Merge branch 'work.gfs2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60
61 enum {
62         ec_schedule = 0,
63         ec_call_function_single,
64         ec_stop_cpu,
65         ec_mcck_pending,
66         ec_irq_work,
67 };
68
69 enum {
70         CPU_STATE_STANDBY,
71         CPU_STATE_CONFIGURED,
72 };
73
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75
76 struct pcpu {
77         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
78         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
79         signed char state;              /* physical cpu state */
80         signed char polarization;       /* physical polarization */
81         u16 address;                    /* physical cpu address */
82 };
83
84 static u8 boot_core_type;
85 static struct pcpu pcpu_devices[NR_CPUS];
86
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96
97 static unsigned int smp_max_threads __initdata = -1U;
98
99 static int __init early_nosmt(char *s)
100 {
101         smp_max_threads = 1;
102         return 0;
103 }
104 early_param("nosmt", early_nosmt);
105
106 static int __init early_smt(char *s)
107 {
108         get_option(&s, &smp_max_threads);
109         return 0;
110 }
111 early_param("smt", early_smt);
112
113 /*
114  * The smp_cpu_state_mutex must be held when changing the state or polarization
115  * member of a pcpu data structure within the pcpu_devices arreay.
116  */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118
119 /*
120  * Signal processor helper functions.
121  */
122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124         int cc;
125
126         while (1) {
127                 cc = __pcpu_sigp(addr, order, parm, NULL);
128                 if (cc != SIGP_CC_BUSY)
129                         return cc;
130                 cpu_relax();
131         }
132 }
133
134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136         int cc, retry;
137
138         for (retry = 0; ; retry++) {
139                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140                 if (cc != SIGP_CC_BUSY)
141                         break;
142                 if (retry >= 3)
143                         udelay(10);
144         }
145         return cc;
146 }
147
148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150         u32 status;
151
152         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153                         0, &status) != SIGP_CC_STATUS_STORED)
154                 return 0;
155         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157
158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161                         0, NULL) != SIGP_CC_STATUS_STORED)
162                 return 1;
163         /* Status stored condition code is equivalent to cpu not running. */
164         return 0;
165 }
166
167 /*
168  * Find struct pcpu by cpu address.
169  */
170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172         int cpu;
173
174         for_each_cpu(cpu, mask)
175                 if (pcpu_devices[cpu].address == address)
176                         return pcpu_devices + cpu;
177         return NULL;
178 }
179
180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182         int order;
183
184         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185                 return;
186         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187         pcpu->ec_clk = get_tod_clock_fast();
188         pcpu_sigp_retry(pcpu, order, 0);
189 }
190
191 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
192 {
193         unsigned long async_stack, nodat_stack, mcck_stack;
194         struct lowcore *lc;
195
196         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198         async_stack = stack_alloc();
199         mcck_stack = stack_alloc();
200         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
201                 goto out;
202         memcpy(lc, &S390_lowcore, 512);
203         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204         lc->async_stack = async_stack + STACK_INIT_OFFSET;
205         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
206         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
207         lc->cpu_nr = cpu;
208         lc->spinlock_lockval = arch_spin_lockval(cpu);
209         lc->spinlock_index = 0;
210         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
211         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
212         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
213         lc->preempt_count = PREEMPT_DISABLED;
214         if (nmi_alloc_per_cpu(lc))
215                 goto out;
216         lowcore_ptr[cpu] = lc;
217         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
218         return 0;
219
220 out:
221         stack_free(mcck_stack);
222         stack_free(async_stack);
223         free_pages(nodat_stack, THREAD_SIZE_ORDER);
224         free_pages((unsigned long) lc, LC_ORDER);
225         return -ENOMEM;
226 }
227
228 static void pcpu_free_lowcore(struct pcpu *pcpu)
229 {
230         unsigned long async_stack, nodat_stack, mcck_stack;
231         struct lowcore *lc;
232         int cpu;
233
234         cpu = pcpu - pcpu_devices;
235         lc = lowcore_ptr[cpu];
236         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
237         async_stack = lc->async_stack - STACK_INIT_OFFSET;
238         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
239         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
240         lowcore_ptr[cpu] = NULL;
