s390: convert to generic entry
[linux-2.6-microblaze.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/debug.h>
51 #include <asm/os_info.h>
52 #include <asm/sigp.h>
53 #include <asm/idle.h>
54 #include <asm/nmi.h>
55 #include <asm/stacktrace.h>
56 #include <asm/topology.h>
57 #include <asm/vdso.h>
58 #include "entry.h"
59
60 enum {
61         ec_schedule = 0,
62         ec_call_function_single,
63         ec_stop_cpu,
64         ec_mcck_pending,
65 };
66
67 enum {
68         CPU_STATE_STANDBY,
69         CPU_STATE_CONFIGURED,
70 };
71
72 static DEFINE_PER_CPU(struct cpu *, cpu_device);
73
74 struct pcpu {
75         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
76         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
77         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
78         signed char state;              /* physical cpu state */
79         signed char polarization;       /* physical polarization */
80         u16 address;                    /* physical cpu address */
81 };
82
83 static u8 boot_core_type;
84 static struct pcpu pcpu_devices[NR_CPUS];
85
86 unsigned int smp_cpu_mt_shift;
87 EXPORT_SYMBOL(smp_cpu_mt_shift);
88
89 unsigned int smp_cpu_mtid;
90 EXPORT_SYMBOL(smp_cpu_mtid);
91
92 #ifdef CONFIG_CRASH_DUMP
93 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
94 #endif
95
96 static unsigned int smp_max_threads __initdata = -1U;
97
98 static int __init early_nosmt(char *s)
99 {
100         smp_max_threads = 1;
101         return 0;
102 }
103 early_param("nosmt", early_nosmt);
104
105 static int __init early_smt(char *s)
106 {
107         get_option(&s, &smp_max_threads);
108         return 0;
109 }
110 early_param("smt", early_smt);
111
112 /*
113  * The smp_cpu_state_mutex must be held when changing the state or polarization
114  * member of a pcpu data structure within the pcpu_devices arreay.
115  */
116 DEFINE_MUTEX(smp_cpu_state_mutex);
117
118 /*
119  * Signal processor helper functions.
120  */
121 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
122 {
123         int cc;
124
125         while (1) {
126                 cc = __pcpu_sigp(addr, order, parm, NULL);
127                 if (cc != SIGP_CC_BUSY)
128                         return cc;
129                 cpu_relax();
130         }
131 }
132
133 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
134 {
135         int cc, retry;
136
137         for (retry = 0; ; retry++) {
138                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
139                 if (cc != SIGP_CC_BUSY)
140                         break;
141                 if (retry >= 3)
142                         udelay(10);
143         }
144         return cc;
145 }
146
147 static inline int pcpu_stopped(struct pcpu *pcpu)
148 {
149         u32 status;
150
151         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
152                         0, &status) != SIGP_CC_STATUS_STORED)
153                 return 0;
154         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
155 }
156
157 static inline int pcpu_running(struct pcpu *pcpu)
158 {
159         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
160                         0, NULL) != SIGP_CC_STATUS_STORED)
161                 return 1;
162         /* Status stored condition code is equivalent to cpu not running. */
163         return 0;
164 }
165
166 /*
167  * Find struct pcpu by cpu address.
