KVM: PPC: Book3S HV: Introduce new capability for 2nd DAWR
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_book3s_uvmem.h>
76 #include <asm/ultravisor.h>
77 #include <asm/dtl.h>
78
79 #include "book3s.h"
80
81 #define CREATE_TRACE_POINTS
82 #include "trace_hv.h"
83
84 /* #define EXIT_DEBUG */
85 /* #define EXIT_DEBUG_SIMPLE */
86 /* #define EXIT_DEBUG_INT */
87
88 /* Used to indicate that a guest page fault needs to be handled */
89 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
90 /* Used to indicate that a guest passthrough interrupt needs to be handled */
91 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
92
93 /* Used as a "null" value for timebase values */
94 #define TB_NIL  (~(u64)0)
95
96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
97
98 static int dynamic_mt_modes = 6;
99 module_param(dynamic_mt_modes, int, 0644);
100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101 static int target_smt_mode;
102 module_param(target_smt_mode, int, 0644);
103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104
105 static bool indep_threads_mode = true;
106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
108
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
112
113 #ifdef CONFIG_KVM_XICS
114 static const struct kernel_param_ops module_param_ops = {
115         .set = param_set_int,
116         .get = param_get_int,
117 };
118
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130
131 static inline bool nesting_enabled(struct kvm *kvm)
132 {
133         return kvm->arch.nested_enable && kvm_is_radix(kvm);
134 }
135
136 /* If set, the threads on each CPU core have to be in the same MMU mode */
137 static bool no_mixing_hpt_and_radix;
138
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140
141 /*
142  * RWMR values for POWER8.  These control the rate at which PURR
143  * and SPURR count and should be set according to the number of
144  * online threads in the vcore being run.
145  */
146 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
154
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156         RWMR_RPA_P8_1THREAD,
157         RWMR_RPA_P8_1THREAD,
158         RWMR_RPA_P8_2THREAD,
159         RWMR_RPA_P8_3THREAD,
160         RWMR_RPA_P8_4THREAD,
161         RWMR_RPA_P8_5THREAD,
162         RWMR_RPA_P8_6THREAD,
163         RWMR_RPA_P8_7THREAD,
164         RWMR_RPA_P8_8THREAD,
165 };
166
167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168                 int *ip)
169 {
170         int i = *ip;
171         struct kvm_vcpu *vcpu;
172
173         while (++i < MAX_SMT_THREADS) {
174                 vcpu = READ_ONCE(vc->runnable_threads[i]);
175                 if (vcpu) {
176                         *ip = i;
177                         return vcpu;
178                 }
179         }
180         return NULL;
181 }
182
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
186
187 static bool kvmppc_ipi_thread(int cpu)
188 {
189         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
190
191         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192         if (kvmhv_on_pseries())
193                 return false;
194
195         /* On POWER9 we can use msgsnd to IPI any cpu */
196         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197                 msg |= get_hard_smp_processor_id(cpu);
198                 smp_mb();
199                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200                 return true;
201         }
202
203         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
204         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205                 preempt_disable();
206                 if (cpu_first_thread_sibling(cpu) ==
207                     cpu_first_thread_sibling(smp_processor_id())) {
208                         msg |= cpu_thread_in_core(cpu);
209                         smp_mb();
210                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211                         preempt_enable();
212                         return true;
213                 }
214                 preempt_enable();
215         }
216
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218         if (cpu >= 0 && cpu < nr_cpu_ids) {
219                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220                         xics_wake_cpu(cpu);
221                         return true;
222                 }
223                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224                 return true;
225         }
226 #endif
227
228         return false;
229 }
230
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232 {
233         int cpu;
234         struct rcuwait *waitp;
235
236         waitp = kvm_arch_vcpu_get_wait(vcpu);
237         if (rcuwait_wake_up(waitp))
238                 ++vcpu->stat.halt_wakeup;
239
240         cpu = READ_ONCE(vcpu->arch.thread_cpu);
241         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242                 return;
243
244         /* CPU points to the first thread of the core */
245         cpu = vcpu->cpu;
246         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247                 smp_send_reschedule(cpu);
248 }
249
250 /*
251  * We use the vcpu_load/put functions to measure stolen time.