241         nmi_free_per_cpu(lc);
242         stack_free(async_stack);
243         stack_free(mcck_stack);
244         free_pages(nodat_stack, THREAD_SIZE_ORDER);
245         free_pages((unsigned long) lc, LC_ORDER);
246 }
247
248 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
249 {
250         struct lowcore *lc = lowcore_ptr[cpu];
251
252         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
253         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
254         lc->cpu_nr = cpu;
255         lc->restart_flags = RESTART_FLAG_CTLREGS;
256         lc->spinlock_lockval = arch_spin_lockval(cpu);
257         lc->spinlock_index = 0;
258         lc->percpu_offset = __per_cpu_offset[cpu];
259         lc->kernel_asce = S390_lowcore.kernel_asce;
260         lc->user_asce = s390_invalid_asce;
261         lc->machine_flags = S390_lowcore.machine_flags;
262         lc->user_timer = lc->system_timer =
263                 lc->steal_timer = lc->avg_steal_timer = 0;
264         __ctl_store(lc->cregs_save_area, 0, 15);
265         lc->cregs_save_area[1] = lc->kernel_asce;
266         lc->cregs_save_area[7] = lc->user_asce;
267         save_access_regs((unsigned int *) lc->access_regs_save_area);
268         arch_spin_lock_setup(cpu);
269 }
270
271 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
272 {
273         struct lowcore *lc;
274         int cpu;
275
276         cpu = pcpu - pcpu_devices;
277         lc = lowcore_ptr[cpu];
278         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
279                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
280         lc->current_task = (unsigned long) tsk;
281         lc->lpp = LPP_MAGIC;
282         lc->current_pid = tsk->pid;
283         lc->user_timer = tsk->thread.user_timer;
284         lc->guest_timer = tsk->thread.guest_timer;
285         lc->system_timer = tsk->thread.system_timer;
286         lc->hardirq_timer = tsk->thread.hardirq_timer;
287         lc->softirq_timer = tsk->thread.softirq_timer;
288         lc->steal_timer = 0;
289 }
290
291 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
292 {
293         struct lowcore *lc;
294         int cpu;
295
296         cpu = pcpu - pcpu_devices;
297         lc = lowcore_ptr[cpu];
298         lc->restart_stack = lc->kernel_stack;
299         lc->restart_fn = (unsigned long) func;
300         lc->restart_data = (unsigned long) data;
301         lc->restart_source = -1U;
302         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
303 }
304
305 typedef void (pcpu_delegate_fn)(void *);
306
307 /*
308  * Call function via PSW restart on pcpu and stop the current cpu.
309  */
310 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
311 {
312         func(data);     /* should not return */
313 }
314
315 static void pcpu_delegate(struct pcpu *pcpu,
316                           pcpu_delegate_fn *func,
317                           void *data, unsigned long stack)
318 {
319         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
320         unsigned int source_cpu = stap();
321
322         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
323         if (pcpu->address == source_cpu) {
324                 call_on_stack(2, stack, void, __pcpu_delegate,
325                               pcpu_delegate_fn *, func, void *, data);
326         }
327         /* Stop target cpu (if func returns this stops the current cpu). */
328         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
329         /* Restart func on the target cpu and stop the current cpu. */
330         mem_assign_absolute(lc->restart_stack, stack);
331         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
332         mem_assign_absolute(lc->restart_data, (unsigned long) data);
333         mem_assign_absolute(lc->restart_source, source_cpu);
334         __bpon();
335         asm volatile(
336                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
337                 "       brc     2,0b    # busy, try again\n"
338                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
339                 "       brc     2,1b    # busy, try again\n"
340                 : : "d" (pcpu->address), "d" (source_cpu),
341                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
342                 : "0", "1", "cc");
343         for (;;) ;
344 }
345
346 /*
347  * Enable additional logical cpus for multi-threading.
348  */
349 static int pcpu_set_smt(unsigned int mtid)
350 {
351         int cc;
352
353         if (smp_cpu_mtid == mtid)
354                 return 0;
355         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
356         if (cc == 0) {
357                 smp_cpu_mtid = mtid;
358                 smp_cpu_mt_shift = 0;
359                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
360                         smp_cpu_mt_shift++;
361                 pcpu_devices[0].address = stap();
362         }
363         return cc;
364 }
365
366 /*
367  * Call function on an online CPU.
368  */
369 void smp_call_online_cpu(void (*func)(void *), void *data)
370 {
371         struct pcpu *pcpu;
372
373         /* Use the current cpu if it is online. */
374         pcpu = pcpu_find_address(cpu_online_mask, stap());
375         if (!pcpu)
376                 /* Use the first online cpu. */
377                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
378         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
379 }
380
381 /*
382  * Call function on the ipl CPU.
