Merge tag 'defconfig-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
33         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
34         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
35         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
36         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
37         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
38         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
39         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50         EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68         EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84         EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92         EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104         EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122         /*
123          * When HT is off these events can only run on the bottom 4 counters
124          * When HT is on, they are impacted by the HT bug and require EXCL access
125          */
126         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131         EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150         /*
151          * When HT is off these events can only run on the bottom 4 counters
152          * When HT is on, they are impacted by the HT bug and require EXCL access
153          */
154         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159         EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168         EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181         EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189         EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
194         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
195         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
196         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
197
198         /*
199          * when HT is off, these can only run on the bottom 4 counters
200          */
201         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
203         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
204         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
205         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
206
207         EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213         EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221         EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229         EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236         /*
237          * Note the low 8 bits eventsel code is not a continuous field, containing
238          * some #GPing bits. These are masked out.
239          */
240         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241         EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
246         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* INST_RETIRED.PREC_DIST */
247         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
248         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
249         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
250         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
257         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
263         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
267         EVENT_CONSTRAINT_END
268 };
269
270 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
271         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
272         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
273         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
274         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
275         EVENT_EXTRA_END
276 };
277
278 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
279         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
280         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
281         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
282         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
283         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
284         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
285         EVENT_EXTRA_END
286 };
287
288 static struct event_constraint intel_spr_event_constraints[] = {
289         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
290         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* INST_RETIRED.PREC_DIST */
291         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
292         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
293         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
294         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
295         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
296         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
297         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
298         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
299         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
300         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
301         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
302
303         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
304         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
305         /*
306          * Generally event codes < 0x90 are restricted to counters 0-3.
307          * The 0x2E and 0x3C are exception, which has no restriction.
308          */
309         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
310
311         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
312         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
313         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
314         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
315         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
316         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
317         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
318         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
319         /*
320          * Generally event codes >= 0x90 are likely to have no restrictions.
321          * The exception are defined as above.
322          */
323         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
324
325         EVENT_CONSTRAINT_END
326 };
327
328
329 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
330 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
331 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
332
333 static struct attribute *nhm_mem_events_attrs[] = {
334         EVENT_PTR(mem_ld_nhm),
335         NULL,
336 };
337
338 /*
339  * topdown events for Intel Core CPUs.
340  *
341  * The events are all in slots, which is a free slot in a 4 wide
342  * pipeline. Some events are already reported in slots, for cycle
343  * events we multiply by the pipeline width (4).
344  *
345  * With Hyper Threading on, topdown metrics are either summed or averaged
346  * between the threads of a core: (count_t0 + count_t1).
347  *
348  * For the average case the metric is always scaled to pipeline width,
349  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
350  */
351
352 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
353         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
354         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
355 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
356 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
357         "event=0xe,umask=0x1");                 /* uops_issued.any */
358 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
359         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
360 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
361         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
362 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
363         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
364         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
365 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
366         "4", "2");
367
368 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
369 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
370 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
371 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
372 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
373 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
374 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
375 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
376 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
377
378 static struct attribute *snb_events_attrs[] = {
379         EVENT_PTR(td_slots_issued),
380         EVENT_PTR(td_slots_retired),
381         EVENT_PTR(td_fetch_bubbles),
382         EVENT_PTR(td_total_slots),
383         EVENT_PTR(td_total_slots_scale),
384         EVENT_PTR(td_recovery_bubbles),
385         EVENT_PTR(td_recovery_bubbles_scale),
386         NULL,
387 };
388
389 static struct attribute *snb_mem_events_attrs[] = {
390         EVENT_PTR(mem_ld_snb),
391         EVENT_PTR(mem_st_snb),
392         NULL,
393 };
394
395 static struct event_constraint intel_hsw_event_constraints[] = {
396         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
397         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
398         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
399         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
400         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
401         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
402         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
403         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
404         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
405         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
406         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
407         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
408
409         /*
410          * When HT is off these events can only run on the bottom 4 counters
411          * When HT is on, they are impacted by the HT bug and require EXCL access
412          */
413         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
414         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
415         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
416         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
417
418         EVENT_CONSTRAINT_END
419 };
420
421 static struct event_constraint intel_bdw_event_constraints[] = {
422         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
423         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
424         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
425         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
426         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
427         /*
428          * when HT is off, these can only run on the bottom 4 counters
429          */
430         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
431         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
432         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
433         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
434         EVENT_CONSTRAINT_END
435 };
436
437 static u64 intel_pmu_event_map(int hw_event)
438 {
439         return intel_perfmon_event_map[hw_event];
440 }
441
442 static __initconst const u64 spr_hw_cache_event_ids
443                                 [PERF_COUNT_HW_CACHE_MAX]
444                                 [PERF_COUNT_HW_CACHE_OP_MAX]
445                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
446 {
447  [ C(L1D ) ] = {
448         [ C(OP_READ) ] = {
449                 [ C(RESULT_ACCESS) ] = 0x81d0,
450                 [ C(RESULT_MISS)   ] = 0xe124,
451         },
452         [ C(OP_WRITE) ] = {
453                 [ C(RESULT_ACCESS) ] = 0x82d0,
454         },
455  },
456  [ C(L1I ) ] = {
457         [ C(OP_READ) ] = {
458                 [ C(RESULT_MISS)   ] = 0xe424,
459         },
460         [ C(OP_WRITE) ] = {
461                 [ C(RESULT_ACCESS) ] = -1,
462                 [ C(RESULT_MISS)   ] = -1,
463         },
464  },
465  [ C(LL  ) ] = {
466         [ C(OP_READ) ] = {
467                 [ C(RESULT_ACCESS) ] = 0x12a,
468                 [ C(RESULT_MISS)   ] = 0x12a,
469         },
470         [ C(OP_WRITE) ] = {
471                 [ C(RESULT_ACCESS) ] = 0x12a,
472                 [ C(RESULT_MISS)   ] = 0x12a,
473         },
474  },
475  [ C(DTLB) ] = {
476         [ C(OP_READ) ] = {
477                 [ C(RESULT_ACCESS) ] = 0x81d0,
478                 [ C(RESULT_MISS)   ] = 0xe12,
479         },
480         [ C(OP_WRITE) ] = {
481                 [ C(RESULT_ACCESS) ] = 0x82d0,
482                 [ C(RESULT_MISS)   ] = 0xe13,
483         },
484  },
485  [ C(ITLB) ] = {
486         [ C(OP_READ) ] = {
487                 [ C(RESULT_ACCESS) ] = -1,
488                 [ C(RESULT_MISS)   ] = 0xe11,
489         },
490         [ C(OP_WRITE) ] = {
491                 [ C(RESULT_ACCESS) ] = -1,
492                 [ C(RESULT_MISS)   ] = -1,
493         },
494         [ C(OP_PREFETCH) ] = {
495                 [ C(RESULT_ACCESS) ] = -1,
496                 [ C(RESULT_MISS)   ] = -1,
497         },
498  },
499  [ C(BPU ) ] = {
500         [ C(OP_READ) ] = {
501                 [ C(RESULT_ACCESS) ] = 0x4c4,
502                 [ C(RESULT_MISS)   ] = 0x4c5,
503         },
504         [ C(OP_WRITE) ] = {
505                 [ C(RESULT_ACCESS) ] = -1,
506                 [ C(RESULT_MISS)   ] = -1,
507         },
508         [ C(OP_PREFETCH) ] = {
509                 [ C(RESULT_ACCESS) ] = -1,
510                 [ C(RESULT_MISS)   ] = -1,
511         },
512  },
513  [ C(NODE) ] = {
514         [ C(OP_READ) ] = {
515                 [ C(RESULT_ACCESS) ] = 0x12a,
516                 [ C(RESULT_MISS)   ] = 0x12a,
517         },
518  },
519 };
520
521 static __initconst const u64 spr_hw_cache_extra_regs
522                                 [PERF_COUNT_HW_CACHE_MAX]
523                                 [PERF_COUNT_HW_CACHE_OP_MAX]
524                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
525 {
526  [ C(LL  ) ] = {
527         [ C(OP_READ) ] = {
528                 [ C(RESULT_ACCESS) ] = 0x10001,
529                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
530         },
531         [ C(OP_WRITE) ] = {
532                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
533                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
534         },
535  },
536  [ C(NODE) ] = {
537         [ C(OP_READ) ] = {
538                 [ C(RESULT_ACCESS) ] = 0x10c000001,
539                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
540         },
541  },
542 };
543
544 /*
545  * Notes on the events:
546  * - data reads do not include code reads (comparable to earlier tables)
547  * - data counts include speculative execution (except L1 write, dtlb, bpu)
548  * - remote node access includes remote memory, remote cache, remote mmio.
549  * - prefetches are not included in the counts.
550  * - icache miss does not include decoded icache
551  */
552
553 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
554 #define SKL_DEMAND_RFO                  BIT_ULL(1)
555 #define SKL_ANY_RESPONSE                BIT_ULL(16)
556 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
557 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
558 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
559 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
560 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
561 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
562                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
563                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
564                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
565 #define SKL_SPL_HIT                     BIT_ULL(30)
566 #define SKL_SNOOP_NONE                  BIT_ULL(31)
567 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
568 #define SKL_SNOOP_MISS                  BIT_ULL(33)
569 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
570 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
571 #define SKL_SNOOP_HITM                  BIT_ULL(36)
572 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
573 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
574                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
575                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
576                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
577 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
578 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
579                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
580                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
581                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
582 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
583 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
584 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
585                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
586                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
587
588 static __initconst const u64 skl_hw_cache_event_ids
589                                 [PERF_COUNT_HW_CACHE_MAX]
590                                 [PERF_COUNT_HW_CACHE_OP_MAX]
591                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
592 {
593  [ C(L1D ) ] = {
594         [ C(OP_READ) ] = {
595                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
596                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
597         },
598         [ C(OP_WRITE) ] = {
599                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
600                 [ C(RESULT_MISS)   ] = 0x0,
601         },
602         [ C(OP_PREFETCH) ] = {
603                 [ C(RESULT_ACCESS) ] = 0x0,
604                 [ C(RESULT_MISS)   ] = 0x0,
605         },
606  },
607  [ C(L1I ) ] = {
608         [ C(OP_READ) ] = {
609                 [ C(RESULT_ACCESS) ] = 0x0,
610                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
611         },
612         [ C(OP_WRITE) ] = {
613                 [ C(RESULT_ACCESS) ] = -1,
614                 [ C(RESULT_MISS)   ] = -1,
615         },
616         [ C(OP_PREFETCH) ] = {
617                 [ C(RESULT_ACCESS) ] = 0x0,
618                 [ C(RESULT_MISS)   ] = 0x0,
619         },
620  },
621  [ C(LL  ) ] = {
622         [ C(OP_READ) ] = {
623                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
624                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
625         },
626         [ C(OP_WRITE) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
628                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
629         },
630         [ C(OP_PREFETCH) ] = {
631                 [ C(RESULT_ACCESS) ] = 0x0,
632                 [ C(RESULT_MISS)   ] = 0x0,
633         },
634  },
635  [ C(DTLB) ] = {
636         [ C(OP_READ) ] = {
637                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
638                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
639         },
640         [ C(OP_WRITE) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
642                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
643         },
644         [ C(OP_PREFETCH) ] = {
645                 [ C(RESULT_ACCESS) ] = 0x0,
646                 [ C(RESULT_MISS)   ] = 0x0,
647         },
648  },
649  [ C(ITLB) ] = {
650         [ C(OP_READ) ] = {
651                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
652                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
653         },
654         [ C(OP_WRITE) ] = {
655                 [ C(RESULT_ACCESS) ] = -1,
656                 [ C(RESULT_MISS)   ] = -1,
657         },
658         [ C(OP_PREFETCH) ] = {
659                 [ C(RESULT_ACCESS) ] = -1,
660                 [ C(RESULT_MISS)   ] = -1,
661         },
662  },
663  [ C(BPU ) ] = {
664         [ C(OP_READ) ] = {
665                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
666                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
667         },
668         [ C(OP_WRITE) ] = {
669                 [ C(RESULT_ACCESS) ] = -1,
670                 [ C(RESULT_MISS)   ] = -1,
671         },
672         [ C(OP_PREFETCH) ] = {
673                 [ C(RESULT_ACCESS) ] = -1,
674                 [ C(RESULT_MISS)   ] = -1,
675         },
676  },
677  [ C(NODE) ] = {
678         [ C(OP_READ) ] = {
679                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
680                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
681         },
682         [ C(OP_WRITE) ] = {
683                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
684                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
685         },
686         [ C(OP_PREFETCH) ] = {
687                 [ C(RESULT_ACCESS) ] = 0x0,
688                 [ C(RESULT_MISS)   ] = 0x0,
689         },
690  },
691 };
692
693 static __initconst const u64 skl_hw_cache_extra_regs
694                                 [PERF_COUNT_HW_CACHE_MAX]
695                                 [PERF_COUNT_HW_CACHE_OP_MAX]
696                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
697 {
698  [ C(LL  ) ] = {
699         [ C(OP_READ) ] = {
700                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
701                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
702                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
703                                        SKL_L3_MISS|SKL_ANY_SNOOP|
704                                        SKL_SUPPLIER_NONE,
705         },
706         [ C(OP_WRITE) ] = {
707                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
708                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
709                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
710                                        SKL_L3_MISS|SKL_ANY_SNOOP|
711                                        SKL_SUPPLIER_NONE,
712         },
713         [ C(OP_PREFETCH) ] = {
714                 [ C(RESULT_ACCESS) ] = 0x0,
715                 [ C(RESULT_MISS)   ] = 0x0,
716         },
717  },
718  [ C(NODE) ] = {
719         [ C(OP_READ) ] = {
720                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
721                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
722                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
723                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
724         },
725         [ C(OP_WRITE) ] = {
726                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
727                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
728                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
729                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
730         },
731         [ C(OP_PREFETCH) ] = {
732                 [ C(RESULT_ACCESS) ] = 0x0,
733                 [ C(RESULT_MISS)   ] = 0x0,
734         },
735  },
736 };
737
738 #define SNB_DMND_DATA_RD        (1ULL << 0)
739 #define SNB_DMND_RFO            (1ULL << 1)
740 #define SNB_DMND_IFETCH         (1ULL << 2)
741 #define SNB_DMND_WB             (1ULL << 3)
742 #define SNB_PF_DATA_RD          (1ULL << 4)
743 #define SNB_PF_RFO              (1ULL << 5)
744 #define SNB_PF_IFETCH           (1ULL << 6)
745 #define SNB_LLC_DATA_RD         (1ULL << 7)
746 #define SNB_LLC_RFO             (1ULL << 8)
747 #define SNB_LLC_IFETCH          (1ULL << 9)
748 #define SNB_BUS_LOCKS           (1ULL << 10)
749 #define SNB_STRM_ST             (1ULL << 11)
750 #define SNB_OTHER               (1ULL << 15)
751 #define SNB_RESP_ANY            (1ULL << 16)
752 #define SNB_NO_SUPP             (1ULL << 17)
753 #define SNB_LLC_HITM            (1ULL << 18)
754 #define SNB_LLC_HITE            (1ULL << 19)
755 #define SNB_LLC_HITS            (1ULL << 20)
756 #define SNB_LLC_HITF            (1ULL << 21)
757 #define SNB_LOCAL               (1ULL << 22)
758 #define SNB_REMOTE              (0xffULL << 23)
759 #define SNB_SNP_NONE            (1ULL << 31)
760 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
761 #define SNB_SNP_MISS            (1ULL << 33)
762 #define SNB_NO_FWD              (1ULL << 34)
763 #define SNB_SNP_FWD             (1ULL << 35)
764 #define SNB_HITM                (1ULL << 36)
765 #define SNB_NON_DRAM            (1ULL << 37)
766
767 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
768 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
769 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
770
771 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
772                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
773                                  SNB_HITM)
774
775 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
776 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
777
778 #define SNB_L3_ACCESS           SNB_RESP_ANY
779 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
780
781 static __initconst const u64 snb_hw_cache_extra_regs
782                                 [PERF_COUNT_HW_CACHE_MAX]
783                                 [PERF_COUNT_HW_CACHE_OP_MAX]
784                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
785 {
786  [ C(LL  ) ] = {
787         [ C(OP_READ) ] = {
788                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
789                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
790         },
791         [ C(OP_WRITE) ] = {
792                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
793                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
794         },
795         [ C(OP_PREFETCH) ] = {
796                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
797                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
798         },
799  },
800  [ C(NODE) ] = {
801         [ C(OP_READ) ] = {
802                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
803                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
804         },
805         [ C(OP_WRITE) ] = {
806                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
807                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
808         },
809         [ C(OP_PREFETCH) ] = {
810                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
811                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
812         },
813  },
814 };
815
816 static __initconst const u64 snb_hw_cache_event_ids
817                                 [PERF_COUNT_HW_CACHE_MAX]
818                                 [PERF_COUNT_HW_CACHE_OP_MAX]
819                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
820 {
821  [ C(L1D) ] = {
822         [ C(OP_READ) ] = {
823                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
824                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
825         },
826         [ C(OP_WRITE) ] = {
827                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
828                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
829         },
830         [ C(OP_PREFETCH) ] = {
831                 [ C(RESULT_ACCESS) ] = 0x0,
832                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
833         },
834  },
835  [ C(L1I ) ] = {
836         [ C(OP_READ) ] = {
837                 [ C(RESULT_ACCESS) ] = 0x0,
838                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
839         },
840         [ C(OP_WRITE) ] = {
841                 [ C(RESULT_ACCESS) ] = -1,
842                 [ C(RESULT_MISS)   ] = -1,
843         },
844         [ C(OP_PREFETCH) ] = {
845                 [ C(RESULT_ACCESS) ] = 0x0,
846                 [ C(RESULT_MISS)   ] = 0x0,
847         },
848  },
849  [ C(LL  ) ] = {
850         [ C(OP_READ) ] = {
851                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
852                 [ C(RESULT_ACCESS) ] = 0x01b7,
853                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
854                 [ C(RESULT_MISS)   ] = 0x01b7,
855         },
856         [ C(OP_WRITE) ] = {
857                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
858                 [ C(RESULT_ACCESS) ] = 0x01b7,
859                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
860                 [ C(RESULT_MISS)   ] = 0x01b7,
861         },
862         [ C(OP_PREFETCH) ] = {
863                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
864                 [ C(RESULT_ACCESS) ] = 0x01b7,
865                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
866                 [ C(RESULT_MISS)   ] = 0x01b7,
867         },
868  },
869  [ C(DTLB) ] = {
870         [ C(OP_READ) ] = {
871                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
872                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
873         },
874         [ C(OP_WRITE) ] = {
875                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
876                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
877         },
878         [ C(OP_PREFETCH) ] = {
879                 [ C(RESULT_ACCESS) ] = 0x0,
880                 [ C(RESULT_MISS)   ] = 0x0,
881         },
882  },
883  [ C(ITLB) ] = {
884         [ C(OP_READ) ] = {
885                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
886                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
887         },
888         [ C(OP_WRITE) ] = {
889                 [ C(RESULT_ACCESS) ] = -1,
890                 [ C(RESULT_MISS)   ] = -1,
891         },
892         [ C(OP_PREFETCH) ] = {
893                 [ C(RESULT_ACCESS) ] = -1,
894                 [ C(RESULT_MISS)   ] = -1,
895         },
896  },
897  [ C(BPU ) ] = {
898         [ C(OP_READ) ] = {
899                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
900                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
901         },
902         [ C(OP_WRITE) ] = {
903                 [ C(RESULT_ACCESS) ] = -1,
904                 [ C(RESULT_MISS)   ] = -1,
905         },
906         [ C(OP_PREFETCH) ] = {
907                 [ C(RESULT_ACCESS) ] = -1,
908                 [ C(RESULT_MISS)   ] = -1,
909         },
910  },
911  [ C(NODE) ] = {
912         [ C(OP_READ) ] = {
913                 [ C(RESULT_ACCESS) ] = 0x01b7,
914                 [ C(RESULT_MISS)   ] = 0x01b7,
915         },
916         [ C(OP_WRITE) ] = {
917                 [ C(RESULT_ACCESS) ] = 0x01b7,
918                 [ C(RESULT_MISS)   ] = 0x01b7,
919         },
920         [ C(OP_PREFETCH) ] = {
921                 [ C(RESULT_ACCESS) ] = 0x01b7,
922                 [ C(RESULT_MISS)   ] = 0x01b7,
923         },
924  },
925
926 };
927
928 /*
929  * Notes on the events:
930  * - data reads do not include code reads (comparable to earlier tables)
931  * - data counts include speculative execution (except L1 write, dtlb, bpu)
932  * - remote node access includes remote memory, remote cache, remote mmio.
933  * - prefetches are not included in the counts because they are not
934  *   reliably counted.
