Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / arch / x86 / kernel / apic / vector.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Local APIC related interfaces to support IOAPIC, MSI, etc.
4  *
5  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6  *      Moved from arch/x86/kernel/apic/io_apic.c.
7  * Jiang Liu <jiang.liu@linux.intel.com>
8  *      Enable support of hierarchical irqdomains
9  */
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/seq_file.h>
13 #include <linux/init.h>
14 #include <linux/compiler.h>
15 #include <linux/slab.h>
16 #include <asm/irqdomain.h>
17 #include <asm/hw_irq.h>
18 #include <asm/traps.h>
19 #include <asm/apic.h>
20 #include <asm/i8259.h>
21 #include <asm/desc.h>
22 #include <asm/irq_remapping.h>
23
24 #include <asm/trace/irq_vectors.h>
25
26 struct apic_chip_data {
27         struct irq_cfg          hw_irq_cfg;
28         unsigned int            vector;
29         unsigned int            prev_vector;
30         unsigned int            cpu;
31         unsigned int            prev_cpu;
32         unsigned int            irq;
33         struct hlist_node       clist;
34         unsigned int            move_in_progress        : 1,
35                                 is_managed              : 1,
36                                 can_reserve             : 1,
37                                 has_reserved            : 1;
38 };
39
40 struct irq_domain *x86_vector_domain;
41 EXPORT_SYMBOL_GPL(x86_vector_domain);
42 static DEFINE_RAW_SPINLOCK(vector_lock);
43 static cpumask_var_t vector_searchmask;
44 static struct irq_chip lapic_controller;
45 static struct irq_matrix *vector_matrix;
46 #ifdef CONFIG_SMP
47 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
48 #endif
49
50 void lock_vector_lock(void)
51 {
52         /* Used to the online set of cpus does not change
53          * during assign_irq_vector.
54          */
55         raw_spin_lock(&vector_lock);
56 }
57
58 void unlock_vector_lock(void)
59 {
60         raw_spin_unlock(&vector_lock);
61 }
62
63 void init_irq_alloc_info(struct irq_alloc_info *info,
64                          const struct cpumask *mask)
65 {
66         memset(info, 0, sizeof(*info));
67         info->mask = mask;
68 }
69
70 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
71 {
72         if (src)
73                 *dst = *src;
74         else
75                 memset(dst, 0, sizeof(*dst));
76 }
77
78 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
79 {
80         if (!irqd)
81                 return NULL;
82
83         while (irqd->parent_data)
84                 irqd = irqd->parent_data;
85
86         return irqd->chip_data;
87 }
88
89 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
90 {
91         struct apic_chip_data *apicd = apic_chip_data(irqd);
92
93         return apicd ? &apicd->hw_irq_cfg : NULL;
94 }
95 EXPORT_SYMBOL_GPL(irqd_cfg);
96
97 struct irq_cfg *irq_cfg(unsigned int irq)
98 {
99         return irqd_cfg(irq_get_irq_data(irq));
100 }
101
102 static struct apic_chip_data *alloc_apic_chip_data(int node)
103 {
104         struct apic_chip_data *apicd;
105
106         apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
107         if (apicd)
108                 INIT_HLIST_NODE(&apicd->clist);
109         return apicd;
110 }
111
112 static void free_apic_chip_data(struct apic_chip_data *apicd)
113 {
114         kfree(apicd);
115 }
116
117 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
118                                 unsigned int cpu)
119 {
120         struct apic_chip_data *apicd = apic_chip_data(irqd);
121
122         lockdep_assert_held(&vector_lock);
123
124         apicd->hw_irq_cfg.vector = vector;
125         apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
126         irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
127         trace_vector_config(irqd->irq, vector, cpu,
128                             apicd->hw_irq_cfg.dest_apicid);
129 }
130
131 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
132                                unsigned int newcpu)
133 {
134         struct apic_chip_data *apicd = apic_chip_data(irqd);
135         struct irq_desc *desc = irq_data_to_desc(irqd);
136         bool managed = irqd_affinity_is_managed(irqd);
137
138         lockdep_assert_held(&vector_lock);
139
140         trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
141                             apicd->cpu);
142
143         /*
144          * If there is no vector associated or if the associated vector is
145          * the shutdown vector, which is associated to make PCI/MSI
146          * shutdown mode work, then there is nothing to release. Clear out
147          * prev_vector for this and the offlined target case.
148          */
149         apicd->prev_vector = 0;
150         if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
151                 goto setnew;
152         /*
153          * If the target CPU of the previous vector is online, then mark
154          * the vector as move in progress and store it for cleanup when the
155          * first interrupt on the new vector arrives. If the target CPU is
156          * offline then the regular release mechanism via the cleanup
157          * vector is not possible and the vector can be immediately freed
158          * in the underlying matrix allocator.
