Merge branches 'pm-cpufreq', 'pm-sleep' and 'pm-em'
[linux-2.6-microblaze.git] / arch / sparc / kernel / process_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*  arch/sparc64/kernel/process.c
3  *
4  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
5  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
6  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
7  */
8
9 /*
10  * This file handles the architecture-dependent parts of process handling..
11  */
12 #include <linux/errno.h>
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/delay.h>
27 #include <linux/compat.h>
28 #include <linux/tick.h>
29 #include <linux/init.h>
30 #include <linux/cpu.h>
31 #include <linux/perf_event.h>
32 #include <linux/elfcore.h>
33 #include <linux/sysrq.h>
34 #include <linux/nmi.h>
35 #include <linux/context_tracking.h>
36 #include <linux/signal.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/pstate.h>
43 #include <asm/elf.h>
44 #include <asm/fpumacro.h>
45 #include <asm/head.h>
46 #include <asm/cpudata.h>
47 #include <asm/mmu_context.h>
48 #include <asm/unistd.h>
49 #include <asm/hypervisor.h>
50 #include <asm/syscalls.h>
51 #include <asm/irq_regs.h>
52 #include <asm/smp.h>
53 #include <asm/pcr.h>
54
55 #include "kstack.h"
56
57 /* Idle loop support on sparc64. */
58 void arch_cpu_idle(void)
59 {
60         if (tlb_type != hypervisor) {
61                 touch_nmi_watchdog();
62                 raw_local_irq_enable();
63         } else {
64                 unsigned long pstate;
65
66                 raw_local_irq_enable();
67
68                 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
69                  * the cpu sleep hypervisor call.
70                  */
71                 __asm__ __volatile__(
72                         "rdpr %%pstate, %0\n\t"
73                         "andn %0, %1, %0\n\t"
74                         "wrpr %0, %%g0, %%pstate"
75                         : "=&r" (pstate)
76                         : "i" (PSTATE_IE));
77
78                 if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
79                         sun4v_cpu_yield();
80                         /* If resumed by cpu_poke then we need to explicitly
81                          * call scheduler_ipi().
82                          */
83                         scheduler_poke();
84                 }
85
86                 /* Re-enable interrupts. */
87                 __asm__ __volatile__(
88                         "rdpr %%pstate, %0\n\t"
89                         "or %0, %1, %0\n\t"
90                         "wrpr %0, %%g0, %%pstate"
91                         : "=&r" (pstate)
92                         : "i" (PSTATE_IE));
93         }
94 }
95
96 #ifdef CONFIG_HOTPLUG_CPU
97 void arch_cpu_idle_dead(void)
98 {
99         sched_preempt_enable_no_resched();
100         cpu_play_dead();
101 }
102 #endif
103
104 #ifdef CONFIG_COMPAT
105 static void show_regwindow32(struct pt_regs *regs)
106 {
107         struct reg_window32 __user *rw;
108         struct reg_window32 r_w;
109         mm_segment_t old_fs;
110         
111         __asm__ __volatile__ ("flushw");
112         rw = compat_ptr((unsigned int)regs->u_regs[14]);
113         old_fs = get_fs();
114         set_fs (USER_DS);
115         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
116                 set_fs (old_fs);
117                 return;
118         }
119
120         set_fs (old_fs);                        
121         printk("l0: %08x l1: %08x l2: %08x l3: %08x "
122                "l4: %08x l5: %08x l6: %08x l7: %08x\n",
123                r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
124                r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
125         printk("i0: %08x i1: %08x i2: %08x i3: %08x "
126                "i4: %08x i5: %08x i6: %08x i7: %08x\n",
127                r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
128                r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
129 }
130 #else
131 #define show_regwindow32(regs)  do { } while (0)
132 #endif
133
134 static void show_regwindow(struct pt_regs *regs)
135 {
136         struct reg_window __user *rw;
137         struct reg_window *rwk;
138         struct reg_window r_w;
139         mm_segment_t old_fs;
140
141         if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
142                 __asm__ __volatile__ ("flushw");
143                 rw = (struct reg_window __user *)
144                         (regs->u_regs[14] + STACK_BIAS);
145                 rwk = (struct reg_window *)
146                         (regs->u_regs[14] + STACK_BIAS);
147                 if (!(regs->tstate & TSTATE_PRIV)) {
148                         old_fs = get_fs();
149                         set_fs (USER_DS);
150                         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
151                                 set_fs (old_fs);
152                                 return;
153                         }
154                         rwk = &r_w;
155                         set_fs (old_fs);                        
156                 }
157         } else {
158                 show_regwindow32(regs);