383  */
384 void smp_call_ipl_cpu(void (*func)(void *), void *data)
385 {
386         struct lowcore *lc = lowcore_ptr[0];
387
388         if (pcpu_devices[0].address == stap())
389                 lc = &S390_lowcore;
390
391         pcpu_delegate(&pcpu_devices[0], func, data,
392                       lc->nodat_stack);
393 }
394
395 int smp_find_processor_id(u16 address)
396 {
397         int cpu;
398
399         for_each_present_cpu(cpu)
400                 if (pcpu_devices[cpu].address == address)
401                         return cpu;
402         return -1;
403 }
404
405 void schedule_mcck_handler(void)
406 {
407         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
408 }
409
410 bool notrace arch_vcpu_is_preempted(int cpu)
411 {
412         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
413                 return false;
414         if (pcpu_running(pcpu_devices + cpu))
415                 return false;
416         return true;
417 }
418 EXPORT_SYMBOL(arch_vcpu_is_preempted);
419
420 void notrace smp_yield_cpu(int cpu)
421 {
422         if (!MACHINE_HAS_DIAG9C)
423                 return;
424         diag_stat_inc_norecursion(DIAG_STAT_X09C);
425         asm volatile("diag %0,0,0x9c"
426                      : : "d" (pcpu_devices[cpu].address));
427 }
428 EXPORT_SYMBOL_GPL(smp_yield_cpu);
429
430 /*
431  * Send cpus emergency shutdown signal. This gives the cpus the
432  * opportunity to complete outstanding interrupts.
433  */
434 void notrace smp_emergency_stop(void)
435 {
436         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
437         static cpumask_t cpumask;
438         u64 end;
439         int cpu;
440
441         arch_spin_lock(&lock);
442         cpumask_copy(&cpumask, cpu_online_mask);
443         cpumask_clear_cpu(smp_processor_id(), &cpumask);
444
445         end = get_tod_clock() + (1000000UL << 12);
446         for_each_cpu(cpu, &cpumask) {
447                 struct pcpu *pcpu = pcpu_devices + cpu;
448                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
449                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
450                                    0, NULL) == SIGP_CC_BUSY &&
451                        get_tod_clock() < end)
452                         cpu_relax();
453         }
454         while (get_tod_clock() < end) {
455                 for_each_cpu(cpu, &cpumask)
456                         if (pcpu_stopped(pcpu_devices + cpu))
457                                 cpumask_clear_cpu(cpu, &cpumask);
458                 if (cpumask_empty(&cpumask))
459                         break;
460                 cpu_relax();
461         }
462         arch_spin_unlock(&lock);
463 }
464 NOKPROBE_SYMBOL(smp_emergency_stop);
465
466 /*
467  * Stop all cpus but the current one.
468  */
469 void smp_send_stop(void)
470 {
471         int cpu;
472
473         /* Disable all interrupts/machine checks */
474         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
475         trace_hardirqs_off();
476
477         debug_set_critical();
478
479         if (oops_in_progress)
480                 smp_emergency_stop();
481
482         /* stop all processors */
483         for_each_online_cpu(cpu) {
484                 if (cpu == smp_processor_id())
485                         continue;
486                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
487                 while (!pcpu_stopped(pcpu_devices + cpu))
488                         cpu_relax();
489         }
490 }
491
492 /*
493  * This is the main routine where commands issued by other
494  * cpus are handled.
495  */
496 static void smp_handle_ext_call(void)
497 {
498         unsigned long bits;
499
500         /* handle bit signal external calls */
501         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
502         if (test_bit(ec_stop_cpu, &bits))
503                 smp_stop_cpu();
504         if (test_bit(ec_schedule, &bits))
505                 scheduler_ipi();
506         if (test_bit(ec_call_function_single, &bits))
507                 generic_smp_call_function_single_interrupt();
508         if (test_bit(ec_mcck_pending, &bits))
509                 __s390_handle_mcck();
510         if (test_bit(ec_irq_work, &bits))
511                 irq_work_run();
512 }
513
514 static void do_ext_call_interrupt(struct ext_code ext_code,
515                                   unsigned int param32, unsigned long param64)
516 {
517         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
518         smp_handle_ext_call();
519 }
520
521 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
522 {
523         int cpu;
524
525         for_each_cpu(cpu, mask)
526                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
527 }
528
529 void arch_send_call_function_single_ipi(int cpu)
530 {
531         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
532 }
533
534 /*
535  * this function sends a 'reschedule' IPI to another CPU.
536  * it goes straight through and wastes no time serializing
537  * anything. Worst case is that we lose a reschedule ...
