Merge tag 'pm-5.15-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60
61 enum {
62         ec_schedule = 0,
63         ec_call_function_single,
64         ec_stop_cpu,
65         ec_mcck_pending,
66         ec_irq_work,
67 };
68
69 enum {
70         CPU_STATE_STANDBY,
71         CPU_STATE_CONFIGURED,
72 };
73
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75
76 struct pcpu {
77         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
78         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
79         signed char state;              /* physical cpu state */
80         signed char polarization;       /* physical polarization */
81         u16 address;                    /* physical cpu address */
82 };
83
84 static u8 boot_core_type;
85 static struct pcpu pcpu_devices[NR_CPUS];
86
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96
97 static unsigned int smp_max_threads __initdata = -1U;
98 cpumask_t cpu_setup_mask;
99
100 static int __init early_nosmt(char *s)
101 {
102         smp_max_threads = 1;
103         return 0;
104 }
105 early_param("nosmt", early_nosmt);
106
107 static int __init early_smt(char *s)
108 {
109         get_option(&s, &smp_max_threads);
110         return 0;
111 }
112 early_param("smt", early_smt);
113
114 /*
115  * The smp_cpu_state_mutex must be held when changing the state or polarization
116  * member of a pcpu data structure within the pcpu_devices arreay.
117  */
118 DEFINE_MUTEX(smp_cpu_state_mutex);
119
120 /*
121  * Signal processor helper functions.
122  */
123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124 {
125         int cc;
126
127         while (1) {
128                 cc = __pcpu_sigp(addr, order, parm, NULL);
129                 if (cc != SIGP_CC_BUSY)
130                         return cc;
131                 cpu_relax();
132         }
133 }
134
135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136 {
137         int cc, retry;
138
139         for (retry = 0; ; retry++) {
140                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141                 if (cc != SIGP_CC_BUSY)
142                         break;
143                 if (retry >= 3)
144                         udelay(10);
145         }
146         return cc;
147 }
148
149 static inline int pcpu_stopped(struct pcpu *pcpu)
150 {
151         u32 status;
152
153         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154                         0, &status) != SIGP_CC_STATUS_STORED)
155                 return 0;
156         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 }
158
159 static inline int pcpu_running(struct pcpu *pcpu)
160 {
161         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162                         0, NULL) != SIGP_CC_STATUS_STORED)
163                 return 1;
164         /* Status stored condition code is equivalent to cpu not running. */
165         return 0;
166 }
167
168 /*
169  * Find struct pcpu by cpu address.
170  */
171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172 {
173         int cpu;
174
175         for_each_cpu(cpu, mask)
176                 if (pcpu_devices[cpu].address == address)
177                         return pcpu_devices + cpu;
178         return NULL;
179 }
180
181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182 {
183         int order;
184
185         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186                 return;
187         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188         pcpu->ec_clk = get_tod_clock_fast();
189         pcpu_sigp_retry(pcpu, order, 0);
190 }
191
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194         unsigned long async_stack, nodat_stack, mcck_stack;
195         struct lowcore *lc;
196
197         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
198         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
199         async_stack = stack_alloc();
200         mcck_stack = stack_alloc();
201         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
202                 goto out;
203         memcpy(lc, &S390_lowcore, 512);
204         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
205         lc->async_stack = async_stack + STACK_INIT_OFFSET;
206         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
207         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
208         lc->cpu_nr = cpu;
209         lc->spinlock_lockval = arch_spin_lockval(cpu);
210         lc->spinlock_index = 0;
211         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
212         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
213         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
214         lc->preempt_count = PREEMPT_DISABLED;
215         if (nmi_alloc_per_cpu(lc))
216                 goto out;
217         lowcore_ptr[cpu] = lc;
218         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
219         return 0;
220
221 out:
222         stack_free(mcck_stack);
223         stack_free(async_stack);
224         free_pages(nodat_stack, THREAD_SIZE_ORDER);
225         free_pages((unsigned long) lc, LC_ORDER);
226         return -ENOMEM;
227 }
228
229 static void pcpu_free_lowcore(struct pcpu *pcpu)
230 {
231         unsigned long async_stack, nodat_stack, mcck_stack;
232         struct lowcore *lc;
233         int cpu;
234
235         cpu = pcpu - pcpu_devices;
236         lc = lowcore_ptr[cpu];
237         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
238         async_stack = lc->async_stack - STACK_INIT_OFFSET;
239         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
