Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / arch / x86 / kvm / hyperv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KVM Microsoft Hyper-V emulation
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12  *
13  * Authors:
14  *   Avi Kivity   <avi@qumranet.com>
15  *   Yaniv Kamay  <yaniv@qumranet.com>
16  *   Amit Shah    <amit.shah@qumranet.com>
17  *   Ben-Ami Yassour <benami@il.ibm.com>
18  *   Andrey Smetanin <asmetanin@virtuozzo.com>
19  */
20
21 #include "x86.h"
22 #include "lapic.h"
23 #include "ioapic.h"
24 #include "cpuid.h"
25 #include "hyperv.h"
26 #include "xen.h"
27
28 #include <linux/cpu.h>
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36
37 #include "trace.h"
38 #include "irq.h"
39 #include "fpu.h"
40
41 /* "Hv#1" signature */
42 #define HYPERV_CPUID_SIGNATURE_EAX 0x31237648
43
44 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
45
46 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
47                                 bool vcpu_kick);
48
49 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
50 {
51         return atomic64_read(&synic->sint[sint]);
52 }
53
54 static inline int synic_get_sint_vector(u64 sint_value)
55 {
56         if (sint_value & HV_SYNIC_SINT_MASKED)
57                 return -1;
58         return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
59 }
60
61 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
62                                       int vector)
63 {
64         int i;
65
66         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
67                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
68                         return true;
69         }
70         return false;
71 }
72
73 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
74                                      int vector)
75 {
76         int i;
77         u64 sint_value;
78
79         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
80                 sint_value = synic_read_sint(synic, i);
81                 if (synic_get_sint_vector(sint_value) == vector &&
82                     sint_value & HV_SYNIC_SINT_AUTO_EOI)
83                         return true;
84         }
85         return false;
86 }
87
88 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
89                                 int vector)
90 {
91         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
92         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
93         int auto_eoi_old, auto_eoi_new;
94
95         if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
96                 return;
97
98         if (synic_has_vector_connected(synic, vector))
99                 __set_bit(vector, synic->vec_bitmap);
100         else
101                 __clear_bit(vector, synic->vec_bitmap);
102
103         auto_eoi_old = bitmap_weight(synic->auto_eoi_bitmap, 256);
104
105         if (synic_has_vector_auto_eoi(synic, vector))
106                 __set_bit(vector, synic->auto_eoi_bitmap);
107         else
108                 __clear_bit(vector, synic->auto_eoi_bitmap);
109
110         auto_eoi_new = bitmap_weight(synic->auto_eoi_bitmap, 256);
111
112         if (!!auto_eoi_old == !!auto_eoi_new)
113                 return;
114
115         mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
116
117         if (auto_eoi_new)
118                 hv->synic_auto_eoi_used++;
119         else
120                 hv->synic_auto_eoi_used--;
121
122         __kvm_request_apicv_update(vcpu->kvm,
123                                    !hv->synic_auto_eoi_used,
124                                    APICV_INHIBIT_REASON_HYPERV);
125
126         mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
127 }
128
129 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
130                           u64 data, bool host)
131 {
132         int vector, old_vector;
133         bool masked;
134
135         vector = data & HV_SYNIC_SINT_VECTOR_MASK;
136         masked = data & HV_SYNIC_SINT_MASKED;
137
138         /*
139          * Valid vectors are 16-255, however, nested Hyper-V attempts to write
140          * default '0x10000' value on boot and this should not #GP. We need to
141          * allow zero-initing the register from host as well.
142          */
143         if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
144                 return 1;
145         /*
146          * Guest may configure multiple SINTs to use the same vector, so
147          * we maintain a bitmap of vectors handled by synic, and a
148          * bitmap of vectors with auto-eoi behavior.  The bitmaps are
149          * updated here, and atomically queried on fast paths.
150          */
151         old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
152
153         atomic64_set(&synic->sint[sint], data);
154
155         synic_update_vector(synic, old_vector);
156
157         synic_update_vector(synic, vector);
158
159         /* Load SynIC vectors into EOI exit bitmap */
160         kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
161         return 0;
162 }
163
164 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
165 {
166         struct kvm_vcpu *vcpu = NULL;
167         int i;
168
169         if (vpidx >= KVM_MAX_VCPUS)
170                 return NULL;
171
172         vcpu = kvm_get_vcpu(kvm, vpidx);
173         if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
174                 return vcpu;
175         kvm_for_each_vcpu(i, vcpu, kvm)
176                 if (kvm_hv_get_vpindex(vcpu) == vpidx)
177                         return vcpu;
178         return NULL;
179 }
180
181 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
182 {
183         struct kvm_vcpu *vcpu;
184         struct kvm_vcpu_hv_synic *synic;
185
186         vcpu = get_vcpu_by_vpidx(kvm, vpidx);
187         if (!vcpu || !to_hv_vcpu(vcpu))
188                 return NULL;
189         synic = to_hv_synic(vcpu);
190         return (synic->active) ? synic : NULL;
191 }
192
193 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
194 {
195         struct kvm *kvm = vcpu->kvm;
196         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
197         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
198         struct kvm_vcpu_hv_stimer *stimer;
199         int gsi, idx;
200
201         trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
202
203         /* Try to deliver pending Hyper-V SynIC timers messages */
204         for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
205                 stimer = &hv_vcpu->stimer[idx];
206                 if (stimer->msg_pending && stimer->config.enable &&
207                     !stimer->config.direct_mode &&
208                     stimer->config.sintx == sint)
209                         stimer_mark_pending(stimer, false);
210         }
211
212         idx = srcu_read_lock(&kvm->irq_srcu);
213         gsi = atomic_read(&synic->sint_to_gsi[sint]);
214         if (gsi != -1)
215                 kvm_notify_acked_gsi(kvm, gsi);
216         srcu_read_unlock(&kvm->irq_srcu, idx);
217 }
218
219 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
220 {
221         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
222         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
223
224         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
225         hv_vcpu->exit.u.synic.msr = msr;
226         hv_vcpu->exit.u.synic.control = synic->control;
227         hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
228         hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
229
230         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
231 }
232
233 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
234                          u32 msr, u64 data, bool host)
235 {
236         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
237         int ret;
238
239         if (!synic->active && !host)
240                 return 1;
241
242         trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
243
244         ret = 0;
245         switch (msr) {
246         case HV_X64_MSR_SCONTROL:
247                 synic->control = data;
248                 if (!host)
249                         synic_exit(synic, msr);
250                 break;
251         case HV_X64_MSR_SVERSION:
252                 if (!host) {
253                         ret = 1;
254                         break;
255                 }
256                 synic->version = data;
257                 break;
258         case HV_X64_MSR_SIEFP:
259                 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
260                     !synic->dont_zero_synic_pages)
261                         if (kvm_clear_guest(vcpu->kvm,
262                                             data & PAGE_MASK, PAGE_SIZE)) {
263                                 ret = 1;
264                                 break;
265                         }
266                 synic->evt_page = data;
267                 if (!host)
268                         synic_exit(synic, msr);
269                 break;
270         case HV_X64_MSR_SIMP:
271                 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
272                     !synic->dont_zero_synic_pages)
273                         if (kvm_clear_guest(vcpu->kvm,
274                                             data & PAGE_MASK, PAGE_SIZE)) {
275                                 ret = 1;
276                                 break;
277                         }
278                 synic->msg_page = data;
279                 if (!host)
280                         synic_exit(synic, msr);
281                 break;
282         case HV_X64_MSR_EOM: {
283                 int i;
284
285                 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
286                         kvm_hv_notify_acked_sint(vcpu, i);
287                 break;
288         }
289         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
290                 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
291                 break;
292         default:
293                 ret = 1;
294                 break;
295         }
296         return ret;
297 }
298
299 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
300 {
301         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
302
303         return hv_vcpu->cpuid_cache.syndbg_cap_eax &
304                 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
305 }
306
307 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
308 {
309         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
310
311         if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
312                 hv->hv_syndbg.control.status =
313                         vcpu->run->hyperv.u.syndbg.status;
314         return 1;
315 }
316
317 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
318 {
319         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
320         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
321
322         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
323         hv_vcpu->exit.u.syndbg.msr = msr;
324         hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
325         hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
326         hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
327         hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
328         vcpu->arch.complete_userspace_io =
329                         kvm_hv_syndbg_complete_userspace;
330
331         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
332 }
333
334 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
335 {
336         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
337
338         if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
339                 return 1;
340
341         trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
342                                     to_hv_vcpu(vcpu)->vp_index, msr, data);
343         switch (msr) {
344         case HV_X64_MSR_SYNDBG_CONTROL:
345                 syndbg->control.control = data;
346                 if (!host)
347                         syndbg_exit(vcpu, msr);
348                 break;
349         case HV_X64_MSR_SYNDBG_STATUS:
350                 syndbg->control.status = data;
351                 break;
352         case HV_X64_MSR_SYNDBG_SEND_BUFFER:
353                 syndbg->control.send_page = data;
354                 break;
355         case HV_X64_MSR_SYNDBG_RECV_BUFFER:
356                 syndbg->control.recv_page = data;
357                 break;
358         case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
359                 syndbg->control.pending_page = data;
360                 if (!host)
361                         syndbg_exit(vcpu, msr);
362                 break;
363         case HV_X64_MSR_SYNDBG_OPTIONS:
364                 syndbg->options = data;
365                 break;
366         default:
367                 break;
368         }
369
370         return 0;
371 }
372
373 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
374 {
375         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
