte_update_no_track(sptep, spte);
619         }
620
621         return true;
622 }
623
624 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
625 {
626         /*
627          * Prevent page table teardown by making any free-er wait during
628          * kvm_flush_remote_tlbs() IPI to all active vcpus.
629          */
630         local_irq_disable();
631
632         /*
633          * Make sure a following spte read is not reordered ahead of the write
634          * to vcpu->mode.
635          */
636         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
637 }
638
639 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
640 {
641         /*
642          * Make sure the write to vcpu->mode is not reordered in front of
643          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
644          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
645          */
646         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
647         local_irq_enable();
648 }
649
650 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
651 {
652         int r;
653
654         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
655         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
656                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
657         if (r)
658                 return r;
659         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
660                                        PT64_ROOT_MAX_LEVEL);
661         if (r)
662                 return r;
663         if (maybe_indirect) {
664                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
665                                                PT64_ROOT_MAX_LEVEL);
666                 if (r)
667                         return r;
668         }
669         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
670                                           PT64_ROOT_MAX_LEVEL);
671 }
672
673 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
674 {
675         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
676         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
677         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
678         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
679 }
680
681 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
682 {
683         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
684 }
685
686 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
687 {
688         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
689 }
690
691 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
692 {
693         if (!sp->role.direct)
694                 return sp->gfns[index];
695
696         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
697 }
698
699 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
700 {
701         if (!sp->role.direct) {
702                 sp->gfns[index] = gfn;
703                 return;
704         }
705
706         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
707                 pr_err_ratelimited("gfn mismatch under direct page %llx "
708                                    "(expected %llx, got %llx)\n",
709                                    sp->gfn,
710                                    kvm_mmu_page_get_gfn(sp, index), gfn);
711 }
712
713 /*
714  * Return the pointer to the large page information for a given gfn,
715  * handling slots that are not large page aligned.
716  */
717 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
718                 const struct kvm_memory_slot *slot, int level)
719 {
720         unsigned long idx;
721
722         idx = gfn_to_index(gfn, slot->base_gfn, level);
723         return &slot->arch.lpage_info[level - 2][idx];
724 }
725
726 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
727                                             gfn_t gfn, int count)
728 {
729         struct kvm_lpage_info *linfo;
730         int i;
731
732         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
733                 linfo = lpage_info_slot(gfn, slot, i);
734                 linfo->disallow_lpage += count;
735                 WARN_ON(linfo->disallow_lpage < 0);
736         }
737 }
738
739 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
740 {
741         update_gfn_disallow_lpage_count(slot, gfn, 1);
742 }
743
744 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
745 {
746         update_gfn_disallow_lpage_count(slot, gfn, -1);
747 }
748
749 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
750 {
751         struct kvm_memslots *slots;
752         struct kvm_memory_slot *slot;
753         gfn_t gfn;
754
755         kvm->arch.indirect_shadow_pages++;
756         gfn = sp->gfn;
757         slots = kvm_memslots_for_spte_role(kvm, sp->role);
758         slot = __gfn_to_memslot(slots, gfn);
759
760         /* the non-leaf shadow pages are keeping readonly. */
761         if (sp->role.level > PG_LEVEL_4K)
762                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
763                                                     KVM_PAGE_TRACK_WRITE);
764
765         kvm_mmu_gfn_disallow_lpage(slot, gfn);
766 }
767
768 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
769 {
770         if (sp->lpage_disallowed)
771                 return;
772
773         ++kvm->stat.nx_lpage_splits;
774         list_add_tail(&sp->lpage_disallowed_link,
775                       &kvm->arch.lpage_disallowed_mmu_pages);
776         sp->lpage_disallowed = true;
777 }
778
779 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781         struct kvm_memslots *slots;
782         struct kvm_memory_slot *slot;
783         gfn_t gfn;
784
785         kvm->arch.indirect_shadow_pages--;
786         gfn = sp->gfn;
787         slots = kvm_memslots_for_spte_role(kvm, sp->role);
788         slot = __gfn_to_memslot(slots, gfn);
789         if (sp->role.level > PG_LEVEL_4K)
790                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
791                                                        KVM_PAGE_TRACK_WRITE);
792
793         kvm_mmu_gfn_allow_lpage(slot, gfn);
794 }
795
796 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
797 {
798         --kvm->stat.nx_lpage_splits;
799         sp->lpage_disallowed = false;
800         list_del(&sp->lpage_disallowed_link);
801 }
802
803 static struct kvm_memory_slot *
804 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
805                             bool no_dirty_log)
806 {
807         struct kvm_memory_slot *slot;
808
809         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
810         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
811                 return NULL;
812         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
813                 return NULL;
814
815         return slot;
816 }
817
818 /*
819  * About rmap_head encoding:
820  *
821  * If the bit zero of rmap_head->val is clear, then it points to the only spte
822  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
823  * pte_list_desc containing more mappings.
824  */
825
826 /*
827  * Returns the number of pointers in the rmap chain, not counting the new one.
828  */
829 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
830                         struct kvm_rmap_head *rmap_head)
831 {
832         struct pte_list_desc *desc;
833         int i, count = 0;
834
835         if (!rmap_head->val) {
836                 rmap_printk("%p %llx 0->1\n", spte, *spte);
837                 rmap_head->val = (unsigned long)spte;
838         } else if (!(rmap_head->val & 1)) {
839                 rmap_printk("%p %llx 1->many\n", spte, *spte);
840                 desc = mmu_alloc_pte_list_desc(vcpu);
841                 desc->sptes[0] = (u64 *)rmap_head->val;
842                 desc->sptes[1] = spte;
843                 rmap_head->val = (unsigned long)desc | 1;
844                 ++count;
845         } else {
846                 rmap_printk("%p %llx many->many\n", spte, *spte);
847                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
848                 while (desc->sptes[PTE_LIST_EXT-1]) {
849                         count += PTE_LIST_EXT;
850
851                         if (!desc->more) {
852                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
853                                 desc = desc->more;
854                                 break;
855                         }
856                         desc = desc->more;
857                 }
858                 for (i = 0; desc->sptes[i]; ++i)
859                         ++count;
860                 desc->sptes[i] = spte;
861         }
862         return count;
863 }
864
865 static void
866 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
867                            struct pte_list_desc *desc, int i,
868                            struct pte_list_desc *prev_desc)
869 {
870         int j;
871
872         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
873                 ;
874         desc->sptes[i] = desc->sptes[j];
875         desc->sptes[j] = NULL;
876         if (j != 0)
877                 return;
878         if (!prev_desc && !desc->more)
879                 rmap_head->val = 0;
880         else
881                 if (prev_desc)
882                         prev_desc->more = desc->more;
883                 else
884                         rmap_head->val = (unsigned long)desc->more | 1;
885         mmu_free_pte_list_desc(desc);
886 }
887
888 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
889 {
890         struct pte_list_desc *desc;
891         struct pte_list_desc *prev_desc;
892         int i;
893
894         if (!rmap_head->val) {
895                 pr_err("%s: %p 0->BUG\n", __func__, spte);
896                 BUG();
897         } else if (!(rmap_head->val & 1)) {
898                 rmap_printk("%p 1->0\n", spte);
899                 if ((u64 *)rmap_head->val != spte) {
900                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
901                         BUG();
902                 }
903                 rmap_head->val = 0;
904         } else {
905                 rmap_printk("%p many->many\n", spte);
906                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
907                 prev_desc = NULL;
908                 while (desc) {
909                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
910                                 if (desc->sptes[i] == spte) {
911                                         pte_list_desc_remove_entry(rmap_head,
912                                                         desc, i, prev_desc);
913                                         return;
914                                 }
915                         }
916                         prev_desc = desc;
917                         desc = desc->more;
918                 }
919                 pr_err("%s: %p many->many\n", __func__, spte);
920                 BUG();
921         }
922 }
923
924 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
925 {
926         mmu_spte_clear_track_bits(sptep);
927         __pte_list_remove(sptep, rmap_head);
928 }
929
930 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
931                                            struct kvm_memory_slot *slot)
932 {
933         unsigned long idx;
934
935         idx = gfn_to_index(gfn, slot->base_gfn, level);
936         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
937 }
938
939 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
940                                          struct kvm_mmu_page *sp)
941 {
942         struct kvm_memslots *slots;
943         struct kvm_memory_slot *slot;
944
945         slots = kvm_memslots_for_spte_role(kvm, sp->role);
946         slot = __gfn_to_memslot(slots, gfn);
947         return __gfn_to_rmap(gfn, sp->role.level, slot);
948 }
949
950 static bool rmap_can_add(struct kvm_vcpu *vcpu)
951 {
952         struct kvm_mmu_memory_cache *mc;
953
954         mc = &vcpu->arch.mmu_pte_list_desc_cache;
955         return kvm_mmu_memory_cache_nr_free_objects(mc);
956 }
957
958 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
959 {
960         struct kvm_mmu_page *sp;
961         struct kvm_rmap_head *rmap_head;
962
963         sp = sptep_to_sp(spte);
964         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
965         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
966         return pte_list_add(vcpu, spte, rmap_head);
967 }
968
969 static void rmap_remove(struct kvm *kvm, u64 *spte)
970 {
971         struct kvm_mmu_page *sp;
972         gfn_t gfn;
973         struct kvm_rmap_head *rmap_head;
974
975         sp = sptep_to_sp(spte);
976         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
977         rmap_head = gfn_to_rmap(kvm, gfn, sp);
978         __pte_list_remove(spte, rmap_head);
979 }
980
981 /*
982  * Used by the following functions to iterate through the sptes linked by a
983  * rmap.  All fields are private and not assumed to be used outside.
984  */
985 struct rmap_iterator {
986         /* private fields */
987         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
988         int pos;                        /* index of the sptep */
989 };
990
991 /*
992  * Iteration must be started by this function.  This should also be used after
993  * removing/dropping sptes from the rmap link because in such cases the
994  * information in the iterator may not be valid.
995  *
996  * Returns sptep if found, NULL otherwise.
997  */
998 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
999                            struct rmap_iterator *iter)
1000 {
1001         u64 *sptep;
1002
1003         if (!rmap_head->val)
1004                 return NULL;
1005
1006         if (!(rmap_head->val & 1)) {
1007                 iter->desc = NULL;
1008                 sptep = (u64 *)rmap_head->val;
1009                 goto out;
1010         }
1011
1012         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1013         iter->pos = 0;
1014         sptep = iter->desc->sptes[iter->pos];
1015 out:
1016         BUG_ON(!is_shadow_present_pte(*sptep));
1017         return sptep;
1018 }
1019
1020 /*
1021  * Must be used with a valid iterator: e.g. after rmap_get_first().
1022  *
1023  * Returns sptep if found, NULL otherwise.
1024  */
1025 static u64 *rmap_get_next(struct rmap_iterator *iter)
1026 {
1027         u64 *sptep;
1028
1029         if (iter->desc) {
1030                 if (iter->pos < PTE_LIST_EXT - 1) {
1031                         ++iter->pos;
1032                         sptep = iter->desc->sptes[iter->pos];
1033                         if (sptep)
1034                                 goto out;
1035                 }
1036
1037                 iter->desc = iter->desc->more;
1038
1039                 if (iter->desc) {
1040                         iter->pos = 0;
1041                         /* desc->sptes[0] cannot be NULL */
1042                         sptep = iter->desc->sptes[iter->pos];
1043                         goto out;
1044                 }
1045         }
1046
1047         return NULL;
1048 out:
1049         BUG_ON(!is_shadow_present_pte(*sptep));
1050         return sptep;
1051 }
1052
1053 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1054         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1055              _spte_; _spte_ = rmap_get_next(_iter_))
1056
1057 static void drop_spte(struct kvm *kvm, u64 *sptep)
1058 {
1059         if (mmu_spte_clear_track_bits(sptep))
1060                 rmap_remove(kvm, sptep);
1061 }
1062
1063
1064 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1065 {
1066         if (is_large_pte(*sptep)) {
1067                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1068                 drop_spte(kvm, sptep);
1069                 --kvm->stat.lpages;
1070                 return true;
1071         }
1072
1073         return false;
1074 }
1075
1076 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1077 {
1078         if (__drop_large_spte(vcpu->kvm, sptep)) {
1079                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1080
1081                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1082                         KVM_PAGES_PER_HPAGE(sp->role.level));
1083         }
1084 }
1085
1086 /*
1087  * Write-protect on the specified @sptep, @pt_protect indicates whether
1088  * spte write-protection is caused by protecting shadow page table.
1089  *
1090  * Note: write protection is difference between dirty logging and spte
1091  * protection:
1092  * - for dirty logging, the spte can be set to writable at anytime if
1093  *   its dirty bitmap is properly set.
1094  * - for spte protection, the spte can be writable only after unsync-ing
1095  *   shadow page.
1096  *
1097  * Return true if tlb need be flushed.
1098  */
1099 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1100 {
1101         u64 spte = *sptep;
1102
1103         if (!is_writable_pte(spte) &&
1104               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1105                 return false;
1106
1107         rmap_printk("spte %p %llx\n", sptep, *sptep);
1108
1109         if (pt_protect)
1110                 spte &= ~shadow_mmu_writable_mask;
1111         spte = spte & ~PT_WRITABLE_MASK;
1112
1113         return mmu_spte_update(sptep, spte);
1114 }
1115
1116 static bool __rmap_write_protect(struct kvm *kvm,
1117                                  struct kvm_rmap_head *rmap_head,
1118                                  bool pt_protect)
1119 {
1120         u64 *sptep;
1121         struct rmap_iterator iter;
1122         bool flush = false;
1123
1124         for_each_rmap_spte(rmap_head, &iter, sptep)
1125                 flush |= spte_write_protect(sptep, pt_protect);
1126
1127         return flush;
1128 }
1129
1130 static bool spte_clear_dirty(u64 *sptep)
1131 {
1132         u64 spte = *sptep;
1133
1134         rmap_printk("spte %p %llx\n", sptep, *sptep);
1135
1136         MMU_WARN_ON(!spte_ad_enabled(spte));
1137         spte &= ~shadow_dirty_mask;
1138         return mmu_spte_update(sptep, spte);
1139 }
1140
1141 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1142 {
1143         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1144                                                (unsigned long *)sptep);
1145         if (was_writable && !spte_ad_enabled(*sptep))
1146                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1147
1148         return was_writable;
1149 }
1150
1151 /*
1152  * Gets the GFN ready for another round of dirty logging by clearing the
1153  *      - D bit on ad-enabled SPTEs, and
1154  *      - W bit on ad-disabled SPTEs.
1155  * Returns true iff any D or W bits were cleared.
1156  */
1157 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1158                                struct kvm_memory_slot *slot)
1159 {
1160         u64 *sptep;
1161         struct rmap_iterator iter;
1162         bool flush = false;
1163
1164         for_each_rmap_spte(rmap_head, &iter, sptep)
1165                 if (spte_ad_need_write_protect(*sptep))
1166                         flush |= spte_wrprot_for_clear_dirty(sptep);
1167                 else
1168                         flush |= spte_clear_dirty(sptep);
1169
1170         return flush;
1171 }
1172
1173 /**
1174  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1175  * @kvm: kvm instance
1176  * @slot: slot to protect
1177  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1178  * @mask: indicates which pages we should protect
1179  *
1180  * Used when we do not need to care about huge page mappings: e.g. during dirty
1181  * logging we do not have any such mappings.
1182  */
1183 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1184                                      struct kvm_memory_slot *slot,
1185                                      gfn_t gfn_offset, unsigned long mask)
1186 {
1187         struct kvm_rmap_head *rmap_head;
1188
1189         if (is_tdp_mmu_enabled(kvm))
1190                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1191                                 slot->base_gfn + gfn_offset, mask, true);
1192         while (mask) {
1193                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1194                                           PG_LEVEL_4K, slot);
1195                 __rmap_write_protect(kvm, rmap_head, false);
1196
1197                 /* clear the first set bit */
1198                 mask &= mask - 1;
1199         }
1200 }
1201
1202 /**
1203  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1204  * protect the page if the D-bit isn't supported.
1205  * @kvm: kvm instance
1206  * @slot: slot to clear D-bit
1207  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1208  * @mask: indicates which pages we should clear D-bit
1209  *
1210  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1211  */
1212 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1213                                          struct kvm_memory_slot *slot,
1214                                          gfn_t gfn_offset, unsigned long mask)
1215 {
1216         struct kvm_rmap_head *rmap_head;
1217
1218         if (is_tdp_mmu_enabled(kvm))
1219                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1220                                 slot->base_gfn + gfn_offset, mask, false);
1221         while (mask) {
1222                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1223                                           PG_LEVEL_4K, slot);
1224                 __rmap_clear_dirty(kvm, rmap_head, slot);
1225
1226                 /* clear the first set bit */
1227                 mask &= mask - 1;
1228         }
1229 }
1230
1231 /**
1232  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1233  * PT level pages.
1234  *
1235  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1236  * enable dirty logging for them.
1237  *
1238  * Used when we do not need to care about huge page mappings: e.g. during dirty
1239  * logging we do not have any such mappings.
