Merge tag 'dt-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51         .enabled = 1,
52         .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
70 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
71 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
72
73 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
76
77 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
80
81 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
83
84 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
86
87 /*
88  * This one is magic, it will get called even when PMU init fails (because
89  * there is no PMU), in which case it should simply return NULL.
90  */
91 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
92
93 u64 __read_mostly hw_cache_event_ids
94                                 [PERF_COUNT_HW_CACHE_MAX]
95                                 [PERF_COUNT_HW_CACHE_OP_MAX]
96                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
97 u64 __read_mostly hw_cache_extra_regs
98                                 [PERF_COUNT_HW_CACHE_MAX]
99                                 [PERF_COUNT_HW_CACHE_OP_MAX]
100                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
101
102 /*
103  * Propagate event elapsed time into the generic event.
104  * Can only be executed on the CPU where the event is active.
105  * Returns the delta events processed.
106  */
107 u64 x86_perf_event_update(struct perf_event *event)
108 {
109         struct hw_perf_event *hwc = &event->hw;
110         int shift = 64 - x86_pmu.cntval_bits;
111         u64 prev_raw_count, new_raw_count;
112         u64 delta;
113
114         if (unlikely(!hwc->event_base))
115                 return 0;
116
117         if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
118                 return x86_pmu.update_topdown_event(event);
119
120         /*
121          * Careful: an NMI might modify the previous event value.
122          *
123          * Our tactic to handle this is to first atomically read and
124          * exchange a new raw count - then add that new-prev delta
125          * count to the generic event atomically:
126          */
127 again:
128         prev_raw_count = local64_read(&hwc->prev_count);
129         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
130
131         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
132                                         new_raw_count) != prev_raw_count)
133                 goto again;
134
135         /*
136          * Now we have the new raw value and have updated the prev
137          * timestamp already. We can now calculate the elapsed delta
138          * (event-)time and add that to the generic event.
139          *
140          * Careful, not all hw sign-extends above the physical width
141          * of the count.
142          */
143         delta = (new_raw_count << shift) - (prev_raw_count << shift);
144         delta >>= shift;
145
146         local64_add(delta, &event->count);
147         local64_sub(delta, &hwc->period_left);
148
149         return new_raw_count;
150 }
151
152 /*
153  * Find and validate any extra registers to set up.
154  */
155 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
156 {
157         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
158         struct hw_perf_event_extra *reg;
159         struct extra_reg *er;
160
161         reg = &event->hw.extra_reg;
162
163         if (!extra_regs)
164                 return 0;
165
166         for (er = extra_regs; er->msr; er++) {
167                 if (er->event != (config & er->config_mask))
168                         continue;
169                 if (event->attr.config1 & ~er->valid_mask)
170                         return -EINVAL;
171                 /* Check if the extra msrs can be safely accessed*/
172                 if (!er->extra_msr_access)
173                         return -ENXIO;
174
175                 reg->idx = er->idx;
176                 reg->config = event->attr.config1;
177                 reg->reg = er->msr;
178                 break;
179         }
180         return 0;
181 }
182
183 static atomic_t active_events;
184 static atomic_t pmc_refcount;
185 static DEFINE_MUTEX(pmc_reserve_mutex);
186
187 #ifdef CONFIG_X86_LOCAL_APIC
188
189 static inline int get_possible_num_counters(void)
190 {
191         int i, num_counters = x86_pmu.num_counters;
192
193         if (!is_hybrid())
194                 return num_counters;
195
196         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
197                 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
198
199         return num_counters;
200 }
201
202 static bool reserve_pmc_hardware(void)
203 {
204         int i, num_counters = get_possible_num_counters();
205
206         for (i = 0; i < num_counters; i++) {
207                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
208                         goto perfctr_fail;
209         }
210
211         for (i = 0; i < num_counters; i++) {
212                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
213                         goto eventsel_fail;
214         }
215
216         return true;
217
218 eventsel_fail:
219         for (i--; i >= 0; i--)
220                 release_evntsel_nmi(x86_pmu_config_addr(i));
221
222         i = num_counters;
223
224 perfctr_fail:
225         for (i--; i >= 0; i--)
226                 release_perfctr_nmi(x86_pmu_event_addr(i));
227
228         return false;
229 }
230
231 static void release_pmc_hardware(void)
232 {
233         int i, num_counters = get_possible_num_counters();
234
235         for (i = 0; i < num_counters; i++) {
236                 release_perfctr_nmi(x86_pmu_event_addr(i));
237                 release_evntsel_nmi(x86_pmu_config_addr(i));
238         }
239 }
240
241 #else
242
243 static bool reserve_pmc_hardware(void) { return true; }
244 static void release_pmc_hardware(void) {}
245
246 #endif
247
248 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
249 {
250         u64 val, val_fail = -1, val_new= ~0;
251         int i, reg, reg_fail = -1, ret = 0;
252         int bios_fail = 0;
253         int reg_safe = -1;
254
255         /*
256          * Check to see if the BIOS enabled any of the counters, if so
257          * complain and bail.
258          */
259         for (i = 0; i < num_counters; i++) {
260                 reg = x86_pmu_config_addr(i);
261                 ret = rdmsrl_safe(reg, &val);
262                 if (ret)
263                         goto msr_fail;
264                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
265                         bios_fail = 1;
266                         val_fail = val;
267                         reg_fail = reg;
268                 } else {
269                         reg_safe = i;
270                 }
271         }
272
273         if (num_counters_fixed) {
274                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
275                 ret = rdmsrl_safe(reg, &val);
276                 if (ret)
277                         goto msr_fail;
278                 for (i = 0; i < num_counters_fixed; i++) {
279                         if (fixed_counter_disabled(i, pmu))
280                                 continue;
281                         if (val & (0x03ULL << i*4)) {
282                                 bios_fail = 1;
283                                 val_fail = val;
284                                 reg_fail = reg;
285                         }
286                 }
287         }
288
289         /*
290          * If all the counters are enabled, the below test will always
291          * fail.  The tools will also become useless in this scenario.
292          * Just fail and disable the hardware counters.
293          */
294
295         if (reg_safe == -1) {
296                 reg = reg_safe;
297                 goto msr_fail;
298         }
299
300         /*
301          * Read the current value, change it and read it back to see if it
302          * matches, this is needed to detect certain hardware emulators
303          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
304          */
305         reg = x86_pmu_event_addr(reg_safe);
306         if (rdmsrl_safe(reg, &val))
307                 goto msr_fail;
308         val ^= 0xffffUL;
309         ret = wrmsrl_safe(reg, val);
310         ret |= rdmsrl_safe(reg, &val_new);
311         if (ret || val != val_new)
312                 goto msr_fail;
313
314         /*
315          * We still allow the PMU driver to operate:
316          */
317         if (bios_fail) {
318                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
319                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
320                               reg_fail, val_fail);
321         }
322
323         return true;
324
325 msr_fail:
326         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
327                 pr_cont("PMU not available due to virtualization, using software events only.\n");
328         } else {
329                 pr_cont("Broken PMU hardware detected, using software events only.\n");
330                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
331                        reg, val_new);
332         }
333
334         return false;
335 }
336
337 static void hw_perf_event_destroy(struct perf_event *event)
338 {
339         x86_release_hardware();
340         atomic_dec(&active_events);
341 }
342
343 void hw_perf_lbr_event_destroy(struct perf_event *event)
344 {
345         hw_perf_event_destroy(event);
346
347         /* undo the lbr/bts event accounting */
348         x86_del_exclusive(x86_lbr_exclusive_lbr);
349 }
350
351 static inline int x86_pmu_initialized(void)
352 {
353         return x86_pmu.handle_irq != NULL;
354 }
355
356 static inline int
357 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
358 {
359         struct perf_event_attr *attr = &event->attr;
360         unsigned int cache_type, cache_op, cache_result;
361         u64 config, val;
362
363         config = attr->config;
364
365         cache_type = (config >> 0) & 0xff;
366         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
367                 return -EINVAL;
368         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
369
370         cache_op = (config >>  8) & 0xff;
371         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
372                 return -EINVAL;
373         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
374
375         cache_result = (config >> 16) & 0xff;
376         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
377                 return -EINVAL;
378         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
379
380         val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
381         if (val == 0)
382                 return -ENOENT;
383
384         if (val == -1)
385                 return -EINVAL;
386
387         hwc->config |= val;
388         attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
389         return x86_pmu_extra_regs(val, event);
390 }
391
392 int x86_reserve_hardware(void)
393 {
394         int err = 0;
395
396         if (!atomic_inc_not_zero(&pmc_refcount)) {
397                 mutex_lock(&pmc_reserve_mutex);
398                 if (atomic_read(&pmc_refcount) == 0) {
399                         if (!reserve_pmc_hardware()) {
400                                 err = -EBUSY;
401                         } else {
402                                 reserve_ds_buffers();
403                                 reserve_lbr_buffers();
404                         }
405                 }
406                 if (!err)
407                         atomic_inc(&pmc_refcount);
408                 mutex_unlock(&pmc_reserve_mutex);
409         }
410
411         return err;
412 }
413
414 void x86_release_hardware(void)
415 {
416         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
417                 release_pmc_hardware();
418                 release_ds_buffers();
419                 release_lbr_buffers();
420                 mutex_unlock(&pmc_reserve_mutex);
421         }
422 }
423
424 /*
425  * Check if we can create event of a certain type (that no conflicting events
426  * are present).
427  */
428 int x86_add_exclusive(unsigned int what)
429 {
430         int i;
431
432         /*
433          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
434          * LBR and BTS are still mutually exclusive.
435          */
436         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
437                 goto out;
438
439         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
440                 mutex_lock(&pmc_reserve_mutex);
441                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
442                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
443                                 goto fail_unlock;
444                 }
445                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
446                 mutex_unlock(&pmc_reserve_mutex);
447         }
448
449 out:
450         atomic_inc(&active_events);
451         return 0;
452
453 fail_unlock:
454         mutex_unlock(&pmc_reserve_mutex);
455         return -EBUSY;
456 }
457
458 void x86_del_exclusive(unsigned int what)
459 {
460         atomic_dec(&active_events);
461
462         /*
463          * See the comment in x86_add_exclusive().