159                 return;
160         }
161         printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
162                rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
163         printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
164                rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
165         printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
166                rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
167         printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
168                rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
169         if (regs->tstate & TSTATE_PRIV)
170                 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
171 }
172
173 void show_regs(struct pt_regs *regs)
174 {
175         show_regs_print_info(KERN_DEFAULT);
176
177         printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
178                regs->tpc, regs->tnpc, regs->y, print_tainted());
179         printk("TPC: <%pS>\n", (void *) regs->tpc);
180         printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
181                regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
182                regs->u_regs[3]);
183         printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
184                regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
185                regs->u_regs[7]);
186         printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
187                regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
188                regs->u_regs[11]);
189         printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
190                regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
191                regs->u_regs[15]);
192         printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
193         show_regwindow(regs);
194         show_stack(current, (unsigned long *)regs->u_regs[UREG_FP], KERN_DEFAULT);
195 }
196
197 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
198 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
199
200 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
201                               int this_cpu)
202 {
203         struct global_reg_snapshot *rp;
204
205         flushw_all();
206
207         rp = &global_cpu_snapshot[this_cpu].reg;
208
209         rp->tstate = regs->tstate;
210         rp->tpc = regs->tpc;
211         rp->tnpc = regs->tnpc;
212         rp->o7 = regs->u_regs[UREG_I7];
213
214         if (regs->tstate & TSTATE_PRIV) {
215                 struct reg_window *rw;
216
217                 rw = (struct reg_window *)
218                         (regs->u_regs[UREG_FP] + STACK_BIAS);
219                 if (kstack_valid(tp, (unsigned long) rw)) {
220                         rp->i7 = rw->ins[7];
221                         rw = (struct reg_window *)
222                                 (rw->ins[6] + STACK_BIAS);
223                         if (kstack_valid(tp, (unsigned long) rw))
224                                 rp->rpc = rw->ins[7];
225                 }
226         } else {
227                 rp->i7 = 0;
228                 rp->rpc = 0;
229         }
230         rp->thread = tp;
231 }
232
233 /* In order to avoid hangs we do not try to synchronize with the
234  * global register dump client cpus.  The last store they make is to
235  * the thread pointer, so do a short poll waiting for that to become
236  * non-NULL.
237  */
238 static void __global_reg_poll(struct global_reg_snapshot *gp)
239 {
240         int limit = 0;
241
242         while (!gp->thread && ++limit < 100) {
243                 barrier();
244                 udelay(1);
245         }
246 }
247
248 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
249 {
250         struct thread_info *tp = current_thread_info();
251         struct pt_regs *regs = get_irq_regs();
252         unsigned long flags;
253         int this_cpu, cpu;
254
255         if (!regs)
256                 regs = tp->kregs;
257
258         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
259
260         this_cpu = raw_smp_processor_id();
261
262         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
263
264         if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
265                 __global_reg_self(tp, regs, this_cpu);
266
267         smp_fetch_global_regs();
268
269         for_each_cpu(cpu, mask) {
270                 struct global_reg_snapshot *gp;
271
272                 if (exclude_self && cpu == this_cpu)
273                         continue;
274
275                 gp = &global_cpu_snapshot[cpu].reg;
276
277                 __global_reg_poll(gp);
278
279                 tp = gp->thread;
280                 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
281                        (cpu == this_cpu ? '*' : ' '), cpu,
282                        gp->tstate, gp->tpc, gp->tnpc,
283                        ((tp && tp->task) ? tp->task->comm : "NULL"),
284                        ((tp && tp->task) ? tp->task->pid : -1));
285
286                 if (gp->tstate & TSTATE_PRIV) {