1240  */
1241 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1242                                 struct kvm_memory_slot *slot,
1243                                 gfn_t gfn_offset, unsigned long mask)
1244 {
1245         if (kvm_x86_ops.cpu_dirty_log_size)
1246                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1247         else
1248                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1249 }
1250
1251 int kvm_cpu_dirty_log_size(void)
1252 {
1253         return kvm_x86_ops.cpu_dirty_log_size;
1254 }
1255
1256 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1257                                     struct kvm_memory_slot *slot, u64 gfn)
1258 {
1259         struct kvm_rmap_head *rmap_head;
1260         int i;
1261         bool write_protected = false;
1262
1263         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1264                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1265                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1266         }
1267
1268         if (is_tdp_mmu_enabled(kvm))
1269                 write_protected |=
1270                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1271
1272         return write_protected;
1273 }
1274
1275 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1276 {
1277         struct kvm_memory_slot *slot;
1278
1279         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1280         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1281 }
1282
1283 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1284                           struct kvm_memory_slot *slot)
1285 {
1286         u64 *sptep;
1287         struct rmap_iterator iter;
1288         bool flush = false;
1289
1290         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1291                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1292
1293                 pte_list_remove(rmap_head, sptep);
1294                 flush = true;
1295         }
1296
1297         return flush;
1298 }
1299
1300 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1301                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1302                             pte_t unused)
1303 {
1304         return kvm_zap_rmapp(kvm, rmap_head, slot);
1305 }
1306
1307 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1308                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1309                               pte_t pte)
1310 {
1311         u64 *sptep;
1312         struct rmap_iterator iter;
1313         int need_flush = 0;
1314         u64 new_spte;
1315         kvm_pfn_t new_pfn;
1316
1317         WARN_ON(pte_huge(pte));
1318         new_pfn = pte_pfn(pte);
1319
1320 restart:
1321         for_each_rmap_spte(rmap_head, &iter, sptep) {
1322                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1323                             sptep, *sptep, gfn, level);
1324
1325                 need_flush = 1;
1326
1327                 if (pte_write(pte)) {
1328                         pte_list_remove(rmap_head, sptep);
1329                         goto restart;
1330                 } else {
1331                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1332                                         *sptep, new_pfn);
1333
1334                         mmu_spte_clear_track_bits(sptep);
1335                         mmu_spte_set(sptep, new_spte);
1336                 }
1337         }
1338
1339         if (need_flush && kvm_available_flush_tlb_with_range()) {
1340                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1341                 return 0;
1342         }
1343
1344         return need_flush;
1345 }
1346
1347 struct slot_rmap_walk_iterator {
1348         /* input fields. */
1349         struct kvm_memory_slot *slot;
1350         gfn_t start_gfn;
1351         gfn_t end_gfn;
1352         int start_level;
1353         int end_level;
1354
1355         /* output fields. */
1356         gfn_t gfn;
1357         struct kvm_rmap_head *rmap;
1358         int level;
1359
1360         /* private field. */
1361         struct kvm_rmap_head *end_rmap;
1362 };
1363
1364 static void
1365 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1366 {
1367         iterator->level = level;
1368         iterator->gfn = iterator->start_gfn;
1369         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1370         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1371                                            iterator->slot);
1372 }
1373
1374 static void
1375 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1376                     struct kvm_memory_slot *slot, int start_level,
1377                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1378 {
1379         iterator->slot = slot;
1380         iterator->start_level = start_level;
1381         iterator->end_level = end_level;
1382         iterator->start_gfn = start_gfn;
1383         iterator->end_gfn = end_gfn;
1384
1385         rmap_walk_init_level(iterator, iterator->start_level);
1386 }
1387
1388 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1389 {
1390         return !!iterator->rmap;
1391 }
1392
1393 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1394 {
1395         if (++iterator->rmap <= iterator->end_rmap) {
1396                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1397                 return;
1398         }
1399
1400         if (++iterator->level > iterator->end_level) {
1401                 iterator->rmap = NULL;
1402                 return;
1403         }
1404
1405         rmap_walk_init_level(iterator, iterator->level);
1406 }
1407
1408 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1409            _start_gfn, _end_gfn, _iter_)                                \
1410         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1411                                  _end_level_, _start_gfn, _end_gfn);    \
1412              slot_rmap_walk_okay(_iter_);                               \
1413              slot_rmap_walk_next(_iter_))
1414
1415 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1416                                struct kvm_memory_slot *slot, gfn_t gfn,
1417                                int level, pte_t pte);
1418
1419 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1420                                                  struct kvm_gfn_range *range,
1421                                                  rmap_handler_t handler)
1422 {
1423         struct slot_rmap_walk_iterator iterator;
1424         bool ret = false;
1425
1426         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1427                                  range->start, range->end - 1, &iterator)
1428                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1429                                iterator.level, range->pte);
1430
1431         return ret;
1432 }
1433
1434 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1435 {
1436         bool flush;
1437
1438         flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1439
1440         if (is_tdp_mmu_enabled(kvm))
1441                 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1442
1443         return flush;
1444 }
1445
1446 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1447 {
1448         bool flush;
1449
1450         flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1451
1452         if (is_tdp_mmu_enabled(kvm))
1453                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1454
1455         return flush;
1456 }
1457
1458 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1459                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1460                           pte_t unused)
1461 {
1462         u64 *sptep;
1463         struct rmap_iterator iter;
1464         int young = 0;
1465
1466         for_each_rmap_spte(rmap_head, &iter, sptep)
1467                 young |= mmu_spte_age(sptep);
1468
1469         return young;
1470 }
1471
1472 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1473                                struct kvm_memory_slot *slot, gfn_t gfn,
1474                                int level, pte_t unused)
1475 {
1476         u64 *sptep;
1477         struct rmap_iterator iter;
1478
1479         for_each_rmap_spte(rmap_head, &iter, sptep)
1480                 if (is_accessed_spte(*sptep))
1481                         return 1;
1482         return 0;
1483 }
1484
1485 #define RMAP_RECYCLE_THRESHOLD 1000
1486
1487 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1488 {
1489         struct kvm_rmap_head *rmap_head;
1490         struct kvm_mmu_page *sp;
1491
1492         sp = sptep_to_sp(spte);
1493
1494         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1495
1496         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1497         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1498                         KVM_PAGES_PER_HPAGE(sp->role.level));
1499 }
1500
1501 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1502 {
1503         bool young;
1504
1505         young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1506
1507         if (is_tdp_mmu_enabled(kvm))
1508                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1509
1510         return young;
1511 }
1512
1513 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1514 {
1515         bool young;
1516
1517         young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1518
1519         if (is_tdp_mmu_enabled(kvm))
1520                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1521
1522         return young;
1523 }
1524
1525 #ifdef MMU_DEBUG
1526 static int is_empty_shadow_page(u64 *spt)
1527 {
1528         u64 *pos;
1529         u64 *end;
1530
1531         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1532                 if (is_shadow_present_pte(*pos)) {
1533                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1534                                pos, *pos);
1535                         return 0;
1536                 }
1537         return 1;
1538 }
1539 #endif
1540
1541 /*
1542  * This value is the sum of all of the kvm instances's
1543  * kvm->arch.n_used_mmu_pages values.  We need a global,
1544  * aggregate version in order to make the slab shrinker
1545  * faster
1546  */
1547 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1548 {
1549         kvm->arch.n_used_mmu_pages += nr;
1550         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1551 }
1552
1553 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1554 {
1555         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1556         hlist_del(&sp->hash_link);
1557         list_del(&sp->link);
1558         free_page((unsigned long)sp->spt);
1559         if (!sp->role.direct)
1560                 free_page((unsigned long)sp->gfns);
1561         kmem_cache_free(mmu_page_header_cache, sp);
1562 }
1563
1564 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1565 {
1566         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1567 }
1568
1569 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1570                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1571 {
1572         if (!parent_pte)
1573                 return;
1574
1575         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1576 }
1577
1578 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1579                                        u64 *parent_pte)
1580 {
1581         __pte_list_remove(parent_pte, &sp->parent_ptes);
1582 }
1583
1584 static void drop_parent_pte(struct kvm_mmu_page *sp,
1585                             u64 *parent_pte)
1586 {
1587         mmu_page_remove_parent_pte(sp, parent_pte);
1588         mmu_spte_clear_no_track(parent_pte);
1589 }
1590
1591 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1592 {
1593         struct kvm_mmu_page *sp;
1594
1595         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1596         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1597         if (!direct)
1598                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1599         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1600
1601         /*
1602          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1603          * depends on valid pages being added to the head of the list.  See
1604          * comments in kvm_zap_obsolete_pages().
1605          */
1606         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1607         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1608         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1609         return sp;
1610 }
1611
1612 static void mark_unsync(u64 *spte);
1613 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1614 {
1615         u64 *sptep;
1616         struct rmap_iterator iter;
1617
1618         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1619                 mark_unsync(sptep);
1620         }
1621 }
1622
1623 static void mark_unsync(u64 *spte)
1624 {
1625         struct kvm_mmu_page *sp;
1626         unsigned int index;
1627
1628         sp = sptep_to_sp(spte);
1629         index = spte - sp->spt;
1630         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1631                 return;
1632         if (sp->unsync_children++)
1633                 return;
1634         kvm_mmu_mark_parents_unsync(sp);
1635 }
1636
1637 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1638                                struct kvm_mmu_page *sp)
1639 {
1640         return 0;
1641 }
1642
1643 #define KVM_PAGE_ARRAY_NR 16
1644
1645 struct kvm_mmu_pages {
1646         struct mmu_page_and_offset {
1647                 struct kvm_mmu_page *sp;
1648                 unsigned int idx;
1649         } page[KVM_PAGE_ARRAY_NR];
1650         unsigned int nr;
1651 };
1652
1653 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1654                          int idx)
1655 {
1656         int i;
1657
1658         if (sp->unsync)
1659                 for (i=0; i < pvec->nr; i++)
1660                         if (pvec->page[i].sp == sp)
1661                                 return 0;
1662
1663         pvec->page[pvec->nr].sp = sp;
1664         pvec->page[pvec->nr].idx = idx;
1665         pvec->nr++;
1666         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1667 }
1668
1669 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1670 {
1671         --sp->unsync_children;
1672         WARN_ON((int)sp->unsync_children < 0);
1673         __clear_bit(idx, sp->unsync_child_bitmap);
1674 }
1675
1676 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1677                            struct kvm_mmu_pages *pvec)
1678 {
1679         int i, ret, nr_unsync_leaf = 0;
1680
1681         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1682                 struct kvm_mmu_page *child;
1683                 u64 ent = sp->spt[i];
1684
1685                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1686                         clear_unsync_child_bit(sp, i);
1687                         continue;
1688                 }
1689
1690                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1691
1692                 if (child->unsync_children) {
1693                         if (mmu_pages_add(pvec, child, i))
1694                                 return -ENOSPC;
1695
1696                         ret = __mmu_unsync_walk(child, pvec);
1697                         if (!ret) {
1698                                 clear_unsync_child_bit(sp, i);
1699                                 continue;
1700                         } else if (ret > 0) {
1701                                 nr_unsync_leaf += ret;
1702                         } else
1703                                 return ret;
1704                 } else if (child->unsync) {
1705                         nr_unsync_leaf++;
1706                         if (mmu_pages_add(pvec, child, i))
1707                                 return -ENOSPC;
1708                 } else
1709                         clear_unsync_child_bit(sp, i);
1710         }
1711
1712         return nr_unsync_leaf;
1713 }
1714
1715 #define INVALID_INDEX (-1)
1716
1717 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1718                            struct kvm_mmu_pages *pvec)
1719 {
1720         pvec->nr = 0;
1721         if (!sp->unsync_children)
1722                 return 0;
1723
1724         mmu_pages_add(pvec, sp, INVALID_INDEX);
1725         return __mmu_unsync_walk(sp, pvec);
1726 }
1727
1728 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1729 {
1730         WARN_ON(!sp->unsync);
1731         trace_kvm_mmu_sync_page(sp);
1732         sp->unsync = 0;
1733         --kvm->stat.mmu_unsync;
1734 }
1735
1736 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1737                                      struct list_head *invalid_list);
1738 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1739                                     struct list_head *invalid_list);
1740
1741 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1742         hlist_for_each_entry(_sp, _list, hash_link)                     \
1743                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1744                 } else
1745
1746 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1747         for_each_valid_sp(_kvm, _sp,                                    \
1748           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1749                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1750
1751 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1752 {
1753         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1754 }
1755
1756 /* @sp->gfn should be write-protected at the call site */
1757 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1758                             struct list_head *invalid_list)
1759 {
1760         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1761             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1762                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1763                 return false;
1764         }
1765
1766         return true;
1767 }
1768
1769 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1770                                         struct list_head *invalid_list,
1771                                         bool remote_flush)
1772 {
1773         if (!remote_flush && list_empty(invalid_list))
1774                 return false;
1775
1776         if (!list_empty(invalid_list))
1777                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1778         else
1779                 kvm_flush_remote_tlbs(kvm);
1780         return true;
1781 }
1782
1783 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1784                                  struct list_head *invalid_list,
1785                                  bool remote_flush, bool local_flush)
1786 {
1787         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1788                 return;
1789
1790         if (local_flush)
1791                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1792 }
1793
1794 #ifdef CONFIG_KVM_MMU_AUDIT
1795 #include "mmu_audit.c"
1796 #else
1797 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1798 static void mmu_audit_disable(void) { }
1799 #endif
1800
1801 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1802 {
1803         return sp->role.invalid ||
1804                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1805 }
1806
1807 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1808                          struct list_head *invalid_list)
1809 {
1810         kvm_unlink_unsync_page(vcpu->kvm, sp);
1811         return __kvm_sync_page(vcpu, sp, invalid_list);
1812 }
1813
1814 /* @gfn should be write-protected at the call site */
1815 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1816                            struct list_head *invalid_list)
1817 {
1818         struct kvm_mmu_page *s;
1819         bool ret = false;
1820
1821         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1822                 if (!s->unsync)
1823                         continue;
1824
1825                 WARN_ON(s->role.level != PG_LEVEL_4K);
1826                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1827         }
1828
1829         return ret;
1830 }
1831
1832 struct mmu_page_path {
1833         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1834         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1835 };
1836
1837 #define for_each_sp(pvec, sp, parents, i)                       \
1838                 for (i = mmu_pages_first(&pvec, &parents);      \
1839                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1840                         i = mmu_pages_next(&pvec, &parents, i))
1841
1842 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1843                           struct mmu_page_path *parents,
1844                           int i)
1845 {
1846         int n;
1847
1848         for (n = i+1; n < pvec->nr; n++) {
1849                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1850                 unsigned idx = pvec->page[n].idx;
1851                 int level = sp->role.level;
1852
1853                 parents->idx[level-1] = idx;
1854                 if (level == PG_LEVEL_4K)
1855                         break;
1856
1857                 parents->parent[level-2] = sp;
1858         }
1859
1860         return n;
1861 }
1862
1863 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1864                            struct mmu_page_path *parents)
1865 {
1866         struct kvm_mmu_page *sp;
1867         int level;
1868
1869         if (pvec->nr == 0)
1870                 return 0;
1871
1872         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1873
1874         sp = pvec->page[0].sp;
1875         level = sp->role.level;
1876         WARN_ON(level == PG_LEVEL_4K);
1877
1878         parents->parent[level-2] = sp;
1879
1880         /* Also set up a sentinel.  Further entries in pvec are all
1881          * children of sp, so this element is never overwritten.
1882          */
1883         parents->parent[level-1] = NULL;
1884         return mmu_pages_next(pvec, parents, 0);
1885 }
1886
1887 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1888 {
1889         struct kvm_mmu_page *sp;
1890         unsigned int level = 0;
1891
1892         do {
1893                 unsigned int idx = parents->idx[level];
1894                 sp = parents->parent[level];
1895                 if (!sp)
1896                         return;
1897
1898                 WARN_ON(idx == INVALID_INDEX);
1899                 clear_unsync_child_bit(sp, idx);
1900                 level++;
1901         } while (!sp->unsync_children);
1902 }
1903
1904 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1905                               struct kvm_mmu_page *parent)
1906 {
1907         int i;
1908         struct kvm_mmu_page *sp;
1909         struct mmu_page_path parents;
1910         struct kvm_mmu_pages pages;
1911         LIST_HEAD(invalid_list);
1912         bool flush = false;
1913
1914         while (mmu_unsync_walk(parent, &pages)) {
1915                 bool protected = false;
1916
1917                 for_each_sp(pages, sp, parents, i)
1918                         protected |= rmap_write_protect(vcpu, sp->gfn);
1919
1920                 if (protected) {
1921                         kvm_flush_remote_tlbs(vcpu->kvm);
1922                         flush = false;
1923                 }
1924
1925                 for_each_sp(pages, sp, parents, i) {
1926                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1927                         mmu_pages_clear_parents(&parents);
1928                 }
1929                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1930                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1931                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1932                         flush = false;
1933                 }
1934         }
1935
1936         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1937 }
1938
1939 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1940 {
1941         atomic_set(&sp->write_flooding_count,  0);
1942 }
1943
1944 static void clear_sp_write_flooding_count(u64 *spte)
1945 {
1946         __clear_sp_write_flooding_count(sptep_to_sp(spte));
1947 }
1948
1949 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1950                                              gfn_t gfn,
1951                                              gva_t gaddr,
1952                                              unsigned level,
1953                                              int direct,
1954                                              unsigned int access)
1955 {
1956         bool direct_mmu = vcpu->arch.mmu->direct_map;
1957         union kvm_mmu_page_role role;
1958         struct hlist_head *sp_list;
1959         unsigned quadrant;
1960         struct kvm_mmu_page *sp;
1961         bool need_sync = false;
1962         bool flush = false;
1963         int collisions = 0;
1964         LIST_HEAD(invalid_list);
1965
1966         role = vcpu->arch.mmu->mmu_role.base;
1967         role.level = level;
1968         role.direct = direct;
1969         if (role.direct)
1970                 role.gpte_is_8_bytes = true;
1971         role.access = access;
1972         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
1973                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1974                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1975                 role.quadrant = quadrant;
1976         }
1977
1978         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
1979         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
1980                 if (sp->gfn != gfn) {
1981                         collisions++;
1982                         continue;
1983                 }
1984
1985                 if (!need_sync && sp->unsync)
1986                         need_sync = true;
1987
1988                 if (sp->role.word != role.word)
1989                         continue;
1990
1991                 if (direct_mmu)
1992                         goto trace_get_page;
1993
1994                 if (sp->unsync) {
1995                         /* The page is good, but __kvm_sync_page might still end
1996                          * up zapping it.  If so, break in order to rebuild it.
1997                          */
1998                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
1999                                 break;
2000
2001                         WARN_ON(!list_empty(&invalid_list));
2002                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2003                 }
2004
2005                 if (sp->unsync_children)
2006                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2007
2008                 __clear_sp_write_flooding_count(sp);
2009
2010 trace_get_page:
2011                 trace_kvm_mmu_get_page(sp, false);
2012                 goto out;
2013         }
2014
2015         ++vcpu->kvm->stat.mmu_cache_miss;
2016
2017         sp = kvm_mmu_alloc_page(vcpu, direct);
2018
2019         sp->gfn = gfn;
2020         sp->role = role;
2021         hlist_add_head(&sp->hash_link, sp_list);
2022         if (!direct) {
2023                 /*
2024                  * we should do write protection before syncing pages
2025                  * otherwise the content of the synced shadow page may
2026                  * be inconsistent with guest page table.