464          */
465         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
466                 return;
467
468         atomic_dec(&x86_pmu.lbr_exclusive[what]);
469 }
470
471 int x86_setup_perfctr(struct perf_event *event)
472 {
473         struct perf_event_attr *attr = &event->attr;
474         struct hw_perf_event *hwc = &event->hw;
475         u64 config;
476
477         if (!is_sampling_event(event)) {
478                 hwc->sample_period = x86_pmu.max_period;
479                 hwc->last_period = hwc->sample_period;
480                 local64_set(&hwc->period_left, hwc->sample_period);
481         }
482
483         if (attr->type == event->pmu->type)
484                 return x86_pmu_extra_regs(event->attr.config, event);
485
486         if (attr->type == PERF_TYPE_HW_CACHE)
487                 return set_ext_hw_attr(hwc, event);
488
489         if (attr->config >= x86_pmu.max_events)
490                 return -EINVAL;
491
492         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
493
494         /*
495          * The generic map:
496          */
497         config = x86_pmu.event_map(attr->config);
498
499         if (config == 0)
500                 return -ENOENT;
501
502         if (config == -1LL)
503                 return -EINVAL;
504
505         hwc->config |= config;
506
507         return 0;
508 }
509
510 /*
511  * check that branch_sample_type is compatible with
512  * settings needed for precise_ip > 1 which implies
513  * using the LBR to capture ALL taken branches at the
514  * priv levels of the measurement
515  */
516 static inline int precise_br_compat(struct perf_event *event)
517 {
518         u64 m = event->attr.branch_sample_type;
519         u64 b = 0;
520
521         /* must capture all branches */
522         if (!(m & PERF_SAMPLE_BRANCH_ANY))
523                 return 0;
524
525         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
526
527         if (!event->attr.exclude_user)
528                 b |= PERF_SAMPLE_BRANCH_USER;
529
530         if (!event->attr.exclude_kernel)
531                 b |= PERF_SAMPLE_BRANCH_KERNEL;
532
533         /*
534          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
535          */
536
537         return m == b;
538 }
539
540 int x86_pmu_max_precise(void)
541 {
542         int precise = 0;
543
544         /* Support for constant skid */
545         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
546                 precise++;
547
548                 /* Support for IP fixup */
549                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
550                         precise++;
551
552                 if (x86_pmu.pebs_prec_dist)
553                         precise++;
554         }
555         return precise;
556 }
557
558 int x86_pmu_hw_config(struct perf_event *event)
559 {
560         if (event->attr.precise_ip) {
561                 int precise = x86_pmu_max_precise();
562
563                 if (event->attr.precise_ip > precise)
564                         return -EOPNOTSUPP;
565
566                 /* There's no sense in having PEBS for non sampling events: */
567                 if (!is_sampling_event(event))
568                         return -EINVAL;
569         }
570         /*
571          * check that PEBS LBR correction does not conflict with
572          * whatever the user is asking with attr->branch_sample_type
573          */
574         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
575                 u64 *br_type = &event->attr.branch_sample_type;
576
577                 if (has_branch_stack(event)) {
578                         if (!precise_br_compat(event))
579                                 return -EOPNOTSUPP;
580
581                         /* branch_sample_type is compatible */
582
583                 } else {
584                         /*
585                          * user did not specify  branch_sample_type
586                          *
587                          * For PEBS fixups, we capture all
588                          * the branches at the priv level of the
589                          * event.
590                          */
591                         *br_type = PERF_SAMPLE_BRANCH_ANY;
592
593                         if (!event->attr.exclude_user)
594                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
595
596                         if (!event->attr.exclude_kernel)
597                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
598                 }
599         }
600
601         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
602                 event->attach_state |= PERF_ATTACH_TASK_DATA;
603
604         /*
605          * Generate PMC IRQs:
606          * (keep 'enabled' bit clear for now)
607          */
608         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
609
610         /*
611          * Count user and OS events unless requested not to
612          */
613         if (!event->attr.exclude_user)
614                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
615         if (!event->attr.exclude_kernel)
616                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
617
618         if (event->attr.type == event->pmu->type)
619                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
620
621         if (event->attr.sample_period && x86_pmu.limit_period) {
622                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
623                                 event->attr.sample_period)
624                         return -EINVAL;
625         }
626
627         /* sample_regs_user never support XMM registers */
628         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
629                 return -EINVAL;
630         /*
631          * Besides the general purpose registers, XMM registers may
632          * be collected in PEBS on some platforms, e.g. Icelake
633          */
634         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
635                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
636                         return -EINVAL;
637
638                 if (!event->attr.precise_ip)
639                         return -EINVAL;
640         }
641
642         return x86_setup_perfctr(event);
643 }
644
645 /*
646  * Setup the hardware configuration for a given attr_type
647  */
648 static int __x86_pmu_event_init(struct perf_event *event)
649 {
650         int err;
651
652         if (!x86_pmu_initialized())
653                 return -ENODEV;
654
655         err = x86_reserve_hardware();
656         if (err)
657                 return err;
658
659         atomic_inc(&active_events);
660         event->destroy = hw_perf_event_destroy;
661
662         event->hw.idx = -1;
663         event->hw.last_cpu = -1;
664         event->hw.last_tag = ~0ULL;
665
666         /* mark unused */
667         event->hw.extra_reg.idx = EXTRA_REG_NONE;
668         event->hw.branch_reg.idx = EXTRA_REG_NONE;
669
670         return x86_pmu.hw_config(event);
671 }
672
673 void x86_pmu_disable_all(void)
674 {
675         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
676         int idx;
677
678         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
679                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
680                 u64 val;
681
682                 if (!test_bit(idx, cpuc->active_mask))
683                         continue;
684                 rdmsrl(x86_pmu_config_addr(idx), val);
685                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
686                         continue;
687                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
688                 wrmsrl(x86_pmu_config_addr(idx), val);
689                 if (is_counter_pair(hwc))
690                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
691         }
692 }
693
694 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
695 {
696         return static_call(x86_pmu_guest_get_msrs)(nr);
697 }
698 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
699
700 /*
701  * There may be PMI landing after enabled=0. The PMI hitting could be before or
702  * after disable_all.
703  *
704  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
705  * It will not be re-enabled in the NMI handler again, because enabled=0. After
706  * handling the NMI, disable_all will be called, which will not change the
707  * state either. If PMI hits after disable_all, the PMU is already disabled
708  * before entering NMI handler. The NMI handler will not change the state
709  * either.
710  *
711  * So either situation is harmless.
712  */
713 static void x86_pmu_disable(struct pmu *pmu)
714 {
715         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
716
717         if (!x86_pmu_initialized())
718                 return;
719
720         if (!cpuc->enabled)
721                 return;
722
723         cpuc->n_added = 0;
724         cpuc->enabled = 0;
725         barrier();
726
727         static_call(x86_pmu_disable_all)();
728 }
729
730 void x86_pmu_enable_all(int added)
731 {
732         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
733         int idx;
734
735         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
736                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
737
738                 if (!test_bit(idx, cpuc->active_mask))
739                         continue;
740
741                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
742         }
743 }
744
745 static inline int is_x86_event(struct perf_event *event)
746 {
747         int i;
748
749         if (!is_hybrid())
750                 return event->pmu == &pmu;
751
752         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
753                 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
754                         return true;
755         }
756
757         return false;
758 }
759
760 struct pmu *x86_get_pmu(unsigned int cpu)
761 {
762         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
763
764         /*
765          * All CPUs of the hybrid type have been offline.
766          * The x86_get_pmu() should not be invoked.
767          */
768         if (WARN_ON_ONCE(!cpuc->pmu))
769                 return &pmu;
770
771         return cpuc->pmu;
772 }
773 /*
774  * Event scheduler state:
775  *
776  * Assign events iterating over all events and counters, beginning
777  * with events with least weights first. Keep the current iterator
778  * state in struct sched_state.
779  */
780 struct sched_state {
781         int     weight;
782         int     event;          /* event index */
783         int     counter;        /* counter index */
784         int     unassigned;     /* number of events to be assigned left */
785         int     nr_gp;          /* number of GP counters used */
786         u64     used;
787 };
788
789 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
790 #define SCHED_STATES_MAX        2
791
792 struct perf_sched {
793         int                     max_weight;
794         int                     max_events;
795         int                     max_gp;
796         int                     saved_states;
797         struct event_constraint **constraints;
798         struct sched_state      state;
799         struct sched_state      saved[SCHED_STATES_MAX];
800 };
801
802 /*
803  * Initialize iterator that runs through all events and counters.
804  */
805 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
806                             int num, int wmin, int wmax, int gpmax)
807 {
808         int idx;
809
810         memset(sched, 0, sizeof(*sched));
811         sched->max_events       = num;
812         sched->max_weight       = wmax;
813         sched->max_gp           = gpmax;
814         sched->constraints      = constraints;
815
816         for (idx = 0; idx < num; idx++) {
817                 if (constraints[idx]->weight == wmin)
818                         break;
819         }
820
821         sched->state.event      = idx;          /* start with min weight */
822         sched->state.weight     = wmin;
823         sched->state.unassigned = num;
824 }
825
826 static void perf_sched_save_state(struct perf_sched *sched)
827 {
828         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
829                 return;
830
831         sched->saved[sched->saved_states] = sched->state;
832         sched->saved_states++;
833 }
834
835 static bool perf_sched_restore_state(struct perf_sched *sched)
836 {
837         if (!sched->saved_states)
838                 return false;
839
840         sched->saved_states--;
841         sched->state = sched->saved[sched->saved_states];
842
843         /* this assignment didn't work out */
844         /* XXX broken vs EVENT_PAIR */
845         sched->state.used &= ~BIT_ULL(sched->state.counter);
846
847         /* try the next one */
848         sched->state.counter++;
849
850         return true;
851 }
852
853 /*
854  * Select a counter for the current event to schedule. Return true on
855  * success.