935  */
936
937 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
938 #define HSW_DEMAND_RFO                  BIT_ULL(1)
939 #define HSW_ANY_RESPONSE                BIT_ULL(16)
940 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
941 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
942 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
943 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
944 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
945 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
946                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
947                                          HSW_L3_MISS_REMOTE_HOP2P)
948 #define HSW_SNOOP_NONE                  BIT_ULL(31)
949 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
950 #define HSW_SNOOP_MISS                  BIT_ULL(33)
951 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
952 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
953 #define HSW_SNOOP_HITM                  BIT_ULL(36)
954 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
955 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
956                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
957                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
958                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
959 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
960 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
961 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
962 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
963                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
964 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
965
966 #define BDW_L3_MISS_LOCAL               BIT(26)
967 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
968                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
969                                          HSW_L3_MISS_REMOTE_HOP2P)
970
971
972 static __initconst const u64 hsw_hw_cache_event_ids
973                                 [PERF_COUNT_HW_CACHE_MAX]
974                                 [PERF_COUNT_HW_CACHE_OP_MAX]
975                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
976 {
977  [ C(L1D ) ] = {
978         [ C(OP_READ) ] = {
979                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
980                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
981         },
982         [ C(OP_WRITE) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
984                 [ C(RESULT_MISS)   ] = 0x0,
985         },
986         [ C(OP_PREFETCH) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x0,
988                 [ C(RESULT_MISS)   ] = 0x0,
989         },
990  },
991  [ C(L1I ) ] = {
992         [ C(OP_READ) ] = {
993                 [ C(RESULT_ACCESS) ] = 0x0,
994                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
995         },
996         [ C(OP_WRITE) ] = {
997                 [ C(RESULT_ACCESS) ] = -1,
998                 [ C(RESULT_MISS)   ] = -1,
999         },
1000         [ C(OP_PREFETCH) ] = {
1001                 [ C(RESULT_ACCESS) ] = 0x0,
1002                 [ C(RESULT_MISS)   ] = 0x0,
1003         },
1004  },
1005  [ C(LL  ) ] = {
1006         [ C(OP_READ) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1008                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1009         },
1010         [ C(OP_WRITE) ] = {
1011                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1012                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1013         },
1014         [ C(OP_PREFETCH) ] = {
1015                 [ C(RESULT_ACCESS) ] = 0x0,
1016                 [ C(RESULT_MISS)   ] = 0x0,
1017         },
1018  },
1019  [ C(DTLB) ] = {
1020         [ C(OP_READ) ] = {
1021                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1022                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1023         },
1024         [ C(OP_WRITE) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1026                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1027         },
1028         [ C(OP_PREFETCH) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x0,
1030                 [ C(RESULT_MISS)   ] = 0x0,
1031         },
1032  },
1033  [ C(ITLB) ] = {
1034         [ C(OP_READ) ] = {
1035                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1036                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1037         },
1038         [ C(OP_WRITE) ] = {
1039                 [ C(RESULT_ACCESS) ] = -1,
1040                 [ C(RESULT_MISS)   ] = -1,
1041         },
1042         [ C(OP_PREFETCH) ] = {
1043                 [ C(RESULT_ACCESS) ] = -1,
1044                 [ C(RESULT_MISS)   ] = -1,
1045         },
1046  },
1047  [ C(BPU ) ] = {
1048         [ C(OP_READ) ] = {
1049                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1050                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1051         },
1052         [ C(OP_WRITE) ] = {
1053                 [ C(RESULT_ACCESS) ] = -1,
1054                 [ C(RESULT_MISS)   ] = -1,
1055         },
1056         [ C(OP_PREFETCH) ] = {
1057                 [ C(RESULT_ACCESS) ] = -1,
1058                 [ C(RESULT_MISS)   ] = -1,
1059         },
1060  },
1061  [ C(NODE) ] = {
1062         [ C(OP_READ) ] = {
1063                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1064                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1065         },
1066         [ C(OP_WRITE) ] = {
1067                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1068                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1069         },
1070         [ C(OP_PREFETCH) ] = {
1071                 [ C(RESULT_ACCESS) ] = 0x0,
1072                 [ C(RESULT_MISS)   ] = 0x0,
1073         },
1074  },
1075 };
1076
1077 static __initconst const u64 hsw_hw_cache_extra_regs
1078                                 [PERF_COUNT_HW_CACHE_MAX]
1079                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1080                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1081 {
1082  [ C(LL  ) ] = {
1083         [ C(OP_READ) ] = {
1084                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1085                                        HSW_LLC_ACCESS,
1086                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1087                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1088         },
1089         [ C(OP_WRITE) ] = {
1090                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1091                                        HSW_LLC_ACCESS,
1092                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1093                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1094         },
1095         [ C(OP_PREFETCH) ] = {
1096                 [ C(RESULT_ACCESS) ] = 0x0,
1097                 [ C(RESULT_MISS)   ] = 0x0,
1098         },
1099  },
1100  [ C(NODE) ] = {
1101         [ C(OP_READ) ] = {
1102                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1103                                        HSW_L3_MISS_LOCAL_DRAM|
1104                                        HSW_SNOOP_DRAM,
1105                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1106                                        HSW_L3_MISS_REMOTE|
1107                                        HSW_SNOOP_DRAM,
1108         },
1109         [ C(OP_WRITE) ] = {
1110                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1111                                        HSW_L3_MISS_LOCAL_DRAM|
1112                                        HSW_SNOOP_DRAM,
1113                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1114                                        HSW_L3_MISS_REMOTE|
1115                                        HSW_SNOOP_DRAM,
1116         },
1117         [ C(OP_PREFETCH) ] = {
1118                 [ C(RESULT_ACCESS) ] = 0x0,
1119                 [ C(RESULT_MISS)   ] = 0x0,
1120         },
1121  },
1122 };
1123
1124 static __initconst const u64 westmere_hw_cache_event_ids
1125                                 [PERF_COUNT_HW_CACHE_MAX]
1126                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1127                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1128 {
1129  [ C(L1D) ] = {
1130         [ C(OP_READ) ] = {
1131                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1132                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1133         },
1134         [ C(OP_WRITE) ] = {
1135                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1136                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1137         },
1138         [ C(OP_PREFETCH) ] = {
1139                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1140                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1141         },
1142  },
1143  [ C(L1I ) ] = {
1144         [ C(OP_READ) ] = {
1145                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1146                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1147         },
1148         [ C(OP_WRITE) ] = {
1149                 [ C(RESULT_ACCESS) ] = -1,
1150                 [ C(RESULT_MISS)   ] = -1,
1151         },
1152         [ C(OP_PREFETCH) ] = {
1153                 [ C(RESULT_ACCESS) ] = 0x0,
1154                 [ C(RESULT_MISS)   ] = 0x0,
1155         },
1156  },
1157  [ C(LL  ) ] = {
1158         [ C(OP_READ) ] = {
1159                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1160                 [ C(RESULT_ACCESS) ] = 0x01b7,
1161                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1162                 [ C(RESULT_MISS)   ] = 0x01b7,
1163         },
1164         /*
1165          * Use RFO, not WRITEBACK, because a write miss would typically occur
1166          * on RFO.
1167          */
1168         [ C(OP_WRITE) ] = {
1169                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1170                 [ C(RESULT_ACCESS) ] = 0x01b7,
1171                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1172                 [ C(RESULT_MISS)   ] = 0x01b7,
1173         },
1174         [ C(OP_PREFETCH) ] = {
1175                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1176                 [ C(RESULT_ACCESS) ] = 0x01b7,
1177                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1178                 [ C(RESULT_MISS)   ] = 0x01b7,
1179         },
1180  },
1181  [ C(DTLB) ] = {
1182         [ C(OP_READ) ] = {
1183                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1184                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1185         },
1186         [ C(OP_WRITE) ] = {
1187                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1188                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1189         },
1190         [ C(OP_PREFETCH) ] = {
1191                 [ C(RESULT_ACCESS) ] = 0x0,
1192                 [ C(RESULT_MISS)   ] = 0x0,
1193         },
1194  },
1195  [ C(ITLB) ] = {
1196         [ C(OP_READ) ] = {
1197                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1198                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1199         },
1200         [ C(OP_WRITE) ] = {
1201                 [ C(RESULT_ACCESS) ] = -1,
1202                 [ C(RESULT_MISS)   ] = -1,
1203         },
1204         [ C(OP_PREFETCH) ] = {
1205                 [ C(RESULT_ACCESS) ] = -1,
1206                 [ C(RESULT_MISS)   ] = -1,
1207         },
1208  },
1209  [ C(BPU ) ] = {
1210         [ C(OP_READ) ] = {
1211                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1212                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1213         },
1214         [ C(OP_WRITE) ] = {
1215                 [ C(RESULT_ACCESS) ] = -1,
1216                 [ C(RESULT_MISS)   ] = -1,
1217         },
1218         [ C(OP_PREFETCH) ] = {
1219                 [ C(RESULT_ACCESS) ] = -1,
1220                 [ C(RESULT_MISS)   ] = -1,
1221         },
1222  },
1223  [ C(NODE) ] = {
1224         [ C(OP_READ) ] = {
1225                 [ C(RESULT_ACCESS) ] = 0x01b7,
1226                 [ C(RESULT_MISS)   ] = 0x01b7,
1227         },
1228         [ C(OP_WRITE) ] = {
1229                 [ C(RESULT_ACCESS) ] = 0x01b7,
1230                 [ C(RESULT_MISS)   ] = 0x01b7,
1231         },
1232         [ C(OP_PREFETCH) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x01b7,
1234                 [ C(RESULT_MISS)   ] = 0x01b7,
1235         },
1236  },
1237 };
1238
1239 /*
1240  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1241  * See IA32 SDM Vol 3B 30.6.1.3
1242  */
1243
1244 #define NHM_DMND_DATA_RD        (1 << 0)
1245 #define NHM_DMND_RFO            (1 << 1)
1246 #define NHM_DMND_IFETCH         (1 << 2)
1247 #define NHM_DMND_WB             (1 << 3)
1248 #define NHM_PF_DATA_RD          (1 << 4)
1249 #define NHM_PF_DATA_RFO         (1 << 5)
1250 #define NHM_PF_IFETCH           (1 << 6)
1251 #define NHM_OFFCORE_OTHER       (1 << 7)
1252 #define NHM_UNCORE_HIT          (1 << 8)
1253 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1254 #define NHM_OTHER_CORE_HITM     (1 << 10)
1255                                 /* reserved */
1256 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1257 #define NHM_REMOTE_DRAM         (1 << 13)
1258 #define NHM_LOCAL_DRAM          (1 << 14)
1259 #define NHM_NON_DRAM            (1 << 15)
1260
1261 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1262 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1263
1264 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1265 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1266 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1267
1268 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1269 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1270 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1271
1272 static __initconst const u64 nehalem_hw_cache_extra_regs
1273                                 [PERF_COUNT_HW_CACHE_MAX]
1274                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1275                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1276 {
1277  [ C(LL  ) ] = {
1278         [ C(OP_READ) ] = {
1279                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1280                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1281         },
1282         [ C(OP_WRITE) ] = {
1283                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1284                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1285         },
1286         [ C(OP_PREFETCH) ] = {
1287                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1288                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1289         },
1290  },
1291  [ C(NODE) ] = {
1292         [ C(OP_READ) ] = {
1293                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1294                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1295         },
1296         [ C(OP_WRITE) ] = {
1297                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1298                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1299         },
1300         [ C(OP_PREFETCH) ] = {
1301                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1302                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1303         },
1304  },
1305 };
1306
1307 static __initconst const u64 nehalem_hw_cache_event_ids
1308                                 [PERF_COUNT_HW_CACHE_MAX]
1309                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1310                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1311 {
1312  [ C(L1D) ] = {
1313         [ C(OP_READ) ] = {
1314                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1315                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1316         },
1317         [ C(OP_WRITE) ] = {
1318                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1319                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1320         },
1321         [ C(OP_PREFETCH) ] = {
1322                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1323                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1324         },
1325  },
1326  [ C(L1I ) ] = {
1327         [ C(OP_READ) ] = {
1328                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1329                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1330         },
1331         [ C(OP_WRITE) ] = {
1332                 [ C(RESULT_ACCESS) ] = -1,
1333                 [ C(RESULT_MISS)   ] = -1,
1334         },
1335         [ C(OP_PREFETCH) ] = {
1336                 [ C(RESULT_ACCESS) ] = 0x0,
1337                 [ C(RESULT_MISS)   ] = 0x0,
1338         },
1339  },
1340  [ C(LL  ) ] = {
1341         [ C(OP_READ) ] = {
1342                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1343                 [ C(RESULT_ACCESS) ] = 0x01b7,
1344                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1345                 [ C(RESULT_MISS)   ] = 0x01b7,
1346         },
1347         /*
1348          * Use RFO, not WRITEBACK, because a write miss would typically occur
1349          * on RFO.
1350          */
1351         [ C(OP_WRITE) ] = {
1352                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1353                 [ C(RESULT_ACCESS) ] = 0x01b7,
1354                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1355                 [ C(RESULT_MISS)   ] = 0x01b7,
1356         },
1357         [ C(OP_PREFETCH) ] = {
1358                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1359                 [ C(RESULT_ACCESS) ] = 0x01b7,
1360                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1361                 [ C(RESULT_MISS)   ] = 0x01b7,
1362         },
1363  },
1364  [ C(DTLB) ] = {
1365         [ C(OP_READ) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1367                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1368         },
1369         [ C(OP_WRITE) ] = {
1370                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1371                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1372         },
1373         [ C(OP_PREFETCH) ] = {
1374                 [ C(RESULT_ACCESS) ] = 0x0,
1375                 [ C(RESULT_MISS)   ] = 0x0,
1376         },
1377  },
1378  [ C(ITLB) ] = {
1379         [ C(OP_READ) ] = {
1380                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1381                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1382         },
1383         [ C(OP_WRITE) ] = {
1384                 [ C(RESULT_ACCESS) ] = -1,
1385                 [ C(RESULT_MISS)   ] = -1,
1386         },
1387         [ C(OP_PREFETCH) ] = {
1388                 [ C(RESULT_ACCESS) ] = -1,
1389                 [ C(RESULT_MISS)   ] = -1,
1390         },
1391  },
1392  [ C(BPU ) ] = {
1393         [ C(OP_READ) ] = {
1394                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1395                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1396         },
1397         [ C(OP_WRITE) ] = {
1398                 [ C(RESULT_ACCESS) ] = -1,
1399                 [ C(RESULT_MISS)   ] = -1,
1400         },
1401         [ C(OP_PREFETCH) ] = {
1402                 [ C(RESULT_ACCESS) ] = -1,
1403                 [ C(RESULT_MISS)   ] = -1,
1404         },
1405  },
1406  [ C(NODE) ] = {
1407         [ C(OP_READ) ] = {
1408                 [ C(RESULT_ACCESS) ] = 0x01b7,
1409                 [ C(RESULT_MISS)   ] = 0x01b7,
1410         },
1411         [ C(OP_WRITE) ] = {
1412                 [ C(RESULT_ACCESS) ] = 0x01b7,
1413                 [ C(RESULT_MISS)   ] = 0x01b7,
1414         },
1415         [ C(OP_PREFETCH) ] = {
1416                 [ C(RESULT_ACCESS) ] = 0x01b7,
1417                 [ C(RESULT_MISS)   ] = 0x01b7,
1418         },
1419  },
1420 };
1421
1422 static __initconst const u64 core2_hw_cache_event_ids
1423                                 [PERF_COUNT_HW_CACHE_MAX]
1424                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1425                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1426 {
1427  [ C(L1D) ] = {
1428         [ C(OP_READ) ] = {
1429                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1430                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1431         },
1432         [ C(OP_WRITE) ] = {
1433                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1434                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1435         },
1436         [ C(OP_PREFETCH) ] = {
1437                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1438                 [ C(RESULT_MISS)   ] = 0,
1439         },
1440  },
1441  [ C(L1I ) ] = {
1442         [ C(OP_READ) ] = {
1443                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1444                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1445         },
1446         [ C(OP_WRITE) ] = {
1447                 [ C(RESULT_ACCESS) ] = -1,
1448                 [ C(RESULT_MISS)   ] = -1,
1449         },
1450         [ C(OP_PREFETCH) ] = {
1451                 [ C(RESULT_ACCESS) ] = 0,
1452                 [ C(RESULT_MISS)   ] = 0,
1453         },
1454  },
1455  [ C(LL  ) ] = {
1456         [ C(OP_READ) ] = {
1457                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1458                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1459         },
1460         [ C(OP_WRITE) ] = {
1461                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1462                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1463         },
1464         [ C(OP_PREFETCH) ] = {
1465                 [ C(RESULT_ACCESS) ] = 0,
1466                 [ C(RESULT_MISS)   ] = 0,
1467         },
1468  },
1469  [ C(DTLB) ] = {
1470         [ C(OP_READ) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1472                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1473         },
1474         [ C(OP_WRITE) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1476                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1477         },
1478         [ C(OP_PREFETCH) ] = {
1479                 [ C(RESULT_ACCESS) ] = 0,
1480                 [ C(RESULT_MISS)   ] = 0,
1481         },
1482  },
1483  [ C(ITLB) ] = {
1484         [ C(OP_READ) ] = {
1485                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1486                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1487         },
1488         [ C(OP_WRITE) ] = {
1489                 [ C(RESULT_ACCESS) ] = -1,
1490                 [ C(RESULT_MISS)   ] = -1,
1491         },
1492         [ C(OP_PREFETCH) ] = {
1493                 [ C(RESULT_ACCESS) ] = -1,
1494                 [ C(RESULT_MISS)   ] = -1,
1495         },
1496  },
1497  [ C(BPU ) ] = {
1498         [ C(OP_READ) ] = {
1499                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1500                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1501         },
1502         [ C(OP_WRITE) ] = {
1503                 [ C(RESULT_ACCESS) ] = -1,
1504                 [ C(RESULT_MISS)   ] = -1,
1505         },
1506         [ C(OP_PREFETCH) ] = {
1507                 [ C(RESULT_ACCESS) ] = -1,
1508                 [ C(RESULT_MISS)   ] = -1,
1509         },
1510  },
1511 };
1512
1513 static __initconst const u64 atom_hw_cache_event_ids
1514                                 [PERF_COUNT_HW_CACHE_MAX]
1515                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1516                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1517 {
1518  [ C(L1D) ] = {
1519         [ C(OP_READ) ] = {
1520                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1521                 [ C(RESULT_MISS)   ] = 0,
1522         },
1523         [ C(OP_WRITE) ] = {
1524                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1525                 [ C(RESULT_MISS)   ] = 0,
1526         },
1527         [ C(OP_PREFETCH) ] = {
1528                 [ C(RESULT_ACCESS) ] = 0x0,
1529                 [ C(RESULT_MISS)   ] = 0,
1530         },
1531  },
1532  [ C(L1I ) ] = {
1533         [ C(OP_READ) ] = {
1534                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1535                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1536         },
1537         [ C(OP_WRITE) ] = {
1538                 [ C(RESULT_ACCESS) ] = -1,
1539                 [ C(RESULT_MISS)   ] = -1,
1540         },
1541         [ C(OP_PREFETCH) ] = {
1542                 [ C(RESULT_ACCESS) ] = 0,
1543                 [ C(RESULT_MISS)   ] = 0,
1544         },
1545  },
1546  [ C(LL  ) ] = {
1547         [ C(OP_READ) ] = {
1548                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1549                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1550         },
1551         [ C(OP_WRITE) ] = {
1552                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1553                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1554         },
1555         [ C(OP_PREFETCH) ] = {
1556                 [ C(RESULT_ACCESS) ] = 0,
1557                 [ C(RESULT_MISS)   ] = 0,
1558         },
1559  },
1560  [ C(DTLB) ] = {
1561         [ C(OP_READ) ] = {
1562                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1563                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1564         },
1565         [ C(OP_WRITE) ] = {
1566                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1567                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1568         },
1569         [ C(OP_PREFETCH) ] = {
1570                 [ C(RESULT_ACCESS) ] = 0,
1571                 [ C(RESULT_MISS)   ] = 0,
1572         },
1573  },
1574  [ C(ITLB) ] = {
1575         [ C(OP_READ) ] = {
1576                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1577                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1578         },
1579         [ C(OP_WRITE) ] = {
1580                 [ C(RESULT_ACCESS) ] = -1,
1581                 [ C(RESULT_MISS)   ] = -1,
1582         },
1583         [ C(OP_PREFETCH) ] = {
1584                 [ C(RESULT_ACCESS) ] = -1,
1585                 [ C(RESULT_MISS)   ] = -1,
1586         },
1587  },
1588  [ C(BPU ) ] = {
1589         [ C(OP_READ) ] = {
1590                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1591                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1592         },
1593         [ C(OP_WRITE) ] = {
1594                 [ C(RESULT_ACCESS) ] = -1,
1595                 [ C(RESULT_MISS)   ] = -1,
1596         },
1597         [ C(OP_PREFETCH) ] = {
1598                 [ C(RESULT_ACCESS) ] = -1,
1599                 [ C(RESULT_MISS)   ] = -1,
1600         },
1601  },
1602 };
1603
1604 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1605 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1606 /* no_alloc_cycles.not_delivered */
1607 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1608                "event=0xca,umask=0x50");
1609 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1610 /* uops_retired.all */
1611 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1612                "event=0xc2,umask=0x10");
1613 /* uops_retired.all */
1614 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1615                "event=0xc2,umask=0x10");
1616
1617 static struct attribute *slm_events_attrs[] = {
1618         EVENT_PTR(td_total_slots_slm),
1619         EVENT_PTR(td_total_slots_scale_slm),
1620         EVENT_PTR(td_fetch_bubbles_slm),
1621         EVENT_PTR(td_fetch_bubbles_scale_slm),
1622         EVENT_PTR(td_slots_issued_slm),
1623         EVENT_PTR(td_slots_retired_slm),
1624         NULL
1625 };
1626
1627 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1628 {
1629         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1630         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1631         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1632         EVENT_EXTRA_END
1633 };
1634
1635 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1636 #define SLM_DMND_WRITE          SNB_DMND_RFO
1637 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1638
1639 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1640 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1641 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1642
1643 static __initconst const u64 slm_hw_cache_extra_regs
1644                                 [PERF_COUNT_HW_CACHE_MAX]
1645                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1646                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1647 {
1648  [ C(LL  ) ] = {
1649         [ C(OP_READ) ] = {
1650                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1651                 [ C(RESULT_MISS)   ] = 0,
1652         },
1653         [ C(OP_WRITE) ] = {
1654                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1655                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1656         },
1657         [ C(OP_PREFETCH) ] = {
1658                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1659                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1660         },
1661  },
1662 };
1663
1664 static __initconst const u64 slm_hw_cache_event_ids
1665                                 [PERF_COUNT_HW_CACHE_MAX]
1666                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1667                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1668 {
1669  [ C(L1D) ] = {
1670         [ C(OP_READ) ] = {
1671                 [ C(RESULT_ACCESS) ] = 0,
1672                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1673         },
1674         [ C(OP_WRITE) ] = {
1675                 [ C(RESULT_ACCESS) ] = 0,
1676                 [ C(RESULT_MISS)   ] = 0,
1677         },
1678         [ C(OP_PREFETCH) ] = {
1679                 [ C(RESULT_ACCESS) ] = 0,
1680                 [ C(RESULT_MISS)   ] = 0,
1681         },
1682  },
1683  [ C(L1I ) ] = {
1684         [ C(OP_READ) ] = {
1685                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1686                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1687         },
1688         [ C(OP_WRITE) ] = {
1689                 [ C(RESULT_ACCESS) ] = -1,
1690                 [ C(RESULT_MISS)   ] = -1,
1691         },
1692         [ C(OP_PREFETCH) ] = {
1693                 [ C(RESULT_ACCESS) ] = 0,
1694                 [ C(RESULT_MISS)   ] = 0,
1695         },
1696  },
1697  [ C(LL  ) ] = {
1698         [ C(OP_READ) ] = {
1699                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1700                 [ C(RESULT_ACCESS) ] = 0x01b7,
1701                 [ C(RESULT_MISS)   ] = 0,
1702         },
1703         [ C(OP_WRITE) ] = {
1704                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1705                 [ C(RESULT_ACCESS) ] = 0x01b7,
1706                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1707                 [ C(RESULT_MISS)   ] = 0x01b7,
1708         },
1709         [ C(OP_PREFETCH) ] = {
1710                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1711                 [ C(RESULT_ACCESS) ] = 0x01b7,
1712                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1713                 [ C(RESULT_MISS)   ] = 0x01b7,
1714         },
1715  },
1716  [ C(DTLB) ] = {
1717         [ C(OP_READ) ] = {
1718                 [ C(RESULT_ACCESS) ] = 0,
