Merge tag 'docs-5.15' of git://git.lwn.net/linux
[linux-2.6-microblaze.git] / arch / riscv / net / bpf_jit_comp32.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF JIT compiler for RV32G
4  *
5  * Copyright (c) 2020 Luke Nelson <luke.r.nels@gmail.com>
6  * Copyright (c) 2020 Xi Wang <xi.wang@gmail.com>
7  *
8  * The code is based on the BPF JIT compiler for RV64G by Björn Töpel and
9  * the BPF JIT compiler for 32-bit ARM by Shubham Bansal and Mircea Gherzan.
10  */
11
12 #include <linux/bpf.h>
13 #include <linux/filter.h>
14 #include "bpf_jit.h"
15
16 /*
17  * Stack layout during BPF program execution:
18  *
19  *                     high
20  *     RV32 fp =>  +----------+
21  *                 | saved ra |
22  *                 | saved fp | RV32 callee-saved registers
23  *                 |   ...    |
24  *                 +----------+ <= (fp - 4 * NR_SAVED_REGISTERS)
25  *                 |  hi(R6)  |
26  *                 |  lo(R6)  |
27  *                 |  hi(R7)  | JIT scratch space for BPF registers
28  *                 |  lo(R7)  |
29  *                 |   ...    |
30  *  BPF_REG_FP =>  +----------+ <= (fp - 4 * NR_SAVED_REGISTERS
31  *                 |          |        - 4 * BPF_JIT_SCRATCH_REGS)
32  *                 |          |
33  *                 |   ...    | BPF program stack
34  *                 |          |
35  *     RV32 sp =>  +----------+
36  *                 |          |
37  *                 |   ...    | Function call stack
38  *                 |          |
39  *                 +----------+
40  *                     low
41  */
42
43 enum {
44         /* Stack layout - these are offsets from top of JIT scratch space. */
45         BPF_R6_HI,
46         BPF_R6_LO,
47         BPF_R7_HI,
48         BPF_R7_LO,
49         BPF_R8_HI,
50         BPF_R8_LO,
51         BPF_R9_HI,
52         BPF_R9_LO,
53         BPF_AX_HI,
54         BPF_AX_LO,
55         /* Stack space for BPF_REG_6 through BPF_REG_9 and BPF_REG_AX. */
56         BPF_JIT_SCRATCH_REGS,
57 };
58
59 /* Number of callee-saved registers stored to stack: ra, fp, s1--s7. */
60 #define NR_SAVED_REGISTERS      9
61
62 /* Offset from fp for BPF registers stored on stack. */
63 #define STACK_OFFSET(k) (-4 - (4 * NR_SAVED_REGISTERS) - (4 * (k)))
64
65 #define TMP_REG_1       (MAX_BPF_JIT_REG + 0)
66 #define TMP_REG_2       (MAX_BPF_JIT_REG + 1)
67
68 #define RV_REG_TCC              RV_REG_T6
69 #define RV_REG_TCC_SAVED        RV_REG_S7
70
71 static const s8 bpf2rv32[][2] = {
72         /* Return value from in-kernel function, and exit value from eBPF. */
73         [BPF_REG_0] = {RV_REG_S2, RV_REG_S1},
74         /* Arguments from eBPF program to in-kernel function. */
75         [BPF_REG_1] = {RV_REG_A1, RV_REG_A0},
76         [BPF_REG_2] = {RV_REG_A3, RV_REG_A2},
77         [BPF_REG_3] = {RV_REG_A5, RV_REG_A4},
78         [BPF_REG_4] = {RV_REG_A7, RV_REG_A6},
79         [BPF_REG_5] = {RV_REG_S4, RV_REG_S3},
80         /*
81          * Callee-saved registers that in-kernel function will preserve.
82          * Stored on the stack.
83          */
84         [BPF_REG_6] = {STACK_OFFSET(BPF_R6_HI), STACK_OFFSET(BPF_R6_LO)},
85         [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
86         [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
87         [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
88         /* Read-only frame pointer to access BPF stack. */
89         [BPF_REG_FP] = {RV_REG_S6, RV_REG_S5},
90         /* Temporary register for blinding constants. Stored on the stack. */
91         [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
92         /*
93          * Temporary registers used by the JIT to operate on registers stored
94          * on the stack. Save t0 and t1 to be used as temporaries in generated
95          * code.
96          */
97         [TMP_REG_1] = {RV_REG_T3, RV_REG_T2},
98         [TMP_REG_2] = {RV_REG_T5, RV_REG_T4},
99 };
100
101 static s8 hi(const s8 *r)
102 {
103         return r[0];
104 }
105
106 static s8 lo(const s8 *r)
107 {
108         return r[1];
109 }
110
111 static void emit_imm(const s8 rd, s32 imm, struct rv_jit_context *ctx)
112 {
113         u32 upper = (imm + (1 << 11)) >> 12;
114         u32 lower = imm & 0xfff;
115
116         if (upper) {
117                 emit(rv_lui(rd, upper), ctx);
118                 emit(rv_addi(rd, rd, lower), ctx);
119         } else {
120                 emit(rv_addi(rd, RV_REG_ZERO, lower), ctx);
121         }
122 }
123
124 static void emit_imm32(const s8 *rd, s32 imm, struct rv_jit_context *ctx)
125 {
126         /* Emit immediate into lower bits. */
127         emit_imm(lo(rd), imm, ctx);
128
129         /* Sign-extend into upper bits. */
130         if (imm >= 0)
131                 emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
132         else
133                 emit(rv_addi(hi(rd), RV_REG_ZERO, -1), ctx);
134 }
135
136 static void emit_imm64(const s8 *rd, s32 imm_hi, s32 imm_lo,
137                        struct rv_jit_context *ctx)
138 {
139         emit_imm(lo(rd), imm_lo, ctx);
140         emit_imm(hi(rd), imm_hi, ctx);
141 }
142
143 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
144 {
145         int stack_adjust = ctx->stack_size;
146         const s8 *r0 = bpf2rv32[BPF_REG_0];
147
148         /* Set return value if not tail call. */
149         if (!is_tail_call) {
150                 emit(rv_addi(RV_REG_A0, lo(r0), 0), ctx);
151                 emit(rv_addi(RV_REG_A1, hi(r0), 0), ctx);
152         }
153
154         /* Restore callee-saved registers. */
155         emit(rv_lw(RV_REG_RA, stack_adjust - 4, RV_REG_SP), ctx);
156         emit(rv_lw(RV_REG_FP, stack_adjust - 8, RV_REG_SP), ctx);
157         emit(rv_lw(RV_REG_S1, stack_adjust - 12, RV_REG_SP), ctx);
158         emit(rv_lw(RV_REG_S2, stack_adjust - 16, RV_REG_SP), ctx);
159         emit(rv_lw(RV_REG_S3, stack_adjust - 20, RV_REG_SP), ctx);
160         emit(rv_lw(RV_REG_S4, stack_adjust - 24, RV_REG_SP), ctx);
161         emit(rv_lw(RV_REG_S5, stack_adjust - 28, RV_REG_SP), ctx);
162         emit(rv_lw(RV_REG_S6, stack_adjust - 32, RV_REG_SP), ctx);
163         emit(rv_lw(RV_REG_S7, stack_adjust - 36, RV_REG_SP), ctx);
164
165         emit(rv_addi(RV_REG_SP, RV_REG_SP, stack_adjust), ctx);
166
167         if (is_tail_call) {
168                 /*
169                  * goto *(t0 + 4);
170                  * Skips first instruction of prologue which initializes tail
171                  * call counter. Assumes t0 contains address of target program,
172                  * see emit_bpf_tail_call.
