Merge tag 'dt-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27
28 /*
29  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
30  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
31  */
32 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
33 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
34
35 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
36 {
37         int feature_bit = 0;
38         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
39
40         xstate_bv &= XFEATURE_MASK_EXTEND;
41         while (xstate_bv) {
42                 if (xstate_bv & 0x1) {
43                         u32 eax, ebx, ecx, edx, offset;
44                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
45                         offset = compacted ? ret : ebx;
46                         ret = max(ret, offset + eax);
47                 }
48
49                 xstate_bv >>= 1;
50                 feature_bit++;
51         }
52
53         return ret;
54 }
55
56 #define F feature_bit
57 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
58
59 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
60         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
61 {
62         struct kvm_cpuid_entry2 *e;
63         int i;
64
65         for (i = 0; i < nent; i++) {
66                 e = &entries[i];
67
68                 if (e->function == function && (e->index == index ||
69                     !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
70                         return e;
71         }
72
73         return NULL;
74 }
75
76 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
77 {
78         struct kvm_cpuid_entry2 *best;
79
80         /*
81          * The existing code assumes virtual address is 48-bit or 57-bit in the
82          * canonical address checks; exit if it is ever changed.
83          */
84         best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
85         if (best) {
86                 int vaddr_bits = (best->eax & 0xff00) >> 8;
87
88                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
89                         return -EINVAL;
90         }
91
92         return 0;
93 }
94
95 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
96 {
97         struct kvm_cpuid_entry2 *best;
98
99         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
100
101         /*
102          * save the feature bitmap to avoid cpuid lookup for every PV
103          * operation
104          */
105         if (best)
106                 vcpu->arch.pv_cpuid.features = best->eax;
107 }
108
109 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
110 {
111         struct kvm_cpuid_entry2 *best;
112
113         best = kvm_find_cpuid_entry(vcpu, 1, 0);
114         if (best) {
115                 /* Update OSXSAVE bit */
116                 if (boot_cpu_has(X86_FEATURE_XSAVE))
117                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
118                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
119
120                 cpuid_entry_change(best, X86_FEATURE_APIC,
121                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
122         }
123
124         best = kvm_find_cpuid_entry(vcpu, 7, 0);
125         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
126                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
127                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
128
129         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
130         if (best)
131                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
132
133         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
134         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
135                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
136                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
137
138         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
139         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
142
143         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
144                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
145                 if (best)
146                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
147                                            vcpu->arch.ia32_misc_enable_msr &
148                                            MSR_IA32_MISC_ENABLE_MWAIT);
149         }
150 }
151 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
152
153 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
154 {
155         struct kvm_lapic *apic = vcpu->arch.apic;
156         struct kvm_cpuid_entry2 *best;
157
158         best = kvm_find_cpuid_entry(vcpu, 1, 0);
159         if (best && apic) {
160                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
161                         apic->lapic_timer.timer_mode_mask = 3 << 17;
162                 else
163                         apic->lapic_timer.timer_mode_mask = 1 << 17;
164
165                 kvm_apic_set_version(vcpu);
166         }
167
168         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
169         if (!best)
170                 vcpu->arch.guest_supported_xcr0 = 0;
171         else
172                 vcpu->arch.guest_supported_xcr0 =
173                         (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
174
175         /*
176          * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
177          * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
178          * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
179          * at the time of EENTER, thus adjust the allowed XFRM by the guest's
180          * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
181          * '1' even on CPUs that don't support XSAVE.
182          */
183         best = kvm_find_cpuid_entry(vcpu, 0x12, 0x1);
184         if (best) {
185                 best->ecx &= vcpu->arch.guest_supported_xcr0 & 0xffffffff;
186                 best->edx &= vcpu->arch.guest_supported_xcr0 >> 32;
187                 best->ecx |= XFEATURE_MASK_FPSSE;
188         }
189
190         kvm_update_pv_runtime(vcpu);
191
192         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
193         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
194
195         kvm_pmu_refresh(vcpu);
196         vcpu->arch.cr4_guest_rsvd_bits =
197             __cr4_reserved_bits(guest_cpuid_has, vcpu);
198
199         kvm_hv_set_cpuid(vcpu);
200
201         /* Invoke the vendor callback only after the above state is updated. */
202         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
203
204         /*
205          * Except for the MMU, which needs to do its thing any vendor specific
206          * adjustments to the reserved GPA bits.