1719                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1720         },
1721         [ C(OP_WRITE) ] = {
1722                 [ C(RESULT_ACCESS) ] = 0,
1723                 [ C(RESULT_MISS)   ] = 0,
1724         },
1725         [ C(OP_PREFETCH) ] = {
1726                 [ C(RESULT_ACCESS) ] = 0,
1727                 [ C(RESULT_MISS)   ] = 0,
1728         },
1729  },
1730  [ C(ITLB) ] = {
1731         [ C(OP_READ) ] = {
1732                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1733                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1734         },
1735         [ C(OP_WRITE) ] = {
1736                 [ C(RESULT_ACCESS) ] = -1,
1737                 [ C(RESULT_MISS)   ] = -1,
1738         },
1739         [ C(OP_PREFETCH) ] = {
1740                 [ C(RESULT_ACCESS) ] = -1,
1741                 [ C(RESULT_MISS)   ] = -1,
1742         },
1743  },
1744  [ C(BPU ) ] = {
1745         [ C(OP_READ) ] = {
1746                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1747                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1748         },
1749         [ C(OP_WRITE) ] = {
1750                 [ C(RESULT_ACCESS) ] = -1,
1751                 [ C(RESULT_MISS)   ] = -1,
1752         },
1753         [ C(OP_PREFETCH) ] = {
1754                 [ C(RESULT_ACCESS) ] = -1,
1755                 [ C(RESULT_MISS)   ] = -1,
1756         },
1757  },
1758 };
1759
1760 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1761 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1762 /* UOPS_NOT_DELIVERED.ANY */
1763 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1764 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1765 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1766 /* UOPS_RETIRED.ANY */
1767 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1768 /* UOPS_ISSUED.ANY */
1769 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1770
1771 static struct attribute *glm_events_attrs[] = {
1772         EVENT_PTR(td_total_slots_glm),
1773         EVENT_PTR(td_total_slots_scale_glm),
1774         EVENT_PTR(td_fetch_bubbles_glm),
1775         EVENT_PTR(td_recovery_bubbles_glm),
1776         EVENT_PTR(td_slots_issued_glm),
1777         EVENT_PTR(td_slots_retired_glm),
1778         NULL
1779 };
1780
1781 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1782         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1783         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1784         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1785         EVENT_EXTRA_END
1786 };
1787
1788 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1789 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1790 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1791 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1792 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1793 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1794 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1795 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1796 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1797 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1798
1799 static __initconst const u64 glm_hw_cache_event_ids
1800                                 [PERF_COUNT_HW_CACHE_MAX]
1801                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1802                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1803         [C(L1D)] = {
1804                 [C(OP_READ)] = {
1805                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1806                         [C(RESULT_MISS)]        = 0x0,
1807                 },
1808                 [C(OP_WRITE)] = {
1809                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1810                         [C(RESULT_MISS)]        = 0x0,
1811                 },
1812                 [C(OP_PREFETCH)] = {
1813                         [C(RESULT_ACCESS)]      = 0x0,
1814                         [C(RESULT_MISS)]        = 0x0,
1815                 },
1816         },
1817         [C(L1I)] = {
1818                 [C(OP_READ)] = {
1819                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1820                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1821                 },
1822                 [C(OP_WRITE)] = {
1823                         [C(RESULT_ACCESS)]      = -1,
1824                         [C(RESULT_MISS)]        = -1,
1825                 },
1826                 [C(OP_PREFETCH)] = {
1827                         [C(RESULT_ACCESS)]      = 0x0,
1828                         [C(RESULT_MISS)]        = 0x0,
1829                 },
1830         },
1831         [C(LL)] = {
1832                 [C(OP_READ)] = {
1833                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1834                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1835                 },
1836                 [C(OP_WRITE)] = {
1837                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1838                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1839                 },
1840                 [C(OP_PREFETCH)] = {
1841                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1842                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1843                 },
1844         },
1845         [C(DTLB)] = {
1846                 [C(OP_READ)] = {
1847                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1848                         [C(RESULT_MISS)]        = 0x0,
1849                 },
1850                 [C(OP_WRITE)] = {
1851                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1852                         [C(RESULT_MISS)]        = 0x0,
1853                 },
1854                 [C(OP_PREFETCH)] = {
1855                         [C(RESULT_ACCESS)]      = 0x0,
1856                         [C(RESULT_MISS)]        = 0x0,
1857                 },
1858         },
1859         [C(ITLB)] = {
1860                 [C(OP_READ)] = {
1861                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1862                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1863                 },
1864                 [C(OP_WRITE)] = {
1865                         [C(RESULT_ACCESS)]      = -1,
1866                         [C(RESULT_MISS)]        = -1,
1867                 },
1868                 [C(OP_PREFETCH)] = {
1869                         [C(RESULT_ACCESS)]      = -1,
1870                         [C(RESULT_MISS)]        = -1,
1871                 },
1872         },
1873         [C(BPU)] = {
1874                 [C(OP_READ)] = {
1875                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1876                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1877                 },
1878                 [C(OP_WRITE)] = {
1879                         [C(RESULT_ACCESS)]      = -1,
1880                         [C(RESULT_MISS)]        = -1,
1881                 },
1882                 [C(OP_PREFETCH)] = {
1883                         [C(RESULT_ACCESS)]      = -1,
1884                         [C(RESULT_MISS)]        = -1,
1885                 },
1886         },
1887 };
1888
1889 static __initconst const u64 glm_hw_cache_extra_regs
1890                                 [PERF_COUNT_HW_CACHE_MAX]
1891                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1892                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1893         [C(LL)] = {
1894                 [C(OP_READ)] = {
1895                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1896                                                   GLM_LLC_ACCESS,
1897                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1898                                                   GLM_LLC_MISS,
1899                 },
1900                 [C(OP_WRITE)] = {
1901                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1902                                                   GLM_LLC_ACCESS,
1903                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1904                                                   GLM_LLC_MISS,
1905                 },
1906                 [C(OP_PREFETCH)] = {
1907                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1908                                                   GLM_LLC_ACCESS,
1909                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1910                                                   GLM_LLC_MISS,
1911                 },
1912         },
1913 };
1914
1915 static __initconst const u64 glp_hw_cache_event_ids
1916                                 [PERF_COUNT_HW_CACHE_MAX]
1917                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1918                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1919         [C(L1D)] = {
1920                 [C(OP_READ)] = {
1921                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1922                         [C(RESULT_MISS)]        = 0x0,
1923                 },
1924                 [C(OP_WRITE)] = {
1925                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1926                         [C(RESULT_MISS)]        = 0x0,
1927                 },
1928                 [C(OP_PREFETCH)] = {
1929                         [C(RESULT_ACCESS)]      = 0x0,
1930                         [C(RESULT_MISS)]        = 0x0,
1931                 },
1932         },
1933         [C(L1I)] = {
1934                 [C(OP_READ)] = {
1935                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1936                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1937                 },
1938                 [C(OP_WRITE)] = {
1939                         [C(RESULT_ACCESS)]      = -1,
1940                         [C(RESULT_MISS)]        = -1,
1941                 },
1942                 [C(OP_PREFETCH)] = {
1943                         [C(RESULT_ACCESS)]      = 0x0,
1944                         [C(RESULT_MISS)]        = 0x0,
1945                 },
1946         },
1947         [C(LL)] = {
1948                 [C(OP_READ)] = {
1949                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1950                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1951                 },
1952                 [C(OP_WRITE)] = {
1953                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1954                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1955                 },
1956                 [C(OP_PREFETCH)] = {
1957                         [C(RESULT_ACCESS)]      = 0x0,
1958                         [C(RESULT_MISS)]        = 0x0,
1959                 },
1960         },
1961         [C(DTLB)] = {
1962                 [C(OP_READ)] = {
1963                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1964                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1965                 },
1966                 [C(OP_WRITE)] = {
1967                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1968                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1969                 },
1970                 [C(OP_PREFETCH)] = {
1971                         [C(RESULT_ACCESS)]      = 0x0,
1972                         [C(RESULT_MISS)]        = 0x0,
1973                 },
1974         },
1975         [C(ITLB)] = {
1976                 [C(OP_READ)] = {
1977                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1978                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1979                 },
1980                 [C(OP_WRITE)] = {
1981                         [C(RESULT_ACCESS)]      = -1,
1982                         [C(RESULT_MISS)]        = -1,
1983                 },
1984                 [C(OP_PREFETCH)] = {
1985                         [C(RESULT_ACCESS)]      = -1,
1986                         [C(RESULT_MISS)]        = -1,
1987                 },
1988         },
1989         [C(BPU)] = {
1990                 [C(OP_READ)] = {
1991                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1992                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1993                 },
1994                 [C(OP_WRITE)] = {
1995                         [C(RESULT_ACCESS)]      = -1,
1996                         [C(RESULT_MISS)]        = -1,
1997                 },
1998                 [C(OP_PREFETCH)] = {
1999                         [C(RESULT_ACCESS)]      = -1,
2000                         [C(RESULT_MISS)]        = -1,
2001                 },
2002         },
2003 };
2004
2005 static __initconst const u64 glp_hw_cache_extra_regs
2006                                 [PERF_COUNT_HW_CACHE_MAX]
2007                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2008                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2009         [C(LL)] = {
2010                 [C(OP_READ)] = {
2011                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2012                                                   GLM_LLC_ACCESS,
2013                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2014                                                   GLM_LLC_MISS,
2015                 },
2016                 [C(OP_WRITE)] = {
2017                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2018                                                   GLM_LLC_ACCESS,
2019                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2020                                                   GLM_LLC_MISS,
2021                 },
2022                 [C(OP_PREFETCH)] = {
2023                         [C(RESULT_ACCESS)]      = 0x0,
2024                         [C(RESULT_MISS)]        = 0x0,
2025                 },
2026         },
2027 };
2028
2029 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2030 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2031 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2032 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2033 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2034                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2035 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2036
2037 static __initconst const u64 tnt_hw_cache_extra_regs
2038                                 [PERF_COUNT_HW_CACHE_MAX]
2039                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2040                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2041         [C(LL)] = {
2042                 [C(OP_READ)] = {
2043                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2044                                                   TNT_LLC_ACCESS,
2045                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2046                                                   TNT_LLC_MISS,
2047                 },
2048                 [C(OP_WRITE)] = {
2049                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2050                                                   TNT_LLC_ACCESS,
2051                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2052                                                   TNT_LLC_MISS,
2053                 },
2054                 [C(OP_PREFETCH)] = {
2055                         [C(RESULT_ACCESS)]      = 0x0,
2056                         [C(RESULT_MISS)]        = 0x0,
2057                 },
2058         },
2059 };
2060
2061 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2062 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2063 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2064 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2065
2066 static struct attribute *tnt_events_attrs[] = {
2067         EVENT_PTR(td_fe_bound_tnt),
2068         EVENT_PTR(td_retiring_tnt),
2069         EVENT_PTR(td_bad_spec_tnt),
2070         EVENT_PTR(td_be_bound_tnt),
2071         NULL,
2072 };
2073
2074 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2075         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2076         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2077         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2078         EVENT_EXTRA_END
2079 };
2080
2081 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2082         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2083         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2084         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2085         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2086         EVENT_EXTRA_END
2087 };
2088
2089 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2090 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2091 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2092 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2093 #define KNL_DDR_LOCAL           BIT_ULL(23)
2094 #define KNL_DDR_FAR             BIT_ULL(24)
2095 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2096                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2097 #define KNL_L2_READ             SLM_DMND_READ
2098 #define KNL_L2_WRITE            SLM_DMND_WRITE
2099 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2100 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2101 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2102                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2103                                                   SNB_NON_DRAM)
2104
2105 static __initconst const u64 knl_hw_cache_extra_regs
2106                                 [PERF_COUNT_HW_CACHE_MAX]
2107                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2108                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2109         [C(LL)] = {
2110                 [C(OP_READ)] = {
2111                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2112                         [C(RESULT_MISS)]   = 0,
2113                 },
2114                 [C(OP_WRITE)] = {
2115                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2116                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2117                 },
2118                 [C(OP_PREFETCH)] = {
2119                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2120                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2121                 },
2122         },
2123 };
2124
2125 /*
2126  * Used from PMIs where the LBRs are already disabled.
2127  *
2128  * This function could be called consecutively. It is required to remain in
2129  * disabled state if called consecutively.
2130  *
2131  * During consecutive calls, the same disable value will be written to related
2132  * registers, so the PMU state remains unchanged.
2133  *
2134  * intel_bts events don't coexist with intel PMU's BTS events because of
2135  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2136  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2137  *
2138  * Avoid PEBS_ENABLE MSR access in PMIs.
2139  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2140  * It doesn't matter if the PEBS is enabled or not.
2141  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2142  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2143  * However, there are some cases which may change PEBS status, e.g. PMI
2144  * throttle. The PEBS_ENABLE should be updated where the status changes.
2145  */
2146 static void __intel_pmu_disable_all(void)
2147 {
2148         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2149
2150         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2151
2152         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2153                 intel_pmu_disable_bts();
2154 }
2155
2156 static void intel_pmu_disable_all(void)
2157 {
2158         __intel_pmu_disable_all();
2159         intel_pmu_pebs_disable_all();
2160         intel_pmu_lbr_disable_all();
2161 }
2162
2163 static void __intel_pmu_enable_all(int added, bool pmi)
2164 {
2165         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2166         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2167
2168         intel_pmu_lbr_enable_all(pmi);
2169         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2170                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2171
2172         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2173                 struct perf_event *event =
2174                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2175
2176                 if (WARN_ON_ONCE(!event))
2177                         return;
2178
2179                 intel_pmu_enable_bts(event->hw.config);
2180         }
2181 }
2182
2183 static void intel_pmu_enable_all(int added)
2184 {
2185         intel_pmu_pebs_enable_all();
2186         __intel_pmu_enable_all(added, false);
2187 }
2188
2189 /*
2190  * Workaround for:
2191  *   Intel Errata AAK100 (model 26)
2192  *   Intel Errata AAP53  (model 30)
2193  *   Intel Errata BD53   (model 44)
2194  *
2195  * The official story:
2196  *   These chips need to be 'reset' when adding counters by programming the
2197  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2198  *   in sequence on the same PMC or on different PMCs.
2199  *
2200  * In practice it appears some of these events do in fact count, and
2201  * we need to program all 4 events.
2202  */
2203 static void intel_pmu_nhm_workaround(void)
2204 {
2205         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2206         static const unsigned long nhm_magic[4] = {
2207                 0x4300B5,
2208                 0x4300D2,
2209                 0x4300B1,
2210                 0x4300B1
2211         };
2212         struct perf_event *event;
2213         int i;
2214
2215         /*
2216          * The Errata requires below steps:
2217          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2218          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2219          *    the corresponding PMCx;
2220          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2221          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2222          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2223          */
2224
2225         /*
2226          * The real steps we choose are a little different from above.
2227          * A) To reduce MSR operations, we don't run step 1) as they
2228          *    are already cleared before this function is called;
2229          * B) Call x86_perf_event_update to save PMCx before configuring
2230          *    PERFEVTSELx with magic number;
2231          * C) With step 5), we do clear only when the PERFEVTSELx is
2232          *    not used currently.
2233          * D) Call x86_perf_event_set_period to restore PMCx;
2234          */
2235
2236         /* We always operate 4 pairs of PERF Counters */
2237         for (i = 0; i < 4; i++) {
2238                 event = cpuc->events[i];
2239                 if (event)
2240                         x86_perf_event_update(event);
2241         }
2242
2243         for (i = 0; i < 4; i++) {
2244                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2245                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2246         }
2247
2248         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2249         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2250
2251         for (i = 0; i < 4; i++) {
2252                 event = cpuc->events[i];
2253
2254                 if (event) {
2255                         x86_perf_event_set_period(event);
2256                         __x86_pmu_enable_event(&event->hw,
2257                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2258                 } else
2259                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2260         }
2261 }
2262
2263 static void intel_pmu_nhm_enable_all(int added)
2264 {
2265         if (added)
2266                 intel_pmu_nhm_workaround();
2267         intel_pmu_enable_all(added);
2268 }
2269
2270 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2271 {
2272         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2273
2274         if (cpuc->tfa_shadow != val) {
2275                 cpuc->tfa_shadow = val;
2276                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2277         }
2278 }
2279
2280 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2281 {
2282         /*
2283          * We're going to use PMC3, make sure TFA is set before we touch it.
2284          */
2285         if (cntr == 3)
2286                 intel_set_tfa(cpuc, true);
2287 }
2288
2289 static void intel_tfa_pmu_enable_all(int added)
2290 {
2291         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2292
2293         /*
2294          * If we find PMC3 is no longer used when we enable the PMU, we can
2295          * clear TFA.
2296          */
2297         if (!test_bit(3, cpuc->active_mask))
2298                 intel_set_tfa(cpuc, false);
2299
2300         intel_pmu_enable_all(added);
2301 }
2302
2303 static inline u64 intel_pmu_get_status(void)
2304 {
2305         u64 status;
2306
2307         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2308
2309         return status;
2310 }
2311
2312 static inline void intel_pmu_ack_status(u64 ack)
2313 {
2314         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2315 }
2316
2317 static inline bool event_is_checkpointed(struct perf_event *event)
2318 {
2319         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2320 }
2321
2322 static inline void intel_set_masks(struct perf_event *event, int idx)
2323 {
2324         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2325
2326         if (event->attr.exclude_host)
2327                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2328         if (event->attr.exclude_guest)
2329                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2330         if (event_is_checkpointed(event))
2331                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2332 }
2333
2334 static inline void intel_clear_masks(struct perf_event *event, int idx)
2335 {
2336         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2337
2338         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2339         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2340         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2341 }
2342
2343 static void intel_pmu_disable_fixed(struct perf_event *event)
2344 {
2345         struct hw_perf_event *hwc = &event->hw;
2346         u64 ctrl_val, mask;
2347         int idx = hwc->idx;
2348
2349         if (is_topdown_idx(idx)) {
2350                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2351
2352                 /*
2353                  * When there are other active TopDown events,
2354                  * don't disable the fixed counter 3.
2355                  */
2356                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2357                         return;
2358                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2359         }
2360
2361         intel_clear_masks(event, idx);
2362
2363         mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2364         rdmsrl(hwc->config_base, ctrl_val);
2365         ctrl_val &= ~mask;
2366         wrmsrl(hwc->config_base, ctrl_val);
2367 }
2368
2369 static void intel_pmu_disable_event(struct perf_event *event)
2370 {
2371         struct hw_perf_event *hwc = &event->hw;
2372         int idx = hwc->idx;
2373
2374         switch (idx) {
2375         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2376                 intel_clear_masks(event, idx);
2377                 x86_pmu_disable_event(event);
2378                 break;
2379         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2380         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2381                 intel_pmu_disable_fixed(event);
2382                 break;
2383         case INTEL_PMC_IDX_FIXED_BTS:
2384                 intel_pmu_disable_bts();
2385                 intel_pmu_drain_bts_buffer();
2386                 return;
2387         case INTEL_PMC_IDX_FIXED_VLBR:
2388                 intel_clear_masks(event, idx);
2389                 break;
2390         default:
2391                 intel_clear_masks(event, idx);
2392                 pr_warn("Failed to disable the event with invalid index %d\n",
2393                         idx);
2394                 return;
2395         }
2396
2397         /*
2398          * Needs to be called after x86_pmu_disable_event,
2399          * so we don't trigger the event without PEBS bit set.
2400          */
2401         if (unlikely(event->attr.precise_ip))
2402                 intel_pmu_pebs_disable(event);
2403 }
2404
2405 static void intel_pmu_del_event(struct perf_event *event)
2406 {
2407         if (needs_branch_stack(event))
2408                 intel_pmu_lbr_del(event);
2409         if (event->attr.precise_ip)
2410                 intel_pmu_pebs_del(event);
2411 }
2412
2413 static int icl_set_topdown_event_period(struct perf_event *event)
2414 {
2415         struct hw_perf_event *hwc = &event->hw;
2416         s64 left = local64_read(&hwc->period_left);
2417
2418         /*
2419          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2420          * Software should start both registers, PERF_METRICS and fixed
2421          * counter 3, from zero.
2422          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2423          * After that, both MSRs will be cleared for each read.
2424          * Don't need to clear them again.
2425          */
2426         if (left == x86_pmu.max_period) {
2427                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2428                 wrmsrl(MSR_PERF_METRICS, 0);
2429                 hwc->saved_slots = 0;
2430                 hwc->saved_metric = 0;
2431         }
2432
2433         if ((hwc->saved_slots) && is_slots_event(event)) {
2434                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2435                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2436         }
2437
2438         perf_event_update_userpage(event);
2439
2440         return 0;
2441 }
2442
2443 static int adl_set_topdown_event_period(struct perf_event *event)
2444 {
2445         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2446
2447         if (pmu->cpu_type != hybrid_big)
2448                 return 0;
2449
2450         return icl_set_topdown_event_period(event);
2451 }
2452
2453 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2454 {
2455         u32 val;
2456
2457         /*
2458          * The metric is reported as an 8bit integer fraction
2459          * summing up to 0xff.
2460          * slots-in-metric = (Metric / 0xff) * slots
2461          */
2462         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2463         return  mul_u64_u32_div(slots, val, 0xff);
2464 }
2465
2466 static u64 icl_get_topdown_value(struct perf_event *event,
2467                                        u64 slots, u64 metrics)
2468 {
2469         int idx = event->hw.idx;
2470         u64 delta;
2471
2472         if (is_metric_idx(idx))
2473                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2474         else
2475                 delta = slots;
2476
2477         return delta;
2478 }
2479
2480 static void __icl_update_topdown_event(struct perf_event *event,
2481                                        u64 slots, u64 metrics,
2482                                        u64 last_slots, u64 last_metrics)
2483 {
2484         u64 delta, last = 0;
2485
2486         delta = icl_get_topdown_value(event, slots, metrics);
2487         if (last_slots)
2488                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2489
2490         /*
2491          * The 8bit integer fraction of metric may be not accurate,
2492          * especially when the changes is very small.