287                         printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
288                                (void *) gp->tpc,
289                                (void *) gp->o7,
290                                (void *) gp->i7,
291                                (void *) gp->rpc);
292                 } else {
293                         printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
294                                gp->tpc, gp->o7, gp->i7, gp->rpc);
295                 }
296
297                 touch_nmi_watchdog();
298         }
299
300         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
301
302         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
303 }
304
305 #ifdef CONFIG_MAGIC_SYSRQ
306
307 static void sysrq_handle_globreg(int key)
308 {
309         trigger_all_cpu_backtrace();
310 }
311
312 static const struct sysrq_key_op sparc_globalreg_op = {
313         .handler        = sysrq_handle_globreg,
314         .help_msg       = "global-regs(y)",
315         .action_msg     = "Show Global CPU Regs",
316 };
317
318 static void __global_pmu_self(int this_cpu)
319 {
320         struct global_pmu_snapshot *pp;
321         int i, num;
322
323         if (!pcr_ops)
324                 return;
325
326         pp = &global_cpu_snapshot[this_cpu].pmu;
327
328         num = 1;
329         if (tlb_type == hypervisor &&
330             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
331                 num = 4;
332
333         for (i = 0; i < num; i++) {
334                 pp->pcr[i] = pcr_ops->read_pcr(i);
335                 pp->pic[i] = pcr_ops->read_pic(i);
336         }
337 }
338
339 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
340 {
341         int limit = 0;
342
343         while (!pp->pcr[0] && ++limit < 100) {
344                 barrier();
345                 udelay(1);
346         }
347 }
348
349 static void pmu_snapshot_all_cpus(void)
350 {
351         unsigned long flags;
352         int this_cpu, cpu;
353
354         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
355
356         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
357
358         this_cpu = raw_smp_processor_id();
359
360         __global_pmu_self(this_cpu);
361
362         smp_fetch_global_pmu();
363
364         for_each_online_cpu(cpu) {
365                 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
366
367                 __global_pmu_poll(pp);
368
369                 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
370                        (cpu == this_cpu ? '*' : ' '), cpu,
371                        pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
372                        pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
373
374                 touch_nmi_watchdog();
375         }
376
377         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
378
379         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
380 }
381
382 static void sysrq_handle_globpmu(int key)
383 {
384         pmu_snapshot_all_cpus();
385 }
386
387 static const struct sysrq_key_op sparc_globalpmu_op = {
388         .handler        = sysrq_handle_globpmu,
389         .help_msg       = "global-pmu(x)",
390         .action_msg     = "Show Global PMU Regs",
391 };
392
393 static int __init sparc_sysrq_init(void)
394 {
395         int ret = register_sysrq_key('y', &sparc_globalreg_op);
396
397         if (!ret)
398                 ret = register_sysrq_key('x', &sparc_globalpmu_op);
399         return ret;
400 }
401
402 core_initcall(sparc_sysrq_init);
403
404 #endif
405
406 /* Free current thread data structures etc.. */
407 void exit_thread(struct task_struct *tsk)
408 {
409         struct thread_info *t = task_thread_info(tsk);
410
411         if (t->utraps) {
412                 if (t->utraps[0] < 2)
413                         kfree (t->utraps);
414                 else
415                         t->utraps[0]--;
416         }
417 }
418
419 void flush_thread(void)
420 {
421         struct thread_info *t = current_thread_info();
422         struct mm_struct *mm;
423
424         mm = t->task->mm;
425         if (mm)
426                 tsb_context_switch(mm);
427
428         set_thread_wsaved(0);
429
430         /* Clear FPU register state. */
431         t->fpsaved[0] = 0;
432 }
433
434 /* It's a bit more tricky when 64-bit tasks are involved... */
435 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
436 {
437         bool stack_64bit = test_thread_64bit_stack(psp);
438         unsigned long fp, distance, rval;
439
440         if (stack_64bit) {
441                 csp += STACK_BIAS;
442                 psp += STACK_BIAS;
443                 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
444                 fp += STACK_BIAS;
445                 if (test_thread_flag(TIF_32BIT))
446                         fp &= 0xffffffff;
447         } else
448                 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
449
450         /* Now align the stack as this is mandatory in the Sparc ABI
451          * due to how register windows work.  This hides the
452          * restriction from thread libraries etc.