2027                  */
2028                 account_shadowed(vcpu->kvm, sp);
2029                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2030                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2031
2032                 if (level > PG_LEVEL_4K && need_sync)
2033                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2034         }
2035         trace_kvm_mmu_get_page(sp, true);
2036
2037         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2038 out:
2039         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2040                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2041         return sp;
2042 }
2043
2044 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2045                                         struct kvm_vcpu *vcpu, hpa_t root,
2046                                         u64 addr)
2047 {
2048         iterator->addr = addr;
2049         iterator->shadow_addr = root;
2050         iterator->level = vcpu->arch.mmu->shadow_root_level;
2051
2052         if (iterator->level == PT64_ROOT_4LEVEL &&
2053             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2054             !vcpu->arch.mmu->direct_map)
2055                 --iterator->level;
2056
2057         if (iterator->level == PT32E_ROOT_LEVEL) {
2058                 /*
2059                  * prev_root is currently only used for 64-bit hosts. So only
2060                  * the active root_hpa is valid here.
2061                  */
2062                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2063
2064                 iterator->shadow_addr
2065                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2066                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2067                 --iterator->level;
2068                 if (!iterator->shadow_addr)
2069                         iterator->level = 0;
2070         }
2071 }
2072
2073 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2074                              struct kvm_vcpu *vcpu, u64 addr)
2075 {
2076         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2077                                     addr);
2078 }
2079
2080 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2081 {
2082         if (iterator->level < PG_LEVEL_4K)
2083                 return false;
2084
2085         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2086         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2087         return true;
2088 }
2089
2090 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2091                                u64 spte)
2092 {
2093         if (is_last_spte(spte, iterator->level)) {
2094                 iterator->level = 0;
2095                 return;
2096         }
2097
2098         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2099         --iterator->level;
2100 }
2101
2102 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2103 {
2104         __shadow_walk_next(iterator, *iterator->sptep);
2105 }
2106
2107 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2108                              struct kvm_mmu_page *sp)
2109 {
2110         u64 spte;
2111
2112         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2113
2114         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2115
2116         mmu_spte_set(sptep, spte);
2117
2118         mmu_page_add_parent_pte(vcpu, sp, sptep);
2119
2120         if (sp->unsync_children || sp->unsync)
2121                 mark_unsync(sptep);
2122 }
2123
2124 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2125                                    unsigned direct_access)
2126 {
2127         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2128                 struct kvm_mmu_page *child;
2129
2130                 /*
2131                  * For the direct sp, if the guest pte's dirty bit
2132                  * changed form clean to dirty, it will corrupt the
2133                  * sp's access: allow writable in the read-only sp,
2134                  * so we should update the spte at this point to get
2135                  * a new sp with the correct access.
2136                  */
2137                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2138                 if (child->role.access == direct_access)
2139                         return;
2140
2141                 drop_parent_pte(child, sptep);
2142                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2143         }
2144 }
2145
2146 /* Returns the number of zapped non-leaf child shadow pages. */
2147 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2148                             u64 *spte, struct list_head *invalid_list)
2149 {
2150         u64 pte;
2151         struct kvm_mmu_page *child;
2152
2153         pte = *spte;
2154         if (is_shadow_present_pte(pte)) {
2155                 if (is_last_spte(pte, sp->role.level)) {
2156                         drop_spte(kvm, spte);
2157                         if (is_large_pte(pte))
2158                                 --kvm->stat.lpages;
2159                 } else {
2160                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2161                         drop_parent_pte(child, spte);
2162
2163                         /*
2164                          * Recursively zap nested TDP SPs, parentless SPs are
2165                          * unlikely to be used again in the near future.  This
2166                          * avoids retaining a large number of stale nested SPs.
2167                          */
2168                         if (tdp_enabled && invalid_list &&
2169                             child->role.guest_mode && !child->parent_ptes.val)
2170                                 return kvm_mmu_prepare_zap_page(kvm, child,
2171                                                                 invalid_list);
2172                 }
2173         } else if (is_mmio_spte(pte)) {
2174                 mmu_spte_clear_no_track(spte);
2175         }
2176         return 0;
2177 }
2178
2179 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2180                                         struct kvm_mmu_page *sp,
2181                                         struct list_head *invalid_list)
2182 {
2183         int zapped = 0;
2184         unsigned i;
2185
2186         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2187                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2188
2189         return zapped;
2190 }
2191
2192 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2193 {
2194         u64 *sptep;
2195         struct rmap_iterator iter;
2196
2197         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2198                 drop_parent_pte(sp, sptep);
2199 }
2200
2201 static int mmu_zap_unsync_children(struct kvm *kvm,
2202                                    struct kvm_mmu_page *parent,
2203                                    struct list_head *invalid_list)
2204 {
2205         int i, zapped = 0;
2206         struct mmu_page_path parents;
2207         struct kvm_mmu_pages pages;
2208
2209         if (parent->role.level == PG_LEVEL_4K)
2210                 return 0;
2211
2212         while (mmu_unsync_walk(parent, &pages)) {
2213                 struct kvm_mmu_page *sp;
2214
2215                 for_each_sp(pages, sp, parents, i) {
2216                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2217                         mmu_pages_clear_parents(&parents);
2218                         zapped++;
2219                 }
2220         }
2221
2222         return zapped;
2223 }
2224
2225 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2226                                        struct kvm_mmu_page *sp,
2227                                        struct list_head *invalid_list,
2228                                        int *nr_zapped)
2229 {
2230         bool list_unstable;
2231
2232         trace_kvm_mmu_prepare_zap_page(sp);
2233         ++kvm->stat.mmu_shadow_zapped;
2234         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2235         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2236         kvm_mmu_unlink_parents(kvm, sp);
2237
2238         /* Zapping children means active_mmu_pages has become unstable. */
2239         list_unstable = *nr_zapped;
2240
2241         if (!sp->role.invalid && !sp->role.direct)
2242                 unaccount_shadowed(kvm, sp);
2243
2244         if (sp->unsync)
2245                 kvm_unlink_unsync_page(kvm, sp);
2246         if (!sp->root_count) {
2247                 /* Count self */
2248                 (*nr_zapped)++;
2249
2250                 /*
2251                  * Already invalid pages (previously active roots) are not on
2252                  * the active page list.  See list_del() in the "else" case of
2253                  * !sp->root_count.
2254                  */
2255                 if (sp->role.invalid)
2256                         list_add(&sp->link, invalid_list);
2257                 else
2258                         list_move(&sp->link, invalid_list);
2259                 kvm_mod_used_mmu_pages(kvm, -1);
2260         } else {
2261                 /*
2262                  * Remove the active root from the active page list, the root
2263                  * will be explicitly freed when the root_count hits zero.
2264                  */
2265                 list_del(&sp->link);
2266
2267                 /*
2268                  * Obsolete pages cannot be used on any vCPUs, see the comment
2269                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2270                  * treats invalid shadow pages as being obsolete.
2271                  */
2272                 if (!is_obsolete_sp(kvm, sp))
2273                         kvm_reload_remote_mmus(kvm);
2274         }
2275
2276         if (sp->lpage_disallowed)
2277                 unaccount_huge_nx_page(kvm, sp);
2278
2279         sp->role.invalid = 1;
2280         return list_unstable;
2281 }
2282
2283 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2284                                      struct list_head *invalid_list)
2285 {
2286         int nr_zapped;
2287
2288         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2289         return nr_zapped;
2290 }
2291
2292 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2293                                     struct list_head *invalid_list)
2294 {
2295         struct kvm_mmu_page *sp, *nsp;
2296
2297         if (list_empty(invalid_list))
2298                 return;
2299
2300         /*
2301          * We need to make sure everyone sees our modifications to
2302          * the page tables and see changes to vcpu->mode here. The barrier
2303          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2304          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2305          *
2306          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2307          * guest mode and/or lockless shadow page table walks.
2308          */
2309         kvm_flush_remote_tlbs(kvm);
2310
2311         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2312                 WARN_ON(!sp->role.invalid || sp->root_count);
2313                 kvm_mmu_free_page(sp);
2314         }
2315 }
2316
2317 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2318                                                   unsigned long nr_to_zap)
2319 {
2320         unsigned long total_zapped = 0;
2321         struct kvm_mmu_page *sp, *tmp;
2322         LIST_HEAD(invalid_list);
2323         bool unstable;
2324         int nr_zapped;
2325
2326         if (list_empty(&kvm->arch.active_mmu_pages))
2327                 return 0;
2328
2329 restart:
2330         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2331                 /*
2332                  * Don't zap active root pages, the page itself can't be freed
2333                  * and zapping it will just force vCPUs to realloc and reload.
2334                  */
2335                 if (sp->root_count)
2336                         continue;
2337
2338                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2339                                                       &nr_zapped);
2340                 total_zapped += nr_zapped;
2341                 if (total_zapped >= nr_to_zap)
2342                         break;
2343
2344                 if (unstable)
2345                         goto restart;
2346         }
2347
2348         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2349
2350         kvm->stat.mmu_recycled += total_zapped;
2351         return total_zapped;
2352 }
2353
2354 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2355 {
2356         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2357                 return kvm->arch.n_max_mmu_pages -
2358                         kvm->arch.n_used_mmu_pages;
2359
2360         return 0;
2361 }
2362
2363 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2364 {
2365         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2366
2367         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2368                 return 0;
2369
2370         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2371
2372         /*
2373          * Note, this check is intentionally soft, it only guarantees that one
2374          * page is available, while the caller may end up allocating as many as
2375          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2376          * exceeding the (arbitrary by default) limit will not harm the host,
2377          * being too agressive may unnecessarily kill the guest, and getting an
2378          * exact count is far more trouble than it's worth, especially in the
2379          * page fault paths.
2380          */
2381         if (!kvm_mmu_available_pages(vcpu->kvm))
2382                 return -ENOSPC;
2383         return 0;
2384 }
2385
2386 /*
2387  * Changing the number of mmu pages allocated to the vm
2388  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2389  */
2390 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2391 {
2392         write_lock(&kvm->mmu_lock);
2393
2394         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2395                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2396                                                   goal_nr_mmu_pages);
2397
2398                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2399         }
2400
2401         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2402
2403         write_unlock(&kvm->mmu_lock);
2404 }
2405
2406 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2407 {
2408         struct kvm_mmu_page *sp;
2409         LIST_HEAD(invalid_list);
2410         int r;
2411
2412         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2413         r = 0;
2414         write_lock(&kvm->mmu_lock);
2415         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2416                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2417                          sp->role.word);
2418                 r = 1;
2419                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2420         }
2421         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2422         write_unlock(&kvm->mmu_lock);
2423
2424         return r;
2425 }
2426
2427 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2428 {
2429         gpa_t gpa;
2430         int r;
2431
2432         if (vcpu->arch.mmu->direct_map)
2433                 return 0;
2434
2435         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2436
2437         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2438
2439         return r;
2440 }
2441
2442 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2443 {
2444         trace_kvm_mmu_unsync_page(sp);
2445         ++vcpu->kvm->stat.mmu_unsync;
2446         sp->unsync = 1;
2447
2448         kvm_mmu_mark_parents_unsync(sp);
2449 }
2450
2451 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2452                             bool can_unsync)
2453 {
2454         struct kvm_mmu_page *sp;
2455
2456         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2457                 return true;
2458
2459         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2460                 if (!can_unsync)
2461                         return true;
2462
2463                 if (sp->unsync)
2464                         continue;
2465
2466                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2467                 kvm_unsync_page(vcpu, sp);
2468         }
2469
2470         /*
2471          * We need to ensure that the marking of unsync pages is visible
2472          * before the SPTE is updated to allow writes because
2473          * kvm_mmu_sync_roots() checks the unsync flags without holding
2474          * the MMU lock and so can race with this. If the SPTE was updated
2475          * before the page had been marked as unsync-ed, something like the
2476          * following could happen:
2477          *
2478          * CPU 1                    CPU 2
2479          * ---------------------------------------------------------------------
2480          * 1.2 Host updates SPTE
2481          *     to be writable
2482          *                      2.1 Guest writes a GPTE for GVA X.
2483          *                          (GPTE being in the guest page table shadowed
2484          *                           by the SP from CPU 1.)
2485          *                          This reads SPTE during the page table walk.
2486          *                          Since SPTE.W is read as 1, there is no
2487          *                          fault.
2488          *
2489          *                      2.2 Guest issues TLB flush.
2490          *                          That causes a VM Exit.
2491          *
2492          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2493          *                          Since it is false, so it just returns.
2494          *
2495          *                      2.4 Guest accesses GVA X.
2496          *                          Since the mapping in the SP was not updated,
2497          *                          so the old mapping for GVA X incorrectly
2498          *                          gets used.
2499          * 1.1 Host marks SP
2500          *     as unsync
2501          *     (sp->unsync = true)
2502          *
2503          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2504          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2505          * pairs with this write barrier.
2506          */
2507         smp_wmb();
2508
2509         return false;
2510 }
2511
2512 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2513                     unsigned int pte_access, int level,
2514                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2515                     bool can_unsync, bool host_writable)
2516 {
2517         u64 spte;
2518         struct kvm_mmu_page *sp;
2519         int ret;
2520
2521         sp = sptep_to_sp(sptep);
2522
2523         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2524                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2525
2526         if (spte & PT_WRITABLE_MASK)
2527                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2528
2529         if (*sptep == spte)
2530                 ret |= SET_SPTE_SPURIOUS;
2531         else if (mmu_spte_update(sptep, spte))
2532                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2533         return ret;
2534 }
2535
2536 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2537                         unsigned int pte_access, bool write_fault, int level,
2538                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2539                         bool host_writable)
2540 {
2541         int was_rmapped = 0;
2542         int rmap_count;
2543         int set_spte_ret;
2544         int ret = RET_PF_FIXED;
2545         bool flush = false;
2546
2547         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2548                  *sptep, write_fault, gfn);
2549
2550         if (unlikely(is_noslot_pfn(pfn))) {
2551                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2552                 return RET_PF_EMULATE;
2553         }
2554
2555         if (is_shadow_present_pte(*sptep)) {
2556                 /*
2557                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2558                  * the parent of the now unreachable PTE.
2559                  */
2560                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2561                         struct kvm_mmu_page *child;
2562                         u64 pte = *sptep;
2563
2564                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2565                         drop_parent_pte(child, sptep);
2566                         flush = true;
2567                 } else if (pfn != spte_to_pfn(*sptep)) {
2568                         pgprintk("hfn old %llx new %llx\n",
2569                                  spte_to_pfn(*sptep), pfn);
2570                         drop_spte(vcpu->kvm, sptep);
2571                         flush = true;
2572                 } else
2573                         was_rmapped = 1;
2574         }
2575
2576         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2577                                 speculative, true, host_writable);
2578         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2579                 if (write_fault)
2580                         ret = RET_PF_EMULATE;
2581                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2582         }
2583
2584         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2585                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2586                                 KVM_PAGES_PER_HPAGE(level));
2587
2588         /*
2589          * The fault is fully spurious if and only if the new SPTE and old SPTE
2590          * are identical, and emulation is not required.
2591          */
2592         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2593                 WARN_ON_ONCE(!was_rmapped);
2594                 return RET_PF_SPURIOUS;
2595         }
2596
2597         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2598         trace_kvm_mmu_set_spte(level, gfn, sptep);
2599         if (!was_rmapped && is_large_pte(*sptep))
2600                 ++vcpu->kvm->stat.lpages;
2601
2602         if (is_shadow_present_pte(*sptep)) {
2603                 if (!was_rmapped) {
2604                         rmap_count = rmap_add(vcpu, sptep, gfn);
2605                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2606                                 rmap_recycle(vcpu, sptep, gfn);
2607                 }
2608         }
2609
2610         return ret;
2611 }
2612
2613 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2614                                      bool no_dirty_log)
2615 {
2616         struct kvm_memory_slot *slot;
2617
2618         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2619         if (!slot)
2620                 return KVM_PFN_ERR_FAULT;
2621
2622         return gfn_to_pfn_memslot_atomic(slot, gfn);
2623 }
2624
2625 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2626                                     struct kvm_mmu_page *sp,
2627                                     u64 *start, u64 *end)
2628 {
2629         struct page *pages[PTE_PREFETCH_NUM];
2630         struct kvm_memory_slot *slot;
2631         unsigned int access = sp->role.access;
2632         int i, ret;
2633         gfn_t gfn;
2634
2635         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2636         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2637         if (!slot)
2638                 return -1;
2639
2640         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2641         if (ret <= 0)
2642                 return -1;
2643
2644         for (i = 0; i < ret; i++, gfn++, start++) {
2645                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2646                              page_to_pfn(pages[i]), true, true);
2647                 put_page(pages[i]);
2648         }
2649
2650         return 0;
2651 }
2652
2653 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2654                                   struct kvm_mmu_page *sp, u64 *sptep)
2655 {
2656         u64 *spte, *start = NULL;
2657         int i;
2658
2659         WARN_ON(!sp->role.direct);
2660
2661         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2662         spte = sp->spt + i;
2663
2664         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2665                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2666                         if (!start)
2667                                 continue;
2668                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2669                                 break;
2670                         start = NULL;
2671                 } else if (!start)
2672                         start = spte;
2673         }
2674 }
2675
2676 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2677 {
2678         struct kvm_mmu_page *sp;
2679
2680         sp = sptep_to_sp(sptep);
2681
2682         /*
2683          * Without accessed bits, there's no way to distinguish between
2684          * actually accessed translations and prefetched, so disable pte
2685          * prefetch if accessed bits aren't available.
2686          */
2687         if (sp_ad_disabled(sp))
2688                 return;
2689
2690         if (sp->role.level > PG_LEVEL_4K)
2691                 return;
2692
2693         /*
2694          * If addresses are being invalidated, skip prefetching to avoid
2695          * accidentally prefetching those addresses.
2696          */
2697         if (unlikely(vcpu->kvm->mmu_notifier_count))
2698                 return;
2699
2700         __direct_pte_prefetch(vcpu, sp, sptep);
2701 }
2702
2703 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2704                                   const struct kvm_memory_slot *slot)
2705 {
2706         unsigned long hva;
2707         pte_t *pte;
2708         int level;
2709
2710         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2711                 return PG_LEVEL_4K;
2712
2713         /*
2714          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2715          * is not solely for performance, it's also necessary to avoid the
2716          * "writable" check in __gfn_to_hva_many(), which will always fail on
2717          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2718          * page fault steps have already verified the guest isn't writing a
2719          * read-only memslot.