538  */
539 void smp_send_reschedule(int cpu)
540 {
541         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
542 }
543
544 #ifdef CONFIG_IRQ_WORK
545 void arch_irq_work_raise(void)
546 {
547         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
548 }
549 #endif
550
551 /*
552  * parameter area for the set/clear control bit callbacks
553  */
554 struct ec_creg_mask_parms {
555         unsigned long orval;
556         unsigned long andval;
557         int cr;
558 };
559
560 /*
561  * callback for setting/clearing control bits
562  */
563 static void smp_ctl_bit_callback(void *info)
564 {
565         struct ec_creg_mask_parms *pp = info;
566         unsigned long cregs[16];
567
568         __ctl_store(cregs, 0, 15);
569         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
570         __ctl_load(cregs, 0, 15);
571 }
572
573 static DEFINE_SPINLOCK(ctl_lock);
574 static unsigned long ctlreg;
575
576 /*
577  * Set a bit in a control register of all cpus
578  */
579 void smp_ctl_set_bit(int cr, int bit)
580 {
581         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
582
583         spin_lock(&ctl_lock);
584         memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
585         __set_bit(bit, &ctlreg);
586         memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
587         spin_unlock(&ctl_lock);
588         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
589 }
590 EXPORT_SYMBOL(smp_ctl_set_bit);
591
592 /*
593  * Clear a bit in a control register of all cpus
594  */
595 void smp_ctl_clear_bit(int cr, int bit)
596 {
597         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
598
599         spin_lock(&ctl_lock);
600         memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
601         __clear_bit(bit, &ctlreg);
602         memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
603         spin_unlock(&ctl_lock);
604         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
605 }
606 EXPORT_SYMBOL(smp_ctl_clear_bit);
607
608 #ifdef CONFIG_CRASH_DUMP
609
610 int smp_store_status(int cpu)
611 {
612         struct lowcore *lc;
613         struct pcpu *pcpu;
614         unsigned long pa;
615
616         pcpu = pcpu_devices + cpu;
617         lc = lowcore_ptr[cpu];
618         pa = __pa(&lc->floating_pt_save_area);
619         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
620                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
621                 return -EIO;
622         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
623                 return 0;
624         pa = __pa(lc->mcesad & MCESA_ORIGIN_MASK);
625         if (MACHINE_HAS_GS)
626                 pa |= lc->mcesad & MCESA_LC_MASK;
627         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
628                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
629                 return -EIO;
630         return 0;
631 }
632
633 /*
634  * Collect CPU state of the previous, crashed system.
635  * There are four cases:
636  * 1) standard zfcp/nvme dump
637  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
638  *    The state for all CPUs except the boot CPU needs to be collected
639  *    with sigp stop-and-store-status. The boot CPU state is located in
640  *    the absolute lowcore of the memory stored in the HSA. The zcore code
641  *    will copy the boot CPU state from the HSA.
642  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
643  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
644  *    The state for all CPUs except the boot CPU needs to be collected
645  *    with sigp stop-and-store-status. The firmware or the boot-loader
646  *    stored the registers of the boot CPU in the absolute lowcore in the
647  *    memory of the old system.
648  * 3) kdump and the old kernel did not store the CPU state,
649  *    or stand-alone kdump for DASD
650  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
651  *    The state for all CPUs except the boot CPU needs to be collected
652  *    with sigp stop-and-store-status. The kexec code or the boot-loader
653  *    stored the registers of the boot CPU in the memory of the old system.
654  * 4) kdump and the old kernel stored the CPU state
655  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
656  *    This case does not exist for s390 anymore, setup_arch explicitly
657  *    deactivates the elfcorehdr= kernel parameter
658  */
659 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
660                                      bool is_boot_cpu, unsigned long page)
661 {
662         __vector128 *vxrs = (__vector128 *) page;
663
664         if (is_boot_cpu)
665                 vxrs = boot_cpu_vector_save_area;
666         else
667                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
668         save_area_add_vxrs(sa, vxrs);
669 }
670
671 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
672                                      bool is_boot_cpu, unsigned long page)
673 {
674         void *regs = (void *) page;
675
676         if (is_boot_cpu)
677                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
678         else
679                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
680         save_area_add_regs(sa, regs);
681 }
682
683 void __init smp_save_dump_cpus(void)
684 {
685         int addr, boot_cpu_addr, max_cpu_addr;
686         struct save_area *sa;
687         unsigned long page;
688         bool is_boot_cpu;
689
690         if (!(oldmem_data.start || is_ipl_type_dump()))
691                 /* No previous system present, normal boot. */
692                 return;
693         /* Allocate a page as dumping area for the store status sigps */
694         page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
695         if (!page)
696                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
697                       PAGE_SIZE, 1UL << 31);
698
699         /* Set multi-threading state to the previous system. */
700         pcpu_set_smt(sclp.mtid_prev);
701         boot_cpu_addr = stap();
702         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
703         for (addr = 0; addr <= max_cpu_addr; addr++) {
704                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
705                     SIGP_CC_NOT_OPERATIONAL)
706                         continue;
707                 is_boot_cpu = (addr == boot_cpu_addr);
708                 /* Allocate save area */
709                 sa = save_area_alloc(is_boot_cpu);
710                 if (!sa)
711                         panic("could not allocate memory for save area\n");
712                 if (MACHINE_HAS_VX)
713                         /* Get the vector registers */
