Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53
54 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
55 {
56         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
57
58         switch (c->mode) {
59         default:
60         case 0:
61         case 4:
62                 /* XXX: just disable/enable counting */
63                 break;
64         case 1:
65         case 2:
66         case 3:
67         case 5:
68                 /* Restart counting on rising edge. */
69                 if (c->gate < val)
70                         c->count_load_time = ktime_get();
71                 break;
72         }
73
74         c->gate = val;
75 }
76
77 static int pit_get_gate(struct kvm_pit *pit, int channel)
78 {
79         return pit->pit_state.channels[channel].gate;
80 }
81
82 static s64 __kpit_elapsed(struct kvm_pit *pit)
83 {
84         s64 elapsed;
85         ktime_t remaining;
86         struct kvm_kpit_state *ps = &pit->pit_state;
87
88         if (!ps->period)
89                 return 0;
90
91         /*
92          * The Counter does not stop when it reaches zero. In
93          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
94          * the highest count, either FFFF hex for binary counting
95          * or 9999 for BCD counting, and continues counting.
96          * Modes 2 and 3 are periodic; the Counter reloads
97          * itself with the initial count and continues counting
98          * from there.
99          */
100         remaining = hrtimer_get_remaining(&ps->timer);
101         elapsed = ps->period - ktime_to_ns(remaining);
102
103         return elapsed;
104 }
105
106 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
107                         int channel)
108 {
109         if (channel == 0)
110                 return __kpit_elapsed(pit);
111
112         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
113 }
114
115 static int pit_get_count(struct kvm_pit *pit, int channel)
116 {
117         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
118         s64 d, t;
119         int counter;
120
121         t = kpit_elapsed(pit, c, channel);
122         d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
123
124         switch (c->mode) {
125         case 0:
126         case 1:
127         case 4:
128         case 5:
129                 counter = (c->count - d) & 0xffff;
130                 break;
131         case 3:
132                 /* XXX: may be incorrect for odd counts */
133                 counter = c->count - (mod_64((2 * d), c->count));
134                 break;
135         default:
136                 counter = c->count - mod_64(d, c->count);
137                 break;
138         }
139         return counter;
140 }
141
142 static int pit_get_out(struct kvm_pit *pit, int channel)
143 {
144         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
145         s64 d, t;
146         int out;
147
148         t = kpit_elapsed(pit, c, channel);
149         d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151         switch (c->mode) {
152         default:
153         case 0:
154                 out = (d >= c->count);
155                 break;
156         case 1:
157                 out = (d < c->count);
158                 break;
159         case 2:
160                 out = ((mod_64(d, c->count) == 0) && (d != 0));
161                 break;
162         case 3:
163                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
164                 break;
165         case 4:
166         case 5:
167                 out = (d == c->count);
168                 break;
169         }
170
171         return out;
172 }
173
174 static void pit_latch_count(struct kvm_pit *pit, int channel)
175 {
176         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
177
178         if (!c->count_latched) {
179                 c->latched_count = pit_get_count(pit, channel);
180                 c->count_latched = c->rw_mode;
181         }
182 }
183
184 static void pit_latch_status(struct kvm_pit *pit, int channel)
185 {
186         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
187
188         if (!c->status_latched) {
189                 /* TODO: Return NULL COUNT (bit 6). */
190                 c->status = ((pit_get_out(pit, channel) << 7) |
191                                 (c->rw_mode << 4) |
192                                 (c->mode << 1) |
193                                 c->bcd);
194                 c->status_latched = 1;
195         }
196 }
197
198 static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
199 {
200         return container_of(ps, struct kvm_pit, pit_state);
201 }
202
203 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
204 {
205         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
206                                                  irq_ack_notifier);
207         struct kvm_pit *pit = pit_state_to_pit(ps);
208
209         atomic_set(&ps->irq_ack, 1);
210         /* irq_ack should be set before pending is read.  Order accesses with
211          * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
212          */
213         smp_mb();
214         if (atomic_dec_if_positive(&ps->pending) > 0)
215                 kthread_queue_work(pit->worker, &pit->expired);
216 }
217
218 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
219 {
220         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
221         struct hrtimer *timer;
222
223         /* Somewhat arbitrarily make vcpu0 the owner of the PIT. */
224         if (vcpu->vcpu_id || !pit)
225                 return;
226
227         timer = &pit->pit_state.timer;
228         mutex_lock(&pit->pit_state.lock);
229         if (hrtimer_cancel(timer))
230                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
231         mutex_unlock(&pit->pit_state.lock);
232 }
233
234 static void destroy_pit_timer(struct kvm_pit *pit)
235 {
236         hrtimer_cancel(&pit->pit_state.timer);
237         kthread_flush_work(&pit->expired);
238 }
239
240 static void pit_do_work(struct kthread_work *work)
241 {
242         struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
243         struct kvm *kvm = pit->kvm;
244         struct kvm_vcpu *vcpu;
245         int i;
246         struct kvm_kpit_state *ps = &pit->pit_state;
247
248         if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
249                 return;
250
251         kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
252         kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
253
254         /*
255          * Provides NMI watchdog support via Virtual Wire mode.