207          */
208         kvm_mmu_after_set_cpuid(vcpu);
209 }
210
211 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
212 {
213         struct kvm_cpuid_entry2 *best;
214
215         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
216         if (!best || best->eax < 0x80000008)
217                 goto not_found;
218         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
219         if (best)
220                 return best->eax & 0xff;
221 not_found:
222         return 36;
223 }
224
225 /*
226  * This "raw" version returns the reserved GPA bits without any adjustments for
227  * encryption technologies that usurp bits.  The raw mask should be used if and
228  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
229  */
230 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
231 {
232         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
233 }
234
235 /* when an old userspace process fills a new kernel module */
236 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
237                              struct kvm_cpuid *cpuid,
238                              struct kvm_cpuid_entry __user *entries)
239 {
240         int r, i;
241         struct kvm_cpuid_entry *e = NULL;
242         struct kvm_cpuid_entry2 *e2 = NULL;
243
244         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
245                 return -E2BIG;
246
247         if (cpuid->nent) {
248                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
249                 if (IS_ERR(e))
250                         return PTR_ERR(e);
251
252                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
253                 if (!e2) {
254                         r = -ENOMEM;
255                         goto out_free_cpuid;
256                 }
257         }
258         for (i = 0; i < cpuid->nent; i++) {
259                 e2[i].function = e[i].function;
260                 e2[i].eax = e[i].eax;
261                 e2[i].ebx = e[i].ebx;
262                 e2[i].ecx = e[i].ecx;
263                 e2[i].edx = e[i].edx;
264                 e2[i].index = 0;
265                 e2[i].flags = 0;
266                 e2[i].padding[0] = 0;
267                 e2[i].padding[1] = 0;
268                 e2[i].padding[2] = 0;
269         }
270
271         r = kvm_check_cpuid(e2, cpuid->nent);
272         if (r) {
273                 kvfree(e2);
274                 goto out_free_cpuid;
275         }
276
277         kvfree(vcpu->arch.cpuid_entries);
278         vcpu->arch.cpuid_entries = e2;
279         vcpu->arch.cpuid_nent = cpuid->nent;
280
281         kvm_update_cpuid_runtime(vcpu);
282         kvm_vcpu_after_set_cpuid(vcpu);
283
284 out_free_cpuid:
285         kvfree(e);
286
287         return r;
288 }
289
290 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
291                               struct kvm_cpuid2 *cpuid,
292                               struct kvm_cpuid_entry2 __user *entries)
293 {
294         struct kvm_cpuid_entry2 *e2 = NULL;
295         int r;
296
297         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
298                 return -E2BIG;
299
300         if (cpuid->nent) {
301                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
302                 if (IS_ERR(e2))
303                         return PTR_ERR(e2);
304         }
305
306         r = kvm_check_cpuid(e2, cpuid->nent);
307         if (r) {
308                 kvfree(e2);
309                 return r;
310         }
311
312         kvfree(vcpu->arch.cpuid_entries);
313         vcpu->arch.cpuid_entries = e2;
314         vcpu->arch.cpuid_nent = cpuid->nent;
315
316         kvm_update_cpuid_runtime(vcpu);
317         kvm_vcpu_after_set_cpuid(vcpu);
318
319         return 0;
320 }
321
322 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
323                               struct kvm_cpuid2 *cpuid,
324                               struct kvm_cpuid_entry2 __user *entries)
325 {
326         int r;
327
328         r = -E2BIG;
329         if (cpuid->nent < vcpu->arch.cpuid_nent)
330                 goto out;
331         r = -EFAULT;
332         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
333                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
334                 goto out;
335         return 0;
336
337 out:
338         cpuid->nent = vcpu->arch.cpuid_nent;
339         return r;
340 }
341
342 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
343 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
344 {
345         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
346         struct kvm_cpuid_entry2 entry;
347
348         reverse_cpuid_check(leaf);
349
350         cpuid_count(cpuid.function, cpuid.index,
351                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
352
353         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
354 }
355
356 static __always_inline
357 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
358 {
359         /* Use kvm_cpu_cap_mask for non-scattered leafs. */
360         BUILD_BUG_ON(leaf < NCAPINTS);
361
362         kvm_cpu_caps[leaf] = mask;
363
364         __kvm_cpu_cap_mask(leaf);
365 }
366
367 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
368 {
369         /* Use kvm_cpu_cap_init_scattered for scattered leafs. */
370         BUILD_BUG_ON(leaf >= NCAPINTS);
371
372         kvm_cpu_caps[leaf] &= mask;
373
374         __kvm_cpu_cap_mask(leaf);
375 }
376
377 void kvm_set_cpu_caps(void)
378 {
379 #ifdef CONFIG_X86_64
380         unsigned int f_gbpages = F(GBPAGES);
381         unsigned int f_lm = F(LM);
382 #else
383         unsigned int f_gbpages = 0;
384         unsigned int f_lm = 0;
385 #endif
386         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
387
388         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
389                      sizeof(boot_cpu_data.x86_capability));
390
391         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