2493          * For example, if only a few bad_spec happens, the fraction
2494          * may be reduced from 1 to 0. If so, the bad_spec event value
2495          * will be 0 which is definitely less than the last value.
2496          * Avoid update event->count for this case.
2497          */
2498         if (delta > last) {
2499                 delta -= last;
2500                 local64_add(delta, &event->count);
2501         }
2502 }
2503
2504 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2505                                       u64 metrics, int metric_end)
2506 {
2507         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2508         struct perf_event *other;
2509         int idx;
2510
2511         event->hw.saved_slots = slots;
2512         event->hw.saved_metric = metrics;
2513
2514         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2515                 if (!is_topdown_idx(idx))
2516                         continue;
2517                 other = cpuc->events[idx];
2518                 other->hw.saved_slots = slots;
2519                 other->hw.saved_metric = metrics;
2520         }
2521 }
2522
2523 /*
2524  * Update all active Topdown events.
2525  *
2526  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2527  * modify by a NMI. PMU has to be disabled before calling this function.
2528  */
2529
2530 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2531 {
2532         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2533         struct perf_event *other;
2534         u64 slots, metrics;
2535         bool reset = true;
2536         int idx;
2537
2538         /* read Fixed counter 3 */
2539         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2540         if (!slots)
2541                 return 0;
2542
2543         /* read PERF_METRICS */
2544         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2545
2546         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2547                 if (!is_topdown_idx(idx))
2548                         continue;
2549                 other = cpuc->events[idx];
2550                 __icl_update_topdown_event(other, slots, metrics,
2551                                            event ? event->hw.saved_slots : 0,
2552                                            event ? event->hw.saved_metric : 0);
2553         }
2554
2555         /*
2556          * Check and update this event, which may have been cleared
2557          * in active_mask e.g. x86_pmu_stop()
2558          */
2559         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2560                 __icl_update_topdown_event(event, slots, metrics,
2561                                            event->hw.saved_slots,
2562                                            event->hw.saved_metric);
2563
2564                 /*
2565                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2566                  * then drain the delta, which indicates context switch for
2567                  * counting.
2568                  * Save metric and slots for context switch.
2569                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2570                  * Because the values will be restored in next schedule in.
2571                  */
2572                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2573                 reset = false;
2574         }
2575
2576         if (reset) {
2577                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2578                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2579                 wrmsrl(MSR_PERF_METRICS, 0);
2580                 if (event)
2581                         update_saved_topdown_regs(event, 0, 0, metric_end);
2582         }
2583
2584         return slots;
2585 }
2586
2587 static u64 icl_update_topdown_event(struct perf_event *event)
2588 {
2589         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2590                                                  x86_pmu.num_topdown_events - 1);
2591 }
2592
2593 static u64 adl_update_topdown_event(struct perf_event *event)
2594 {
2595         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2596
2597         if (pmu->cpu_type != hybrid_big)
2598                 return 0;
2599
2600         return icl_update_topdown_event(event);
2601 }
2602
2603
2604 static void intel_pmu_read_topdown_event(struct perf_event *event)
2605 {
2606         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2607
2608         /* Only need to call update_topdown_event() once for group read. */
2609         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2610             !is_slots_event(event))
2611                 return;
2612
2613         perf_pmu_disable(event->pmu);
2614         x86_pmu.update_topdown_event(event);
2615         perf_pmu_enable(event->pmu);
2616 }
2617
2618 static void intel_pmu_read_event(struct perf_event *event)
2619 {
2620         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2621                 intel_pmu_auto_reload_read(event);
2622         else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2623                 intel_pmu_read_topdown_event(event);
2624         else
2625                 x86_perf_event_update(event);
2626 }
2627
2628 static void intel_pmu_enable_fixed(struct perf_event *event)
2629 {
2630         struct hw_perf_event *hwc = &event->hw;
2631         u64 ctrl_val, mask, bits = 0;
2632         int idx = hwc->idx;
2633
2634         if (is_topdown_idx(idx)) {
2635                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2636                 /*
2637                  * When there are other active TopDown events,
2638                  * don't enable the fixed counter 3 again.
2639                  */
2640                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2641                         return;
2642
2643                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2644         }
2645
2646         intel_set_masks(event, idx);
2647
2648         /*
2649          * Enable IRQ generation (0x8), if not PEBS,
2650          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2651          * if requested:
2652          */
2653         if (!event->attr.precise_ip)
2654                 bits |= 0x8;
2655         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2656                 bits |= 0x2;
2657         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2658                 bits |= 0x1;
2659
2660         /*
2661          * ANY bit is supported in v3 and up
2662          */
2663         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2664                 bits |= 0x4;
2665
2666         idx -= INTEL_PMC_IDX_FIXED;
2667         bits <<= (idx * 4);
2668         mask = 0xfULL << (idx * 4);
2669
2670         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2671                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2672                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2673         }
2674
2675         rdmsrl(hwc->config_base, ctrl_val);
2676         ctrl_val &= ~mask;
2677         ctrl_val |= bits;
2678         wrmsrl(hwc->config_base, ctrl_val);
2679 }
2680
2681 static void intel_pmu_enable_event(struct perf_event *event)
2682 {
2683         struct hw_perf_event *hwc = &event->hw;
2684         int idx = hwc->idx;
2685
2686         if (unlikely(event->attr.precise_ip))
2687                 intel_pmu_pebs_enable(event);
2688
2689         switch (idx) {
2690         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2691                 intel_set_masks(event, idx);
2692                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2693                 break;
2694         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2695         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2696                 intel_pmu_enable_fixed(event);
2697                 break;
2698         case INTEL_PMC_IDX_FIXED_BTS:
2699                 if (!__this_cpu_read(cpu_hw_events.enabled))
2700                         return;
2701                 intel_pmu_enable_bts(hwc->config);
2702                 break;
2703         case INTEL_PMC_IDX_FIXED_VLBR:
2704                 intel_set_masks(event, idx);
2705                 break;
2706         default:
2707                 pr_warn("Failed to enable the event with invalid index %d\n",
2708                         idx);
2709         }
2710 }
2711
2712 static void intel_pmu_add_event(struct perf_event *event)
2713 {
2714         if (event->attr.precise_ip)
2715                 intel_pmu_pebs_add(event);
2716         if (needs_branch_stack(event))
2717                 intel_pmu_lbr_add(event);
2718 }
2719
2720 /*
2721  * Save and restart an expired event. Called by NMI contexts,
2722  * so it has to be careful about preempting normal event ops:
2723  */
2724 int intel_pmu_save_and_restart(struct perf_event *event)
2725 {
2726         x86_perf_event_update(event);
2727         /*
2728          * For a checkpointed counter always reset back to 0.  This
2729          * avoids a situation where the counter overflows, aborts the
2730          * transaction and is then set back to shortly before the
2731          * overflow, and overflows and aborts again.
2732          */
2733         if (unlikely(event_is_checkpointed(event))) {
2734                 /* No race with NMIs because the counter should not be armed */
2735                 wrmsrl(event->hw.event_base, 0);
2736                 local64_set(&event->hw.prev_count, 0);
2737         }
2738         return x86_perf_event_set_period(event);
2739 }
2740
2741 static void intel_pmu_reset(void)
2742 {
2743         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2744         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2745         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2746         int num_counters = hybrid(cpuc->pmu, num_counters);
2747         unsigned long flags;
2748         int idx;
2749
2750         if (!num_counters)
2751                 return;
2752
2753         local_irq_save(flags);
2754
2755         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2756
2757         for (idx = 0; idx < num_counters; idx++) {
2758                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2759                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2760         }
2761         for (idx = 0; idx < num_counters_fixed; idx++) {
2762                 if (fixed_counter_disabled(idx, cpuc->pmu))
2763                         continue;
2764                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2765         }
2766
2767         if (ds)
2768                 ds->bts_index = ds->bts_buffer_base;
2769
2770         /* Ack all overflows and disable fixed counters */
2771         if (x86_pmu.version >= 2) {
2772                 intel_pmu_ack_status(intel_pmu_get_status());
2773                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2774         }
2775
2776         /* Reset LBRs and LBR freezing */
2777         if (x86_pmu.lbr_nr) {
2778                 update_debugctlmsr(get_debugctlmsr() &
2779                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2780         }
2781
2782         local_irq_restore(flags);
2783 }
2784
2785 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2786 {
2787         struct perf_sample_data data;
2788         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2789         int bit;
2790         int handled = 0;
2791         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2792
2793         inc_irq_stat(apic_perf_irqs);
2794
2795         /*
2796          * Ignore a range of extra bits in status that do not indicate
2797          * overflow by themselves.
2798          */
2799         status &= ~(GLOBAL_STATUS_COND_CHG |
2800                     GLOBAL_STATUS_ASIF |
2801                     GLOBAL_STATUS_LBRS_FROZEN);
2802         if (!status)
2803                 return 0;
2804         /*
2805          * In case multiple PEBS events are sampled at the same time,
2806          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2807          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2808          * having their bits set in the status register. This is a sign
2809          * that there was at least one PEBS record pending at the time
2810          * of the PMU interrupt. PEBS counters must only be processed
2811          * via the drain_pebs() calls and not via the regular sample
2812          * processing loop coming after that the function, otherwise
2813          * phony regular samples may be generated in the sampling buffer
2814          * not marked with the EXACT tag. Another possibility is to have
2815          * one PEBS event and at least one non-PEBS event which overflows
2816          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2817          * not be set, yet the overflow status bit for the PEBS counter will
2818          * be on Skylake.
2819          *
2820          * To avoid this problem, we systematically ignore the PEBS-enabled
2821          * counters from the GLOBAL_STATUS mask and we always process PEBS
2822          * events via drain_pebs().
2823          */
2824         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2825                 status &= ~cpuc->pebs_enabled;
2826         else
2827                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2828
2829         /*
2830          * PEBS overflow sets bit 62 in the global status register
2831          */
2832         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2833                 u64 pebs_enabled = cpuc->pebs_enabled;
2834
2835                 handled++;
2836                 x86_pmu.drain_pebs(regs, &data);
2837                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2838
2839                 /*
2840                  * PMI throttle may be triggered, which stops the PEBS event.
2841                  * Although cpuc->pebs_enabled is updated accordingly, the
2842                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2843                  * cpuc->enabled has been forced to 0 in PMI.
2844                  * Update the MSR if pebs_enabled is changed.
2845                  */
2846                 if (pebs_enabled != cpuc->pebs_enabled)
2847                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2848         }
2849
2850         /*
2851          * Intel PT
2852          */
2853         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2854                 handled++;
2855                 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2856                         perf_guest_cbs->handle_intel_pt_intr))
2857                         perf_guest_cbs->handle_intel_pt_intr();
2858                 else
2859                         intel_pt_interrupt();
2860         }
2861
2862         /*
2863          * Intel Perf metrics
2864          */
2865         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2866                 handled++;
2867                 if (x86_pmu.update_topdown_event)
2868                         x86_pmu.update_topdown_event(NULL);
2869         }
2870
2871         /*
2872          * Checkpointed counters can lead to 'spurious' PMIs because the
2873          * rollback caused by the PMI will have cleared the overflow status
2874          * bit. Therefore always force probe these counters.
2875          */
2876         status |= cpuc->intel_cp_status;
2877
2878         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2879                 struct perf_event *event = cpuc->events[bit];
2880
2881                 handled++;
2882
2883                 if (!test_bit(bit, cpuc->active_mask))
2884                         continue;
2885
2886                 if (!intel_pmu_save_and_restart(event))
2887                         continue;
2888
2889                 perf_sample_data_init(&data, 0, event->hw.last_period);
2890
2891                 if (has_branch_stack(event))
2892                         data.br_stack = &cpuc->lbr_stack;
2893
2894                 if (perf_event_overflow(event, &data, regs))
2895                         x86_pmu_stop(event, 0);
2896         }
2897
2898         return handled;
2899 }
2900
2901 /*
2902  * This handler is triggered by the local APIC, so the APIC IRQ handling
2903  * rules apply:
2904  */
2905 static int intel_pmu_handle_irq(struct pt_regs *regs)
2906 {
2907         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2908         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
2909         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
2910         int loops;
2911         u64 status;
2912         int handled;
2913         int pmu_enabled;
2914
2915         /*
2916          * Save the PMU state.
2917          * It needs to be restored when leaving the handler.
2918          */
2919         pmu_enabled = cpuc->enabled;
2920         /*
2921          * In general, the early ACK is only applied for old platforms.
2922          * For the big core starts from Haswell, the late ACK should be
2923          * applied.
2924          * For the small core after Tremont, we have to do the ACK right
2925          * before re-enabling counters, which is in the middle of the
2926          * NMI handler.
2927          */
2928         if (!late_ack && !mid_ack)
2929                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2930         intel_bts_disable_local();
2931         cpuc->enabled = 0;
2932         __intel_pmu_disable_all();
2933         handled = intel_pmu_drain_bts_buffer();
2934         handled += intel_bts_interrupt();
2935         status = intel_pmu_get_status();
2936         if (!status)
2937                 goto done;
2938
2939         loops = 0;
2940 again:
2941         intel_pmu_lbr_read();
2942         intel_pmu_ack_status(status);
2943         if (++loops > 100) {
2944                 static bool warned;
2945
2946                 if (!warned) {
2947                         WARN(1, "perfevents: irq loop stuck!\n");
2948                         perf_event_print_debug();
2949                         warned = true;
2950                 }
2951                 intel_pmu_reset();
2952                 goto done;
2953         }
2954
2955         handled += handle_pmi_common(regs, status);
2956
2957         /*
2958          * Repeat if there is more work to be done:
2959          */
2960         status = intel_pmu_get_status();
2961         if (status)
2962                 goto again;
2963
2964 done:
2965         if (mid_ack)
2966                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2967         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2968         cpuc->enabled = pmu_enabled;
2969         if (pmu_enabled)
2970                 __intel_pmu_enable_all(0, true);
2971         intel_bts_enable_local();
2972
2973         /*
2974          * Only unmask the NMI after the overflow counters
2975          * have been reset. This avoids spurious NMIs on
2976          * Haswell CPUs.
2977          */
2978         if (late_ack)
2979                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2980         return handled;
2981 }
2982
2983 static struct event_constraint *
2984 intel_bts_constraints(struct perf_event *event)
2985 {
2986         if (unlikely(intel_pmu_has_bts(event)))
2987                 return &bts_constraint;
2988
2989         return NULL;
2990 }
2991
2992 /*
2993  * Note: matches a fake event, like Fixed2.
2994  */
2995 static struct event_constraint *
2996 intel_vlbr_constraints(struct perf_event *event)
2997 {
2998         struct event_constraint *c = &vlbr_constraint;
2999
3000         if (unlikely(constraint_match(c, event->hw.config)))
3001                 return c;
3002
3003         return NULL;
3004 }
3005
3006 static int intel_alt_er(struct cpu_hw_events *cpuc,
3007                         int idx, u64 config)
3008 {
3009         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3010         int alt_idx = idx;
3011
3012         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3013                 return idx;
3014
3015         if (idx == EXTRA_REG_RSP_0)
3016                 alt_idx = EXTRA_REG_RSP_1;
3017
3018         if (idx == EXTRA_REG_RSP_1)
3019                 alt_idx = EXTRA_REG_RSP_0;
3020
3021         if (config & ~extra_regs[alt_idx].valid_mask)
3022                 return idx;
3023
3024         return alt_idx;
3025 }
3026
3027 static void intel_fixup_er(struct perf_event *event, int idx)
3028 {
3029         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3030         event->hw.extra_reg.idx = idx;
3031
3032         if (idx == EXTRA_REG_RSP_0) {
3033                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3034                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3035                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3036         } else if (idx == EXTRA_REG_RSP_1) {
3037                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3038                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3039                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3040         }
3041 }
3042
3043 /*
3044  * manage allocation of shared extra msr for certain events
3045  *
3046  * sharing can be:
3047  * per-cpu: to be shared between the various events on a single PMU
3048  * per-core: per-cpu + shared by HT threads
3049  */
3050 static struct event_constraint *
3051 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3052                                    struct perf_event *event,
3053                                    struct hw_perf_event_extra *reg)
3054 {
3055         struct event_constraint *c = &emptyconstraint;
3056         struct er_account *era;
3057         unsigned long flags;
3058         int idx = reg->idx;
3059
3060         /*
3061          * reg->alloc can be set due to existing state, so for fake cpuc we
3062          * need to ignore this, otherwise we might fail to allocate proper fake
3063          * state for this extra reg constraint. Also see the comment below.
3064          */
3065         if (reg->alloc && !cpuc->is_fake)
3066                 return NULL; /* call x86_get_event_constraint() */
3067
3068 again:
3069         era = &cpuc->shared_regs->regs[idx];
3070         /*
3071          * we use spin_lock_irqsave() to avoid lockdep issues when
3072          * passing a fake cpuc
3073          */
3074         raw_spin_lock_irqsave(&era->lock, flags);
3075
3076         if (!atomic_read(&era->ref) || era->config == reg->config) {
3077
3078                 /*
3079                  * If its a fake cpuc -- as per validate_{group,event}() we
3080                  * shouldn't touch event state and we can avoid doing so
3081                  * since both will only call get_event_constraints() once
3082                  * on each event, this avoids the need for reg->alloc.
3083                  *
3084                  * Not doing the ER fixup will only result in era->reg being
3085                  * wrong, but since we won't actually try and program hardware
3086                  * this isn't a problem either.
3087                  */
3088                 if (!cpuc->is_fake) {
3089                         if (idx != reg->idx)
3090                                 intel_fixup_er(event, idx);
3091
3092                         /*
3093                          * x86_schedule_events() can call get_event_constraints()
3094                          * multiple times on events in the case of incremental
3095                          * scheduling(). reg->alloc ensures we only do the ER
3096                          * allocation once.
3097                          */
3098                         reg->alloc = 1;
3099                 }
3100
3101                 /* lock in msr value */
3102                 era->config = reg->config;
3103                 era->reg = reg->reg;
3104
3105                 /* one more user */
3106                 atomic_inc(&era->ref);
3107
3108                 /*
3109                  * need to call x86_get_event_constraint()
3110                  * to check if associated event has constraints
3111                  */
3112                 c = NULL;
3113         } else {
3114                 idx = intel_alt_er(cpuc, idx, reg->config);
3115                 if (idx != reg->idx) {
3116                         raw_spin_unlock_irqrestore(&era->lock, flags);
3117                         goto again;
3118                 }
3119         }
3120         raw_spin_unlock_irqrestore(&era->lock, flags);
3121
3122         return c;
3123 }
3124
3125 static void
3126 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3127                                    struct hw_perf_event_extra *reg)
3128 {
3129         struct er_account *era;
3130
3131         /*
3132          * Only put constraint if extra reg was actually allocated. Also takes
3133          * care of event which do not use an extra shared reg.
3134          *
3135          * Also, if this is a fake cpuc we shouldn't touch any event state
3136          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3137          * either since it'll be thrown out.
3138          */
3139         if (!reg->alloc || cpuc->is_fake)
3140                 return;
3141
3142         era = &cpuc->shared_regs->regs[reg->idx];
3143
3144         /* one fewer user */
3145         atomic_dec(&era->ref);
3146
3147         /* allocate again next time */
3148         reg->alloc = 0;
3149 }
3150
3151 static struct event_constraint *
3152 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3153                               struct perf_event *event)
3154 {
3155         struct event_constraint *c = NULL, *d;
3156         struct hw_perf_event_extra *xreg, *breg;
3157
3158         xreg = &event->hw.extra_reg;
3159         if (xreg->idx != EXTRA_REG_NONE) {
3160                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3161                 if (c == &emptyconstraint)
3162                         return c;
3163         }
3164         breg = &event->hw.branch_reg;
3165         if (breg->idx != EXTRA_REG_NONE) {
3166                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3167                 if (d == &emptyconstraint) {
3168                         __intel_shared_reg_put_constraints(cpuc, xreg);
3169                         c = d;
3170                 }
3171         }
3172         return c;
3173 }
3174
3175 struct event_constraint *
3176 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3177                           struct perf_event *event)
3178 {
3179         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3180         struct event_constraint *c;
3181
3182         if (event_constraints) {
3183                 for_each_event_constraint(c, event_constraints) {
3184                         if (constraint_match(c, event->hw.config)) {
3185                                 event->hw.flags |= c->flags;
3186                                 return c;
3187                         }
3188                 }
3189         }
3190
3191         return &hybrid_var(cpuc->pmu, unconstrained);
3192 }
3193
3194 static struct event_constraint *
3195 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3196                             struct perf_event *event)
3197 {
3198         struct event_constraint *c;
3199
3200         c = intel_vlbr_constraints(event);
3201         if (c)
3202                 return c;
3203
3204         c = intel_bts_constraints(event);
3205         if (c)
3206                 return c;
3207
3208         c = intel_shared_regs_constraints(cpuc, event);
3209         if (c)
3210                 return c;
3211
3212         c = intel_pebs_constraints(event);
3213         if (c)
3214                 return c;
3215
3216         return x86_get_event_constraints(cpuc, idx, event);
3217 }
3218
3219 static void
3220 intel_start_scheduling(struct cpu_hw_events *cpuc)
3221 {
3222         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3223         struct intel_excl_states *xl;
3224         int tid = cpuc->excl_thread_id;
3225
3226         /*
3227          * nothing needed if in group validation mode
3228          */
3229         if (cpuc->is_fake || !is_ht_workaround_enabled())
3230                 return;
3231
3232         /*
3233          * no exclusion needed
3234          */
3235         if (WARN_ON_ONCE(!excl_cntrs))
3236                 return;
3237
3238         xl = &excl_cntrs->states[tid];
3239
3240         xl->sched_started = true;
3241         /*
3242          * lock shared state until we are done scheduling
3243          * in stop_event_scheduling()
3244          * makes scheduling appear as a transaction
3245          */
3246         raw_spin_lock(&excl_cntrs->lock);
3247 }
3248
3249 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3250 {
3251         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3252         struct event_constraint *c = cpuc->event_constraint[idx];
3253         struct intel_excl_states *xl;
3254         int tid = cpuc->excl_thread_id;
3255
3256         if (cpuc->is_fake || !is_ht_workaround_enabled())
3257                 return;
3258
3259         if (WARN_ON_ONCE(!excl_cntrs))
3260                 return;
3261
3262         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3263                 return;
3264
3265         xl = &excl_cntrs->states[tid];
3266
3267         lockdep_assert_held(&excl_cntrs->lock);
3268
3269         if (c->flags & PERF_X86_EVENT_EXCL)
3270                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3271         else
3272                 xl->state[cntr] = INTEL_EXCL_SHARED;
3273 }
3274
3275 static void
3276 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3277 {
3278         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3279         struct intel_excl_states *xl;
3280         int tid = cpuc->excl_thread_id;
3281
3282         /*
3283          * nothing needed if in group validation mode
3284          */
3285         if (cpuc->is_fake || !is_ht_workaround_enabled())
3286                 return;
3287         /*
3288          * no exclusion needed
3289          */
3290         if (WARN_ON_ONCE(!excl_cntrs))
3291                 return;
3292
3293         xl = &excl_cntrs->states[tid];
3294
3295         xl->sched_started = false;
3296         /*
3297          * release shared state lock (acquired in intel_start_scheduling())
3298          */
3299         raw_spin_unlock(&excl_cntrs->lock);
3300 }
3301
3302 static struct event_constraint *
3303 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3304 {
3305         WARN_ON_ONCE(!cpuc->constraint_list);
3306
3307         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3308                 struct event_constraint *cx;
3309
3310                 /*
3311                  * grab pre-allocated constraint entry
3312                  */
3313                 cx = &cpuc->constraint_list[idx];
3314
3315                 /*
3316                  * initialize dynamic constraint
3317                  * with static constraint
3318                  */
3319                 *cx = *c;
3320
3321                 /*
3322                  * mark constraint as dynamic
3323                  */
3324                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3325                 c = cx;
3326         }
3327
3328         return c;
3329 }
3330
3331 static struct event_constraint *
3332 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3333                            int idx, struct event_constraint *c)
3334 {
3335         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3336         struct intel_excl_states *xlo;
3337         int tid = cpuc->excl_thread_id;
3338         int is_excl, i, w;
3339
3340         /*
3341          * validating a group does not require
3342          * enforcing cross-thread  exclusion
3343          */
3344         if (cpuc->is_fake || !is_ht_workaround_enabled())
3345                 return c;
3346
3347         /*
3348          * no exclusion needed
3349          */
3350         if (WARN_ON_ONCE(!excl_cntrs))
3351                 return c;
3352
3353         /*
3354          * because we modify the constraint, we need
3355          * to make a copy. Static constraints come
3356          * from static const tables.