252  * Stolen time is counted as time when either the vcpu is able to
253  * run as part of a virtual core, but the task running the vcore
254  * is preempted or sleeping, or when the vcpu needs something done
255  * in the kernel by the task running the vcpu, but that task is
256  * preempted or sleeping.  Those two things have to be counted
257  * separately, since one of the vcpu tasks will take on the job
258  * of running the core, and the other vcpu tasks in the vcore will
259  * sleep waiting for it to do that, but that sleep shouldn't count
260  * as stolen time.
261  *
262  * Hence we accumulate stolen time when the vcpu can run as part of
263  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264  * needs its task to do other things in the kernel (for example,
265  * service a page fault) in busy_stolen.  We don't accumulate
266  * stolen time for a vcore when it is inactive, or for a vcpu
267  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
268  * a misnomer; it means that the vcpu task is not executing in
269  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270  * the kernel.  We don't have any way of dividing up that time
271  * between time that the vcpu is genuinely stopped, time that
272  * the task is actively working on behalf of the vcpu, and time
273  * that the task is preempted, so we don't count any of it as
274  * stolen.
275  *
276  * Updates to busy_stolen are protected by arch.tbacct_lock;
277  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278  * lock.  The stolen times are measured in units of timebase ticks.
279  * (Note that the != TB_NIL checks below are purely defensive;
280  * they should never fail.)
281  */
282
283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
284 {
285         unsigned long flags;
286
287         spin_lock_irqsave(&vc->stoltb_lock, flags);
288         vc->preempt_tb = mftb();
289         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
290 }
291
292 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
293 {
294         unsigned long flags;
295
296         spin_lock_irqsave(&vc->stoltb_lock, flags);
297         if (vc->preempt_tb != TB_NIL) {
298                 vc->stolen_tb += mftb() - vc->preempt_tb;
299                 vc->preempt_tb = TB_NIL;
300         }
301         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303
304 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
305 {
306         struct kvmppc_vcore *vc = vcpu->arch.vcore;
307         unsigned long flags;
308
309         /*
310          * We can test vc->runner without taking the vcore lock,
311          * because only this task ever sets vc->runner to this
312          * vcpu, and once it is set to this vcpu, only this task
313          * ever sets it to NULL.
314          */
315         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316                 kvmppc_core_end_stolen(vc);
317
318         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
320             vcpu->arch.busy_preempt != TB_NIL) {
321                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
322                 vcpu->arch.busy_preempt = TB_NIL;
323         }
324         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
325 }
326
327 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
328 {
329         struct kvmppc_vcore *vc = vcpu->arch.vcore;
330         unsigned long flags;
331
332         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
333                 kvmppc_core_start_stolen(vc);
334
335         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
336         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
337                 vcpu->arch.busy_preempt = mftb();
338         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
339 }
340
341 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
342 {
343         vcpu->arch.pvr = pvr;
344 }
345
346 /* Dummy value used in computing PCR value below */
347 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
348
349 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
350 {
351         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
352         struct kvmppc_vcore *vc = vcpu->arch.vcore;
353
354         /* We can (emulate) our own architecture version and anything older */
355         if (cpu_has_feature(CPU_FTR_ARCH_31))
356                 host_pcr_bit = PCR_ARCH_31;
357         else if (cpu_has_feature(CPU_FTR_ARCH_300))
358                 host_pcr_bit = PCR_ARCH_300;
359         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
360                 host_pcr_bit = PCR_ARCH_207;
361         else if (cpu_has_feature(CPU_FTR_ARCH_206))
362                 host_pcr_bit = PCR_ARCH_206;
363         else
364                 host_pcr_bit = PCR_ARCH_205;
365
366         /* Determine lowest PCR bit needed to run guest in given PVR level */
367         guest_pcr_bit = host_pcr_bit;
368         if (arch_compat) {
369                 switch (arch_compat) {
370                 case PVR_ARCH_205:
371                         guest_pcr_bit = PCR_ARCH_205;
372                         break;
373                 case PVR_ARCH_206:
374                 case PVR_ARCH_206p:
375                         guest_pcr_bit = PCR_ARCH_206;
376                         break;
377                 case PVR_ARCH_207:
378                         guest_pcr_bit = PCR_ARCH_207;
379                         break;
380                 case PVR_ARCH_300:
381                         guest_pcr_bit = PCR_ARCH_300;
382                         break;
383                 case PVR_ARCH_31:
384                         guest_pcr_bit = PCR_ARCH_31;
385                         break;
386                 default:
387                         return -EINVAL;
388                 }
389         }
390
391         /* Check requested PCR bits don't exceed our capabilities */