392                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
393
394         kvm_cpu_cap_mask(CPUID_1_ECX,
395                 /*
396                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
397                  * advertised to guests via CPUID!
398                  */
399                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
400                 0 /* DS-CPL, VMX, SMX, EST */ |
401                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
402                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
403                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
404                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
405                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
406                 F(F16C) | F(RDRAND)
407         );
408         /* KVM emulates x2apic in software irrespective of host support. */
409         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
410
411         kvm_cpu_cap_mask(CPUID_1_EDX,
412                 F(FPU) | F(VME) | F(DE) | F(PSE) |
413                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
414                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
415                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
416                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
417                 0 /* Reserved, DS, ACPI */ | F(MMX) |
418                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
419                 0 /* HTT, TM, Reserved, PBE */
420         );
421
422         kvm_cpu_cap_mask(CPUID_7_0_EBX,
423                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
424                 F(BMI2) | F(ERMS) | F(INVPCID) | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
425                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
426                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
427                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
428         );
429
430         kvm_cpu_cap_mask(CPUID_7_ECX,
431                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
432                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
433                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
434                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
435                 F(SGX_LC) | F(BUS_LOCK_DETECT)
436         );
437         /* Set LA57 based on hardware capability. */
438         if (cpuid_ecx(7) & F(LA57))
439                 kvm_cpu_cap_set(X86_FEATURE_LA57);
440
441         /*
442          * PKU not yet implemented for shadow paging and requires OSPKE
443          * to be set on the host. Clear it if that is not the case
444          */
445         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
446                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
447
448         kvm_cpu_cap_mask(CPUID_7_EDX,
449                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
450                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
451                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
452                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
453         );
454
455         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
456         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
457         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
458
459         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
460                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
461         if (boot_cpu_has(X86_FEATURE_STIBP))
462                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
463         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
464                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
465
466         kvm_cpu_cap_mask(CPUID_7_1_EAX,
467                 F(AVX_VNNI) | F(AVX512_BF16)
468         );
469
470         kvm_cpu_cap_mask(CPUID_D_1_EAX,
471                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
472         );
473
474         kvm_cpu_cap_init_scattered(CPUID_12_EAX,
475                 SF(SGX1) | SF(SGX2)
476         );
477
478         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
479                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
480                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
481                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
482                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
483                 F(TOPOEXT) | F(PERFCTR_CORE)
484         );
485
486         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
487                 F(FPU) | F(VME) | F(DE) | F(PSE) |
488                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
489                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
490                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
491                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
492                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
493                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
494                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
495         );
496
497         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
498                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
499
500         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
501                 F(CLZERO) | F(XSAVEERPTR) |
502                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
503                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
504         );
505
506         /*
507          * AMD has separate bits for each SPEC_CTRL bit.
508          * arch/x86/kernel/cpu/bugs.c is kind enough to
509          * record that in cpufeatures so use them.