856  */
857 static bool __perf_sched_find_counter(struct perf_sched *sched)
858 {
859         struct event_constraint *c;
860         int idx;
861
862         if (!sched->state.unassigned)
863                 return false;
864
865         if (sched->state.event >= sched->max_events)
866                 return false;
867
868         c = sched->constraints[sched->state.event];
869         /* Prefer fixed purpose counters */
870         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
871                 idx = INTEL_PMC_IDX_FIXED;
872                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
873                         u64 mask = BIT_ULL(idx);
874
875                         if (sched->state.used & mask)
876                                 continue;
877
878                         sched->state.used |= mask;
879                         goto done;
880                 }
881         }
882
883         /* Grab the first unused counter starting with idx */
884         idx = sched->state.counter;
885         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
886                 u64 mask = BIT_ULL(idx);
887
888                 if (c->flags & PERF_X86_EVENT_PAIR)
889                         mask |= mask << 1;
890
891                 if (sched->state.used & mask)
892                         continue;
893
894                 if (sched->state.nr_gp++ >= sched->max_gp)
895                         return false;
896
897                 sched->state.used |= mask;
898                 goto done;
899         }
900
901         return false;
902
903 done:
904         sched->state.counter = idx;
905
906         if (c->overlap)
907                 perf_sched_save_state(sched);
908
909         return true;
910 }
911
912 static bool perf_sched_find_counter(struct perf_sched *sched)
913 {
914         while (!__perf_sched_find_counter(sched)) {
915                 if (!perf_sched_restore_state(sched))
916                         return false;
917         }
918
919         return true;
920 }
921
922 /*
923  * Go through all unassigned events and find the next one to schedule.
924  * Take events with the least weight first. Return true on success.
925  */
926 static bool perf_sched_next_event(struct perf_sched *sched)
927 {
928         struct event_constraint *c;
929
930         if (!sched->state.unassigned || !--sched->state.unassigned)
931                 return false;
932
933         do {
934                 /* next event */
935                 sched->state.event++;
936                 if (sched->state.event >= sched->max_events) {
937                         /* next weight */
938                         sched->state.event = 0;
939                         sched->state.weight++;
940                         if (sched->state.weight > sched->max_weight)
941                                 return false;
942                 }
943                 c = sched->constraints[sched->state.event];
944         } while (c->weight != sched->state.weight);
945
946         sched->state.counter = 0;       /* start with first counter */
947
948         return true;
949 }
950
951 /*
952  * Assign a counter for each event.
953  */
954 int perf_assign_events(struct event_constraint **constraints, int n,
955                         int wmin, int wmax, int gpmax, int *assign)
956 {
957         struct perf_sched sched;
958
959         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
960
961         do {
962                 if (!perf_sched_find_counter(&sched))
963                         break;  /* failed */
964                 if (assign)
965                         assign[sched.state.event] = sched.state.counter;
966         } while (perf_sched_next_event(&sched));
967
968         return sched.state.unassigned;
969 }
970 EXPORT_SYMBOL_GPL(perf_assign_events);
971
972 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
973 {
974         int num_counters = hybrid(cpuc->pmu, num_counters);
975         struct event_constraint *c;
976         struct perf_event *e;
977         int n0, i, wmin, wmax, unsched = 0;
978         struct hw_perf_event *hwc;
979         u64 used_mask = 0;
980
981         /*
982          * Compute the number of events already present; see x86_pmu_add(),
983          * validate_group() and x86_pmu_commit_txn(). For the former two
984          * cpuc->n_events hasn't been updated yet, while for the latter
985          * cpuc->n_txn contains the number of events added in the current
986          * transaction.
987          */
988         n0 = cpuc->n_events;
989         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
990                 n0 -= cpuc->n_txn;
991
992         static_call_cond(x86_pmu_start_scheduling)(cpuc);
993
994         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
995                 c = cpuc->event_constraint[i];
996
997                 /*
998                  * Previously scheduled events should have a cached constraint,
999                  * while new events should not have one.
1000                  */
1001                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1002
1003                 /*
1004                  * Request constraints for new events; or for those events that
1005                  * have a dynamic constraint -- for those the constraint can
1006                  * change due to external factors (sibling state, allow_tfa).
1007                  */
1008                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1009                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1010                         cpuc->event_constraint[i] = c;
1011                 }
1012
1013                 wmin = min(wmin, c->weight);
1014                 wmax = max(wmax, c->weight);
1015         }
1016
1017         /*
1018          * fastpath, try to reuse previous register
1019          */
1020         for (i = 0; i < n; i++) {
1021                 u64 mask;
1022
1023                 hwc = &cpuc->event_list[i]->hw;
1024                 c = cpuc->event_constraint[i];
1025
1026                 /* never assigned */
1027                 if (hwc->idx == -1)
1028                         break;
1029
1030                 /* constraint still honored */
1031                 if (!test_bit(hwc->idx, c->idxmsk))
1032                         break;
1033
1034                 mask = BIT_ULL(hwc->idx);
1035                 if (is_counter_pair(hwc))
1036                         mask |= mask << 1;
1037
1038                 /* not already used */
1039                 if (used_mask & mask)
1040                         break;
1041
1042                 used_mask |= mask;
1043
1044                 if (assign)
1045                         assign[i] = hwc->idx;
1046         }
1047
1048         /* slow path */
1049         if (i != n) {
1050                 int gpmax = num_counters;
1051
1052                 /*
1053                  * Do not allow scheduling of more than half the available
1054                  * generic counters.
1055                  *
1056                  * This helps avoid counter starvation of sibling thread by
1057                  * ensuring at most half the counters cannot be in exclusive
1058                  * mode. There is no designated counters for the limits. Any
1059                  * N/2 counters can be used. This helps with events with
1060                  * specific counter constraints.
1061                  */
1062                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1063                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1064                         gpmax /= 2;
1065
1066                 /*
1067                  * Reduce the amount of available counters to allow fitting
1068                  * the extra Merge events needed by large increment events.
1069                  */
1070                 if (x86_pmu.flags & PMU_FL_PAIR) {
1071                         gpmax = num_counters - cpuc->n_pair;
1072                         WARN_ON(gpmax <= 0);
1073                 }
1074
1075                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1076                                              wmax, gpmax, assign);
1077         }
1078
1079         /*
1080          * In case of success (unsched = 0), mark events as committed,
1081          * so we do not put_constraint() in case new events are added
1082          * and fail to be scheduled
1083          *
1084          * We invoke the lower level commit callback to lock the resource
1085          *
1086          * We do not need to do all of this in case we are called to
1087          * validate an event group (assign == NULL)
1088          */
1089         if (!unsched && assign) {
1090                 for (i = 0; i < n; i++)
1091                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1092         } else {
1093                 for (i = n0; i < n; i++) {
1094                         e = cpuc->event_list[i];
1095
1096                         /*
1097                          * release events that failed scheduling
1098                          */
1099                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1100
1101                         cpuc->event_constraint[i] = NULL;
1102                 }
1103         }
1104
1105         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1106
1107         return unsched ? -EINVAL : 0;
1108 }
1109
1110 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1111                                struct perf_event *event)
1112 {
1113         if (is_metric_event(event)) {
1114                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1115                         return -EINVAL;
1116                 cpuc->n_metric++;
1117                 cpuc->n_txn_metric++;
1118         }
1119
1120         return 0;
1121 }
1122
1123 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1124                                 struct perf_event *event)
1125 {
1126         if (is_metric_event(event))
1127                 cpuc->n_metric--;
1128 }
1129
1130 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1131                          int max_count, int n)
1132 {
1133         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1134
1135         if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1136                 return -EINVAL;
1137
1138         if (n >= max_count + cpuc->n_metric)
1139                 return -EINVAL;
1140
1141         cpuc->event_list[n] = event;
1142         if (is_counter_pair(&event->hw)) {
1143                 cpuc->n_pair++;
1144                 cpuc->n_txn_pair++;
1145         }
1146
1147         return 0;
1148 }
1149
1150 /*
1151  * dogrp: true if must collect siblings events (group)
1152  * returns total number of events and error code
1153  */
1154 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1155 {
1156         int num_counters = hybrid(cpuc->pmu, num_counters);
1157         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1158         struct perf_event *event;
1159         int n, max_count;
1160
1161         max_count = num_counters + num_counters_fixed;
1162
1163         /* current number of events already accepted */
1164         n = cpuc->n_events;
1165         if (!cpuc->n_events)
1166                 cpuc->pebs_output = 0;
1167
1168         if (!cpuc->is_fake && leader->attr.precise_ip) {
1169                 /*
1170                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1171                  * away, the group was broken down and this singleton event
1172                  * can't schedule any more.
1173                  */
1174                 if (is_pebs_pt(leader) && !leader->aux_event)
1175                         return -EINVAL;
1176
1177                 /*
1178                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1179                  */
1180                 if (cpuc->pebs_output &&
1181                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1182                         return -EINVAL;
1183
1184                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1185         }
1186
1187         if (is_x86_event(leader)) {
1188                 if (collect_event(cpuc, leader, max_count, n))
1189                         return -EINVAL;
1190                 n++;
1191         }
1192
1193         if (!dogrp)
1194                 return n;
1195
1196         for_each_sibling_event(event, leader) {
1197                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1198                         continue;
1199
1200                 if (collect_event(cpuc, event, max_count, n))
1201                         return -EINVAL;
1202
1203                 n++;
1204         }
1205         return n;
1206 }
1207
1208 static inline void x86_assign_hw_event(struct perf_event *event,
1209                                 struct cpu_hw_events *cpuc, int i)
1210 {
1211         struct hw_perf_event *hwc = &event->hw;
1212         int idx;
1213
1214         idx = hwc->idx = cpuc->assign[i];
1215         hwc->last_cpu = smp_processor_id();
1216         hwc->last_tag = ++cpuc->tags[i];
1217
1218         switch (hwc->idx) {
1219         case INTEL_PMC_IDX_FIXED_BTS:
1220         case INTEL_PMC_IDX_FIXED_VLBR:
1221                 hwc->config_base = 0;
1222                 hwc->event_base = 0;
1223                 break;
1224
1225         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1226                 /* All the metric events are mapped onto the fixed counter 3. */
1227                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1228                 fallthrough;
1229         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1230                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1231                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1232                                 (idx - INTEL_PMC_IDX_FIXED);
1233                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1234                                         INTEL_PMC_FIXED_RDPMC_BASE;
1235                 break;
1236
1237         default:
1238                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1239                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1240                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1241                 break;
1242         }
1243 }
1244
1245 /**
1246  * x86_perf_rdpmc_index - Return PMC counter used for event
1247  * @event: the perf_event to which the PMC counter was assigned
1248  *
1249  * The counter assigned to this performance event may change if interrupts
1250  * are enabled. This counter should thus never be used while interrupts are
1251  * enabled. Before this function is used to obtain the assigned counter the
1252  * event should be checked for validity using, for example,
1253  * perf_event_read_local(), within the same interrupt disabled section in
1254  * which this counter is planned to be used.