392         if (guest_pcr_bit > host_pcr_bit)
393                 return -EINVAL;
394
395         spin_lock(&vc->lock);
396         vc->arch_compat = arch_compat;
397         /*
398          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
399          * Also set all reserved PCR bits
400          */
401         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
402         spin_unlock(&vc->lock);
403
404         return 0;
405 }
406
407 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
408 {
409         int r;
410
411         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
412         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
413                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
414         for (r = 0; r < 16; ++r)
415                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
416                        r, kvmppc_get_gpr(vcpu, r),
417                        r+16, kvmppc_get_gpr(vcpu, r+16));
418         pr_err("ctr = %.16lx  lr  = %.16lx\n",
419                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
420         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
421                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
422         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
423                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
424         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
425                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
426         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
427                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
428         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
429         pr_err("fault dar = %.16lx dsisr = %.8x\n",
430                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
431         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
432         for (r = 0; r < vcpu->arch.slb_max; ++r)
433                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
434                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
435         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
436                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
437                vcpu->arch.last_inst);
438 }
439
440 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
441 {
442         return kvm_get_vcpu_by_id(kvm, id);
443 }
444
445 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
446 {
447         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
448         vpa->yield_count = cpu_to_be32(1);
449 }
450
451 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
452                    unsigned long addr, unsigned long len)
453 {
454         /* check address is cacheline aligned */
455         if (addr & (L1_CACHE_BYTES - 1))
456                 return -EINVAL;
457         spin_lock(&vcpu->arch.vpa_update_lock);
458         if (v->next_gpa != addr || v->len != len) {
459                 v->next_gpa = addr;
460                 v->len = addr ? len : 0;
461                 v->update_pending = 1;
462         }
463         spin_unlock(&vcpu->arch.vpa_update_lock);
464         return 0;
465 }
466
467 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
468 struct reg_vpa {
469         u32 dummy;
470         union {
471                 __be16 hword;
472                 __be32 word;
473         } length;
474 };
475
476 static int vpa_is_registered(struct kvmppc_vpa *vpap)
477 {
478         if (vpap->update_pending)
479                 return vpap->next_gpa != 0;
480         return vpap->pinned_addr != NULL;
481 }
482
483 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
484                                        unsigned long flags,
485                                        unsigned long vcpuid, unsigned long vpa)
486 {
487         struct kvm *kvm = vcpu->kvm;
488         unsigned long len, nb;
489         void *va;
490         struct kvm_vcpu *tvcpu;
491         int err;
492         int subfunc;
493         struct kvmppc_vpa *vpap;
494
495         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
496         if (!tvcpu)
497                 return H_PARAMETER;
498
499         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
500         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
501             subfunc == H_VPA_REG_SLB) {
502                 /* Registering new area - address must be cache-line aligned */
503                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
504                         return H_PARAMETER;
505
506                 /* convert logical addr to kernel addr and read length */
507                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
508                 if (va == NULL)
509                         return H_PARAMETER;
510                 if (subfunc == H_VPA_REG_VPA)
511                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
512                 else
513                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
514                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
515
516                 /* Check length */
517                 if (len > nb || len < sizeof(struct reg_vpa))
518                         return H_PARAMETER;
519         } else {
520                 vpa = 0;
521                 len = 0;
522         }
523
524         err = H_PARAMETER;
525         vpap = NULL;
526         spin_lock(&tvcpu->arch.vpa_update_lock);
527
528         switch (subfunc) {
529         case H_VPA_REG_VPA:             /* register VPA */
530                 /*
531                  * The size of our lppaca is 1kB because of the way we align
532                  * it for the guest to avoid crossing a 4kB boundary. We only
533                  * use 640 bytes of the structure though, so we should accept
534                  * clients that set a size of 640.