510          */
511         if (boot_cpu_has(X86_FEATURE_IBPB))
512                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
513         if (boot_cpu_has(X86_FEATURE_IBRS))
514                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
515         if (boot_cpu_has(X86_FEATURE_STIBP))
516                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
517         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
518                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
519         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
520                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
521         /*
522          * The preference is to use SPEC CTRL MSR instead of the
523          * VIRT_SPEC MSR.
524          */
525         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
526             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
527                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
528
529         /*
530          * Hide all SVM features by default, SVM will set the cap bits for
531          * features it emulates and/or exposes for L1.
532          */
533         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
534
535         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
536                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
537                 F(SME_COHERENT));
538
539         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
540                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
541                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
542                 F(PMM) | F(PMM_EN)
543         );
544
545         /*
546          * Hide RDTSCP and RDPID if either feature is reported as supported but
547          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
548          * should never happen, but the guest will likely crash if RDTSCP or
549          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
550          * the past.  For example, the sanity check may fire if this instance of
551          * KVM is running as L1 on top of an older, broken KVM.
552          */
553         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
554                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
555                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
556                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
557                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
558         }
559 }
560 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
561
562 struct kvm_cpuid_array {
563         struct kvm_cpuid_entry2 *entries;
564         int maxnent;
565         int nent;
566 };
567
568 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
569                                               u32 function, u32 index)
570 {
571         struct kvm_cpuid_entry2 *entry;
572
573         if (array->nent >= array->maxnent)
574                 return NULL;
575
576         entry = &array->entries[array->nent++];
577
578         entry->function = function;
579         entry->index = index;
580         entry->flags = 0;
581
582         cpuid_count(entry->function, entry->index,
583                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
584
585         switch (function) {
586         case 4:
587         case 7:
588         case 0xb:
589         case 0xd:
590         case 0xf:
591         case 0x10:
592         case 0x12:
593         case 0x14:
594         case 0x17:
595         case 0x18:
596         case 0x1f:
597         case 0x8000001d:
598                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
599                 break;
600         }
601
602         return entry;
603 }
604
605 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
606 {
607         struct kvm_cpuid_entry2 *entry;
608
609         if (array->nent >= array->maxnent)
610                 return -E2BIG;
611
612         entry = &array->entries[array->nent];
613         entry->function = func;
614         entry->index = 0;
615         entry->flags = 0;
616
617         switch (func) {
618         case 0:
619                 entry->eax = 7;
620                 ++array->nent;
621                 break;
622         case 1:
623                 entry->ecx = F(MOVBE);
624                 ++array->nent;
625                 break;
626         case 7:
627                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
628                 entry->eax = 0;
629                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
630                         entry->ecx = F(RDPID);
631                 ++array->nent;
632                 break;
633         default:
634                 break;
635         }
636
637         return 0;
638 }
639
640 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
641 {
642         struct kvm_cpuid_entry2 *entry;
643         int r, i, max_idx;
644
645         /* all calls to cpuid_count() should be made on the same cpu */
646         get_cpu();
647
648         r = -E2BIG;
649
650         entry = do_host_cpuid(array, function, 0);
651         if (!entry)
652                 goto out;
653
654         switch (function) {
655         case 0:
656                 /* Limited to the highest leaf implemented in KVM. */
657                 entry->eax = min(entry->eax, 0x1fU);
658                 break;
659         case 1:
660                 cpuid_entry_override(entry, CPUID_1_EDX);
661                 cpuid_entry_override(entry, CPUID_1_ECX);
662                 break;
663         case 2:
664                 /*
665                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
666                  * CPUID(function=2, index=0) may return different results each
667                  * time, with the least-significant byte in EAX enumerating the
668                  * number of times software should do CPUID(2, 0).
669                  *
670                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
671                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
672                  * return 01H. Software should ignore this value and not
673                  * interpret it as an informational descriptor", while AMD's
674                  * APM states that CPUID(2) is reserved.
675                  *
676                  * WARN if a frankenstein CPU that supports virtualization and
677                  * a stateful CPUID.0x2 is encountered.
678                  */
679                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
680                 break;
681         /* functions 4 and 0x8000001d have additional index. */
682         case 4:
683         case 0x8000001d:
684                 /*
685                  * Read entries until the cache type in the previous entry is
686                  * zero, i.e. indicates an invalid entry.