173                  */
174                 emit(rv_jalr(RV_REG_ZERO, RV_REG_T0, 4), ctx);
175         } else {
176                 emit(rv_jalr(RV_REG_ZERO, RV_REG_RA, 0), ctx);
177         }
178 }
179
180 static bool is_stacked(s8 reg)
181 {
182         return reg < 0;
183 }
184
185 static const s8 *bpf_get_reg64(const s8 *reg, const s8 *tmp,
186                                struct rv_jit_context *ctx)
187 {
188         if (is_stacked(hi(reg))) {
189                 emit(rv_lw(hi(tmp), hi(reg), RV_REG_FP), ctx);
190                 emit(rv_lw(lo(tmp), lo(reg), RV_REG_FP), ctx);
191                 reg = tmp;
192         }
193         return reg;
194 }
195
196 static void bpf_put_reg64(const s8 *reg, const s8 *src,
197                           struct rv_jit_context *ctx)
198 {
199         if (is_stacked(hi(reg))) {
200                 emit(rv_sw(RV_REG_FP, hi(reg), hi(src)), ctx);
201                 emit(rv_sw(RV_REG_FP, lo(reg), lo(src)), ctx);
202         }
203 }
204
205 static const s8 *bpf_get_reg32(const s8 *reg, const s8 *tmp,
206                                struct rv_jit_context *ctx)
207 {
208         if (is_stacked(lo(reg))) {
209                 emit(rv_lw(lo(tmp), lo(reg), RV_REG_FP), ctx);
210                 reg = tmp;
211         }
212         return reg;
213 }
214
215 static void bpf_put_reg32(const s8 *reg, const s8 *src,
216                           struct rv_jit_context *ctx)
217 {
218         if (is_stacked(lo(reg))) {
219                 emit(rv_sw(RV_REG_FP, lo(reg), lo(src)), ctx);
220                 if (!ctx->prog->aux->verifier_zext)
221                         emit(rv_sw(RV_REG_FP, hi(reg), RV_REG_ZERO), ctx);
222         } else if (!ctx->prog->aux->verifier_zext) {
223                 emit(rv_addi(hi(reg), RV_REG_ZERO, 0), ctx);
224         }
225 }
226
227 static void emit_jump_and_link(u8 rd, s32 rvoff, bool force_jalr,
228                                struct rv_jit_context *ctx)
229 {
230         s32 upper, lower;
231
232         if (rvoff && is_21b_int(rvoff) && !force_jalr) {
233                 emit(rv_jal(rd, rvoff >> 1), ctx);
234                 return;
235         }
236
237         upper = (rvoff + (1 << 11)) >> 12;
238         lower = rvoff & 0xfff;
239         emit(rv_auipc(RV_REG_T1, upper), ctx);
240         emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
241 }
242
243 static void emit_alu_i64(const s8 *dst, s32 imm,
244                          struct rv_jit_context *ctx, const u8 op)
245 {
246         const s8 *tmp1 = bpf2rv32[TMP_REG_1];
247         const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
248
249         switch (op) {
250         case BPF_MOV:
251                 emit_imm32(rd, imm, ctx);
252                 break;
253         case BPF_AND:
254                 if (is_12b_int(imm)) {
255                         emit(rv_andi(lo(rd), lo(rd), imm), ctx);
256                 } else {
257                         emit_imm(RV_REG_T0, imm, ctx);
258                         emit(rv_and(lo(rd), lo(rd), RV_REG_T0), ctx);
259                 }
260                 if (imm >= 0)
261                         emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
262                 break;
263         case BPF_OR:
264                 if (is_12b_int(imm)) {
265                         emit(rv_ori(lo(rd), lo(rd), imm), ctx);
266                 } else {
267                         emit_imm(RV_REG_T0, imm, ctx);
268                         emit(rv_or(lo(rd), lo(rd), RV_REG_T0), ctx);
269                 }
270                 if (imm < 0)
271                         emit(rv_ori(hi(rd), RV_REG_ZERO, -1), ctx);
272                 break;
273         case BPF_XOR:
274                 if (is_12b_int(imm)) {
275                         emit(rv_xori(lo(rd), lo(rd), imm), ctx);
276                 } else {
277                         emit_imm(RV_REG_T0, imm, ctx);
278                         emit(rv_xor(lo(rd), lo(rd), RV_REG_T0), ctx);
279                 }
280                 if (imm < 0)
281                         emit(rv_xori(hi(rd), hi(rd), -1), ctx);
282                 break;
283         case BPF_LSH:
284                 if (imm >= 32) {
285                         emit(rv_slli(hi(rd), lo(rd), imm - 32), ctx);
286                         emit(rv_addi(lo(rd), RV_REG_ZERO, 0), ctx);
287                 } else if (imm == 0) {
288                         /* Do nothing. */
289                 } else {
290                         emit(rv_srli(RV_REG_T0, lo(rd), 32 - imm), ctx);
291                         emit(rv_slli(hi(rd), hi(rd), imm), ctx);
292                         emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx);
293                         emit(rv_slli(lo(rd), lo(rd), imm), ctx);
294                 }
295                 break;
296         case BPF_RSH:
297                 if (imm >= 32) {
298                         emit(rv_srli(lo(rd), hi(rd), imm - 32), ctx);
299                         emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
300                 } else if (imm == 0) {
301                         /* Do nothing. */
302                 } else {
303                         emit(rv_slli(RV_REG_T0, hi(rd), 32 - imm), ctx);
304                         emit(rv_srli(lo(rd), lo(rd), imm), ctx);
305                         emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx);
306                         emit(rv_srli(hi(rd), hi(rd), imm), ctx);
307                 }
308                 break;
309         case BPF_ARSH:
310                 if (imm >= 32) {
311                         emit(rv_srai(lo(rd), hi(rd), imm - 32), ctx);
312                         emit(rv_srai(hi(rd), hi(rd), 31), ctx);
313                 } else if (imm == 0) {
314                         /* Do nothing. */
315                 } else {
316                         emit(rv_slli(RV_REG_T0, hi(rd), 32 - imm), ctx);
317                         emit(rv_srli(lo(rd), lo(rd), imm), ctx);
318                         emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx);
319                         emit(rv_srai(hi(rd), hi(rd), imm), ctx);
320                 }
321                 break;
322         }
323
324         bpf_put_reg64(dst, rd, ctx);
325 }
326
327 static void emit_alu_i32(const s8 *dst, s32 imm,
328                          struct rv_jit_context *ctx, const u8 op)
329 {
330         const s8 *tmp1 = bpf2rv32[TMP_REG_1];
331         const s8 *rd = bpf_get_reg32(dst, tmp1, ctx);
332
333         switch (op) {
334         case BPF_MOV:
335                 emit_imm(lo(rd), imm, ctx);
336                 break;
337         case BPF_ADD:
338                 if (is_12b_int(imm)) {
339                         emit(rv_addi(lo(rd), lo(rd), imm), ctx);
340                 } else {
341                         emit_imm(RV_REG_T0, imm, ctx);
342                         emit(rv_add(lo(rd), lo(rd), RV_REG_T0), ctx);
343                 }
344                 break;
345         case BPF_SUB:
346                 if (is_12b_int(-imm)) {
347                         emit(rv_addi(lo(rd), lo(rd), -imm), ctx);
348                 } else {
349                         emit_imm(RV_REG_T0, imm, ctx);
350                         emit(rv_sub(lo(rd), lo(rd), RV_REG_T0), ctx);
351                 }
352                 break;
353         case BPF_AND:
354                 if (is_12b_int(imm)) {
355                         emit(rv_andi(lo(rd), lo(rd), imm), ctx);