159          */
160         if (cpu_online(apicd->cpu)) {
161                 apicd->move_in_progress = true;
162                 apicd->prev_vector = apicd->vector;
163                 apicd->prev_cpu = apicd->cpu;
164                 WARN_ON_ONCE(apicd->cpu == newcpu);
165         } else {
166                 irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
167                                 managed);
168         }
169
170 setnew:
171         apicd->vector = newvec;
172         apicd->cpu = newcpu;
173         BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
174         per_cpu(vector_irq, newcpu)[newvec] = desc;
175 }
176
177 static void vector_assign_managed_shutdown(struct irq_data *irqd)
178 {
179         unsigned int cpu = cpumask_first(cpu_online_mask);
180
181         apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
182 }
183
184 static int reserve_managed_vector(struct irq_data *irqd)
185 {
186         const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
187         struct apic_chip_data *apicd = apic_chip_data(irqd);
188         unsigned long flags;
189         int ret;
190
191         raw_spin_lock_irqsave(&vector_lock, flags);
192         apicd->is_managed = true;
193         ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
194         raw_spin_unlock_irqrestore(&vector_lock, flags);
195         trace_vector_reserve_managed(irqd->irq, ret);
196         return ret;
197 }
198
199 static void reserve_irq_vector_locked(struct irq_data *irqd)
200 {
201         struct apic_chip_data *apicd = apic_chip_data(irqd);
202
203         irq_matrix_reserve(vector_matrix);
204         apicd->can_reserve = true;
205         apicd->has_reserved = true;
206         irqd_set_can_reserve(irqd);
207         trace_vector_reserve(irqd->irq, 0);
208         vector_assign_managed_shutdown(irqd);
209 }
210
211 static int reserve_irq_vector(struct irq_data *irqd)
212 {
213         unsigned long flags;
214
215         raw_spin_lock_irqsave(&vector_lock, flags);
216         reserve_irq_vector_locked(irqd);
217         raw_spin_unlock_irqrestore(&vector_lock, flags);
218         return 0;
219 }
220
221 static int
222 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
223 {
224         struct apic_chip_data *apicd = apic_chip_data(irqd);
225         bool resvd = apicd->has_reserved;
226         unsigned int cpu = apicd->cpu;
227         int vector = apicd->vector;
228
229         lockdep_assert_held(&vector_lock);
230
231         /*
232          * If the current target CPU is online and in the new requested
233          * affinity mask, there is no point in moving the interrupt from
234          * one CPU to another.
235          */
236         if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
237                 return 0;
238
239         /*
240          * Careful here. @apicd might either have move_in_progress set or
241          * be enqueued for cleanup. Assigning a new vector would either
242          * leave a stale vector on some CPU around or in case of a pending
243          * cleanup corrupt the hlist.
244          */
245         if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
246                 return -EBUSY;
247
248         vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
249         trace_vector_alloc(irqd->irq, vector, resvd, vector);
250         if (vector < 0)
251                 return vector;
252         apic_update_vector(irqd, vector, cpu);
253         apic_update_irq_cfg(irqd, vector, cpu);
254
255         return 0;
256 }
257
258 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
259 {
260         unsigned long flags;
261         int ret;
262
263         raw_spin_lock_irqsave(&vector_lock, flags);
264         cpumask_and(vector_searchmask, dest, cpu_online_mask);
265         ret = assign_vector_locked(irqd, vector_searchmask);
266         raw_spin_unlock_irqrestore(&vector_lock, flags);
267         return ret;
268 }
269
270 static int assign_irq_vector_any_locked(struct irq_data *irqd)
271 {
272         /* Get the affinity mask - either irq_default_affinity or (user) set */
273         const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
274         int node = irq_data_get_node(irqd);
275
276         if (node != NUMA_NO_NODE) {
277                 /* Try the intersection of @affmsk and node mask */
278                 cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
279                 if (!assign_vector_locked(irqd, vector_searchmask))
280                         return 0;
281         }
282
283         /* Try the full affinity mask */
284         cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
285         if (!assign_vector_locked(irqd, vector_searchmask))
286                 return 0;
287
288         if (node != NUMA_NO_NODE) {
289                 /* Try the node mask */
290                 if (!assign_vector_locked(irqd, cpumask_of_node(node)))
291                         return 0;
292         }
293
294         /* Try the full online mask */
295         return assign_vector_locked(irqd, cpu_online_mask);
296 }
297
298 static int
299 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
300 {
301         if (irqd_affinity_is_managed(irqd))
302                 return reserve_managed_vector(irqd);
303         if (info->mask)
304                 return assign_irq_vector(irqd, info->mask);
305         /*
306          * Make only a global reservation with no guarantee. A real vector
307          * is associated at activation time.