168  */
169 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
170 {
171         int cpu;
172
173         for_each_cpu(cpu, mask)
174                 if (pcpu_devices[cpu].address == address)
175                         return pcpu_devices + cpu;
176         return NULL;
177 }
178
179 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
180 {
181         int order;
182
183         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
184                 return;
185         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
186         pcpu->ec_clk = get_tod_clock_fast();
187         pcpu_sigp_retry(pcpu, order, 0);
188 }
189
190 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
191 {
192         unsigned long async_stack, nodat_stack;
193         struct lowcore *lc;
194
195         if (pcpu != &pcpu_devices[0]) {
196                 pcpu->lowcore = (struct lowcore *)
197                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
198                 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
199                 if (!pcpu->lowcore || !nodat_stack)
200                         goto out;
201         } else {
202                 nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
203         }
204         async_stack = stack_alloc();
205         if (!async_stack)
206                 goto out;
207         lc = pcpu->lowcore;
208         memcpy(lc, &S390_lowcore, 512);
209         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
210         lc->async_stack = async_stack + STACK_INIT_OFFSET;
211         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
212         lc->cpu_nr = cpu;
213         lc->spinlock_lockval = arch_spin_lockval(cpu);
214         lc->spinlock_index = 0;
215         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
216         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
217         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
218         if (nmi_alloc_per_cpu(lc))
219                 goto out_async;
220         lowcore_ptr[cpu] = lc;
221         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
222         return 0;
223
224 out_async:
225         stack_free(async_stack);
226 out:
227         if (pcpu != &pcpu_devices[0]) {
228                 free_pages(nodat_stack, THREAD_SIZE_ORDER);
229                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
230         }
231         return -ENOMEM;
232 }
233
234 static void pcpu_free_lowcore(struct pcpu *pcpu)
235 {
236         unsigned long async_stack, nodat_stack, lowcore;
237
238         nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
239         async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
240         lowcore = (unsigned long) pcpu->lowcore;
241
242         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
243         lowcore_ptr[pcpu - pcpu_devices] = NULL;
244         nmi_free_per_cpu(pcpu->lowcore);
245         stack_free(async_stack);
246         if (pcpu == &pcpu_devices[0])
247                 return;
248         free_pages(nodat_stack, THREAD_SIZE_ORDER);
249         free_pages(lowcore, LC_ORDER);
250 }
251
252 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
253 {
254         struct lowcore *lc = pcpu->lowcore;
255
256         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
257         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
258         lc->cpu_nr = cpu;
259         lc->spinlock_lockval = arch_spin_lockval(cpu);
260         lc->spinlock_index = 0;
261         lc->percpu_offset = __per_cpu_offset[cpu];
262         lc->kernel_asce = S390_lowcore.kernel_asce;
263         lc->user_asce = s390_invalid_asce;
264         lc->machine_flags = S390_lowcore.machine_flags;
265         lc->user_timer = lc->system_timer =
266                 lc->steal_timer = lc->avg_steal_timer = 0;
267         __ctl_store(lc->cregs_save_area, 0, 15);
268         lc->cregs_save_area[1] = lc->kernel_asce;
269         lc->cregs_save_area[7] = lc->user_asce;
270         save_access_regs((unsigned int *) lc->access_regs_save_area);
271         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
272                sizeof(lc->stfle_fac_list));
273         memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
274                sizeof(lc->alt_stfle_fac_list));
275         arch_spin_lock_setup(cpu);
276 }
277
278 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
279 {
280         struct lowcore *lc = pcpu->lowcore;
281
282         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
283                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
284         lc->current_task = (unsigned long) tsk;
285         lc->lpp = LPP_MAGIC;
286         lc->current_pid = tsk->pid;
287         lc->user_timer = tsk->thread.user_timer;
288         lc->guest_timer = tsk->thread.guest_timer;
289         lc->system_timer = tsk->thread.system_timer;
290         lc->hardirq_timer = tsk->thread.hardirq_timer;
291         lc->softirq_timer = tsk->thread.softirq_timer;
292         lc->steal_timer = 0;
293 }
294
295 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
296 {
297         struct lowcore *lc = pcpu->lowcore;
298
299         lc->restart_stack = lc->nodat_stack;
300         lc->restart_fn = (unsigned long) func;
301         lc->restart_data = (unsigned long) data;
302         lc->restart_source = -1UL;
303         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
304 }
305
306 /*
307  * Call function via PSW restart on pcpu and stop the current cpu.
308  */
309 static void __pcpu_delegate(void (*func)(void*), void *data)
310 {
311         func(data);     /* should not return */
312 }
313
314 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
315                                                 void (*func)(void *),
316                                                 void *data, unsigned long stack)
317 {
318         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
319         unsigned long source_cpu = stap();
320
321         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
322         if (pcpu->address == source_cpu)
323                 CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
324         /* Stop target cpu (if func returns this stops the current cpu). */
325         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
326         /* Restart func on the target cpu and stop the current cpu. */
327         mem_assign_absolute(lc->restart_stack, stack);
328         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
329         mem_assign_absolute(lc->restart_data, (unsigned long) data);
330         mem_assign_absolute(lc->restart_source, source_cpu);
331         __bpon();
332         asm volatile(
333                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
334                 "       brc     2,0b    # busy, try again\n"
335                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
336                 "       brc     2,1b    # busy, try again\n"
337                 : : "d" (pcpu->address), "d" (source_cpu),
338                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
339                 : "0", "1", "cc");
340         for (;;) ;
341 }
342
343 /*
344  * Enable additional logical cpus for multi-threading.