376
377         if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
378                 return 1;
379
380         switch (msr) {
381         case HV_X64_MSR_SYNDBG_CONTROL:
382                 *pdata = syndbg->control.control;
383                 break;
384         case HV_X64_MSR_SYNDBG_STATUS:
385                 *pdata = syndbg->control.status;
386                 break;
387         case HV_X64_MSR_SYNDBG_SEND_BUFFER:
388                 *pdata = syndbg->control.send_page;
389                 break;
390         case HV_X64_MSR_SYNDBG_RECV_BUFFER:
391                 *pdata = syndbg->control.recv_page;
392                 break;
393         case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
394                 *pdata = syndbg->control.pending_page;
395                 break;
396         case HV_X64_MSR_SYNDBG_OPTIONS:
397                 *pdata = syndbg->options;
398                 break;
399         default:
400                 break;
401         }
402
403         trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
404
405         return 0;
406 }
407
408 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
409                          bool host)
410 {
411         int ret;
412
413         if (!synic->active && !host)
414                 return 1;
415
416         ret = 0;
417         switch (msr) {
418         case HV_X64_MSR_SCONTROL:
419                 *pdata = synic->control;
420                 break;
421         case HV_X64_MSR_SVERSION:
422                 *pdata = synic->version;
423                 break;
424         case HV_X64_MSR_SIEFP:
425                 *pdata = synic->evt_page;
426                 break;
427         case HV_X64_MSR_SIMP:
428                 *pdata = synic->msg_page;
429                 break;
430         case HV_X64_MSR_EOM:
431                 *pdata = 0;
432                 break;
433         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
434                 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
435                 break;
436         default:
437                 ret = 1;
438                 break;
439         }
440         return ret;
441 }
442
443 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
444 {
445         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
446         struct kvm_lapic_irq irq;
447         int ret, vector;
448
449         if (sint >= ARRAY_SIZE(synic->sint))
450                 return -EINVAL;
451
452         vector = synic_get_sint_vector(synic_read_sint(synic, sint));
453         if (vector < 0)
454                 return -ENOENT;
455
456         memset(&irq, 0, sizeof(irq));
457         irq.shorthand = APIC_DEST_SELF;
458         irq.dest_mode = APIC_DEST_PHYSICAL;
459         irq.delivery_mode = APIC_DM_FIXED;
460         irq.vector = vector;
461         irq.level = 1;
462
463         ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
464         trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
465         return ret;
466 }
467
468 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
469 {
470         struct kvm_vcpu_hv_synic *synic;
471
472         synic = synic_get(kvm, vpidx);
473         if (!synic)
474                 return -EINVAL;
475
476         return synic_set_irq(synic, sint);
477 }
478
479 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
480 {
481         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
482         int i;
483
484         trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
485
486         for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
487                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
488                         kvm_hv_notify_acked_sint(vcpu, i);
489 }
490
491 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
492 {
493         struct kvm_vcpu_hv_synic *synic;
494
495         synic = synic_get(kvm, vpidx);
496         if (!synic)
497                 return -EINVAL;
498
499         if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
500                 return -EINVAL;
501
502         atomic_set(&synic->sint_to_gsi[sint], gsi);
503         return 0;
504 }
505
506 void kvm_hv_irq_routing_update(struct kvm *kvm)
507 {
508         struct kvm_irq_routing_table *irq_rt;
509         struct kvm_kernel_irq_routing_entry *e;
510         u32 gsi;
511
512         irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
513                                         lockdep_is_held(&kvm->irq_lock));
514
515         for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
516                 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
517                         if (e->type == KVM_IRQ_ROUTING_HV_SINT)
518                                 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
519                                                     e->hv_sint.sint, gsi);
520                 }
521         }
522 }
523
524 static void synic_init(struct kvm_vcpu_hv_synic *synic)
525 {
526         int i;
527
528         memset(synic, 0, sizeof(*synic));
529         synic->version = HV_SYNIC_VERSION_1;
530         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
531                 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
532                 atomic_set(&synic->sint_to_gsi[i], -1);
533         }
534 }
535
536 static u64 get_time_ref_counter(struct kvm *kvm)
537 {
538         struct kvm_hv *hv = to_kvm_hv(kvm);
539         struct kvm_vcpu *vcpu;
540         u64 tsc;
541
542         /*
543          * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
544          * is broken, disabled or being updated.
545          */
546         if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
547                 return div_u64(get_kvmclock_ns(kvm), 100);
548
549         vcpu = kvm_get_vcpu(kvm, 0);
550         tsc = kvm_read_l1_tsc(vcpu, rdtsc());
551         return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
552                 + hv->tsc_ref.tsc_offset;
553 }
554
555 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
556                                 bool vcpu_kick)
557 {
558         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
559
560         set_bit(stimer->index,
561                 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
562         kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
563         if (vcpu_kick)
564                 kvm_vcpu_kick(vcpu);
565 }
566
567 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
568 {
569         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
570
571         trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
572                                     stimer->index);
573
574         hrtimer_cancel(&stimer->timer);
575         clear_bit(stimer->index,
576                   to_hv_vcpu(vcpu)->stimer_pending_bitmap);
577         stimer->msg_pending = false;
578         stimer->exp_time = 0;
579 }
580
581 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
582 {
583         struct kvm_vcpu_hv_stimer *stimer;
584
585         stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
586         trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
587                                      stimer->index);
588         stimer_mark_pending(stimer, true);
589
590         return HRTIMER_NORESTART;
591 }
592
593 /*
594  * stimer_start() assumptions:
595  * a) stimer->count is not equal to 0
596  * b) stimer->config has HV_STIMER_ENABLE flag
597  */
598 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
599 {
600         u64 time_now;
601         ktime_t ktime_now;
602
603         time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
604         ktime_now = ktime_get();
605
606         if (stimer->config.periodic) {
607                 if (stimer->exp_time) {
608                         if (time_now >= stimer->exp_time) {
609                                 u64 remainder;
610
611                                 div64_u64_rem(time_now - stimer->exp_time,
612                                               stimer->count, &remainder);
613                                 stimer->exp_time =
614                                         time_now + (stimer->count - remainder);
615                         }
616                 } else
617                         stimer->exp_time = time_now + stimer->count;
618
619                 trace_kvm_hv_stimer_start_periodic(
620                                         hv_stimer_to_vcpu(stimer)->vcpu_id,
621                                         stimer->index,
622                                         time_now, stimer->exp_time);
623
624                 hrtimer_start(&stimer->timer,
625                               ktime_add_ns(ktime_now,
626                                            100 * (stimer->exp_time - time_now)),
627                               HRTIMER_MODE_ABS);
628                 return 0;
629         }
630         stimer->exp_time = stimer->count;
631         if (time_now >= stimer->count) {
632                 /*
633                  * Expire timer according to Hypervisor Top-Level Functional
634                  * specification v4(15.3.1):
635                  * "If a one shot is enabled and the specified count is in
636                  * the past, it will expire immediately."
637                  */
638                 stimer_mark_pending(stimer, false);
639                 return 0;
640         }
641
642         trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
643                                            stimer->index,
644                                            time_now, stimer->count);
645
646         hrtimer_start(&stimer->timer,
647                       ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
648                       HRTIMER_MODE_ABS);
649         return 0;
650 }
651
652 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
653                              bool host)
654 {
655         union hv_stimer_config new_config = {.as_uint64 = config},
656                 old_config = {.as_uint64 = stimer->config.as_uint64};
657         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
658         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
659         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
660
661         if (!synic->active && !host)
662                 return 1;
663
664         if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
665                      !(hv_vcpu->cpuid_cache.features_edx &
666                        HV_STIMER_DIRECT_MODE_AVAILABLE)))
667                 return 1;
668
669         trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
670                                        stimer->index, config, host);
671
672         stimer_cleanup(stimer);
673         if (old_config.enable &&
674             !new_config.direct_mode && new_config.sintx == 0)
675                 new_config.enable = 0;
676         stimer->config.as_uint64 = new_config.as_uint64;
677
678         if (stimer->config.enable)
679                 stimer_mark_pending(stimer, false);
680
681         return 0;
682 }
683
684 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
685                             bool host)
686 {
687         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
688         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
689
690         if (!synic->active && !host)
691                 return 1;
692
693         trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
694                                       stimer->index, count, host);
695
696         stimer_cleanup(stimer);
697         stimer->count = count;
698         if (stimer->count == 0)
699                 stimer->config.enable = 0;
700         else if (stimer->config.auto_enable)
701                 stimer->config.enable = 1;
702
703         if (stimer->config.enable)
704                 stimer_mark_pending(stimer, false);
705
706         return 0;
707 }
708
709 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
710 {
711         *pconfig = stimer->config.as_uint64;
712         return 0;
713 }
714
715 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
716 {
717         *pcount = stimer->count;
718         return 0;
719 }
720
721 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
722                              struct hv_message *src_msg, bool no_retry)
723 {
724         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
725         int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
726         gfn_t msg_page_gfn;
727         struct hv_message_header hv_hdr;
728         int r;
729
730         if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
731                 return -ENOENT;
732
733         msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
734
735         /*
736          * Strictly following the spec-mandated ordering would assume setting
737          * .msg_pending before checking .message_type.  However, this function
738          * is only called in vcpu context so the entire update is atomic from
739          * guest POV and thus the exact order here doesn't matter.