308          */
309         return reserve_irq_vector(irqd);
310 }
311
312 static int
313 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
314 {
315         const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
316         struct apic_chip_data *apicd = apic_chip_data(irqd);
317         int vector, cpu;
318
319         cpumask_and(vector_searchmask, dest, affmsk);
320
321         /* set_affinity might call here for nothing */
322         if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
323                 return 0;
324         vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
325                                           &cpu);
326         trace_vector_alloc_managed(irqd->irq, vector, vector);
327         if (vector < 0)
328                 return vector;
329         apic_update_vector(irqd, vector, cpu);
330         apic_update_irq_cfg(irqd, vector, cpu);
331         return 0;
332 }
333
334 static void clear_irq_vector(struct irq_data *irqd)
335 {
336         struct apic_chip_data *apicd = apic_chip_data(irqd);
337         bool managed = irqd_affinity_is_managed(irqd);
338         unsigned int vector = apicd->vector;
339
340         lockdep_assert_held(&vector_lock);
341
342         if (!vector)
343                 return;
344
345         trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
346                            apicd->prev_cpu);
347
348         per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
349         irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
350         apicd->vector = 0;
351
352         /* Clean up move in progress */
353         vector = apicd->prev_vector;
354         if (!vector)
355                 return;
356
357         per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
358         irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
359         apicd->prev_vector = 0;
360         apicd->move_in_progress = 0;
361         hlist_del_init(&apicd->clist);
362 }
363
364 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
365 {
366         struct apic_chip_data *apicd = apic_chip_data(irqd);
367         unsigned long flags;
368
369         trace_vector_deactivate(irqd->irq, apicd->is_managed,
370                                 apicd->can_reserve, false);
371
372         /* Regular fixed assigned interrupt */
373         if (!apicd->is_managed && !apicd->can_reserve)
374                 return;
375         /* If the interrupt has a global reservation, nothing to do */
376         if (apicd->has_reserved)
377                 return;
378
379         raw_spin_lock_irqsave(&vector_lock, flags);
380         clear_irq_vector(irqd);
381         if (apicd->can_reserve)
382                 reserve_irq_vector_locked(irqd);
383         else
384                 vector_assign_managed_shutdown(irqd);
385         raw_spin_unlock_irqrestore(&vector_lock, flags);
386 }
387
388 static int activate_reserved(struct irq_data *irqd)
389 {
390         struct apic_chip_data *apicd = apic_chip_data(irqd);
391         int ret;
392
393         ret = assign_irq_vector_any_locked(irqd);
394         if (!ret) {
395                 apicd->has_reserved = false;
396                 /*
397                  * Core might have disabled reservation mode after
398                  * allocating the irq descriptor. Ideally this should
399                  * happen before allocation time, but that would require
400                  * completely convoluted ways of transporting that
401                  * information.
402                  */
403                 if (!irqd_can_reserve(irqd))
404                         apicd->can_reserve = false;
405         }
406
407         /*
408          * Check to ensure that the effective affinity mask is a subset
409          * the user supplied affinity mask, and warn the user if it is not
410          */
411         if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
412                             irq_data_get_affinity_mask(irqd))) {
413                 pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
414                         irqd->irq);
415         }
416
417         return ret;
418 }
419
420 static int activate_managed(struct irq_data *irqd)
421 {
422         const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
423         int ret;
424
425         cpumask_and(vector_searchmask, dest, cpu_online_mask);
426         if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
427                 /* Something in the core code broke! Survive gracefully */
428                 pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
429                 return -EINVAL;
430         }
431
432         ret = assign_managed_vector(irqd, vector_searchmask);
433         /*
434          * This should not happen. The vector reservation got buggered.  Handle
435          * it gracefully.
436          */
437         if (WARN_ON_ONCE(ret < 0)) {
438                 pr_err("Managed startup irq %u, no vector available\n",
439                        irqd->irq);
440         }
441         return ret;
442 }
443
444 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
445                                bool reserve)
446 {
447         struct apic_chip_data *apicd = apic_chip_data(irqd);
448         unsigned long flags;
449         int ret = 0;
450
451         trace_vector_activate(irqd->irq, apicd->is_managed,
452                               apicd->can_reserve, reserve);
453
454         raw_spin_lock_irqsave(&vector_lock, flags);
455         if (!apicd->can_reserve && !apicd->is_managed)
456                 assign_irq_vector_any_locked(irqd);
457         else if (reserve || irqd_is_managed_and_shutdown(irqd))
458                 vector_assign_managed_shutdown(irqd);
459         else if (apicd->is_managed)
460                 ret = activate_managed(irqd);
461         else if (apicd->has_reserved)
462                 ret = activate_reserved(irqd);
463         raw_spin_unlock_irqrestore(&vector_lock, flags);
464         return ret;
465 }
466
467 static void vector_free_reserved_and_managed(struct irq_data *irqd)
468 {
469         const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
470         struct apic_chip_data *apicd = apic_chip_data(irqd);
471
472         trace_vector_teardown(irqd->irq, apicd->is_managed,
473                               apicd->has_reserved);
474
475         if (apicd->has_reserved)
476                 irq_matrix_remove_reserved(vector_matrix);
477         if (apicd->is_managed)
478                 irq_matrix_remove_managed(vector_matrix, dest);
479 }
480
481 static void x86_vector_free_irqs(struct irq_domain *domain,
482                                  unsigned int virq, unsigned int nr_irqs)
483 {
484         struct apic_chip_data *apicd;
485         struct irq_data *irqd;
486         unsigned long flags;
487         int i;
488
489         for (i = 0; i < nr_irqs; i++) {
490                 irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
491                 if (irqd && irqd->chip_data) {
492                         raw_spin_lock_irqsave(&vector_lock, flags);
493                         clear_irq_vector(irqd);
494                         vector_free_reserved_and_managed(irqd);
495                         apicd = irqd->chip_data;
496                         irq_domain_reset_irq_data(irqd);
497                         raw_spin_unlock_irqrestore(&vector_lock, flags);
498                         free_apic_chip_data(apicd);
499                 }
500         }
501 }
502
503 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
504                                     struct apic_chip_data *apicd)
505 {
506         unsigned long flags;
507         bool realloc = false;
508
509         apicd->vector = ISA_IRQ_VECTOR(virq);
510         apicd->cpu = 0;
511
512         raw_spin_lock_irqsave(&vector_lock, flags);
513         /*
514          * If the interrupt is activated, then it must stay at this vector
515          * position. That's usually the timer interrupt (0).