535                  */
536                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
537                 if (len < sizeof(struct lppaca))
538                         break;
539                 vpap = &tvcpu->arch.vpa;
540                 err = 0;
541                 break;
542
543         case H_VPA_REG_DTL:             /* register DTL */
544                 if (len < sizeof(struct dtl_entry))
545                         break;
546                 len -= len % sizeof(struct dtl_entry);
547
548                 /* Check that they have previously registered a VPA */
549                 err = H_RESOURCE;
550                 if (!vpa_is_registered(&tvcpu->arch.vpa))
551                         break;
552
553                 vpap = &tvcpu->arch.dtl;
554                 err = 0;
555                 break;
556
557         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
558                 /* Check that they have previously registered a VPA */
559                 err = H_RESOURCE;
560                 if (!vpa_is_registered(&tvcpu->arch.vpa))
561                         break;
562
563                 vpap = &tvcpu->arch.slb_shadow;
564                 err = 0;
565                 break;
566
567         case H_VPA_DEREG_VPA:           /* deregister VPA */
568                 /* Check they don't still have a DTL or SLB buf registered */
569                 err = H_RESOURCE;
570                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
571                     vpa_is_registered(&tvcpu->arch.slb_shadow))
572                         break;
573
574                 vpap = &tvcpu->arch.vpa;
575                 err = 0;
576                 break;
577
578         case H_VPA_DEREG_DTL:           /* deregister DTL */
579                 vpap = &tvcpu->arch.dtl;
580                 err = 0;
581                 break;
582
583         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
584                 vpap = &tvcpu->arch.slb_shadow;
585                 err = 0;
586                 break;
587         }
588
589         if (vpap) {
590                 vpap->next_gpa = vpa;
591                 vpap->len = len;
592                 vpap->update_pending = 1;
593         }
594
595         spin_unlock(&tvcpu->arch.vpa_update_lock);
596
597         return err;
598 }
599
600 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
601 {
602         struct kvm *kvm = vcpu->kvm;
603         void *va;
604         unsigned long nb;
605         unsigned long gpa;
606
607         /*
608          * We need to pin the page pointed to by vpap->next_gpa,
609          * but we can't call kvmppc_pin_guest_page under the lock
610          * as it does get_user_pages() and down_read().  So we
611          * have to drop the lock, pin the page, then get the lock
612          * again and check that a new area didn't get registered
613          * in the meantime.
614          */
615         for (;;) {
616                 gpa = vpap->next_gpa;
617                 spin_unlock(&vcpu->arch.vpa_update_lock);
618                 va = NULL;
619                 nb = 0;
620                 if (gpa)
621                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
622                 spin_lock(&vcpu->arch.vpa_update_lock);
623                 if (gpa == vpap->next_gpa)
624                         break;
625                 /* sigh... unpin that one and try again */
626                 if (va)
627                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
628         }
629
630         vpap->update_pending = 0;
631         if (va && nb < vpap->len) {
632                 /*
633                  * If it's now too short, it must be that userspace
634                  * has changed the mappings underlying guest memory,
635                  * so unregister the region.
636                  */
637                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
638                 va = NULL;
639         }
640         if (vpap->pinned_addr)
641                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
642                                         vpap->dirty);
643         vpap->gpa = gpa;
644         vpap->pinned_addr = va;
645         vpap->dirty = false;
646         if (va)
647                 vpap->pinned_end = va + vpap->len;
648 }
649
650 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
651 {
652         if (!(vcpu->arch.vpa.update_pending ||
653               vcpu->arch.slb_shadow.update_pending ||
654               vcpu->arch.dtl.update_pending))
655                 return;
656
657         spin_lock(&vcpu->arch.vpa_update_lock);
658         if (vcpu->arch.vpa.update_pending) {
659                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
660                 if (vcpu->arch.vpa.pinned_addr)
661                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
662         }
663         if (vcpu->arch.dtl.update_pending) {
664                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
665                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
666                 vcpu->arch.dtl_index = 0;
667         }
668         if (vcpu->arch.slb_shadow.update_pending)
669                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
670         spin_unlock(&vcpu->arch.vpa_update_lock);
671 }
672
673 /*
674  * Return the accumulated stolen time for the vcore up until `now'.
675  * The caller should hold the vcore lock.