356                 } else {
357                         emit_imm(RV_REG_T0, imm, ctx);
358                         emit(rv_and(lo(rd), lo(rd), RV_REG_T0), ctx);
359                 }
360                 break;
361         case BPF_OR:
362                 if (is_12b_int(imm)) {
363                         emit(rv_ori(lo(rd), lo(rd), imm), ctx);
364                 } else {
365                         emit_imm(RV_REG_T0, imm, ctx);
366                         emit(rv_or(lo(rd), lo(rd), RV_REG_T0), ctx);
367                 }
368                 break;
369         case BPF_XOR:
370                 if (is_12b_int(imm)) {
371                         emit(rv_xori(lo(rd), lo(rd), imm), ctx);
372                 } else {
373                         emit_imm(RV_REG_T0, imm, ctx);
374                         emit(rv_xor(lo(rd), lo(rd), RV_REG_T0), ctx);
375                 }
376                 break;
377         case BPF_LSH:
378                 if (is_12b_int(imm)) {
379                         emit(rv_slli(lo(rd), lo(rd), imm), ctx);
380                 } else {
381                         emit_imm(RV_REG_T0, imm, ctx);
382                         emit(rv_sll(lo(rd), lo(rd), RV_REG_T0), ctx);
383                 }
384                 break;
385         case BPF_RSH:
386                 if (is_12b_int(imm)) {
387                         emit(rv_srli(lo(rd), lo(rd), imm), ctx);
388                 } else {
389                         emit_imm(RV_REG_T0, imm, ctx);
390                         emit(rv_srl(lo(rd), lo(rd), RV_REG_T0), ctx);
391                 }
392                 break;
393         case BPF_ARSH:
394                 if (is_12b_int(imm)) {
395                         emit(rv_srai(lo(rd), lo(rd), imm), ctx);
396                 } else {
397                         emit_imm(RV_REG_T0, imm, ctx);
398                         emit(rv_sra(lo(rd), lo(rd), RV_REG_T0), ctx);
399                 }
400                 break;
401         }
402
403         bpf_put_reg32(dst, rd, ctx);
404 }
405
406 static void emit_alu_r64(const s8 *dst, const s8 *src,
407                          struct rv_jit_context *ctx, const u8 op)
408 {
409         const s8 *tmp1 = bpf2rv32[TMP_REG_1];
410         const s8 *tmp2 = bpf2rv32[TMP_REG_2];
411         const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
412         const s8 *rs = bpf_get_reg64(src, tmp2, ctx);
413
414         switch (op) {
415         case BPF_MOV:
416                 emit(rv_addi(lo(rd), lo(rs), 0), ctx);
417                 emit(rv_addi(hi(rd), hi(rs), 0), ctx);
418                 break;
419         case BPF_ADD:
420                 if (rd == rs) {
421                         emit(rv_srli(RV_REG_T0, lo(rd), 31), ctx);
422                         emit(rv_slli(hi(rd), hi(rd), 1), ctx);
423                         emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx);
424                         emit(rv_slli(lo(rd), lo(rd), 1), ctx);
425                 } else {
426                         emit(rv_add(lo(rd), lo(rd), lo(rs)), ctx);
427                         emit(rv_sltu(RV_REG_T0, lo(rd), lo(rs)), ctx);
428                         emit(rv_add(hi(rd), hi(rd), hi(rs)), ctx);
429                         emit(rv_add(hi(rd), hi(rd), RV_REG_T0), ctx);
430                 }
431                 break;
432         case BPF_SUB:
433                 emit(rv_sub(RV_REG_T1, hi(rd), hi(rs)), ctx);
434                 emit(rv_sltu(RV_REG_T0, lo(rd), lo(rs)), ctx);
435                 emit(rv_sub(hi(rd), RV_REG_T1, RV_REG_T0), ctx);
436                 emit(rv_sub(lo(rd), lo(rd), lo(rs)), ctx);
437                 break;
438         case BPF_AND:
439                 emit(rv_and(lo(rd), lo(rd), lo(rs)), ctx);
440                 emit(rv_and(hi(rd), hi(rd), hi(rs)), ctx);
441                 break;
442         case BPF_OR:
443                 emit(rv_or(lo(rd), lo(rd), lo(rs)), ctx);
444                 emit(rv_or(hi(rd), hi(rd), hi(rs)), ctx);
445                 break;
446         case BPF_XOR:
447                 emit(rv_xor(lo(rd), lo(rd), lo(rs)), ctx);
448                 emit(rv_xor(hi(rd), hi(rd), hi(rs)), ctx);
449                 break;
450         case BPF_MUL:
451                 emit(rv_mul(RV_REG_T0, hi(rs), lo(rd)), ctx);
452                 emit(rv_mul(hi(rd), hi(rd), lo(rs)), ctx);
453                 emit(rv_mulhu(RV_REG_T1, lo(rd), lo(rs)), ctx);
454                 emit(rv_add(hi(rd), hi(rd), RV_REG_T0), ctx);
455                 emit(rv_mul(lo(rd), lo(rd), lo(rs)), ctx);
456                 emit(rv_add(hi(rd), hi(rd), RV_REG_T1), ctx);
457                 break;
458         case BPF_LSH:
459                 emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx);
460                 emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx);
461                 emit(rv_sll(hi(rd), lo(rd), RV_REG_T0), ctx);
462                 emit(rv_addi(lo(rd), RV_REG_ZERO, 0), ctx);
463                 emit(rv_jal(RV_REG_ZERO, 16), ctx);
464                 emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx);
465                 emit(rv_srli(RV_REG_T0, lo(rd), 1), ctx);
466                 emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx);
467                 emit(rv_srl(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx);
468                 emit(rv_sll(hi(rd), hi(rd), lo(rs)), ctx);
469                 emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx);
470                 emit(rv_sll(lo(rd), lo(rd), lo(rs)), ctx);
471                 break;
472         case BPF_RSH:
473                 emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx);
474                 emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx);
475                 emit(rv_srl(lo(rd), hi(rd), RV_REG_T0), ctx);
476                 emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
477                 emit(rv_jal(RV_REG_ZERO, 16), ctx);
478                 emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx);
479                 emit(rv_slli(RV_REG_T0, hi(rd), 1), ctx);
480                 emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx);
481                 emit(rv_sll(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx);
482                 emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx);
483                 emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx);
484                 emit(rv_srl(hi(rd), hi(rd), lo(rs)), ctx);
485                 break;
486         case BPF_ARSH:
487                 emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx);
488                 emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx);
489                 emit(rv_sra(lo(rd), hi(rd), RV_REG_T0), ctx);
490                 emit(rv_srai(hi(rd), hi(rd), 31), ctx);
491                 emit(rv_jal(RV_REG_ZERO, 16), ctx);
492                 emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx);
493                 emit(rv_slli(RV_REG_T0, hi(rd), 1), ctx);
494                 emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx);
495                 emit(rv_sll(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx);
496                 emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx);
497                 emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx);
498                 emit(rv_sra(hi(rd), hi(rd), lo(rs)), ctx);
499                 break;
500         case BPF_NEG:
501                 emit(rv_sub(lo(rd), RV_REG_ZERO, lo(rd)), ctx);
502                 emit(rv_sltu(RV_REG_T0, RV_REG_ZERO, lo(rd)), ctx);
503                 emit(rv_sub(hi(rd), RV_REG_ZERO, hi(rd)), ctx);
504                 emit(rv_sub(hi(rd), hi(rd), RV_REG_T0), ctx);
505                 break;
506         }
507
508         bpf_put_reg64(dst, rd, ctx);
509 }
510
511 static void emit_alu_r32(const s8 *dst, const s8 *src,
512                          struct rv_jit_context *ctx, const u8 op)
513 {
514         const s8 *tmp1 = bpf2rv32[TMP_REG_1];
515         const s8 *tmp2 = bpf2rv32[TMP_REG_2];
516         const s8 *rd = bpf_get_reg32(dst, tmp1, ctx);
517         const s8 *rs = bpf_get_reg32(src, tmp2, ctx);
518
519         switch (op) {
520         case BPF_MOV:
521                 emit(rv_addi(lo(rd), lo(rs), 0), ctx);
522                 break;
523         case BPF_ADD:
524                 emit(rv_add(lo(rd), lo(rd), lo(rs)), ctx);
525                 break;
526         case BPF_SUB:
527                 emit(rv_sub(lo(rd), lo(rd), lo(rs)), ctx);
528                 break;
529         case BPF_AND:
530                 emit(rv_and(lo(rd), lo(rd), lo(rs)), ctx);
531                 break;
532         case BPF_OR:
533                 emit(rv_or(lo(rd), lo(rd), lo(rs)), ctx);
534                 break;
535         case BPF_XOR:
536                 emit(rv_xor(lo(rd), lo(rd), lo(rs)), ctx);
537                 break;
538         case BPF_MUL:
539                 emit(rv_mul(lo(rd), lo(rd), lo(rs)), ctx);
540                 break;
541         case BPF_DIV:
542                 emit(rv_divu(lo(rd), lo(rd), lo(rs)), ctx);
543                 break;
544         case BPF_MOD:
545                 emit(rv_remu(lo(rd), lo(rd), lo(rs)), ctx);
546                 break;
547         case BPF_LSH:
548                 emit(rv_sll(lo(rd), lo(rd), lo(rs)), ctx);
549                 break;
550         case BPF_RSH:
551                 emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx);
552                 break;
553         case BPF_ARSH:
554                 emit(rv_sra(lo(rd), lo(rd), lo(rs)), ctx);
555                 break;
556         case BPF_NEG:
557                 emit(rv_sub(lo(rd), RV_REG_ZERO, lo(rd)), ctx);
558                 break;
559         }
560
561         bpf_put_reg32(dst, rd, ctx);
562 }
563
564 static int emit_branch_r64(const s8 *src1, const s8 *src2, s32 rvoff,
565                            struct rv_jit_context *ctx, const u8 op)
566 {
567         int e, s = ctx->ninsns;
568         const s8 *tmp1 = bpf2rv32[TMP_REG_1];
569         const s8 *tmp2 = bpf2rv32[TMP_REG_2];
570
571         const s8 *rs1 = bpf_get_reg64(src1, tmp1, ctx);
572         const s8 *rs2 = bpf_get_reg64(src2, tmp2, ctx);
573
574         /*
575          * NO_JUMP skips over the rest of the instructions and the
576          * emit_jump_and_link, meaning the BPF branch is not taken.
577          * JUMP skips directly to the emit_jump_and_link, meaning
578          * the BPF branch is taken.
579          *
580          * The fallthrough case results in the BPF branch being taken.
581          */
582 #define NO_JUMP(idx) (6 + (2 * (idx)))
583 #define JUMP(idx) (2 + (2 * (idx)))
584
585         switch (op) {
586         case BPF_JEQ:
587                 emit(rv_bne(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
588                 emit(rv_bne(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
589                 break;
590         case BPF_JGT:
591                 emit(rv_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx);
592                 emit(rv_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
593                 emit(rv_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
594                 break;
595         case BPF_JLT:
596                 emit(rv_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx);
597                 emit(rv_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
598                 emit(rv_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
599                 break;
600         case BPF_JGE:
601                 emit(rv_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx);
602                 emit(rv_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
603                 emit(rv_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
604                 break;
605         case BPF_JLE:
606                 emit(rv_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx);
607                 emit(rv_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
608                 emit(rv_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
609                 break;
610         case BPF_JNE:
611                 emit(rv_bne(hi(rs1), hi(rs2), JUMP(1)), ctx);
612                 emit(rv_beq(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
613                 break;
614         case BPF_JSGT:
615                 emit(rv_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx);
616                 emit(rv_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
617                 emit(rv_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
618                 break;
619         case BPF_JSLT:
620                 emit(rv_blt(hi(rs1), hi(rs2), JUMP(2)), ctx);
621                 emit(rv_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
622                 emit(rv_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
623                 break;
624         case BPF_JSGE:
625                 emit(rv_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx);
626                 emit(rv_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
627                 emit(rv_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
628                 break;
629         case BPF_JSLE:
630                 emit(rv_blt(hi(rs1), hi(rs2), JUMP(2)), ctx);
631                 emit(rv_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx);
632                 emit(rv_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx);
633                 break;
634         case BPF_JSET:
635                 emit(rv_and(RV_REG_T0, hi(rs1), hi(rs2)), ctx);
636                 emit(rv_bne(RV_REG_T0, RV_REG_ZERO, JUMP(2)), ctx);
637                 emit(rv_and(RV_REG_T0, lo(rs1), lo(rs2)), ctx);
638                 emit(rv_beq(RV_REG_T0, RV_REG_ZERO, NO_JUMP(0)), ctx);
639                 break;
640         }
641
642 #undef NO_JUMP
643 #undef JUMP
644
645         e = ctx->ninsns;
646         /* Adjust for extra insns. */
647         rvoff -= ninsns_rvoff(e - s);
648         emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
649         return 0;
650 }
651
652 static int emit_bcc(u8 op, u8 rd, u8 rs, int rvoff, struct rv_jit_context *ctx)
653 {
654         int e, s = ctx->ninsns;
655         bool far = false;
656         int off;
657
658         if (op == BPF_JSET) {
659                 /*
660                  * BPF_JSET is a special case: it has no inverse so we always
661                  * treat it as a far branch.
662                  */
663                 far = true;
664         } else if (!is_13b_int(rvoff)) {
665                 op = invert_bpf_cond(op);
666                 far = true;
667         }
668
669         /*
670          * For a far branch, the condition is negated and we jump over the
671          * branch itself, and the two instructions from emit_jump_and_link.
672          * For a near branch, just use rvoff.