516          */
517         if (irqd_is_activated(irqd)) {
518                 trace_vector_setup(virq, true, 0);
519                 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
520         } else {
521                 /* Release the vector */
522                 apicd->can_reserve = true;
523                 irqd_set_can_reserve(irqd);
524                 clear_irq_vector(irqd);
525                 realloc = true;
526         }
527         raw_spin_unlock_irqrestore(&vector_lock, flags);
528         return realloc;
529 }
530
531 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
532                                  unsigned int nr_irqs, void *arg)
533 {
534         struct irq_alloc_info *info = arg;
535         struct apic_chip_data *apicd;
536         struct irq_data *irqd;
537         int i, err, node;
538
539         if (disable_apic)
540                 return -ENXIO;
541
542         /* Currently vector allocator can't guarantee contiguous allocations */
543         if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
544                 return -ENOSYS;
545
546         /*
547          * Catch any attempt to touch the cascade interrupt on a PIC
548          * equipped system.
549          */
550         if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY &&
551                          virq == PIC_CASCADE_IR))
552                 return -EINVAL;
553
554         for (i = 0; i < nr_irqs; i++) {
555                 irqd = irq_domain_get_irq_data(domain, virq + i);
556                 BUG_ON(!irqd);
557                 node = irq_data_get_node(irqd);
558                 WARN_ON_ONCE(irqd->chip_data);
559                 apicd = alloc_apic_chip_data(node);
560                 if (!apicd) {
561                         err = -ENOMEM;
562                         goto error;
563                 }
564
565                 apicd->irq = virq + i;
566                 irqd->chip = &lapic_controller;
567                 irqd->chip_data = apicd;
568                 irqd->hwirq = virq + i;
569                 irqd_set_single_target(irqd);
570                 /*
571                  * Prevent that any of these interrupts is invoked in
572                  * non interrupt context via e.g. generic_handle_irq()
573                  * as that can corrupt the affinity move state.
574                  */
575                 irqd_set_handle_enforce_irqctx(irqd);
576
577                 /* Don't invoke affinity setter on deactivated interrupts */
578                 irqd_set_affinity_on_activate(irqd);
579
580                 /*
581                  * Legacy vectors are already assigned when the IOAPIC
582                  * takes them over. They stay on the same vector. This is
583                  * required for check_timer() to work correctly as it might
584                  * switch back to legacy mode. Only update the hardware
585                  * config.
586                  */
587                 if (info->flags & X86_IRQ_ALLOC_LEGACY) {
588                         if (!vector_configure_legacy(virq + i, irqd, apicd))
589                                 continue;
590                 }
591
592                 err = assign_irq_vector_policy(irqd, info);
593                 trace_vector_setup(virq + i, false, err);
594                 if (err) {
595                         irqd->chip_data = NULL;
596                         free_apic_chip_data(apicd);
597                         goto error;
598                 }
599         }
600
601         return 0;
602
603 error:
604         x86_vector_free_irqs(domain, virq, i);
605         return err;
606 }
607
608 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
609 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
610                                   struct irq_data *irqd, int ind)
611 {
612         struct apic_chip_data apicd;
613         unsigned long flags;
614         int irq;
615
616         if (!irqd) {
617                 irq_matrix_debug_show(m, vector_matrix, ind);
618                 return;
619         }
620
621         irq = irqd->irq;
622         if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
623                 seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
624                 seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
625                 return;
626         }
627
628         if (!irqd->chip_data) {
629                 seq_printf(m, "%*sVector: Not assigned\n", ind, "");
630                 return;
631         }
632
633         raw_spin_lock_irqsave(&vector_lock, flags);
634         memcpy(&apicd, irqd->chip_data, sizeof(apicd));
635         raw_spin_unlock_irqrestore(&vector_lock, flags);
636
637         seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
638         seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
639         if (apicd.prev_vector) {
640                 seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
641                 seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
642         }
643         seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
644         seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
645         seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
646         seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
647         seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
648 }
649 #endif
650
651 int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec)
652 {
653         if (fwspec->param_count != 1)
654                 return 0;
655
656         if (is_fwnode_irqchip(fwspec->fwnode)) {
657                 const char *fwname = fwnode_get_name(fwspec->fwnode);
658                 return fwname && !strncmp(fwname, "IO-APIC-", 8) &&
659                         simple_strtol(fwname+8, NULL, 10) == fwspec->param[0];
660         }
661         return to_of_node(fwspec->fwnode) &&
662                 of_device_is_compatible(to_of_node(fwspec->fwnode),
663                                         "intel,ce4100-ioapic");
664 }
665
666 int x86_fwspec_is_hpet(struct irq_fwspec *fwspec)
667 {
668         if (fwspec->param_count != 1)
669                 return 0;
670
671         if (is_fwnode_irqchip(fwspec->fwnode)) {
672                 const char *fwname = fwnode_get_name(fwspec->fwnode);
673                 return fwname && !strncmp(fwname, "HPET-MSI-", 9) &&
674                         simple_strtol(fwname+9, NULL, 10) == fwspec->param[0];
675         }
676         return 0;
677 }
678
679 static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec,
680                              enum irq_domain_bus_token bus_token)
681 {
682         /*
683          * HPET and I/OAPIC cannot be parented in the vector domain
684          * if IRQ remapping is enabled. APIC IDs above 15 bits are
685          * only permitted if IRQ remapping is enabled, so check that.