3357          *
3358          * only needed when constraint has not yet
3359          * been cloned (marked dynamic)
3360          */
3361         c = dyn_constraint(cpuc, c, idx);
3362
3363         /*
3364          * From here on, the constraint is dynamic.
3365          * Either it was just allocated above, or it
3366          * was allocated during a earlier invocation
3367          * of this function
3368          */
3369
3370         /*
3371          * state of sibling HT
3372          */
3373         xlo = &excl_cntrs->states[tid ^ 1];
3374
3375         /*
3376          * event requires exclusive counter access
3377          * across HT threads
3378          */
3379         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3380         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3381                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3382                 if (!cpuc->n_excl++)
3383                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3384         }
3385
3386         /*
3387          * Modify static constraint with current dynamic
3388          * state of thread
3389          *
3390          * EXCLUSIVE: sibling counter measuring exclusive event
3391          * SHARED   : sibling counter measuring non-exclusive event
3392          * UNUSED   : sibling counter unused
3393          */
3394         w = c->weight;
3395         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3396                 /*
3397                  * exclusive event in sibling counter
3398                  * our corresponding counter cannot be used
3399                  * regardless of our event
3400                  */
3401                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3402                         __clear_bit(i, c->idxmsk);
3403                         w--;
3404                         continue;
3405                 }
3406                 /*
3407                  * if measuring an exclusive event, sibling
3408                  * measuring non-exclusive, then counter cannot
3409                  * be used
3410                  */
3411                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3412                         __clear_bit(i, c->idxmsk);
3413                         w--;
3414                         continue;
3415                 }
3416         }
3417
3418         /*
3419          * if we return an empty mask, then switch
3420          * back to static empty constraint to avoid
3421          * the cost of freeing later on
3422          */
3423         if (!w)
3424                 c = &emptyconstraint;
3425
3426         c->weight = w;
3427
3428         return c;
3429 }
3430
3431 static struct event_constraint *
3432 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3433                             struct perf_event *event)
3434 {
3435         struct event_constraint *c1, *c2;
3436
3437         c1 = cpuc->event_constraint[idx];
3438
3439         /*
3440          * first time only
3441          * - static constraint: no change across incremental scheduling calls
3442          * - dynamic constraint: handled by intel_get_excl_constraints()
3443          */
3444         c2 = __intel_get_event_constraints(cpuc, idx, event);
3445         if (c1) {
3446                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3447                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3448                 c1->weight = c2->weight;
3449                 c2 = c1;
3450         }
3451
3452         if (cpuc->excl_cntrs)
3453                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3454
3455         return c2;
3456 }
3457
3458 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3459                 struct perf_event *event)
3460 {
3461         struct hw_perf_event *hwc = &event->hw;
3462         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3463         int tid = cpuc->excl_thread_id;
3464         struct intel_excl_states *xl;
3465
3466         /*
3467          * nothing needed if in group validation mode
3468          */
3469         if (cpuc->is_fake)
3470                 return;
3471
3472         if (WARN_ON_ONCE(!excl_cntrs))
3473                 return;
3474
3475         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3476                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3477                 if (!--cpuc->n_excl)
3478                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3479         }
3480
3481         /*
3482          * If event was actually assigned, then mark the counter state as
3483          * unused now.
3484          */
3485         if (hwc->idx >= 0) {
3486                 xl = &excl_cntrs->states[tid];
3487
3488                 /*
3489                  * put_constraint may be called from x86_schedule_events()
3490                  * which already has the lock held so here make locking
3491                  * conditional.
3492                  */
3493                 if (!xl->sched_started)
3494                         raw_spin_lock(&excl_cntrs->lock);
3495
3496                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3497
3498                 if (!xl->sched_started)
3499                         raw_spin_unlock(&excl_cntrs->lock);
3500         }
3501 }
3502
3503 static void
3504 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3505                                         struct perf_event *event)
3506 {
3507         struct hw_perf_event_extra *reg;
3508
3509         reg = &event->hw.extra_reg;
3510         if (reg->idx != EXTRA_REG_NONE)
3511                 __intel_shared_reg_put_constraints(cpuc, reg);
3512
3513         reg = &event->hw.branch_reg;
3514         if (reg->idx != EXTRA_REG_NONE)
3515                 __intel_shared_reg_put_constraints(cpuc, reg);
3516 }
3517
3518 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3519                                         struct perf_event *event)
3520 {
3521         intel_put_shared_regs_event_constraints(cpuc, event);
3522
3523         /*
3524          * is PMU has exclusive counter restrictions, then
3525          * all events are subject to and must call the
3526          * put_excl_constraints() routine
3527          */
3528         if (cpuc->excl_cntrs)
3529                 intel_put_excl_constraints(cpuc, event);
3530 }
3531
3532 static void intel_pebs_aliases_core2(struct perf_event *event)
3533 {
3534         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3535                 /*
3536                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3537                  * (0x003c) so that we can use it with PEBS.
3538                  *
3539                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3540                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3541                  * (0x00c0), which is a PEBS capable event, to get the same
3542                  * count.
3543                  *
3544                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3545                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3546                  * larger than the maximum number of instructions that can be
3547                  * retired per cycle (4) and then inverting the condition, we
3548                  * count all cycles that retire 16 or less instructions, which
3549                  * is every cycle.
3550                  *
3551                  * Thereby we gain a PEBS capable cycle counter.
3552                  */
3553                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3554
3555                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3556                 event->hw.config = alt_config;
3557         }
3558 }
3559
3560 static void intel_pebs_aliases_snb(struct perf_event *event)
3561 {
3562         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3563                 /*
3564                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3565                  * (0x003c) so that we can use it with PEBS.
3566                  *
3567                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3568                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3569                  * (0x01c2), which is a PEBS capable event, to get the same
3570                  * count.
3571                  *
3572                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3573                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3574                  * larger than the maximum number of micro-ops that can be
3575                  * retired per cycle (4) and then inverting the condition, we
3576                  * count all cycles that retire 16 or less micro-ops, which
3577                  * is every cycle.
3578                  *
3579                  * Thereby we gain a PEBS capable cycle counter.
3580                  */
3581                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3582
3583                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3584                 event->hw.config = alt_config;
3585         }
3586 }
3587
3588 static void intel_pebs_aliases_precdist(struct perf_event *event)
3589 {
3590         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3591                 /*
3592                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3593                  * (0x003c) so that we can use it with PEBS.
3594                  *
3595                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3596                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3597                  * (0x01c0), which is a PEBS capable event, to get the same
3598                  * count.
3599                  *
3600                  * The PREC_DIST event has special support to minimize sample
3601                  * shadowing effects. One drawback is that it can be
3602                  * only programmed on counter 1, but that seems like an
3603                  * acceptable trade off.
3604                  */
3605                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3606
3607                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3608                 event->hw.config = alt_config;
3609         }
3610 }
3611
3612 static void intel_pebs_aliases_ivb(struct perf_event *event)
3613 {
3614         if (event->attr.precise_ip < 3)
3615                 return intel_pebs_aliases_snb(event);
3616         return intel_pebs_aliases_precdist(event);
3617 }
3618
3619 static void intel_pebs_aliases_skl(struct perf_event *event)
3620 {
3621         if (event->attr.precise_ip < 3)
3622                 return intel_pebs_aliases_core2(event);
3623         return intel_pebs_aliases_precdist(event);
3624 }
3625
3626 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3627 {
3628         unsigned long flags = x86_pmu.large_pebs_flags;
3629
3630         if (event->attr.use_clockid)
3631                 flags &= ~PERF_SAMPLE_TIME;
3632         if (!event->attr.exclude_kernel)
3633                 flags &= ~PERF_SAMPLE_REGS_USER;
3634         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3635                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3636         return flags;
3637 }
3638
3639 static int intel_pmu_bts_config(struct perf_event *event)
3640 {
3641         struct perf_event_attr *attr = &event->attr;
3642
3643         if (unlikely(intel_pmu_has_bts(event))) {
3644                 /* BTS is not supported by this architecture. */
3645                 if (!x86_pmu.bts_active)
3646                         return -EOPNOTSUPP;
3647
3648                 /* BTS is currently only allowed for user-mode. */
3649                 if (!attr->exclude_kernel)
3650                         return -EOPNOTSUPP;
3651
3652                 /* BTS is not allowed for precise events. */
3653                 if (attr->precise_ip)
3654                         return -EOPNOTSUPP;
3655
3656                 /* disallow bts if conflicting events are present */
3657                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3658                         return -EBUSY;
3659
3660                 event->destroy = hw_perf_lbr_event_destroy;
3661         }
3662
3663         return 0;
3664 }
3665
3666 static int core_pmu_hw_config(struct perf_event *event)
3667 {
3668         int ret = x86_pmu_hw_config(event);
3669
3670         if (ret)
3671                 return ret;
3672
3673         return intel_pmu_bts_config(event);
3674 }
3675
3676 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3677                                          ((x86_pmu.num_topdown_events - 1) << 8))
3678
3679 static bool is_available_metric_event(struct perf_event *event)
3680 {
3681         return is_metric_event(event) &&
3682                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3683 }
3684
3685 static inline bool is_mem_loads_event(struct perf_event *event)
3686 {
3687         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3688 }
3689
3690 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3691 {
3692         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3693 }
3694
3695 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3696 {
3697         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3698                 return false;
3699
3700         if (is_hybrid())
3701                 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3702
3703         return true;
3704 }
3705
3706 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3707 {
3708         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3709
3710         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3711 }
3712
3713 static int intel_pmu_hw_config(struct perf_event *event)
3714 {
3715         int ret = x86_pmu_hw_config(event);
3716
3717         if (ret)
3718                 return ret;
3719
3720         ret = intel_pmu_bts_config(event);
3721         if (ret)
3722                 return ret;
3723
3724         if (event->attr.precise_ip) {
3725                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3726                         return -EINVAL;
3727
3728                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3729                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3730                         if (!(event->attr.sample_type &
3731                               ~intel_pmu_large_pebs_flags(event))) {
3732                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3733                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3734                         }
3735                 }
3736                 if (x86_pmu.pebs_aliases)
3737                         x86_pmu.pebs_aliases(event);
3738
3739                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3740                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3741         }
3742
3743         if (needs_branch_stack(event)) {
3744                 ret = intel_pmu_setup_lbr_filter(event);
3745                 if (ret)
3746                         return ret;
3747                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3748
3749                 /*
3750                  * BTS is set up earlier in this path, so don't account twice
3751                  */
3752                 if (!unlikely(intel_pmu_has_bts(event))) {
3753                         /* disallow lbr if conflicting events are present */
3754                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3755                                 return -EBUSY;
3756
3757                         event->destroy = hw_perf_lbr_event_destroy;
3758                 }
3759         }
3760
3761         if (event->attr.aux_output) {
3762                 if (!event->attr.precise_ip)
3763                         return -EINVAL;
3764
3765                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3766         }
3767
3768         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3769             (event->attr.type == PERF_TYPE_HW_CACHE))
3770                 return 0;
3771
3772         /*
3773          * Config Topdown slots and metric events
3774          *
3775          * The slots event on Fixed Counter 3 can support sampling,
3776          * which will be handled normally in x86_perf_event_update().
3777          *
3778          * Metric events don't support sampling and require being paired
3779          * with a slots event as group leader. When the slots event
3780          * is used in a metrics group, it too cannot support sampling.
3781          */
3782         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3783                 if (event->attr.config1 || event->attr.config2)
3784                         return -EINVAL;
3785
3786                 /*
3787                  * The TopDown metrics events and slots event don't
3788                  * support any filters.
3789                  */
3790                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3791                         return -EINVAL;
3792
3793                 if (is_available_metric_event(event)) {
3794                         struct perf_event *leader = event->group_leader;
3795
3796                         /* The metric events don't support sampling. */
3797                         if (is_sampling_event(event))
3798                                 return -EINVAL;
3799
3800                         /* The metric events require a slots group leader. */
3801                         if (!is_slots_event(leader))
3802                                 return -EINVAL;
3803
3804                         /*
3805                          * The leader/SLOTS must not be a sampling event for
3806                          * metric use; hardware requires it starts at 0 when used
3807                          * in conjunction with MSR_PERF_METRICS.
3808                          */
3809                         if (is_sampling_event(leader))
3810                                 return -EINVAL;
3811
3812                         event->event_caps |= PERF_EV_CAP_SIBLING;
3813                         /*
3814                          * Only once we have a METRICs sibling do we
3815                          * need TopDown magic.
3816                          */
3817                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3818                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3819                 }
3820         }
3821
3822         /*
3823          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3824          * doesn't function quite right. As a work-around it needs to always be
3825          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3826          * The actual count of this second event is irrelevant it just needs
3827          * to be active to make the first event function correctly.
3828          *
3829          * In a group, the auxiliary event must be in front of the load latency
3830          * event. The rule is to simplify the implementation of the check.
3831          * That's because perf cannot have a complete group at the moment.
3832          */
3833         if (require_mem_loads_aux_event(event) &&
3834             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3835             is_mem_loads_event(event)) {
3836                 struct perf_event *leader = event->group_leader;
3837                 struct perf_event *sibling = NULL;
3838
3839                 if (!is_mem_loads_aux_event(leader)) {
3840                         for_each_sibling_event(sibling, leader) {
3841                                 if (is_mem_loads_aux_event(sibling))
3842                                         break;
3843                         }
3844                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3845                                 return -ENODATA;
3846                 }
3847         }
3848
3849         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3850                 return 0;
3851
3852         if (x86_pmu.version < 3)
3853                 return -EINVAL;
3854
3855         ret = perf_allow_cpu(&event->attr);
3856         if (ret)
3857                 return ret;
3858
3859         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3860
3861         return 0;
3862 }
3863
3864 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3865 {
3866         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3867         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3868         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3869
3870         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3871         arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3872         arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3873         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3874                 arr[0].guest &= ~cpuc->pebs_enabled;
3875         else
3876                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3877         *nr = 1;
3878
3879         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3880                 /*
3881                  * If PMU counter has PEBS enabled it is not enough to
3882                  * disable counter on a guest entry since PEBS memory
3883                  * write can overshoot guest entry and corrupt guest
3884                  * memory. Disabling PEBS solves the problem.
3885                  *
3886                  * Don't do this if the CPU already enforces it.
3887                  */
3888                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3889                 arr[1].host = cpuc->pebs_enabled;
3890                 arr[1].guest = 0;
3891                 *nr = 2;
3892         }
3893
3894         return arr;
3895 }
3896
3897 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3898 {
3899         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3900         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3901         int idx;
3902
3903         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3904                 struct perf_event *event = cpuc->events[idx];
3905
3906                 arr[idx].msr = x86_pmu_config_addr(idx);
3907                 arr[idx].host = arr[idx].guest = 0;
3908
3909                 if (!test_bit(idx, cpuc->active_mask))
3910                         continue;
3911
3912                 arr[idx].host = arr[idx].guest =
3913                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3914
3915                 if (event->attr.exclude_host)
3916                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3917                 else if (event->attr.exclude_guest)
3918                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3919         }
3920
3921         *nr = x86_pmu.num_counters;
3922         return arr;
3923 }
3924
3925 static void core_pmu_enable_event(struct perf_event *event)
3926 {
3927         if (!event->attr.exclude_host)
3928                 x86_pmu_enable_event(event);
3929 }
3930
3931 static void core_pmu_enable_all(int added)
3932 {
3933         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3934         int idx;
3935
3936         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3937                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3938
3939                 if (!test_bit(idx, cpuc->active_mask) ||
3940                                 cpuc->events[idx]->attr.exclude_host)
3941                         continue;
3942
3943                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3944         }
3945 }
3946
3947 static int hsw_hw_config(struct perf_event *event)
3948 {
3949         int ret = intel_pmu_hw_config(event);
3950
3951         if (ret)
3952                 return ret;
3953         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3954                 return 0;
3955         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3956
3957         /*
3958          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3959          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3960          * this combination.
3961          */
3962         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3963              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3964               event->attr.precise_ip > 0))
3965                 return -EOPNOTSUPP;
3966
3967         if (event_is_checkpointed(event)) {
3968                 /*
3969                  * Sampling of checkpointed events can cause situations where
3970                  * the CPU constantly aborts because of a overflow, which is
3971                  * then checkpointed back and ignored. Forbid checkpointing
3972                  * for sampling.
3973                  *
3974                  * But still allow a long sampling period, so that perf stat
3975                  * from KVM works.
3976                  */
3977                 if (event->attr.sample_period > 0 &&
3978                     event->attr.sample_period < 0x7fffffff)
3979                         return -EOPNOTSUPP;
3980         }
3981         return 0;
3982 }
3983
3984 static struct event_constraint counter0_constraint =
3985                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3986
3987 static struct event_constraint counter2_constraint =
3988                         EVENT_CONSTRAINT(0, 0x4, 0);
3989
3990 static struct event_constraint fixed0_constraint =
3991                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3992
3993 static struct event_constraint fixed0_counter0_constraint =
3994                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3995
3996 static struct event_constraint *
3997 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3998                           struct perf_event *event)
3999 {
4000         struct event_constraint *c;
4001
4002         c = intel_get_event_constraints(cpuc, idx, event);
4003
4004         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4005         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4006                 if (c->idxmsk64 & (1U << 2))
4007                         return &counter2_constraint;
4008                 return &emptyconstraint;
4009         }
4010
4011         return c;
4012 }
4013
4014 static struct event_constraint *
4015 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4016                           struct perf_event *event)
4017 {
4018         /*
4019          * Fixed counter 0 has less skid.
4020          * Force instruction:ppp in Fixed counter 0
4021          */
4022         if ((event->attr.precise_ip == 3) &&
4023             constraint_match(&fixed0_constraint, event->hw.config))
4024                 return &fixed0_constraint;
4025
4026         return hsw_get_event_constraints(cpuc, idx, event);
4027 }
4028
4029 static struct event_constraint *
4030 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4031                           struct perf_event *event)
4032 {
4033         struct event_constraint *c;
4034
4035         c = icl_get_event_constraints(cpuc, idx, event);
4036
4037         /*
4038          * The :ppp indicates the Precise Distribution (PDist) facility, which
4039          * is only supported on the GP counter 0. If a :ppp event which is not
4040          * available on the GP counter 0, error out.
4041          * Exception: Instruction PDIR is only available on the fixed counter 0.
4042          */
4043         if ((event->attr.precise_ip == 3) &&
4044             !constraint_match(&fixed0_constraint, event->hw.config)) {
4045                 if (c->idxmsk64 & BIT_ULL(0))
4046                         return &counter0_constraint;
4047
4048                 return &emptyconstraint;
4049         }
4050
4051         return c;
4052 }
4053
4054 static struct event_constraint *
4055 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4056                           struct perf_event *event)
4057 {
4058         struct event_constraint *c;
4059
4060         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4061         if (event->attr.precise_ip == 3)
4062                 return &counter0_constraint;
4063
4064         c = intel_get_event_constraints(cpuc, idx, event);
4065
4066         return c;
4067 }
4068
4069 static struct event_constraint *
4070 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4071                           struct perf_event *event)
4072 {
4073         struct event_constraint *c;
4074
4075         /*
4076          * :ppp means to do reduced skid PEBS,
4077          * which is available on PMC0 and fixed counter 0.
4078          */
4079         if (event->attr.precise_ip == 3) {
4080                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4081                 if (constraint_match(&fixed0_constraint, event->hw.config))
4082                         return &fixed0_counter0_constraint;
4083
4084                 return &counter0_constraint;
4085         }
4086
4087         c = intel_get_event_constraints(cpuc, idx, event);
4088
4089         return c;
4090 }
4091
4092 static bool allow_tsx_force_abort = true;
4093
4094 static struct event_constraint *
4095 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4096                           struct perf_event *event)
4097 {
4098         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4099
4100         /*
4101          * Without TFA we must not use PMC3.