1255  *
1256  * Return: The index of the performance monitoring counter assigned to
1257  * @perf_event.
1258  */
1259 int x86_perf_rdpmc_index(struct perf_event *event)
1260 {
1261         lockdep_assert_irqs_disabled();
1262
1263         return event->hw.event_base_rdpmc;
1264 }
1265
1266 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1267                                         struct cpu_hw_events *cpuc,
1268                                         int i)
1269 {
1270         return hwc->idx == cpuc->assign[i] &&
1271                 hwc->last_cpu == smp_processor_id() &&
1272                 hwc->last_tag == cpuc->tags[i];
1273 }
1274
1275 static void x86_pmu_start(struct perf_event *event, int flags);
1276
1277 static void x86_pmu_enable(struct pmu *pmu)
1278 {
1279         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1280         struct perf_event *event;
1281         struct hw_perf_event *hwc;
1282         int i, added = cpuc->n_added;
1283
1284         if (!x86_pmu_initialized())
1285                 return;
1286
1287         if (cpuc->enabled)
1288                 return;
1289
1290         if (cpuc->n_added) {
1291                 int n_running = cpuc->n_events - cpuc->n_added;
1292                 /*
1293                  * apply assignment obtained either from
1294                  * hw_perf_group_sched_in() or x86_pmu_enable()
1295                  *
1296                  * step1: save events moving to new counters
1297                  */
1298                 for (i = 0; i < n_running; i++) {
1299                         event = cpuc->event_list[i];
1300                         hwc = &event->hw;
1301
1302                         /*
1303                          * we can avoid reprogramming counter if:
1304                          * - assigned same counter as last time
1305                          * - running on same CPU as last time
1306                          * - no other event has used the counter since
1307                          */
1308                         if (hwc->idx == -1 ||
1309                             match_prev_assignment(hwc, cpuc, i))
1310                                 continue;
1311
1312                         /*
1313                          * Ensure we don't accidentally enable a stopped
1314                          * counter simply because we rescheduled.
1315                          */
1316                         if (hwc->state & PERF_HES_STOPPED)
1317                                 hwc->state |= PERF_HES_ARCH;
1318
1319                         x86_pmu_stop(event, PERF_EF_UPDATE);
1320                 }
1321
1322                 /*
1323                  * step2: reprogram moved events into new counters
1324                  */
1325                 for (i = 0; i < cpuc->n_events; i++) {
1326                         event = cpuc->event_list[i];
1327                         hwc = &event->hw;
1328
1329                         if (!match_prev_assignment(hwc, cpuc, i))
1330                                 x86_assign_hw_event(event, cpuc, i);
1331                         else if (i < n_running)
1332                                 continue;
1333
1334                         if (hwc->state & PERF_HES_ARCH)
1335                                 continue;
1336
1337                         x86_pmu_start(event, PERF_EF_RELOAD);
1338                 }
1339                 cpuc->n_added = 0;
1340                 perf_events_lapic_init();
1341         }
1342
1343         cpuc->enabled = 1;
1344         barrier();
1345
1346         static_call(x86_pmu_enable_all)(added);
1347 }
1348
1349 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1350
1351 /*
1352  * Set the next IRQ period, based on the hwc->period_left value.
1353  * To be called with the event disabled in hw:
1354  */
1355 int x86_perf_event_set_period(struct perf_event *event)
1356 {
1357         struct hw_perf_event *hwc = &event->hw;
1358         s64 left = local64_read(&hwc->period_left);
1359         s64 period = hwc->sample_period;
1360         int ret = 0, idx = hwc->idx;
1361
1362         if (unlikely(!hwc->event_base))
1363                 return 0;
1364
1365         if (unlikely(is_topdown_count(event)) &&
1366             x86_pmu.set_topdown_event_period)
1367                 return x86_pmu.set_topdown_event_period(event);
1368
1369         /*
1370          * If we are way outside a reasonable range then just skip forward:
1371          */
1372         if (unlikely(left <= -period)) {
1373                 left = period;
1374                 local64_set(&hwc->period_left, left);
1375                 hwc->last_period = period;
1376                 ret = 1;
1377         }
1378
1379         if (unlikely(left <= 0)) {
1380                 left += period;
1381                 local64_set(&hwc->period_left, left);
1382                 hwc->last_period = period;
1383                 ret = 1;
1384         }
1385         /*
1386          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1387          */
1388         if (unlikely(left < 2))
1389                 left = 2;
1390
1391         if (left > x86_pmu.max_period)
1392                 left = x86_pmu.max_period;
1393
1394         if (x86_pmu.limit_period)
1395                 left = x86_pmu.limit_period(event, left);
1396
1397         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1398
1399         /*
1400          * The hw event starts counting from this event offset,
1401          * mark it to be able to extra future deltas:
1402          */
1403         local64_set(&hwc->prev_count, (u64)-left);
1404
1405         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1406
1407         /*
1408          * Sign extend the Merge event counter's upper 16 bits since
1409          * we currently declare a 48-bit counter width
1410          */
1411         if (is_counter_pair(hwc))
1412                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1413
1414         /*
1415          * Due to erratum on certan cpu we need
1416          * a second write to be sure the register
1417          * is updated properly
1418          */
1419         if (x86_pmu.perfctr_second_write) {
1420                 wrmsrl(hwc->event_base,
1421                         (u64)(-left) & x86_pmu.cntval_mask);
1422         }
1423
1424         perf_event_update_userpage(event);
1425
1426         return ret;
1427 }
1428
1429 void x86_pmu_enable_event(struct perf_event *event)
1430 {
1431         if (__this_cpu_read(cpu_hw_events.enabled))
1432                 __x86_pmu_enable_event(&event->hw,
1433                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1434 }
1435
1436 /*
1437  * Add a single event to the PMU.
1438  *
1439  * The event is added to the group of enabled events
1440  * but only if it can be scheduled with existing events.
1441  */
1442 static int x86_pmu_add(struct perf_event *event, int flags)
1443 {
1444         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1445         struct hw_perf_event *hwc;
1446         int assign[X86_PMC_IDX_MAX];
1447         int n, n0, ret;
1448
1449         hwc = &event->hw;
1450
1451         n0 = cpuc->n_events;
1452         ret = n = collect_events(cpuc, event, false);
1453         if (ret < 0)
1454                 goto out;
1455
1456         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1457         if (!(flags & PERF_EF_START))
1458                 hwc->state |= PERF_HES_ARCH;
1459
1460         /*
1461          * If group events scheduling transaction was started,
1462          * skip the schedulability test here, it will be performed
1463          * at commit time (->commit_txn) as a whole.
1464          *
1465          * If commit fails, we'll call ->del() on all events
1466          * for which ->add() was called.
1467          */
1468         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1469                 goto done_collect;
1470
1471         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1472         if (ret)
1473                 goto out;
1474         /*
1475          * copy new assignment, now we know it is possible
1476          * will be used by hw_perf_enable()
1477          */
1478         memcpy(cpuc->assign, assign, n*sizeof(int));
1479
1480 done_collect:
1481         /*
1482          * Commit the collect_events() state. See x86_pmu_del() and
1483          * x86_pmu_*_txn().
1484          */
1485         cpuc->n_events = n;
1486         cpuc->n_added += n - n0;
1487         cpuc->n_txn += n - n0;
1488
1489         /*
1490          * This is before x86_pmu_enable() will call x86_pmu_start(),
1491          * so we enable LBRs before an event needs them etc..
1492          */
1493         static_call_cond(x86_pmu_add)(event);
1494
1495         ret = 0;
1496 out:
1497         return ret;
1498 }
1499
1500 static void x86_pmu_start(struct perf_event *event, int flags)
1501 {
1502         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1503         int idx = event->hw.idx;
1504
1505         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1506                 return;
1507
1508         if (WARN_ON_ONCE(idx == -1))
1509                 return;
1510
1511         if (flags & PERF_EF_RELOAD) {
1512                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1513                 x86_perf_event_set_period(event);
1514         }
1515
1516         event->hw.state = 0;
1517
1518         cpuc->events[idx] = event;
1519         __set_bit(idx, cpuc->active_mask);
1520         static_call(x86_pmu_enable)(event);
1521         perf_event_update_userpage(event);
1522 }
1523
1524 void perf_event_print_debug(void)
1525 {
1526         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1527         u64 pebs, debugctl;
1528         int cpu = smp_processor_id();
1529         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1530         int num_counters = hybrid(cpuc->pmu, num_counters);
1531         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1532         struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1533         unsigned long flags;
1534         int idx;
1535
1536         if (!num_counters)
1537                 return;
1538
1539         local_irq_save(flags);
1540
1541         if (x86_pmu.version >= 2) {
1542                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1543                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1544                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1545                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1546
1547                 pr_info("\n");
1548                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1549                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1550                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1551                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1552                 if (pebs_constraints) {
1553                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1554                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1555                 }
1556                 if (x86_pmu.lbr_nr) {
1557                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1558                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1559                 }
1560         }
1561         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1562
1563         for (idx = 0; idx < num_counters; idx++) {
1564                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1565                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1566
1567                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1568
1569                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1570                         cpu, idx, pmc_ctrl);
1571                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1572                         cpu, idx, pmc_count);
1573                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1574                         cpu, idx, prev_left);
1575         }
1576         for (idx = 0; idx < num_counters_fixed; idx++) {
1577                 if (fixed_counter_disabled(idx, cpuc->pmu))
1578                         continue;
1579                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1580
1581                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1582                         cpu, idx, pmc_count);
1583         }
1584         local_irq_restore(flags);
1585 }
1586
1587 void x86_pmu_stop(struct perf_event *event, int flags)
1588 {
1589         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1590         struct hw_perf_event *hwc = &event->hw;
1591
1592         if (test_bit(hwc->idx, cpuc->active_mask)) {
1593                 static_call(x86_pmu_disable)(event);
1594                 __clear_bit(hwc->idx, cpuc->active_mask);
1595                 cpuc->events[hwc->idx] = NULL;
1596                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1597                 hwc->state |= PERF_HES_STOPPED;
1598         }
1599
1600         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1601                 /*
1602                  * Drain the remaining delta count out of a event
1603                  * that we are disabling:
1604                  */
1605                 x86_perf_event_update(event);
1606                 hwc->state |= PERF_HES_UPTODATE;
1607         }
1608 }
1609
1610 static void x86_pmu_del(struct perf_event *event, int flags)
1611 {
1612         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1613         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1614         int i;
1615
1616         /*
1617          * If we're called during a txn, we only need to undo x86_pmu.add.