673          */
674         off = far ? 6 : (rvoff >> 1);
675
676         switch (op) {
677         case BPF_JEQ:
678                 emit(rv_beq(rd, rs, off), ctx);
679                 break;
680         case BPF_JGT:
681                 emit(rv_bgtu(rd, rs, off), ctx);
682                 break;
683         case BPF_JLT:
684                 emit(rv_bltu(rd, rs, off), ctx);
685                 break;
686         case BPF_JGE:
687                 emit(rv_bgeu(rd, rs, off), ctx);
688                 break;
689         case BPF_JLE:
690                 emit(rv_bleu(rd, rs, off), ctx);
691                 break;
692         case BPF_JNE:
693                 emit(rv_bne(rd, rs, off), ctx);
694                 break;
695         case BPF_JSGT:
696                 emit(rv_bgt(rd, rs, off), ctx);
697                 break;
698         case BPF_JSLT:
699                 emit(rv_blt(rd, rs, off), ctx);
700                 break;
701         case BPF_JSGE:
702                 emit(rv_bge(rd, rs, off), ctx);
703                 break;
704         case BPF_JSLE:
705                 emit(rv_ble(rd, rs, off), ctx);
706                 break;
707         case BPF_JSET:
708                 emit(rv_and(RV_REG_T0, rd, rs), ctx);
709                 emit(rv_beq(RV_REG_T0, RV_REG_ZERO, off), ctx);
710                 break;
711         }
712
713         if (far) {
714                 e = ctx->ninsns;
715                 /* Adjust for extra insns. */
716                 rvoff -= ninsns_rvoff(e - s);
717                 emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
718         }
719         return 0;
720 }
721
722 static int emit_branch_r32(const s8 *src1, const s8 *src2, s32 rvoff,
723                            struct rv_jit_context *ctx, const u8 op)
724 {
725         int e, s = ctx->ninsns;
726         const s8 *tmp1 = bpf2rv32[TMP_REG_1];
727         const s8 *tmp2 = bpf2rv32[TMP_REG_2];
728
729         const s8 *rs1 = bpf_get_reg32(src1, tmp1, ctx);
730         const s8 *rs2 = bpf_get_reg32(src2, tmp2, ctx);
731
732         e = ctx->ninsns;
733         /* Adjust for extra insns. */
734         rvoff -= ninsns_rvoff(e - s);
735
736         if (emit_bcc(op, lo(rs1), lo(rs2), rvoff, ctx))
737                 return -1;
738
739         return 0;
740 }
741
742 static void emit_call(bool fixed, u64 addr, struct rv_jit_context *ctx)
743 {
744         const s8 *r0 = bpf2rv32[BPF_REG_0];
745         const s8 *r5 = bpf2rv32[BPF_REG_5];
746         u32 upper = ((u32)addr + (1 << 11)) >> 12;
747         u32 lower = addr & 0xfff;
748
749         /* R1-R4 already in correct registers---need to push R5 to stack. */
750         emit(rv_addi(RV_REG_SP, RV_REG_SP, -16), ctx);
751         emit(rv_sw(RV_REG_SP, 0, lo(r5)), ctx);
752         emit(rv_sw(RV_REG_SP, 4, hi(r5)), ctx);
753
754         /* Backup TCC. */
755         emit(rv_addi(RV_REG_TCC_SAVED, RV_REG_TCC, 0), ctx);
756
757         /*
758          * Use lui/jalr pair to jump to absolute address. Don't use emit_imm as
759          * the number of emitted instructions should not depend on the value of
760          * addr.
761          */
762         emit(rv_lui(RV_REG_T1, upper), ctx);
763         emit(rv_jalr(RV_REG_RA, RV_REG_T1, lower), ctx);
764
765         /* Restore TCC. */
766         emit(rv_addi(RV_REG_TCC, RV_REG_TCC_SAVED, 0), ctx);
767
768         /* Set return value and restore stack. */
769         emit(rv_addi(lo(r0), RV_REG_A0, 0), ctx);
770         emit(rv_addi(hi(r0), RV_REG_A1, 0), ctx);
771         emit(rv_addi(RV_REG_SP, RV_REG_SP, 16), ctx);
772 }
773
774 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
775 {
776         /*
777          * R1 -> &ctx
778          * R2 -> &array
779          * R3 -> index
780          */
781         int tc_ninsn, off, start_insn = ctx->ninsns;
782         const s8 *arr_reg = bpf2rv32[BPF_REG_2];
783         const s8 *idx_reg = bpf2rv32[BPF_REG_3];
784
785         tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
786                 ctx->offset[0];
787
788         /* max_entries = array->map.max_entries; */
789         off = offsetof(struct bpf_array, map.max_entries);
790         if (is_12b_check(off, insn))
791                 return -1;
792         emit(rv_lw(RV_REG_T1, off, lo(arr_reg)), ctx);
793
794         /*
795          * if (index >= max_entries)
796          *   goto out;
797          */
798         off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
799         emit_bcc(BPF_JGE, lo(idx_reg), RV_REG_T1, off, ctx);
800
801         /*
802          * temp_tcc = tcc - 1;
803          * if (tcc < 0)
804          *   goto out;
805          */
806         emit(rv_addi(RV_REG_T1, RV_REG_TCC, -1), ctx);
807         off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
808         emit_bcc(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
809
810         /*
811          * prog = array->ptrs[index];
812          * if (!prog)
813          *   goto out;
814          */
815         emit(rv_slli(RV_REG_T0, lo(idx_reg), 2), ctx);
816         emit(rv_add(RV_REG_T0, RV_REG_T0, lo(arr_reg)), ctx);
817         off = offsetof(struct bpf_array, ptrs);
818         if (is_12b_check(off, insn))
819                 return -1;
820         emit(rv_lw(RV_REG_T0, off, RV_REG_T0), ctx);
821         off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
822         emit_bcc(BPF_JEQ, RV_REG_T0, RV_REG_ZERO, off, ctx);
823
824         /*
825          * tcc = temp_tcc;
826          * goto *(prog->bpf_func + 4);
827          */
828         off = offsetof(struct bpf_prog, bpf_func);
829         if (is_12b_check(off, insn))
830                 return -1;
831         emit(rv_lw(RV_REG_T0, off, RV_REG_T0), ctx);
832         emit(rv_addi(RV_REG_TCC, RV_REG_T1, 0), ctx);
833         /* Epilogue jumps to *(t0 + 4). */
834         __build_epilogue(true, ctx);
835         return 0;
836 }
837
838 static int emit_load_r64(const s8 *dst, const s8 *src, s16 off,
839                          struct rv_jit_context *ctx, const u8 size)
840 {
841         const s8 *tmp1 = bpf2rv32[TMP_REG_1];
842         const s8 *tmp2 = bpf2rv32[TMP_REG_2];
843         const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
844         const s8 *rs = bpf_get_reg64(src, tmp2, ctx);
845
846         emit_imm(RV_REG_T0, off, ctx);
847         emit(rv_add(RV_REG_T0, RV_REG_T0, lo(rs)), ctx);
848
849         switch (size) {
850         case BPF_B:
851                 emit(rv_lbu(lo(rd), 0, RV_REG_T0), ctx);
852                 if (!ctx->prog->aux->verifier_zext)
853                         emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
854                 break;
855         case BPF_H:
856                 emit(rv_lhu(lo(rd), 0, RV_REG_T0), ctx);
857                 if (!ctx->prog->aux->verifier_zext)
858                         emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
859                 break;
860         case BPF_W:
861                 emit(rv_lw(lo(rd), 0, RV_REG_T0), ctx);
862                 if (!ctx->prog->aux->verifier_zext)
863                         emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
864                 break;
865         case BPF_DW:
866                 emit(rv_lw(lo(rd), 0, RV_REG_T0), ctx);
867                 emit(rv_lw(hi(rd), 4, RV_REG_T0), ctx);
868                 break;
869         }
870
871         bpf_put_reg64(dst, rd, ctx);