740          */
741         r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
742                                      msg_off + offsetof(struct hv_message,
743                                                         header.message_type),
744                                      sizeof(hv_hdr.message_type));
745         if (r < 0)
746                 return r;
747
748         if (hv_hdr.message_type != HVMSG_NONE) {
749                 if (no_retry)
750                         return 0;
751
752                 hv_hdr.message_flags.msg_pending = 1;
753                 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
754                                               &hv_hdr.message_flags,
755                                               msg_off +
756                                               offsetof(struct hv_message,
757                                                        header.message_flags),
758                                               sizeof(hv_hdr.message_flags));
759                 if (r < 0)
760                         return r;
761                 return -EAGAIN;
762         }
763
764         r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
765                                       sizeof(src_msg->header) +
766                                       src_msg->header.payload_size);
767         if (r < 0)
768                 return r;
769
770         r = synic_set_irq(synic, sint);
771         if (r < 0)
772                 return r;
773         if (r == 0)
774                 return -EFAULT;
775         return 0;
776 }
777
778 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
779 {
780         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
781         struct hv_message *msg = &stimer->msg;
782         struct hv_timer_message_payload *payload =
783                         (struct hv_timer_message_payload *)&msg->u.payload;
784
785         /*
786          * To avoid piling up periodic ticks, don't retry message
787          * delivery for them (within "lazy" lost ticks policy).
788          */
789         bool no_retry = stimer->config.periodic;
790
791         payload->expiration_time = stimer->exp_time;
792         payload->delivery_time = get_time_ref_counter(vcpu->kvm);
793         return synic_deliver_msg(to_hv_synic(vcpu),
794                                  stimer->config.sintx, msg,
795                                  no_retry);
796 }
797
798 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
799 {
800         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
801         struct kvm_lapic_irq irq = {
802                 .delivery_mode = APIC_DM_FIXED,
803                 .vector = stimer->config.apic_vector
804         };
805
806         if (lapic_in_kernel(vcpu))
807                 return !kvm_apic_set_irq(vcpu, &irq, NULL);
808         return 0;
809 }
810
811 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
812 {
813         int r, direct = stimer->config.direct_mode;
814
815         stimer->msg_pending = true;
816         if (!direct)
817                 r = stimer_send_msg(stimer);
818         else
819                 r = stimer_notify_direct(stimer);
820         trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
821                                        stimer->index, direct, r);
822         if (!r) {
823                 stimer->msg_pending = false;
824                 if (!(stimer->config.periodic))
825                         stimer->config.enable = 0;
826         }
827 }
828
829 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
830 {
831         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
832         struct kvm_vcpu_hv_stimer *stimer;
833         u64 time_now, exp_time;
834         int i;
835
836         if (!hv_vcpu)
837                 return;
838
839         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
840                 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
841                         stimer = &hv_vcpu->stimer[i];
842                         if (stimer->config.enable) {
843                                 exp_time = stimer->exp_time;
844
845                                 if (exp_time) {
846                                         time_now =
847                                                 get_time_ref_counter(vcpu->kvm);
848                                         if (time_now >= exp_time)
849                                                 stimer_expiration(stimer);
850                                 }
851
852                                 if ((stimer->config.enable) &&
853                                     stimer->count) {
854                                         if (!stimer->msg_pending)
855                                                 stimer_start(stimer);
856                                 } else
857                                         stimer_cleanup(stimer);
858                         }
859                 }
860 }
861
862 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
863 {
864         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
865         int i;
866
867         if (!hv_vcpu)
868                 return;
869
870         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
871                 stimer_cleanup(&hv_vcpu->stimer[i]);
872
873         kfree(hv_vcpu);
874         vcpu->arch.hyperv = NULL;
875 }
876
877 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
878 {
879         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
880
881         if (!hv_vcpu)
882                 return false;
883
884         if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
885                 return false;
886         return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
887 }
888 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
889
890 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
891                             struct hv_vp_assist_page *assist_page)
892 {
893         if (!kvm_hv_assist_page_enabled(vcpu))
894                 return false;
895         return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
896                                       assist_page, sizeof(*assist_page));
897 }
898 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
899
900 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
901 {
902         struct hv_message *msg = &stimer->msg;
903         struct hv_timer_message_payload *payload =
904                         (struct hv_timer_message_payload *)&msg->u.payload;
905
906         memset(&msg->header, 0, sizeof(msg->header));
907         msg->header.message_type = HVMSG_TIMER_EXPIRED;
908         msg->header.payload_size = sizeof(*payload);
909
910         payload->timer_index = stimer->index;
911         payload->expiration_time = 0;
912         payload->delivery_time = 0;
913 }
914
915 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
916 {
917         memset(stimer, 0, sizeof(*stimer));
918         stimer->index = timer_index;
919         hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
920         stimer->timer.function = stimer_timer_callback;
921         stimer_prepare_msg(stimer);
922 }
923
924 static int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
925 {
926         struct kvm_vcpu_hv *hv_vcpu;
927         int i;
928
929         hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
930         if (!hv_vcpu)
931                 return -ENOMEM;
932
933         vcpu->arch.hyperv = hv_vcpu;
934         hv_vcpu->vcpu = vcpu;
935
936         synic_init(&hv_vcpu->synic);
937
938         bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
939         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
940                 stimer_init(&hv_vcpu->stimer[i], i);
941
942         hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
943
944         return 0;
945 }
946
947 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
948 {
949         struct kvm_vcpu_hv_synic *synic;
950         int r;
951
952         if (!to_hv_vcpu(vcpu)) {
953                 r = kvm_hv_vcpu_init(vcpu);
954                 if (r)
955                         return r;
956         }
957
958         synic = to_hv_synic(vcpu);
959
960         synic->active = true;
961         synic->dont_zero_synic_pages = dont_zero_synic_pages;
962         synic->control = HV_SYNIC_CONTROL_ENABLE;
963         return 0;
964 }
965
966 static bool kvm_hv_msr_partition_wide(u32 msr)
967 {
968         bool r = false;
969
970         switch (msr) {
971         case HV_X64_MSR_GUEST_OS_ID:
972         case HV_X64_MSR_HYPERCALL:
973         case HV_X64_MSR_REFERENCE_TSC:
974         case HV_X64_MSR_TIME_REF_COUNT:
975         case HV_X64_MSR_CRASH_CTL:
976         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
977         case HV_X64_MSR_RESET:
978         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
979         case HV_X64_MSR_TSC_EMULATION_CONTROL:
980         case HV_X64_MSR_TSC_EMULATION_STATUS:
981         case HV_X64_MSR_SYNDBG_OPTIONS:
982         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
983                 r = true;
984                 break;
985         }
986
987         return r;
988 }
989
990 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
991 {
992         struct kvm_hv *hv = to_kvm_hv(kvm);
993         size_t size = ARRAY_SIZE(hv->hv_crash_param);
994
995         if (WARN_ON_ONCE(index >= size))
996                 return -EINVAL;
997
998         *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
999         return 0;
1000 }
1001
1002 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
1003 {
1004         struct kvm_hv *hv = to_kvm_hv(kvm);
1005
1006         *pdata = hv->hv_crash_ctl;
1007         return 0;
1008 }
1009
1010 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
1011 {
1012         struct kvm_hv *hv = to_kvm_hv(kvm);
1013
1014         hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
1015
1016         return 0;
1017 }
1018
1019 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1020 {
1021         struct kvm_hv *hv = to_kvm_hv(kvm);
1022         size_t size = ARRAY_SIZE(hv->hv_crash_param);
1023
1024         if (WARN_ON_ONCE(index >= size))
1025                 return -EINVAL;
1026
1027         hv->hv_crash_param[array_index_nospec(index, size)] = data;
1028         return 0;
1029 }
1030
1031 /*
1032  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1033  * between them is possible:
1034  *
1035  * kvmclock formula:
1036  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1037  *           + system_time
1038  *
1039  * Hyper-V formula:
1040  *    nsec/100 = ticks * scale / 2^64 + offset
1041  *
1042  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1043  * By dividing the kvmclock formula by 100 and equating what's left we get:
1044  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1045  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
1046  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
1047  *
1048  * Now expand the kvmclock formula and divide by 100:
1049  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1050  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1051  *           + system_time
1052  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1053  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1054  *               + system_time / 100
1055  *
1056  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1057  *    nsec/100 = ticks * scale / 2^64
1058  *               - tsc_timestamp * scale / 2^64
1059  *               + system_time / 100
1060  *
1061  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1062  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
1063  *
1064  * These two equivalencies are implemented in this function.