686          */
687         if (apic->apic_id_valid(32768))
688                 return 0;
689
690         return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec);
691 }
692
693 static const struct irq_domain_ops x86_vector_domain_ops = {
694         .select         = x86_vector_select,
695         .alloc          = x86_vector_alloc_irqs,
696         .free           = x86_vector_free_irqs,
697         .activate       = x86_vector_activate,
698         .deactivate     = x86_vector_deactivate,
699 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
700         .debug_show     = x86_vector_debug_show,
701 #endif
702 };
703
704 int __init arch_probe_nr_irqs(void)
705 {
706         int nr;
707
708         if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
709                 nr_irqs = NR_VECTORS * nr_cpu_ids;
710
711         nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
712 #if defined(CONFIG_PCI_MSI)
713         /*
714          * for MSI and HT dyn irq
715          */
716         if (gsi_top <= NR_IRQS_LEGACY)
717                 nr +=  8 * nr_cpu_ids;
718         else
719                 nr += gsi_top * 16;
720 #endif
721         if (nr < nr_irqs)
722                 nr_irqs = nr;
723
724         /*
725          * We don't know if PIC is present at this point so we need to do
726          * probe() to get the right number of legacy IRQs.
727          */
728         return legacy_pic->probe();
729 }
730
731 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
732 {
733         /*
734          * Use assign system here so it wont get accounted as allocated
735          * and moveable in the cpu hotplug check and it prevents managed
736          * irq reservation from touching it.
737          */
738         irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
739 }
740
741 void __init lapic_update_legacy_vectors(void)
742 {
743         unsigned int i;
744
745         if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0)
746                 return;
747
748         /*
749          * If the IO/APIC is disabled via config, kernel command line or
750          * lack of enumeration then all legacy interrupts are routed
751          * through the PIC. Make sure that they are marked as legacy
752          * vectors. PIC_CASCADE_IRQ has already been marked in
753          * lapic_assign_system_vectors().
754          */
755         for (i = 0; i < nr_legacy_irqs(); i++) {
756                 if (i != PIC_CASCADE_IR)
757                         lapic_assign_legacy_vector(i, true);
758         }
759 }
760
761 void __init lapic_assign_system_vectors(void)
762 {
763         unsigned int i, vector = 0;
764
765         for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
766                 irq_matrix_assign_system(vector_matrix, vector, false);
767
768         if (nr_legacy_irqs() > 1)
769                 lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
770
771         /* System vectors are reserved, online it */
772         irq_matrix_online(vector_matrix);
773
774         /* Mark the preallocated legacy interrupts */
775         for (i = 0; i < nr_legacy_irqs(); i++) {
776                 /*
777                  * Don't touch the cascade interrupt. It's unusable
778                  * on PIC equipped machines. See the large comment
779                  * in the IO/APIC code.
780                  */
781                 if (i != PIC_CASCADE_IR)
782                         irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
783         }
784 }
785
786 int __init arch_early_irq_init(void)
787 {
788         struct fwnode_handle *fn;
789
790         fn = irq_domain_alloc_named_fwnode("VECTOR");
791         BUG_ON(!fn);
792         x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
793                                                    NULL);
794         BUG_ON(x86_vector_domain == NULL);
795         irq_set_default_host(x86_vector_domain);
796
797         BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
798
799         /*
800          * Allocate the vector matrix allocator data structure and limit the
801          * search area.
802          */
803         vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
804                                          FIRST_SYSTEM_VECTOR);
805         BUG_ON(!vector_matrix);
806
807         return arch_early_ioapic_init();
808 }
809
810 #ifdef CONFIG_SMP
811
812 static struct irq_desc *__setup_vector_irq(int vector)
813 {
814         int isairq = vector - ISA_IRQ_VECTOR(0);
815
816         /* Check whether the irq is in the legacy space */
817         if (isairq < 0 || isairq >= nr_legacy_irqs())
818                 return VECTOR_UNUSED;
819         /* Check whether the irq is handled by the IOAPIC */
820         if (test_bit(isairq, &io_apic_irqs))
821                 return VECTOR_UNUSED;
822         return irq_to_desc(isairq);
823 }
824
825 /* Online the local APIC infrastructure and initialize the vectors */
826 void lapic_online(void)
827 {
828         unsigned int vector;
829
830         lockdep_assert_held(&vector_lock);
831
832         /* Online the vector matrix array for this CPU */
833         irq_matrix_online(vector_matrix);
834
835         /*
836          * The interrupt affinity logic never targets interrupts to offline
837          * CPUs. The exception are the legacy PIC interrupts. In general
838          * they are only targeted to CPU0, but depending on the platform
839          * they can be distributed to any online CPU in hardware. The
840          * kernel has no influence on that. So all active legacy vectors
841          * must be installed on all CPUs. All non legacy interrupts can be
842          * cleared.