453          */
454         csp &= ~15UL;
455
456         distance = fp - psp;
457         rval = (csp - distance);
458         if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
459                 rval = 0;
460         else if (!stack_64bit) {
461                 if (put_user(((u32)csp),
462                              &(((struct reg_window32 __user *)rval)->ins[6])))
463                         rval = 0;
464         } else {
465                 if (put_user(((u64)csp - STACK_BIAS),
466                              &(((struct reg_window __user *)rval)->ins[6])))
467                         rval = 0;
468                 else
469                         rval = rval - STACK_BIAS;
470         }
471
472         return rval;
473 }
474
475 /* Standard stuff. */
476 static inline void shift_window_buffer(int first_win, int last_win,
477                                        struct thread_info *t)
478 {
479         int i;
480
481         for (i = first_win; i < last_win; i++) {
482                 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
483                 memcpy(&t->reg_window[i], &t->reg_window[i+1],
484                        sizeof(struct reg_window));
485         }
486 }
487
488 void synchronize_user_stack(void)
489 {
490         struct thread_info *t = current_thread_info();
491         unsigned long window;
492
493         flush_user_windows();
494         if ((window = get_thread_wsaved()) != 0) {
495                 window -= 1;
496                 do {
497                         struct reg_window *rwin = &t->reg_window[window];
498                         int winsize = sizeof(struct reg_window);
499                         unsigned long sp;
500
501                         sp = t->rwbuf_stkptrs[window];
502
503                         if (test_thread_64bit_stack(sp))
504                                 sp += STACK_BIAS;
505                         else
506                                 winsize = sizeof(struct reg_window32);
507
508                         if (!copy_to_user((char __user *)sp, rwin, winsize)) {
509                                 shift_window_buffer(window, get_thread_wsaved() - 1, t);
510                                 set_thread_wsaved(get_thread_wsaved() - 1);
511                         }
512                 } while (window--);
513         }
514 }
515
516 static void stack_unaligned(unsigned long sp)
517 {
518         force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp);
519 }
520
521 static const char uwfault32[] = KERN_INFO \
522         "%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
523 static const char uwfault64[] = KERN_INFO \
524         "%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
525
526 void fault_in_user_windows(struct pt_regs *regs)
527 {
528         struct thread_info *t = current_thread_info();
529         unsigned long window;
530
531         flush_user_windows();
532         window = get_thread_wsaved();
533
534         if (likely(window != 0)) {
535                 window -= 1;
536                 do {
537                         struct reg_window *rwin = &t->reg_window[window];
538                         int winsize = sizeof(struct reg_window);
539                         unsigned long sp, orig_sp;
540
541                         orig_sp = sp = t->rwbuf_stkptrs[window];
542
543                         if (test_thread_64bit_stack(sp))
544                                 sp += STACK_BIAS;
545                         else
546                                 winsize = sizeof(struct reg_window32);
547
548                         if (unlikely(sp & 0x7UL))
549                                 stack_unaligned(sp);
550
551                         if (unlikely(copy_to_user((char __user *)sp,
552                                                   rwin, winsize))) {
553                                 if (show_unhandled_signals)
554                                         printk_ratelimited(is_compat_task() ?