4102          */
4103         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4104                 c = dyn_constraint(cpuc, c, idx);
4105                 c->idxmsk64 &= ~(1ULL << 3);
4106                 c->weight--;
4107         }
4108
4109         return c;
4110 }
4111
4112 static struct event_constraint *
4113 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4114                           struct perf_event *event)
4115 {
4116         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4117
4118         if (pmu->cpu_type == hybrid_big)
4119                 return spr_get_event_constraints(cpuc, idx, event);
4120         else if (pmu->cpu_type == hybrid_small)
4121                 return tnt_get_event_constraints(cpuc, idx, event);
4122
4123         WARN_ON(1);
4124         return &emptyconstraint;
4125 }
4126
4127 static int adl_hw_config(struct perf_event *event)
4128 {
4129         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4130
4131         if (pmu->cpu_type == hybrid_big)
4132                 return hsw_hw_config(event);
4133         else if (pmu->cpu_type == hybrid_small)
4134                 return intel_pmu_hw_config(event);
4135
4136         WARN_ON(1);
4137         return -EOPNOTSUPP;
4138 }
4139
4140 static u8 adl_get_hybrid_cpu_type(void)
4141 {
4142         return hybrid_big;
4143 }
4144
4145 /*
4146  * Broadwell:
4147  *
4148  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4149  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4150  * the two to enforce a minimum period of 128 (the smallest value that has bits
4151  * 0-5 cleared and >= 100).
4152  *
4153  * Because of how the code in x86_perf_event_set_period() works, the truncation
4154  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4155  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4156  *
4157  * Therefore the effective (average) period matches the requested period,
4158  * despite coarser hardware granularity.
4159  */
4160 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4161 {
4162         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4163                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4164                 if (left < 128)
4165                         left = 128;
4166                 left &= ~0x3fULL;
4167         }
4168         return left;
4169 }
4170
4171 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4172 {
4173         return max(left, 32ULL);
4174 }
4175
4176 static u64 spr_limit_period(struct perf_event *event, u64 left)
4177 {
4178         if (event->attr.precise_ip == 3)
4179                 return max(left, 128ULL);
4180
4181         return left;
4182 }
4183
4184 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4185 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4186 PMU_FORMAT_ATTR(edge,   "config:18"     );
4187 PMU_FORMAT_ATTR(pc,     "config:19"     );
4188 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4189 PMU_FORMAT_ATTR(inv,    "config:23"     );
4190 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4191 PMU_FORMAT_ATTR(in_tx,  "config:32");
4192 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4193
4194 static struct attribute *intel_arch_formats_attr[] = {
4195         &format_attr_event.attr,
4196         &format_attr_umask.attr,
4197         &format_attr_edge.attr,
4198         &format_attr_pc.attr,
4199         &format_attr_inv.attr,
4200         &format_attr_cmask.attr,
4201         NULL,
4202 };
4203
4204 ssize_t intel_event_sysfs_show(char *page, u64 config)
4205 {
4206         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4207
4208         return x86_event_sysfs_show(page, config, event);
4209 }
4210
4211 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4212 {
4213         struct intel_shared_regs *regs;
4214         int i;
4215
4216         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4217                             GFP_KERNEL, cpu_to_node(cpu));
4218         if (regs) {
4219                 /*
4220                  * initialize the locks to keep lockdep happy
4221                  */
4222                 for (i = 0; i < EXTRA_REG_MAX; i++)
4223                         raw_spin_lock_init(&regs->regs[i].lock);
4224
4225                 regs->core_id = -1;
4226         }
4227         return regs;
4228 }
4229
4230 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4231 {
4232         struct intel_excl_cntrs *c;
4233
4234         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4235                          GFP_KERNEL, cpu_to_node(cpu));
4236         if (c) {
4237                 raw_spin_lock_init(&c->lock);
4238                 c->core_id = -1;
4239         }
4240         return c;
4241 }
4242
4243
4244 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4245 {
4246         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4247
4248         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4249                 cpuc->shared_regs = allocate_shared_regs(cpu);
4250                 if (!cpuc->shared_regs)
4251                         goto err;
4252         }
4253
4254         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4255                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4256
4257                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4258                 if (!cpuc->constraint_list)
4259                         goto err_shared_regs;
4260         }
4261
4262         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4263                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4264                 if (!cpuc->excl_cntrs)
4265                         goto err_constraint_list;
4266
4267                 cpuc->excl_thread_id = 0;
4268         }
4269
4270         return 0;
4271
4272 err_constraint_list:
4273         kfree(cpuc->constraint_list);
4274         cpuc->constraint_list = NULL;
4275
4276 err_shared_regs:
4277         kfree(cpuc->shared_regs);
4278         cpuc->shared_regs = NULL;
4279
4280 err:
4281         return -ENOMEM;
4282 }
4283
4284 static int intel_pmu_cpu_prepare(int cpu)
4285 {
4286         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4287 }
4288
4289 static void flip_smm_bit(void *data)
4290 {
4291         unsigned long set = *(unsigned long *)data;
4292
4293         if (set > 0) {
4294                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4295                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4296         } else {
4297                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4298                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4299         }
4300 }
4301
4302 static bool init_hybrid_pmu(int cpu)
4303 {
4304         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4305         u8 cpu_type = get_this_hybrid_cpu_type();
4306         struct x86_hybrid_pmu *pmu = NULL;
4307         int i;
4308
4309         if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4310                 cpu_type = x86_pmu.get_hybrid_cpu_type();
4311
4312         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4313                 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4314                         pmu = &x86_pmu.hybrid_pmu[i];
4315                         break;
4316                 }
4317         }
4318         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4319                 cpuc->pmu = NULL;
4320                 return false;
4321         }
4322
4323         /* Only check and dump the PMU information for the first CPU */
4324         if (!cpumask_empty(&pmu->supported_cpus))
4325                 goto end;
4326
4327         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4328                 return false;
4329
4330         pr_info("%s PMU driver: ", pmu->name);
4331
4332         if (pmu->intel_cap.pebs_output_pt_available)
4333                 pr_cont("PEBS-via-PT ");
4334
4335         pr_cont("\n");
4336
4337         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4338                              pmu->intel_ctrl);
4339
4340 end:
4341         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4342         cpuc->pmu = &pmu->pmu;
4343
4344         x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4345
4346         return true;
4347 }
4348
4349 static void intel_pmu_cpu_starting(int cpu)
4350 {
4351         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4352         int core_id = topology_core_id(cpu);
4353         int i;
4354
4355         if (is_hybrid() && !init_hybrid_pmu(cpu))
4356                 return;
4357
4358         init_debug_store_on_cpu(cpu);
4359         /*
4360          * Deal with CPUs that don't clear their LBRs on power-up.
4361          */
4362         intel_pmu_lbr_reset();
4363
4364         cpuc->lbr_sel = NULL;
4365
4366         if (x86_pmu.flags & PMU_FL_TFA) {
4367                 WARN_ON_ONCE(cpuc->tfa_shadow);
4368                 cpuc->tfa_shadow = ~0ULL;
4369                 intel_set_tfa(cpuc, false);
4370         }
4371
4372         if (x86_pmu.version > 1)
4373                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4374
4375         /*
4376          * Disable perf metrics if any added CPU doesn't support it.
4377          *
4378          * Turn off the check for a hybrid architecture, because the
4379          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4380          * the architecture features. The perf metrics is a model-specific
4381          * feature for now. The corresponding bit should always be 0 on
4382          * a hybrid platform, e.g., Alder Lake.
4383          */
4384         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4385                 union perf_capabilities perf_cap;
4386
4387                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4388                 if (!perf_cap.perf_metrics) {
4389                         x86_pmu.intel_cap.perf_metrics = 0;
4390                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4391                 }
4392         }
4393
4394         if (!cpuc->shared_regs)
4395                 return;
4396
4397         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4398                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4399                         struct intel_shared_regs *pc;
4400
4401                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4402                         if (pc && pc->core_id == core_id) {
4403                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4404                                 cpuc->shared_regs = pc;
4405                                 break;
4406                         }
4407                 }
4408                 cpuc->shared_regs->core_id = core_id;
4409                 cpuc->shared_regs->refcnt++;
4410         }
4411
4412         if (x86_pmu.lbr_sel_map)
4413                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4414
4415         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4416                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4417                         struct cpu_hw_events *sibling;
4418                         struct intel_excl_cntrs *c;
4419
4420                         sibling = &per_cpu(cpu_hw_events, i);
4421                         c = sibling->excl_cntrs;
4422                         if (c && c->core_id == core_id) {
4423                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4424                                 cpuc->excl_cntrs = c;
4425                                 if (!sibling->excl_thread_id)
4426                                         cpuc->excl_thread_id = 1;
4427                                 break;
4428                         }
4429                 }
4430                 cpuc->excl_cntrs->core_id = core_id;
4431                 cpuc->excl_cntrs->refcnt++;
4432         }
4433 }
4434
4435 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4436 {
4437         struct intel_excl_cntrs *c;
4438
4439         c = cpuc->excl_cntrs;
4440         if (c) {
4441                 if (c->core_id == -1 || --c->refcnt == 0)
4442                         kfree(c);
4443                 cpuc->excl_cntrs = NULL;
4444         }
4445
4446         kfree(cpuc->constraint_list);
4447         cpuc->constraint_list = NULL;
4448 }
4449
4450 static void intel_pmu_cpu_dying(int cpu)
4451 {
4452         fini_debug_store_on_cpu(cpu);
4453 }
4454
4455 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4456 {
4457         struct intel_shared_regs *pc;
4458
4459         pc = cpuc->shared_regs;
4460         if (pc) {
4461                 if (pc->core_id == -1 || --pc->refcnt == 0)
4462                         kfree(pc);
4463                 cpuc->shared_regs = NULL;
4464         }
4465
4466         free_excl_cntrs(cpuc);
4467 }
4468
4469 static void intel_pmu_cpu_dead(int cpu)
4470 {
4471         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4472
4473         intel_cpuc_finish(cpuc);
4474
4475         if (is_hybrid() && cpuc->pmu)
4476                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4477 }
4478
4479 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4480                                  bool sched_in)
4481 {
4482         intel_pmu_pebs_sched_task(ctx, sched_in);
4483         intel_pmu_lbr_sched_task(ctx, sched_in);
4484 }
4485
4486 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4487                                     struct perf_event_context *next)
4488 {
4489         intel_pmu_lbr_swap_task_ctx(prev, next);
4490 }
4491
4492 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4493 {
4494         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4495 }
4496
4497 static int intel_pmu_aux_output_match(struct perf_event *event)
4498 {
4499         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4500                 return 0;
4501
4502         return is_intel_pt_event(event);
4503 }
4504
4505 static int intel_pmu_filter_match(struct perf_event *event)
4506 {
4507         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4508         unsigned int cpu = smp_processor_id();
4509
4510         return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4511 }
4512
4513 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4514
4515 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4516
4517 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4518
4519 static struct attribute *intel_arch3_formats_attr[] = {
4520         &format_attr_event.attr,
4521         &format_attr_umask.attr,
4522         &format_attr_edge.attr,
4523         &format_attr_pc.attr,
4524         &format_attr_any.attr,
4525         &format_attr_inv.attr,
4526         &format_attr_cmask.attr,
4527         NULL,
4528 };
4529
4530 static struct attribute *hsw_format_attr[] = {
4531         &format_attr_in_tx.attr,
4532         &format_attr_in_tx_cp.attr,
4533         &format_attr_offcore_rsp.attr,
4534         &format_attr_ldlat.attr,
4535         NULL
4536 };
4537
4538 static struct attribute *nhm_format_attr[] = {
4539         &format_attr_offcore_rsp.attr,
4540         &format_attr_ldlat.attr,
4541         NULL
4542 };
4543
4544 static struct attribute *slm_format_attr[] = {
4545         &format_attr_offcore_rsp.attr,
4546         NULL
4547 };
4548
4549 static struct attribute *skl_format_attr[] = {
4550         &format_attr_frontend.attr,
4551         NULL,
4552 };
4553
4554 static __initconst const struct x86_pmu core_pmu = {
4555         .name                   = "core",
4556         .handle_irq             = x86_pmu_handle_irq,
4557         .disable_all            = x86_pmu_disable_all,
4558         .enable_all             = core_pmu_enable_all,
4559         .enable                 = core_pmu_enable_event,
4560         .disable                = x86_pmu_disable_event,
4561         .hw_config              = core_pmu_hw_config,
4562         .schedule_events        = x86_schedule_events,
4563         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4564         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4565         .event_map              = intel_pmu_event_map,
4566         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4567         .apic                   = 1,
4568         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4569
4570         /*
4571          * Intel PMCs cannot be accessed sanely above 32-bit width,
4572          * so we install an artificial 1<<31 period regardless of
4573          * the generic event period:
4574          */
4575         .max_period             = (1ULL<<31) - 1,
4576         .get_event_constraints  = intel_get_event_constraints,
4577         .put_event_constraints  = intel_put_event_constraints,
4578         .event_constraints      = intel_core_event_constraints,
4579         .guest_get_msrs         = core_guest_get_msrs,
4580         .format_attrs           = intel_arch_formats_attr,
4581         .events_sysfs_show      = intel_event_sysfs_show,
4582
4583         /*
4584          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4585          * together with PMU version 1 and thus be using core_pmu with
4586          * shared_regs. We need following callbacks here to allocate
4587          * it properly.
4588          */
4589         .cpu_prepare            = intel_pmu_cpu_prepare,
4590         .cpu_starting           = intel_pmu_cpu_starting,
4591         .cpu_dying              = intel_pmu_cpu_dying,
4592         .cpu_dead               = intel_pmu_cpu_dead,
4593
4594         .check_period           = intel_pmu_check_period,
4595
4596         .lbr_reset              = intel_pmu_lbr_reset_64,
4597         .lbr_read               = intel_pmu_lbr_read_64,
4598         .lbr_save               = intel_pmu_lbr_save,
4599         .lbr_restore            = intel_pmu_lbr_restore,
4600 };
4601
4602 static __initconst const struct x86_pmu intel_pmu = {
4603         .name                   = "Intel",
4604         .handle_irq             = intel_pmu_handle_irq,
4605         .disable_all            = intel_pmu_disable_all,
4606         .enable_all             = intel_pmu_enable_all,
4607         .enable                 = intel_pmu_enable_event,
4608         .disable                = intel_pmu_disable_event,
4609         .add                    = intel_pmu_add_event,
4610         .del                    = intel_pmu_del_event,
4611         .read                   = intel_pmu_read_event,
4612         .hw_config              = intel_pmu_hw_config,
4613         .schedule_events        = x86_schedule_events,
4614         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4615         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4616         .event_map              = intel_pmu_event_map,
4617         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4618         .apic                   = 1,
4619         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4620         /*
4621          * Intel PMCs cannot be accessed sanely above 32 bit width,
4622          * so we install an artificial 1<<31 period regardless of
4623          * the generic event period:
4624          */
4625         .max_period             = (1ULL << 31) - 1,
4626         .get_event_constraints  = intel_get_event_constraints,
4627         .put_event_constraints  = intel_put_event_constraints,
4628         .pebs_aliases           = intel_pebs_aliases_core2,
4629
4630         .format_attrs           = intel_arch3_formats_attr,
4631         .events_sysfs_show      = intel_event_sysfs_show,
4632
4633         .cpu_prepare            = intel_pmu_cpu_prepare,
4634         .cpu_starting           = intel_pmu_cpu_starting,
4635         .cpu_dying              = intel_pmu_cpu_dying,
4636         .cpu_dead               = intel_pmu_cpu_dead,
4637
4638         .guest_get_msrs         = intel_guest_get_msrs,
4639         .sched_task             = intel_pmu_sched_task,
4640         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4641
4642         .check_period           = intel_pmu_check_period,
4643
4644         .aux_output_match       = intel_pmu_aux_output_match,
4645
4646         .lbr_reset              = intel_pmu_lbr_reset_64,
4647         .lbr_read               = intel_pmu_lbr_read_64,
4648         .lbr_save               = intel_pmu_lbr_save,
4649         .lbr_restore            = intel_pmu_lbr_restore,
4650 };
4651
4652 static __init void intel_clovertown_quirk(void)
4653 {
4654         /*
4655          * PEBS is unreliable due to:
4656          *
4657          *   AJ67  - PEBS may experience CPL leaks
4658          *   AJ68  - PEBS PMI may be delayed by one event
4659          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4660          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4661          *
4662          * AJ67 could be worked around by restricting the OS/USR flags.
4663          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4664          *
4665          * AJ106 could possibly be worked around by not allowing LBR
4666          *       usage from PEBS, including the fixup.
4667          * AJ68  could possibly be worked around by always programming
4668          *       a pebs_event_reset[0] value and coping with the lost events.
4669          *
4670          * But taken together it might just make sense to not enable PEBS on
4671          * these chips.
4672          */
4673         pr_warn("PEBS disabled due to CPU errata\n");
4674         x86_pmu.pebs = 0;
4675         x86_pmu.pebs_constraints = NULL;
4676 }
4677
4678 static const struct x86_cpu_desc isolation_ucodes[] = {
4679         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4680         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4681         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4682         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4683         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4684         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4685         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4686         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4687         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4688         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4689         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4690         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
4691         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4692         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4693         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
4694         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
4695         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
4696         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4697         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4698         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4699         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4700         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4701         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4702         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4703         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4704         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4705         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4706         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4707         {}
4708 };
4709
4710 static void intel_check_pebs_isolation(void)
4711 {
4712         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4713 }
4714
4715 static __init void intel_pebs_isolation_quirk(void)
4716 {
4717         WARN_ON_ONCE(x86_pmu.check_microcode);
4718         x86_pmu.check_microcode = intel_check_pebs_isolation;
4719         intel_check_pebs_isolation();
4720 }
4721
4722 static const struct x86_cpu_desc pebs_ucodes[] = {
4723         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4724         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4725         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4726         {}
4727 };
4728
4729 static bool intel_snb_pebs_broken(void)
4730 {
4731         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4732 }
4733
4734 static void intel_snb_check_microcode(void)
4735 {
4736         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4737                 return;
4738
4739         /*
4740          * Serialized by the microcode lock..
4741          */
4742         if (x86_pmu.pebs_broken) {
4743                 pr_info("PEBS enabled due to microcode update\n");
4744                 x86_pmu.pebs_broken = 0;
4745         } else {
4746                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4747                 x86_pmu.pebs_broken = 1;
4748         }
4749 }
4750
4751 static bool is_lbr_from(unsigned long msr)
4752 {
4753         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4754
4755         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4756 }
4757
4758 /*
4759  * Under certain circumstances, access certain MSR may cause #GP.
4760  * The function tests if the input MSR can be safely accessed.
4761  */
4762 static bool check_msr(unsigned long msr, u64 mask)
4763 {
4764         u64 val_old, val_new, val_tmp;
4765
4766         /*
4767          * Disable the check for real HW, so we don't
4768          * mess with potentially enabled registers:
4769          */
4770         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4771                 return true;
4772
4773         /*
4774          * Read the current value, change it and read it back to see if it
4775          * matches, this is needed to detect certain hardware emulators
4776          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4777          */
4778         if (rdmsrl_safe(msr, &val_old))
4779                 return false;
4780
4781         /*
4782          * Only change the bits which can be updated by wrmsrl.
4783          */
4784         val_tmp = val_old ^ mask;
4785
4786         if (is_lbr_from(msr))
4787                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4788
4789         if (wrmsrl_safe(msr, val_tmp) ||
4790             rdmsrl_safe(msr, &val_new))
4791                 return false;
4792
4793         /*
4794          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4795          * should equal rdmsrl()'s even with the quirk.
4796          */
4797         if (val_new != val_tmp)
4798                 return false;
4799
4800         if (is_lbr_from(msr))
4801                 val_old = lbr_from_signext_quirk_wr(val_old);
4802
4803         /* Here it's sure that the MSR can be safely accessed.
4804          * Restore the old value and return.