1065  */
1066 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1067                                         struct ms_hyperv_tsc_page *tsc_ref)
1068 {
1069         u64 max_mul;
1070
1071         if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1072                 return false;
1073
1074         /*
1075          * check if scale would overflow, if so we use the time ref counter
1076          *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1077          *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1078          *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1079          */
1080         max_mul = 100ull << (32 - hv_clock->tsc_shift);
1081         if (hv_clock->tsc_to_system_mul >= max_mul)
1082                 return false;
1083
1084         /*
1085          * Otherwise compute the scale and offset according to the formulas
1086          * derived above.
1087          */
1088         tsc_ref->tsc_scale =
1089                 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1090                                 hv_clock->tsc_to_system_mul,
1091                                 100);
1092
1093         tsc_ref->tsc_offset = hv_clock->system_time;
1094         do_div(tsc_ref->tsc_offset, 100);
1095         tsc_ref->tsc_offset -=
1096                 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1097         return true;
1098 }
1099
1100 /*
1101  * Don't touch TSC page values if the guest has opted for TSC emulation after
1102  * migration. KVM doesn't fully support reenlightenment notifications and TSC
1103  * access emulation and Hyper-V is known to expect the values in TSC page to
1104  * stay constant before TSC access emulation is disabled from guest side
1105  * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1106  * frequency and guest visible TSC value across migration (and prevent it when
1107  * TSC scaling is unsupported).
1108  */
1109 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1110 {
1111         return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1112                 hv->hv_tsc_emulation_control;
1113 }
1114
1115 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1116                            struct pvclock_vcpu_time_info *hv_clock)
1117 {
1118         struct kvm_hv *hv = to_kvm_hv(kvm);
1119         u32 tsc_seq;
1120         u64 gfn;
1121
1122         BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1123         BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1124
1125         if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1126             hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1127                 return;
1128
1129         mutex_lock(&hv->hv_lock);
1130         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1131                 goto out_unlock;
1132
1133         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1134         /*
1135          * Because the TSC parameters only vary when there is a
1136          * change in the master clock, do not bother with caching.
1137          */
1138         if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1139                                     &tsc_seq, sizeof(tsc_seq))))
1140                 goto out_err;
1141
1142         if (tsc_seq && tsc_page_update_unsafe(hv)) {
1143                 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1144                         goto out_err;
1145
1146                 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1147                 goto out_unlock;
1148         }
1149
1150         /*
1151          * While we're computing and writing the parameters, force the
1152          * guest to use the time reference count MSR.
1153          */
1154         hv->tsc_ref.tsc_sequence = 0;
1155         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1156                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1157                 goto out_err;
1158
1159         if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1160                 goto out_err;
1161
1162         /* Ensure sequence is zero before writing the rest of the struct.  */
1163         smp_wmb();
1164         if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1165                 goto out_err;
1166
1167         /*
1168          * Now switch to the TSC page mechanism by writing the sequence.
1169          */
1170         tsc_seq++;
1171         if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1172                 tsc_seq = 1;
1173
1174         /* Write the struct entirely before the non-zero sequence.  */
1175         smp_wmb();
1176
1177         hv->tsc_ref.tsc_sequence = tsc_seq;
1178         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1179                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1180                 goto out_err;
1181
1182         hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1183         goto out_unlock;
1184
1185 out_err:
1186         hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1187 out_unlock:
1188         mutex_unlock(&hv->hv_lock);
1189 }
1190
1191 void kvm_hv_invalidate_tsc_page(struct kvm *kvm)
1192 {
1193         struct kvm_hv *hv = to_kvm_hv(kvm);
1194         u64 gfn;
1195         int idx;
1196
1197         if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1198             hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET ||
1199             tsc_page_update_unsafe(hv))
1200                 return;
1201
1202         mutex_lock(&hv->hv_lock);
1203
1204         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1205                 goto out_unlock;
1206
1207         /* Preserve HV_TSC_PAGE_GUEST_CHANGED/HV_TSC_PAGE_HOST_CHANGED states */
1208         if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET)
1209                 hv->hv_tsc_page_status = HV_TSC_PAGE_UPDATING;
1210
1211         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1212
1213         hv->tsc_ref.tsc_sequence = 0;
1214
1215         /*
1216          * Take the srcu lock as memslots will be accessed to check the gfn
1217          * cache generation against the memslots generation.
1218          */
1219         idx = srcu_read_lock(&kvm->srcu);
1220         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1221                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1222                 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1223         srcu_read_unlock(&kvm->srcu, idx);
1224
1225 out_unlock:
1226         mutex_unlock(&hv->hv_lock);
1227 }
1228
1229
1230 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1231 {
1232         if (!hv_vcpu->enforce_cpuid)
1233                 return true;
1234
1235         switch (msr) {
1236         case HV_X64_MSR_GUEST_OS_ID:
1237         case HV_X64_MSR_HYPERCALL:
1238                 return hv_vcpu->cpuid_cache.features_eax &
1239                         HV_MSR_HYPERCALL_AVAILABLE;
1240         case HV_X64_MSR_VP_RUNTIME:
1241                 return hv_vcpu->cpuid_cache.features_eax &
1242                         HV_MSR_VP_RUNTIME_AVAILABLE;
1243         case HV_X64_MSR_TIME_REF_COUNT:
1244                 return hv_vcpu->cpuid_cache.features_eax &
1245                         HV_MSR_TIME_REF_COUNT_AVAILABLE;
1246         case HV_X64_MSR_VP_INDEX:
1247                 return hv_vcpu->cpuid_cache.features_eax &
1248                         HV_MSR_VP_INDEX_AVAILABLE;
1249         case HV_X64_MSR_RESET:
1250                 return hv_vcpu->cpuid_cache.features_eax &
1251                         HV_MSR_RESET_AVAILABLE;
1252         case HV_X64_MSR_REFERENCE_TSC:
1253                 return hv_vcpu->cpuid_cache.features_eax &
1254                         HV_MSR_REFERENCE_TSC_AVAILABLE;
1255         case HV_X64_MSR_SCONTROL:
1256         case HV_X64_MSR_SVERSION:
1257         case HV_X64_MSR_SIEFP:
1258         case HV_X64_MSR_SIMP:
1259         case HV_X64_MSR_EOM:
1260         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1261                 return hv_vcpu->cpuid_cache.features_eax &
1262                         HV_MSR_SYNIC_AVAILABLE;
1263         case HV_X64_MSR_STIMER0_CONFIG:
1264         case HV_X64_MSR_STIMER1_CONFIG:
1265         case HV_X64_MSR_STIMER2_CONFIG:
1266         case HV_X64_MSR_STIMER3_CONFIG:
1267         case HV_X64_MSR_STIMER0_COUNT:
1268         case HV_X64_MSR_STIMER1_COUNT:
1269         case HV_X64_MSR_STIMER2_COUNT:
1270         case HV_X64_MSR_STIMER3_COUNT:
1271                 return hv_vcpu->cpuid_cache.features_eax &
1272                         HV_MSR_SYNTIMER_AVAILABLE;
1273         case HV_X64_MSR_EOI:
1274         case HV_X64_MSR_ICR:
1275         case HV_X64_MSR_TPR:
1276         case HV_X64_MSR_VP_ASSIST_PAGE:
1277                 return hv_vcpu->cpuid_cache.features_eax &
1278                         HV_MSR_APIC_ACCESS_AVAILABLE;
1279                 break;
1280         case HV_X64_MSR_TSC_FREQUENCY:
1281         case HV_X64_MSR_APIC_FREQUENCY:
1282                 return hv_vcpu->cpuid_cache.features_eax &
1283                         HV_ACCESS_FREQUENCY_MSRS;
1284         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1285         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1286         case HV_X64_MSR_TSC_EMULATION_STATUS:
1287                 return hv_vcpu->cpuid_cache.features_eax &
1288                         HV_ACCESS_REENLIGHTENMENT;
1289         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1290         case HV_X64_MSR_CRASH_CTL:
1291                 return hv_vcpu->cpuid_cache.features_edx &
1292                         HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1293         case HV_X64_MSR_SYNDBG_OPTIONS:
1294         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1295                 return hv_vcpu->cpuid_cache.features_edx &
1296                         HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1297         default:
1298                 break;
1299         }
1300
1301         return false;
1302 }
1303
1304 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1305                              bool host)
1306 {
1307         struct kvm *kvm = vcpu->kvm;
1308         struct kvm_hv *hv = to_kvm_hv(kvm);
1309
1310         if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1311                 return 1;
1312
1313         switch (msr) {
1314         case HV_X64_MSR_GUEST_OS_ID:
1315                 hv->hv_guest_os_id = data;
1316                 /* setting guest os id to zero disables hypercall page */
1317                 if (!hv->hv_guest_os_id)
1318                         hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1319                 break;
1320         case HV_X64_MSR_HYPERCALL: {
1321                 u8 instructions[9];
1322                 int i = 0;
1323                 u64 addr;
1324
1325                 /* if guest os id is not set hypercall should remain disabled */
1326                 if (!hv->hv_guest_os_id)
1327                         break;
1328                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1329                         hv->hv_hypercall = data;
1330                         break;
1331                 }
1332
1333                 /*
1334                  * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1335                  * the same way Xen itself does, by setting the bit 31 of EAX
1336                  * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1337                  * going to be clobbered on 64-bit.