872         return 0;
873 }
874
875 static int emit_store_r64(const s8 *dst, const s8 *src, s16 off,
876                           struct rv_jit_context *ctx, const u8 size,
877                           const u8 mode)
878 {
879         const s8 *tmp1 = bpf2rv32[TMP_REG_1];
880         const s8 *tmp2 = bpf2rv32[TMP_REG_2];
881         const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
882         const s8 *rs = bpf_get_reg64(src, tmp2, ctx);
883
884         if (mode == BPF_ATOMIC && size != BPF_W)
885                 return -1;
886
887         emit_imm(RV_REG_T0, off, ctx);
888         emit(rv_add(RV_REG_T0, RV_REG_T0, lo(rd)), ctx);
889
890         switch (size) {
891         case BPF_B:
892                 emit(rv_sb(RV_REG_T0, 0, lo(rs)), ctx);
893                 break;
894         case BPF_H:
895                 emit(rv_sh(RV_REG_T0, 0, lo(rs)), ctx);
896                 break;
897         case BPF_W:
898                 switch (mode) {
899                 case BPF_MEM:
900                         emit(rv_sw(RV_REG_T0, 0, lo(rs)), ctx);
901                         break;
902                 case BPF_ATOMIC: /* Only BPF_ADD supported */
903                         emit(rv_amoadd_w(RV_REG_ZERO, lo(rs), RV_REG_T0, 0, 0),
904                              ctx);
905                         break;
906                 }
907                 break;
908         case BPF_DW:
909                 emit(rv_sw(RV_REG_T0, 0, lo(rs)), ctx);
910                 emit(rv_sw(RV_REG_T0, 4, hi(rs)), ctx);
911                 break;
912         }
913
914         return 0;
915 }
916
917 static void emit_rev16(const s8 rd, struct rv_jit_context *ctx)
918 {
919         emit(rv_slli(rd, rd, 16), ctx);
920         emit(rv_slli(RV_REG_T1, rd, 8), ctx);
921         emit(rv_srli(rd, rd, 8), ctx);
922         emit(rv_add(RV_REG_T1, rd, RV_REG_T1), ctx);
923         emit(rv_srli(rd, RV_REG_T1, 16), ctx);
924 }
925
926 static void emit_rev32(const s8 rd, struct rv_jit_context *ctx)
927 {
928         emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 0), ctx);
929         emit(rv_andi(RV_REG_T0, rd, 255), ctx);
930         emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx);
931         emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx);
932         emit(rv_srli(rd, rd, 8), ctx);
933         emit(rv_andi(RV_REG_T0, rd, 255), ctx);
934         emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx);
935         emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx);
936         emit(rv_srli(rd, rd, 8), ctx);
937         emit(rv_andi(RV_REG_T0, rd, 255), ctx);
938         emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx);
939         emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx);
940         emit(rv_srli(rd, rd, 8), ctx);
941         emit(rv_andi(RV_REG_T0, rd, 255), ctx);
942         emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx);
943         emit(rv_addi(rd, RV_REG_T1, 0), ctx);
944 }
945
946 static void emit_zext64(const s8 *dst, struct rv_jit_context *ctx)
947 {
948         const s8 *rd;
949         const s8 *tmp1 = bpf2rv32[TMP_REG_1];
950
951         rd = bpf_get_reg64(dst, tmp1, ctx);
952         emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
953         bpf_put_reg64(dst, rd, ctx);
954 }
955
956 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
957                       bool extra_pass)
958 {
959         bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
960                 BPF_CLASS(insn->code) == BPF_JMP;
961         int s, e, rvoff, i = insn - ctx->prog->insnsi;
962         u8 code = insn->code;
963         s16 off = insn->off;
964         s32 imm = insn->imm;
965
966         const s8 *dst = bpf2rv32[insn->dst_reg];
967         const s8 *src = bpf2rv32[insn->src_reg];
968         const s8 *tmp1 = bpf2rv32[TMP_REG_1];
969         const s8 *tmp2 = bpf2rv32[TMP_REG_2];
970
971         switch (code) {
972         case BPF_ALU64 | BPF_MOV | BPF_X:
973
974         case BPF_ALU64 | BPF_ADD | BPF_X:
975         case BPF_ALU64 | BPF_ADD | BPF_K:
976
977         case BPF_ALU64 | BPF_SUB | BPF_X:
978         case BPF_ALU64 | BPF_SUB | BPF_K:
979
980         case BPF_ALU64 | BPF_AND | BPF_X:
981         case BPF_ALU64 | BPF_OR | BPF_X:
982         case BPF_ALU64 | BPF_XOR | BPF_X:
983
984         case BPF_ALU64 | BPF_MUL | BPF_X:
985         case BPF_ALU64 | BPF_MUL | BPF_K:
986
987         case BPF_ALU64 | BPF_LSH | BPF_X:
988         case BPF_ALU64 | BPF_RSH | BPF_X:
989         case BPF_ALU64 | BPF_ARSH | BPF_X:
990                 if (BPF_SRC(code) == BPF_K) {
991                         emit_imm32(tmp2, imm, ctx);
992                         src = tmp2;
993                 }
994                 emit_alu_r64(dst, src, ctx, BPF_OP(code));
995                 break;
996
997         case BPF_ALU64 | BPF_NEG:
998                 emit_alu_r64(dst, tmp2, ctx, BPF_OP(code));
999                 break;
1000
1001         case BPF_ALU64 | BPF_DIV | BPF_X:
1002         case BPF_ALU64 | BPF_DIV | BPF_K:
1003         case BPF_ALU64 | BPF_MOD | BPF_X:
1004         case BPF_ALU64 | BPF_MOD | BPF_K:
1005                 goto notsupported;
1006
1007         case BPF_ALU64 | BPF_MOV | BPF_K:
1008         case BPF_ALU64 | BPF_AND | BPF_K:
1009         case BPF_ALU64 | BPF_OR | BPF_K:
1010         case BPF_ALU64 | BPF_XOR | BPF_K:
1011         case BPF_ALU64 | BPF_LSH | BPF_K:
1012         case BPF_ALU64 | BPF_RSH | BPF_K:
1013         case BPF_ALU64 | BPF_ARSH | BPF_K:
1014                 emit_alu_i64(dst, imm, ctx, BPF_OP(code));
1015                 break;
1016
1017         case BPF_ALU | BPF_MOV | BPF_X:
1018                 if (imm == 1) {
1019                         /* Special mov32 for zext. */
1020                         emit_zext64(dst, ctx);
1021                         break;
1022                 }
1023                 fallthrough;
1024
1025         case BPF_ALU | BPF_ADD | BPF_X:
1026         case BPF_ALU | BPF_SUB | BPF_X:
1027         case BPF_ALU | BPF_AND | BPF_X:
1028         case BPF_ALU | BPF_OR | BPF_X:
1029         case BPF_ALU | BPF_XOR | BPF_X:
1030
1031         case BPF_ALU | BPF_MUL | BPF_X:
1032         case BPF_ALU | BPF_MUL | BPF_K:
1033
1034         case BPF_ALU | BPF_DIV | BPF_X:
1035         case BPF_ALU | BPF_DIV | BPF_K:
1036
1037         case BPF_ALU | BPF_MOD | BPF_X:
1038         case BPF_ALU | BPF_MOD | BPF_K:
1039
1040         case BPF_ALU | BPF_LSH | BPF_X:
1041         case BPF_ALU | BPF_RSH | BPF_X:
1042         case BPF_ALU | BPF_ARSH | BPF_X:
1043                 if (BPF_SRC(code) == BPF_K) {
1044                         emit_imm32(tmp2, imm, ctx);
1045                         src = tmp2;
1046                 }
1047                 emit_alu_r32(dst, src, ctx, BPF_OP(code));
1048                 break;
1049
1050         case BPF_ALU | BPF_MOV | BPF_K:
1051         case BPF_ALU | BPF_ADD | BPF_K:
1052         case BPF_ALU | BPF_SUB | BPF_K:
1053         case BPF_ALU | BPF_AND | BPF_K:
1054         case BPF_ALU | BPF_OR | BPF_K:
1055         case BPF_ALU | BPF_XOR | BPF_K:
1056         case BPF_ALU | BPF_LSH | BPF_K:
1057         case BPF_ALU | BPF_RSH | BPF_K:
1058         case BPF_ALU | BPF_ARSH | BPF_K:
1059                 /*
1060                  * mul,div,mod are handled in the BPF_X case since there are
1061                  * no RISC-V I-type equivalents.