2720          */
2721         hva = __gfn_to_hva_memslot(slot, gfn);
2722
2723         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2724         if (unlikely(!pte))
2725                 return PG_LEVEL_4K;
2726
2727         return level;
2728 }
2729
2730 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2731                               const struct kvm_memory_slot *slot, gfn_t gfn,
2732                               kvm_pfn_t pfn, int max_level)
2733 {
2734         struct kvm_lpage_info *linfo;
2735
2736         max_level = min(max_level, max_huge_page_level);
2737         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2738                 linfo = lpage_info_slot(gfn, slot, max_level);
2739                 if (!linfo->disallow_lpage)
2740                         break;
2741         }
2742
2743         if (max_level == PG_LEVEL_4K)
2744                 return PG_LEVEL_4K;
2745
2746         return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2747 }
2748
2749 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2750                             int max_level, kvm_pfn_t *pfnp,
2751                             bool huge_page_disallowed, int *req_level)
2752 {
2753         struct kvm_memory_slot *slot;
2754         kvm_pfn_t pfn = *pfnp;
2755         kvm_pfn_t mask;
2756         int level;
2757
2758         *req_level = PG_LEVEL_4K;
2759
2760         if (unlikely(max_level == PG_LEVEL_4K))
2761                 return PG_LEVEL_4K;
2762
2763         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2764                 return PG_LEVEL_4K;
2765
2766         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2767         if (!slot)
2768                 return PG_LEVEL_4K;
2769
2770         level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2771         if (level == PG_LEVEL_4K)
2772                 return level;
2773
2774         *req_level = level = min(level, max_level);
2775
2776         /*
2777          * Enforce the iTLB multihit workaround after capturing the requested
2778          * level, which will be used to do precise, accurate accounting.
2779          */
2780         if (huge_page_disallowed)
2781                 return PG_LEVEL_4K;
2782
2783         /*
2784          * mmu_notifier_retry() was successful and mmu_lock is held, so
2785          * the pmd can't be split from under us.
2786          */
2787         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2788         VM_BUG_ON((gfn & mask) != (pfn & mask));
2789         *pfnp = pfn & ~mask;
2790
2791         return level;
2792 }
2793
2794 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2795                                 kvm_pfn_t *pfnp, int *goal_levelp)
2796 {
2797         int level = *goal_levelp;
2798
2799         if (cur_level == level && level > PG_LEVEL_4K &&
2800             is_shadow_present_pte(spte) &&
2801             !is_large_pte(spte)) {
2802                 /*
2803                  * A small SPTE exists for this pfn, but FNAME(fetch)
2804                  * and __direct_map would like to create a large PTE
2805                  * instead: just force them to go down another level,
2806                  * patching back for them into pfn the next 9 bits of
2807                  * the address.
2808                  */
2809                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2810                                 KVM_PAGES_PER_HPAGE(level - 1);
2811                 *pfnp |= gfn & page_mask;
2812                 (*goal_levelp)--;
2813         }
2814 }
2815
2816 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2817                         int map_writable, int max_level, kvm_pfn_t pfn,
2818                         bool prefault, bool is_tdp)
2819 {
2820         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2821         bool write = error_code & PFERR_WRITE_MASK;
2822         bool exec = error_code & PFERR_FETCH_MASK;
2823         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2824         struct kvm_shadow_walk_iterator it;
2825         struct kvm_mmu_page *sp;
2826         int level, req_level, ret;
2827         gfn_t gfn = gpa >> PAGE_SHIFT;
2828         gfn_t base_gfn = gfn;
2829
2830         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2831                 return RET_PF_RETRY;
2832
2833         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2834                                         huge_page_disallowed, &req_level);
2835
2836         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2837         for_each_shadow_entry(vcpu, gpa, it) {
2838                 /*
2839                  * We cannot overwrite existing page tables with an NX
2840                  * large page, as the leaf could be executable.
2841                  */
2842                 if (nx_huge_page_workaround_enabled)
2843                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2844                                                    &pfn, &level);
2845
2846                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2847                 if (it.level == level)
2848                         break;
2849
2850                 drop_large_spte(vcpu, it.sptep);
2851                 if (!is_shadow_present_pte(*it.sptep)) {
2852                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2853                                               it.level - 1, true, ACC_ALL);
2854
2855                         link_shadow_page(vcpu, it.sptep, sp);
2856                         if (is_tdp && huge_page_disallowed &&
2857                             req_level >= it.level)
2858                                 account_huge_nx_page(vcpu->kvm, sp);
2859                 }
2860         }
2861
2862         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2863                            write, level, base_gfn, pfn, prefault,
2864                            map_writable);
2865         if (ret == RET_PF_SPURIOUS)
2866                 return ret;
2867
2868         direct_pte_prefetch(vcpu, it.sptep);
2869         ++vcpu->stat.pf_fixed;
2870         return ret;
2871 }
2872
2873 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2874 {
2875         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2876 }
2877
2878 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2879 {
2880         /*
2881          * Do not cache the mmio info caused by writing the readonly gfn
2882          * into the spte otherwise read access on readonly gfn also can
2883          * caused mmio page fault and treat it as mmio access.
2884          */
2885         if (pfn == KVM_PFN_ERR_RO_FAULT)
2886                 return RET_PF_EMULATE;
2887
2888         if (pfn == KVM_PFN_ERR_HWPOISON) {
2889                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2890                 return RET_PF_RETRY;
2891         }
2892
2893         return -EFAULT;
2894 }
2895
2896 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2897                                 kvm_pfn_t pfn, unsigned int access,
2898                                 int *ret_val)
2899 {
2900         /* The pfn is invalid, report the error! */
2901         if (unlikely(is_error_pfn(pfn))) {
2902                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2903                 return true;
2904         }
2905
2906         if (unlikely(is_noslot_pfn(pfn))) {
2907                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2908                                      access & shadow_mmio_access_mask);
2909                 /*
2910                  * If MMIO caching is disabled, emulate immediately without
2911                  * touching the shadow page tables as attempting to install an
2912                  * MMIO SPTE will just be an expensive nop.
2913                  */
2914                 if (unlikely(!shadow_mmio_value)) {
2915                         *ret_val = RET_PF_EMULATE;
2916                         return true;
2917                 }
2918         }
2919
2920         return false;
2921 }
2922
2923 static bool page_fault_can_be_fast(u32 error_code)
2924 {
2925         /*
2926          * Do not fix the mmio spte with invalid generation number which
2927          * need to be updated by slow page fault path.
2928          */
2929         if (unlikely(error_code & PFERR_RSVD_MASK))
2930                 return false;
2931
2932         /* See if the page fault is due to an NX violation */
2933         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2934                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2935                 return false;
2936
2937         /*
2938          * #PF can be fast if:
2939          * 1. The shadow page table entry is not present, which could mean that
2940          *    the fault is potentially caused by access tracking (if enabled).
2941          * 2. The shadow page table entry is present and the fault
2942          *    is caused by write-protect, that means we just need change the W
2943          *    bit of the spte which can be done out of mmu-lock.
2944          *
2945          * However, if access tracking is disabled we know that a non-present
2946          * page must be a genuine page fault where we have to create a new SPTE.
2947          * So, if access tracking is disabled, we return true only for write
2948          * accesses to a present page.
2949          */
2950
2951         return shadow_acc_track_mask != 0 ||
2952                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2953                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2954 }
2955
2956 /*
2957  * Returns true if the SPTE was fixed successfully. Otherwise,
2958  * someone else modified the SPTE from its original value.
2959  */
2960 static bool
2961 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2962                         u64 *sptep, u64 old_spte, u64 new_spte)
2963 {
2964         gfn_t gfn;
2965
2966         WARN_ON(!sp->role.direct);
2967
2968         /*
2969          * Theoretically we could also set dirty bit (and flush TLB) here in
2970          * order to eliminate unnecessary PML logging. See comments in
2971          * set_spte. But fast_page_fault is very unlikely to happen with PML
2972          * enabled, so we do not do this. This might result in the same GPA
2973          * to be logged in PML buffer again when the write really happens, and
2974          * eventually to be called by mark_page_dirty twice. But it's also no
2975          * harm. This also avoids the TLB flush needed after setting dirty bit
2976          * so non-PML cases won't be impacted.
2977          *
2978          * Compare with set_spte where instead shadow_dirty_mask is set.
2979          */
2980         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
2981                 return false;
2982
2983         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
2984                 /*
2985                  * The gfn of direct spte is stable since it is
2986                  * calculated by sp->gfn.
2987                  */
2988                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2989                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2990         }
2991
2992         return true;
2993 }
2994
2995 static bool is_access_allowed(u32 fault_err_code, u64 spte)
2996 {
2997         if (fault_err_code & PFERR_FETCH_MASK)
2998                 return is_executable_pte(spte);
2999
3000         if (fault_err_code & PFERR_WRITE_MASK)
3001                 return is_writable_pte(spte);
3002
3003         /* Fault was on Read access */
3004         return spte & PT_PRESENT_MASK;
3005 }
3006
3007 /*
3008  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3009  */
3010 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3011                            u32 error_code)
3012 {
3013         struct kvm_shadow_walk_iterator iterator;
3014         struct kvm_mmu_page *sp;
3015         int ret = RET_PF_INVALID;
3016         u64 spte = 0ull;
3017         uint retry_count = 0;
3018
3019         if (!page_fault_can_be_fast(error_code))
3020                 return ret;
3021
3022         walk_shadow_page_lockless_begin(vcpu);
3023
3024         do {
3025                 u64 new_spte;
3026
3027                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3028                         if (!is_shadow_present_pte(spte))
3029                                 break;
3030
3031                 if (!is_shadow_present_pte(spte))
3032                         break;
3033
3034                 sp = sptep_to_sp(iterator.sptep);
3035                 if (!is_last_spte(spte, sp->role.level))
3036                         break;
3037
3038                 /*
3039                  * Check whether the memory access that caused the fault would
3040                  * still cause it if it were to be performed right now. If not,
3041                  * then this is a spurious fault caused by TLB lazily flushed,
3042                  * or some other CPU has already fixed the PTE after the
3043                  * current CPU took the fault.
3044                  *
3045                  * Need not check the access of upper level table entries since
3046                  * they are always ACC_ALL.
3047                  */
3048                 if (is_access_allowed(error_code, spte)) {
3049                         ret = RET_PF_SPURIOUS;
3050                         break;
3051                 }
3052
3053                 new_spte = spte;
3054
3055                 if (is_access_track_spte(spte))
3056                         new_spte = restore_acc_track_spte(new_spte);
3057
3058                 /*
3059                  * Currently, to simplify the code, write-protection can
3060                  * be removed in the fast path only if the SPTE was
3061                  * write-protected for dirty-logging or access tracking.
3062                  */
3063                 if ((error_code & PFERR_WRITE_MASK) &&
3064                     spte_can_locklessly_be_made_writable(spte)) {
3065                         new_spte |= PT_WRITABLE_MASK;
3066
3067                         /*
3068                          * Do not fix write-permission on the large spte.  Since
3069                          * we only dirty the first page into the dirty-bitmap in
3070                          * fast_pf_fix_direct_spte(), other pages are missed
3071                          * if its slot has dirty logging enabled.
3072                          *
3073                          * Instead, we let the slow page fault path create a
3074                          * normal spte to fix the access.
3075                          *
3076                          * See the comments in kvm_arch_commit_memory_region().
3077                          */
3078                         if (sp->role.level > PG_LEVEL_4K)
3079                                 break;
3080                 }
3081
3082                 /* Verify that the fault can be handled in the fast path */
3083                 if (new_spte == spte ||
3084                     !is_access_allowed(error_code, new_spte))
3085                         break;
3086
3087                 /*
3088                  * Currently, fast page fault only works for direct mapping
3089                  * since the gfn is not stable for indirect shadow page. See
3090                  * Documentation/virt/kvm/locking.rst to get more detail.
3091                  */
3092                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3093                                             new_spte)) {
3094                         ret = RET_PF_FIXED;
3095                         break;
3096                 }
3097
3098                 if (++retry_count > 4) {
3099                         printk_once(KERN_WARNING
3100                                 "kvm: Fast #PF retrying more than 4 times.\n");
3101                         break;
3102                 }
3103
3104         } while (true);
3105
3106         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3107                               spte, ret);
3108         walk_shadow_page_lockless_end(vcpu);
3109
3110         return ret;
3111 }
3112
3113 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3114                                struct list_head *invalid_list)
3115 {
3116         struct kvm_mmu_page *sp;
3117
3118         if (!VALID_PAGE(*root_hpa))
3119                 return;
3120
3121         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3122
3123         if (is_tdp_mmu_page(sp))
3124                 kvm_tdp_mmu_put_root(kvm, sp, false);
3125         else if (!--sp->root_count && sp->role.invalid)
3126                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3127
3128         *root_hpa = INVALID_PAGE;
3129 }
3130
3131 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3132 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3133                         ulong roots_to_free)
3134 {
3135         struct kvm *kvm = vcpu->kvm;
3136         int i;
3137         LIST_HEAD(invalid_list);
3138         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3139
3140         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3141
3142         /* Before acquiring the MMU lock, see if we need to do any real work. */
3143         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3144                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3145                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3146                             VALID_PAGE(mmu->prev_roots[i].hpa))
3147                                 break;
3148
3149                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3150                         return;
3151         }
3152
3153         write_lock(&kvm->mmu_lock);
3154
3155         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3156                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3157                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3158                                            &invalid_list);
3159
3160         if (free_active_root) {
3161                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3162                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3163                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3164                 } else if (mmu->pae_root) {
3165                         for (i = 0; i < 4; ++i) {
3166                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3167                                         continue;
3168
3169                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3170                                                    &invalid_list);
3171                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3172                         }
3173                 }
3174                 mmu->root_hpa = INVALID_PAGE;
3175                 mmu->root_pgd = 0;
3176         }
3177
3178         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3179         write_unlock(&kvm->mmu_lock);
3180 }
3181 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3182
3183 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3184 {
3185         int ret = 0;
3186
3187         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3188                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3189                 ret = 1;
3190         }
3191
3192         return ret;
3193 }
3194
3195 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3196                             u8 level, bool direct)
3197 {
3198         struct kvm_mmu_page *sp;
3199
3200         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3201         ++sp->root_count;
3202
3203         return __pa(sp->spt);
3204 }
3205
3206 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3207 {
3208         struct kvm_mmu *mmu = vcpu->arch.mmu;
3209         u8 shadow_root_level = mmu->shadow_root_level;
3210         hpa_t root;
3211         unsigned i;
3212         int r;
3213
3214         write_lock(&vcpu->kvm->mmu_lock);
3215         r = make_mmu_pages_available(vcpu);
3216         if (r < 0)
3217                 goto out_unlock;
3218
3219         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3220                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3221                 mmu->root_hpa = root;
3222         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3223                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3224                 mmu->root_hpa = root;
3225         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3226                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3227                         r = -EIO;
3228                         goto out_unlock;
3229                 }
3230
3231                 for (i = 0; i < 4; ++i) {
3232                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3233
3234                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3235                                               i << 30, PT32_ROOT_LEVEL, true);
3236                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3237                                            shadow_me_mask;
3238                 }
3239                 mmu->root_hpa = __pa(mmu->pae_root);
3240         } else {
3241                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3242                 r = -EIO;
3243                 goto out_unlock;
3244         }
3245
3246         /* root_pgd is ignored for direct MMUs. */
3247         mmu->root_pgd = 0;
3248 out_unlock:
3249         write_unlock(&vcpu->kvm->mmu_lock);
3250         return r;
3251 }
3252
3253 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3254 {
3255         struct kvm_mmu *mmu = vcpu->arch.mmu;
3256         u64 pdptrs[4], pm_mask;
3257         gfn_t root_gfn, root_pgd;
3258         hpa_t root;
3259         unsigned i;
3260         int r;
3261
3262         root_pgd = mmu->get_guest_pgd(vcpu);
3263         root_gfn = root_pgd >> PAGE_SHIFT;
3264
3265         if (mmu_check_root(vcpu, root_gfn))
3266                 return 1;
3267
3268         /*
3269          * On SVM, reading PDPTRs might access guest memory, which might fault
3270          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3271          */
3272         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3273                 for (i = 0; i < 4; ++i) {
3274                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3275                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3276                                 continue;
3277
3278                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3279                                 return 1;
3280                 }
3281         }
3282
3283         write_lock(&vcpu->kvm->mmu_lock);
3284         r = make_mmu_pages_available(vcpu);
3285         if (r < 0)
3286                 goto out_unlock;
3287
3288         /*
3289          * Do we shadow a long mode page table? If so we need to
3290          * write-protect the guests page table root.
3291          */
3292         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3293                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3294                                       mmu->shadow_root_level, false);
3295                 mmu->root_hpa = root;
3296                 goto set_root_pgd;
3297         }
3298
3299         if (WARN_ON_ONCE(!mmu->pae_root)) {
3300                 r = -EIO;
3301                 goto out_unlock;
3302         }
3303
3304         /*
3305          * We shadow a 32 bit page table. This may be a legacy 2-level
3306          * or a PAE 3-level page table. In either case we need to be aware that
3307          * the shadow page table may be a PAE or a long mode page table.
3308          */
3309         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3310         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3311                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3312
3313                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3314                         r = -EIO;
3315                         goto out_unlock;
3316                 }
3317
3318                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3319         }
3320
3321         for (i = 0; i < 4; ++i) {
3322                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3323
3324                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3325                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3326                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3327                                 continue;
3328                         }
3329                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3330                 }
3331
3332                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3333                                       PT32_ROOT_LEVEL, false);
3334                 mmu->pae_root[i] = root | pm_mask;
3335         }
3336
3337         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3338                 mmu->root_hpa = __pa(mmu->pml4_root);
3339         else
3340                 mmu->root_hpa = __pa(mmu->pae_root);
3341
3342 set_root_pgd:
3343         mmu->root_pgd = root_pgd;
3344 out_unlock:
3345         write_unlock(&vcpu->kvm->mmu_lock);
3346
3347         return 0;
3348 }
3349
3350 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3351 {
3352         struct kvm_mmu *mmu = vcpu->arch.mmu;
3353         u64 *pml4_root, *pae_root;
3354
3355         /*
3356          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3357          * tables are allocated and initialized at root creation as there is no
3358          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3359          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3360          */
3361         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3362             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3363                 return 0;
3364
3365         /*
3366          * This mess only works with 4-level paging and needs to be updated to
3367          * work with 5-level paging.
3368          */
3369         if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3370                 return -EIO;
3371
3372         if (mmu->pae_root && mmu->pml4_root)
3373                 return 0;
3374
3375         /*
3376          * The special roots should always be allocated in concert.  Yell and
3377          * bail if KVM ends up in a state where only one of the roots is valid.
3378          */
3379         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3380                 return -EIO;
3381
3382         /*
3383          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3384          * doesn't need to be decrypted.