1338                  */
1339                 if (kvm_xen_hypercall_enabled(kvm)) {
1340                         /* orl $0x80000000, %eax */
1341                         instructions[i++] = 0x0d;
1342                         instructions[i++] = 0x00;
1343                         instructions[i++] = 0x00;
1344                         instructions[i++] = 0x00;
1345                         instructions[i++] = 0x80;
1346                 }
1347
1348                 /* vmcall/vmmcall */
1349                 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
1350                 i += 3;
1351
1352                 /* ret */
1353                 ((unsigned char *)instructions)[i++] = 0xc3;
1354
1355                 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1356                 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1357                         return 1;
1358                 hv->hv_hypercall = data;
1359                 break;
1360         }
1361         case HV_X64_MSR_REFERENCE_TSC:
1362                 hv->hv_tsc_page = data;
1363                 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1364                         if (!host)
1365                                 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1366                         else
1367                                 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1368                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1369                 } else {
1370                         hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1371                 }
1372                 break;
1373         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1374                 return kvm_hv_msr_set_crash_data(kvm,
1375                                                  msr - HV_X64_MSR_CRASH_P0,
1376                                                  data);
1377         case HV_X64_MSR_CRASH_CTL:
1378                 if (host)
1379                         return kvm_hv_msr_set_crash_ctl(kvm, data);
1380
1381                 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1382                         vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1383                                    hv->hv_crash_param[0],
1384                                    hv->hv_crash_param[1],
1385                                    hv->hv_crash_param[2],
1386                                    hv->hv_crash_param[3],
1387                                    hv->hv_crash_param[4]);
1388
1389                         /* Send notification about crash to user space */
1390                         kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1391                 }
1392                 break;
1393         case HV_X64_MSR_RESET:
1394                 if (data == 1) {
1395                         vcpu_debug(vcpu, "hyper-v reset requested\n");
1396                         kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1397                 }
1398                 break;
1399         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1400                 hv->hv_reenlightenment_control = data;
1401                 break;
1402         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1403                 hv->hv_tsc_emulation_control = data;
1404                 break;
1405         case HV_X64_MSR_TSC_EMULATION_STATUS:
1406                 if (data && !host)
1407                         return 1;
1408
1409                 hv->hv_tsc_emulation_status = data;
1410                 break;
1411         case HV_X64_MSR_TIME_REF_COUNT:
1412                 /* read-only, but still ignore it if host-initiated */
1413                 if (!host)
1414                         return 1;
1415                 break;
1416         case HV_X64_MSR_SYNDBG_OPTIONS:
1417         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1418                 return syndbg_set_msr(vcpu, msr, data, host);
1419         default:
1420                 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1421                             msr, data);
1422                 return 1;
1423         }
1424         return 0;
1425 }
1426
1427 /* Calculate cpu time spent by current task in 100ns units */
1428 static u64 current_task_runtime_100ns(void)
1429 {
1430         u64 utime, stime;
1431
1432         task_cputime_adjusted(current, &utime, &stime);
1433
1434         return div_u64(utime + stime, 100);
1435 }
1436
1437 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1438 {
1439         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1440
1441         if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1442                 return 1;
1443
1444         switch (msr) {
1445         case HV_X64_MSR_VP_INDEX: {
1446                 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1447                 int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1448                 u32 new_vp_index = (u32)data;
1449
1450                 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1451                         return 1;
1452
1453                 if (new_vp_index == hv_vcpu->vp_index)
1454                         return 0;
1455
1456                 /*
1457                  * The VP index is initialized to vcpu_index by
1458                  * kvm_hv_vcpu_postcreate so they initially match.  Now the
1459                  * VP index is changing, adjust num_mismatched_vp_indexes if
1460                  * it now matches or no longer matches vcpu_idx.
1461                  */
1462                 if (hv_vcpu->vp_index == vcpu_idx)
1463                         atomic_inc(&hv->num_mismatched_vp_indexes);
1464                 else if (new_vp_index == vcpu_idx)
1465                         atomic_dec(&hv->num_mismatched_vp_indexes);
1466
1467                 hv_vcpu->vp_index = new_vp_index;
1468                 break;
1469         }
1470         case HV_X64_MSR_VP_ASSIST_PAGE: {
1471                 u64 gfn;
1472                 unsigned long addr;
1473
1474                 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1475                         hv_vcpu->hv_vapic = data;
1476                         if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1477                                 return 1;
1478                         break;
1479                 }
1480                 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1481                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1482                 if (kvm_is_error_hva(addr))
1483                         return 1;
1484
1485                 /*
1486                  * Clear apic_assist portion of struct hv_vp_assist_page
1487                  * only, there can be valuable data in the rest which needs
1488                  * to be preserved e.g. on migration.
1489                  */
1490                 if (__put_user(0, (u32 __user *)addr))
1491                         return 1;
1492                 hv_vcpu->hv_vapic = data;
1493                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1494                 if (kvm_lapic_enable_pv_eoi(vcpu,
1495                                             gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1496                                             sizeof(struct hv_vp_assist_page)))
1497                         return 1;
1498                 break;
1499         }
1500         case HV_X64_MSR_EOI:
1501                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1502         case HV_X64_MSR_ICR:
1503                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1504         case HV_X64_MSR_TPR:
1505                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1506         case HV_X64_MSR_VP_RUNTIME:
1507                 if (!host)
1508                         return 1;
1509                 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1510                 break;
1511         case HV_X64_MSR_SCONTROL:
1512         case HV_X64_MSR_SVERSION:
1513         case HV_X64_MSR_SIEFP:
1514         case HV_X64_MSR_SIMP:
1515         case HV_X64_MSR_EOM:
1516         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1517                 return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1518         case HV_X64_MSR_STIMER0_CONFIG:
1519         case HV_X64_MSR_STIMER1_CONFIG:
1520         case HV_X64_MSR_STIMER2_CONFIG:
1521         case HV_X64_MSR_STIMER3_CONFIG: {
1522                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1523
1524                 return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1525                                          data, host);
1526         }
1527         case HV_X64_MSR_STIMER0_COUNT:
1528         case HV_X64_MSR_STIMER1_COUNT:
1529         case HV_X64_MSR_STIMER2_COUNT:
1530         case HV_X64_MSR_STIMER3_COUNT: {
1531                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1532
1533                 return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1534                                         data, host);
1535         }
1536         case HV_X64_MSR_TSC_FREQUENCY:
1537         case HV_X64_MSR_APIC_FREQUENCY:
1538                 /* read-only, but still ignore it if host-initiated */
1539                 if (!host)
1540                         return 1;
1541                 break;
1542         default:
1543                 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1544                             msr, data);
1545                 return 1;
1546         }
1547
1548         return 0;
1549 }
1550
1551 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1552                              bool host)
1553 {
1554         u64 data = 0;
1555         struct kvm *kvm = vcpu->kvm;
1556         struct kvm_hv *hv = to_kvm_hv(kvm);
1557
1558         if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1559                 return 1;
1560
1561         switch (msr) {
1562         case HV_X64_MSR_GUEST_OS_ID:
1563                 data = hv->hv_guest_os_id;
1564                 break;
1565         case HV_X64_MSR_HYPERCALL:
1566                 data = hv->hv_hypercall;
1567                 break;
1568         case HV_X64_MSR_TIME_REF_COUNT:
1569                 data = get_time_ref_counter(kvm);
1570                 break;
1571         case HV_X64_MSR_REFERENCE_TSC:
1572                 data = hv->hv_tsc_page;
1573                 break;
1574         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1575                 return kvm_hv_msr_get_crash_data(kvm,
1576                                                  msr - HV_X64_MSR_CRASH_P0,
1577                                                  pdata);
1578         case HV_X64_MSR_CRASH_CTL:
1579                 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1580         case HV_X64_MSR_RESET:
1581                 data = 0;
1582                 break;
1583         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1584                 data = hv->hv_reenlightenment_control;
1585                 break;
1586         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1587                 data = hv->hv_tsc_emulation_control;