4805          */
4806         wrmsrl(msr, val_old);
4807
4808         return true;
4809 }
4810
4811 static __init void intel_sandybridge_quirk(void)
4812 {
4813         x86_pmu.check_microcode = intel_snb_check_microcode;
4814         cpus_read_lock();
4815         intel_snb_check_microcode();
4816         cpus_read_unlock();
4817 }
4818
4819 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4820         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4821         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4822         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4823         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4824         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4825         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4826         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4827 };
4828
4829 static __init void intel_arch_events_quirk(void)
4830 {
4831         int bit;
4832
4833         /* disable event that reported as not present by cpuid */
4834         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4835                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4836                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4837                         intel_arch_events_map[bit].name);
4838         }
4839 }
4840
4841 static __init void intel_nehalem_quirk(void)
4842 {
4843         union cpuid10_ebx ebx;
4844
4845         ebx.full = x86_pmu.events_maskl;
4846         if (ebx.split.no_branch_misses_retired) {
4847                 /*
4848                  * Erratum AAJ80 detected, we work it around by using
4849                  * the BR_MISP_EXEC.ANY event. This will over-count
4850                  * branch-misses, but it's still much better than the
4851                  * architectural event which is often completely bogus:
4852                  */
4853                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4854                 ebx.split.no_branch_misses_retired = 0;
4855                 x86_pmu.events_maskl = ebx.full;
4856                 pr_info("CPU erratum AAJ80 worked around\n");
4857         }
4858 }
4859
4860 /*
4861  * enable software workaround for errata:
4862  * SNB: BJ122
4863  * IVB: BV98
4864  * HSW: HSD29
4865  *
4866  * Only needed when HT is enabled. However detecting
4867  * if HT is enabled is difficult (model specific). So instead,
4868  * we enable the workaround in the early boot, and verify if
4869  * it is needed in a later initcall phase once we have valid
4870  * topology information to check if HT is actually enabled
4871  */
4872 static __init void intel_ht_bug(void)
4873 {
4874         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4875
4876         x86_pmu.start_scheduling = intel_start_scheduling;
4877         x86_pmu.commit_scheduling = intel_commit_scheduling;
4878         x86_pmu.stop_scheduling = intel_stop_scheduling;
4879 }
4880
4881 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4882 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4883
4884 /* Haswell special events */
4885 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4886 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4887 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4888 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4889 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4890 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4891 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4892 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4893 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4894 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4895 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4896 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4897
4898 static struct attribute *hsw_events_attrs[] = {
4899         EVENT_PTR(td_slots_issued),
4900         EVENT_PTR(td_slots_retired),
4901         EVENT_PTR(td_fetch_bubbles),
4902         EVENT_PTR(td_total_slots),
4903         EVENT_PTR(td_total_slots_scale),
4904         EVENT_PTR(td_recovery_bubbles),
4905         EVENT_PTR(td_recovery_bubbles_scale),
4906         NULL
4907 };
4908
4909 static struct attribute *hsw_mem_events_attrs[] = {
4910         EVENT_PTR(mem_ld_hsw),
4911         EVENT_PTR(mem_st_hsw),
4912         NULL,
4913 };
4914
4915 static struct attribute *hsw_tsx_events_attrs[] = {
4916         EVENT_PTR(tx_start),
4917         EVENT_PTR(tx_commit),
4918         EVENT_PTR(tx_abort),
4919         EVENT_PTR(tx_capacity),
4920         EVENT_PTR(tx_conflict),
4921         EVENT_PTR(el_start),
4922         EVENT_PTR(el_commit),
4923         EVENT_PTR(el_abort),
4924         EVENT_PTR(el_capacity),
4925         EVENT_PTR(el_conflict),
4926         EVENT_PTR(cycles_t),
4927         EVENT_PTR(cycles_ct),
4928         NULL
4929 };
4930
4931 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4932 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4933 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4934 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4935
4936 static struct attribute *icl_events_attrs[] = {
4937         EVENT_PTR(mem_ld_hsw),
4938         EVENT_PTR(mem_st_hsw),
4939         NULL,
4940 };
4941
4942 static struct attribute *icl_td_events_attrs[] = {
4943         EVENT_PTR(slots),
4944         EVENT_PTR(td_retiring),
4945         EVENT_PTR(td_bad_spec),
4946         EVENT_PTR(td_fe_bound),
4947         EVENT_PTR(td_be_bound),
4948         NULL,
4949 };
4950
4951 static struct attribute *icl_tsx_events_attrs[] = {
4952         EVENT_PTR(tx_start),
4953         EVENT_PTR(tx_abort),
4954         EVENT_PTR(tx_commit),
4955         EVENT_PTR(tx_capacity_read),
4956         EVENT_PTR(tx_capacity_write),
4957         EVENT_PTR(tx_conflict),
4958         EVENT_PTR(el_start),
4959         EVENT_PTR(el_abort),
4960         EVENT_PTR(el_commit),
4961         EVENT_PTR(el_capacity_read),
4962         EVENT_PTR(el_capacity_write),
4963         EVENT_PTR(el_conflict),
4964         EVENT_PTR(cycles_t),
4965         EVENT_PTR(cycles_ct),
4966         NULL,
4967 };
4968
4969
4970 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
4971 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
4972
4973 static struct attribute *spr_events_attrs[] = {
4974         EVENT_PTR(mem_ld_hsw),
4975         EVENT_PTR(mem_st_spr),
4976         EVENT_PTR(mem_ld_aux),
4977         NULL,
4978 };
4979
4980 static struct attribute *spr_td_events_attrs[] = {
4981         EVENT_PTR(slots),
4982         EVENT_PTR(td_retiring),
4983         EVENT_PTR(td_bad_spec),
4984         EVENT_PTR(td_fe_bound),
4985         EVENT_PTR(td_be_bound),
4986         EVENT_PTR(td_heavy_ops),
4987         EVENT_PTR(td_br_mispredict),
4988         EVENT_PTR(td_fetch_lat),
4989         EVENT_PTR(td_mem_bound),
4990         NULL,
4991 };
4992
4993 static struct attribute *spr_tsx_events_attrs[] = {
4994         EVENT_PTR(tx_start),
4995         EVENT_PTR(tx_abort),
4996         EVENT_PTR(tx_commit),
4997         EVENT_PTR(tx_capacity_read),
4998         EVENT_PTR(tx_capacity_write),
4999         EVENT_PTR(tx_conflict),
5000         EVENT_PTR(cycles_t),
5001         EVENT_PTR(cycles_ct),
5002         NULL,
5003 };
5004
5005 static ssize_t freeze_on_smi_show(struct device *cdev,
5006                                   struct device_attribute *attr,
5007                                   char *buf)
5008 {
5009         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5010 }
5011
5012 static DEFINE_MUTEX(freeze_on_smi_mutex);
5013
5014 static ssize_t freeze_on_smi_store(struct device *cdev,
5015                                    struct device_attribute *attr,
5016                                    const char *buf, size_t count)
5017 {
5018         unsigned long val;
5019         ssize_t ret;
5020
5021         ret = kstrtoul(buf, 0, &val);
5022         if (ret)
5023                 return ret;
5024
5025         if (val > 1)
5026                 return -EINVAL;
5027
5028         mutex_lock(&freeze_on_smi_mutex);
5029
5030         if (x86_pmu.attr_freeze_on_smi == val)
5031                 goto done;
5032
5033         x86_pmu.attr_freeze_on_smi = val;
5034
5035         cpus_read_lock();
5036         on_each_cpu(flip_smm_bit, &val, 1);
5037         cpus_read_unlock();
5038 done:
5039         mutex_unlock(&freeze_on_smi_mutex);
5040
5041         return count;
5042 }
5043
5044 static void update_tfa_sched(void *ignored)
5045 {
5046         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5047
5048         /*
5049          * check if PMC3 is used
5050          * and if so force schedule out for all event types all contexts
5051          */
5052         if (test_bit(3, cpuc->active_mask))
5053                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5054 }
5055
5056 static ssize_t show_sysctl_tfa(struct device *cdev,
5057                               struct device_attribute *attr,
5058                               char *buf)
5059 {
5060         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5061 }
5062
5063 static ssize_t set_sysctl_tfa(struct device *cdev,
5064                               struct device_attribute *attr,
5065                               const char *buf, size_t count)
5066 {
5067         bool val;
5068         ssize_t ret;
5069
5070         ret = kstrtobool(buf, &val);
5071         if (ret)
5072                 return ret;
5073
5074         /* no change */
5075         if (val == allow_tsx_force_abort)
5076                 return count;
5077
5078         allow_tsx_force_abort = val;
5079
5080         cpus_read_lock();
5081         on_each_cpu(update_tfa_sched, NULL, 1);
5082         cpus_read_unlock();
5083
5084         return count;
5085 }
5086
5087
5088 static DEVICE_ATTR_RW(freeze_on_smi);
5089
5090 static ssize_t branches_show(struct device *cdev,
5091                              struct device_attribute *attr,
5092                              char *buf)
5093 {
5094         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5095 }
5096
5097 static DEVICE_ATTR_RO(branches);
5098
5099 static struct attribute *lbr_attrs[] = {
5100         &dev_attr_branches.attr,
5101         NULL
5102 };
5103
5104 static char pmu_name_str[30];
5105
5106 static ssize_t pmu_name_show(struct device *cdev,
5107                              struct device_attribute *attr,
5108                              char *buf)
5109 {
5110         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5111 }
5112
5113 static DEVICE_ATTR_RO(pmu_name);
5114
5115 static struct attribute *intel_pmu_caps_attrs[] = {
5116        &dev_attr_pmu_name.attr,
5117        NULL
5118 };
5119
5120 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5121                    show_sysctl_tfa,
5122                    set_sysctl_tfa);
5123
5124 static struct attribute *intel_pmu_attrs[] = {
5125         &dev_attr_freeze_on_smi.attr,
5126         &dev_attr_allow_tsx_force_abort.attr,
5127         NULL,
5128 };
5129
5130 static umode_t
5131 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5132 {
5133         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5134 }
5135
5136 static umode_t
5137 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5138 {
5139         return x86_pmu.pebs ? attr->mode : 0;
5140 }
5141
5142 static umode_t
5143 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5144 {
5145         return x86_pmu.lbr_nr ? attr->mode : 0;
5146 }
5147
5148 static umode_t
5149 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5150 {
5151         return x86_pmu.version >= 2 ? attr->mode : 0;
5152 }
5153
5154 static umode_t
5155 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5156 {
5157         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5158                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5159
5160         return attr->mode;
5161 }
5162
5163 static struct attribute_group group_events_td  = {
5164         .name = "events",
5165 };
5166
5167 static struct attribute_group group_events_mem = {
5168         .name       = "events",
5169         .is_visible = pebs_is_visible,
5170 };
5171
5172 static struct attribute_group group_events_tsx = {
5173         .name       = "events",
5174         .is_visible = tsx_is_visible,
5175 };
5176
5177 static struct attribute_group group_caps_gen = {
5178         .name  = "caps",
5179         .attrs = intel_pmu_caps_attrs,
5180 };
5181
5182 static struct attribute_group group_caps_lbr = {
5183         .name       = "caps",
5184         .attrs      = lbr_attrs,
5185         .is_visible = lbr_is_visible,
5186 };
5187
5188 static struct attribute_group group_format_extra = {
5189         .name       = "format",
5190         .is_visible = exra_is_visible,
5191 };
5192
5193 static struct attribute_group group_format_extra_skl = {
5194         .name       = "format",
5195         .is_visible = exra_is_visible,
5196 };
5197
5198 static struct attribute_group group_default = {
5199         .attrs      = intel_pmu_attrs,
5200         .is_visible = default_is_visible,
5201 };
5202
5203 static const struct attribute_group *attr_update[] = {
5204         &group_events_td,
5205         &group_events_mem,
5206         &group_events_tsx,
5207         &group_caps_gen,
5208         &group_caps_lbr,
5209         &group_format_extra,
5210         &group_format_extra_skl,
5211         &group_default,
5212         NULL,
5213 };
5214
5215 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5216 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5217 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5218 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5219 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5220 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5221 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5222 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5223 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5224
5225 static struct attribute *adl_hybrid_events_attrs[] = {
5226         EVENT_PTR(slots_adl),
5227         EVENT_PTR(td_retiring_adl),
5228         EVENT_PTR(td_bad_spec_adl),
5229         EVENT_PTR(td_fe_bound_adl),
5230         EVENT_PTR(td_be_bound_adl),
5231         EVENT_PTR(td_heavy_ops_adl),
5232         EVENT_PTR(td_br_mis_adl),
5233         EVENT_PTR(td_fetch_lat_adl),
5234         EVENT_PTR(td_mem_bound_adl),
5235         NULL,
5236 };
5237
5238 /* Must be in IDX order */
5239 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5240 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5241 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5242
5243 static struct attribute *adl_hybrid_mem_attrs[] = {
5244         EVENT_PTR(mem_ld_adl),
5245         EVENT_PTR(mem_st_adl),
5246         EVENT_PTR(mem_ld_aux_adl),
5247         NULL,
5248 };
5249
5250 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5251 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5252 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5253 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5254 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5255 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5256 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5257 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5258
5259 static struct attribute *adl_hybrid_tsx_attrs[] = {
5260         EVENT_PTR(tx_start_adl),
5261         EVENT_PTR(tx_abort_adl),
5262         EVENT_PTR(tx_commit_adl),
5263         EVENT_PTR(tx_capacity_read_adl),
5264         EVENT_PTR(tx_capacity_write_adl),
5265         EVENT_PTR(tx_conflict_adl),
5266         EVENT_PTR(cycles_t_adl),
5267         EVENT_PTR(cycles_ct_adl),
5268         NULL,
5269 };
5270
5271 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5272 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5273 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5274 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5275 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5276
5277 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5278         FORMAT_HYBRID_PTR(in_tx),
5279         FORMAT_HYBRID_PTR(in_tx_cp),
5280         FORMAT_HYBRID_PTR(offcore_rsp),
5281         FORMAT_HYBRID_PTR(ldlat),
5282         FORMAT_HYBRID_PTR(frontend),
5283         NULL,
5284 };
5285
5286 static struct attribute *adl_hybrid_extra_attr[] = {
5287         FORMAT_HYBRID_PTR(offcore_rsp),
5288         FORMAT_HYBRID_PTR(ldlat),
5289         FORMAT_HYBRID_PTR(frontend),
5290         NULL,
5291 };
5292
5293 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5294 {
5295         struct device *dev = kobj_to_dev(kobj);
5296         struct x86_hybrid_pmu *pmu =
5297                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5298         struct perf_pmu_events_hybrid_attr *pmu_attr =
5299                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5300
5301         return pmu->cpu_type & pmu_attr->pmu_type;
5302 }
5303
5304 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5305                                         struct attribute *attr, int i)
5306 {
5307         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5308 }
5309
5310 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5311 {
5312         int cpu = cpumask_first(&pmu->supported_cpus);
5313
5314         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5315 }
5316
5317 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5318                                      struct attribute *attr, int i)
5319 {
5320         struct device *dev = kobj_to_dev(kobj);
5321         struct x86_hybrid_pmu *pmu =
5322                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5323         int cpu = hybrid_find_supported_cpu(pmu);
5324
5325         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5326 }
5327
5328 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5329                                         struct attribute *attr, int i)
5330 {
5331         struct device *dev = kobj_to_dev(kobj);
5332         struct x86_hybrid_pmu *pmu =
5333                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5334         struct perf_pmu_format_hybrid_attr *pmu_attr =
5335                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5336         int cpu = hybrid_find_supported_cpu(pmu);
5337
5338         return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5339 }
5340
5341 static struct attribute_group hybrid_group_events_td  = {
5342         .name           = "events",
5343         .is_visible     = hybrid_events_is_visible,
5344 };
5345
5346 static struct attribute_group hybrid_group_events_mem = {
5347         .name           = "events",
5348         .is_visible     = hybrid_events_is_visible,
5349 };
5350
5351 static struct attribute_group hybrid_group_events_tsx = {
5352         .name           = "events",
5353         .is_visible     = hybrid_tsx_is_visible,
5354 };
5355
5356 static struct attribute_group hybrid_group_format_extra = {
5357         .name           = "format",
5358         .is_visible     = hybrid_format_is_visible,
5359 };
5360
5361 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5362                                           struct device_attribute *attr,
5363                                           char *buf)
5364 {
5365         struct x86_hybrid_pmu *pmu =
5366                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5367
5368         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5369 }
5370
5371 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5372 static struct attribute *intel_hybrid_cpus_attrs[] = {
5373         &dev_attr_cpus.attr,
5374         NULL,
5375 };
5376
5377 static struct attribute_group hybrid_group_cpus = {
5378         .attrs          = intel_hybrid_cpus_attrs,
5379 };
5380
5381 static const struct attribute_group *hybrid_attr_update[] = {
5382         &hybrid_group_events_td,
5383         &hybrid_group_events_mem,
5384         &hybrid_group_events_tsx,
5385         &group_caps_gen,
5386         &group_caps_lbr,
5387         &hybrid_group_format_extra,
5388         &group_default,
5389         &hybrid_group_cpus,
5390         NULL,
5391 };
5392
5393 static struct attribute *empty_attrs;
5394
5395 static void intel_pmu_check_num_counters(int *num_counters,
5396                                          int *num_counters_fixed,
5397                                          u64 *intel_ctrl, u64 fixed_mask)
5398 {
5399         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5400                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5401                      *num_counters, INTEL_PMC_MAX_GENERIC);
5402                 *num_counters = INTEL_PMC_MAX_GENERIC;
5403         }
5404         *intel_ctrl = (1ULL << *num_counters) - 1;
5405
5406         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5407                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5408                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5409                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5410         }
5411
5412         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5413 }
5414
5415 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5416                                               int num_counters,
5417                                               int num_counters_fixed,
5418                                               u64 intel_ctrl)
5419 {
5420         struct event_constraint *c;
5421
5422         if (!event_constraints)
5423                 return;
5424
5425         /*
5426          * event on fixed counter2 (REF_CYCLES) only works on this
5427          * counter, so do not extend mask to generic counters
5428          */
5429         for_each_event_constraint(c, event_constraints) {
5430                 /*
5431                  * Don't extend the topdown slots and metrics
5432                  * events to the generic counters.
5433                  */
5434                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5435                         /*
5436                          * Disable topdown slots and metrics events,
5437                          * if slots event is not in CPUID.
5438                          */
5439                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5440                                 c->idxmsk64 = 0;
5441                         c->weight = hweight64(c->idxmsk64);
5442                         continue;
5443                 }
5444
5445                 if (c->cmask == FIXED_EVENT_FLAGS) {
5446                         /* Disabled fixed counters which are not in CPUID */
5447                         c->idxmsk64 &= intel_ctrl;
5448
5449                         if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
5450                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5451                 }
5452                 c->idxmsk64 &=
5453                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5454                 c->weight = hweight64(c->idxmsk64);
5455         }
5456 }
5457
5458 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5459 {
5460         struct extra_reg *er;
5461
5462         /*
5463          * Access extra MSR may cause #GP under certain circumstances.
5464          * E.g. KVM doesn't support offcore event
5465          * Check all extra_regs here.
5466          */
5467         if (!extra_regs)
5468                 return;
5469
5470         for (er = extra_regs; er->msr; er++) {
5471                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5472                 /* Disable LBR select mapping */
5473                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5474                         x86_pmu.lbr_sel_map = NULL;
5475         }
5476 }
5477
5478 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5479 {
5480         struct x86_hybrid_pmu *pmu;
5481         int i;
5482
5483         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5484                 pmu = &x86_pmu.hybrid_pmu[i];
5485
5486                 intel_pmu_check_num_counters(&pmu->num_counters,
5487                                              &pmu->num_counters_fixed,
5488                                              &pmu->intel_ctrl,
5489                                              fixed_mask);
5490
5491                 if (pmu->intel_cap.perf_metrics) {
5492                         pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5493                         pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5494                 }
5495
5496                 if (pmu->intel_cap.pebs_output_pt_available)
5497                         pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5498
5499                 intel_pmu_check_event_constraints(pmu->event_constraints,
5500                                                   pmu->num_counters,
5501                                                   pmu->num_counters_fixed,
5502                                                   pmu->intel_ctrl);
5503
5504                 intel_pmu_check_extra_regs(pmu->extra_regs);
5505         }
5506 }
5507
5508 __init int intel_pmu_init(void)
5509 {
5510         struct attribute **extra_skl_attr = &empty_attrs;
5511         struct attribute **extra_attr = &empty_attrs;
5512         struct attribute **td_attr    = &empty_attrs;
5513         struct attribute **mem_attr   = &empty_attrs;
5514         struct attribute **tsx_attr   = &empty_attrs;
5515         union cpuid10_edx edx;
5516         union cpuid10_eax eax;
5517         union cpuid10_ebx ebx;
5518         unsigned int fixed_mask;
5519         bool pmem = false;
5520         int version, i;
5521         char *name;
5522         struct x86_hybrid_pmu *pmu;
5523
5524         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5525                 switch (boot_cpu_data.x86) {
5526                 case 0x6:
5527                         return p6_pmu_init();
5528                 case 0xb:
5529                         return knc_pmu_init();
5530                 case 0xf:
5531                         return p4_pmu_init();
5532                 }
5533                 return -ENODEV;
5534         }
5535
5536         /*
5537          * Check whether the Architectural PerfMon supports
5538          * Branch Misses Retired hw_event or not.
5539          */
5540         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5541         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5542                 return -ENODEV;
5543
5544         version = eax.split.version_id;
5545         if (version < 2)
5546                 x86_pmu = core_pmu;
5547         else
5548                 x86_pmu = intel_pmu;
5549
5550         x86_pmu.version                 = version;
5551         x86_pmu.num_counters            = eax.split.num_counters;
5552         x86_pmu.cntval_bits             = eax.split.bit_width;
5553         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
5554
5555         x86_pmu.events_maskl            = ebx.full;
5556         x86_pmu.events_mask_len         = eax.split.mask_length;
5557
5558         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5559
5560         /*
5561          * Quirk: v2 perfmon does not report fixed-purpose events, so
5562          * assume at least 3 events, when not running in a hypervisor:
5563          */
5564         if (version > 1 && version < 5) {
5565                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5566
5567                 x86_pmu.num_counters_fixed =
5568                         max((int)edx.split.num_counters_fixed, assume);
5569
5570                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5571         } else if (version >= 5)
5572                 x86_pmu.num_counters_fixed = fls(fixed_mask);
5573
5574         if (boot_cpu_has(X86_FEATURE_PDCM)) {
5575                 u64 capabilities;
5576
5577                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5578                 x86_pmu.intel_cap.capabilities = capabilities;
5579         }
5580
5581         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5582                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5583                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5584         }
5585
5586         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5587                 intel_pmu_arch_lbr_init();
5588
5589         intel_ds_init();
5590
5591         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5592
5593         if (version >= 5) {
5594                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5595                 if (x86_pmu.intel_cap.anythread_deprecated)
5596                         pr_cont(" AnyThread deprecated, ");
5597         }
5598
5599         /*
5600          * Install the hw-cache-events table:
5601          */
5602         switch (boot_cpu_data.x86_model) {
5603         case INTEL_FAM6_CORE_YONAH:
5604                 pr_cont("Core events, ");
5605                 name = "core";
5606                 break;
5607
5608         case INTEL_FAM6_CORE2_MEROM:
5609                 x86_add_quirk(intel_clovertown_quirk);
5610                 fallthrough;
5611
5612         case INTEL_FAM6_CORE2_MEROM_L:
5613         case INTEL_FAM6_CORE2_PENRYN:
5614         case INTEL_FAM6_CORE2_DUNNINGTON:
5615                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5616                        sizeof(hw_cache_event_ids));
5617
5618                 intel_pmu_lbr_init_core();
5619
5620                 x86_pmu.event_constraints = intel_core2_event_constraints;
5621                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5622                 pr_cont("Core2 events, ");
5623                 name = "core2";
5624                 break;
5625
5626         case INTEL_FAM6_NEHALEM:
5627         case INTEL_FAM6_NEHALEM_EP:
5628         case INTEL_FAM6_NEHALEM_EX:
5629                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5630                        sizeof(hw_cache_event_ids));
5631                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5632                        sizeof(hw_cache_extra_regs));
5633
5634                 intel_pmu_lbr_init_nhm();
5635
5636                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5637                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5638                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5639                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5640                 x86_pmu.limit_period = nhm_limit_period;
5641
5642                 mem_attr = nhm_mem_events_attrs;
5643
5644                 /* UOPS_ISSUED.STALLED_CYCLES */
5645                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5646                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5647                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5648                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5649                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5650
5651                 intel_pmu_pebs_data_source_nhm();
5652                 x86_add_quirk(intel_nehalem_quirk);
5653                 x86_pmu.pebs_no_tlb = 1;
5654                 extra_attr = nhm_format_attr;
5655
5656                 pr_cont("Nehalem events, ");
5657                 name = "nehalem";
5658                 break;
5659
5660         case INTEL_FAM6_ATOM_BONNELL:
5661         case INTEL_FAM6_ATOM_BONNELL_MID:
5662         case INTEL_FAM6_ATOM_SALTWELL:
5663         case INTEL_FAM6_ATOM_SALTWELL_MID:
5664         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5665                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5666                        sizeof(hw_cache_event_ids));
5667
5668                 intel_pmu_lbr_init_atom();
5669
5670                 x86_pmu.event_constraints = intel_gen_event_constraints;
5671                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5672                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5673                 pr_cont("Atom events, ");
5674                 name = "bonnell";
5675                 break;
5676
5677         case INTEL_FAM6_ATOM_SILVERMONT:
5678         case INTEL_FAM6_ATOM_SILVERMONT_D:
5679         case INTEL_FAM6_ATOM_SILVERMONT_MID:
5680         case INTEL_FAM6_ATOM_AIRMONT:
5681         case INTEL_FAM6_ATOM_AIRMONT_MID:
5682                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5683                         sizeof(hw_cache_event_ids));
5684                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5685                        sizeof(hw_cache_extra_regs));
5686
5687                 intel_pmu_lbr_init_slm();
5688
5689                 x86_pmu.event_constraints = intel_slm_event_constraints;
5690                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5691                 x86_pmu.extra_regs = intel_slm_extra_regs;
5692                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5693                 td_attr = slm_events_attrs;
5694                 extra_attr = slm_format_attr;
5695                 pr_cont("Silvermont events, ");
5696                 name = "silvermont";
5697                 break;
5698
5699         case INTEL_FAM6_ATOM_GOLDMONT:
5700         case INTEL_FAM6_ATOM_GOLDMONT_D:
5701                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5702                        sizeof(hw_cache_event_ids));
5703                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5704                        sizeof(hw_cache_extra_regs));
5705
5706                 intel_pmu_lbr_init_skl();
5707
5708                 x86_pmu.event_constraints = intel_slm_event_constraints;
5709                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5710                 x86_pmu.extra_regs = intel_glm_extra_regs;
5711                 /*
5712                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5713                  * for precise cycles.