843          */
844         for (vector = 0; vector < NR_VECTORS; vector++)
845                 this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
846 }
847
848 void lapic_offline(void)
849 {
850         lock_vector_lock();
851         irq_matrix_offline(vector_matrix);
852         unlock_vector_lock();
853 }
854
855 static int apic_set_affinity(struct irq_data *irqd,
856                              const struct cpumask *dest, bool force)
857 {
858         int err;
859
860         if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
861                 return -EIO;
862
863         raw_spin_lock(&vector_lock);
864         cpumask_and(vector_searchmask, dest, cpu_online_mask);
865         if (irqd_affinity_is_managed(irqd))
866                 err = assign_managed_vector(irqd, vector_searchmask);
867         else
868                 err = assign_vector_locked(irqd, vector_searchmask);
869         raw_spin_unlock(&vector_lock);
870         return err ? err : IRQ_SET_MASK_OK;
871 }
872
873 #else
874 # define apic_set_affinity      NULL
875 #endif
876
877 static int apic_retrigger_irq(struct irq_data *irqd)
878 {
879         struct apic_chip_data *apicd = apic_chip_data(irqd);
880         unsigned long flags;
881
882         raw_spin_lock_irqsave(&vector_lock, flags);
883         apic->send_IPI(apicd->cpu, apicd->vector);
884         raw_spin_unlock_irqrestore(&vector_lock, flags);
885
886         return 1;
887 }
888
889 void apic_ack_irq(struct irq_data *irqd)
890 {
891         irq_move_irq(irqd);
892         ack_APIC_irq();
893 }
894
895 void apic_ack_edge(struct irq_data *irqd)
896 {
897         irq_complete_move(irqd_cfg(irqd));
898         apic_ack_irq(irqd);
899 }
900
901 static void x86_vector_msi_compose_msg(struct irq_data *data,
902                                        struct msi_msg *msg)
903 {
904        __irq_msi_compose_msg(irqd_cfg(data), msg, false);
905 }
906
907 static struct irq_chip lapic_controller = {
908         .name                   = "APIC",
909         .irq_ack                = apic_ack_edge,
910         .irq_set_affinity       = apic_set_affinity,
911         .irq_compose_msi_msg    = x86_vector_msi_compose_msg,
912         .irq_retrigger          = apic_retrigger_irq,
913 };
914
915 #ifdef CONFIG_SMP
916
917 static void free_moved_vector(struct apic_chip_data *apicd)
918 {
919         unsigned int vector = apicd->prev_vector;
920         unsigned int cpu = apicd->prev_cpu;
921         bool managed = apicd->is_managed;
922
923         /*
924          * Managed interrupts are usually not migrated away
925          * from an online CPU, but CPU isolation 'managed_irq'
926          * can make that happen.
927          * 1) Activation does not take the isolation into account
928          *    to keep the code simple
929          * 2) Migration away from an isolated CPU can happen when
930          *    a non-isolated CPU which is in the calculated
931          *    affinity mask comes online.
932          */
933         trace_vector_free_moved(apicd->irq, cpu, vector, managed);
934         irq_matrix_free(vector_matrix, cpu, vector, managed);
935         per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
936         hlist_del_init(&apicd->clist);
937         apicd->prev_vector = 0;
938         apicd->move_in_progress = 0;
939 }
940
941 DEFINE_IDTENTRY_SYSVEC(sysvec_irq_move_cleanup)
942 {
943         struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
944         struct apic_chip_data *apicd;
945         struct hlist_node *tmp;
946
947         ack_APIC_irq();
948         /* Prevent vectors vanishing under us */
949         raw_spin_lock(&vector_lock);
950
951         hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
952                 unsigned int irr, vector = apicd->prev_vector;
953
954                 /*
955                  * Paranoia: Check if the vector that needs to be cleaned
956                  * up is registered at the APICs IRR. If so, then this is
957                  * not the best time to clean it up. Clean it up in the
958                  * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
959                  * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
960                  * priority external vector, so on return from this
961                  * interrupt the device interrupt will happen first.
962                  */
963                 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
964                 if (irr & (1U << (vector % 32))) {
965                         apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
966                         continue;
967                 }
968                 free_moved_vector(apicd);
969         }
970
971         raw_spin_unlock(&vector_lock);
972 }
973
974 static void __send_cleanup_vector(struct apic_chip_data *apicd)
975 {
976         unsigned int cpu;
977
978         raw_spin_lock(&vector_lock);
979         apicd->move_in_progress = 0;
980         cpu = apicd->prev_cpu;
981         if (cpu_online(cpu)) {
982                 hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
983                 apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
984         } else {
985                 apicd->prev_vector = 0;
986         }
987         raw_spin_unlock(&vector_lock);
988 }
989
990 void send_cleanup_vector(struct irq_cfg *cfg)
991 {
992         struct apic_chip_data *apicd;
993
994         apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
995         if (apicd->move_in_progress)
996                 __send_cleanup_vector(apicd);
997 }
998
999 void irq_complete_move(struct irq_cfg *cfg)
1000 {
1001         struct apic_chip_data *apicd;
1002
1003         apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1004         if (likely(!apicd->move_in_progress))
1005                 return;
1006
1007         /*
1008          * If the interrupt arrived on the new target CPU, cleanup the
1009          * vector on the old target CPU. A vector check is not required
1010          * because an interrupt can never move from one vector to another
1011          * on the same CPU.
1012          */
1013         if (apicd->cpu == smp_processor_id())
1014                 __send_cleanup_vector(apicd);
1015 }
1016
1017 /*
1018  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
1019  */
1020 void irq_force_complete_move(struct irq_desc *desc)
1021 {
1022         struct apic_chip_data *apicd;
1023         struct irq_data *irqd;
1024         unsigned int vector;
1025
1026         /*
1027          * The function is called for all descriptors regardless of which
1028          * irqdomain they belong to. For example if an IRQ is provided by
1029          * an irq_chip as part of a GPIO driver, the chip data for that
1030          * descriptor is specific to the irq_chip in question.
1031          *
1032          * Check first that the chip_data is what we expect
1033          * (apic_chip_data) before touching it any further.
1034          */
1035         irqd = irq_domain_get_irq_data(x86_vector_domain,
1036                                        irq_desc_get_irq(desc));
1037         if (!irqd)
1038                 return;
1039
1040         raw_spin_lock(&vector_lock);
1041         apicd = apic_chip_data(irqd);
1042         if (!apicd)
1043                 goto unlock;
1044
1045         /*
1046          * If prev_vector is empty, no action required.