240         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
241         lowcore_ptr[cpu] = NULL;
242         nmi_free_per_cpu(lc);
243         stack_free(async_stack);
244         stack_free(mcck_stack);
245         free_pages(nodat_stack, THREAD_SIZE_ORDER);
246         free_pages((unsigned long) lc, LC_ORDER);
247 }
248
249 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
250 {
251         struct lowcore *lc = lowcore_ptr[cpu];
252
253         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
254         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
255         lc->cpu_nr = cpu;
256         lc->restart_flags = RESTART_FLAG_CTLREGS;
257         lc->spinlock_lockval = arch_spin_lockval(cpu);
258         lc->spinlock_index = 0;
259         lc->percpu_offset = __per_cpu_offset[cpu];
260         lc->kernel_asce = S390_lowcore.kernel_asce;
261         lc->user_asce = s390_invalid_asce;
262         lc->machine_flags = S390_lowcore.machine_flags;
263         lc->user_timer = lc->system_timer =
264                 lc->steal_timer = lc->avg_steal_timer = 0;
265         __ctl_store(lc->cregs_save_area, 0, 15);
266         lc->cregs_save_area[1] = lc->kernel_asce;
267         lc->cregs_save_area[7] = lc->user_asce;
268         save_access_regs((unsigned int *) lc->access_regs_save_area);
269         arch_spin_lock_setup(cpu);
270 }
271
272 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
273 {
274         struct lowcore *lc;
275         int cpu;
276
277         cpu = pcpu - pcpu_devices;
278         lc = lowcore_ptr[cpu];
279         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
280                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
281         lc->current_task = (unsigned long) tsk;
282         lc->lpp = LPP_MAGIC;
283         lc->current_pid = tsk->pid;
284         lc->user_timer = tsk->thread.user_timer;
285         lc->guest_timer = tsk->thread.guest_timer;
286         lc->system_timer = tsk->thread.system_timer;
287         lc->hardirq_timer = tsk->thread.hardirq_timer;
288         lc->softirq_timer = tsk->thread.softirq_timer;
289         lc->steal_timer = 0;
290 }
291
292 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
293 {
294         struct lowcore *lc;
295         int cpu;
296
297         cpu = pcpu - pcpu_devices;
298         lc = lowcore_ptr[cpu];
299         lc->restart_stack = lc->kernel_stack;
300         lc->restart_fn = (unsigned long) func;
301         lc->restart_data = (unsigned long) data;
302         lc->restart_source = -1U;
303         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
304 }
305
306 typedef void (pcpu_delegate_fn)(void *);
307
308 /*
309  * Call function via PSW restart on pcpu and stop the current cpu.
310  */
311 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
312 {
313         func(data);     /* should not return */
314 }
315
316 static void pcpu_delegate(struct pcpu *pcpu,
317                           pcpu_delegate_fn *func,
318                           void *data, unsigned long stack)
319 {
320         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
321         unsigned int source_cpu = stap();
322
323         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
324         if (pcpu->address == source_cpu) {
325                 call_on_stack(2, stack, void, __pcpu_delegate,
326                               pcpu_delegate_fn *, func, void *, data);
327         }
328         /* Stop target cpu (if func returns this stops the current cpu). */
329         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
330         /* Restart func on the target cpu and stop the current cpu. */
331         mem_assign_absolute(lc->restart_stack, stack);
332         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
333         mem_assign_absolute(lc->restart_data, (unsigned long) data);
334         mem_assign_absolute(lc->restart_source, source_cpu);
335         __bpon();
336         asm volatile(
337                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
338                 "       brc     2,0b    # busy, try again\n"
339                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
340                 "       brc     2,1b    # busy, try again\n"
341                 : : "d" (pcpu->address), "d" (source_cpu),
342                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
343                 : "0", "1", "cc");
344         for (;;) ;
345 }
346
347 /*
348  * Enable additional logical cpus for multi-threading.
349  */
350 static int pcpu_set_smt(unsigned int mtid)
351 {
352         int cc;
353
354         if (smp_cpu_mtid == mtid)
355                 return 0;
356         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
357         if (cc == 0) {
358                 smp_cpu_mtid = mtid;
359                 smp_cpu_mt_shift = 0;
360                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
361                         smp_cpu_mt_shift++;
362                 pcpu_devices[0].address = stap();
363         }
364         return cc;
365 }
366
367 /*
368  * Call function on an online CPU.
369  */
370 void smp_call_online_cpu(void (*func)(void *), void *data)
371 {
372         struct pcpu *pcpu;
373
374         /* Use the current cpu if it is online. */
375         pcpu = pcpu_find_address(cpu_online_mask, stap());
376         if (!pcpu)
377                 /* Use the first online cpu. */
378                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
379         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
380 }
381
382 /*
383  * Call function on the ipl CPU.