676  */
677 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
678 {
679         u64 p;
680         unsigned long flags;
681
682         spin_lock_irqsave(&vc->stoltb_lock, flags);
683         p = vc->stolen_tb;
684         if (vc->vcore_state != VCORE_INACTIVE &&
685             vc->preempt_tb != TB_NIL)
686                 p += now - vc->preempt_tb;
687         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
688         return p;
689 }
690
691 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
692                                     struct kvmppc_vcore *vc)
693 {
694         struct dtl_entry *dt;
695         struct lppaca *vpa;
696         unsigned long stolen;
697         unsigned long core_stolen;
698         u64 now;
699         unsigned long flags;
700
701         dt = vcpu->arch.dtl_ptr;
702         vpa = vcpu->arch.vpa.pinned_addr;
703         now = mftb();
704         core_stolen = vcore_stolen_time(vc, now);
705         stolen = core_stolen - vcpu->arch.stolen_logged;
706         vcpu->arch.stolen_logged = core_stolen;
707         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
708         stolen += vcpu->arch.busy_stolen;
709         vcpu->arch.busy_stolen = 0;
710         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
711         if (!dt || !vpa)
712                 return;
713         memset(dt, 0, sizeof(struct dtl_entry));
714         dt->dispatch_reason = 7;
715         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
716         dt->timebase = cpu_to_be64(now + vc->tb_offset);
717         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
718         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
719         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
720         ++dt;
721         if (dt == vcpu->arch.dtl.pinned_end)
722                 dt = vcpu->arch.dtl.pinned_addr;
723         vcpu->arch.dtl_ptr = dt;
724         /* order writing *dt vs. writing vpa->dtl_idx */
725         smp_wmb();
726         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
727         vcpu->arch.dtl.dirty = true;
728 }
729
730 /* See if there is a doorbell interrupt pending for a vcpu */
731 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
732 {
733         int thr;
734         struct kvmppc_vcore *vc;
735
736         if (vcpu->arch.doorbell_request)
737                 return true;
738         /*
739          * Ensure that the read of vcore->dpdes comes after the read
740          * of vcpu->doorbell_request.  This barrier matches the
741          * smp_wmb() in kvmppc_guest_entry_inject().
742          */
743         smp_rmb();
744         vc = vcpu->arch.vcore;
745         thr = vcpu->vcpu_id - vc->first_vcpuid;
746         return !!(vc->dpdes & (1 << thr));
747 }
748
749 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
750 {
751         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
752                 return true;
753         if ((!vcpu->arch.vcore->arch_compat) &&
754             cpu_has_feature(CPU_FTR_ARCH_207S))
755                 return true;
756         return false;
757 }
758
759 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
760                              unsigned long resource, unsigned long value1,
761                              unsigned long value2)
762 {
763         switch (resource) {
764         case H_SET_MODE_RESOURCE_SET_CIABR:
765                 if (!kvmppc_power8_compatible(vcpu))
766                         return H_P2;
767                 if (value2)
768                         return H_P4;
769                 if (mflags)
770                         return H_UNSUPPORTED_FLAG_START;
771                 /* Guests can't breakpoint the hypervisor */
772                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
773                         return H_P3;
774                 vcpu->arch.ciabr  = value1;
775                 return H_SUCCESS;
776         case H_SET_MODE_RESOURCE_SET_DAWR0:
777                 if (!kvmppc_power8_compatible(vcpu))
778                         return H_P2;
779                 if (!ppc_breakpoint_available())
780                         return H_P2;
781                 if (mflags)
782                         return H_UNSUPPORTED_FLAG_START;
783                 if (value2 & DABRX_HYP)
784                         return H_P4;
785                 vcpu->arch.dawr0  = value1;
786                 vcpu->arch.dawrx0 = value2;
787                 return H_SUCCESS;
788         case H_SET_MODE_RESOURCE_SET_DAWR1:
789                 if (!kvmppc_power8_compatible(vcpu))
790                         return H_P2;
791                 if (!ppc_breakpoint_available())
792                         return H_P2;
793                 if (!cpu_has_feature(CPU_FTR_DAWR1))
794                         return H_P2;
795                 if (!vcpu->kvm->arch.dawr1_enabled)
796                         return H_FUNCTION;
797                 if (mflags)
798                         return H_UNSUPPORTED_FLAG_START;
799                 if (value2 & DABRX_HYP)
800                         return H_P4;
801                 vcpu->arch.dawr1  = value1;
802                 vcpu->arch.dawrx1 = value2;
803                 return H_SUCCESS;
804         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
805                 /* KVM does not support mflags=2 (AIL=2) */
806                 if (mflags != 0 && mflags != 3)
807                         return H_UNSUPPORTED_FLAG_START;