714                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
715                 /*
716                  * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
717                  * of the boot CPU are stored in the HSA. To retrieve
718                  * these registers an SCLP request is required which is
719                  * done by drivers/s390/char/zcore.c:init_cpu_info()
720                  */
721                 if (!is_boot_cpu || oldmem_data.start)
722                         /* Get the CPU registers */
723                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
724         }
725         memblock_free(page, PAGE_SIZE);
726         diag_amode31_ops.diag308_reset();
727         pcpu_set_smt(0);
728 }
729 #endif /* CONFIG_CRASH_DUMP */
730
731 void smp_cpu_set_polarization(int cpu, int val)
732 {
733         pcpu_devices[cpu].polarization = val;
734 }
735
736 int smp_cpu_get_polarization(int cpu)
737 {
738         return pcpu_devices[cpu].polarization;
739 }
740
741 int smp_cpu_get_cpu_address(int cpu)
742 {
743         return pcpu_devices[cpu].address;
744 }
745
746 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
747 {
748         static int use_sigp_detection;
749         int address;
750
751         if (use_sigp_detection || sclp_get_core_info(info, early)) {
752                 use_sigp_detection = 1;
753                 for (address = 0;
754                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
755                      address += (1U << smp_cpu_mt_shift)) {
756                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
757                             SIGP_CC_NOT_OPERATIONAL)
758                                 continue;
759                         info->core[info->configured].core_id =
760                                 address >> smp_cpu_mt_shift;
761                         info->configured++;
762                 }
763                 info->combined = info->configured;
764         }
765 }
766
767 static int smp_add_present_cpu(int cpu);
768
769 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
770                         bool configured, bool early)
771 {
772         struct pcpu *pcpu;
773         int cpu, nr, i;
774         u16 address;
775
776         nr = 0;
777         if (sclp.has_core_type && core->type != boot_core_type)
778                 return nr;
779         cpu = cpumask_first(avail);
780         address = core->core_id << smp_cpu_mt_shift;
781         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
782                 if (pcpu_find_address(cpu_present_mask, address + i))
783                         continue;
784                 pcpu = pcpu_devices + cpu;
785                 pcpu->address = address + i;
786                 if (configured)
787                         pcpu->state = CPU_STATE_CONFIGURED;
788                 else
789                         pcpu->state = CPU_STATE_STANDBY;
790                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
791                 set_cpu_present(cpu, true);
792                 if (!early && smp_add_present_cpu(cpu) != 0)
793                         set_cpu_present(cpu, false);
794                 else
795                         nr++;
796                 cpumask_clear_cpu(cpu, avail);
797                 cpu = cpumask_next(cpu, avail);
798         }
799         return nr;
800 }
801
802 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
803 {
804         struct sclp_core_entry *core;
805         static cpumask_t avail;
806         bool configured;
807         u16 core_id;
808         int nr, i;
809
810         cpus_read_lock();
811         mutex_lock(&smp_cpu_state_mutex);
812         nr = 0;
813         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
814         /*
815          * Add IPL core first (which got logical CPU number 0) to make sure
816          * that all SMT threads get subsequent logical CPU numbers.
817          */
818         if (early) {
819                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
820                 for (i = 0; i < info->configured; i++) {
821                         core = &info->core[i];
822                         if (core->core_id == core_id) {
823                                 nr += smp_add_core(core, &avail, true, early);
824                                 break;
825                         }
826                 }
827         }
828         for (i = 0; i < info->combined; i++) {
829                 configured = i < info->configured;
830                 nr += smp_add_core(&info->core[i], &avail, configured, early);
831         }
832         mutex_unlock(&smp_cpu_state_mutex);
833         cpus_read_unlock();
834         return nr;
835 }
836
837 void __init smp_detect_cpus(void)
838 {
839         unsigned int cpu, mtid, c_cpus, s_cpus;
840         struct sclp_core_info *info;
841         u16 address;
842
843         /* Get CPU information */
844         info = memblock_alloc(sizeof(*info), 8);
845         if (!info)
846                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
847                       __func__, sizeof(*info), 8);
848         smp_get_core_info(info, 1);
849         /* Find boot CPU type */
850         if (sclp.has_core_type) {
851                 address = stap();
852                 for (cpu = 0; cpu < info->combined; cpu++)
853                         if (info->core[cpu].core_id == address) {
854                                 /* The boot cpu dictates the cpu type. */
855                                 boot_core_type = info->core[cpu].type;
856                                 break;
857                         }
858                 if (cpu >= info->combined)
859                         panic("Could not find boot CPU type");
860         }
861
862         /* Set multi-threading state for the current system */
863         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
864         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
865         pcpu_set_smt(mtid);
866
867         /* Print number of CPUs */
868         c_cpus = s_cpus = 0;
869         for (cpu = 0; cpu < info->combined; cpu++) {
870                 if (sclp.has_core_type &&
871                     info->core[cpu].type != boot_core_type)
872                         continue;
873                 if (cpu < info->configured)
874                         c_cpus += smp_cpu_mtid + 1;
875                 else
876                         s_cpus += smp_cpu_mtid + 1;
877         }
878         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
879
880         /* Add CPUs present at boot */
881         __smp_rescan_cpus(info, true);
882         memblock_free_early((unsigned long)info, sizeof(*info));
883 }
884
885 /*
886  *      Activate a secondary processor.