3385          */
3386         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3387         if (!pae_root)
3388                 return -ENOMEM;
3389
3390         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3391         if (!pml4_root) {
3392                 free_page((unsigned long)pae_root);
3393                 return -ENOMEM;
3394         }
3395
3396         mmu->pae_root = pae_root;
3397         mmu->pml4_root = pml4_root;
3398
3399         return 0;
3400 }
3401
3402 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3403 {
3404         int i;
3405         struct kvm_mmu_page *sp;
3406
3407         if (vcpu->arch.mmu->direct_map)
3408                 return;
3409
3410         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3411                 return;
3412
3413         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3414
3415         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3416                 hpa_t root = vcpu->arch.mmu->root_hpa;
3417                 sp = to_shadow_page(root);
3418
3419                 /*
3420                  * Even if another CPU was marking the SP as unsync-ed
3421                  * simultaneously, any guest page table changes are not
3422                  * guaranteed to be visible anyway until this VCPU issues a TLB
3423                  * flush strictly after those changes are made. We only need to
3424                  * ensure that the other CPU sets these flags before any actual
3425                  * changes to the page tables are made. The comments in
3426                  * mmu_need_write_protect() describe what could go wrong if this
3427                  * requirement isn't satisfied.
3428                  */
3429                 if (!smp_load_acquire(&sp->unsync) &&
3430                     !smp_load_acquire(&sp->unsync_children))
3431                         return;
3432
3433                 write_lock(&vcpu->kvm->mmu_lock);
3434                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3435
3436                 mmu_sync_children(vcpu, sp);
3437
3438                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3439                 write_unlock(&vcpu->kvm->mmu_lock);
3440                 return;
3441         }
3442
3443         write_lock(&vcpu->kvm->mmu_lock);
3444         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3445
3446         for (i = 0; i < 4; ++i) {
3447                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3448
3449                 if (IS_VALID_PAE_ROOT(root)) {
3450                         root &= PT64_BASE_ADDR_MASK;
3451                         sp = to_shadow_page(root);
3452                         mmu_sync_children(vcpu, sp);
3453                 }
3454         }
3455
3456         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3457         write_unlock(&vcpu->kvm->mmu_lock);
3458 }
3459
3460 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3461                                   u32 access, struct x86_exception *exception)
3462 {
3463         if (exception)
3464                 exception->error_code = 0;
3465         return vaddr;
3466 }
3467
3468 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3469                                          u32 access,
3470                                          struct x86_exception *exception)
3471 {
3472         if (exception)
3473                 exception->error_code = 0;
3474         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3475 }
3476
3477 static bool
3478 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3479 {
3480         int bit7 = (pte >> 7) & 1;
3481
3482         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3483 }
3484
3485 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3486 {
3487         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3488 }
3489
3490 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3491 {
3492         /*
3493          * A nested guest cannot use the MMIO cache if it is using nested
3494          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3495          */
3496         if (mmu_is_nested(vcpu))
3497                 return false;
3498
3499         if (direct)
3500                 return vcpu_match_mmio_gpa(vcpu, addr);
3501
3502         return vcpu_match_mmio_gva(vcpu, addr);
3503 }
3504
3505 /*
3506  * Return the level of the lowest level SPTE added to sptes.
3507  * That SPTE may be non-present.
3508  */
3509 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3510 {
3511         struct kvm_shadow_walk_iterator iterator;
3512         int leaf = -1;
3513         u64 spte;
3514
3515         walk_shadow_page_lockless_begin(vcpu);
3516
3517         for (shadow_walk_init(&iterator, vcpu, addr),
3518              *root_level = iterator.level;
3519              shadow_walk_okay(&iterator);
3520              __shadow_walk_next(&iterator, spte)) {
3521                 leaf = iterator.level;
3522                 spte = mmu_spte_get_lockless(iterator.sptep);
3523
3524                 sptes[leaf] = spte;
3525
3526                 if (!is_shadow_present_pte(spte))
3527                         break;
3528         }
3529
3530         walk_shadow_page_lockless_end(vcpu);
3531
3532         return leaf;
3533 }
3534
3535 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3536 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3537 {
3538         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3539         struct rsvd_bits_validate *rsvd_check;
3540         int root, leaf, level;
3541         bool reserved = false;
3542
3543         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3544                 *sptep = 0ull;
3545                 return reserved;
3546         }
3547
3548         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3549                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3550         else
3551                 leaf = get_walk(vcpu, addr, sptes, &root);
3552
3553         if (unlikely(leaf < 0)) {
3554                 *sptep = 0ull;
3555                 return reserved;
3556         }
3557
3558         *sptep = sptes[leaf];
3559
3560         /*
3561          * Skip reserved bits checks on the terminal leaf if it's not a valid
3562          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3563          * design, always have reserved bits set.  The purpose of the checks is
3564          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3565          */
3566         if (!is_shadow_present_pte(sptes[leaf]))
3567                 leaf++;
3568
3569         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3570
3571         for (level = root; level >= leaf; level--)
3572                 /*
3573                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3574                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3575                  * adding a Jcc in the loop.
3576                  */
3577                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3578                             __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3579
3580         if (reserved) {
3581                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3582                        __func__, addr);
3583                 for (level = root; level >= leaf; level--)
3584                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3585                                sptes[level], level,
3586                                rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
3587         }
3588
3589         return reserved;
3590 }
3591
3592 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3593 {
3594         u64 spte;
3595         bool reserved;
3596
3597         if (mmio_info_in_cache(vcpu, addr, direct))
3598                 return RET_PF_EMULATE;
3599
3600         reserved = get_mmio_spte(vcpu, addr, &spte);
3601         if (WARN_ON(reserved))
3602                 return -EINVAL;
3603
3604         if (is_mmio_spte(spte)) {
3605                 gfn_t gfn = get_mmio_spte_gfn(spte);
3606                 unsigned int access = get_mmio_spte_access(spte);
3607
3608                 if (!check_mmio_spte(vcpu, spte))
3609                         return RET_PF_INVALID;
3610
3611                 if (direct)
3612                         addr = 0;
3613
3614                 trace_handle_mmio_page_fault(addr, gfn, access);
3615                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3616                 return RET_PF_EMULATE;
3617         }
3618
3619         /*
3620          * If the page table is zapped by other cpus, let CPU fault again on
3621          * the address.
3622          */
3623         return RET_PF_RETRY;
3624 }
3625
3626 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3627                                          u32 error_code, gfn_t gfn)
3628 {
3629         if (unlikely(error_code & PFERR_RSVD_MASK))
3630                 return false;
3631
3632         if (!(error_code & PFERR_PRESENT_MASK) ||
3633               !(error_code & PFERR_WRITE_MASK))
3634                 return false;
3635
3636         /*
3637          * guest is writing the page which is write tracked which can
3638          * not be fixed by page fault handler.
3639          */
3640         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3641                 return true;
3642
3643         return false;
3644 }
3645
3646 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3647 {
3648         struct kvm_shadow_walk_iterator iterator;
3649         u64 spte;
3650
3651         walk_shadow_page_lockless_begin(vcpu);
3652         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3653                 clear_sp_write_flooding_count(iterator.sptep);
3654                 if (!is_shadow_present_pte(spte))
3655                         break;
3656         }
3657         walk_shadow_page_lockless_end(vcpu);
3658 }
3659
3660 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3661                                     gfn_t gfn)
3662 {
3663         struct kvm_arch_async_pf arch;
3664
3665         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3666         arch.gfn = gfn;
3667         arch.direct_map = vcpu->arch.mmu->direct_map;
3668         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3669
3670         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3671                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3672 }
3673
3674 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3675                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3676                          bool write, bool *writable)
3677 {
3678         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3679         bool async;
3680
3681         /*
3682          * Retry the page fault if the gfn hit a memslot that is being deleted
3683          * or moved.  This ensures any existing SPTEs for the old memslot will
3684          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3685          */
3686         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3687                 return true;
3688
3689         /* Don't expose private memslots to L2. */
3690         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3691                 *pfn = KVM_PFN_NOSLOT;
3692                 *writable = false;
3693                 return false;
3694         }
3695
3696         async = false;
3697         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3698                                     write, writable, hva);
3699         if (!async)
3700                 return false; /* *pfn has correct page already */
3701
3702         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3703                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3704                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3705                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3706                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3707                         return true;
3708                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3709                         return true;
3710         }
3711
3712         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3713                                     write, writable, hva);
3714         return false;
3715 }
3716
3717 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3718                              bool prefault, int max_level, bool is_tdp)
3719 {
3720         bool write = error_code & PFERR_WRITE_MASK;
3721         bool map_writable;
3722
3723         gfn_t gfn = gpa >> PAGE_SHIFT;
3724         unsigned long mmu_seq;
3725         kvm_pfn_t pfn;
3726         hva_t hva;
3727         int r;
3728
3729         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3730                 return RET_PF_EMULATE;
3731
3732         if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3733                 r = fast_page_fault(vcpu, gpa, error_code);
3734                 if (r != RET_PF_INVALID)
3735                         return r;
3736         }
3737
3738         r = mmu_topup_memory_caches(vcpu, false);
3739         if (r)
3740                 return r;
3741
3742         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3743         smp_rmb();
3744
3745         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3746                          write, &map_writable))
3747                 return RET_PF_RETRY;
3748
3749         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3750                 return r;
3751
3752         r = RET_PF_RETRY;
3753
3754         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3755                 read_lock(&vcpu->kvm->mmu_lock);
3756         else
3757                 write_lock(&vcpu->kvm->mmu_lock);
3758
3759         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3760                 goto out_unlock;
3761         r = make_mmu_pages_available(vcpu);
3762         if (r)
3763                 goto out_unlock;
3764
3765         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3766                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3767                                     pfn, prefault);
3768         else
3769                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3770                                  prefault, is_tdp);
3771
3772 out_unlock:
3773         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3774                 read_unlock(&vcpu->kvm->mmu_lock);
3775         else
3776                 write_unlock(&vcpu->kvm->mmu_lock);
3777         kvm_release_pfn_clean(pfn);
3778         return r;
3779 }
3780
3781 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3782                                 u32 error_code, bool prefault)
3783 {
3784         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3785
3786         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3787         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3788                                  PG_LEVEL_2M, false);
3789 }
3790
3791 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3792                                 u64 fault_address, char *insn, int insn_len)
3793 {
3794         int r = 1;
3795         u32 flags = vcpu->arch.apf.host_apf_flags;
3796
3797 #ifndef CONFIG_X86_64
3798         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3799         if (WARN_ON_ONCE(fault_address >> 32))
3800                 return -EFAULT;
3801 #endif
3802
3803         vcpu->arch.l1tf_flush_l1d = true;
3804         if (!flags) {
3805                 trace_kvm_page_fault(fault_address, error_code);
3806
3807                 if (kvm_event_needs_reinjection(vcpu))
3808                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3809                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3810                                 insn_len);
3811         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3812                 vcpu->arch.apf.host_apf_flags = 0;
3813                 local_irq_disable();
3814                 kvm_async_pf_task_wait_schedule(fault_address);
3815                 local_irq_enable();
3816         } else {
3817                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3818         }
3819
3820         return r;
3821 }
3822 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3823
3824 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3825                        bool prefault)
3826 {
3827         int max_level;
3828
3829         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3830              max_level > PG_LEVEL_4K;
3831              max_level--) {
3832                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3833                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3834
3835                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3836                         break;
3837         }
3838
3839         return direct_page_fault(vcpu, gpa, error_code, prefault,
3840                                  max_level, true);
3841 }
3842
3843 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3844                                    struct kvm_mmu *context)
3845 {
3846         context->page_fault = nonpaging_page_fault;
3847         context->gva_to_gpa = nonpaging_gva_to_gpa;
3848         context->sync_page = nonpaging_sync_page;
3849         context->invlpg = NULL;
3850         context->root_level = 0;
3851         context->shadow_root_level = PT32E_ROOT_LEVEL;
3852         context->direct_map = true;
3853         context->nx = false;
3854 }
3855
3856 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3857                                   union kvm_mmu_page_role role)
3858 {
3859         return (role.direct || pgd == root->pgd) &&
3860                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3861                role.word == to_shadow_page(root->hpa)->role.word;
3862 }
3863
3864 /*
3865  * Find out if a previously cached root matching the new pgd/role is available.
3866  * The current root is also inserted into the cache.
3867  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3868  * returned.
3869  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3870  * false is returned. This root should now be freed by the caller.
3871  */
3872 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3873                                   union kvm_mmu_page_role new_role)
3874 {
3875         uint i;
3876         struct kvm_mmu_root_info root;
3877         struct kvm_mmu *mmu = vcpu->arch.mmu;
3878
3879         root.pgd = mmu->root_pgd;
3880         root.hpa = mmu->root_hpa;
3881
3882         if (is_root_usable(&root, new_pgd, new_role))
3883                 return true;
3884
3885         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3886                 swap(root, mmu->prev_roots[i]);
3887
3888                 if (is_root_usable(&root, new_pgd, new_role))
3889                         break;
3890         }
3891
3892         mmu->root_hpa = root.hpa;
3893         mmu->root_pgd = root.pgd;
3894
3895         return i < KVM_MMU_NUM_PREV_ROOTS;
3896 }
3897
3898 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3899                             union kvm_mmu_page_role new_role)
3900 {
3901         struct kvm_mmu *mmu = vcpu->arch.mmu;
3902
3903         /*
3904          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3905          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3906          * later if necessary.
3907          */
3908         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3909             mmu->root_level >= PT64_ROOT_4LEVEL)
3910                 return cached_root_available(vcpu, new_pgd, new_role);
3911
3912         return false;
3913 }
3914
3915 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3916                               union kvm_mmu_page_role new_role,
3917                               bool skip_tlb_flush, bool skip_mmu_sync)
3918 {
3919         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3920                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3921                 return;
3922         }
3923
3924         /*
3925          * It's possible that the cached previous root page is obsolete because
3926          * of a change in the MMU generation number. However, changing the
3927          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3928          * free the root set here and allocate a new one.
3929          */
3930         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3931
3932         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3933                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3934         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3935                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3936
3937         /*
3938          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3939          * switching to a new CR3, that GVA->GPA mapping may no longer be
3940          * valid. So clear any cached MMIO info even when we don't need to sync
3941          * the shadow page tables.
3942          */
3943         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3944
3945         /*
3946          * If this is a direct root page, it doesn't have a write flooding
3947          * count. Otherwise, clear the write flooding count.
3948          */
3949         if (!new_role.direct)
3950                 __clear_sp_write_flooding_count(
3951                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
3952 }
3953
3954 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3955                      bool skip_mmu_sync)
3956 {
3957         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3958                           skip_tlb_flush, skip_mmu_sync);
3959 }
3960 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3961
3962 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3963 {
3964         return kvm_read_cr3(vcpu);
3965 }
3966
3967 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3968                            unsigned int access, int *nr_present)
3969 {
3970         if (unlikely(is_mmio_spte(*sptep))) {
3971                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3972                         mmu_spte_clear_no_track(sptep);
3973                         return true;
3974                 }
3975
3976                 (*nr_present)++;
3977                 mark_mmio_spte(vcpu, sptep, gfn, access);
3978                 return true;
3979         }
3980
3981         return false;
3982 }
3983
3984 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3985                                 unsigned level, unsigned gpte)
3986 {
3987         /*
3988          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3989          * If it is clear, there are no large pages at this level, so clear
3990          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3991          */
3992         gpte &= level - mmu->last_nonleaf_level;
3993
3994         /*
3995          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3996          * iff level <= PG_LEVEL_4K, which for our purpose means
3997          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3998          */
3999         gpte |= level - PG_LEVEL_4K - 1;
4000
4001         return gpte & PT_PAGE_SIZE_MASK;
4002 }
4003
4004 #define PTTYPE_EPT 18 /* arbitrary */
4005 #define PTTYPE PTTYPE_EPT
4006 #include "paging_tmpl.h"
4007 #undef PTTYPE
4008
4009 #define PTTYPE 64
4010 #include "paging_tmpl.h"
4011 #undef PTTYPE
4012
4013 #define PTTYPE 32
4014 #include "paging_tmpl.h"
4015 #undef PTTYPE
4016
4017 static void
4018 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4019                         struct rsvd_bits_validate *rsvd_check,
4020                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4021                         bool pse, bool amd)
4022 {
4023         u64 gbpages_bit_rsvd = 0;
4024         u64 nonleaf_bit8_rsvd = 0;
4025         u64 high_bits_rsvd;
4026
4027         rsvd_check->bad_mt_xwr = 0;
4028
4029         if (!gbpages)
4030                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4031
4032         if (level == PT32E_ROOT_LEVEL)
4033                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4034         else
4035                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4036
4037         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4038         if (!nx)
4039                 high_bits_rsvd |= rsvd_bits(63, 63);
4040
4041         /*
4042          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4043          * leaf entries) on AMD CPUs only.
4044          */
4045         if (amd)
4046                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4047
4048         switch (level) {
4049         case PT32_ROOT_LEVEL:
4050                 /* no rsvd bits for 2 level 4K page table entries */
4051                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4052                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4053                 rsvd_check->rsvd_bits_mask[1][0] =
4054                         rsvd_check->rsvd_bits_mask[0][0];
4055
4056                 if (!pse) {
4057                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4058                         break;
4059                 }
4060
4061                 if (is_cpuid_PSE36())
4062                         /* 36bits PSE 4MB page */
4063                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4064                 else
4065                         /* 32 bits PSE 4MB page */
4066                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4067                 break;
4068         case PT32E_ROOT_LEVEL:
4069                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4070                                                    high_bits_rsvd |
4071                                                    rsvd_bits(5, 8) |
4072                                                    rsvd_bits(1, 2);     /* PDPTE */
4073                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4074                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4075                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4076                                                    rsvd_bits(13, 20);   /* large page */
4077                 rsvd_check->rsvd_bits_mask[1][0] =
4078                         rsvd_check->rsvd_bits_mask[0][0];
4079                 break;
4080         case PT64_ROOT_5LEVEL:
4081                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4082                                                    nonleaf_bit8_rsvd |
4083                                                    rsvd_bits(7, 7);
4084                 rsvd_check->rsvd_bits_mask[1][4] =
4085                         rsvd_check->rsvd_bits_mask[0][4];
4086                 fallthrough;
4087         case PT64_ROOT_4LEVEL:
4088                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4089                                                    nonleaf_bit8_rsvd |
4090                                                    rsvd_bits(7, 7);
4091                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4092                                                    gbpages_bit_rsvd;
4093                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4094                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4095                 rsvd_check->rsvd_bits_mask[1][3] =
4096                         rsvd_check->rsvd_bits_mask[0][3];
4097                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4098                                                    gbpages_bit_rsvd |
4099                                                    rsvd_bits(13, 29);
4100                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4101                                                    rsvd_bits(13, 20); /* large page */
4102                 rsvd_check->rsvd_bits_mask[1][0] =
4103                         rsvd_check->rsvd_bits_mask[0][0];
4104                 break;
4105         }
4106 }
4107
4108 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4109                                   struct kvm_mmu *context)
4110 {
4111         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4112                                 vcpu->arch.reserved_gpa_bits,
4113                                 context->root_level, context->nx,
4114                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4115                                 is_pse(vcpu),
4116                                 guest_cpuid_is_amd_or_hygon(vcpu));
4117 }
4118
4119 static void
4120 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4121                             u64 pa_bits_rsvd, bool execonly)
4122 {
4123         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4124         u64 bad_mt_xwr;
4125
4126         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4127         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4128         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4129         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4130         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4131
4132         /* large page */
4133         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4134         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4135         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4136         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4137         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4138
4139         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4140         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4141         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4142         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4143         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4144         if (!execonly) {
4145                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4146                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4147         }
4148         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4149 }
4150
4151 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4152                 struct kvm_mmu *context, bool execonly)
4153 {
4154         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4155                                     vcpu->arch.reserved_gpa_bits, execonly);
4156 }
4157
4158 static inline u64 reserved_hpa_bits(void)
4159 {
4160         return rsvd_bits(shadow_phys_bits, 63);
4161 }
4162
4163 /*
4164  * the page table on host is the shadow page table for the page
4165  * table in guest or amd nested guest, its mmu features completely
4166  * follow the features in guest.