808                 return H_TOO_HARD;
809         default:
810                 return H_TOO_HARD;
811         }
812 }
813
814 /* Copy guest memory in place - must reside within a single memslot */
815 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
816                                   unsigned long len)
817 {
818         struct kvm_memory_slot *to_memslot = NULL;
819         struct kvm_memory_slot *from_memslot = NULL;
820         unsigned long to_addr, from_addr;
821         int r;
822
823         /* Get HPA for from address */
824         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
825         if (!from_memslot)
826                 return -EFAULT;
827         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
828                              << PAGE_SHIFT))
829                 return -EINVAL;
830         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
831         if (kvm_is_error_hva(from_addr))
832                 return -EFAULT;
833         from_addr |= (from & (PAGE_SIZE - 1));
834
835         /* Get HPA for to address */
836         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
837         if (!to_memslot)
838                 return -EFAULT;
839         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
840                            << PAGE_SHIFT))
841                 return -EINVAL;
842         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
843         if (kvm_is_error_hva(to_addr))
844                 return -EFAULT;
845         to_addr |= (to & (PAGE_SIZE - 1));
846
847         /* Perform copy */
848         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
849                              len);
850         if (r)
851                 return -EFAULT;
852         mark_page_dirty(kvm, to >> PAGE_SHIFT);
853         return 0;
854 }
855
856 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
857                                unsigned long dest, unsigned long src)
858 {
859         u64 pg_sz = SZ_4K;              /* 4K page size */
860         u64 pg_mask = SZ_4K - 1;
861         int ret;
862
863         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
864         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
865                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
866                 return H_PARAMETER;
867
868         /* dest (and src if copy_page flag set) must be page aligned */
869         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
870                 return H_PARAMETER;
871
872         /* zero and/or copy the page as determined by the flags */
873         if (flags & H_COPY_PAGE) {
874                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
875                 if (ret < 0)
876                         return H_PARAMETER;
877         } else if (flags & H_ZERO_PAGE) {
878                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
879                 if (ret < 0)
880                         return H_PARAMETER;
881         }
882
883         /* We can ignore the remaining flags */
884
885         return H_SUCCESS;
886 }
887
888 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
889 {
890         struct kvmppc_vcore *vcore = target->arch.vcore;
891
892         /*
893          * We expect to have been called by the real mode handler
894          * (kvmppc_rm_h_confer()) which would have directly returned
895          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
896          * have useful work to do and should not confer) so we don't
897          * recheck that here.
898          */
899
900         spin_lock(&vcore->lock);
901         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
902             vcore->vcore_state != VCORE_INACTIVE &&
903             vcore->runner)
904                 target = vcore->runner;
905         spin_unlock(&vcore->lock);
906
907         return kvm_vcpu_yield_to(target);
908 }
909
910 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
911 {
912         int yield_count = 0;
913         struct lppaca *lppaca;
914
915         spin_lock(&vcpu->arch.vpa_update_lock);
916         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
917         if (lppaca)
918                 yield_count = be32_to_cpu(lppaca->yield_count);
919         spin_unlock(&vcpu->arch.vpa_update_lock);
920         return yield_count;
921 }
922
923 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
924 {
925         unsigned long req = kvmppc_get_gpr(vcpu, 3);
926         unsigned long target, ret = H_SUCCESS;
927         int yield_count;
928         struct kvm_vcpu *tvcpu;
929         int idx, rc;
930
931         if (req <= MAX_HCALL_OPCODE &&
932             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
933                 return RESUME_HOST;
934
935         switch (req) {
936         case H_CEDE:
937                 break;
938         case H_PROD:
939                 target = kvmppc_get_gpr(vcpu, 4);
940                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
941                 if (!tvcpu) {
942                         ret = H_PARAMETER;
943                         break;
944                 }
945                 tvcpu->arch.prodded = 1;
946                 smp_mb();
947                 if (tvcpu->arch.ceded)
948                         kvmppc_fast_vcpu_kick_hv(tvcpu);
949                 break;
950         case H_CONFER:
951                 target = kvmppc_get_gpr(vcpu, 4);
952                 if (target == -1)