1047          */
1048         vector = apicd->prev_vector;
1049         if (!vector)
1050                 goto unlock;
1051
1052         /*
1053          * This is tricky. If the cleanup of the old vector has not been
1054          * done yet, then the following setaffinity call will fail with
1055          * -EBUSY. This can leave the interrupt in a stale state.
1056          *
1057          * All CPUs are stuck in stop machine with interrupts disabled so
1058          * calling __irq_complete_move() would be completely pointless.
1059          *
1060          * 1) The interrupt is in move_in_progress state. That means that we
1061          *    have not seen an interrupt since the io_apic was reprogrammed to
1062          *    the new vector.
1063          *
1064          * 2) The interrupt has fired on the new vector, but the cleanup IPIs
1065          *    have not been processed yet.
1066          */
1067         if (apicd->move_in_progress) {
1068                 /*
1069                  * In theory there is a race:
1070                  *
1071                  * set_ioapic(new_vector) <-- Interrupt is raised before update
1072                  *                            is effective, i.e. it's raised on
1073                  *                            the old vector.
1074                  *
1075                  * So if the target cpu cannot handle that interrupt before
1076                  * the old vector is cleaned up, we get a spurious interrupt
1077                  * and in the worst case the ioapic irq line becomes stale.
1078                  *
1079                  * But in case of cpu hotplug this should be a non issue
1080                  * because if the affinity update happens right before all
1081                  * cpus rendezvous in stop machine, there is no way that the
1082                  * interrupt can be blocked on the target cpu because all cpus
1083                  * loops first with interrupts enabled in stop machine, so the
1084                  * old vector is not yet cleaned up when the interrupt fires.
1085                  *
1086                  * So the only way to run into this issue is if the delivery
1087                  * of the interrupt on the apic/system bus would be delayed
1088                  * beyond the point where the target cpu disables interrupts
1089                  * in stop machine. I doubt that it can happen, but at least
1090                  * there is a theoretical chance. Virtualization might be
1091                  * able to expose this, but AFAICT the IOAPIC emulation is not
1092                  * as stupid as the real hardware.
1093                  *
1094                  * Anyway, there is nothing we can do about that at this point
1095                  * w/o refactoring the whole fixup_irq() business completely.
1096                  * We print at least the irq number and the old vector number,
1097                  * so we have the necessary information when a problem in that
1098                  * area arises.
1099                  */
1100                 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1101                         irqd->irq, vector);
1102         }
1103         free_moved_vector(apicd);
1104 unlock:
1105         raw_spin_unlock(&vector_lock);
1106 }
1107
1108 #ifdef CONFIG_HOTPLUG_CPU
1109 /*
1110  * Note, this is not accurate accounting, but at least good enough to
1111  * prevent that the actual interrupt move will run out of vectors.
1112  */
1113 int lapic_can_unplug_cpu(void)
1114 {
1115         unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1116         int ret = 0;
1117
1118         raw_spin_lock(&vector_lock);
1119         tomove = irq_matrix_allocated(vector_matrix);
1120         avl = irq_matrix_available(vector_matrix, true);
1121         if (avl < tomove) {
1122                 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1123                         cpu, tomove, avl);
1124                 ret = -ENOSPC;
1125                 goto out;
1126         }
1127         rsvd = irq_matrix_reserved(vector_matrix);
1128         if (avl < rsvd) {
1129                 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1130                         rsvd, avl);
1131         }
1132 out:
1133         raw_spin_unlock(&vector_lock);
1134         return ret;
1135 }
1136 #endif /* HOTPLUG_CPU */
1137 #endif /* SMP */
1138
1139 static void __init print_APIC_field(int base)
1140 {
1141         int i;
1142
1143         printk(KERN_DEBUG);
1144
1145         for (i = 0; i < 8; i++)
1146                 pr_cont("%08x", apic_read(base + i*0x10));
1147
1148         pr_cont("\n");
1149 }
1150
1151 static void __init print_local_APIC(void *dummy)
1152 {
1153         unsigned int i, v, ver, maxlvt;
1154         u64 icr;
1155
1156         pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1157                  smp_processor_id(), hard_smp_processor_id());
1158         v = apic_read(APIC_ID);
1159         pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1160         v = apic_read(APIC_LVR);
1161         pr_info("... APIC VERSION: %08x\n", v);
1162         ver = GET_APIC_VERSION(v);
1163         maxlvt = lapic_get_maxlvt();
1164
1165         v = apic_read(APIC_TASKPRI);
1166         pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1167
1168         /* !82489DX */
1169         if (APIC_INTEGRATED(ver)) {
1170                 if (!APIC_XAPIC(ver)) {
1171                         v = apic_read(APIC_ARBPRI);
1172                         pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1173                                  v, v & APIC_ARBPRI_MASK);
1174                 }
1175                 v = apic_read(APIC_PROCPRI);
1176                 pr_debug("... APIC PROCPRI: %08x\n", v);
1177         }
1178
1179         /*
1180          * Remote read supported only in the 82489DX and local APIC for
1181          * Pentium processors.