687                  */
688                 for (i = 1; entry->eax & 0x1f; ++i) {
689                         entry = do_host_cpuid(array, function, i);
690                         if (!entry)
691                                 goto out;
692                 }
693                 break;
694         case 6: /* Thermal management */
695                 entry->eax = 0x4; /* allow ARAT */
696                 entry->ebx = 0;
697                 entry->ecx = 0;
698                 entry->edx = 0;
699                 break;
700         /* function 7 has additional index. */
701         case 7:
702                 entry->eax = min(entry->eax, 1u);
703                 cpuid_entry_override(entry, CPUID_7_0_EBX);
704                 cpuid_entry_override(entry, CPUID_7_ECX);
705                 cpuid_entry_override(entry, CPUID_7_EDX);
706
707                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
708                 if (entry->eax == 1) {
709                         entry = do_host_cpuid(array, function, 1);
710                         if (!entry)
711                                 goto out;
712
713                         cpuid_entry_override(entry, CPUID_7_1_EAX);
714                         entry->ebx = 0;
715                         entry->ecx = 0;
716                         entry->edx = 0;
717                 }
718                 break;
719         case 9:
720                 break;
721         case 0xa: { /* Architectural Performance Monitoring */
722                 struct x86_pmu_capability cap;
723                 union cpuid10_eax eax;
724                 union cpuid10_edx edx;
725
726                 perf_get_x86_pmu_capability(&cap);
727
728                 /*
729                  * Only support guest architectural pmu on a host
730                  * with architectural pmu.
731                  */
732                 if (!cap.version)
733                         memset(&cap, 0, sizeof(cap));
734
735                 eax.split.version_id = min(cap.version, 2);
736                 eax.split.num_counters = cap.num_counters_gp;
737                 eax.split.bit_width = cap.bit_width_gp;
738                 eax.split.mask_length = cap.events_mask_len;
739
740                 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
741                 edx.split.bit_width_fixed = cap.bit_width_fixed;
742                 if (cap.version)
743                         edx.split.anythread_deprecated = 1;
744                 edx.split.reserved1 = 0;
745                 edx.split.reserved2 = 0;
746
747                 entry->eax = eax.full;
748                 entry->ebx = cap.events_mask;
749                 entry->ecx = 0;
750                 entry->edx = edx.full;
751                 break;
752         }
753         /*
754          * Per Intel's SDM, the 0x1f is a superset of 0xb,
755          * thus they can be handled by common code.
756          */
757         case 0x1f:
758         case 0xb:
759                 /*
760                  * Populate entries until the level type (ECX[15:8]) of the
761                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
762                  * the starting entry, filled by the primary do_host_cpuid().
763                  */
764                 for (i = 1; entry->ecx & 0xff00; ++i) {
765                         entry = do_host_cpuid(array, function, i);
766                         if (!entry)
767                                 goto out;
768                 }
769                 break;
770         case 0xd:
771                 entry->eax &= supported_xcr0;
772                 entry->ebx = xstate_required_size(supported_xcr0, false);
773                 entry->ecx = entry->ebx;
774                 entry->edx &= supported_xcr0 >> 32;
775                 if (!supported_xcr0)
776                         break;
777
778                 entry = do_host_cpuid(array, function, 1);
779                 if (!entry)
780                         goto out;
781
782                 cpuid_entry_override(entry, CPUID_D_1_EAX);
783                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
784                         entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
785                                                           true);
786                 else {
787                         WARN_ON_ONCE(supported_xss != 0);
788                         entry->ebx = 0;
789                 }
790                 entry->ecx &= supported_xss;
791                 entry->edx &= supported_xss >> 32;
792
793                 for (i = 2; i < 64; ++i) {
794                         bool s_state;
795                         if (supported_xcr0 & BIT_ULL(i))
796                                 s_state = false;
797                         else if (supported_xss & BIT_ULL(i))
798                                 s_state = true;
799                         else
800                                 continue;
801
802                         entry = do_host_cpuid(array, function, i);
803                         if (!entry)
804                                 goto out;
805
806                         /*
807                          * The supported check above should have filtered out
808                          * invalid sub-leafs.  Only valid sub-leafs should
809                          * reach this point, and they should have a non-zero
810                          * save state size.  Furthermore, check whether the
811                          * processor agrees with supported_xcr0/supported_xss
812                          * on whether this is an XCR0- or IA32_XSS-managed area.