4167  */
4168 void
4169 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4170 {
4171         bool uses_nx = context->nx ||
4172                 context->mmu_role.base.smep_andnot_wp;
4173         struct rsvd_bits_validate *shadow_zero_check;
4174         int i;
4175
4176         /*
4177          * Passing "true" to the last argument is okay; it adds a check
4178          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4179          */
4180         shadow_zero_check = &context->shadow_zero_check;
4181         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4182                                 reserved_hpa_bits(),
4183                                 context->shadow_root_level, uses_nx,
4184                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4185                                 is_pse(vcpu), true);
4186
4187         if (!shadow_me_mask)
4188                 return;
4189
4190         for (i = context->shadow_root_level; --i >= 0;) {
4191                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4192                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4193         }
4194
4195 }
4196 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4197
4198 static inline bool boot_cpu_is_amd(void)
4199 {
4200         WARN_ON_ONCE(!tdp_enabled);
4201         return shadow_x_mask == 0;
4202 }
4203
4204 /*
4205  * the direct page table on host, use as much mmu features as
4206  * possible, however, kvm currently does not do execution-protection.
4207  */
4208 static void
4209 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4210                                 struct kvm_mmu *context)
4211 {
4212         struct rsvd_bits_validate *shadow_zero_check;
4213         int i;
4214
4215         shadow_zero_check = &context->shadow_zero_check;
4216
4217         if (boot_cpu_is_amd())
4218                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4219                                         reserved_hpa_bits(),
4220                                         context->shadow_root_level, false,
4221                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4222                                         true, true);
4223         else
4224                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4225                                             reserved_hpa_bits(), false);
4226
4227         if (!shadow_me_mask)
4228                 return;
4229
4230         for (i = context->shadow_root_level; --i >= 0;) {
4231                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4232                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4233         }
4234 }
4235
4236 /*
4237  * as the comments in reset_shadow_zero_bits_mask() except it
4238  * is the shadow page table for intel nested guest.
4239  */
4240 static void
4241 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4242                                 struct kvm_mmu *context, bool execonly)
4243 {
4244         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4245                                     reserved_hpa_bits(), execonly);
4246 }
4247
4248 #define BYTE_MASK(access) \
4249         ((1 & (access) ? 2 : 0) | \
4250          (2 & (access) ? 4 : 0) | \
4251          (3 & (access) ? 8 : 0) | \
4252          (4 & (access) ? 16 : 0) | \
4253          (5 & (access) ? 32 : 0) | \
4254          (6 & (access) ? 64 : 0) | \
4255          (7 & (access) ? 128 : 0))
4256
4257
4258 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4259                                       struct kvm_mmu *mmu, bool ept)
4260 {
4261         unsigned byte;
4262
4263         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4264         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4265         const u8 u = BYTE_MASK(ACC_USER_MASK);
4266
4267         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4268         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4269         bool cr0_wp = is_write_protection(vcpu);
4270
4271         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4272                 unsigned pfec = byte << 1;
4273
4274                 /*
4275                  * Each "*f" variable has a 1 bit for each UWX value
4276                  * that causes a fault with the given PFEC.
4277                  */
4278
4279                 /* Faults from writes to non-writable pages */
4280                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4281                 /* Faults from user mode accesses to supervisor pages */
4282                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4283                 /* Faults from fetches of non-executable pages*/
4284                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4285                 /* Faults from kernel mode fetches of user pages */
4286                 u8 smepf = 0;
4287                 /* Faults from kernel mode accesses of user pages */
4288                 u8 smapf = 0;
4289
4290                 if (!ept) {
4291                         /* Faults from kernel mode accesses to user pages */
4292                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4293
4294                         /* Not really needed: !nx will cause pte.nx to fault */
4295                         if (!mmu->nx)
4296                                 ff = 0;
4297
4298                         /* Allow supervisor writes if !cr0.wp */
4299                         if (!cr0_wp)
4300                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4301
4302                         /* Disallow supervisor fetches of user code if cr4.smep */
4303                         if (cr4_smep)
4304                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4305
4306                         /*
4307                          * SMAP:kernel-mode data accesses from user-mode
4308                          * mappings should fault. A fault is considered
4309                          * as a SMAP violation if all of the following
4310                          * conditions are true:
4311                          *   - X86_CR4_SMAP is set in CR4
4312                          *   - A user page is accessed
4313                          *   - The access is not a fetch
4314                          *   - Page fault in kernel mode
4315                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4316                          *
4317                          * Here, we cover the first three conditions.
4318                          * The fourth is computed dynamically in permission_fault();
4319                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4320                          * *not* subject to SMAP restrictions.
4321                          */
4322                         if (cr4_smap)
4323                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4324                 }
4325
4326                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4327         }
4328 }
4329
4330 /*
4331 * PKU is an additional mechanism by which the paging controls access to
4332 * user-mode addresses based on the value in the PKRU register.  Protection
4333 * key violations are reported through a bit in the page fault error code.
4334 * Unlike other bits of the error code, the PK bit is not known at the
4335 * call site of e.g. gva_to_gpa; it must be computed directly in
4336 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4337 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4338 *
4339 * In particular the following conditions come from the error code, the
4340 * page tables and the machine state:
4341 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4342 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4343 * - PK is always zero if U=0 in the page tables
4344 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4345 *
4346 * The PKRU bitmask caches the result of these four conditions.  The error
4347 * code (minus the P bit) and the page table's U bit form an index into the
4348 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4349 * with the two bits of the PKRU register corresponding to the protection key.
4350 * For the first three conditions above the bits will be 00, thus masking
4351 * away both AD and WD.  For all reads or if the last condition holds, WD
4352 * only will be masked away.
4353 */
4354 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4355                                 bool ept)
4356 {
4357         unsigned bit;
4358         bool wp;
4359
4360         if (ept) {
4361                 mmu->pkru_mask = 0;
4362                 return;
4363         }
4364
4365         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4366         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4367                 mmu->pkru_mask = 0;
4368                 return;
4369         }
4370
4371         wp = is_write_protection(vcpu);
4372
4373         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4374                 unsigned pfec, pkey_bits;
4375                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4376
4377                 pfec = bit << 1;
4378                 ff = pfec & PFERR_FETCH_MASK;
4379                 uf = pfec & PFERR_USER_MASK;
4380                 wf = pfec & PFERR_WRITE_MASK;
4381
4382                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4383                 pte_user = pfec & PFERR_RSVD_MASK;
4384
4385                 /*
4386                  * Only need to check the access which is not an
4387                  * instruction fetch and is to a user page.
4388                  */
4389                 check_pkey = (!ff && pte_user);
4390                 /*
4391                  * write access is controlled by PKRU if it is a
4392                  * user access or CR0.WP = 1.
4393                  */
4394                 check_write = check_pkey && wf && (uf || wp);
4395
4396                 /* PKRU.AD stops both read and write access. */
4397                 pkey_bits = !!check_pkey;
4398                 /* PKRU.WD stops write access. */
4399                 pkey_bits |= (!!check_write) << 1;
4400
4401                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4402         }
4403 }
4404
4405 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4406 {
4407         unsigned root_level = mmu->root_level;
4408
4409         mmu->last_nonleaf_level = root_level;
4410         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4411                 mmu->last_nonleaf_level++;
4412 }
4413
4414 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4415                                          struct kvm_mmu *context,
4416                                          int level)
4417 {
4418         context->nx = is_nx(vcpu);
4419         context->root_level = level;
4420
4421         reset_rsvds_bits_mask(vcpu, context);
4422         update_permission_bitmask(vcpu, context, false);
4423         update_pkru_bitmask(vcpu, context, false);
4424         update_last_nonleaf_level(vcpu, context);
4425
4426         MMU_WARN_ON(!is_pae(vcpu));
4427         context->page_fault = paging64_page_fault;
4428         context->gva_to_gpa = paging64_gva_to_gpa;
4429         context->sync_page = paging64_sync_page;
4430         context->invlpg = paging64_invlpg;
4431         context->shadow_root_level = level;
4432         context->direct_map = false;
4433 }
4434
4435 static void paging64_init_context(struct kvm_vcpu *vcpu,
4436                                   struct kvm_mmu *context)
4437 {
4438         int root_level = is_la57_mode(vcpu) ?
4439                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4440
4441         paging64_init_context_common(vcpu, context, root_level);
4442 }
4443
4444 static void paging32_init_context(struct kvm_vcpu *vcpu,
4445                                   struct kvm_mmu *context)
4446 {
4447         context->nx = false;
4448         context->root_level = PT32_ROOT_LEVEL;
4449
4450         reset_rsvds_bits_mask(vcpu, context);
4451         update_permission_bitmask(vcpu, context, false);
4452         update_pkru_bitmask(vcpu, context, false);
4453         update_last_nonleaf_level(vcpu, context);
4454
4455         context->page_fault = paging32_page_fault;
4456         context->gva_to_gpa = paging32_gva_to_gpa;
4457         context->sync_page = paging32_sync_page;
4458         context->invlpg = paging32_invlpg;
4459         context->shadow_root_level = PT32E_ROOT_LEVEL;
4460         context->direct_map = false;
4461 }
4462
4463 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4464                                    struct kvm_mmu *context)
4465 {
4466         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4467 }
4468
4469 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4470 {
4471         union kvm_mmu_extended_role ext = {0};
4472
4473         ext.cr0_pg = !!is_paging(vcpu);
4474         ext.cr4_pae = !!is_pae(vcpu);
4475         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4476         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4477         ext.cr4_pse = !!is_pse(vcpu);
4478         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4479         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4480
4481         ext.valid = 1;
4482
4483         return ext;
4484 }
4485
4486 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4487                                                    bool base_only)
4488 {
4489         union kvm_mmu_role role = {0};
4490
4491         role.base.access = ACC_ALL;
4492         role.base.nxe = !!is_nx(vcpu);
4493         role.base.cr0_wp = is_write_protection(vcpu);
4494         role.base.smm = is_smm(vcpu);
4495         role.base.guest_mode = is_guest_mode(vcpu);
4496
4497         if (base_only)
4498                 return role;
4499
4500         role.ext = kvm_calc_mmu_role_ext(vcpu);
4501
4502         return role;
4503 }
4504
4505 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4506 {
4507         /* Use 5-level TDP if and only if it's useful/necessary. */
4508         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4509                 return 4;
4510
4511         return max_tdp_level;
4512 }
4513
4514 static union kvm_mmu_role
4515 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4516 {
4517         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4518
4519         role.base.ad_disabled = (shadow_accessed_mask == 0);
4520         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4521         role.base.direct = true;
4522         role.base.gpte_is_8_bytes = true;
4523
4524         return role;
4525 }
4526
4527 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4528 {
4529         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4530         union kvm_mmu_role new_role =
4531                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4532
4533         if (new_role.as_u64 == context->mmu_role.as_u64)
4534                 return;
4535
4536         context->mmu_role.as_u64 = new_role.as_u64;
4537         context->page_fault = kvm_tdp_page_fault;
4538         context->sync_page = nonpaging_sync_page;
4539         context->invlpg = NULL;
4540         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4541         context->direct_map = true;
4542         context->get_guest_pgd = get_cr3;
4543         context->get_pdptr = kvm_pdptr_read;
4544         context->inject_page_fault = kvm_inject_page_fault;
4545
4546         if (!is_paging(vcpu)) {
4547                 context->nx = false;
4548                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4549                 context->root_level = 0;
4550         } else if (is_long_mode(vcpu)) {
4551                 context->nx = is_nx(vcpu);
4552                 context->root_level = is_la57_mode(vcpu) ?
4553                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4554                 reset_rsvds_bits_mask(vcpu, context);
4555                 context->gva_to_gpa = paging64_gva_to_gpa;
4556         } else if (is_pae(vcpu)) {
4557                 context->nx = is_nx(vcpu);
4558                 context->root_level = PT32E_ROOT_LEVEL;
4559                 reset_rsvds_bits_mask(vcpu, context);
4560                 context->gva_to_gpa = paging64_gva_to_gpa;
4561         } else {
4562                 context->nx = false;
4563                 context->root_level = PT32_ROOT_LEVEL;
4564                 reset_rsvds_bits_mask(vcpu, context);
4565                 context->gva_to_gpa = paging32_gva_to_gpa;
4566         }
4567
4568         update_permission_bitmask(vcpu, context, false);
4569         update_pkru_bitmask(vcpu, context, false);
4570         update_last_nonleaf_level(vcpu, context);
4571         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4572 }
4573
4574 static union kvm_mmu_role
4575 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4576 {
4577         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4578
4579         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4580                 !is_write_protection(vcpu);
4581         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4582                 !is_write_protection(vcpu);
4583         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4584
4585         return role;
4586 }
4587
4588 static union kvm_mmu_role
4589 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4590 {
4591         union kvm_mmu_role role =
4592                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4593
4594         role.base.direct = !is_paging(vcpu);
4595
4596         if (!is_long_mode(vcpu))
4597                 role.base.level = PT32E_ROOT_LEVEL;
4598         else if (is_la57_mode(vcpu))
4599                 role.base.level = PT64_ROOT_5LEVEL;
4600         else
4601                 role.base.level = PT64_ROOT_4LEVEL;
4602
4603         return role;
4604 }
4605
4606 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4607                                     u32 cr0, u32 cr4, u32 efer,
4608                                     union kvm_mmu_role new_role)
4609 {
4610         if (!(cr0 & X86_CR0_PG))
4611                 nonpaging_init_context(vcpu, context);
4612         else if (efer & EFER_LMA)
4613                 paging64_init_context(vcpu, context);
4614         else if (cr4 & X86_CR4_PAE)
4615                 paging32E_init_context(vcpu, context);
4616         else
4617                 paging32_init_context(vcpu, context);
4618
4619         context->mmu_role.as_u64 = new_role.as_u64;
4620         reset_shadow_zero_bits_mask(vcpu, context);
4621 }
4622
4623 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4624 {
4625         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4626         union kvm_mmu_role new_role =
4627                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4628
4629         if (new_role.as_u64 != context->mmu_role.as_u64)
4630                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4631 }
4632
4633 static union kvm_mmu_role
4634 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4635 {
4636         union kvm_mmu_role role =
4637                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4638
4639         role.base.direct = false;
4640         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4641
4642         return role;
4643 }
4644
4645 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4646                              gpa_t nested_cr3)
4647 {
4648         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4649         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4650
4651         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4652
4653         if (new_role.as_u64 != context->mmu_role.as_u64) {
4654                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4655
4656                 /*
4657                  * Override the level set by the common init helper, nested TDP
4658                  * always uses the host's TDP configuration.
4659                  */
4660                 context->shadow_root_level = new_role.base.level;
4661         }
4662 }
4663 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4664
4665 static union kvm_mmu_role
4666 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4667                                    bool execonly, u8 level)
4668 {
4669         union kvm_mmu_role role = {0};
4670
4671         /* SMM flag is inherited from root_mmu */
4672         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4673
4674         role.base.level = level;
4675         role.base.gpte_is_8_bytes = true;
4676         role.base.direct = false;
4677         role.base.ad_disabled = !accessed_dirty;
4678         role.base.guest_mode = true;
4679         role.base.access = ACC_ALL;
4680
4681         /*
4682          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4683          * SMAP variation to denote shadow EPT entries.
4684          */
4685         role.base.cr0_wp = true;
4686         role.base.smap_andnot_wp = true;
4687
4688         role.ext = kvm_calc_mmu_role_ext(vcpu);
4689         role.ext.execonly = execonly;
4690
4691         return role;
4692 }
4693
4694 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4695                              bool accessed_dirty, gpa_t new_eptp)
4696 {
4697         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4698         u8 level = vmx_eptp_page_walk_level(new_eptp);
4699         union kvm_mmu_role new_role =
4700                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4701                                                    execonly, level);
4702
4703         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4704
4705         if (new_role.as_u64 == context->mmu_role.as_u64)
4706                 return;
4707
4708         context->shadow_root_level = level;
4709
4710         context->nx = true;
4711         context->ept_ad = accessed_dirty;
4712         context->page_fault = ept_page_fault;
4713         context->gva_to_gpa = ept_gva_to_gpa;
4714         context->sync_page = ept_sync_page;
4715         context->invlpg = ept_invlpg;
4716         context->root_level = level;
4717         context->direct_map = false;
4718         context->mmu_role.as_u64 = new_role.as_u64;
4719
4720         update_permission_bitmask(vcpu, context, true);
4721         update_pkru_bitmask(vcpu, context, true);
4722         update_last_nonleaf_level(vcpu, context);
4723         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4724         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4725 }
4726 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4727
4728 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4729 {
4730         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4731
4732         kvm_init_shadow_mmu(vcpu,
4733                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4734                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4735                             vcpu->arch.efer);
4736
4737         context->get_guest_pgd     = get_cr3;
4738         context->get_pdptr         = kvm_pdptr_read;
4739         context->inject_page_fault = kvm_inject_page_fault;
4740 }
4741
4742 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4743 {
4744         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4745         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4746
4747         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4748                 return;
4749
4750         g_context->mmu_role.as_u64 = new_role.as_u64;
4751         g_context->get_guest_pgd     = get_cr3;
4752         g_context->get_pdptr         = kvm_pdptr_read;
4753         g_context->inject_page_fault = kvm_inject_page_fault;
4754
4755         /*
4756          * L2 page tables are never shadowed, so there is no need to sync
4757          * SPTEs.