345  */
346 static int pcpu_set_smt(unsigned int mtid)
347 {
348         int cc;
349
350         if (smp_cpu_mtid == mtid)
351                 return 0;
352         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
353         if (cc == 0) {
354                 smp_cpu_mtid = mtid;
355                 smp_cpu_mt_shift = 0;
356                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
357                         smp_cpu_mt_shift++;
358                 pcpu_devices[0].address = stap();
359         }
360         return cc;
361 }
362
363 /*
364  * Call function on an online CPU.
365  */
366 void smp_call_online_cpu(void (*func)(void *), void *data)
367 {
368         struct pcpu *pcpu;
369
370         /* Use the current cpu if it is online. */
371         pcpu = pcpu_find_address(cpu_online_mask, stap());
372         if (!pcpu)
373                 /* Use the first online cpu. */
374                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
375         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
376 }
377
378 /*
379  * Call function on the ipl CPU.
380  */
381 void smp_call_ipl_cpu(void (*func)(void *), void *data)
382 {
383         struct lowcore *lc = pcpu_devices->lowcore;
384
385         if (pcpu_devices[0].address == stap())
386                 lc = &S390_lowcore;
387
388         pcpu_delegate(&pcpu_devices[0], func, data,
389                       lc->nodat_stack);
390 }
391
392 int smp_find_processor_id(u16 address)
393 {
394         int cpu;
395
396         for_each_present_cpu(cpu)
397                 if (pcpu_devices[cpu].address == address)
398                         return cpu;
399         return -1;
400 }
401
402 void schedule_mcck_handler(void)
403 {
404         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
405 }
406
407 bool notrace arch_vcpu_is_preempted(int cpu)
408 {
409         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
410                 return false;
411         if (pcpu_running(pcpu_devices + cpu))
412                 return false;
413         return true;
414 }
415 EXPORT_SYMBOL(arch_vcpu_is_preempted);
416
417 void notrace smp_yield_cpu(int cpu)
418 {
419         if (!MACHINE_HAS_DIAG9C)
420                 return;
421         diag_stat_inc_norecursion(DIAG_STAT_X09C);
422         asm volatile("diag %0,0,0x9c"
423                      : : "d" (pcpu_devices[cpu].address));
424 }
425
426 /*
427  * Send cpus emergency shutdown signal. This gives the cpus the
428  * opportunity to complete outstanding interrupts.
429  */
430 void notrace smp_emergency_stop(void)
431 {
432         cpumask_t cpumask;
433         u64 end;
434         int cpu;
435
436         cpumask_copy(&cpumask, cpu_online_mask);
437         cpumask_clear_cpu(smp_processor_id(), &cpumask);
438
439         end = get_tod_clock() + (1000000UL << 12);
440         for_each_cpu(cpu, &cpumask) {
441                 struct pcpu *pcpu = pcpu_devices + cpu;
442                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
443                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
444                                    0, NULL) == SIGP_CC_BUSY &&
445                        get_tod_clock() < end)
446                         cpu_relax();
447         }
448         while (get_tod_clock() < end) {
449                 for_each_cpu(cpu, &cpumask)
450                         if (pcpu_stopped(pcpu_devices + cpu))
451                                 cpumask_clear_cpu(cpu, &cpumask);
452                 if (cpumask_empty(&cpumask))
453                         break;
454                 cpu_relax();
455         }
456 }
457 NOKPROBE_SYMBOL(smp_emergency_stop);
458
459 /*
460  * Stop all cpus but the current one.
461  */
462 void smp_send_stop(void)
463 {
464         int cpu;
465
466         /* Disable all interrupts/machine checks */
467         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
468         trace_hardirqs_off();
469
470         debug_set_critical();
471
472         if (oops_in_progress)
473                 smp_emergency_stop();
474
475         /* stop all processors */
476         for_each_online_cpu(cpu) {
477                 if (cpu == smp_processor_id())
478                         continue;
479                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
480                 while (!pcpu_stopped(pcpu_devices + cpu))
481                         cpu_relax();
482         }
483 }
484
485 /*
486  * This is the main routine where commands issued by other
487  * cpus are handled.