1588                 break;
1589         case HV_X64_MSR_TSC_EMULATION_STATUS:
1590                 data = hv->hv_tsc_emulation_status;
1591                 break;
1592         case HV_X64_MSR_SYNDBG_OPTIONS:
1593         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1594                 return syndbg_get_msr(vcpu, msr, pdata, host);
1595         default:
1596                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1597                 return 1;
1598         }
1599
1600         *pdata = data;
1601         return 0;
1602 }
1603
1604 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1605                           bool host)
1606 {
1607         u64 data = 0;
1608         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1609
1610         if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1611                 return 1;
1612
1613         switch (msr) {
1614         case HV_X64_MSR_VP_INDEX:
1615                 data = hv_vcpu->vp_index;
1616                 break;
1617         case HV_X64_MSR_EOI:
1618                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1619         case HV_X64_MSR_ICR:
1620                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1621         case HV_X64_MSR_TPR:
1622                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1623         case HV_X64_MSR_VP_ASSIST_PAGE:
1624                 data = hv_vcpu->hv_vapic;
1625                 break;
1626         case HV_X64_MSR_VP_RUNTIME:
1627                 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1628                 break;
1629         case HV_X64_MSR_SCONTROL:
1630         case HV_X64_MSR_SVERSION:
1631         case HV_X64_MSR_SIEFP:
1632         case HV_X64_MSR_SIMP:
1633         case HV_X64_MSR_EOM:
1634         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1635                 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1636         case HV_X64_MSR_STIMER0_CONFIG:
1637         case HV_X64_MSR_STIMER1_CONFIG:
1638         case HV_X64_MSR_STIMER2_CONFIG:
1639         case HV_X64_MSR_STIMER3_CONFIG: {
1640                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1641
1642                 return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1643                                          pdata);
1644         }
1645         case HV_X64_MSR_STIMER0_COUNT:
1646         case HV_X64_MSR_STIMER1_COUNT:
1647         case HV_X64_MSR_STIMER2_COUNT:
1648         case HV_X64_MSR_STIMER3_COUNT: {
1649                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1650
1651                 return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1652                                         pdata);
1653         }
1654         case HV_X64_MSR_TSC_FREQUENCY:
1655                 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1656                 break;
1657         case HV_X64_MSR_APIC_FREQUENCY:
1658                 data = APIC_BUS_FREQUENCY;
1659                 break;
1660         default:
1661                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1662                 return 1;
1663         }
1664         *pdata = data;
1665         return 0;
1666 }
1667
1668 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1669 {
1670         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1671
1672         if (!host && !vcpu->arch.hyperv_enabled)
1673                 return 1;
1674
1675         if (!to_hv_vcpu(vcpu)) {
1676                 if (kvm_hv_vcpu_init(vcpu))
1677                         return 1;
1678         }
1679
1680         if (kvm_hv_msr_partition_wide(msr)) {
1681                 int r;
1682
1683                 mutex_lock(&hv->hv_lock);
1684                 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1685                 mutex_unlock(&hv->hv_lock);
1686                 return r;
1687         } else
1688                 return kvm_hv_set_msr(vcpu, msr, data, host);
1689 }
1690
1691 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1692 {
1693         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1694
1695         if (!host && !vcpu->arch.hyperv_enabled)
1696                 return 1;
1697
1698         if (!to_hv_vcpu(vcpu)) {
1699                 if (kvm_hv_vcpu_init(vcpu))
1700                         return 1;
1701         }
1702
1703         if (kvm_hv_msr_partition_wide(msr)) {
1704                 int r;
1705
1706                 mutex_lock(&hv->hv_lock);
1707                 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1708                 mutex_unlock(&hv->hv_lock);
1709                 return r;
1710         } else
1711                 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1712 }
1713
1714 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1715         struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1716         u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1717 {
1718         struct kvm_hv *hv = to_kvm_hv(kvm);
1719         struct kvm_vcpu *vcpu;
1720         int i, bank, sbank = 0;
1721
1722         memset(vp_bitmap, 0,
1723                KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1724         for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1725                          KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1726                 vp_bitmap[bank] = sparse_banks[sbank++];
1727
1728         if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1729                 /* for all vcpus vp_index == vcpu_idx */
1730                 return (unsigned long *)vp_bitmap;
1731         }
1732
1733         bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1734         kvm_for_each_vcpu(i, vcpu, kvm) {
1735                 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1736                         __set_bit(i, vcpu_bitmap);
1737         }
1738         return vcpu_bitmap;
1739 }
1740
1741 struct kvm_hv_hcall {
1742         u64 param;
1743         u64 ingpa;
1744         u64 outgpa;
1745         u16 code;
1746         u16 rep_cnt;
1747         u16 rep_idx;
1748         bool fast;
1749         bool rep;
1750         sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1751 };
1752
1753 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex)
1754 {
1755         int i;
1756         gpa_t gpa;
1757         struct kvm *kvm = vcpu->kvm;
1758         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1759         struct hv_tlb_flush_ex flush_ex;
1760         struct hv_tlb_flush flush;
1761         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1762         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1763         unsigned long *vcpu_mask;
1764         u64 valid_bank_mask;
1765         u64 sparse_banks[64];
1766         int sparse_banks_len;
1767         bool all_cpus;
1768
1769         if (!ex) {
1770                 if (hc->fast) {
1771                         flush.address_space = hc->ingpa;
1772                         flush.flags = hc->outgpa;
1773                         flush.processor_mask = sse128_lo(hc->xmm[0]);
1774                 } else {
1775                         if (unlikely(kvm_read_guest(kvm, hc->ingpa,
1776                                                     &flush, sizeof(flush))))
1777                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1778                 }
1779
1780                 trace_kvm_hv_flush_tlb(flush.processor_mask,
1781                                        flush.address_space, flush.flags);
1782
1783                 valid_bank_mask = BIT_ULL(0);
1784                 sparse_banks[0] = flush.processor_mask;
1785
1786                 /*
1787                  * Work around possible WS2012 bug: it sends hypercalls
1788                  * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1789                  * while also expecting us to flush something and crashing if
1790                  * we don't. Let's treat processor_mask == 0 same as
1791                  * HV_FLUSH_ALL_PROCESSORS.
1792                  */
1793                 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1794                         flush.processor_mask == 0;
1795         } else {
1796                 if (hc->fast) {
1797                         flush_ex.address_space = hc->ingpa;
1798                         flush_ex.flags = hc->outgpa;
1799                         memcpy(&flush_ex.hv_vp_set,
1800                                &hc->xmm[0], sizeof(hc->xmm[0]));
1801                 } else {
1802                         if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
1803                                                     sizeof(flush_ex))))
1804                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1805                 }
1806
1807                 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1808                                           flush_ex.hv_vp_set.format,
1809                                           flush_ex.address_space,
1810                                           flush_ex.flags);
1811
1812                 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1813                 all_cpus = flush_ex.hv_vp_set.format !=
1814                         HV_GENERIC_SET_SPARSE_4K;
1815
1816                 sparse_banks_len = bitmap_weight((unsigned long *)&valid_bank_mask, 64);
1817
1818                 if (!sparse_banks_len && !all_cpus)
1819                         goto ret_success;
1820
1821                 if (!all_cpus) {
1822                         if (hc->fast) {
1823                                 if (sparse_banks_len > HV_HYPERCALL_MAX_XMM_REGISTERS - 1)
1824                                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1825                                 for (i = 0; i < sparse_banks_len; i += 2) {
1826                                         sparse_banks[i] = sse128_lo(hc->xmm[i / 2 + 1]);
1827                                         sparse_banks[i + 1] = sse128_hi(hc->xmm[i / 2 + 1]);
1828                                 }
1829                         } else {
1830                                 gpa = hc->ingpa + offsetof(struct hv_tlb_flush_ex,
1831                                                            hv_vp_set.bank_contents);
1832                                 if (unlikely(kvm_read_guest(kvm, gpa, sparse_banks,
1833                                                             sparse_banks_len *
1834                                                             sizeof(sparse_banks[0]))))
1835                                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1836                         }
1837                 }
1838         }
1839
1840         cpumask_clear(&hv_vcpu->tlb_flush);
1841
1842         vcpu_mask = all_cpus ? NULL :
1843                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1844                                         vp_bitmap, vcpu_bitmap);
1845
1846         /*
1847          * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1848          * analyze it here, flush TLB regardless of the specified address space.