384  */
385 void smp_call_ipl_cpu(void (*func)(void *), void *data)
386 {
387         struct lowcore *lc = lowcore_ptr[0];
388
389         if (pcpu_devices[0].address == stap())
390                 lc = &S390_lowcore;
391
392         pcpu_delegate(&pcpu_devices[0], func, data,
393                       lc->nodat_stack);
394 }
395
396 int smp_find_processor_id(u16 address)
397 {
398         int cpu;
399
400         for_each_present_cpu(cpu)
401                 if (pcpu_devices[cpu].address == address)
402                         return cpu;
403         return -1;
404 }
405
406 void schedule_mcck_handler(void)
407 {
408         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
409 }
410
411 bool notrace arch_vcpu_is_preempted(int cpu)
412 {
413         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
414                 return false;
415         if (pcpu_running(pcpu_devices + cpu))
416                 return false;
417         return true;
418 }
419 EXPORT_SYMBOL(arch_vcpu_is_preempted);
420
421 void notrace smp_yield_cpu(int cpu)
422 {
423         if (!MACHINE_HAS_DIAG9C)
424                 return;
425         diag_stat_inc_norecursion(DIAG_STAT_X09C);
426         asm volatile("diag %0,0,0x9c"
427                      : : "d" (pcpu_devices[cpu].address));
428 }
429 EXPORT_SYMBOL_GPL(smp_yield_cpu);
430
431 /*
432  * Send cpus emergency shutdown signal. This gives the cpus the
433  * opportunity to complete outstanding interrupts.
434  */
435 void notrace smp_emergency_stop(void)
436 {
437         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
438         static cpumask_t cpumask;
439         u64 end;
440         int cpu;
441
442         arch_spin_lock(&lock);
443         cpumask_copy(&cpumask, cpu_online_mask);
444         cpumask_clear_cpu(smp_processor_id(), &cpumask);
445
446         end = get_tod_clock() + (1000000UL << 12);
447         for_each_cpu(cpu, &cpumask) {
448                 struct pcpu *pcpu = pcpu_devices + cpu;
449                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
450                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
451                                    0, NULL) == SIGP_CC_BUSY &&
452                        get_tod_clock() < end)
453                         cpu_relax();
454         }
455         while (get_tod_clock() < end) {
456                 for_each_cpu(cpu, &cpumask)
457                         if (pcpu_stopped(pcpu_devices + cpu))
458                                 cpumask_clear_cpu(cpu, &cpumask);
459                 if (cpumask_empty(&cpumask))
460                         break;
461                 cpu_relax();
462         }
463         arch_spin_unlock(&lock);
464 }
465 NOKPROBE_SYMBOL(smp_emergency_stop);
466
467 /*
468  * Stop all cpus but the current one.
469  */
470 void smp_send_stop(void)
471 {
472         int cpu;
473
474         /* Disable all interrupts/machine checks */
475         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
476         trace_hardirqs_off();
477
478         debug_set_critical();
479
480         if (oops_in_progress)
481                 smp_emergency_stop();
482
483         /* stop all processors */
484         for_each_online_cpu(cpu) {
485                 if (cpu == smp_processor_id())
486                         continue;
487                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
488                 while (!pcpu_stopped(pcpu_devices + cpu))
489                         cpu_relax();
490         }
491 }
492
493 /*
494  * This is the main routine where commands issued by other
495  * cpus are handled.
496  */
497 static void smp_handle_ext_call(void)
498 {
499         unsigned long bits;
500
501         /* handle bit signal external calls */
502         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
503         if (test_bit(ec_stop_cpu, &bits))
504                 smp_stop_cpu();
505         if (test_bit(ec_schedule, &bits))
506                 scheduler_ipi();
507         if (test_bit(ec_call_function_single, &bits))
508                 generic_smp_call_function_single_interrupt();
509         if (test_bit(ec_mcck_pending, &bits))
510                 __s390_handle_mcck();
511         if (test_bit(ec_irq_work, &bits))
512                 irq_work_run();
513 }
514
515 static void do_ext_call_interrupt(struct ext_code ext_code,
516                                   unsigned int param32, unsigned long param64)
517 {
518         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
519         smp_handle_ext_call();
520 }
521
522 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
523 {
524         int cpu;
525
526         for_each_cpu(cpu, mask)
527                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
528 }
529
530 void arch_send_call_function_single_ipi(int cpu)
531 {
532         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
533 }
534
535 /*
536  * this function sends a 'reschedule' IPI to another CPU.
537  * it goes straight through and wastes no time serializing
538  * anything. Worst case is that we lose a reschedule ...