488  */
489 static void smp_handle_ext_call(void)
490 {
491         unsigned long bits;
492
493         /* handle bit signal external calls */
494         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
495         if (test_bit(ec_stop_cpu, &bits))
496                 smp_stop_cpu();
497         if (test_bit(ec_schedule, &bits))
498                 scheduler_ipi();
499         if (test_bit(ec_call_function_single, &bits))
500                 generic_smp_call_function_single_interrupt();
501         if (test_bit(ec_mcck_pending, &bits))
502                 __s390_handle_mcck();
503 }
504
505 static void do_ext_call_interrupt(struct ext_code ext_code,
506                                   unsigned int param32, unsigned long param64)
507 {
508         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
509         smp_handle_ext_call();
510 }
511
512 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
513 {
514         int cpu;
515
516         for_each_cpu(cpu, mask)
517                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
518 }
519
520 void arch_send_call_function_single_ipi(int cpu)
521 {
522         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
523 }
524
525 /*
526  * this function sends a 'reschedule' IPI to another CPU.
527  * it goes straight through and wastes no time serializing
528  * anything. Worst case is that we lose a reschedule ...
529  */
530 void smp_send_reschedule(int cpu)
531 {
532         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
533 }
534
535 /*
536  * parameter area for the set/clear control bit callbacks
537  */
538 struct ec_creg_mask_parms {
539         unsigned long orval;
540         unsigned long andval;
541         int cr;
542 };
543
544 /*
545  * callback for setting/clearing control bits
546  */
547 static void smp_ctl_bit_callback(void *info)
548 {
549         struct ec_creg_mask_parms *pp = info;
550         unsigned long cregs[16];
551
552         __ctl_store(cregs, 0, 15);
553         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
554         __ctl_load(cregs, 0, 15);
555 }
556
557 /*
558  * Set a bit in a control register of all cpus
559  */
560 void smp_ctl_set_bit(int cr, int bit)
561 {
562         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
563
564         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
565 }
566 EXPORT_SYMBOL(smp_ctl_set_bit);
567
568 /*
569  * Clear a bit in a control register of all cpus
570  */
571 void smp_ctl_clear_bit(int cr, int bit)
572 {
573         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
574
575         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
576 }
577 EXPORT_SYMBOL(smp_ctl_clear_bit);
578
579 #ifdef CONFIG_CRASH_DUMP
580
581 int smp_store_status(int cpu)
582 {
583         struct pcpu *pcpu = pcpu_devices + cpu;
584         unsigned long pa;
585
586         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
587         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
588                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
589                 return -EIO;
590         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
591                 return 0;
592         pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
593         if (MACHINE_HAS_GS)
594                 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
595         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
596                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
597                 return -EIO;
598         return 0;
599 }
600
601 /*
602  * Collect CPU state of the previous, crashed system.
603  * There are four cases:
604  * 1) standard zfcp/nvme dump
605  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
606  *    The state for all CPUs except the boot CPU needs to be collected
607  *    with sigp stop-and-store-status. The boot CPU state is located in
608  *    the absolute lowcore of the memory stored in the HSA. The zcore code
609  *    will copy the boot CPU state from the HSA.
610  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
611  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
612  *    The state for all CPUs except the boot CPU needs to be collected
613  *    with sigp stop-and-store-status. The firmware or the boot-loader
614  *    stored the registers of the boot CPU in the absolute lowcore in the
615  *    memory of the old system.
616  * 3) kdump and the old kernel did not store the CPU state,
617  *    or stand-alone kdump for DASD
618  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
619  *    The state for all CPUs except the boot CPU needs to be collected
620  *    with sigp stop-and-store-status. The kexec code or the boot-loader
621  *    stored the registers of the boot CPU in the memory of the old system.