1849          */
1850         kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH_GUEST,
1851                                     NULL, vcpu_mask, &hv_vcpu->tlb_flush);
1852
1853 ret_success:
1854         /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
1855         return (u64)HV_STATUS_SUCCESS |
1856                 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1857 }
1858
1859 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1860                                  unsigned long *vcpu_bitmap)
1861 {
1862         struct kvm_lapic_irq irq = {
1863                 .delivery_mode = APIC_DM_FIXED,
1864                 .vector = vector
1865         };
1866         struct kvm_vcpu *vcpu;
1867         int i;
1868
1869         kvm_for_each_vcpu(i, vcpu, kvm) {
1870                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1871                         continue;
1872
1873                 /* We fail only when APIC is disabled */
1874                 kvm_apic_set_irq(vcpu, &irq, NULL);
1875         }
1876 }
1877
1878 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex)
1879 {
1880         struct kvm *kvm = vcpu->kvm;
1881         struct hv_send_ipi_ex send_ipi_ex;
1882         struct hv_send_ipi send_ipi;
1883         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1884         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1885         unsigned long *vcpu_mask;
1886         unsigned long valid_bank_mask;
1887         u64 sparse_banks[64];
1888         int sparse_banks_len;
1889         u32 vector;
1890         bool all_cpus;
1891
1892         if (!ex) {
1893                 if (!hc->fast) {
1894                         if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
1895                                                     sizeof(send_ipi))))
1896                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1897                         sparse_banks[0] = send_ipi.cpu_mask;
1898                         vector = send_ipi.vector;
1899                 } else {
1900                         /* 'reserved' part of hv_send_ipi should be 0 */
1901                         if (unlikely(hc->ingpa >> 32 != 0))
1902                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1903                         sparse_banks[0] = hc->outgpa;
1904                         vector = (u32)hc->ingpa;
1905                 }
1906                 all_cpus = false;
1907                 valid_bank_mask = BIT_ULL(0);
1908
1909                 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1910         } else {
1911                 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
1912                                             sizeof(send_ipi_ex))))
1913                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1914
1915                 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1916                                          send_ipi_ex.vp_set.format,
1917                                          send_ipi_ex.vp_set.valid_bank_mask);
1918
1919                 vector = send_ipi_ex.vector;
1920                 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1921                 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1922                         sizeof(sparse_banks[0]);
1923
1924                 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1925
1926                 if (!sparse_banks_len)
1927                         goto ret_success;
1928
1929                 if (!all_cpus &&
1930                     kvm_read_guest(kvm,
1931                                    hc->ingpa + offsetof(struct hv_send_ipi_ex,
1932                                                         vp_set.bank_contents),
1933                                    sparse_banks,
1934                                    sparse_banks_len))
1935                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1936         }
1937
1938         if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1939                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1940
1941         vcpu_mask = all_cpus ? NULL :
1942                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1943                                         vp_bitmap, vcpu_bitmap);
1944
1945         kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1946
1947 ret_success:
1948         return HV_STATUS_SUCCESS;
1949 }
1950
1951 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu)
1952 {
1953         struct kvm_cpuid_entry2 *entry;
1954         struct kvm_vcpu_hv *hv_vcpu;
1955
1956         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE, 0);
1957         if (entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX) {
1958                 vcpu->arch.hyperv_enabled = true;
1959         } else {
1960                 vcpu->arch.hyperv_enabled = false;
1961                 return;
1962         }
1963
1964         if (!to_hv_vcpu(vcpu) && kvm_hv_vcpu_init(vcpu))
1965                 return;
1966
1967         hv_vcpu = to_hv_vcpu(vcpu);
1968
1969         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES, 0);
1970         if (entry) {
1971                 hv_vcpu->cpuid_cache.features_eax = entry->eax;
1972                 hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
1973                 hv_vcpu->cpuid_cache.features_edx = entry->edx;
1974         } else {
1975                 hv_vcpu->cpuid_cache.features_eax = 0;
1976                 hv_vcpu->cpuid_cache.features_ebx = 0;
1977                 hv_vcpu->cpuid_cache.features_edx = 0;
1978         }
1979
1980         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO, 0);
1981         if (entry) {
1982                 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
1983                 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
1984         } else {
1985                 hv_vcpu->cpuid_cache.enlightenments_eax = 0;
1986                 hv_vcpu->cpuid_cache.enlightenments_ebx = 0;
1987         }
1988
1989         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES, 0);
1990         if (entry)
1991                 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
1992         else
1993                 hv_vcpu->cpuid_cache.syndbg_cap_eax = 0;
1994 }
1995
1996 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
1997 {
1998         struct kvm_vcpu_hv *hv_vcpu;
1999         int ret = 0;
2000
2001         if (!to_hv_vcpu(vcpu)) {
2002                 if (enforce) {
2003                         ret = kvm_hv_vcpu_init(vcpu);
2004                         if (ret)
2005                                 return ret;
2006                 } else {
2007                         return 0;
2008                 }
2009         }
2010
2011         hv_vcpu = to_hv_vcpu(vcpu);
2012         hv_vcpu->enforce_cpuid = enforce;
2013
2014         return ret;
2015 }
2016
2017 bool kvm_hv_hypercall_enabled(struct kvm_vcpu *vcpu)
2018 {
2019         return vcpu->arch.hyperv_enabled && to_kvm_hv(vcpu->kvm)->hv_guest_os_id;
2020 }
2021
2022 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2023 {
2024         bool longmode;
2025
2026         longmode = is_64_bit_mode(vcpu);
2027         if (longmode)
2028                 kvm_rax_write(vcpu, result);
2029         else {
2030                 kvm_rdx_write(vcpu, result >> 32);
2031                 kvm_rax_write(vcpu, result & 0xffffffff);
2032         }
2033 }
2034
2035 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2036 {
2037         trace_kvm_hv_hypercall_done(result);
2038         kvm_hv_hypercall_set_result(vcpu, result);
2039         ++vcpu->stat.hypercalls;
2040         return kvm_skip_emulated_instruction(vcpu);
2041 }
2042
2043 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2044 {
2045         return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2046 }
2047
2048 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2049 {
2050         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2051         struct eventfd_ctx *eventfd;
2052
2053         if (unlikely(!hc->fast)) {
2054                 int ret;
2055                 gpa_t gpa = hc->ingpa;
2056
2057                 if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2058                     offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2059                         return HV_STATUS_INVALID_ALIGNMENT;
2060
2061                 ret = kvm_vcpu_read_guest(vcpu, gpa,
2062                                           &hc->ingpa, sizeof(hc->ingpa));
2063                 if (ret < 0)
2064                         return HV_STATUS_INVALID_ALIGNMENT;
2065         }
2066
2067         /*
2068          * Per spec, bits 32-47 contain the extra "flag number".  However, we
2069          * have no use for it, and in all known usecases it is zero, so just
2070          * report lookup failure if it isn't.
2071          */
2072         if (hc->ingpa & 0xffff00000000ULL)
2073                 return HV_STATUS_INVALID_PORT_ID;
2074         /* remaining bits are reserved-zero */
2075         if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2076                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2077
2078         /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2079         rcu_read_lock();
2080         eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2081         rcu_read_unlock();
2082         if (!eventfd)
2083                 return HV_STATUS_INVALID_PORT_ID;
2084
2085         eventfd_signal(eventfd, 1);
2086         return HV_STATUS_SUCCESS;
2087 }
2088
2089 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2090 {
2091         switch (hc->code) {
2092         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2093         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2094         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2095         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2096                 return true;
2097         }
2098
2099         return false;
2100 }
2101
2102 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2103 {
2104         int reg;
2105
2106         kvm_fpu_get();
2107         for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2108                 _kvm_read_sse_reg(reg, &hc->xmm[reg]);
2109         kvm_fpu_put();
2110 }
2111
2112 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2113 {
2114         if (!hv_vcpu->enforce_cpuid)
2115                 return true;
2116
2117         switch (code) {
2118         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2119                 return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2120                         hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2121         case HVCALL_POST_MESSAGE:
2122                 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2123         case HVCALL_SIGNAL_EVENT:
2124                 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2125         case HVCALL_POST_DEBUG_DATA:
2126         case HVCALL_RETRIEVE_DEBUG_DATA:
2127         case HVCALL_RESET_DEBUG_SESSION:
2128                 /*
2129                  * Return 'true' when SynDBG is disabled so the resulting code
2130                  * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2131                  */
2132                 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2133                         hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2134         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2135         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2136                 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2137                       HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2138                         return false;
2139                 fallthrough;
2140         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2141         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2142                 return hv_vcpu->cpuid_cache.enlightenments_eax &
2143                         HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2144         case HVCALL_SEND_IPI_EX:
2145                 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2146                       HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2147                         return false;
2148                 fallthrough;
2149         case HVCALL_SEND_IPI:
2150                 return hv_vcpu->cpuid_cache.enlightenments_eax &
2151                         HV_X64_CLUSTER_IPI_RECOMMENDED;
2152         default:
2153                 break;
2154         }
2155
2156         return true;
2157 }
2158
2159 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2160 {
2161         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2162         struct kvm_hv_hcall hc;
2163         u64 ret = HV_STATUS_SUCCESS;
2164
2165         /*
2166          * hypercall generates UD from non zero cpl and real mode
2167          * per HYPER-V spec
2168          */
2169         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2170                 kvm_queue_exception(vcpu, UD_VECTOR);
2171                 return 1;
2172         }
2173
2174 #ifdef CONFIG_X86_64
2175         if (is_64_bit_mode(vcpu)) {
2176                 hc.param = kvm_rcx_read(vcpu);
2177                 hc.ingpa = kvm_rdx_read(vcpu);
2178                 hc.outgpa = kvm_r8_read(vcpu);
2179         } else
2180 #endif
2181         {
2182                 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2183                             (kvm_rax_read(vcpu) & 0xffffffff);
2184                 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2185                             (kvm_rcx_read(vcpu) & 0xffffffff);
2186                 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2187                              (kvm_rsi_read(vcpu) & 0xffffffff);
2188         }
2189
2190         hc.code = hc.param & 0xffff;
2191         hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2192         hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2193         hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2194         hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2195
2196         trace_kvm_hv_hypercall(hc.code, hc.fast, hc.rep_cnt, hc.rep_idx,
2197                                hc.ingpa, hc.outgpa);
2198
2199         if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2200                 ret = HV_STATUS_ACCESS_DENIED;
2201                 goto hypercall_complete;
2202         }
2203
2204         if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2205                 if (unlikely(hv_vcpu->enforce_cpuid &&
2206                              !(hv_vcpu->cpuid_cache.features_edx &
2207                                HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2208                         kvm_queue_exception(vcpu, UD_VECTOR);
2209                         return 1;
2210                 }
2211
2212                 kvm_hv_hypercall_read_xmm(&hc);