256          * The route is: PIT -> LVT0 in NMI mode.
257          *
258          * Note: Our Virtual Wire implementation does not follow
259          * the MP specification.  We propagate a PIT interrupt to all
260          * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
261          * also be simultaneously delivered through PIC and IOAPIC.
262          */
263         if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
264                 kvm_for_each_vcpu(i, vcpu, kvm)
265                         kvm_apic_nmi_wd_deliver(vcpu);
266 }
267
268 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
269 {
270         struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
271         struct kvm_pit *pt = pit_state_to_pit(ps);
272
273         if (atomic_read(&ps->reinject))
274                 atomic_inc(&ps->pending);
275
276         kthread_queue_work(pt->worker, &pt->expired);
277
278         if (ps->is_periodic) {
279                 hrtimer_add_expires_ns(&ps->timer, ps->period);
280                 return HRTIMER_RESTART;
281         } else
282                 return HRTIMER_NORESTART;
283 }
284
285 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
286 {
287         atomic_set(&pit->pit_state.pending, 0);
288         atomic_set(&pit->pit_state.irq_ack, 1);
289 }
290
291 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
292 {
293         struct kvm_kpit_state *ps = &pit->pit_state;
294         struct kvm *kvm = pit->kvm;
295
296         if (atomic_read(&ps->reinject) == reinject)
297                 return;
298
299         /*
300          * AMD SVM AVIC accelerates EOI write and does not trap.
301          * This cause in-kernel PIT re-inject mode to fail
302          * since it checks ps->irq_ack before kvm_set_irq()
303          * and relies on the ack notifier to timely queue
304          * the pt->worker work iterm and reinject the missed tick.
305          * So, deactivate APICv when PIT is in reinject mode.
306          */
307         if (reinject) {
308                 kvm_request_apicv_update(kvm, false,
309                                          APICV_INHIBIT_REASON_PIT_REINJ);
310                 /* The initial state is preserved while ps->reinject == 0. */
311                 kvm_pit_reset_reinject(pit);
312                 kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
313                 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
314         } else {
315                 kvm_request_apicv_update(kvm, true,
316                                          APICV_INHIBIT_REASON_PIT_REINJ);
317                 kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
318                 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
319         }
320
321         atomic_set(&ps->reinject, reinject);
322 }
323
324 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
325 {
326         struct kvm_kpit_state *ps = &pit->pit_state;
327         struct kvm *kvm = pit->kvm;
328         s64 interval;
329
330         if (!ioapic_in_kernel(kvm) ||
331             ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
332                 return;
333
334         interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
335
336         pr_debug("create pit timer, interval is %llu nsec\n", interval);
337
338         /* TODO The new value only affected after the retriggered */
339         hrtimer_cancel(&ps->timer);
340         kthread_flush_work(&pit->expired);
341         ps->period = interval;
342         ps->is_periodic = is_period;
343
344         kvm_pit_reset_reinject(pit);
345
346         /*
347          * Do not allow the guest to program periodic timers with small
348          * interval, since the hrtimers are not throttled by the host
349          * scheduler.