813                          */
814                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
815                                 --array->nent;
816                                 continue;
817                         }
818                         entry->edx = 0;
819                 }
820                 break;
821         case 0x12:
822                 /* Intel SGX */
823                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
824                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
825                         break;
826                 }
827
828                 /*
829                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
830                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
831                  * are restricted by kernel and KVM capabilities (like most
832                  * feature flags), while enclave size is unrestricted.
833                  */
834                 cpuid_entry_override(entry, CPUID_12_EAX);
835                 entry->ebx &= SGX_MISC_EXINFO;
836
837                 entry = do_host_cpuid(array, function, 1);
838                 if (!entry)
839                         goto out;
840
841                 /*
842                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
843                  * feature flags.  Advertise all supported flags, including
844                  * privileged attributes that require explicit opt-in from
845                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
846                  * expected to derive it from supported XCR0.
847                  */
848                 entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
849                               SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
850                               SGX_ATTR_KSS;
851                 entry->ebx &= 0;
852                 break;
853         /* Intel PT */
854         case 0x14:
855                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
856                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
857                         break;
858                 }
859
860                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
861                         if (!do_host_cpuid(array, function, i))
862                                 goto out;
863                 }
864                 break;
865         case KVM_CPUID_SIGNATURE: {
866                 static const char signature[12] = "KVMKVMKVM\0\0";
867                 const u32 *sigptr = (const u32 *)signature;
868                 entry->eax = KVM_CPUID_FEATURES;
869                 entry->ebx = sigptr[0];
870                 entry->ecx = sigptr[1];
871                 entry->edx = sigptr[2];
872                 break;
873         }
874         case KVM_CPUID_FEATURES:
875                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
876                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
877                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
878                              (1 << KVM_FEATURE_ASYNC_PF) |
879                              (1 << KVM_FEATURE_PV_EOI) |
880                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
881                              (1 << KVM_FEATURE_PV_UNHALT) |
882                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
883                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
884                              (1 << KVM_FEATURE_PV_SEND_IPI) |
885                              (1 << KVM_FEATURE_POLL_CONTROL) |
886                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
887                              (1 << KVM_FEATURE_ASYNC_PF_INT);
888
889                 if (sched_info_on())
890                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
891
892                 entry->ebx = 0;
893                 entry->ecx = 0;
894                 entry->edx = 0;
895                 break;
896         case 0x80000000:
897                 entry->eax = min(entry->eax, 0x8000001f);
898                 break;
899         case 0x80000001:
900                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
901                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
902                 break;
903         case 0x80000006:
904                 /* L2 cache and TLB: pass through host info. */
905                 break;
906         case 0x80000007: /* Advanced power management */
907                 /* invariant TSC is CPUID.80000007H:EDX[8] */
908                 entry->edx &= (1 << 8);
909                 /* mask against host */
910                 entry->edx &= boot_cpu_data.x86_power;
911                 entry->eax = entry->ebx = entry->ecx = 0;
912                 break;
913         case 0x80000008: {
914                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
915                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
916                 unsigned phys_as = entry->eax & 0xff;
917
918                 /*
919                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
920                  * the guest operates in the same PA space as the host, i.e.
921                  * reductions in MAXPHYADDR for memory encryption affect shadow
922                  * paging, too.
923                  *
924                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
925                  * provided, use the raw bare metal MAXPHYADDR as reductions to
926                  * the HPAs do not affect GPAs.