2213         }
2214
2215         switch (hc.code) {
2216         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2217                 if (unlikely(hc.rep)) {
2218                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2219                         break;
2220                 }
2221                 kvm_vcpu_on_spin(vcpu, true);
2222                 break;
2223         case HVCALL_SIGNAL_EVENT:
2224                 if (unlikely(hc.rep)) {
2225                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2226                         break;
2227                 }
2228                 ret = kvm_hvcall_signal_event(vcpu, &hc);
2229                 if (ret != HV_STATUS_INVALID_PORT_ID)
2230                         break;
2231                 fallthrough;    /* maybe userspace knows this conn_id */
2232         case HVCALL_POST_MESSAGE:
2233                 /* don't bother userspace if it has no way to handle it */
2234                 if (unlikely(hc.rep || !to_hv_synic(vcpu)->active)) {
2235                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2236                         break;
2237                 }
2238                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2239                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2240                 vcpu->run->hyperv.u.hcall.input = hc.param;
2241                 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2242                 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2243                 vcpu->arch.complete_userspace_io =
2244                                 kvm_hv_hypercall_complete_userspace;
2245                 return 0;
2246         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2247                 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2248                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2249                         break;
2250                 }
2251                 ret = kvm_hv_flush_tlb(vcpu, &hc, false);
2252                 break;
2253         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2254                 if (unlikely(hc.rep)) {
2255                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2256                         break;
2257                 }
2258                 ret = kvm_hv_flush_tlb(vcpu, &hc, false);
2259                 break;
2260         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2261                 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2262                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2263                         break;
2264                 }
2265                 ret = kvm_hv_flush_tlb(vcpu, &hc, true);
2266                 break;
2267         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2268                 if (unlikely(hc.rep)) {
2269                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2270                         break;
2271                 }
2272                 ret = kvm_hv_flush_tlb(vcpu, &hc, true);
2273                 break;
2274         case HVCALL_SEND_IPI:
2275                 if (unlikely(hc.rep)) {
2276                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2277                         break;
2278                 }
2279                 ret = kvm_hv_send_ipi(vcpu, &hc, false);
2280                 break;
2281         case HVCALL_SEND_IPI_EX:
2282                 if (unlikely(hc.fast || hc.rep)) {
2283                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2284                         break;
2285                 }
2286                 ret = kvm_hv_send_ipi(vcpu, &hc, true);
2287                 break;
2288         case HVCALL_POST_DEBUG_DATA:
2289         case HVCALL_RETRIEVE_DEBUG_DATA:
2290                 if (unlikely(hc.fast)) {
2291                         ret = HV_STATUS_INVALID_PARAMETER;
2292                         break;
2293                 }
2294                 fallthrough;
2295         case HVCALL_RESET_DEBUG_SESSION: {
2296                 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2297
2298                 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2299                         ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2300                         break;
2301                 }
2302
2303                 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2304                         ret = HV_STATUS_OPERATION_DENIED;
2305                         break;
2306                 }
2307                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2308                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2309                 vcpu->run->hyperv.u.hcall.input = hc.param;
2310                 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2311                 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2312                 vcpu->arch.complete_userspace_io =
2313                                 kvm_hv_hypercall_complete_userspace;
2314                 return 0;
2315         }
2316         default:
2317                 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2318                 break;
2319         }
2320
2321 hypercall_complete:
2322         return kvm_hv_hypercall_complete(vcpu, ret);
2323 }
2324
2325 void kvm_hv_init_vm(struct kvm *kvm)
2326 {
2327         struct kvm_hv *hv = to_kvm_hv(kvm);
2328
2329         mutex_init(&hv->hv_lock);
2330         idr_init(&hv->conn_to_evt);
2331 }
2332
2333 void kvm_hv_destroy_vm(struct kvm *kvm)
2334 {
2335         struct kvm_hv *hv = to_kvm_hv(kvm);
2336         struct eventfd_ctx *eventfd;
2337         int i;
2338
2339         idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2340                 eventfd_ctx_put(eventfd);
2341         idr_destroy(&hv->conn_to_evt);
2342 }
2343
2344 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2345 {
2346         struct kvm_hv *hv = to_kvm_hv(kvm);
2347         struct eventfd_ctx *eventfd;
2348         int ret;
2349
2350         eventfd = eventfd_ctx_fdget(fd);
2351         if (IS_ERR(eventfd))
2352                 return PTR_ERR(eventfd);
2353
2354         mutex_lock(&hv->hv_lock);
2355         ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2356                         GFP_KERNEL_ACCOUNT);
2357         mutex_unlock(&hv->hv_lock);
2358
2359         if (ret >= 0)
2360                 return 0;
2361
2362         if (ret == -ENOSPC)
2363                 ret = -EEXIST;
2364         eventfd_ctx_put(eventfd);
2365         return ret;
2366 }
2367
2368 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2369 {
2370         struct kvm_hv *hv = to_kvm_hv(kvm);
2371         struct eventfd_ctx *eventfd;
2372
2373         mutex_lock(&hv->hv_lock);
2374         eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2375         mutex_unlock(&hv->hv_lock);
2376
2377         if (!eventfd)
2378                 return -ENOENT;
2379
2380         synchronize_srcu(&kvm->srcu);
2381         eventfd_ctx_put(eventfd);
2382         return 0;
2383 }
2384
2385 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2386 {
2387         if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2388             (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2389                 return -EINVAL;
2390
2391         if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2392                 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2393         return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2394 }
2395
2396 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2397                      struct kvm_cpuid_entry2 __user *entries)
2398 {
2399         uint16_t evmcs_ver = 0;
2400         struct kvm_cpuid_entry2 cpuid_entries[] = {
2401                 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2402                 { .function = HYPERV_CPUID_INTERFACE },
2403                 { .function = HYPERV_CPUID_VERSION },
2404                 { .function = HYPERV_CPUID_FEATURES },
2405                 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2406                 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2407                 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2408                 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2409                 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2410                 { .function = HYPERV_CPUID_NESTED_FEATURES },
2411         };
2412         int i, nent = ARRAY_SIZE(cpuid_entries);
2413
2414         if (kvm_x86_ops.nested_ops->get_evmcs_version)
2415                 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2416
2417         /* Skip NESTED_FEATURES if eVMCS is not supported */
2418         if (!evmcs_ver)
2419                 --nent;
2420
2421         if (cpuid->nent < nent)
2422                 return -E2BIG;
2423
2424         if (cpuid->nent > nent)
2425                 cpuid->nent = nent;
2426
2427         for (i = 0; i < nent; i++) {
2428                 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2429                 u32 signature[3];
2430
2431                 switch (ent->function) {
2432                 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2433                         memcpy(signature, "Linux KVM Hv", 12);
2434
2435                         ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2436                         ent->ebx = signature[0];
2437                         ent->ecx = signature[1];
2438                         ent->edx = signature[2];
2439                         break;
2440
2441                 case HYPERV_CPUID_INTERFACE:
2442                         ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2443                         break;
2444
2445                 case HYPERV_CPUID_VERSION:
2446                         /*
2447                          * We implement some Hyper-V 2016 functions so let's use
2448                          * this version.
2449                          */
2450                         ent->eax = 0x00003839;
2451                         ent->ebx = 0x000A0000;
2452                         break;
2453
2454                 case HYPERV_CPUID_FEATURES:
2455                         ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2456                         ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2457                         ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2458                         ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2459                         ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2460                         ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2461                         ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2462                         ent->eax |= HV_MSR_RESET_AVAILABLE;
2463                         ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2464                         ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2465                         ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2466
2467                         ent->ebx |= HV_POST_MESSAGES;
2468                         ent->ebx |= HV_SIGNAL_EVENTS;
2469
2470                         ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2471                         ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2472                         ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2473
2474                         ent->ebx |= HV_DEBUGGING;
2475                         ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2476                         ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2477
2478                         /*
2479                          * Direct Synthetic timers only make sense with in-kernel
2480                          * LAPIC
2481                          */
2482                         if (!vcpu || lapic_in_kernel(vcpu))
2483                                 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2484
2485                         break;
2486
2487                 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2488                         ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2489                         ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2490                         ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2491                         ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2492                         ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2493                         if (evmcs_ver)
2494                                 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2495                         if (!cpu_smt_possible())
2496                                 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2497
2498                         ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2499                         /*
2500                          * Default number of spinlock retry attempts, matches
2501                          * HyperV 2016.
2502                          */
2503                         ent->ebx = 0x00000FFF;
2504
2505                         break;
2506
2507                 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2508                         /* Maximum number of virtual processors */
2509                         ent->eax = KVM_MAX_VCPUS;
2510                         /*
2511                          * Maximum number of logical processors, matches
2512                          * HyperV 2016.
2513                          */
2514                         ent->ebx = 64;
2515
2516                         break;
2517
2518                 case HYPERV_CPUID_NESTED_FEATURES:
2519                         ent->eax = evmcs_ver;
2520
2521                         break;
2522
2523                 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2524                         memcpy(signature, "Linux KVM Hv", 12);
2525
2526                         ent->eax = 0;
2527                         ent->ebx = signature[0];
2528                         ent->ecx = signature[1];
2529                         ent->edx = signature[2];
2530                         break;
2531
2532                 case HYPERV_CPUID_SYNDBG_INTERFACE:
2533                         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2534                         ent->eax = signature[0];
2535                         break;
2536
2537                 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2538                         ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2539                         break;
2540
2541                 default:
2542                         break;
2543                 }
2544         }
2545
2546         if (copy_to_user(entries, cpuid_entries,
2547                          nent * sizeof(struct kvm_cpuid_entry2)))
2548                 return -EFAULT;
2549
2550         return 0;
2551 }