622  * 4) kdump and the old kernel stored the CPU state
623  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
624  *    This case does not exist for s390 anymore, setup_arch explicitly
625  *    deactivates the elfcorehdr= kernel parameter
626  */
627 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
628                                      bool is_boot_cpu, unsigned long page)
629 {
630         __vector128 *vxrs = (__vector128 *) page;
631
632         if (is_boot_cpu)
633                 vxrs = boot_cpu_vector_save_area;
634         else
635                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
636         save_area_add_vxrs(sa, vxrs);
637 }
638
639 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
640                                      bool is_boot_cpu, unsigned long page)
641 {
642         void *regs = (void *) page;
643
644         if (is_boot_cpu)
645                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
646         else
647                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
648         save_area_add_regs(sa, regs);
649 }
650
651 void __init smp_save_dump_cpus(void)
652 {
653         int addr, boot_cpu_addr, max_cpu_addr;
654         struct save_area *sa;
655         unsigned long page;
656         bool is_boot_cpu;
657
658         if (!(OLDMEM_BASE || is_ipl_type_dump()))
659                 /* No previous system present, normal boot. */
660                 return;
661         /* Allocate a page as dumping area for the store status sigps */
662         page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
663         if (!page)
664                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
665                       PAGE_SIZE, 1UL << 31);
666
667         /* Set multi-threading state to the previous system. */
668         pcpu_set_smt(sclp.mtid_prev);
669         boot_cpu_addr = stap();
670         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
671         for (addr = 0; addr <= max_cpu_addr; addr++) {
672                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
673                     SIGP_CC_NOT_OPERATIONAL)
674                         continue;
675                 is_boot_cpu = (addr == boot_cpu_addr);
676                 /* Allocate save area */
677                 sa = save_area_alloc(is_boot_cpu);
678                 if (!sa)
679                         panic("could not allocate memory for save area\n");
680                 if (MACHINE_HAS_VX)
681                         /* Get the vector registers */
682                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
683                 /*
684                  * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
685                  * of the boot CPU are stored in the HSA. To retrieve
686                  * these registers an SCLP request is required which is
687                  * done by drivers/s390/char/zcore.c:init_cpu_info()
688                  */
689                 if (!is_boot_cpu || OLDMEM_BASE)
690                         /* Get the CPU registers */
691                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
692         }
693         memblock_free(page, PAGE_SIZE);
694         diag_dma_ops.diag308_reset();
695         pcpu_set_smt(0);
696 }
697 #endif /* CONFIG_CRASH_DUMP */
698
699 void smp_cpu_set_polarization(int cpu, int val)
700 {
701         pcpu_devices[cpu].polarization = val;
702 }
703
704 int smp_cpu_get_polarization(int cpu)
705 {
706         return pcpu_devices[cpu].polarization;
707 }
708
709 int smp_cpu_get_cpu_address(int cpu)
710 {
711         return pcpu_devices[cpu].address;
712 }
713
714 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
715 {
716         static int use_sigp_detection;
717         int address;
718
719         if (use_sigp_detection || sclp_get_core_info(info, early)) {
720                 use_sigp_detection = 1;
721                 for (address = 0;
722                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
723                      address += (1U << smp_cpu_mt_shift)) {
724                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
725                             SIGP_CC_NOT_OPERATIONAL)
726                                 continue;
727                         info->core[info->configured].core_id =
728                                 address >> smp_cpu_mt_shift;
729                         info->configured++;
730                 }
731                 info->combined = info->configured;
732         }
733 }
734
735 static int smp_add_present_cpu(int cpu);
736
737 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
738                         bool configured, bool early)
739 {
740         struct pcpu *pcpu;
741         int cpu, nr, i;
742         u16 address;
743
744         nr = 0;
745         if (sclp.has_core_type && core->type != boot_core_type)
746                 return nr;
747         cpu = cpumask_first(avail);
748         address = core->core_id << smp_cpu_mt_shift;
749         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
750                 if (pcpu_find_address(cpu_present_mask, address + i))
751                         continue;
752                 pcpu = pcpu_devices + cpu;
753                 pcpu->address = address + i;
754                 if (configured)
755                         pcpu->state = CPU_STATE_CONFIGURED;
756                 else
757                         pcpu->state = CPU_STATE_STANDBY;
758                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
759                 set_cpu_present(cpu, true);
760                 if (!early && smp_add_present_cpu(cpu) != 0)
761                         set_cpu_present(cpu, false);
762                 else
763                         nr++;
764                 cpumask_clear_cpu(cpu, avail);
765                 cpu = cpumask_next(cpu, avail);
766         }
767         return nr;
768 }
769
770 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
771 {
772         struct sclp_core_entry *core;
773         cpumask_t avail;
774         bool configured;
775         u16 core_id;
776         int nr, i;
777
778         nr = 0;
779         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
780         /*
781          * Add IPL core first (which got logical CPU number 0) to make sure
782          * that all SMT threads get subsequent logical CPU numbers.