4758          */
4759         g_context->invlpg            = NULL;
4760
4761         /*
4762          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4763          * L1's nested page tables (e.g. EPT12). The nested translation
4764          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4765          * L2's page tables as the first level of translation and L1's
4766          * nested page tables as the second level of translation. Basically
4767          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4768          */
4769         if (!is_paging(vcpu)) {
4770                 g_context->nx = false;
4771                 g_context->root_level = 0;
4772                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4773         } else if (is_long_mode(vcpu)) {
4774                 g_context->nx = is_nx(vcpu);
4775                 g_context->root_level = is_la57_mode(vcpu) ?
4776                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4777                 reset_rsvds_bits_mask(vcpu, g_context);
4778                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4779         } else if (is_pae(vcpu)) {
4780                 g_context->nx = is_nx(vcpu);
4781                 g_context->root_level = PT32E_ROOT_LEVEL;
4782                 reset_rsvds_bits_mask(vcpu, g_context);
4783                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4784         } else {
4785                 g_context->nx = false;
4786                 g_context->root_level = PT32_ROOT_LEVEL;
4787                 reset_rsvds_bits_mask(vcpu, g_context);
4788                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4789         }
4790
4791         update_permission_bitmask(vcpu, g_context, false);
4792         update_pkru_bitmask(vcpu, g_context, false);
4793         update_last_nonleaf_level(vcpu, g_context);
4794 }
4795
4796 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4797 {
4798         if (reset_roots) {
4799                 uint i;
4800
4801                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4802
4803                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4804                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4805         }
4806
4807         if (mmu_is_nested(vcpu))
4808                 init_kvm_nested_mmu(vcpu);
4809         else if (tdp_enabled)
4810                 init_kvm_tdp_mmu(vcpu);
4811         else
4812                 init_kvm_softmmu(vcpu);
4813 }
4814 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4815
4816 static union kvm_mmu_page_role
4817 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4818 {
4819         union kvm_mmu_role role;
4820
4821         if (tdp_enabled)
4822                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4823         else
4824                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4825
4826         return role.base;
4827 }
4828
4829 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4830 {
4831         kvm_mmu_unload(vcpu);
4832         kvm_init_mmu(vcpu, true);
4833 }
4834 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4835
4836 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4837 {
4838         int r;
4839
4840         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4841         if (r)
4842                 goto out;
4843         r = mmu_alloc_special_roots(vcpu);
4844         if (r)
4845                 goto out;
4846         if (vcpu->arch.mmu->direct_map)
4847                 r = mmu_alloc_direct_roots(vcpu);
4848         else
4849                 r = mmu_alloc_shadow_roots(vcpu);
4850         if (r)
4851                 goto out;
4852
4853         kvm_mmu_sync_roots(vcpu);
4854
4855         kvm_mmu_load_pgd(vcpu);
4856         static_call(kvm_x86_tlb_flush_current)(vcpu);
4857 out:
4858         return r;
4859 }
4860
4861 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4862 {
4863         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4864         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4865         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4866         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4867 }
4868
4869 static bool need_remote_flush(u64 old, u64 new)
4870 {
4871         if (!is_shadow_present_pte(old))
4872                 return false;
4873         if (!is_shadow_present_pte(new))
4874                 return true;
4875         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4876                 return true;
4877         old ^= shadow_nx_mask;
4878         new ^= shadow_nx_mask;
4879         return (old & ~new & PT64_PERM_MASK) != 0;
4880 }
4881
4882 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4883                                     int *bytes)
4884 {
4885         u64 gentry = 0;
4886         int r;
4887
4888         /*
4889          * Assume that the pte write on a page table of the same type
4890          * as the current vcpu paging mode since we update the sptes only
4891          * when they have the same mode.
4892          */
4893         if (is_pae(vcpu) && *bytes == 4) {
4894                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4895                 *gpa &= ~(gpa_t)7;
4896                 *bytes = 8;
4897         }
4898
4899         if (*bytes == 4 || *bytes == 8) {
4900                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4901                 if (r)
4902                         gentry = 0;
4903         }
4904
4905         return gentry;
4906 }
4907
4908 /*
4909  * If we're seeing too many writes to a page, it may no longer be a page table,
4910  * or we may be forking, in which case it is better to unmap the page.
4911  */
4912 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4913 {
4914         /*
4915          * Skip write-flooding detected for the sp whose level is 1, because
4916          * it can become unsync, then the guest page is not write-protected.
4917          */
4918         if (sp->role.level == PG_LEVEL_4K)
4919                 return false;
4920
4921         atomic_inc(&sp->write_flooding_count);
4922         return atomic_read(&sp->write_flooding_count) >= 3;
4923 }
4924
4925 /*
4926  * Misaligned accesses are too much trouble to fix up; also, they usually
4927  * indicate a page is not used as a page table.
4928  */
4929 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4930                                     int bytes)
4931 {
4932         unsigned offset, pte_size, misaligned;
4933
4934         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4935                  gpa, bytes, sp->role.word);
4936
4937         offset = offset_in_page(gpa);
4938         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4939
4940         /*
4941          * Sometimes, the OS only writes the last one bytes to update status
4942          * bits, for example, in linux, andb instruction is used in clear_bit().
4943          */
4944         if (!(offset & (pte_size - 1)) && bytes == 1)
4945                 return false;
4946
4947         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4948         misaligned |= bytes < 4;
4949
4950         return misaligned;
4951 }
4952
4953 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4954 {
4955         unsigned page_offset, quadrant;
4956         u64 *spte;
4957         int level;
4958
4959         page_offset = offset_in_page(gpa);
4960         level = sp->role.level;
4961         *nspte = 1;
4962         if (!sp->role.gpte_is_8_bytes) {
4963                 page_offset <<= 1;      /* 32->64 */
4964                 /*
4965                  * A 32-bit pde maps 4MB while the shadow pdes map
4966                  * only 2MB.  So we need to double the offset again
4967                  * and zap two pdes instead of one.
4968                  */
4969                 if (level == PT32_ROOT_LEVEL) {
4970                         page_offset &= ~7; /* kill rounding error */
4971                         page_offset <<= 1;
4972                         *nspte = 2;
4973                 }
4974                 quadrant = page_offset >> PAGE_SHIFT;
4975                 page_offset &= ~PAGE_MASK;
4976                 if (quadrant != sp->role.quadrant)
4977                         return NULL;
4978         }
4979
4980         spte = &sp->spt[page_offset / sizeof(*spte)];
4981         return spte;
4982 }
4983
4984 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4985                               const u8 *new, int bytes,
4986                               struct kvm_page_track_notifier_node *node)
4987 {
4988         gfn_t gfn = gpa >> PAGE_SHIFT;
4989         struct kvm_mmu_page *sp;
4990         LIST_HEAD(invalid_list);
4991         u64 entry, gentry, *spte;
4992         int npte;
4993         bool remote_flush, local_flush;
4994
4995         /*
4996          * If we don't have indirect shadow pages, it means no page is
4997          * write-protected, so we can exit simply.
4998          */
4999         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5000                 return;
5001
5002         remote_flush = local_flush = false;
5003
5004         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5005
5006         /*
5007          * No need to care whether allocation memory is successful
5008          * or not since pte prefetch is skipped if it does not have
5009          * enough objects in the cache.
5010          */
5011         mmu_topup_memory_caches(vcpu, true);
5012
5013         write_lock(&vcpu->kvm->mmu_lock);
5014
5015         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5016
5017         ++vcpu->kvm->stat.mmu_pte_write;
5018         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5019
5020         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5021                 if (detect_write_misaligned(sp, gpa, bytes) ||
5022                       detect_write_flooding(sp)) {
5023                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5024                         ++vcpu->kvm->stat.mmu_flooded;
5025                         continue;
5026                 }
5027
5028                 spte = get_written_sptes(sp, gpa, &npte);
5029                 if (!spte)
5030                         continue;
5031
5032                 local_flush = true;
5033                 while (npte--) {
5034                         entry = *spte;
5035                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5036                         if (gentry && sp->role.level != PG_LEVEL_4K)
5037                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5038                         if (need_remote_flush(entry, *spte))
5039                                 remote_flush = true;
5040                         ++spte;
5041                 }
5042         }
5043         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5044         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5045         write_unlock(&vcpu->kvm->mmu_lock);
5046 }
5047
5048 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5049                        void *insn, int insn_len)
5050 {
5051         int r, emulation_type = EMULTYPE_PF;
5052         bool direct = vcpu->arch.mmu->direct_map;
5053
5054         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5055                 return RET_PF_RETRY;
5056
5057         r = RET_PF_INVALID;
5058         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5059                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5060                 if (r == RET_PF_EMULATE)
5061                         goto emulate;
5062         }
5063
5064         if (r == RET_PF_INVALID) {
5065                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5066                                           lower_32_bits(error_code), false);
5067                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5068                         return -EIO;
5069         }
5070
5071         if (r < 0)
5072                 return r;
5073         if (r != RET_PF_EMULATE)
5074                 return 1;
5075
5076         /*
5077          * Before emulating the instruction, check if the error code
5078          * was due to a RO violation while translating the guest page.
5079          * This can occur when using nested virtualization with nested
5080          * paging in both guests. If true, we simply unprotect the page
5081          * and resume the guest.
5082          */
5083         if (vcpu->arch.mmu->direct_map &&
5084             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5085                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5086                 return 1;
5087         }
5088
5089         /*
5090          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5091          * optimistically try to just unprotect the page and let the processor
5092          * re-execute the instruction that caused the page fault.  Do not allow
5093          * retrying MMIO emulation, as it's not only pointless but could also
5094          * cause us to enter an infinite loop because the processor will keep
5095          * faulting on the non-existent MMIO address.  Retrying an instruction
5096          * from a nested guest is also pointless and dangerous as we are only
5097          * explicitly shadowing L1's page tables, i.e. unprotecting something
5098          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5099          */
5100         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5101                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5102 emulate:
5103         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5104                                        insn_len);
5105 }
5106 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5107
5108 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5109                             gva_t gva, hpa_t root_hpa)
5110 {
5111         int i;
5112
5113         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5114         if (mmu != &vcpu->arch.guest_mmu) {
5115                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5116                 if (is_noncanonical_address(gva, vcpu))
5117                         return;
5118
5119                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5120         }
5121
5122         if (!mmu->invlpg)
5123                 return;
5124
5125         if (root_hpa == INVALID_PAGE) {
5126                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5127
5128                 /*
5129                  * INVLPG is required to invalidate any global mappings for the VA,
5130                  * irrespective of PCID. Since it would take us roughly similar amount
5131                  * of work to determine whether any of the prev_root mappings of the VA
5132                  * is marked global, or to just sync it blindly, so we might as well
5133                  * just always sync it.
5134                  *
5135                  * Mappings not reachable via the current cr3 or the prev_roots will be
5136                  * synced when switching to that cr3, so nothing needs to be done here
5137                  * for them.
5138                  */
5139                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5140                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5141                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5142         } else {
5143                 mmu->invlpg(vcpu, gva, root_hpa);
5144         }
5145 }
5146
5147 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5148 {
5149         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5150         ++vcpu->stat.invlpg;
5151 }
5152 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5153
5154
5155 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5156 {
5157         struct kvm_mmu *mmu = vcpu->arch.mmu;
5158         bool tlb_flush = false;
5159         uint i;
5160
5161         if (pcid == kvm_get_active_pcid(vcpu)) {
5162                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5163                 tlb_flush = true;
5164         }
5165
5166         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5167                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5168                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5169                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5170                         tlb_flush = true;
5171                 }
5172         }
5173
5174         if (tlb_flush)
5175                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5176
5177         ++vcpu->stat.invlpg;
5178
5179         /*
5180          * Mappings not reachable via the current cr3 or the prev_roots will be
5181          * synced when switching to that cr3, so nothing needs to be done here
5182          * for them.
5183          */
5184 }
5185
5186 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5187                        int tdp_huge_page_level)
5188 {
5189         tdp_enabled = enable_tdp;
5190         max_tdp_level = tdp_max_root_level;
5191
5192         /*
5193          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5194          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5195          * the kernel is not.  But, KVM never creates a page size greater than
5196          * what is used by the kernel for any given HVA, i.e. the kernel's
5197          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5198          */
5199         if (tdp_enabled)
5200                 max_huge_page_level = tdp_huge_page_level;
5201         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5202                 max_huge_page_level = PG_LEVEL_1G;
5203         else
5204                 max_huge_page_level = PG_LEVEL_2M;
5205 }
5206 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5207
5208 /* The return value indicates if tlb flush on all vcpus is needed. */
5209 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5210                                     struct kvm_memory_slot *slot);
5211
5212 /* The caller should hold mmu-lock before calling this function. */
5213 static __always_inline bool
5214 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5215                         slot_level_handler fn, int start_level, int end_level,
5216                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5217                         bool flush)
5218 {
5219         struct slot_rmap_walk_iterator iterator;
5220
5221         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5222                         end_gfn, &iterator) {
5223                 if (iterator.rmap)
5224                         flush |= fn(kvm, iterator.rmap, memslot);
5225
5226                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5227                         if (flush && flush_on_yield) {
5228                                 kvm_flush_remote_tlbs_with_address(kvm,
5229                                                 start_gfn,
5230                                                 iterator.gfn - start_gfn + 1);
5231                                 flush = false;
5232                         }
5233                         cond_resched_rwlock_write(&kvm->mmu_lock);
5234                 }
5235         }
5236
5237         return flush;
5238 }
5239
5240 static __always_inline bool
5241 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5242                   slot_level_handler fn, int start_level, int end_level,
5243                   bool flush_on_yield)
5244 {
5245         return slot_handle_level_range(kvm, memslot, fn, start_level,
5246                         end_level, memslot->base_gfn,
5247                         memslot->base_gfn + memslot->npages - 1,
5248                         flush_on_yield, false);
5249 }
5250
5251 static __always_inline bool
5252 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5253                  slot_level_handler fn, bool flush_on_yield)
5254 {
5255         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5256                                  PG_LEVEL_4K, flush_on_yield);
5257 }
5258
5259 static void free_mmu_pages(struct kvm_mmu *mmu)
5260 {
5261         if (!tdp_enabled && mmu->pae_root)
5262                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5263         free_page((unsigned long)mmu->pae_root);
5264         free_page((unsigned long)mmu->pml4_root);
5265 }
5266
5267 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5268 {
5269         struct page *page;
5270         int i;
5271
5272         mmu->root_hpa = INVALID_PAGE;
5273         mmu->root_pgd = 0;
5274         mmu->translate_gpa = translate_gpa;
5275         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5276                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5277
5278         /*
5279          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5280          * while the PDP table is a per-vCPU construct that's allocated at MMU
5281          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5282          * x86_64.  Therefore we need to allocate the PDP table in the first
5283          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5284          * generally doesn't use PAE paging and can skip allocating the PDP
5285          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5286          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5287          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5288          */
5289         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5290                 return 0;
5291
5292         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5293         if (!page)
5294                 return -ENOMEM;
5295
5296         mmu->pae_root = page_address(page);
5297
5298         /*
5299          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5300          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5301          * that KVM's writes and the CPU's reads get along.  Note, this is
5302          * only necessary when using shadow paging, as 64-bit NPT can get at
5303          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5304          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5305          */
5306         if (!tdp_enabled)
5307                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5308         else
5309                 WARN_ON_ONCE(shadow_me_mask);
5310
5311         for (i = 0; i < 4; ++i)
5312                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5313
5314         return 0;
5315 }
5316
5317 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5318 {
5319         int ret;
5320
5321         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5322         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5323
5324         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5325         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5326
5327         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5328
5329         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5330         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5331
5332         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5333
5334         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5335         if (ret)
5336                 return ret;
5337
5338         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5339         if (ret)
5340                 goto fail_allocate_root;
5341
5342         return ret;
5343  fail_allocate_root:
5344         free_mmu_pages(&vcpu->arch.guest_mmu);
5345         return ret;
5346 }
5347
5348 #define BATCH_ZAP_PAGES 10
5349 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5350 {
5351         struct kvm_mmu_page *sp, *node;
5352         int nr_zapped, batch = 0;
5353
5354 restart:
5355         list_for_each_entry_safe_reverse(sp, node,
5356               &kvm->arch.active_mmu_pages, link) {
5357                 /*
5358                  * No obsolete valid page exists before a newly created page
5359                  * since active_mmu_pages is a FIFO list.
5360                  */
5361                 if (!is_obsolete_sp(kvm, sp))
5362                         break;
5363
5364                 /*
5365                  * Invalid pages should never land back on the list of active
5366                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5367                  * infinite loop if the page gets put back on the list (again).
5368                  */
5369                 if (WARN_ON(sp->role.invalid))
5370                         continue;
5371
5372                 /*
5373                  * No need to flush the TLB since we're only zapping shadow
5374                  * pages with an obsolete generation number and all vCPUS have
5375                  * loaded a new root, i.e. the shadow pages being zapped cannot
5376                  * be in active use by the guest.
5377                  */
5378                 if (batch >= BATCH_ZAP_PAGES &&
5379                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5380                         batch = 0;
5381                         goto restart;
5382                 }
5383
5384                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5385                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5386                         batch += nr_zapped;
5387                         goto restart;
5388                 }
5389         }
5390
5391         /*
5392          * Trigger a remote TLB flush before freeing the page tables to ensure
5393          * KVM is not in the middle of a lockless shadow page table walk, which
5394          * may reference the pages.
5395          */
5396         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5397 }
5398
5399 /*
5400  * Fast invalidate all shadow pages and use lock-break technique
5401  * to zap obsolete pages.
5402  *
5403  * It's required when memslot is being deleted or VM is being
5404  * destroyed, in these cases, we should ensure that KVM MMU does
5405  * not use any resource of the being-deleted slot or all slots
5406  * after calling the function.
5407  */
5408 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5409 {
5410         lockdep_assert_held(&kvm->slots_lock);
5411
5412         write_lock(&kvm->mmu_lock);
5413         trace_kvm_mmu_zap_all_fast(kvm);
5414
5415         /*
5416          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5417          * held for the entire duration of zapping obsolete pages, it's
5418          * impossible for there to be multiple invalid generations associated
5419          * with *valid* shadow pages at any given time, i.e. there is exactly
5420          * one valid generation and (at most) one invalid generation.