927                  */
928                 if (!tdp_enabled)
929                         g_phys_as = boot_cpu_data.x86_phys_bits;
930                 else if (!g_phys_as)
931                         g_phys_as = phys_as;
932
933                 entry->eax = g_phys_as | (virt_as << 8);
934                 entry->edx = 0;
935                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
936                 break;
937         }
938         case 0x8000000A:
939                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
940                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
941                         break;
942                 }
943                 entry->eax = 1; /* SVM revision 1 */
944                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
945                                    ASID emulation to nested SVM */
946                 entry->ecx = 0; /* Reserved */
947                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
948                 break;
949         case 0x80000019:
950                 entry->ecx = entry->edx = 0;
951                 break;
952         case 0x8000001a:
953         case 0x8000001e:
954                 break;
955         case 0x8000001F:
956                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
957                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
958                 } else {
959                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
960
961                         /*
962                          * Enumerate '0' for "PA bits reduction", the adjusted
963                          * MAXPHYADDR is enumerated directly (see 0x80000008).
964                          */
965                         entry->ebx &= ~GENMASK(11, 6);
966                 }
967                 break;
968         /*Add support for Centaur's CPUID instruction*/
969         case 0xC0000000:
970                 /*Just support up to 0xC0000004 now*/
971                 entry->eax = min(entry->eax, 0xC0000004);
972                 break;
973         case 0xC0000001:
974                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
975                 break;
976         case 3: /* Processor serial number */
977         case 5: /* MONITOR/MWAIT */
978         case 0xC0000002:
979         case 0xC0000003:
980         case 0xC0000004:
981         default:
982                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
983                 break;
984         }
985
986         r = 0;
987
988 out:
989         put_cpu();
990
991         return r;
992 }
993
994 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
995                          unsigned int type)
996 {
997         if (type == KVM_GET_EMULATED_CPUID)
998                 return __do_cpuid_func_emulated(array, func);
999
1000         return __do_cpuid_func(array, func);
1001 }
1002
1003 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1004
1005 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1006                           unsigned int type)
1007 {
1008         u32 limit;
1009         int r;
1010
1011         if (func == CENTAUR_CPUID_SIGNATURE &&
1012             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1013                 return 0;
1014
1015         r = do_cpuid_func(array, func, type);
1016         if (r)
1017                 return r;
1018
1019         limit = array->entries[array->nent - 1].eax;
1020         for (func = func + 1; func <= limit; ++func) {
1021                 r = do_cpuid_func(array, func, type);
1022                 if (r)
1023                         break;
1024         }
1025
1026         return r;
1027 }
1028
1029 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1030                                  __u32 num_entries, unsigned int ioctl_type)
1031 {
1032         int i;
1033         __u32 pad[3];
1034
1035         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1036                 return false;
1037
1038         /*
1039          * We want to make sure that ->padding is being passed clean from
1040          * userspace in case we want to use it for something in the future.
1041          *
1042          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1043          * have to give ourselves satisfied only with the emulated side. /me
1044          * sheds a tear.
1045          */
1046         for (i = 0; i < num_entries; i++) {
1047                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1048                         return true;
1049
1050                 if (pad[0] || pad[1] || pad[2])
1051                         return true;
1052         }
1053         return false;
1054 }
1055
1056 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1057                             struct kvm_cpuid_entry2 __user *entries,
1058                             unsigned int type)
1059 {
1060         static const u32 funcs[] = {
1061                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1062         };
1063
1064         struct kvm_cpuid_array array = {
1065                 .nent = 0,
1066         };
1067         int r, i;
1068
1069         if (cpuid->nent < 1)
1070                 return -E2BIG;
1071         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1072                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1073
1074         if (sanity_check_entries(entries, cpuid->nent, type))
1075                 return -EINVAL;
1076
1077         array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
1078                                            cpuid->nent));
1079         if (!array.entries)
1080                 return -ENOMEM;
1081
1082         array.maxnent = cpuid->nent;
1083
1084         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1085                 r = get_cpuid_func(&array, funcs[i], type);
1086                 if (r)
1087                         goto out_free;
1088         }
1089         cpuid->nent = array.nent;
1090
1091         if (copy_to_user(entries, array.entries,
1092                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1093                 r = -EFAULT;
1094
1095 out_free:
1096         vfree(array.entries);
1097         return r;
1098 }
1099
1100 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1101                                               u32 function, u32 index)
1102 {
1103         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1104                                  function, index);
1105 }
1106 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1107
1108 /*
1109  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1110  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1111  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1112  * range.  Centaur/VIA follows Intel semantics.