887  */
888 static void smp_start_secondary(void *cpuvoid)
889 {
890         int cpu = raw_smp_processor_id();
891
892         S390_lowcore.last_update_clock = get_tod_clock();
893         S390_lowcore.restart_stack = (unsigned long)restart_stack;
894         S390_lowcore.restart_fn = (unsigned long)do_restart;
895         S390_lowcore.restart_data = 0;
896         S390_lowcore.restart_source = -1U;
897         S390_lowcore.restart_flags = 0;
898         restore_access_regs(S390_lowcore.access_regs_save_area);
899         cpu_init();
900         rcu_cpu_starting(cpu);
901         init_cpu_timer();
902         vtime_init();
903         vdso_getcpu_init();
904         pfault_init();
905         notify_cpu_starting(cpu);
906         if (topology_cpu_dedicated(cpu))
907                 set_cpu_flag(CIF_DEDICATED_CPU);
908         else
909                 clear_cpu_flag(CIF_DEDICATED_CPU);
910         set_cpu_online(cpu, true);
911         update_cpu_masks();
912         inc_irq_stat(CPU_RST);
913         local_irq_enable();
914         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
915 }
916
917 /* Upping and downing of CPUs */
918 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
919 {
920         struct pcpu *pcpu = pcpu_devices + cpu;
921         int rc;
922
923         if (pcpu->state != CPU_STATE_CONFIGURED)
924                 return -EIO;
925         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
926             SIGP_CC_ORDER_CODE_ACCEPTED)
927                 return -EIO;
928
929         rc = pcpu_alloc_lowcore(pcpu, cpu);
930         if (rc)
931                 return rc;
932         pcpu_prepare_secondary(pcpu, cpu);
933         pcpu_attach_task(pcpu, tidle);
934         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
935         /* Wait until cpu puts itself in the online & active maps */
936         while (!cpu_online(cpu))
937                 cpu_relax();
938         return 0;
939 }
940
941 static unsigned int setup_possible_cpus __initdata;
942
943 static int __init _setup_possible_cpus(char *s)
944 {
945         get_option(&s, &setup_possible_cpus);
946         return 0;
947 }
948 early_param("possible_cpus", _setup_possible_cpus);
949
950 int __cpu_disable(void)
951 {
952         unsigned long cregs[16];
953
954         /* Handle possible pending IPIs */
955         smp_handle_ext_call();
956         set_cpu_online(smp_processor_id(), false);
957         update_cpu_masks();
958         /* Disable pseudo page faults on this cpu. */
959         pfault_fini();
960         /* Disable interrupt sources via control register. */
961         __ctl_store(cregs, 0, 15);
962         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
963         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
964         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
965         __ctl_load(cregs, 0, 15);
966         clear_cpu_flag(CIF_NOHZ_DELAY);
967         return 0;
968 }
969
970 void __cpu_die(unsigned int cpu)
971 {
972         struct pcpu *pcpu;
973
974         /* Wait until target cpu is down */
975         pcpu = pcpu_devices + cpu;
976         while (!pcpu_stopped(pcpu))
977                 cpu_relax();
978         pcpu_free_lowcore(pcpu);
979         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
980         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
981 }
982
983 void __noreturn cpu_die(void)
984 {
985         idle_task_exit();
986         __bpon();
987         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
988         for (;;) ;
989 }
990
991 void __init smp_fill_possible_mask(void)
992 {
993         unsigned int possible, sclp_max, cpu;
994
995         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
996         sclp_max = min(smp_max_threads, sclp_max);
997         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
998         possible = setup_possible_cpus ?: nr_cpu_ids;
999         possible = min(possible, sclp_max);
1000         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1001                 set_cpu_possible(cpu, true);
1002 }
1003
1004 void __init smp_prepare_cpus(unsigned int max_cpus)
1005 {
1006         /* request the 0x1201 emergency signal external interrupt */
1007         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1008                 panic("Couldn't request external interrupt 0x1201");
1009         /* request the 0x1202 external call external interrupt */
1010         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1011                 panic("Couldn't request external interrupt 0x1202");
1012 }
1013
1014 void __init smp_prepare_boot_cpu(void)
1015 {
1016         struct pcpu *pcpu = pcpu_devices;
1017
1018         WARN_ON(!cpu_present(0) || !cpu_online(0));
1019         pcpu->state = CPU_STATE_CONFIGURED;
1020         S390_lowcore.percpu_offset = __per_cpu_offset[0];
1021         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1022 }
1023
1024 void __init smp_setup_processor_id(void)
1025 {
1026         pcpu_devices[0].address = stap();
1027         S390_lowcore.cpu_nr = 0;
1028         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1029         S390_lowcore.spinlock_index = 0;
1030 }
1031
1032 /*
1033  * the frequency of the profiling timer can be changed
1034  * by writing a multiplier value into /proc/profile.