350          */
351         if (ps->is_periodic) {
352                 s64 min_period = min_timer_period_us * 1000LL;
353
354                 if (ps->period < min_period) {
355                         pr_info_ratelimited(
356                             "kvm: requested %lld ns "
357                             "i8254 timer period limited to %lld ns\n",
358                             ps->period, min_period);
359                         ps->period = min_period;
360                 }
361         }
362
363         hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
364                       HRTIMER_MODE_ABS);
365 }
366
367 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
368 {
369         struct kvm_kpit_state *ps = &pit->pit_state;
370
371         pr_debug("load_count val is %u, channel is %d\n", val, channel);
372
373         /*
374          * The largest possible initial count is 0; this is equivalent
375          * to 216 for binary counting and 104 for BCD counting.
376          */
377         if (val == 0)
378                 val = 0x10000;
379
380         ps->channels[channel].count = val;
381
382         if (channel != 0) {
383                 ps->channels[channel].count_load_time = ktime_get();
384                 return;
385         }
386
387         /* Two types of timer
388          * mode 1 is one shot, mode 2 is period, otherwise del timer */
389         switch (ps->channels[0].mode) {
390         case 0:
391         case 1:
392         /* FIXME: enhance mode 4 precision */
393         case 4:
394                 create_pit_timer(pit, val, 0);
395                 break;
396         case 2:
397         case 3:
398                 create_pit_timer(pit, val, 1);
399                 break;
400         default:
401                 destroy_pit_timer(pit);
402         }
403 }
404
405 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
406                 int hpet_legacy_start)
407 {
408         u8 saved_mode;
409
410         WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
411
412         if (hpet_legacy_start) {
413                 /* save existing mode for later reenablement */
414                 WARN_ON(channel != 0);
415                 saved_mode = pit->pit_state.channels[0].mode;
416                 pit->pit_state.channels[0].mode = 0xff; /* disable timer */
417                 pit_load_count(pit, channel, val);
418                 pit->pit_state.channels[0].mode = saved_mode;
419         } else {
420                 pit_load_count(pit, channel, val);
421         }
422 }
423
424 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
425 {
426         return container_of(dev, struct kvm_pit, dev);
427 }
428
429 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
430 {
431         return container_of(dev, struct kvm_pit, speaker_dev);
432 }
433
434 static inline int pit_in_range(gpa_t addr)
435 {
436         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
437                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
438 }
439
440 static int pit_ioport_write(struct kvm_vcpu *vcpu,
441                                 struct kvm_io_device *this,
442                             gpa_t addr, int len, const void *data)
443 {
444         struct kvm_pit *pit = dev_to_pit(this);
445         struct kvm_kpit_state *pit_state = &pit->pit_state;
446         int channel, access;
447         struct kvm_kpit_channel_state *s;
448         u32 val = *(u32 *) data;
449         if (!pit_in_range(addr))
450                 return -EOPNOTSUPP;
451
452         val  &= 0xff;
453         addr &= KVM_PIT_CHANNEL_MASK;
454
455         mutex_lock(&pit_state->lock);
456
457         if (val != 0)
458                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
459                          (unsigned int)addr, len, val);
460
461         if (addr == 3) {
462                 channel = val >> 6;
463                 if (channel == 3) {
464                         /* Read-Back Command. */
465                         for (channel = 0; channel < 3; channel++) {
466                                 if (val & (2 << channel)) {
467                                         if (!(val & 0x20))
468                                                 pit_latch_count(pit, channel);
469                                         if (!(val & 0x10))
470                                                 pit_latch_status(pit, channel);
471                                 }
472                         }
473                 } else {
474                         /* Select Counter <channel>. */
475                         s = &pit_state->channels[channel];
476                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
477                         if (access == 0) {
478                                 pit_latch_count(pit, channel);
479                         } else {
480                                 s->rw_mode = access;
481                                 s->read_state = access;