5714                  * :pp is identical to :ppp
5715                  */
5716                 x86_pmu.pebs_aliases = NULL;
5717                 x86_pmu.pebs_prec_dist = true;
5718                 x86_pmu.lbr_pt_coexist = true;
5719                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5720                 td_attr = glm_events_attrs;
5721                 extra_attr = slm_format_attr;
5722                 pr_cont("Goldmont events, ");
5723                 name = "goldmont";
5724                 break;
5725
5726         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5727                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5728                        sizeof(hw_cache_event_ids));
5729                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5730                        sizeof(hw_cache_extra_regs));
5731
5732                 intel_pmu_lbr_init_skl();
5733
5734                 x86_pmu.event_constraints = intel_slm_event_constraints;
5735                 x86_pmu.extra_regs = intel_glm_extra_regs;
5736                 /*
5737                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5738                  * for precise cycles.
5739                  */
5740                 x86_pmu.pebs_aliases = NULL;
5741                 x86_pmu.pebs_prec_dist = true;
5742                 x86_pmu.lbr_pt_coexist = true;
5743                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5744                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5745                 x86_pmu.get_event_constraints = glp_get_event_constraints;
5746                 td_attr = glm_events_attrs;
5747                 /* Goldmont Plus has 4-wide pipeline */
5748                 event_attr_td_total_slots_scale_glm.event_str = "4";
5749                 extra_attr = slm_format_attr;
5750                 pr_cont("Goldmont plus events, ");
5751                 name = "goldmont_plus";
5752                 break;
5753
5754         case INTEL_FAM6_ATOM_TREMONT_D:
5755         case INTEL_FAM6_ATOM_TREMONT:
5756         case INTEL_FAM6_ATOM_TREMONT_L:
5757                 x86_pmu.late_ack = true;
5758                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5759                        sizeof(hw_cache_event_ids));
5760                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5761                        sizeof(hw_cache_extra_regs));
5762                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5763
5764                 intel_pmu_lbr_init_skl();
5765
5766                 x86_pmu.event_constraints = intel_slm_event_constraints;
5767                 x86_pmu.extra_regs = intel_tnt_extra_regs;
5768                 /*
5769                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5770                  * for precise cycles.
5771                  */
5772                 x86_pmu.pebs_aliases = NULL;
5773                 x86_pmu.pebs_prec_dist = true;
5774                 x86_pmu.lbr_pt_coexist = true;
5775                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5776                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5777                 td_attr = tnt_events_attrs;
5778                 extra_attr = slm_format_attr;
5779                 pr_cont("Tremont events, ");
5780                 name = "Tremont";
5781                 break;
5782
5783         case INTEL_FAM6_WESTMERE:
5784         case INTEL_FAM6_WESTMERE_EP:
5785         case INTEL_FAM6_WESTMERE_EX:
5786                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5787                        sizeof(hw_cache_event_ids));
5788                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5789                        sizeof(hw_cache_extra_regs));
5790
5791                 intel_pmu_lbr_init_nhm();
5792
5793                 x86_pmu.event_constraints = intel_westmere_event_constraints;
5794                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5795                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5796                 x86_pmu.extra_regs = intel_westmere_extra_regs;
5797                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5798
5799                 mem_attr = nhm_mem_events_attrs;
5800
5801                 /* UOPS_ISSUED.STALLED_CYCLES */
5802                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5803                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5804                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5805                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5806                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5807
5808                 intel_pmu_pebs_data_source_nhm();
5809                 extra_attr = nhm_format_attr;
5810                 pr_cont("Westmere events, ");
5811                 name = "westmere";
5812                 break;
5813
5814         case INTEL_FAM6_SANDYBRIDGE:
5815         case INTEL_FAM6_SANDYBRIDGE_X:
5816                 x86_add_quirk(intel_sandybridge_quirk);
5817                 x86_add_quirk(intel_ht_bug);
5818                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5819                        sizeof(hw_cache_event_ids));
5820                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5821                        sizeof(hw_cache_extra_regs));
5822
5823                 intel_pmu_lbr_init_snb();
5824
5825                 x86_pmu.event_constraints = intel_snb_event_constraints;
5826                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5827                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5828                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5829                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5830                 else
5831                         x86_pmu.extra_regs = intel_snb_extra_regs;
5832
5833
5834                 /* all extra regs are per-cpu when HT is on */
5835                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5836                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5837
5838                 td_attr  = snb_events_attrs;
5839                 mem_attr = snb_mem_events_attrs;
5840
5841                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5842                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5843                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5844                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5845                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5846                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5847
5848                 extra_attr = nhm_format_attr;
5849
5850                 pr_cont("SandyBridge events, ");
5851                 name = "sandybridge";
5852                 break;
5853
5854         case INTEL_FAM6_IVYBRIDGE:
5855         case INTEL_FAM6_IVYBRIDGE_X:
5856                 x86_add_quirk(intel_ht_bug);
5857                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5858                        sizeof(hw_cache_event_ids));
5859                 /* dTLB-load-misses on IVB is different than SNB */
5860                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5861
5862                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5863                        sizeof(hw_cache_extra_regs));
5864
5865                 intel_pmu_lbr_init_snb();
5866
5867                 x86_pmu.event_constraints = intel_ivb_event_constraints;
5868                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5869                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5870                 x86_pmu.pebs_prec_dist = true;
5871                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5872                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5873                 else
5874                         x86_pmu.extra_regs = intel_snb_extra_regs;
5875                 /* all extra regs are per-cpu when HT is on */
5876                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5877                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5878
5879                 td_attr  = snb_events_attrs;
5880                 mem_attr = snb_mem_events_attrs;
5881
5882                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5883                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5884                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5885
5886                 extra_attr = nhm_format_attr;
5887
5888                 pr_cont("IvyBridge events, ");
5889                 name = "ivybridge";
5890                 break;
5891
5892
5893         case INTEL_FAM6_HASWELL:
5894         case INTEL_FAM6_HASWELL_X:
5895         case INTEL_FAM6_HASWELL_L:
5896         case INTEL_FAM6_HASWELL_G:
5897                 x86_add_quirk(intel_ht_bug);
5898                 x86_add_quirk(intel_pebs_isolation_quirk);
5899                 x86_pmu.late_ack = true;
5900                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5901                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5902
5903                 intel_pmu_lbr_init_hsw();
5904
5905                 x86_pmu.event_constraints = intel_hsw_event_constraints;
5906                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5907                 x86_pmu.extra_regs = intel_snbep_extra_regs;
5908                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5909                 x86_pmu.pebs_prec_dist = true;
5910                 /* all extra regs are per-cpu when HT is on */
5911                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5912                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5913
5914                 x86_pmu.hw_config = hsw_hw_config;
5915                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5916                 x86_pmu.lbr_double_abort = true;
5917                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5918                         hsw_format_attr : nhm_format_attr;
5919                 td_attr  = hsw_events_attrs;
5920                 mem_attr = hsw_mem_events_attrs;
5921                 tsx_attr = hsw_tsx_events_attrs;
5922                 pr_cont("Haswell events, ");
5923                 name = "haswell";
5924                 break;
5925
5926         case INTEL_FAM6_BROADWELL:
5927         case INTEL_FAM6_BROADWELL_D:
5928         case INTEL_FAM6_BROADWELL_G:
5929         case INTEL_FAM6_BROADWELL_X:
5930                 x86_add_quirk(intel_pebs_isolation_quirk);
5931                 x86_pmu.late_ack = true;
5932                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5933                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5934
5935                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5936                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5937                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
5938                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5939                                                                           HSW_SNOOP_DRAM;
5940                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5941                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5942                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5943                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5944
5945                 intel_pmu_lbr_init_hsw();
5946
5947                 x86_pmu.event_constraints = intel_bdw_event_constraints;
5948                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5949                 x86_pmu.extra_regs = intel_snbep_extra_regs;
5950                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5951                 x86_pmu.pebs_prec_dist = true;
5952                 /* all extra regs are per-cpu when HT is on */
5953                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5954                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5955
5956                 x86_pmu.hw_config = hsw_hw_config;
5957                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5958                 x86_pmu.limit_period = bdw_limit_period;
5959                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5960                         hsw_format_attr : nhm_format_attr;
5961                 td_attr  = hsw_events_attrs;
5962                 mem_attr = hsw_mem_events_attrs;
5963                 tsx_attr = hsw_tsx_events_attrs;
5964                 pr_cont("Broadwell events, ");
5965                 name = "broadwell";
5966                 break;
5967
5968         case INTEL_FAM6_XEON_PHI_KNL:
5969         case INTEL_FAM6_XEON_PHI_KNM:
5970                 memcpy(hw_cache_event_ids,
5971                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5972                 memcpy(hw_cache_extra_regs,
5973                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5974                 intel_pmu_lbr_init_knl();
5975
5976                 x86_pmu.event_constraints = intel_slm_event_constraints;
5977                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5978                 x86_pmu.extra_regs = intel_knl_extra_regs;
5979
5980                 /* all extra regs are per-cpu when HT is on */
5981                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5982                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5983                 extra_attr = slm_format_attr;
5984                 pr_cont("Knights Landing/Mill events, ");
5985                 name = "knights-landing";
5986                 break;
5987
5988         case INTEL_FAM6_SKYLAKE_X:
5989                 pmem = true;
5990                 fallthrough;
5991         case INTEL_FAM6_SKYLAKE_L:
5992         case INTEL_FAM6_SKYLAKE:
5993         case INTEL_FAM6_KABYLAKE_L:
5994         case INTEL_FAM6_KABYLAKE:
5995         case INTEL_FAM6_COMETLAKE_L:
5996         case INTEL_FAM6_COMETLAKE:
5997                 x86_add_quirk(intel_pebs_isolation_quirk);
5998                 x86_pmu.late_ack = true;
5999                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6000                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6001                 intel_pmu_lbr_init_skl();
6002
6003                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6004                 event_attr_td_recovery_bubbles.event_str_noht =
6005                         "event=0xd,umask=0x1,cmask=1";
6006                 event_attr_td_recovery_bubbles.event_str_ht =
6007                         "event=0xd,umask=0x1,cmask=1,any=1";
6008
6009                 x86_pmu.event_constraints = intel_skl_event_constraints;
6010                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6011                 x86_pmu.extra_regs = intel_skl_extra_regs;
6012                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6013                 x86_pmu.pebs_prec_dist = true;
6014                 /* all extra regs are per-cpu when HT is on */
6015                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6016                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6017
6018                 x86_pmu.hw_config = hsw_hw_config;
6019                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6020                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6021                         hsw_format_attr : nhm_format_attr;
6022                 extra_skl_attr = skl_format_attr;
6023                 td_attr  = hsw_events_attrs;
6024                 mem_attr = hsw_mem_events_attrs;
6025                 tsx_attr = hsw_tsx_events_attrs;
6026                 intel_pmu_pebs_data_source_skl(pmem);
6027
6028                 /*
6029                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6030                  * TSX force abort hooks are not required on these systems. Only deploy
6031                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6032                  */
6033                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6034                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6035                         x86_pmu.flags |= PMU_FL_TFA;
6036                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6037                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6038                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6039                 }
6040
6041                 pr_cont("Skylake events, ");
6042                 name = "skylake";
6043                 break;
6044
6045         case INTEL_FAM6_ICELAKE_X:
6046         case INTEL_FAM6_ICELAKE_D:
6047                 pmem = true;
6048                 fallthrough;
6049         case INTEL_FAM6_ICELAKE_L:
6050         case INTEL_FAM6_ICELAKE:
6051         case INTEL_FAM6_TIGERLAKE_L:
6052         case INTEL_FAM6_TIGERLAKE:
6053         case INTEL_FAM6_ROCKETLAKE:
6054                 x86_pmu.late_ack = true;
6055                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6056                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6057                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6058                 intel_pmu_lbr_init_skl();
6059
6060                 x86_pmu.event_constraints = intel_icl_event_constraints;
6061                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6062                 x86_pmu.extra_regs = intel_icl_extra_regs;
6063                 x86_pmu.pebs_aliases = NULL;
6064                 x86_pmu.pebs_prec_dist = true;
6065                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6066                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6067
6068                 x86_pmu.hw_config = hsw_hw_config;
6069                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6070                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6071                         hsw_format_attr : nhm_format_attr;
6072                 extra_skl_attr = skl_format_attr;
6073                 mem_attr = icl_events_attrs;
6074                 td_attr = icl_td_events_attrs;
6075                 tsx_attr = icl_tsx_events_attrs;
6076                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6077                 x86_pmu.lbr_pt_coexist = true;
6078                 intel_pmu_pebs_data_source_skl(pmem);
6079                 x86_pmu.num_topdown_events = 4;
6080                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6081                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6082                 pr_cont("Icelake events, ");
6083                 name = "icelake";
6084                 break;
6085
6086         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6087                 pmem = true;
6088                 x86_pmu.late_ack = true;
6089                 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6090                 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6091
6092                 x86_pmu.event_constraints = intel_spr_event_constraints;
6093                 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6094                 x86_pmu.extra_regs = intel_spr_extra_regs;
6095                 x86_pmu.limit_period = spr_limit_period;
6096                 x86_pmu.pebs_aliases = NULL;
6097                 x86_pmu.pebs_prec_dist = true;
6098                 x86_pmu.pebs_block = true;
6099                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6100                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6101                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6102                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6103                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6104
6105                 x86_pmu.hw_config = hsw_hw_config;
6106                 x86_pmu.get_event_constraints = spr_get_event_constraints;
6107                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6108                         hsw_format_attr : nhm_format_attr;
6109                 extra_skl_attr = skl_format_attr;
6110                 mem_attr = spr_events_attrs;
6111                 td_attr = spr_td_events_attrs;
6112                 tsx_attr = spr_tsx_events_attrs;
6113                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6114                 x86_pmu.lbr_pt_coexist = true;
6115                 intel_pmu_pebs_data_source_skl(pmem);
6116                 x86_pmu.num_topdown_events = 8;
6117                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6118                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6119                 pr_cont("Sapphire Rapids events, ");
6120                 name = "sapphire_rapids";
6121                 break;
6122
6123         case INTEL_FAM6_ALDERLAKE:
6124         case INTEL_FAM6_ALDERLAKE_L:
6125                 /*
6126                  * Alder Lake has 2 types of CPU, core and atom.
6127                  *
6128                  * Initialize the common PerfMon capabilities here.
6129                  */
6130                 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6131                                              sizeof(struct x86_hybrid_pmu),
6132                                              GFP_KERNEL);
6133                 if (!x86_pmu.hybrid_pmu)
6134                         return -ENOMEM;
6135                 static_branch_enable(&perf_is_hybrid);
6136                 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6137
6138                 x86_pmu.pebs_aliases = NULL;
6139                 x86_pmu.pebs_prec_dist = true;
6140                 x86_pmu.pebs_block = true;
6141                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6142                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6143                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6144                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6145                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6146                 x86_pmu.lbr_pt_coexist = true;
6147                 intel_pmu_pebs_data_source_skl(false);
6148                 x86_pmu.num_topdown_events = 8;
6149                 x86_pmu.update_topdown_event = adl_update_topdown_event;
6150                 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6151
6152                 x86_pmu.filter_match = intel_pmu_filter_match;
6153                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6154                 x86_pmu.hw_config = adl_hw_config;
6155                 x86_pmu.limit_period = spr_limit_period;
6156                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6157                 /*
6158                  * The rtm_abort_event is used to check whether to enable GPRs
6159                  * for the RTM abort event. Atom doesn't have the RTM abort
6160                  * event. There is no harmful to set it in the common
6161                  * x86_pmu.rtm_abort_event.
6162                  */
6163                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6164
6165                 td_attr = adl_hybrid_events_attrs;
6166                 mem_attr = adl_hybrid_mem_attrs;
6167                 tsx_attr = adl_hybrid_tsx_attrs;
6168                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6169                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6170
6171                 /* Initialize big core specific PerfMon capabilities.*/
6172                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6173                 pmu->name = "cpu_core";
6174                 pmu->cpu_type = hybrid_big;
6175                 pmu->late_ack = true;
6176                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6177                         pmu->num_counters = x86_pmu.num_counters + 2;
6178                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6179                 } else {
6180                         pmu->num_counters = x86_pmu.num_counters;
6181                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6182                 }
6183                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6184                 pmu->unconstrained = (struct event_constraint)
6185                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6186                                                            0, pmu->num_counters, 0, 0);
6187                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6188                 pmu->intel_cap.perf_metrics = 1;
6189                 pmu->intel_cap.pebs_output_pt_available = 0;
6190
6191                 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6192                 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6193                 pmu->event_constraints = intel_spr_event_constraints;
6194                 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6195                 pmu->extra_regs = intel_spr_extra_regs;
6196
6197                 /* Initialize Atom core specific PerfMon capabilities.*/
6198                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6199                 pmu->name = "cpu_atom";
6200                 pmu->cpu_type = hybrid_small;
6201                 pmu->mid_ack = true;
6202                 pmu->num_counters = x86_pmu.num_counters;
6203                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6204                 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6205                 pmu->unconstrained = (struct event_constraint)
6206                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6207                                                            0, pmu->num_counters, 0, 0);
6208                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6209                 pmu->intel_cap.perf_metrics = 0;
6210                 pmu->intel_cap.pebs_output_pt_available = 1;
6211
6212                 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6213                 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6214                 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6215                 pmu->event_constraints = intel_slm_event_constraints;
6216                 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6217                 pmu->extra_regs = intel_grt_extra_regs;
6218                 pr_cont("Alderlake Hybrid events, ");
6219                 name = "alderlake_hybrid";
6220                 break;
6221
6222         default:
6223                 switch (x86_pmu.version) {
6224                 case 1:
6225                         x86_pmu.event_constraints = intel_v1_event_constraints;
6226                         pr_cont("generic architected perfmon v1, ");
6227                         name = "generic_arch_v1";
6228                         break;
6229                 default:
6230                         /*
6231                          * default constraints for v2 and up
6232                          */
6233                         x86_pmu.event_constraints = intel_gen_event_constraints;
6234                         pr_cont("generic architected perfmon, ");
6235                         name = "generic_arch_v2+";
6236                         break;
6237                 }
6238         }
6239
6240         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6241
6242         if (!is_hybrid()) {
6243                 group_events_td.attrs  = td_attr;
6244                 group_events_mem.attrs = mem_attr;
6245                 group_events_tsx.attrs = tsx_attr;
6246                 group_format_extra.attrs = extra_attr;
6247                 group_format_extra_skl.attrs = extra_skl_attr;
6248
6249                 x86_pmu.attr_update = attr_update;
6250         } else {
6251                 hybrid_group_events_td.attrs  = td_attr;
6252                 hybrid_group_events_mem.attrs = mem_attr;
6253                 hybrid_group_events_tsx.attrs = tsx_attr;
6254                 hybrid_group_format_extra.attrs = extra_attr;
6255
6256                 x86_pmu.attr_update = hybrid_attr_update;
6257         }
6258
6259         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6260                                      &x86_pmu.num_counters_fixed,
6261                                      &x86_pmu.intel_ctrl,
6262                                      (u64)fixed_mask);
6263
6264         /* AnyThread may be deprecated on arch perfmon v5 or later */
6265         if (x86_pmu.intel_cap.anythread_deprecated)
6266                 x86_pmu.format_attrs = intel_arch_formats_attr;
6267
6268         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6269                                           x86_pmu.num_counters,
6270                                           x86_pmu.num_counters_fixed,
6271                                           x86_pmu.intel_ctrl);
6272         /*
6273          * Access LBR MSR may cause #GP under certain circumstances.
6274          * E.g. KVM doesn't support LBR MSR
6275          * Check all LBT MSR here.
6276          * Disable LBR access if any LBR MSRs can not be accessed.
6277          */
6278         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6279                 x86_pmu.lbr_nr = 0;
6280         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6281                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6282                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6283                         x86_pmu.lbr_nr = 0;
6284         }
6285
6286         if (x86_pmu.lbr_nr)
6287                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6288
6289         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6290
6291         /* Support full width counters using alternative MSR range */
6292         if (x86_pmu.intel_cap.full_width_write) {
6293                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6294                 x86_pmu.perfctr = MSR_IA32_PMC0;
6295                 pr_cont("full-width counters, ");
6296         }
6297
6298         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6299                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6300
6301         if (is_hybrid())
6302                 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6303
6304         return 0;
6305 }
6306
6307 /*
6308  * HT bug: phase 2 init
6309  * Called once we have valid topology information to check
6310  * whether or not HT is enabled
6311  * If HT is off, then we disable the workaround
6312  */
6313 static __init int fixup_ht_bug(void)
6314 {
6315         int c;
6316         /*
6317          * problem not present on this CPU model, nothing to do
6318          */
6319         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6320                 return 0;
6321
6322         if (topology_max_smt_threads() > 1) {
6323                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6324                 return 0;
6325         }
6326
6327         cpus_read_lock();
6328
6329         hardlockup_detector_perf_stop();
6330
6331         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6332
6333         x86_pmu.start_scheduling = NULL;
6334         x86_pmu.commit_scheduling = NULL;
6335         x86_pmu.stop_scheduling = NULL;
6336
6337         hardlockup_detector_perf_restart();
6338
6339         for_each_online_cpu(c)
6340                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6341
6342         cpus_read_unlock();
6343         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6344         return 0;
6345 }
6346 subsys_initcall(fixup_ht_bug)