1035  *
1036  * usually you want to run this on all CPUs ;)
1037  */
1038 int setup_profiling_timer(unsigned int multiplier)
1039 {
1040         return 0;
1041 }
1042
1043 static ssize_t cpu_configure_show(struct device *dev,
1044                                   struct device_attribute *attr, char *buf)
1045 {
1046         ssize_t count;
1047
1048         mutex_lock(&smp_cpu_state_mutex);
1049         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1050         mutex_unlock(&smp_cpu_state_mutex);
1051         return count;
1052 }
1053
1054 static ssize_t cpu_configure_store(struct device *dev,
1055                                    struct device_attribute *attr,
1056                                    const char *buf, size_t count)
1057 {
1058         struct pcpu *pcpu;
1059         int cpu, val, rc, i;
1060         char delim;
1061
1062         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1063                 return -EINVAL;
1064         if (val != 0 && val != 1)
1065                 return -EINVAL;
1066         cpus_read_lock();
1067         mutex_lock(&smp_cpu_state_mutex);
1068         rc = -EBUSY;
1069         /* disallow configuration changes of online cpus and cpu 0 */
1070         cpu = dev->id;
1071         cpu = smp_get_base_cpu(cpu);
1072         if (cpu == 0)
1073                 goto out;
1074         for (i = 0; i <= smp_cpu_mtid; i++)
1075                 if (cpu_online(cpu + i))
1076                         goto out;
1077         pcpu = pcpu_devices + cpu;
1078         rc = 0;
1079         switch (val) {
1080         case 0:
1081                 if (pcpu->state != CPU_STATE_CONFIGURED)
1082                         break;
1083                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1084                 if (rc)
1085                         break;
1086                 for (i = 0; i <= smp_cpu_mtid; i++) {
1087                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1088                                 continue;
1089                         pcpu[i].state = CPU_STATE_STANDBY;
1090                         smp_cpu_set_polarization(cpu + i,
1091                                                  POLARIZATION_UNKNOWN);
1092                 }
1093                 topology_expect_change();
1094                 break;
1095         case 1:
1096                 if (pcpu->state != CPU_STATE_STANDBY)
1097                         break;
1098                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1099                 if (rc)
1100                         break;
1101                 for (i = 0; i <= smp_cpu_mtid; i++) {
1102                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1103                                 continue;
1104                         pcpu[i].state = CPU_STATE_CONFIGURED;
1105                         smp_cpu_set_polarization(cpu + i,
1106                                                  POLARIZATION_UNKNOWN);
1107                 }
1108                 topology_expect_change();
1109                 break;
1110         default:
1111                 break;
1112         }
1113 out:
1114         mutex_unlock(&smp_cpu_state_mutex);
1115         cpus_read_unlock();
1116         return rc ? rc : count;
1117 }
1118 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1119
1120 static ssize_t show_cpu_address(struct device *dev,
1121                                 struct device_attribute *attr, char *buf)
1122 {
1123         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1124 }
1125 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1126
1127 static struct attribute *cpu_common_attrs[] = {
1128         &dev_attr_configure.attr,
1129         &dev_attr_address.attr,
1130         NULL,
1131 };
1132
1133 static struct attribute_group cpu_common_attr_group = {
1134         .attrs = cpu_common_attrs,
1135 };
1136
1137 static struct attribute *cpu_online_attrs[] = {
1138         &dev_attr_idle_count.attr,
1139         &dev_attr_idle_time_us.attr,
1140         NULL,
1141 };
1142
1143 static struct attribute_group cpu_online_attr_group = {
1144         .attrs = cpu_online_attrs,
1145 };
1146
1147 static int smp_cpu_online(unsigned int cpu)
1148 {
1149         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1150
1151         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1152 }
1153
1154 static int smp_cpu_pre_down(unsigned int cpu)
1155 {
1156         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1157
1158         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1159         return 0;