555                                                            uwfault32 : uwfault64,
556                                                            current->comm, current->pid,
557                                                            sp, orig_sp,
558                                                            regs->tpc,
559                                                            regs->u_regs[UREG_I7]);
560                                 goto barf;
561                         }
562                 } while (window--);
563         }
564         set_thread_wsaved(0);
565         return;
566
567 barf:
568         set_thread_wsaved(window + 1);
569         force_sig(SIGSEGV);
570 }
571
572 /* Copy a Sparc thread.  The fork() return value conventions
573  * under SunOS are nothing short of bletcherous:
574  * Parent -->  %o0 == childs  pid, %o1 == 0
575  * Child  -->  %o0 == parents pid, %o1 == 1
576  */
577 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
578                 struct task_struct *p, unsigned long tls)
579 {
580         struct thread_info *t = task_thread_info(p);
581         struct pt_regs *regs = current_pt_regs();
582         struct sparc_stackf *parent_sf;
583         unsigned long child_stack_sz;
584         char *child_trap_frame;
585
586         /* Calculate offset to stack_frame & pt_regs */
587         child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
588         child_trap_frame = (task_stack_page(p) +
589                             (THREAD_SIZE - child_stack_sz));
590
591         t->new_child = 1;
592         t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
593         t->kregs = (struct pt_regs *) (child_trap_frame +
594                                        sizeof(struct sparc_stackf));
595         t->fpsaved[0] = 0;
596
597         if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
598                 memset(child_trap_frame, 0, child_stack_sz);
599                 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
600                         (current_pt_regs()->tstate + 1) & TSTATE_CWP;
601                 t->current_ds = ASI_P;
602                 t->kregs->u_regs[UREG_G1] = sp; /* function */
603                 t->kregs->u_regs[UREG_G2] = arg;
604                 return 0;
605         }
606
607         parent_sf = ((struct sparc_stackf *) regs) - 1;
608         memcpy(child_trap_frame, parent_sf, child_stack_sz);
609         if (t->flags & _TIF_32BIT) {
610                 sp &= 0x00000000ffffffffUL;
611                 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
612         }
613         t->kregs->u_regs[UREG_FP] = sp;
614         __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
615                 (regs->tstate + 1) & TSTATE_CWP;
616         t->current_ds = ASI_AIUS;
617         if (sp != regs->u_regs[UREG_FP]) {
618                 unsigned long csp;
619
620                 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
621                 if (!csp)
622                         return -EFAULT;
623                 t->kregs->u_regs[UREG_FP] = csp;
624         }
625         if (t->utraps)
626                 t->utraps[0]++;
627
628         /* Set the return value for the child. */
629         t->kregs->u_regs[UREG_I0] = current->pid;
630         t->kregs->u_regs[UREG_I1] = 1;
631
632         /* Set the second return value for the parent. */
633         regs->u_regs[UREG_I1] = 0;
634
635         if (clone_flags & CLONE_SETTLS)
636                 t->kregs->u_regs[UREG_G7] = tls;
637
638         return 0;
639 }
640
641 /* TIF_MCDPER in thread info flags for current task is updated lazily upon
642  * a context switch. Update this flag in current task's thread flags
643  * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
644  */
645 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
646 {
647         if (adi_capable()) {
648                 register unsigned long tmp_mcdper;
649
650                 __asm__ __volatile__(
651                         ".word 0x83438000\n\t"  /* rd  %mcdper, %g1 */
652                         "mov %%g1, %0\n\t"
653                         : "=r" (tmp_mcdper)
654                         :
655                         : "g1");
656                 if (tmp_mcdper)
657                         set_thread_flag(TIF_MCDPER);
658                 else
659                         clear_thread_flag(TIF_MCDPER);
660         }
661
662         *dst = *src;
663         return 0;
664 }
665
666 unsigned long get_wchan(struct task_struct *task)
667 {
668         unsigned long pc, fp, bias = 0;
669         struct thread_info *tp;
670         struct reg_window *rw;
671         unsigned long ret = 0;
672         int count = 0; 
673
674         if (!task || task == current || task_is_running(task))
675                 goto out;
676
677         tp = task_thread_info(task);
678         bias = STACK_BIAS;
679         fp = task_thread_info(task)->ksp + bias;
680
681         do {
682                 if (!kstack_valid(tp, fp))
683                         break;
684                 rw = (struct reg_window *) fp;
685                 pc = rw->ins[7];
686                 if (!in_sched_functions(pc)) {
687                         ret = pc;
688                         goto out;
689                 }
690                 fp = rw->ins[6] + bias;
691         } while (++count < 16);
692
693 out:
694         return ret;
695 }