783          */
784         if (early) {
785                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
786                 for (i = 0; i < info->configured; i++) {
787                         core = &info->core[i];
788                         if (core->core_id == core_id) {
789                                 nr += smp_add_core(core, &avail, true, early);
790                                 break;
791                         }
792                 }
793         }
794         for (i = 0; i < info->combined; i++) {
795                 configured = i < info->configured;
796                 nr += smp_add_core(&info->core[i], &avail, configured, early);
797         }
798         return nr;
799 }
800
801 void __init smp_detect_cpus(void)
802 {
803         unsigned int cpu, mtid, c_cpus, s_cpus;
804         struct sclp_core_info *info;
805         u16 address;
806
807         /* Get CPU information */
808         info = memblock_alloc(sizeof(*info), 8);
809         if (!info)
810                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
811                       __func__, sizeof(*info), 8);
812         smp_get_core_info(info, 1);
813         /* Find boot CPU type */
814         if (sclp.has_core_type) {
815                 address = stap();
816                 for (cpu = 0; cpu < info->combined; cpu++)
817                         if (info->core[cpu].core_id == address) {
818                                 /* The boot cpu dictates the cpu type. */
819                                 boot_core_type = info->core[cpu].type;
820                                 break;
821                         }
822                 if (cpu >= info->combined)
823                         panic("Could not find boot CPU type");
824         }
825
826         /* Set multi-threading state for the current system */
827         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
828         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
829         pcpu_set_smt(mtid);
830
831         /* Print number of CPUs */
832         c_cpus = s_cpus = 0;
833         for (cpu = 0; cpu < info->combined; cpu++) {
834                 if (sclp.has_core_type &&
835                     info->core[cpu].type != boot_core_type)
836                         continue;
837                 if (cpu < info->configured)
838                         c_cpus += smp_cpu_mtid + 1;
839                 else
840                         s_cpus += smp_cpu_mtid + 1;
841         }
842         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
843
844         /* Add CPUs present at boot */
845         get_online_cpus();
846         __smp_rescan_cpus(info, true);
847         put_online_cpus();
848         memblock_free_early((unsigned long)info, sizeof(*info));
849 }
850
851 static void smp_init_secondary(void)
852 {
853         int cpu = raw_smp_processor_id();
854
855         S390_lowcore.last_update_clock = get_tod_clock();
856         restore_access_regs(S390_lowcore.access_regs_save_area);
857         cpu_init();
858         rcu_cpu_starting(cpu);
859         preempt_disable();
860         init_cpu_timer();
861         vtime_init();
862         vdso_getcpu_init();
863         pfault_init();
864         notify_cpu_starting(cpu);
865         if (topology_cpu_dedicated(cpu))
866                 set_cpu_flag(CIF_DEDICATED_CPU);
867         else
868                 clear_cpu_flag(CIF_DEDICATED_CPU);
869         set_cpu_online(cpu, true);
870         update_cpu_masks();
871         inc_irq_stat(CPU_RST);
872         local_irq_enable();
873         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
874 }
875
876 /*
877  *      Activate a secondary processor.
878  */
879 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
880 {
881         S390_lowcore.restart_stack = (unsigned long) restart_stack;
882         S390_lowcore.restart_fn = (unsigned long) do_restart;
883         S390_lowcore.restart_data = 0;
884         S390_lowcore.restart_source = -1UL;
885         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
886         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
887         CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
888 }
889
890 /* Upping and downing of CPUs */
891 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
892 {
893         struct pcpu *pcpu = pcpu_devices + cpu;
894         int rc;
895
896         if (pcpu->state != CPU_STATE_CONFIGURED)
897                 return -EIO;
898         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
899             SIGP_CC_ORDER_CODE_ACCEPTED)
900                 return -EIO;
901
902         rc = pcpu_alloc_lowcore(pcpu, cpu);
903         if (rc)
904                 return rc;
905         pcpu_prepare_secondary(pcpu, cpu);
906         pcpu_attach_task(pcpu, tidle);
907         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
908         /* Wait until cpu puts itself in the online & active maps */
909         while (!cpu_online(cpu))
910                 cpu_relax();
911         return 0;
912 }
913
914 static unsigned int setup_possible_cpus __initdata;
915
916 static int __init _setup_possible_cpus(char *s)
917 {
918         get_option(&s, &setup_possible_cpus);
919         return 0;