1160 }
1161
1162 static int smp_add_present_cpu(int cpu)
1163 {
1164         struct device *s;
1165         struct cpu *c;
1166         int rc;
1167
1168         c = kzalloc(sizeof(*c), GFP_KERNEL);
1169         if (!c)
1170                 return -ENOMEM;
1171         per_cpu(cpu_device, cpu) = c;
1172         s = &c->dev;
1173         c->hotpluggable = 1;
1174         rc = register_cpu(c, cpu);
1175         if (rc)
1176                 goto out;
1177         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1178         if (rc)
1179                 goto out_cpu;
1180         rc = topology_cpu_init(c);
1181         if (rc)
1182                 goto out_topology;
1183         return 0;
1184
1185 out_topology:
1186         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1187 out_cpu:
1188         unregister_cpu(c);
1189 out:
1190         return rc;
1191 }
1192
1193 int __ref smp_rescan_cpus(void)
1194 {
1195         struct sclp_core_info *info;
1196         int nr;
1197
1198         info = kzalloc(sizeof(*info), GFP_KERNEL);
1199         if (!info)
1200                 return -ENOMEM;
1201         smp_get_core_info(info, 0);
1202         nr = __smp_rescan_cpus(info, false);
1203         kfree(info);
1204         if (nr)
1205                 topology_schedule_update();
1206         return 0;
1207 }
1208
1209 static ssize_t __ref rescan_store(struct device *dev,
1210                                   struct device_attribute *attr,
1211                                   const char *buf,
1212                                   size_t count)
1213 {
1214         int rc;
1215
1216         rc = lock_device_hotplug_sysfs();
1217         if (rc)
1218                 return rc;
1219         rc = smp_rescan_cpus();
1220         unlock_device_hotplug();
1221         return rc ? rc : count;
1222 }
1223 static DEVICE_ATTR_WO(rescan);
1224
1225 static int __init s390_smp_init(void)
1226 {
1227         int cpu, rc = 0;
1228
1229         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1230         if (rc)
1231                 return rc;
1232         for_each_present_cpu(cpu) {
1233                 rc = smp_add_present_cpu(cpu);
1234                 if (rc)
1235                         goto out;
1236         }
1237
1238         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1239                                smp_cpu_online, smp_cpu_pre_down);
1240         rc = rc <= 0 ? rc : 0;
1241 out:
1242         return rc;
1243 }
1244 subsys_initcall(s390_smp_init);
1245
1246 static __always_inline void set_new_lowcore(struct lowcore *lc)
1247 {
1248         union register_pair dst, src;
1249         u32 pfx;
1250
1251         src.even = (unsigned long) &S390_lowcore;
1252         src.odd  = sizeof(S390_lowcore);
1253         dst.even = (unsigned long) lc;
1254         dst.odd  = sizeof(*lc);
1255         pfx = (unsigned long) lc;
1256
1257         asm volatile(
1258                 "       mvcl    %[dst],%[src]\n"
1259                 "       spx     %[pfx]\n"
1260                 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1261                 : [pfx] "Q" (pfx)
1262                 : "memory", "cc");
1263 }
1264
1265 static int __init smp_reinit_ipl_cpu(void)
1266 {
1267         unsigned long async_stack, nodat_stack, mcck_stack;
1268         struct lowcore *lc, *lc_ipl;
1269         unsigned long flags;
1270
1271         lc_ipl = lowcore_ptr[0];
1272         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1273         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1274         async_stack = stack_alloc();
1275         mcck_stack = stack_alloc();
1276         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
1277                 panic("Couldn't allocate memory");
1278
1279         local_irq_save(flags);
1280         local_mcck_disable();
1281         set_new_lowcore(lc);
1282         S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1283         S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1284         S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1285         lowcore_ptr[0] = lc;
1286         local_mcck_enable();
1287         local_irq_restore(flags);
1288
1289         free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1290         memblock_free_late(lc_ipl->mcck_stack - STACK_INIT_OFFSET, THREAD_SIZE);
1291         memblock_free_late((unsigned long) lc_ipl, sizeof(*lc_ipl));
1292
1293         return 0;
1294 }
1295 early_initcall(smp_reinit_ipl_cpu);