1062                  */
1063                 emit_alu_i32(dst, imm, ctx, BPF_OP(code));
1064                 break;
1065
1066         case BPF_ALU | BPF_NEG:
1067                 /*
1068                  * src is ignored---choose tmp2 as a dummy register since it
1069                  * is not on the stack.
1070                  */
1071                 emit_alu_r32(dst, tmp2, ctx, BPF_OP(code));
1072                 break;
1073
1074         case BPF_ALU | BPF_END | BPF_FROM_LE:
1075         {
1076                 const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
1077
1078                 switch (imm) {
1079                 case 16:
1080                         emit(rv_slli(lo(rd), lo(rd), 16), ctx);
1081                         emit(rv_srli(lo(rd), lo(rd), 16), ctx);
1082                         fallthrough;
1083                 case 32:
1084                         if (!ctx->prog->aux->verifier_zext)
1085                                 emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
1086                         break;
1087                 case 64:
1088                         /* Do nothing. */
1089                         break;
1090                 default:
1091                         pr_err("bpf-jit: BPF_END imm %d invalid\n", imm);
1092                         return -1;
1093                 }
1094
1095                 bpf_put_reg64(dst, rd, ctx);
1096                 break;
1097         }
1098
1099         case BPF_ALU | BPF_END | BPF_FROM_BE:
1100         {
1101                 const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
1102
1103                 switch (imm) {
1104                 case 16:
1105                         emit_rev16(lo(rd), ctx);
1106                         if (!ctx->prog->aux->verifier_zext)
1107                                 emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
1108                         break;
1109                 case 32:
1110                         emit_rev32(lo(rd), ctx);
1111                         if (!ctx->prog->aux->verifier_zext)
1112                                 emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx);
1113                         break;
1114                 case 64:
1115                         /* Swap upper and lower halves. */
1116                         emit(rv_addi(RV_REG_T0, lo(rd), 0), ctx);
1117                         emit(rv_addi(lo(rd), hi(rd), 0), ctx);
1118                         emit(rv_addi(hi(rd), RV_REG_T0, 0), ctx);
1119
1120                         /* Swap each half. */
1121                         emit_rev32(lo(rd), ctx);
1122                         emit_rev32(hi(rd), ctx);
1123                         break;
1124                 default:
1125                         pr_err("bpf-jit: BPF_END imm %d invalid\n", imm);
1126                         return -1;
1127                 }
1128
1129                 bpf_put_reg64(dst, rd, ctx);
1130                 break;
1131         }
1132
1133         case BPF_JMP | BPF_JA:
1134                 rvoff = rv_offset(i, off, ctx);
1135                 emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
1136                 break;
1137
1138         case BPF_JMP | BPF_CALL:
1139         {
1140                 bool fixed;
1141                 int ret;
1142                 u64 addr;
1143
1144                 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr,
1145                                             &fixed);
1146                 if (ret < 0)
1147                         return ret;
1148                 emit_call(fixed, addr, ctx);
1149                 break;
1150         }
1151
1152         case BPF_JMP | BPF_TAIL_CALL:
1153                 if (emit_bpf_tail_call(i, ctx))
1154                         return -1;
1155                 break;
1156
1157         case BPF_JMP | BPF_JEQ | BPF_X:
1158         case BPF_JMP | BPF_JEQ | BPF_K:
1159         case BPF_JMP32 | BPF_JEQ | BPF_X:
1160         case BPF_JMP32 | BPF_JEQ | BPF_K:
1161
1162         case BPF_JMP | BPF_JNE | BPF_X:
1163         case BPF_JMP | BPF_JNE | BPF_K:
1164         case BPF_JMP32 | BPF_JNE | BPF_X:
1165         case BPF_JMP32 | BPF_JNE | BPF_K:
1166
1167         case BPF_JMP | BPF_JLE | BPF_X:
1168         case BPF_JMP | BPF_JLE | BPF_K:
1169         case BPF_JMP32 | BPF_JLE | BPF_X:
1170         case BPF_JMP32 | BPF_JLE | BPF_K:
1171
1172         case BPF_JMP | BPF_JLT | BPF_X:
1173         case BPF_JMP | BPF_JLT | BPF_K:
1174         case BPF_JMP32 | BPF_JLT | BPF_X:
1175         case BPF_JMP32 | BPF_JLT | BPF_K:
1176
1177         case BPF_JMP | BPF_JGE | BPF_X:
1178         case BPF_JMP | BPF_JGE | BPF_K:
1179         case BPF_JMP32 | BPF_JGE | BPF_X:
1180         case BPF_JMP32 | BPF_JGE | BPF_K:
1181
1182         case BPF_JMP | BPF_JGT | BPF_X:
1183         case BPF_JMP | BPF_JGT | BPF_K:
1184         case BPF_JMP32 | BPF_JGT | BPF_X:
1185         case BPF_JMP32 | BPF_JGT | BPF_K:
1186
1187         case BPF_JMP | BPF_JSLE | BPF_X:
1188         case BPF_JMP | BPF_JSLE | BPF_K:
1189         case BPF_JMP32 | BPF_JSLE | BPF_X:
1190         case BPF_JMP32 | BPF_JSLE | BPF_K:
1191
1192         case BPF_JMP | BPF_JSLT | BPF_X:
1193         case BPF_JMP | BPF_JSLT | BPF_K:
1194         case BPF_JMP32 | BPF_JSLT | BPF_X:
1195         case BPF_JMP32 | BPF_JSLT | BPF_K:
1196
1197         case BPF_JMP | BPF_JSGE | BPF_X:
1198         case BPF_JMP | BPF_JSGE | BPF_K:
1199         case BPF_JMP32 | BPF_JSGE | BPF_X:
1200         case BPF_JMP32 | BPF_JSGE | BPF_K:
1201
1202         case BPF_JMP | BPF_JSGT | BPF_X:
1203         case BPF_JMP | BPF_JSGT | BPF_K:
1204         case BPF_JMP32 | BPF_JSGT | BPF_X:
1205         case BPF_JMP32 | BPF_JSGT | BPF_K:
1206
1207         case BPF_JMP | BPF_JSET | BPF_X:
1208         case BPF_JMP | BPF_JSET | BPF_K:
1209         case BPF_JMP32 | BPF_JSET | BPF_X:
1210         case BPF_JMP32 | BPF_JSET | BPF_K:
1211                 rvoff = rv_offset(i, off, ctx);
1212                 if (BPF_SRC(code) == BPF_K) {