1182          */
1183         if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1184                 v = apic_read(APIC_RRR);
1185                 pr_debug("... APIC RRR: %08x\n", v);
1186         }
1187
1188         v = apic_read(APIC_LDR);
1189         pr_debug("... APIC LDR: %08x\n", v);
1190         if (!x2apic_enabled()) {
1191                 v = apic_read(APIC_DFR);
1192                 pr_debug("... APIC DFR: %08x\n", v);
1193         }
1194         v = apic_read(APIC_SPIV);
1195         pr_debug("... APIC SPIV: %08x\n", v);
1196
1197         pr_debug("... APIC ISR field:\n");
1198         print_APIC_field(APIC_ISR);
1199         pr_debug("... APIC TMR field:\n");
1200         print_APIC_field(APIC_TMR);
1201         pr_debug("... APIC IRR field:\n");
1202         print_APIC_field(APIC_IRR);
1203
1204         /* !82489DX */
1205         if (APIC_INTEGRATED(ver)) {
1206                 /* Due to the Pentium erratum 3AP. */
1207                 if (maxlvt > 3)
1208                         apic_write(APIC_ESR, 0);
1209
1210                 v = apic_read(APIC_ESR);
1211                 pr_debug("... APIC ESR: %08x\n", v);
1212         }
1213
1214         icr = apic_icr_read();
1215         pr_debug("... APIC ICR: %08x\n", (u32)icr);
1216         pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1217
1218         v = apic_read(APIC_LVTT);
1219         pr_debug("... APIC LVTT: %08x\n", v);
1220
1221         if (maxlvt > 3) {
1222                 /* PC is LVT#4. */
1223                 v = apic_read(APIC_LVTPC);
1224                 pr_debug("... APIC LVTPC: %08x\n", v);
1225         }
1226         v = apic_read(APIC_LVT0);
1227         pr_debug("... APIC LVT0: %08x\n", v);
1228         v = apic_read(APIC_LVT1);
1229         pr_debug("... APIC LVT1: %08x\n", v);
1230
1231         if (maxlvt > 2) {
1232                 /* ERR is LVT#3. */
1233                 v = apic_read(APIC_LVTERR);
1234                 pr_debug("... APIC LVTERR: %08x\n", v);
1235         }
1236
1237         v = apic_read(APIC_TMICT);
1238         pr_debug("... APIC TMICT: %08x\n", v);
1239         v = apic_read(APIC_TMCCT);
1240         pr_debug("... APIC TMCCT: %08x\n", v);
1241         v = apic_read(APIC_TDCR);
1242         pr_debug("... APIC TDCR: %08x\n", v);
1243
1244         if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1245                 v = apic_read(APIC_EFEAT);
1246                 maxlvt = (v >> 16) & 0xff;
1247                 pr_debug("... APIC EFEAT: %08x\n", v);
1248                 v = apic_read(APIC_ECTRL);
1249                 pr_debug("... APIC ECTRL: %08x\n", v);
1250                 for (i = 0; i < maxlvt; i++) {
1251                         v = apic_read(APIC_EILVTn(i));
1252                         pr_debug("... APIC EILVT%d: %08x\n", i, v);
1253                 }
1254         }
1255         pr_cont("\n");
1256 }
1257
1258 static void __init print_local_APICs(int maxcpu)
1259 {
1260         int cpu;
1261
1262         if (!maxcpu)
1263                 return;
1264
1265         preempt_disable();
1266         for_each_online_cpu(cpu) {
1267                 if (cpu >= maxcpu)
1268                         break;
1269                 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1270         }
1271         preempt_enable();
1272 }
1273
1274 static void __init print_PIC(void)
1275 {
1276         unsigned int v;
1277         unsigned long flags;
1278
1279         if (!nr_legacy_irqs())
1280                 return;
1281
1282         pr_debug("\nprinting PIC contents\n");
1283
1284         raw_spin_lock_irqsave(&i8259A_lock, flags);
1285
1286         v = inb(0xa1) << 8 | inb(0x21);
1287         pr_debug("... PIC  IMR: %04x\n", v);
1288
1289         v = inb(0xa0) << 8 | inb(0x20);
1290         pr_debug("... PIC  IRR: %04x\n", v);
1291
1292         outb(0x0b, 0xa0);
1293         outb(0x0b, 0x20);
1294         v = inb(0xa0) << 8 | inb(0x20);
1295         outb(0x0a, 0xa0);
1296         outb(0x0a, 0x20);
1297
1298         raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1299
1300         pr_debug("... PIC  ISR: %04x\n", v);
1301
1302         v = inb(0x4d1) << 8 | inb(0x4d0);
1303         pr_debug("... PIC ELCR: %04x\n", v);
1304 }
1305
1306 static int show_lapic __initdata = 1;
1307 static __init int setup_show_lapic(char *arg)
1308 {
1309         int num = -1;
1310
1311         if (strcmp(arg, "all") == 0) {
1312                 show_lapic = CONFIG_NR_CPUS;
1313         } else {
1314                 get_option(&arg, &num);
1315                 if (num >= 0)
1316                         show_lapic = num;
1317         }
1318
1319         return 1;
1320 }
1321 __setup("show_lapic=", setup_show_lapic);
1322
1323 static int __init print_ICs(void)
1324 {
1325         if (apic_verbosity == APIC_QUIET)
1326                 return 0;
1327
1328         print_PIC();
1329
1330         /* don't print out if apic is not there */
1331         if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1332                 return 0;
1333
1334         print_local_APICs(show_lapic);
1335         print_IO_APICs();
1336
1337         return 0;
1338 }
1339
1340 late_initcall(print_ICs);