920 }
921 early_param("possible_cpus", _setup_possible_cpus);
922
923 int __cpu_disable(void)
924 {
925         unsigned long cregs[16];
926
927         /* Handle possible pending IPIs */
928         smp_handle_ext_call();
929         set_cpu_online(smp_processor_id(), false);
930         update_cpu_masks();
931         /* Disable pseudo page faults on this cpu. */
932         pfault_fini();
933         /* Disable interrupt sources via control register. */
934         __ctl_store(cregs, 0, 15);
935         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
936         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
937         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
938         __ctl_load(cregs, 0, 15);
939         clear_cpu_flag(CIF_NOHZ_DELAY);
940         return 0;
941 }
942
943 void __cpu_die(unsigned int cpu)
944 {
945         struct pcpu *pcpu;
946
947         /* Wait until target cpu is down */
948         pcpu = pcpu_devices + cpu;
949         while (!pcpu_stopped(pcpu))
950                 cpu_relax();
951         pcpu_free_lowcore(pcpu);
952         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
953         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
954 }
955
956 void __noreturn cpu_die(void)
957 {
958         idle_task_exit();
959         __bpon();
960         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
961         for (;;) ;
962 }
963
964 void __init smp_fill_possible_mask(void)
965 {
966         unsigned int possible, sclp_max, cpu;
967
968         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
969         sclp_max = min(smp_max_threads, sclp_max);
970         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
971         possible = setup_possible_cpus ?: nr_cpu_ids;
972         possible = min(possible, sclp_max);
973         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
974                 set_cpu_possible(cpu, true);
975 }
976
977 void __init smp_prepare_cpus(unsigned int max_cpus)
978 {
979         /* request the 0x1201 emergency signal external interrupt */
980         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
981                 panic("Couldn't request external interrupt 0x1201");
982         /* request the 0x1202 external call external interrupt */
983         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
984                 panic("Couldn't request external interrupt 0x1202");
985 }
986
987 void __init smp_prepare_boot_cpu(void)
988 {
989         struct pcpu *pcpu = pcpu_devices;
990
991         WARN_ON(!cpu_present(0) || !cpu_online(0));
992         pcpu->state = CPU_STATE_CONFIGURED;
993         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
994         S390_lowcore.percpu_offset = __per_cpu_offset[0];
995         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
996 }
997
998 void __init smp_setup_processor_id(void)
999 {
1000         pcpu_devices[0].address = stap();
1001         S390_lowcore.cpu_nr = 0;
1002         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1003         S390_lowcore.spinlock_index = 0;
1004 }
1005
1006 /*
1007  * the frequency of the profiling timer can be changed
1008  * by writing a multiplier value into /proc/profile.
1009  *
1010  * usually you want to run this on all CPUs ;)
1011  */
1012 int setup_profiling_timer(unsigned int multiplier)
1013 {
1014         return 0;
1015 }
1016
1017 static ssize_t cpu_configure_show(struct device *dev,
1018                                   struct device_attribute *attr, char *buf)
1019 {
1020         ssize_t count;
1021
1022         mutex_lock(&smp_cpu_state_mutex);
1023         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1024         mutex_unlock(&smp_cpu_state_mutex);
1025         return count;
1026 }
1027
1028 static ssize_t cpu_configure_store(struct device *dev,
1029                                    struct device_attribute *attr,
1030                                    const char *buf, size_t count)
1031 {
1032         struct pcpu *pcpu;
1033         int cpu, val, rc, i;
1034         char delim;
1035
1036         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1037                 return -EINVAL;
1038         if (val != 0 && val != 1)
1039                 return -EINVAL;
1040         get_online_cpus();
1041         mutex_lock(&smp_cpu_state_mutex);
1042         rc = -EBUSY;
1043         /* disallow configuration changes of online cpus and cpu 0 */
1044         cpu = dev->id;
1045         cpu = smp_get_base_cpu(cpu);
1046         if (cpu == 0)
1047                 goto out;
1048         for (i = 0; i <= smp_cpu_mtid; i++)
1049                 if (cpu_online(cpu + i))
1050                         goto out;
1051         pcpu = pcpu_devices + cpu;
1052         rc = 0;
1053         switch (val) {
1054         case 0:
1055                 if (pcpu->state != CPU_STATE_CONFIGURED)
1056                         break;
1057                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1058                 if (rc)
1059                         break;
1060                 for (i = 0; i <= smp_cpu_mtid; i++) {
1061                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1062                                 continue;