539  */
540 void smp_send_reschedule(int cpu)
541 {
542         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
543 }
544
545 #ifdef CONFIG_IRQ_WORK
546 void arch_irq_work_raise(void)
547 {
548         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
549 }
550 #endif
551
552 /*
553  * parameter area for the set/clear control bit callbacks
554  */
555 struct ec_creg_mask_parms {
556         unsigned long orval;
557         unsigned long andval;
558         int cr;
559 };
560
561 /*
562  * callback for setting/clearing control bits
563  */
564 static void smp_ctl_bit_callback(void *info)
565 {
566         struct ec_creg_mask_parms *pp = info;
567         unsigned long cregs[16];
568
569         __ctl_store(cregs, 0, 15);
570         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
571         __ctl_load(cregs, 0, 15);
572 }
573
574 static DEFINE_SPINLOCK(ctl_lock);
575 static unsigned long ctlreg;
576
577 /*
578  * Set a bit in a control register of all cpus
579  */
580 void smp_ctl_set_bit(int cr, int bit)
581 {
582         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
583
584         spin_lock(&ctl_lock);
585         memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
586         __set_bit(bit, &ctlreg);
587         memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
588         spin_unlock(&ctl_lock);
589         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
590 }
591 EXPORT_SYMBOL(smp_ctl_set_bit);
592
593 /*
594  * Clear a bit in a control register of all cpus
595  */
596 void smp_ctl_clear_bit(int cr, int bit)
597 {
598         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
599
600         spin_lock(&ctl_lock);
601         memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
602         __clear_bit(bit, &ctlreg);
603         memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
604         spin_unlock(&ctl_lock);
605         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
606 }
607 EXPORT_SYMBOL(smp_ctl_clear_bit);
608
609 #ifdef CONFIG_CRASH_DUMP
610
611 int smp_store_status(int cpu)
612 {
613         struct lowcore *lc;
614         struct pcpu *pcpu;
615         unsigned long pa;
616
617         pcpu = pcpu_devices + cpu;
618         lc = lowcore_ptr[cpu];
619         pa = __pa(&lc->floating_pt_save_area);
620         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
621                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
622                 return -EIO;
623         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
624                 return 0;
625         pa = __pa(lc->mcesad & MCESA_ORIGIN_MASK);
626         if (MACHINE_HAS_GS)
627                 pa |= lc->mcesad & MCESA_LC_MASK;
628         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
629                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
630                 return -EIO;
631         return 0;
632 }
633
634 /*
635  * Collect CPU state of the previous, crashed system.
636  * There are four cases:
637  * 1) standard zfcp/nvme dump
638  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
639  *    The state for all CPUs except the boot CPU needs to be collected
640  *    with sigp stop-and-store-status. The boot CPU state is located in
641  *    the absolute lowcore of the memory stored in the HSA. The zcore code
642  *    will copy the boot CPU state from the HSA.
643  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
644  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
645  *    The state for all CPUs except the boot CPU needs to be collected
646  *    with sigp stop-and-store-status. The firmware or the boot-loader
647  *    stored the registers of the boot CPU in the absolute lowcore in the
648  *    memory of the old system.
649  * 3) kdump and the old kernel did not store the CPU state,
650  *    or stand-alone kdump for DASD
651  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
652  *    The state for all CPUs except the boot CPU needs to be collected
653  *    with sigp stop-and-store-status. The kexec code or the boot-loader
654  *    stored the registers of the boot CPU in the memory of the old system.
655  * 4) kdump and the old kernel stored the CPU state
656  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
657  *    This case does not exist for s390 anymore, setup_arch explicitly
658  *    deactivates the elfcorehdr= kernel parameter
659  */
660 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
661                                      bool is_boot_cpu, unsigned long page)
662 {
663         __vector128 *vxrs = (__vector128 *) page;
664
665         if (is_boot_cpu)
666                 vxrs = boot_cpu_vector_save_area;
667         else
668                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
669         save_area_add_vxrs(sa, vxrs);
670 }
671
672 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
673                                      bool is_boot_cpu, unsigned long page)
674 {
675         void *regs = (void *) page;
676
677         if (is_boot_cpu)
678                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
679         else
680                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
681         save_area_add_regs(sa, regs);
682 }
683
684 void __init smp_save_dump_cpus(void)
685 {
686         int addr, boot_cpu_addr, max_cpu_addr;
687         struct save_area *sa;
688         unsigned long page;
689         bool is_boot_cpu;
690
691         if (!(oldmem_data.start || is_ipl_type_dump()))
692                 /* No previous system present, normal boot. */
693                 return;
694         /* Allocate a page as dumping area for the store status sigps */
695         page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
696         if (!page)
697                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
698                       PAGE_SIZE, 1UL << 31);
699
700         /* Set multi-threading state to the previous system. */
701         pcpu_set_smt(sclp.mtid_prev);
702         boot_cpu_addr = stap();
703         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
704         for (addr = 0; addr <= max_cpu_addr; addr++) {
705                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
706                     SIGP_CC_NOT_OPERATIONAL)
707                         continue;
708                 is_boot_cpu = (addr == boot_cpu_addr);
709                 /* Allocate save area */
710                 sa = save_area_alloc(is_boot_cpu);
711                 if (!sa)
712                         panic("could not allocate memory for save area\n");
713                 if (MACHINE_HAS_VX)
714                         /* Get the vector registers */