1618          * The events never got scheduled and ->cancel_txn will truncate
1619          * the event_list.
1620          *
1621          * XXX assumes any ->del() called during a TXN will only be on
1622          * an event added during that same TXN.
1623          */
1624         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1625                 goto do_del;
1626
1627         __set_bit(event->hw.idx, cpuc->dirty);
1628
1629         /*
1630          * Not a TXN, therefore cleanup properly.
1631          */
1632         x86_pmu_stop(event, PERF_EF_UPDATE);
1633
1634         for (i = 0; i < cpuc->n_events; i++) {
1635                 if (event == cpuc->event_list[i])
1636                         break;
1637         }
1638
1639         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1640                 return;
1641
1642         /* If we have a newly added event; make sure to decrease n_added. */
1643         if (i >= cpuc->n_events - cpuc->n_added)
1644                 --cpuc->n_added;
1645
1646         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1647
1648         /* Delete the array entry. */
1649         while (++i < cpuc->n_events) {
1650                 cpuc->event_list[i-1] = cpuc->event_list[i];
1651                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1652         }
1653         cpuc->event_constraint[i-1] = NULL;
1654         --cpuc->n_events;
1655         if (intel_cap.perf_metrics)
1656                 del_nr_metric_event(cpuc, event);
1657
1658         perf_event_update_userpage(event);
1659
1660 do_del:
1661
1662         /*
1663          * This is after x86_pmu_stop(); so we disable LBRs after any
1664          * event can need them etc..
1665          */
1666         static_call_cond(x86_pmu_del)(event);
1667 }
1668
1669 int x86_pmu_handle_irq(struct pt_regs *regs)
1670 {
1671         struct perf_sample_data data;
1672         struct cpu_hw_events *cpuc;
1673         struct perf_event *event;
1674         int idx, handled = 0;
1675         u64 val;
1676
1677         cpuc = this_cpu_ptr(&cpu_hw_events);
1678
1679         /*
1680          * Some chipsets need to unmask the LVTPC in a particular spot
1681          * inside the nmi handler.  As a result, the unmasking was pushed
1682          * into all the nmi handlers.
1683          *
1684          * This generic handler doesn't seem to have any issues where the
1685          * unmasking occurs so it was left at the top.
1686          */
1687         apic_write(APIC_LVTPC, APIC_DM_NMI);
1688
1689         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1690                 if (!test_bit(idx, cpuc->active_mask))
1691                         continue;
1692
1693                 event = cpuc->events[idx];
1694
1695                 val = x86_perf_event_update(event);
1696                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1697                         continue;
1698
1699                 /*
1700                  * event overflow
1701                  */
1702                 handled++;
1703                 perf_sample_data_init(&data, 0, event->hw.last_period);
1704
1705                 if (!x86_perf_event_set_period(event))
1706                         continue;
1707
1708                 if (perf_event_overflow(event, &data, regs))
1709                         x86_pmu_stop(event, 0);
1710         }
1711
1712         if (handled)
1713                 inc_irq_stat(apic_perf_irqs);
1714
1715         return handled;
1716 }
1717
1718 void perf_events_lapic_init(void)
1719 {
1720         if (!x86_pmu.apic || !x86_pmu_initialized())
1721                 return;
1722
1723         /*
1724          * Always use NMI for PMU
1725          */
1726         apic_write(APIC_LVTPC, APIC_DM_NMI);
1727 }
1728
1729 static int
1730 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1731 {
1732         u64 start_clock;
1733         u64 finish_clock;
1734         int ret;
1735
1736         /*
1737          * All PMUs/events that share this PMI handler should make sure to
1738          * increment active_events for their events.
1739          */
1740         if (!atomic_read(&active_events))
1741                 return NMI_DONE;
1742
1743         start_clock = sched_clock();
1744         ret = static_call(x86_pmu_handle_irq)(regs);
1745         finish_clock = sched_clock();
1746
1747         perf_sample_event_took(finish_clock - start_clock);
1748
1749         return ret;
1750 }
1751 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1752
1753 struct event_constraint emptyconstraint;
1754 struct event_constraint unconstrained;
1755
1756 static int x86_pmu_prepare_cpu(unsigned int cpu)
1757 {
1758         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1759         int i;
1760
1761         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1762                 cpuc->kfree_on_online[i] = NULL;
1763         if (x86_pmu.cpu_prepare)
1764                 return x86_pmu.cpu_prepare(cpu);
1765         return 0;
1766 }
1767
1768 static int x86_pmu_dead_cpu(unsigned int cpu)
1769 {
1770         if (x86_pmu.cpu_dead)
1771                 x86_pmu.cpu_dead(cpu);
1772         return 0;
1773 }
1774
1775 static int x86_pmu_online_cpu(unsigned int cpu)
1776 {
1777         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1778         int i;
1779
1780         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1781                 kfree(cpuc->kfree_on_online[i]);
1782                 cpuc->kfree_on_online[i] = NULL;
1783         }
1784         return 0;
1785 }
1786
1787 static int x86_pmu_starting_cpu(unsigned int cpu)
1788 {
1789         if (x86_pmu.cpu_starting)
1790                 x86_pmu.cpu_starting(cpu);
1791         return 0;
1792 }
1793
1794 static int x86_pmu_dying_cpu(unsigned int cpu)
1795 {
1796         if (x86_pmu.cpu_dying)
1797                 x86_pmu.cpu_dying(cpu);
1798         return 0;
1799 }
1800
1801 static void __init pmu_check_apic(void)
1802 {
1803         if (boot_cpu_has(X86_FEATURE_APIC))
1804                 return;
1805
1806         x86_pmu.apic = 0;
1807         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1808         pr_info("no hardware sampling interrupt available.\n");
1809
1810         /*
1811          * If we have a PMU initialized but no APIC
1812          * interrupts, we cannot sample hardware
1813          * events (user-space has to fall back and
1814          * sample via a hrtimer based software event):
1815          */
1816         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1817
1818 }
1819
1820 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1821         .name = "format",
1822         .attrs = NULL,
1823 };
1824
1825 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1826 {
1827         struct perf_pmu_events_attr *pmu_attr =
1828                 container_of(attr, struct perf_pmu_events_attr, attr);
1829         u64 config = 0;
1830
1831         if (pmu_attr->id < x86_pmu.max_events)
1832                 config = x86_pmu.event_map(pmu_attr->id);
1833
1834         /* string trumps id */
1835         if (pmu_attr->event_str)
1836                 return sprintf(page, "%s", pmu_attr->event_str);
1837
1838         return x86_pmu.events_sysfs_show(page, config);
1839 }
1840 EXPORT_SYMBOL_GPL(events_sysfs_show);
1841
1842 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1843                           char *page)
1844 {
1845         struct perf_pmu_events_ht_attr *pmu_attr =
1846                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1847
1848         /*
1849          * Report conditional events depending on Hyper-Threading.
1850          *
1851          * This is overly conservative as usually the HT special
1852          * handling is not needed if the other CPU thread is idle.
1853          *
1854          * Note this does not (and cannot) handle the case when thread
1855          * siblings are invisible, for example with virtualization
1856          * if they are owned by some other guest.  The user tool
1857          * has to re-read when a thread sibling gets onlined later.
1858          */
1859         return sprintf(page, "%s",
1860                         topology_max_smt_threads() > 1 ?
1861                         pmu_attr->event_str_ht :
1862                         pmu_attr->event_str_noht);
1863 }
1864
1865 ssize_t events_hybrid_sysfs_show(struct device *dev,
1866                                  struct device_attribute *attr,
1867                                  char *page)
1868 {
1869         struct perf_pmu_events_hybrid_attr *pmu_attr =
1870                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1871         struct x86_hybrid_pmu *pmu;
1872         const char *str, *next_str;
1873         int i;
1874
1875         if (hweight64(pmu_attr->pmu_type) == 1)
1876                 return sprintf(page, "%s", pmu_attr->event_str);
1877
1878         /*
1879          * Hybrid PMUs may support the same event name, but with different
1880          * event encoding, e.g., the mem-loads event on an Atom PMU has
1881          * different event encoding from a Core PMU.
1882          *
1883          * The event_str includes all event encodings. Each event encoding
1884          * is divided by ";". The order of the event encodings must follow
1885          * the order of the hybrid PMU index.