1213                         s = ctx->ninsns;
1214                         emit_imm32(tmp2, imm, ctx);
1215                         src = tmp2;
1216                         e = ctx->ninsns;
1217                         rvoff -= ninsns_rvoff(e - s);
1218                 }
1219
1220                 if (is64)
1221                         emit_branch_r64(dst, src, rvoff, ctx, BPF_OP(code));
1222                 else
1223                         emit_branch_r32(dst, src, rvoff, ctx, BPF_OP(code));
1224                 break;
1225
1226         case BPF_JMP | BPF_EXIT:
1227                 if (i == ctx->prog->len - 1)
1228                         break;
1229
1230                 rvoff = epilogue_offset(ctx);
1231                 emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
1232                 break;
1233
1234         case BPF_LD | BPF_IMM | BPF_DW:
1235         {
1236                 struct bpf_insn insn1 = insn[1];
1237                 s32 imm_lo = imm;
1238                 s32 imm_hi = insn1.imm;
1239                 const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
1240
1241                 emit_imm64(rd, imm_hi, imm_lo, ctx);
1242                 bpf_put_reg64(dst, rd, ctx);
1243                 return 1;
1244         }
1245
1246         case BPF_LDX | BPF_MEM | BPF_B:
1247         case BPF_LDX | BPF_MEM | BPF_H:
1248         case BPF_LDX | BPF_MEM | BPF_W:
1249         case BPF_LDX | BPF_MEM | BPF_DW:
1250                 if (emit_load_r64(dst, src, off, ctx, BPF_SIZE(code)))
1251                         return -1;
1252                 break;
1253
1254         /* speculation barrier */
1255         case BPF_ST | BPF_NOSPEC:
1256                 break;
1257
1258         case BPF_ST | BPF_MEM | BPF_B:
1259         case BPF_ST | BPF_MEM | BPF_H:
1260         case BPF_ST | BPF_MEM | BPF_W:
1261         case BPF_ST | BPF_MEM | BPF_DW:
1262
1263         case BPF_STX | BPF_MEM | BPF_B:
1264         case BPF_STX | BPF_MEM | BPF_H:
1265         case BPF_STX | BPF_MEM | BPF_W:
1266         case BPF_STX | BPF_MEM | BPF_DW:
1267                 if (BPF_CLASS(code) == BPF_ST) {
1268                         emit_imm32(tmp2, imm, ctx);
1269                         src = tmp2;
1270                 }
1271
1272                 if (emit_store_r64(dst, src, off, ctx, BPF_SIZE(code),
1273                                    BPF_MODE(code)))
1274                         return -1;
1275                 break;
1276
1277         case BPF_STX | BPF_ATOMIC | BPF_W:
1278                 if (insn->imm != BPF_ADD) {
1279                         pr_info_once(
1280                                 "bpf-jit: not supported: atomic operation %02x ***\n",
1281                                 insn->imm);
1282                         return -EFAULT;
1283                 }
1284
1285                 if (emit_store_r64(dst, src, off, ctx, BPF_SIZE(code),
1286                                    BPF_MODE(code)))
1287                         return -1;
1288                 break;
1289
1290         /* No hardware support for 8-byte atomics in RV32. */
1291         case BPF_STX | BPF_ATOMIC | BPF_DW:
1292                 /* Fallthrough. */
1293
1294 notsupported:
1295                 pr_info_once("bpf-jit: not supported: opcode %02x ***\n", code);
1296                 return -EFAULT;
1297
1298         default:
1299                 pr_err("bpf-jit: unknown opcode %02x\n", code);
1300                 return -EINVAL;
1301         }
1302
1303         return 0;
1304 }
1305
1306 void bpf_jit_build_prologue(struct rv_jit_context *ctx)
1307 {
1308         const s8 *fp = bpf2rv32[BPF_REG_FP];
1309         const s8 *r1 = bpf2rv32[BPF_REG_1];
1310         int stack_adjust = 0;
1311         int bpf_stack_adjust =
1312                 round_up(ctx->prog->aux->stack_depth, STACK_ALIGN);
1313
1314         /* Make space for callee-saved registers. */
1315         stack_adjust += NR_SAVED_REGISTERS * sizeof(u32);
1316         /* Make space for BPF registers on stack. */
1317         stack_adjust += BPF_JIT_SCRATCH_REGS * sizeof(u32);
1318         /* Make space for BPF stack. */
1319         stack_adjust += bpf_stack_adjust;
1320         /* Round up for stack alignment. */
1321         stack_adjust = round_up(stack_adjust, STACK_ALIGN);
1322
1323         /*
1324          * The first instruction sets the tail-call-counter (TCC) register.
1325          * This instruction is skipped by tail calls.
1326          */
1327         emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1328
1329         emit(rv_addi(RV_REG_SP, RV_REG_SP, -stack_adjust), ctx);
1330
1331         /* Save callee-save registers. */
1332         emit(rv_sw(RV_REG_SP, stack_adjust - 4, RV_REG_RA), ctx);
1333         emit(rv_sw(RV_REG_SP, stack_adjust - 8, RV_REG_FP), ctx);
1334         emit(rv_sw(RV_REG_SP, stack_adjust - 12, RV_REG_S1), ctx);
1335         emit(rv_sw(RV_REG_SP, stack_adjust - 16, RV_REG_S2), ctx);
1336         emit(rv_sw(RV_REG_SP, stack_adjust - 20, RV_REG_S3), ctx);
1337         emit(rv_sw(RV_REG_SP, stack_adjust - 24, RV_REG_S4), ctx);
1338         emit(rv_sw(RV_REG_SP, stack_adjust - 28, RV_REG_S5), ctx);
1339         emit(rv_sw(RV_REG_SP, stack_adjust - 32, RV_REG_S6), ctx);
1340         emit(rv_sw(RV_REG_SP, stack_adjust - 36, RV_REG_S7), ctx);
1341
1342         /* Set fp: used as the base address for stacked BPF registers. */
1343         emit(rv_addi(RV_REG_FP, RV_REG_SP, stack_adjust), ctx);
1344
1345         /* Set up BPF frame pointer. */
1346         emit(rv_addi(lo(fp), RV_REG_SP, bpf_stack_adjust), ctx);
1347         emit(rv_addi(hi(fp), RV_REG_ZERO, 0), ctx);
1348
1349         /* Set up BPF context pointer. */
1350         emit(rv_addi(lo(r1), RV_REG_A0, 0), ctx);
1351         emit(rv_addi(hi(r1), RV_REG_ZERO, 0), ctx);
1352
1353         ctx->stack_size = stack_adjust;
1354 }
1355
1356 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
1357 {
1358         __build_epilogue(false, ctx);
1359 }