715                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
716                 /*
717                  * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
718                  * of the boot CPU are stored in the HSA. To retrieve
719                  * these registers an SCLP request is required which is
720                  * done by drivers/s390/char/zcore.c:init_cpu_info()
721                  */
722                 if (!is_boot_cpu || oldmem_data.start)
723                         /* Get the CPU registers */
724                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
725         }
726         memblock_free(page, PAGE_SIZE);
727         diag_amode31_ops.diag308_reset();
728         pcpu_set_smt(0);
729 }
730 #endif /* CONFIG_CRASH_DUMP */
731
732 void smp_cpu_set_polarization(int cpu, int val)
733 {
734         pcpu_devices[cpu].polarization = val;
735 }
736
737 int smp_cpu_get_polarization(int cpu)
738 {
739         return pcpu_devices[cpu].polarization;
740 }
741
742 int smp_cpu_get_cpu_address(int cpu)
743 {
744         return pcpu_devices[cpu].address;
745 }
746
747 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
748 {
749         static int use_sigp_detection;
750         int address;
751
752         if (use_sigp_detection || sclp_get_core_info(info, early)) {
753                 use_sigp_detection = 1;
754                 for (address = 0;
755                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
756                      address += (1U << smp_cpu_mt_shift)) {
757                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
758                             SIGP_CC_NOT_OPERATIONAL)
759                                 continue;
760                         info->core[info->configured].core_id =
761                                 address >> smp_cpu_mt_shift;
762                         info->configured++;
763                 }
764                 info->combined = info->configured;
765         }
766 }
767
768 static int smp_add_present_cpu(int cpu);
769
770 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
771                         bool configured, bool early)
772 {
773         struct pcpu *pcpu;
774         int cpu, nr, i;
775         u16 address;
776
777         nr = 0;
778         if (sclp.has_core_type && core->type != boot_core_type)
779                 return nr;
780         cpu = cpumask_first(avail);
781         address = core->core_id << smp_cpu_mt_shift;
782         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
783                 if (pcpu_find_address(cpu_present_mask, address + i))
784                         continue;
785                 pcpu = pcpu_devices + cpu;
786                 pcpu->address = address + i;
787                 if (configured)
788                         pcpu->state = CPU_STATE_CONFIGURED;
789                 else
790                         pcpu->state = CPU_STATE_STANDBY;
791                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
792                 set_cpu_present(cpu, true);
793                 if (!early && smp_add_present_cpu(cpu) != 0)
794                         set_cpu_present(cpu, false);
795                 else
796                         nr++;
797                 cpumask_clear_cpu(cpu, avail);
798                 cpu = cpumask_next(cpu, avail);
799         }
800         return nr;
801 }
802
803 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
804 {
805         struct sclp_core_entry *core;
806         static cpumask_t avail;
807         bool configured;
808         u16 core_id;
809         int nr, i;
810
811         cpus_read_lock();
812         mutex_lock(&smp_cpu_state_mutex);
813         nr = 0;
814         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
815         /*
816          * Add IPL core first (which got logical CPU number 0) to make sure
817          * that all SMT threads get subsequent logical CPU numbers.
818          */
819         if (early) {
820                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
821                 for (i = 0; i < info->configured; i++) {
822                         core = &info->core[i];
823                         if (core->core_id == core_id) {
824                                 nr += smp_add_core(core, &avail, true, early);
825                                 break;
826                         }
827                 }
828         }
829         for (i = 0; i < info->combined; i++) {
830                 configured = i < info->configured;
831                 nr += smp_add_core(&info->core[i], &avail, configured, early);
832         }
833         mutex_unlock(&smp_cpu_state_mutex);
834         cpus_read_unlock();
835         return nr;
836 }
837
838 void __init smp_detect_cpus(void)
839 {
840         unsigned int cpu, mtid, c_cpus, s_cpus;
841         struct sclp_core_info *info;
842         u16 address;
843
844         /* Get CPU information */
845         info = memblock_alloc(sizeof(*info), 8);
846         if (!info)
847                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
848                       __func__, sizeof(*info), 8);
849         smp_get_core_info(info, 1);
850         /* Find boot CPU type */
851         if (sclp.has_core_type) {
852                 address = stap();
853                 for (cpu = 0; cpu < info->combined; cpu++)
854                         if (info->core[cpu].core_id == address) {
855                                 /* The boot cpu dictates the cpu type. */
856                                 boot_core_type = info->core[cpu].type;
857                                 break;
858                         }
859                 if (cpu >= info->combined)
860                         panic("Could not find boot CPU type");
861         }
862
863         /* Set multi-threading state for the current system */
864         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
865         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
866         pcpu_set_smt(mtid);
867
868         /* Print number of CPUs */
869         c_cpus = s_cpus = 0;
870         for (cpu = 0; cpu < info->combined; cpu++) {
871                 if (sclp.has_core_type &&
872                     info->core[cpu].type != boot_core_type)
873                         continue;
874                 if (cpu < info->configured)
875                         c_cpus += smp_cpu_mtid + 1;
876                 else
877                         s_cpus += smp_cpu_mtid + 1;
878         }
879         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
880
881         /* Add CPUs present at boot */
882         __smp_rescan_cpus(info, true);
883         memblock_free_early((unsigned long)info, sizeof(*info));
884 }
885
886 /*
887  *      Activate a secondary processor.