1886          */
1887         pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1888
1889         str = pmu_attr->event_str;
1890         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1891                 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1892                         continue;
1893                 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1894                         next_str = strchr(str, ';');
1895                         if (next_str)
1896                                 return snprintf(page, next_str - str + 1, "%s", str);
1897                         else
1898                                 return sprintf(page, "%s", str);
1899                 }
1900                 str = strchr(str, ';');
1901                 str++;
1902         }
1903
1904         return 0;
1905 }
1906 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1907
1908 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1909 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1910 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1911 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1912 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1913 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1914 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1915 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1916 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1917 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1918
1919 static struct attribute *empty_attrs;
1920
1921 static struct attribute *events_attr[] = {
1922         EVENT_PTR(CPU_CYCLES),
1923         EVENT_PTR(INSTRUCTIONS),
1924         EVENT_PTR(CACHE_REFERENCES),
1925         EVENT_PTR(CACHE_MISSES),
1926         EVENT_PTR(BRANCH_INSTRUCTIONS),
1927         EVENT_PTR(BRANCH_MISSES),
1928         EVENT_PTR(BUS_CYCLES),
1929         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1930         EVENT_PTR(STALLED_CYCLES_BACKEND),
1931         EVENT_PTR(REF_CPU_CYCLES),
1932         NULL,
1933 };
1934
1935 /*
1936  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1937  * out of events_attr attributes.
1938  */
1939 static umode_t
1940 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1941 {
1942         struct perf_pmu_events_attr *pmu_attr;
1943
1944         if (idx >= x86_pmu.max_events)
1945                 return 0;
1946
1947         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1948         /* str trumps id */
1949         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1950 }
1951
1952 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1953         .name = "events",
1954         .attrs = events_attr,
1955         .is_visible = is_visible,
1956 };
1957
1958 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1959 {
1960         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1961         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1962         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1963         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1964         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1965         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1966         ssize_t ret;
1967
1968         /*
1969         * We have whole page size to spend and just little data
1970         * to write, so we can safely use sprintf.
1971         */
1972         ret = sprintf(page, "event=0x%02llx", event);
1973
1974         if (umask)
1975                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1976
1977         if (edge)
1978                 ret += sprintf(page + ret, ",edge");
1979
1980         if (pc)
1981                 ret += sprintf(page + ret, ",pc");
1982
1983         if (any)
1984                 ret += sprintf(page + ret, ",any");
1985
1986         if (inv)
1987                 ret += sprintf(page + ret, ",inv");
1988
1989         if (cmask)
1990                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1991
1992         ret += sprintf(page + ret, "\n");
1993
1994         return ret;
1995 }
1996
1997 static struct attribute_group x86_pmu_attr_group;
1998 static struct attribute_group x86_pmu_caps_group;
1999
2000 static void x86_pmu_static_call_update(void)
2001 {
2002         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2003         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2004         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2005         static_call_update(x86_pmu_enable, x86_pmu.enable);
2006         static_call_update(x86_pmu_disable, x86_pmu.disable);
2007
2008         static_call_update(x86_pmu_add, x86_pmu.add);
2009         static_call_update(x86_pmu_del, x86_pmu.del);
2010         static_call_update(x86_pmu_read, x86_pmu.read);
2011
2012         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2013         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2014         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2015
2016         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2017         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2018         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2019
2020         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2021         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2022
2023         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2024         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2025
2026         static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2027 }
2028
2029 static void _x86_pmu_read(struct perf_event *event)
2030 {
2031         x86_perf_event_update(event);
2032 }
2033
2034 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2035                           u64 intel_ctrl)
2036 {
2037         pr_info("... version:                %d\n",     x86_pmu.version);
2038         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2039         pr_info("... generic registers:      %d\n",     num_counters);
2040         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2041         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2042         pr_info("... fixed-purpose events:   %lu\n",
2043                         hweight64((((1ULL << num_counters_fixed) - 1)
2044                                         << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2045         pr_info("... event mask:             %016Lx\n", intel_ctrl);
2046 }
2047
2048 /*
2049  * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2050  * of the first registered PMU is unconditionally assigned to
2051  * each possible cpuctx->ctx.pmu.
2052  * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2053  */
2054 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2055 {
2056         struct perf_cpu_context *cpuctx;
2057
2058         if (!pmu->pmu_cpu_context)
2059                 return;
2060
2061         cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2062         cpuctx->ctx.pmu = pmu;
2063 }
2064
2065 static int __init init_hw_perf_events(void)
2066 {
2067         struct x86_pmu_quirk *quirk;
2068         int err;
2069
2070         pr_info("Performance Events: ");
2071
2072         switch (boot_cpu_data.x86_vendor) {
2073         case X86_VENDOR_INTEL:
2074                 err = intel_pmu_init();
2075                 break;
2076         case X86_VENDOR_AMD:
2077                 err = amd_pmu_init();
2078                 break;
2079         case X86_VENDOR_HYGON:
2080                 err = amd_pmu_init();
2081                 x86_pmu.name = "HYGON";
2082                 break;
2083         case X86_VENDOR_ZHAOXIN:
2084         case X86_VENDOR_CENTAUR:
2085                 err = zhaoxin_pmu_init();
2086                 break;
2087         default:
2088                 err = -ENOTSUPP;
2089         }
2090         if (err != 0) {
2091                 pr_cont("no PMU driver, software events only.\n");
2092                 return 0;
2093         }
2094
2095         pmu_check_apic();
2096
2097         /* sanity check that the hardware exists or is emulated */
2098         if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2099                 return 0;
2100
2101         pr_cont("%s PMU driver.\n", x86_pmu.name);
2102
2103         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2104
2105         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2106                 quirk->func();
2107
2108         if (!x86_pmu.intel_ctrl)
2109                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2110
2111         perf_events_lapic_init();
2112         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2113
2114         unconstrained = (struct event_constraint)
2115                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2116                                    0, x86_pmu.num_counters, 0, 0);
2117
2118         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2119
2120         if (!x86_pmu.events_sysfs_show)
2121                 x86_pmu_events_group.attrs = &empty_attrs;
2122
2123         pmu.attr_update = x86_pmu.attr_update;
2124
2125         if (!is_hybrid()) {
2126                 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2127                                      x86_pmu.num_counters_fixed,
2128                                      x86_pmu.intel_ctrl);
2129         }
2130
2131         if (!x86_pmu.read)
2132                 x86_pmu.read = _x86_pmu_read;
2133
2134         if (!x86_pmu.guest_get_msrs)
2135                 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2136
2137         x86_pmu_static_call_update();
2138
2139         /*
2140          * Install callbacks. Core will call them for each online
2141          * cpu.
2142          */
2143         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2144                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2145         if (err)
2146                 return err;
2147
2148         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2149                                 "perf/x86:starting", x86_pmu_starting_cpu,
2150                                 x86_pmu_dying_cpu);
2151         if (err)
2152                 goto out;
2153
2154         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2155                                 x86_pmu_online_cpu, NULL);
2156         if (err)
2157                 goto out1;
2158
2159         if (!is_hybrid()) {
2160                 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2161                 if (err)
2162                         goto out2;
2163         } else {
2164                 u8 cpu_type = get_this_hybrid_cpu_type();
2165                 struct x86_hybrid_pmu *hybrid_pmu;
2166                 int i, j;
2167
2168                 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2169                         cpu_type = x86_pmu.get_hybrid_cpu_type();
2170
2171                 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2172                         hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2173
2174                         hybrid_pmu->pmu = pmu;
2175                         hybrid_pmu->pmu.type = -1;
2176                         hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2177                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2178                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2179
2180                         err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2181                                                 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2182                         if (err)
2183                                 break;
2184
2185                         if (cpu_type == hybrid_pmu->cpu_type)
2186                                 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2187                 }
2188
2189                 if (i < x86_pmu.num_hybrid_pmus) {
2190                         for (j = 0; j < i; j++)
2191                                 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2192                         pr_warn("Failed to register hybrid PMUs\n");
2193                         kfree(x86_pmu.hybrid_pmu);
2194                         x86_pmu.hybrid_pmu = NULL;
2195                         x86_pmu.num_hybrid_pmus = 0;
2196                         goto out2;
2197                 }
2198         }
2199
2200         return 0;
2201
2202 out2:
2203         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2204 out1:
2205         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2206 out:
2207         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2208         return err;
2209 }
2210 early_initcall(init_hw_perf_events);
2211
2212 static void x86_pmu_read(struct perf_event *event)
2213 {
2214         static_call(x86_pmu_read)(event);
2215 }
2216
2217 /*
2218  * Start group events scheduling transaction
2219  * Set the flag to make pmu::enable() not perform the
2220  * schedulability test, it will be performed at commit time
2221  *
2222  * We only support PERF_PMU_TXN_ADD transactions. Save the
2223  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2224  * transactions.
2225  */
2226 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2227 {
2228         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2229
2230         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2231
2232         cpuc->txn_flags = txn_flags;
2233         if (txn_flags & ~PERF_PMU_TXN_ADD)
2234                 return;
2235
2236         perf_pmu_disable(pmu);
2237         __this_cpu_write(cpu_hw_events.n_txn, 0);
2238         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2239         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2240 }
2241
2242 /*
2243  * Stop group events scheduling transaction
2244  * Clear the flag and pmu::enable() will perform the
2245  * schedulability test.
2246  */
2247 static void x86_pmu_cancel_txn(struct pmu *pmu)
2248 {
2249         unsigned int txn_flags;
2250         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2251
2252         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2253
2254         txn_flags = cpuc->txn_flags;
2255         cpuc->txn_flags = 0;
2256         if (txn_flags & ~PERF_PMU_TXN_ADD)
2257                 return;
2258
2259         /*
2260          * Truncate collected array by the number of events added in this
2261          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2262          */
2263         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2264         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2265         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2266         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2267         perf_pmu_enable(pmu);
2268 }
2269
2270 /*
2271  * Commit group events scheduling transaction
2272  * Perform the group schedulability test as a whole
2273  * Return 0 if success
2274  *
2275  * Does not cancel the transaction on failure; expects the caller to do this.
2276  */
2277 static int x86_pmu_commit_txn(struct pmu *pmu)
2278 {
2279         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2280         int assign[X86_PMC_IDX_MAX];
2281         int n, ret;
2282
2283         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2284
2285         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2286                 cpuc->txn_flags = 0;
2287                 return 0;
2288         }
2289
2290         n = cpuc->n_events;
2291
2292         if (!x86_pmu_initialized())
2293                 return -EAGAIN;
2294
2295         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2296         if (ret)
2297                 return ret;
2298
2299         /*
2300          * copy new assignment, now we know it is possible
2301          * will be used by hw_perf_enable()
2302          */
2303         memcpy(cpuc->assign, assign, n*sizeof(int));
2304
2305         cpuc->txn_flags = 0;
2306         perf_pmu_enable(pmu);
2307         return 0;
2308 }
2309 /*
2310  * a fake_cpuc is used to validate event groups. Due to
2311  * the extra reg logic, we need to also allocate a fake
2312  * per_core and per_cpu structure. Otherwise, group events
2313  * using extra reg may conflict without the kernel being
2314  * able to catch this when the last event gets added to
2315  * the group.