1063                         pcpu[i].state = CPU_STATE_STANDBY;
1064                         smp_cpu_set_polarization(cpu + i,
1065                                                  POLARIZATION_UNKNOWN);
1066                 }
1067                 topology_expect_change();
1068                 break;
1069         case 1:
1070                 if (pcpu->state != CPU_STATE_STANDBY)
1071                         break;
1072                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1073                 if (rc)
1074                         break;
1075                 for (i = 0; i <= smp_cpu_mtid; i++) {
1076                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1077                                 continue;
1078                         pcpu[i].state = CPU_STATE_CONFIGURED;
1079                         smp_cpu_set_polarization(cpu + i,
1080                                                  POLARIZATION_UNKNOWN);
1081                 }
1082                 topology_expect_change();
1083                 break;
1084         default:
1085                 break;
1086         }
1087 out:
1088         mutex_unlock(&smp_cpu_state_mutex);
1089         put_online_cpus();
1090         return rc ? rc : count;
1091 }
1092 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1093
1094 static ssize_t show_cpu_address(struct device *dev,
1095                                 struct device_attribute *attr, char *buf)
1096 {
1097         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1098 }
1099 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1100
1101 static struct attribute *cpu_common_attrs[] = {
1102         &dev_attr_configure.attr,
1103         &dev_attr_address.attr,
1104         NULL,
1105 };
1106
1107 static struct attribute_group cpu_common_attr_group = {
1108         .attrs = cpu_common_attrs,
1109 };
1110
1111 static struct attribute *cpu_online_attrs[] = {
1112         &dev_attr_idle_count.attr,
1113         &dev_attr_idle_time_us.attr,
1114         NULL,
1115 };
1116
1117 static struct attribute_group cpu_online_attr_group = {
1118         .attrs = cpu_online_attrs,
1119 };
1120
1121 static int smp_cpu_online(unsigned int cpu)
1122 {
1123         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1124
1125         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1126 }
1127
1128 static int smp_cpu_pre_down(unsigned int cpu)
1129 {
1130         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1131
1132         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1133         return 0;
1134 }
1135
1136 static int smp_add_present_cpu(int cpu)
1137 {
1138         struct device *s;
1139         struct cpu *c;
1140         int rc;
1141
1142         c = kzalloc(sizeof(*c), GFP_KERNEL);
1143         if (!c)
1144                 return -ENOMEM;
1145         per_cpu(cpu_device, cpu) = c;
1146         s = &c->dev;
1147         c->hotpluggable = 1;
1148         rc = register_cpu(c, cpu);
1149         if (rc)
1150                 goto out;
1151         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1152         if (rc)
1153                 goto out_cpu;
1154         rc = topology_cpu_init(c);
1155         if (rc)
1156                 goto out_topology;
1157         return 0;
1158
1159 out_topology:
1160         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1161 out_cpu:
1162         unregister_cpu(c);
1163 out:
1164         return rc;
1165 }
1166
1167 int __ref smp_rescan_cpus(void)
1168 {
1169         struct sclp_core_info *info;
1170         int nr;
1171
1172         info = kzalloc(sizeof(*info), GFP_KERNEL);
1173         if (!info)
1174                 return -ENOMEM;
1175         smp_get_core_info(info, 0);
1176         get_online_cpus();
1177         mutex_lock(&smp_cpu_state_mutex);
1178         nr = __smp_rescan_cpus(info, false);
1179         mutex_unlock(&smp_cpu_state_mutex);
1180         put_online_cpus();
1181         kfree(info);
1182         if (nr)
1183                 topology_schedule_update();
1184         return 0;
1185 }
1186
1187 static ssize_t __ref rescan_store(struct device *dev,
1188                                   struct device_attribute *attr,
1189                                   const char *buf,
1190                                   size_t count)
1191 {
1192         int rc;
1193
1194         rc = lock_device_hotplug_sysfs();
1195         if (rc)
1196                 return rc;
1197         rc = smp_rescan_cpus();
1198         unlock_device_hotplug();
1199         return rc ? rc : count;
1200 }
1201 static DEVICE_ATTR_WO(rescan);
1202
1203 static int __init s390_smp_init(void)
1204 {
1205         int cpu, rc = 0;
1206
1207         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1208         if (rc)
1209                 return rc;
1210         for_each_present_cpu(cpu) {
1211                 rc = smp_add_present_cpu(cpu);
1212                 if (rc)
1213                         goto out;
1214         }
1215
1216         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1217                                smp_cpu_online, smp_cpu_pre_down);
1218         rc = rc <= 0 ? rc : 0;
1219 out:
1220         return rc;
1221 }
1222 subsys_initcall(s390_smp_init);