888  */
889 static void smp_start_secondary(void *cpuvoid)
890 {
891         int cpu = raw_smp_processor_id();
892
893         S390_lowcore.last_update_clock = get_tod_clock();
894         S390_lowcore.restart_stack = (unsigned long)restart_stack;
895         S390_lowcore.restart_fn = (unsigned long)do_restart;
896         S390_lowcore.restart_data = 0;
897         S390_lowcore.restart_source = -1U;
898         S390_lowcore.restart_flags = 0;
899         restore_access_regs(S390_lowcore.access_regs_save_area);
900         cpu_init();
901         rcu_cpu_starting(cpu);
902         init_cpu_timer();
903         vtime_init();
904         vdso_getcpu_init();
905         pfault_init();
906         cpumask_set_cpu(cpu, &cpu_setup_mask);
907         update_cpu_masks();
908         notify_cpu_starting(cpu);
909         if (topology_cpu_dedicated(cpu))
910                 set_cpu_flag(CIF_DEDICATED_CPU);
911         else
912                 clear_cpu_flag(CIF_DEDICATED_CPU);
913         set_cpu_online(cpu, true);
914         inc_irq_stat(CPU_RST);
915         local_irq_enable();
916         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
917 }
918
919 /* Upping and downing of CPUs */
920 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
921 {
922         struct pcpu *pcpu = pcpu_devices + cpu;
923         int rc;
924
925         if (pcpu->state != CPU_STATE_CONFIGURED)
926                 return -EIO;
927         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
928             SIGP_CC_ORDER_CODE_ACCEPTED)
929                 return -EIO;
930
931         rc = pcpu_alloc_lowcore(pcpu, cpu);
932         if (rc)
933                 return rc;
934         pcpu_prepare_secondary(pcpu, cpu);
935         pcpu_attach_task(pcpu, tidle);
936         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
937         /* Wait until cpu puts itself in the online & active maps */
938         while (!cpu_online(cpu))
939                 cpu_relax();
940         return 0;
941 }
942
943 static unsigned int setup_possible_cpus __initdata;
944
945 static int __init _setup_possible_cpus(char *s)
946 {
947         get_option(&s, &setup_possible_cpus);
948         return 0;
949 }
950 early_param("possible_cpus", _setup_possible_cpus);
951
952 int __cpu_disable(void)
953 {
954         unsigned long cregs[16];
955         int cpu;
956
957         /* Handle possible pending IPIs */
958         smp_handle_ext_call();
959         cpu = smp_processor_id();
960         set_cpu_online(cpu, false);
961         cpumask_clear_cpu(cpu, &cpu_setup_mask);
962         update_cpu_masks();
963         /* Disable pseudo page faults on this cpu. */
964         pfault_fini();
965         /* Disable interrupt sources via control register. */
966         __ctl_store(cregs, 0, 15);
967         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
968         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
969         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
970         __ctl_load(cregs, 0, 15);
971         clear_cpu_flag(CIF_NOHZ_DELAY);
972         return 0;
973 }
974
975 void __cpu_die(unsigned int cpu)
976 {
977         struct pcpu *pcpu;
978
979         /* Wait until target cpu is down */
980         pcpu = pcpu_devices + cpu;
981         while (!pcpu_stopped(pcpu))
982                 cpu_relax();
983         pcpu_free_lowcore(pcpu);
984         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
985         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
986 }
987
988 void __noreturn cpu_die(void)
989 {
990         idle_task_exit();
991         __bpon();
992         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
993         for (;;) ;
994 }
995
996 void __init smp_fill_possible_mask(void)
997 {
998         unsigned int possible, sclp_max, cpu;
999
1000         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
1001         sclp_max = min(smp_max_threads, sclp_max);
1002         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
1003         possible = setup_possible_cpus ?: nr_cpu_ids;
1004         possible = min(possible, sclp_max);
1005         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1006                 set_cpu_possible(cpu, true);
1007 }
1008
1009 void __init smp_prepare_cpus(unsigned int max_cpus)
1010 {
1011         /* request the 0x1201 emergency signal external interrupt */
1012         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1013                 panic("Couldn't request external interrupt 0x1201");
1014         /* request the 0x1202 external call external interrupt */
1015         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1016                 panic("Couldn't request external interrupt 0x1202");
1017 }
1018
1019 void __init smp_prepare_boot_cpu(void)
1020 {
1021         struct pcpu *pcpu = pcpu_devices;
1022
1023         WARN_ON(!cpu_present(0) || !cpu_online(0));
1024         pcpu->state = CPU_STATE_CONFIGURED;
1025         S390_lowcore.percpu_offset = __per_cpu_offset[0];
1026         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1027 }
1028
1029 void __init smp_setup_processor_id(void)
1030 {
1031         pcpu_devices[0].address = stap();
1032         S390_lowcore.cpu_nr = 0;
1033         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1034         S390_lowcore.spinlock_index = 0;
1035 }
1036
1037 /*
1038  * the frequency of the profiling timer can be changed
1039  * by writing a multiplier value into /proc/profile.