5421          */
5422         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5423
5424         /* In order to ensure all threads see this change when
5425          * handling the MMU reload signal, this must happen in the
5426          * same critical section as kvm_reload_remote_mmus, and
5427          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5428          * could drop the MMU lock and yield.
5429          */
5430         if (is_tdp_mmu_enabled(kvm))
5431                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5432
5433         /*
5434          * Notify all vcpus to reload its shadow page table and flush TLB.
5435          * Then all vcpus will switch to new shadow page table with the new
5436          * mmu_valid_gen.
5437          *
5438          * Note: we need to do this under the protection of mmu_lock,
5439          * otherwise, vcpu would purge shadow page but miss tlb flush.
5440          */
5441         kvm_reload_remote_mmus(kvm);
5442
5443         kvm_zap_obsolete_pages(kvm);
5444
5445         write_unlock(&kvm->mmu_lock);
5446
5447         if (is_tdp_mmu_enabled(kvm)) {
5448                 read_lock(&kvm->mmu_lock);
5449                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5450                 read_unlock(&kvm->mmu_lock);
5451         }
5452 }
5453
5454 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5455 {
5456         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5457 }
5458
5459 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5460                         struct kvm_memory_slot *slot,
5461                         struct kvm_page_track_notifier_node *node)
5462 {
5463         kvm_mmu_zap_all_fast(kvm);
5464 }
5465
5466 void kvm_mmu_init_vm(struct kvm *kvm)
5467 {
5468         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5469
5470         kvm_mmu_init_tdp_mmu(kvm);
5471
5472         node->track_write = kvm_mmu_pte_write;
5473         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5474         kvm_page_track_register_notifier(kvm, node);
5475 }
5476
5477 void kvm_mmu_uninit_vm(struct kvm *kvm)
5478 {
5479         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5480
5481         kvm_page_track_unregister_notifier(kvm, node);
5482
5483         kvm_mmu_uninit_tdp_mmu(kvm);
5484 }
5485
5486 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5487 {
5488         struct kvm_memslots *slots;
5489         struct kvm_memory_slot *memslot;
5490         int i;
5491         bool flush = false;
5492
5493         write_lock(&kvm->mmu_lock);
5494         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5495                 slots = __kvm_memslots(kvm, i);
5496                 kvm_for_each_memslot(memslot, slots) {
5497                         gfn_t start, end;
5498
5499                         start = max(gfn_start, memslot->base_gfn);
5500                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5501                         if (start >= end)
5502                                 continue;
5503
5504                         flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5505                                                         PG_LEVEL_4K,
5506                                                         KVM_MAX_HUGEPAGE_LEVEL,
5507                                                         start, end - 1, true, flush);
5508                 }
5509         }
5510
5511         if (flush)
5512                 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5513
5514         write_unlock(&kvm->mmu_lock);
5515
5516         if (is_tdp_mmu_enabled(kvm)) {
5517                 flush = false;
5518
5519                 read_lock(&kvm->mmu_lock);
5520                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5521                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5522                                                           gfn_end, flush, true);
5523                 if (flush)
5524                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5525                                                            gfn_end);
5526
5527                 read_unlock(&kvm->mmu_lock);
5528         }
5529 }
5530
5531 static bool slot_rmap_write_protect(struct kvm *kvm,
5532                                     struct kvm_rmap_head *rmap_head,
5533                                     struct kvm_memory_slot *slot)
5534 {
5535         return __rmap_write_protect(kvm, rmap_head, false);
5536 }
5537
5538 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5539                                       struct kvm_memory_slot *memslot,
5540                                       int start_level)
5541 {
5542         bool flush;
5543
5544         write_lock(&kvm->mmu_lock);
5545         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5546                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5547         write_unlock(&kvm->mmu_lock);
5548
5549         if (is_tdp_mmu_enabled(kvm)) {
5550                 read_lock(&kvm->mmu_lock);
5551                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5552                 read_unlock(&kvm->mmu_lock);
5553         }
5554
5555         /*
5556          * We can flush all the TLBs out of the mmu lock without TLB
5557          * corruption since we just change the spte from writable to
5558          * readonly so that we only need to care the case of changing
5559          * spte from present to present (changing the spte from present
5560          * to nonpresent will flush all the TLBs immediately), in other
5561          * words, the only case we care is mmu_spte_update() where we
5562          * have checked Host-writable | MMU-writable instead of
5563          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5564          * anymore.
5565          */
5566         if (flush)
5567                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5568 }
5569
5570 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5571                                          struct kvm_rmap_head *rmap_head,
5572                                          struct kvm_memory_slot *slot)
5573 {
5574         u64 *sptep;
5575         struct rmap_iterator iter;
5576         int need_tlb_flush = 0;
5577         kvm_pfn_t pfn;
5578         struct kvm_mmu_page *sp;
5579
5580 restart:
5581         for_each_rmap_spte(rmap_head, &iter, sptep) {
5582                 sp = sptep_to_sp(sptep);
5583                 pfn = spte_to_pfn(*sptep);
5584
5585                 /*
5586                  * We cannot do huge page mapping for indirect shadow pages,
5587                  * which are found on the last rmap (level = 1) when not using
5588                  * tdp; such shadow pages are synced with the page table in
5589                  * the guest, and the guest page table is using 4K page size
5590                  * mapping if the indirect sp has level = 1.
5591                  */
5592                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5593                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5594                                                                pfn, PG_LEVEL_NUM)) {
5595                         pte_list_remove(rmap_head, sptep);
5596
5597                         if (kvm_available_flush_tlb_with_range())
5598                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5599                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5600                         else
5601                                 need_tlb_flush = 1;
5602
5603                         goto restart;
5604                 }
5605         }
5606
5607         return need_tlb_flush;
5608 }
5609
5610 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5611                                    const struct kvm_memory_slot *memslot)
5612 {
5613         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5614         struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5615         bool flush;
5616
5617         write_lock(&kvm->mmu_lock);
5618         flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5619
5620         if (flush)
5621                 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5622         write_unlock(&kvm->mmu_lock);
5623
5624         if (is_tdp_mmu_enabled(kvm)) {
5625                 flush = false;
5626
5627                 read_lock(&kvm->mmu_lock);
5628                 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5629                 if (flush)
5630                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5631                 read_unlock(&kvm->mmu_lock);
5632         }
5633 }
5634
5635 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5636                                         const struct kvm_memory_slot *memslot)
5637 {
5638         /*
5639          * All current use cases for flushing the TLBs for a specific memslot
5640          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5641          * The interaction between the various operations on memslot must be
5642          * serialized by slots_locks to ensure the TLB flush from one operation
5643          * is observed by any other operation on the same memslot.
5644          */
5645         lockdep_assert_held(&kvm->slots_lock);
5646         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5647                                            memslot->npages);
5648 }
5649
5650 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5651                                    struct kvm_memory_slot *memslot)
5652 {
5653         bool flush;
5654
5655         write_lock(&kvm->mmu_lock);
5656         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5657         write_unlock(&kvm->mmu_lock);
5658
5659         if (is_tdp_mmu_enabled(kvm)) {
5660                 read_lock(&kvm->mmu_lock);
5661                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5662                 read_unlock(&kvm->mmu_lock);
5663         }
5664
5665         /*
5666          * It's also safe to flush TLBs out of mmu lock here as currently this
5667          * function is only used for dirty logging, in which case flushing TLB
5668          * out of mmu lock also guarantees no dirty pages will be lost in
5669          * dirty_bitmap.
5670          */
5671         if (flush)
5672                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5673 }
5674
5675 void kvm_mmu_zap_all(struct kvm *kvm)
5676 {
5677         struct kvm_mmu_page *sp, *node;
5678         LIST_HEAD(invalid_list);
5679         int ign;
5680
5681         write_lock(&kvm->mmu_lock);
5682 restart:
5683         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5684                 if (WARN_ON(sp->role.invalid))
5685                         continue;
5686                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5687                         goto restart;
5688                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5689                         goto restart;
5690         }
5691
5692         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5693
5694         if (is_tdp_mmu_enabled(kvm))
5695                 kvm_tdp_mmu_zap_all(kvm);
5696
5697         write_unlock(&kvm->mmu_lock);
5698 }
5699
5700 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5701 {
5702         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5703
5704         gen &= MMIO_SPTE_GEN_MASK;
5705
5706         /*
5707          * Generation numbers are incremented in multiples of the number of
5708          * address spaces in order to provide unique generations across all
5709          * address spaces.  Strip what is effectively the address space
5710          * modifier prior to checking for a wrap of the MMIO generation so
5711          * that a wrap in any address space is detected.
5712          */
5713         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5714
5715         /*
5716          * The very rare case: if the MMIO generation number has wrapped,
5717          * zap all shadow pages.
5718          */
5719         if (unlikely(gen == 0)) {
5720                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5721                 kvm_mmu_zap_all_fast(kvm);
5722         }
5723 }
5724
5725 static unsigned long
5726 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5727 {
5728         struct kvm *kvm;
5729         int nr_to_scan = sc->nr_to_scan;
5730         unsigned long freed = 0;
5731
5732         mutex_lock(&kvm_lock);
5733
5734         list_for_each_entry(kvm, &vm_list, vm_list) {
5735                 int idx;
5736                 LIST_HEAD(invalid_list);
5737
5738                 /*
5739                  * Never scan more than sc->nr_to_scan VM instances.
5740                  * Will not hit this condition practically since we do not try
5741                  * to shrink more than one VM and it is very unlikely to see
5742                  * !n_used_mmu_pages so many times.
5743                  */
5744                 if (!nr_to_scan--)
5745                         break;
5746                 /*
5747                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5748                  * here. We may skip a VM instance errorneosly, but we do not
5749                  * want to shrink a VM that only started to populate its MMU
5750                  * anyway.
5751                  */
5752                 if (!kvm->arch.n_used_mmu_pages &&
5753                     !kvm_has_zapped_obsolete_pages(kvm))
5754                         continue;
5755
5756                 idx = srcu_read_lock(&kvm->srcu);
5757                 write_lock(&kvm->mmu_lock);
5758
5759                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5760                         kvm_mmu_commit_zap_page(kvm,
5761                               &kvm->arch.zapped_obsolete_pages);
5762                         goto unlock;
5763                 }
5764
5765                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5766
5767 unlock:
5768                 write_unlock(&kvm->mmu_lock);
5769                 srcu_read_unlock(&kvm->srcu, idx);
5770
5771                 /*
5772                  * unfair on small ones
5773                  * per-vm shrinkers cry out
5774                  * sadness comes quickly
5775                  */
5776                 list_move_tail(&kvm->vm_list, &vm_list);
5777                 break;
5778         }
5779
5780         mutex_unlock(&kvm_lock);
5781         return freed;
5782 }
5783
5784 static unsigned long
5785 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5786 {
5787         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5788 }
5789
5790 static struct shrinker mmu_shrinker = {
5791         .count_objects = mmu_shrink_count,
5792         .scan_objects = mmu_shrink_scan,
5793         .seeks = DEFAULT_SEEKS * 10,
5794 };
5795
5796 static void mmu_destroy_caches(void)
5797 {
5798         kmem_cache_destroy(pte_list_desc_cache);
5799         kmem_cache_destroy(mmu_page_header_cache);
5800 }
5801
5802 static bool get_nx_auto_mode(void)
5803 {
5804         /* Return true when CPU has the bug, and mitigations are ON */
5805         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5806 }
5807
5808 static void __set_nx_huge_pages(bool val)
5809 {
5810         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5811 }
5812
5813 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5814 {
5815         bool old_val = nx_huge_pages;
5816         bool new_val;
5817
5818         /* In "auto" mode deploy workaround only if CPU has the bug. */
5819         if (sysfs_streq(val, "off"))
5820                 new_val = 0;
5821         else if (sysfs_streq(val, "force"))
5822                 new_val = 1;
5823         else if (sysfs_streq(val, "auto"))
5824                 new_val = get_nx_auto_mode();
5825         else if (strtobool(val, &new_val) < 0)
5826                 return -EINVAL;
5827
5828         __set_nx_huge_pages(new_val);
5829
5830         if (new_val != old_val) {
5831                 struct kvm *kvm;
5832
5833                 mutex_lock(&kvm_lock);
5834
5835                 list_for_each_entry(kvm, &vm_list, vm_list) {
5836                         mutex_lock(&kvm->slots_lock);
5837                         kvm_mmu_zap_all_fast(kvm);
5838                         mutex_unlock(&kvm->slots_lock);
5839
5840                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5841                 }
5842                 mutex_unlock(&kvm_lock);
5843         }
5844
5845         return 0;
5846 }
5847
5848 int kvm_mmu_module_init(void)
5849 {
5850         int ret = -ENOMEM;
5851
5852         if (nx_huge_pages == -1)
5853                 __set_nx_huge_pages(get_nx_auto_mode());
5854
5855         /*
5856          * MMU roles use union aliasing which is, generally speaking, an
5857          * undefined behavior. However, we supposedly know how compilers behave
5858          * and the current status quo is unlikely to change. Guardians below are
5859          * supposed to let us know if the assumption becomes false.
5860          */
5861         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5862         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5863         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5864
5865         kvm_mmu_reset_all_pte_masks();
5866
5867         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5868                                             sizeof(struct pte_list_desc),
5869                                             0, SLAB_ACCOUNT, NULL);
5870         if (!pte_list_desc_cache)
5871                 goto out;
5872
5873         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5874                                                   sizeof(struct kvm_mmu_page),
5875                                                   0, SLAB_ACCOUNT, NULL);
5876         if (!mmu_page_header_cache)
5877                 goto out;
5878
5879         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5880                 goto out;
5881
5882         ret = register_shrinker(&mmu_shrinker);
5883         if (ret)
5884                 goto out;
5885
5886         return 0;
5887
5888 out:
5889         mmu_destroy_caches();
5890         return ret;
5891 }
5892
5893 /*
5894  * Calculate mmu pages needed for kvm.
5895  */
5896 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5897 {
5898         unsigned long nr_mmu_pages;
5899         unsigned long nr_pages = 0;
5900         struct kvm_memslots *slots;
5901         struct kvm_memory_slot *memslot;
5902         int i;
5903
5904         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5905                 slots = __kvm_memslots(kvm, i);
5906
5907                 kvm_for_each_memslot(memslot, slots)
5908                         nr_pages += memslot->npages;
5909         }
5910
5911         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5912         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5913
5914         return nr_mmu_pages;
5915 }
5916
5917 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5918 {
5919         kvm_mmu_unload(vcpu);
5920         free_mmu_pages(&vcpu->arch.root_mmu);
5921         free_mmu_pages(&vcpu->arch.guest_mmu);
5922         mmu_free_memory_caches(vcpu);
5923 }
5924
5925 void kvm_mmu_module_exit(void)
5926 {
5927         mmu_destroy_caches();
5928         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5929         unregister_shrinker(&mmu_shrinker);
5930         mmu_audit_disable();
5931 }
5932
5933 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5934 {
5935         unsigned int old_val;
5936         int err;
5937
5938         old_val = nx_huge_pages_recovery_ratio;
5939         err = param_set_uint(val, kp);
5940         if (err)
5941                 return err;
5942
5943         if (READ_ONCE(nx_huge_pages) &&
5944             !old_val && nx_huge_pages_recovery_ratio) {
5945                 struct kvm *kvm;
5946
5947                 mutex_lock(&kvm_lock);
5948
5949                 list_for_each_entry(kvm, &vm_list, vm_list)
5950                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5951
5952                 mutex_unlock(&kvm_lock);
5953         }
5954
5955         return err;
5956 }
5957
5958 static void kvm_recover_nx_lpages(struct kvm *kvm)
5959 {
5960         int rcu_idx;
5961         struct kvm_mmu_page *sp;
5962         unsigned int ratio;
5963         LIST_HEAD(invalid_list);
5964         bool flush = false;
5965         ulong to_zap;
5966
5967         rcu_idx = srcu_read_lock(&kvm->srcu);
5968         write_lock(&kvm->mmu_lock);
5969
5970         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5971         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5972         for ( ; to_zap; --to_zap) {
5973                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5974                         break;
5975
5976                 /*
5977                  * We use a separate list instead of just using active_mmu_pages
5978                  * because the number of lpage_disallowed pages is expected to
5979                  * be relatively small compared to the total.
5980                  */
5981                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5982                                       struct kvm_mmu_page,
5983                                       lpage_disallowed_link);
5984                 WARN_ON_ONCE(!sp->lpage_disallowed);
5985                 if (is_tdp_mmu_page(sp)) {
5986                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
5987                 } else {
5988                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5989                         WARN_ON_ONCE(sp->lpage_disallowed);
5990                 }
5991
5992                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5993                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5994                         cond_resched_rwlock_write(&kvm->mmu_lock);
5995                         flush = false;
5996                 }
5997         }
5998         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5999
6000         write_unlock(&kvm->mmu_lock);
6001         srcu_read_unlock(&kvm->srcu, rcu_idx);
6002 }
6003
6004 static long get_nx_lpage_recovery_timeout(u64 start_time)
6005 {
6006         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6007                 ? start_time + 60 * HZ - get_jiffies_64()
6008                 : MAX_SCHEDULE_TIMEOUT;
6009 }
6010
6011 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6012 {
6013         u64 start_time;
6014         long remaining_time;
6015
6016         while (true) {
6017                 start_time = get_jiffies_64();
6018                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6019
6020                 set_current_state(TASK_INTERRUPTIBLE);
6021                 while (!kthread_should_stop() && remaining_time > 0) {
6022                         schedule_timeout(remaining_time);
6023                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6024                         set_current_state(TASK_INTERRUPTIBLE);
6025                 }
6026
6027                 set_current_state(TASK_RUNNING);
6028
6029                 if (kthread_should_stop())
6030                         return 0;
6031
6032                 kvm_recover_nx_lpages(kvm);
6033         }
6034 }
6035
6036 int kvm_mmu_post_init_vm(struct kvm *kvm)
6037 {
6038         int err;
6039
6040         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6041                                           "kvm-nx-lpage-recovery",
6042                                           &kvm->arch.nx_lpage_recovery_thread);
6043         if (!err)
6044                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6045
6046         return err;
6047 }
6048
6049 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6050 {
6051         if (kvm->arch.nx_lpage_recovery_thread)
6052                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6053 }