2316  */
2317 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2318 {
2319         intel_cpuc_finish(cpuc);
2320         kfree(cpuc);
2321 }
2322
2323 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2324 {
2325         struct cpu_hw_events *cpuc;
2326         int cpu;
2327
2328         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2329         if (!cpuc)
2330                 return ERR_PTR(-ENOMEM);
2331         cpuc->is_fake = 1;
2332
2333         if (is_hybrid()) {
2334                 struct x86_hybrid_pmu *h_pmu;
2335
2336                 h_pmu = hybrid_pmu(event_pmu);
2337                 if (cpumask_empty(&h_pmu->supported_cpus))
2338                         goto error;
2339                 cpu = cpumask_first(&h_pmu->supported_cpus);
2340         } else
2341                 cpu = raw_smp_processor_id();
2342         cpuc->pmu = event_pmu;
2343
2344         if (intel_cpuc_prepare(cpuc, cpu))
2345                 goto error;
2346
2347         return cpuc;
2348 error:
2349         free_fake_cpuc(cpuc);
2350         return ERR_PTR(-ENOMEM);
2351 }
2352
2353 /*
2354  * validate that we can schedule this event
2355  */
2356 static int validate_event(struct perf_event *event)
2357 {
2358         struct cpu_hw_events *fake_cpuc;
2359         struct event_constraint *c;
2360         int ret = 0;
2361
2362         fake_cpuc = allocate_fake_cpuc(event->pmu);
2363         if (IS_ERR(fake_cpuc))
2364                 return PTR_ERR(fake_cpuc);
2365
2366         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2367
2368         if (!c || !c->weight)
2369                 ret = -EINVAL;
2370
2371         if (x86_pmu.put_event_constraints)
2372                 x86_pmu.put_event_constraints(fake_cpuc, event);
2373
2374         free_fake_cpuc(fake_cpuc);
2375
2376         return ret;
2377 }
2378
2379 /*
2380  * validate a single event group
2381  *
2382  * validation include:
2383  *      - check events are compatible which each other
2384  *      - events do not compete for the same counter
2385  *      - number of events <= number of counters
2386  *
2387  * validation ensures the group can be loaded onto the
2388  * PMU if it was the only group available.
2389  */
2390 static int validate_group(struct perf_event *event)
2391 {
2392         struct perf_event *leader = event->group_leader;
2393         struct cpu_hw_events *fake_cpuc;
2394         int ret = -EINVAL, n;
2395
2396         /*
2397          * Reject events from different hybrid PMUs.
2398          */
2399         if (is_hybrid()) {
2400                 struct perf_event *sibling;
2401                 struct pmu *pmu = NULL;
2402
2403                 if (is_x86_event(leader))
2404                         pmu = leader->pmu;
2405
2406                 for_each_sibling_event(sibling, leader) {
2407                         if (!is_x86_event(sibling))
2408                                 continue;
2409                         if (!pmu)
2410                                 pmu = sibling->pmu;
2411                         else if (pmu != sibling->pmu)
2412                                 return ret;
2413                 }
2414         }
2415
2416         fake_cpuc = allocate_fake_cpuc(event->pmu);
2417         if (IS_ERR(fake_cpuc))
2418                 return PTR_ERR(fake_cpuc);
2419         /*
2420          * the event is not yet connected with its
2421          * siblings therefore we must first collect
2422          * existing siblings, then add the new event
2423          * before we can simulate the scheduling
2424          */
2425         n = collect_events(fake_cpuc, leader, true);
2426         if (n < 0)
2427                 goto out;
2428
2429         fake_cpuc->n_events = n;
2430         n = collect_events(fake_cpuc, event, false);
2431         if (n < 0)
2432                 goto out;
2433
2434         fake_cpuc->n_events = 0;
2435         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2436
2437 out:
2438         free_fake_cpuc(fake_cpuc);
2439         return ret;
2440 }
2441
2442 static int x86_pmu_event_init(struct perf_event *event)
2443 {
2444         struct x86_hybrid_pmu *pmu = NULL;
2445         int err;
2446
2447         if ((event->attr.type != event->pmu->type) &&
2448             (event->attr.type != PERF_TYPE_HARDWARE) &&
2449             (event->attr.type != PERF_TYPE_HW_CACHE))
2450                 return -ENOENT;
2451
2452         if (is_hybrid() && (event->cpu != -1)) {
2453                 pmu = hybrid_pmu(event->pmu);
2454                 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2455                         return -ENOENT;
2456         }
2457
2458         err = __x86_pmu_event_init(event);
2459         if (!err) {
2460                 if (event->group_leader != event)
2461                         err = validate_group(event);
2462                 else
2463                         err = validate_event(event);
2464         }
2465         if (err) {
2466                 if (event->destroy)
2467                         event->destroy(event);
2468         }
2469
2470         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2471             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2472                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2473
2474         return err;
2475 }
2476
2477 void perf_clear_dirty_counters(void)
2478 {
2479         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2480         int i;
2481
2482          /* Don't need to clear the assigned counter. */
2483         for (i = 0; i < cpuc->n_events; i++)
2484                 __clear_bit(cpuc->assign[i], cpuc->dirty);
2485
2486         if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2487                 return;
2488
2489         for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2490                 if (i >= INTEL_PMC_IDX_FIXED) {
2491                         /* Metrics and fake events don't have corresponding HW counters. */
2492                         if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2493                                 continue;
2494
2495                         wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2496                 } else {
2497                         wrmsrl(x86_pmu_event_addr(i), 0);
2498                 }
2499         }
2500
2501         bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2502 }
2503
2504 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2505 {
2506         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2507                 return;
2508
2509         /*
2510          * This function relies on not being called concurrently in two
2511          * tasks in the same mm.  Otherwise one task could observe
2512          * perf_rdpmc_allowed > 1 and return all the way back to
2513          * userspace with CR4.PCE clear while another task is still
2514          * doing on_each_cpu_mask() to propagate CR4.PCE.
2515          *
2516          * For now, this can't happen because all callers hold mmap_lock
2517          * for write.  If this changes, we'll need a different solution.
2518          */
2519         mmap_assert_write_locked(mm);
2520
2521         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2522                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2523 }
2524
2525 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2526 {
2527         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2528                 return;
2529
2530         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2531                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2532 }
2533
2534 static int x86_pmu_event_idx(struct perf_event *event)
2535 {
2536         struct hw_perf_event *hwc = &event->hw;
2537
2538         if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2539                 return 0;
2540
2541         if (is_metric_idx(hwc->idx))
2542                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2543         else
2544                 return hwc->event_base_rdpmc + 1;
2545 }
2546
2547 static ssize_t get_attr_rdpmc(struct device *cdev,
2548                               struct device_attribute *attr,
2549                               char *buf)
2550 {
2551         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2552 }
2553
2554 static ssize_t set_attr_rdpmc(struct device *cdev,
2555                               struct device_attribute *attr,
2556                               const char *buf, size_t count)
2557 {
2558         unsigned long val;
2559         ssize_t ret;
2560
2561         ret = kstrtoul(buf, 0, &val);
2562         if (ret)
2563                 return ret;
2564
2565         if (val > 2)
2566                 return -EINVAL;
2567
2568         if (x86_pmu.attr_rdpmc_broken)
2569                 return -ENOTSUPP;
2570
2571         if (val != x86_pmu.attr_rdpmc) {
2572                 /*
2573                  * Changing into or out of never available or always available,
2574                  * aka perf-event-bypassing mode. This path is extremely slow,
2575                  * but only root can trigger it, so it's okay.