482                                 s->write_state = access;
483                                 s->mode = (val >> 1) & 7;
484                                 if (s->mode > 5)
485                                         s->mode -= 4;
486                                 s->bcd = val & 1;
487                         }
488                 }
489         } else {
490                 /* Write Count. */
491                 s = &pit_state->channels[addr];
492                 switch (s->write_state) {
493                 default:
494                 case RW_STATE_LSB:
495                         pit_load_count(pit, addr, val);
496                         break;
497                 case RW_STATE_MSB:
498                         pit_load_count(pit, addr, val << 8);
499                         break;
500                 case RW_STATE_WORD0:
501                         s->write_latch = val;
502                         s->write_state = RW_STATE_WORD1;
503                         break;
504                 case RW_STATE_WORD1:
505                         pit_load_count(pit, addr, s->write_latch | (val << 8));
506                         s->write_state = RW_STATE_WORD0;
507                         break;
508                 }
509         }
510
511         mutex_unlock(&pit_state->lock);
512         return 0;
513 }
514
515 static int pit_ioport_read(struct kvm_vcpu *vcpu,
516                            struct kvm_io_device *this,
517                            gpa_t addr, int len, void *data)
518 {
519         struct kvm_pit *pit = dev_to_pit(this);
520         struct kvm_kpit_state *pit_state = &pit->pit_state;
521         int ret, count;
522         struct kvm_kpit_channel_state *s;
523         if (!pit_in_range(addr))
524                 return -EOPNOTSUPP;
525
526         addr &= KVM_PIT_CHANNEL_MASK;
527         if (addr == 3)
528                 return 0;
529
530         s = &pit_state->channels[addr];
531
532         mutex_lock(&pit_state->lock);
533
534         if (s->status_latched) {
535                 s->status_latched = 0;
536                 ret = s->status;
537         } else if (s->count_latched) {
538                 switch (s->count_latched) {
539                 default:
540                 case RW_STATE_LSB:
541                         ret = s->latched_count & 0xff;
542                         s->count_latched = 0;
543                         break;
544                 case RW_STATE_MSB:
545                         ret = s->latched_count >> 8;
546                         s->count_latched = 0;
547                         break;
548                 case RW_STATE_WORD0:
549                         ret = s->latched_count & 0xff;
550                         s->count_latched = RW_STATE_MSB;
551                         break;
552                 }
553         } else {
554                 switch (s->read_state) {
555                 default:
556                 case RW_STATE_LSB:
557                         count = pit_get_count(pit, addr);
558                         ret = count & 0xff;
559                         break;
560                 case RW_STATE_MSB:
561                         count = pit_get_count(pit, addr);
562                         ret = (count >> 8) & 0xff;
563                         break;
564                 case RW_STATE_WORD0:
565                         count = pit_get_count(pit, addr);
566                         ret = count & 0xff;
567                         s->read_state = RW_STATE_WORD1;
568                         break;
569                 case RW_STATE_WORD1:
570                         count = pit_get_count(pit, addr);
571                         ret = (count >> 8) & 0xff;
572                         s->read_state = RW_STATE_WORD0;
573                         break;
574                 }
575         }
576
577         if (len > sizeof(ret))
578                 len = sizeof(ret);
579         memcpy(data, (char *)&ret, len);
580
581         mutex_unlock(&pit_state->lock);
582         return 0;
583 }
584
585 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
586                                 struct kvm_io_device *this,
587                                 gpa_t addr, int len, const void *data)
588 {
589         struct kvm_pit *pit = speaker_to_pit(this);
590         struct kvm_kpit_state *pit_state = &pit->pit_state;
591         u32 val = *(u32 *) data;
592         if (addr != KVM_SPEAKER_BASE_ADDRESS)
593                 return -EOPNOTSUPP;
594
595         mutex_lock(&pit_state->lock);
596         pit_state->speaker_data_on = (val >> 1) & 1;
597         pit_set_gate(pit, 2, val & 1);
598         mutex_unlock(&pit_state->lock);
599         return 0;
600 }
601
602 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
603                                    struct kvm_io_device *this,
604                                    gpa_t addr, int len, void *data)
605 {
606         struct kvm_pit *pit = speaker_to_pit(this);