1040  *
1041  * usually you want to run this on all CPUs ;)
1042  */
1043 int setup_profiling_timer(unsigned int multiplier)
1044 {
1045         return 0;
1046 }
1047
1048 static ssize_t cpu_configure_show(struct device *dev,
1049                                   struct device_attribute *attr, char *buf)
1050 {
1051         ssize_t count;
1052
1053         mutex_lock(&smp_cpu_state_mutex);
1054         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1055         mutex_unlock(&smp_cpu_state_mutex);
1056         return count;
1057 }
1058
1059 static ssize_t cpu_configure_store(struct device *dev,
1060                                    struct device_attribute *attr,
1061                                    const char *buf, size_t count)
1062 {
1063         struct pcpu *pcpu;
1064         int cpu, val, rc, i;
1065         char delim;
1066
1067         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1068                 return -EINVAL;
1069         if (val != 0 && val != 1)
1070                 return -EINVAL;
1071         cpus_read_lock();
1072         mutex_lock(&smp_cpu_state_mutex);
1073         rc = -EBUSY;
1074         /* disallow configuration changes of online cpus and cpu 0 */
1075         cpu = dev->id;
1076         cpu = smp_get_base_cpu(cpu);
1077         if (cpu == 0)
1078                 goto out;
1079         for (i = 0; i <= smp_cpu_mtid; i++)
1080                 if (cpu_online(cpu + i))
1081                         goto out;
1082         pcpu = pcpu_devices + cpu;
1083         rc = 0;
1084         switch (val) {
1085         case 0:
1086                 if (pcpu->state != CPU_STATE_CONFIGURED)
1087                         break;
1088                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1089                 if (rc)
1090                         break;
1091                 for (i = 0; i <= smp_cpu_mtid; i++) {
1092                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1093                                 continue;
1094                         pcpu[i].state = CPU_STATE_STANDBY;
1095                         smp_cpu_set_polarization(cpu + i,
1096                                                  POLARIZATION_UNKNOWN);
1097                 }
1098                 topology_expect_change();
1099                 break;
1100         case 1:
1101                 if (pcpu->state != CPU_STATE_STANDBY)
1102                         break;
1103                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1104                 if (rc)
1105                         break;
1106                 for (i = 0; i <= smp_cpu_mtid; i++) {
1107                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1108                                 continue;
1109                         pcpu[i].state = CPU_STATE_CONFIGURED;
1110                         smp_cpu_set_polarization(cpu + i,
1111                                                  POLARIZATION_UNKNOWN);
1112                 }
1113                 topology_expect_change();
1114                 break;
1115         default:
1116                 break;
1117         }
1118 out:
1119         mutex_unlock(&smp_cpu_state_mutex);
1120         cpus_read_unlock();
1121         return rc ? rc : count;
1122 }
1123 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1124
1125 static ssize_t show_cpu_address(struct device *dev,
1126                                 struct device_attribute *attr, char *buf)
1127 {
1128         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1129 }
1130 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1131
1132 static struct attribute *cpu_common_attrs[] = {
1133         &dev_attr_configure.attr,
1134         &dev_attr_address.attr,
1135         NULL,
1136 };
1137
1138 static struct attribute_group cpu_common_attr_group = {
1139         .attrs = cpu_common_attrs,
1140 };
1141
1142 static struct attribute *cpu_online_attrs[] = {
1143         &dev_attr_idle_count.attr,
1144         &dev_attr_idle_time_us.attr,
1145         NULL,
1146 };
1147
1148 static struct attribute_group cpu_online_attr_group = {
1149         .attrs = cpu_online_attrs,
1150 };
1151
1152 static int smp_cpu_online(unsigned int cpu)
1153 {
1154         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1155
1156         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1157 }
1158
1159 static int smp_cpu_pre_down(unsigned int cpu)
1160 {
1161         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1162
1163         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1164         return 0;