2576                  */
2577                 if (val == 0)
2578                         static_branch_inc(&rdpmc_never_available_key);
2579                 else if (x86_pmu.attr_rdpmc == 0)
2580                         static_branch_dec(&rdpmc_never_available_key);
2581
2582                 if (val == 2)
2583                         static_branch_inc(&rdpmc_always_available_key);
2584                 else if (x86_pmu.attr_rdpmc == 2)
2585                         static_branch_dec(&rdpmc_always_available_key);
2586
2587                 on_each_cpu(cr4_update_pce, NULL, 1);
2588                 x86_pmu.attr_rdpmc = val;
2589         }
2590
2591         return count;
2592 }
2593
2594 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2595
2596 static struct attribute *x86_pmu_attrs[] = {
2597         &dev_attr_rdpmc.attr,
2598         NULL,
2599 };
2600
2601 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2602         .attrs = x86_pmu_attrs,
2603 };
2604
2605 static ssize_t max_precise_show(struct device *cdev,
2606                                   struct device_attribute *attr,
2607                                   char *buf)
2608 {
2609         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2610 }
2611
2612 static DEVICE_ATTR_RO(max_precise);
2613
2614 static struct attribute *x86_pmu_caps_attrs[] = {
2615         &dev_attr_max_precise.attr,
2616         NULL
2617 };
2618
2619 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2620         .name = "caps",
2621         .attrs = x86_pmu_caps_attrs,
2622 };
2623
2624 static const struct attribute_group *x86_pmu_attr_groups[] = {
2625         &x86_pmu_attr_group,
2626         &x86_pmu_format_group,
2627         &x86_pmu_events_group,
2628         &x86_pmu_caps_group,
2629         NULL,
2630 };
2631
2632 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2633 {
2634         static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2635 }
2636
2637 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2638                                   struct perf_event_context *next)
2639 {
2640         static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2641 }
2642
2643 void perf_check_microcode(void)
2644 {
2645         if (x86_pmu.check_microcode)
2646                 x86_pmu.check_microcode();
2647 }
2648
2649 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2650 {
2651         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2652                 return -EINVAL;
2653
2654         if (value && x86_pmu.limit_period) {
2655                 if (x86_pmu.limit_period(event, value) > value)
2656                         return -EINVAL;
2657         }
2658
2659         return 0;
2660 }
2661
2662 static int x86_pmu_aux_output_match(struct perf_event *event)
2663 {
2664         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2665                 return 0;
2666
2667         if (x86_pmu.aux_output_match)
2668                 return x86_pmu.aux_output_match(event);
2669
2670         return 0;
2671 }
2672
2673 static int x86_pmu_filter_match(struct perf_event *event)
2674 {
2675         if (x86_pmu.filter_match)
2676                 return x86_pmu.filter_match(event);
2677
2678         return 1;
2679 }
2680
2681 static struct pmu pmu = {
2682         .pmu_enable             = x86_pmu_enable,
2683         .pmu_disable            = x86_pmu_disable,
2684
2685         .attr_groups            = x86_pmu_attr_groups,
2686
2687         .event_init             = x86_pmu_event_init,
2688
2689         .event_mapped           = x86_pmu_event_mapped,
2690         .event_unmapped         = x86_pmu_event_unmapped,
2691
2692         .add                    = x86_pmu_add,
2693         .del                    = x86_pmu_del,
2694         .start                  = x86_pmu_start,
2695         .stop                   = x86_pmu_stop,
2696         .read                   = x86_pmu_read,
2697
2698         .start_txn              = x86_pmu_start_txn,
2699         .cancel_txn             = x86_pmu_cancel_txn,
2700         .commit_txn             = x86_pmu_commit_txn,
2701
2702         .event_idx              = x86_pmu_event_idx,
2703         .sched_task             = x86_pmu_sched_task,
2704         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2705         .check_period           = x86_pmu_check_period,
2706
2707         .aux_output_match       = x86_pmu_aux_output_match,
2708
2709         .filter_match           = x86_pmu_filter_match,
2710 };
2711
2712 void arch_perf_update_userpage(struct perf_event *event,
2713                                struct perf_event_mmap_page *userpg, u64 now)
2714 {
2715         struct cyc2ns_data data;
2716         u64 offset;
2717
2718         userpg->cap_user_time = 0;
2719         userpg->cap_user_time_zero = 0;
2720         userpg->cap_user_rdpmc =
2721                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2722         userpg->pmc_width = x86_pmu.cntval_bits;
2723
2724         if (!using_native_sched_clock() || !sched_clock_stable())
2725                 return;
2726
2727         cyc2ns_read_begin(&data);
2728
2729         offset = data.cyc2ns_offset + __sched_clock_offset;
2730
2731         /*
2732          * Internal timekeeping for enabled/running/stopped times
2733          * is always in the local_clock domain.
2734          */
2735         userpg->cap_user_time = 1;
2736         userpg->time_mult = data.cyc2ns_mul;
2737         userpg->time_shift = data.cyc2ns_shift;
2738         userpg->time_offset = offset - now;
2739
2740         /*
2741          * cap_user_time_zero doesn't make sense when we're using a different
2742          * time base for the records.
2743          */
2744         if (!event->attr.use_clockid) {
2745                 userpg->cap_user_time_zero = 1;
2746                 userpg->time_zero = offset;
2747         }
2748
2749         cyc2ns_read_end();
2750 }
2751
2752 /*
2753  * Determine whether the regs were taken from an irq/exception handler rather
2754  * than from perf_arch_fetch_caller_regs().
2755  */
2756 static bool perf_hw_regs(struct pt_regs *regs)
2757 {
2758         return regs->flags & X86_EFLAGS_FIXED;
2759 }
2760
2761 void
2762 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2763 {
2764         struct unwind_state state;
2765         unsigned long addr;
2766
2767         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2768                 /* TODO: We don't support guest os callchain now */
2769                 return;
2770         }
2771
2772         if (perf_callchain_store(entry, regs->ip))
2773                 return;
2774
2775         if (perf_hw_regs(regs))
2776                 unwind_start(&state, current, regs, NULL);
2777         else
2778                 unwind_start(&state, current, NULL, (void *)regs->sp);
2779
2780         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2781                 addr = unwind_get_return_address(&state);
2782                 if (!addr || perf_callchain_store(entry, addr))
2783                         return;
2784         }
2785 }
2786
2787 static inline int
2788 valid_user_frame(const void __user *fp, unsigned long size)
2789 {
2790         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2791 }
2792
2793 static unsigned long get_segment_base(unsigned int segment)
2794 {
2795         struct desc_struct *desc;
2796         unsigned int idx = segment >> 3;
2797
2798         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2799 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2800                 struct ldt_struct *ldt;
2801
2802                 /* IRQs are off, so this synchronizes with smp_store_release */
2803                 ldt = READ_ONCE(current->active_mm->context.ldt);
2804                 if (!ldt || idx >= ldt->nr_entries)
2805                         return 0;
2806
2807                 desc = &ldt->entries[idx];
2808 #else
2809                 return 0;
2810 #endif
2811         } else {
2812                 if (idx >= GDT_ENTRIES)
2813                         return 0;
2814
2815                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2816         }
2817
2818         return get_desc_base(desc);
2819 }
2820
2821 #ifdef CONFIG_IA32_EMULATION
2822
2823 #include <linux/compat.h>
2824
2825 static inline int
2826 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2827 {
2828         /* 32-bit process in 64-bit kernel. */
2829         unsigned long ss_base, cs_base;
2830         struct stack_frame_ia32 frame;
2831         const struct stack_frame_ia32 __user *fp;
2832
2833         if (user_64bit_mode(regs))
2834                 return 0;
2835
2836         cs_base = get_segment_base(regs->cs);
2837         ss_base = get_segment_base(regs->ss);
2838
2839         fp = compat_ptr(ss_base + regs->bp);
2840         pagefault_disable();
2841         while (entry->nr < entry->max_stack) {
2842                 if (!valid_user_frame(fp, sizeof(frame)))
2843                         break;
2844
2845                 if (__get_user(frame.next_frame, &fp->next_frame))
2846                         break;
2847                 if (__get_user(frame.return_address, &fp->return_address))
2848                         break;
2849
2850                 perf_callchain_store(entry, cs_base + frame.return_address);
2851                 fp = compat_ptr(ss_base + frame.next_frame);
2852         }
2853         pagefault_enable();
2854         return 1;
2855 }
2856 #else
2857 static inline int
2858 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2859 {
2860     return 0;
2861 }
2862 #endif
2863
2864 void
2865 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2866 {
2867         struct stack_frame frame;
2868         const struct stack_frame __user *fp;
2869
2870         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2871                 /* TODO: We don't support guest os callchain now */
2872                 return;
2873         }
2874
2875         /*
2876          * We don't know what to do with VM86 stacks.. ignore them for now.
2877          */
2878         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2879                 return;
2880
2881         fp = (void __user *)regs->bp;
2882
2883         perf_callchain_store(entry, regs->ip);
2884
2885         if (!nmi_uaccess_okay())
2886                 return;
2887
2888         if (perf_callchain_user32(regs, entry))
2889                 return;
2890
2891         pagefault_disable();
2892         while (entry->nr < entry->max_stack) {
2893                 if (!valid_user_frame(fp, sizeof(frame)))
2894                         break;
2895
2896                 if (__get_user(frame.next_frame, &fp->next_frame))
2897                         break;
2898                 if (__get_user(frame.return_address, &fp->return_address))
2899                         break;
2900
2901                 perf_callchain_store(entry, frame.return_address);
2902                 fp = (void __user *)frame.next_frame;
2903         }
2904         pagefault_enable();
2905 }
2906
2907 /*
2908  * Deal with code segment offsets for the various execution modes:
2909  *
2910  *   VM86 - the good olde 16 bit days, where the linear address is
2911  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2912  *
2913  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2914  *          to figure out what the 32bit base address is.
2915  *
2916  *    X32 - has TIF_X32 set, but is running in x86_64
2917  *
2918  * X86_64 - CS,DS,SS,ES are all zero based.
2919  */
2920 static unsigned long code_segment_base(struct pt_regs *regs)
2921 {
2922         /*
2923          * For IA32 we look at the GDT/LDT segment base to convert the
2924          * effective IP to a linear address.
2925          */
2926
2927 #ifdef CONFIG_X86_32
2928         /*
2929          * If we are in VM86 mode, add the segment offset to convert to a
2930          * linear address.
2931          */
2932         if (regs->flags & X86_VM_MASK)
2933                 return 0x10 * regs->cs;
2934
2935         if (user_mode(regs) && regs->cs != __USER_CS)
2936                 return get_segment_base(regs->cs);
2937 #else
2938         if (user_mode(regs) && !user_64bit_mode(regs) &&
2939             regs->cs != __USER32_CS)
2940                 return get_segment_base(regs->cs);
2941 #endif
2942         return 0;
2943 }
2944
2945 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2946 {
2947         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2948                 return perf_guest_cbs->get_guest_ip();
2949
2950         return regs->ip + code_segment_base(regs);
2951 }
2952
2953 unsigned long perf_misc_flags(struct pt_regs *regs)
2954 {
2955         int misc = 0;
2956
2957         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2958                 if (perf_guest_cbs->is_user_mode())
2959                         misc |= PERF_RECORD_MISC_GUEST_USER;
2960                 else
2961                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2962         } else {
2963                 if (user_mode(regs))
2964                         misc |= PERF_RECORD_MISC_USER;
2965                 else
2966                         misc |= PERF_RECORD_MISC_KERNEL;
2967         }
2968
2969         if (regs->flags & PERF_EFLAGS_EXACT)
2970                 misc |= PERF_RECORD_MISC_EXACT_IP;
2971
2972         return misc;
2973 }
2974
2975 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2976 {
2977         cap->version            = x86_pmu.version;
2978         /*
2979          * KVM doesn't support the hybrid PMU yet.
2980          * Return the common value in global x86_pmu,
2981          * which available for all cores.
2982          */
2983         cap->num_counters_gp    = x86_pmu.num_counters;
2984         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2985         cap->bit_width_gp       = x86_pmu.cntval_bits;
2986         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2987         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2988         cap->events_mask_len    = x86_pmu.events_mask_len;
2989 }
2990 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);