1113  *
1114  * A leaf is considered out-of-range if its function is higher than the maximum
1115  * supported leaf of its associated class or if its associated class does not
1116  * exist.
1117  *
1118  * There are three primary classes to be considered, with their respective
1119  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1120  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1121  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1122  *
1123  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1124  *  - Hypervisor: 0x40000000 - 0x4fffffff
1125  *  - Extended:   0x80000000 - 0xbfffffff
1126  *  - Centaur:    0xc0000000 - 0xcfffffff
1127  *
1128  * The Hypervisor class is further subdivided into sub-classes that each act as
1129  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1130  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1131  * CPUID sub-classes are:
1132  *
1133  *  - HyperV:     0x40000000 - 0x400000ff
1134  *  - KVM:        0x40000100 - 0x400001ff
1135  */
1136 static struct kvm_cpuid_entry2 *
1137 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1138 {
1139         struct kvm_cpuid_entry2 *basic, *class;
1140         u32 function = *fn_ptr;
1141
1142         basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1143         if (!basic)
1144                 return NULL;
1145
1146         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1147             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1148                 return NULL;
1149
1150         if (function >= 0x40000000 && function <= 0x4fffffff)
1151                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1152         else if (function >= 0xc0000000)
1153                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1154         else
1155                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1156
1157         if (class && function <= class->eax)
1158                 return NULL;
1159
1160         /*
1161          * Leaf specific adjustments are also applied when redirecting to the
1162          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1163          * entry for CPUID.0xb.index (see below), then the output value for EDX
1164          * needs to be pulled from CPUID.0xb.1.
1165          */
1166         *fn_ptr = basic->eax;
1167
1168         /*
1169          * The class does not exist or the requested function is out of range;
1170          * the effective CPUID entry is the max basic leaf.  Note, the index of
1171          * the original requested leaf is observed!
1172          */
1173         return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1174 }
1175
1176 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1177                u32 *ecx, u32 *edx, bool exact_only)
1178 {
1179         u32 orig_function = *eax, function = *eax, index = *ecx;
1180         struct kvm_cpuid_entry2 *entry;
1181         bool exact, used_max_basic = false;
1182
1183         entry = kvm_find_cpuid_entry(vcpu, function, index);
1184         exact = !!entry;
1185
1186         if (!entry && !exact_only) {
1187                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1188                 used_max_basic = !!entry;
1189         }
1190
1191         if (entry) {
1192                 *eax = entry->eax;
1193                 *ebx = entry->ebx;
1194                 *ecx = entry->ecx;
1195                 *edx = entry->edx;
1196                 if (function == 7 && index == 0) {
1197                         u64 data;
1198                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1199                             (data & TSX_CTRL_CPUID_CLEAR))
1200                                 *ebx &= ~(F(RTM) | F(HLE));
1201                 }
1202         } else {
1203                 *eax = *ebx = *ecx = *edx = 0;
1204                 /*
1205                  * When leaf 0BH or 1FH is defined, CL is pass-through
1206                  * and EDX is always the x2APIC ID, even for undefined
1207                  * subleaves. Index 1 will exist iff the leaf is
1208                  * implemented, so we pass through CL iff leaf 1
1209                  * exists. EDX can be copied from any existing index.
1210                  */
1211                 if (function == 0xb || function == 0x1f) {
1212                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1213                         if (entry) {
1214                                 *ecx = index & 0xff;
1215                                 *edx = entry->edx;
1216                         }
1217                 }
1218         }
1219         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1220                         used_max_basic);
1221         return exact;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_cpuid);
1224
1225 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1226 {
1227         u32 eax, ebx, ecx, edx;
1228
1229         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1230                 return 1;
1231
1232         eax = kvm_rax_read(vcpu);
1233         ecx = kvm_rcx_read(vcpu);
1234         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1235         kvm_rax_write(vcpu, eax);
1236         kvm_rbx_write(vcpu, ebx);
1237         kvm_rcx_write(vcpu, ecx);
1238         kvm_rdx_write(vcpu, edx);
1239         return kvm_skip_emulated_instruction(vcpu);
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);