1165 }
1166
1167 static int smp_add_present_cpu(int cpu)
1168 {
1169         struct device *s;
1170         struct cpu *c;
1171         int rc;
1172
1173         c = kzalloc(sizeof(*c), GFP_KERNEL);
1174         if (!c)
1175                 return -ENOMEM;
1176         per_cpu(cpu_device, cpu) = c;
1177         s = &c->dev;
1178         c->hotpluggable = 1;
1179         rc = register_cpu(c, cpu);
1180         if (rc)
1181                 goto out;
1182         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1183         if (rc)
1184                 goto out_cpu;
1185         rc = topology_cpu_init(c);
1186         if (rc)
1187                 goto out_topology;
1188         return 0;
1189
1190 out_topology:
1191         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1192 out_cpu:
1193         unregister_cpu(c);
1194 out:
1195         return rc;
1196 }
1197
1198 int __ref smp_rescan_cpus(void)
1199 {
1200         struct sclp_core_info *info;
1201         int nr;
1202
1203         info = kzalloc(sizeof(*info), GFP_KERNEL);
1204         if (!info)
1205                 return -ENOMEM;
1206         smp_get_core_info(info, 0);
1207         nr = __smp_rescan_cpus(info, false);
1208         kfree(info);
1209         if (nr)
1210                 topology_schedule_update();
1211         return 0;
1212 }
1213
1214 static ssize_t __ref rescan_store(struct device *dev,
1215                                   struct device_attribute *attr,
1216                                   const char *buf,
1217                                   size_t count)
1218 {
1219         int rc;
1220
1221         rc = lock_device_hotplug_sysfs();
1222         if (rc)
1223                 return rc;
1224         rc = smp_rescan_cpus();
1225         unlock_device_hotplug();
1226         return rc ? rc : count;
1227 }
1228 static DEVICE_ATTR_WO(rescan);
1229
1230 static int __init s390_smp_init(void)
1231 {
1232         int cpu, rc = 0;
1233
1234         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1235         if (rc)
1236                 return rc;
1237         for_each_present_cpu(cpu) {
1238                 rc = smp_add_present_cpu(cpu);
1239                 if (rc)
1240                         goto out;
1241         }
1242
1243         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1244                                smp_cpu_online, smp_cpu_pre_down);
1245         rc = rc <= 0 ? rc : 0;
1246 out:
1247         return rc;
1248 }
1249 subsys_initcall(s390_smp_init);
1250
1251 static __always_inline void set_new_lowcore(struct lowcore *lc)
1252 {
1253         union register_pair dst, src;
1254         u32 pfx;
1255
1256         src.even = (unsigned long) &S390_lowcore;
1257         src.odd  = sizeof(S390_lowcore);
1258         dst.even = (unsigned long) lc;
1259         dst.odd  = sizeof(*lc);
1260         pfx = (unsigned long) lc;
1261
1262         asm volatile(
1263                 "       mvcl    %[dst],%[src]\n"
1264                 "       spx     %[pfx]\n"
1265                 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1266                 : [pfx] "Q" (pfx)
1267                 : "memory", "cc");
1268 }
1269
1270 static int __init smp_reinit_ipl_cpu(void)
1271 {
1272         unsigned long async_stack, nodat_stack, mcck_stack;
1273         struct lowcore *lc, *lc_ipl;
1274         unsigned long flags;
1275
1276         lc_ipl = lowcore_ptr[0];
1277         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1278         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1279         async_stack = stack_alloc();
1280         mcck_stack = stack_alloc();
1281         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
1282                 panic("Couldn't allocate memory");
1283
1284         local_irq_save(flags);
1285         local_mcck_disable();
1286         set_new_lowcore(lc);
1287         S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1288         S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1289         S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1290         lowcore_ptr[0] = lc;
1291         local_mcck_enable();
1292         local_irq_restore(flags);
1293
1294         free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1295         memblock_free_late(lc_ipl->mcck_stack - STACK_INIT_OFFSET, THREAD_SIZE);
1296         memblock_free_late((unsigned long) lc_ipl, sizeof(*lc_ipl));
1297
1298         return 0;
1299 }
1300 early_initcall(smp_reinit_ipl_cpu);