607         struct kvm_kpit_state *pit_state = &pit->pit_state;
608         unsigned int refresh_clock;
609         int ret;
610         if (addr != KVM_SPEAKER_BASE_ADDRESS)
611                 return -EOPNOTSUPP;
612
613         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
614         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
615
616         mutex_lock(&pit_state->lock);
617         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
618                 (pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
619         if (len > sizeof(ret))
620                 len = sizeof(ret);
621         memcpy(data, (char *)&ret, len);
622         mutex_unlock(&pit_state->lock);
623         return 0;
624 }
625
626 static void kvm_pit_reset(struct kvm_pit *pit)
627 {
628         int i;
629         struct kvm_kpit_channel_state *c;
630
631         pit->pit_state.flags = 0;
632         for (i = 0; i < 3; i++) {
633                 c = &pit->pit_state.channels[i];
634                 c->mode = 0xff;
635                 c->gate = (i != 2);
636                 pit_load_count(pit, i, 0);
637         }
638
639         kvm_pit_reset_reinject(pit);
640 }
641
642 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
643 {
644         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
645
646         if (!mask)
647                 kvm_pit_reset_reinject(pit);
648 }
649
650 static const struct kvm_io_device_ops pit_dev_ops = {
651         .read     = pit_ioport_read,
652         .write    = pit_ioport_write,
653 };
654
655 static const struct kvm_io_device_ops speaker_dev_ops = {
656         .read     = speaker_ioport_read,
657         .write    = speaker_ioport_write,
658 };
659
660 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
661 {
662         struct kvm_pit *pit;
663         struct kvm_kpit_state *pit_state;
664         struct pid *pid;
665         pid_t pid_nr;
666         int ret;
667
668         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
669         if (!pit)
670                 return NULL;
671
672         pit->irq_source_id = kvm_request_irq_source_id(kvm);
673         if (pit->irq_source_id < 0)
674                 goto fail_request;
675
676         mutex_init(&pit->pit_state.lock);
677
678         pid = get_pid(task_tgid(current));
679         pid_nr = pid_vnr(pid);
680         put_pid(pid);
681
682         pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
683         if (IS_ERR(pit->worker))
684                 goto fail_kthread;
685
686         kthread_init_work(&pit->expired, pit_do_work);
687
688         pit->kvm = kvm;
689
690         pit_state = &pit->pit_state;
691         hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
692         pit_state->timer.function = pit_timer_fn;
693
694         pit_state->irq_ack_notifier.gsi = 0;
695         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
696         pit->mask_notifier.func = pit_mask_notifer;
697
698         kvm_pit_reset(pit);
699
700         kvm_pit_set_reinject(pit, true);
701
702         mutex_lock(&kvm->slots_lock);
703         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
704         ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
705                                       KVM_PIT_MEM_LENGTH, &pit->dev);
706         if (ret < 0)
707                 goto fail_register_pit;
708
709         if (flags & KVM_PIT_SPEAKER_DUMMY) {
710                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
711                 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
712                                               KVM_SPEAKER_BASE_ADDRESS, 4,
713                                               &pit->speaker_dev);
714                 if (ret < 0)
715                         goto fail_register_speaker;
716         }
717         mutex_unlock(&kvm->slots_lock);
718
719         return pit;
720
721 fail_register_speaker:
722         kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
723 fail_register_pit:
724         mutex_unlock(&kvm->slots_lock);
725         kvm_pit_set_reinject(pit, false);
726         kthread_destroy_worker(pit->worker);
727 fail_kthread:
728         kvm_free_irq_source_id(kvm, pit->irq_source_id);
729 fail_request:
730         kfree(pit);
731         return NULL;
732 }
733
734 void kvm_free_pit(struct kvm *kvm)
735 {
736         struct kvm_pit *pit = kvm->arch.vpit;
737
738         if (pit) {
739                 mutex_lock(&kvm->slots_lock);
740                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
741                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
742                 mutex_unlock(&kvm->slots_lock);
743                 kvm_pit_set_reinject(pit, false);
744                 hrtimer_cancel(&pit->pit_state.timer);
745                 kthread_destroy_worker(pit->worker);
746                 kvm_free_irq_source_id(kvm, pit->irq_source_id);
747                 kfree(pit);
748         }
749 }