953                         break;
954                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
955                 if (!tvcpu) {
956                         ret = H_PARAMETER;
957                         break;
958                 }
959                 yield_count = kvmppc_get_gpr(vcpu, 5);
960                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
961                         break;
962                 kvm_arch_vcpu_yield_to(tvcpu);
963                 break;
964         case H_REGISTER_VPA:
965                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
966                                         kvmppc_get_gpr(vcpu, 5),
967                                         kvmppc_get_gpr(vcpu, 6));
968                 break;
969         case H_RTAS:
970                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
971                         return RESUME_HOST;
972
973                 idx = srcu_read_lock(&vcpu->kvm->srcu);
974                 rc = kvmppc_rtas_hcall(vcpu);
975                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
976
977                 if (rc == -ENOENT)
978                         return RESUME_HOST;
979                 else if (rc == 0)
980                         break;
981
982                 /* Send the error out to userspace via KVM_RUN */
983                 return rc;
984         case H_LOGICAL_CI_LOAD:
985                 ret = kvmppc_h_logical_ci_load(vcpu);
986                 if (ret == H_TOO_HARD)
987                         return RESUME_HOST;
988                 break;
989         case H_LOGICAL_CI_STORE:
990                 ret = kvmppc_h_logical_ci_store(vcpu);
991                 if (ret == H_TOO_HARD)
992                         return RESUME_HOST;
993                 break;
994         case H_SET_MODE:
995                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
996                                         kvmppc_get_gpr(vcpu, 5),
997                                         kvmppc_get_gpr(vcpu, 6),
998                                         kvmppc_get_gpr(vcpu, 7));
999                 if (ret == H_TOO_HARD)
1000                         return RESUME_HOST;
1001                 break;
1002         case H_XIRR:
1003         case H_CPPR:
1004         case H_EOI:
1005         case H_IPI:
1006         case H_IPOLL:
1007         case H_XIRR_X:
1008                 if (kvmppc_xics_enabled(vcpu)) {
1009                         if (xics_on_xive()) {
1010                                 ret = H_NOT_AVAILABLE;
1011                                 return RESUME_GUEST;
1012                         }
1013                         ret = kvmppc_xics_hcall(vcpu, req);
1014                         break;
1015                 }
1016                 return RESUME_HOST;
1017         case H_SET_DABR:
1018                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1019                 break;
1020         case H_SET_XDABR:
1021                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1022                                                 kvmppc_get_gpr(vcpu, 5));
1023                 break;
1024 #ifdef CONFIG_SPAPR_TCE_IOMMU
1025         case H_GET_TCE:
1026                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1027                                                 kvmppc_get_gpr(vcpu, 5));
1028                 if (ret == H_TOO_HARD)
1029                         return RESUME_HOST;
1030                 break;
1031         case H_PUT_TCE:
1032                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1033                                                 kvmppc_get_gpr(vcpu, 5),
1034                                                 kvmppc_get_gpr(vcpu, 6));
1035                 if (ret == H_TOO_HARD)
1036                         return RESUME_HOST;
1037                 break;
1038         case H_PUT_TCE_INDIRECT:
1039                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1040                                                 kvmppc_get_gpr(vcpu, 5),
1041                                                 kvmppc_get_gpr(vcpu, 6),
1042                                                 kvmppc_get_gpr(vcpu, 7));
1043                 if (ret == H_TOO_HARD)
1044                         return RESUME_HOST;
1045                 break;
1046         case H_STUFF_TCE:
1047                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1048                                                 kvmppc_get_gpr(vcpu, 5),
1049                                                 kvmppc_get_gpr(vcpu, 6),
1050                                                 kvmppc_get_gpr(vcpu, 7));
1051                 if (ret == H_TOO_HARD)
1052                         return RESUME_HOST;
1053                 break;
1054 #endif
1055         case H_RANDOM:
1056                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1057                         ret = H_HARDWARE;
1058                 break;
1059
1060         case H_SET_PARTITION_TABLE:
1061                 ret = H_FUNCTION;
1062                 if (nesting_enabled(vcpu->kvm))
1063                         ret = kvmhv_set_partition_table(vcpu);
1064                 break;
1065         case H_ENTER_NESTED:
1066                 ret = H_FUNCTION;
1067                 if (!nesting_enabled(vcpu->kvm))
1068                         break;
1069                 ret = kvmhv_enter_nested_guest(vcpu);
1070                 if (ret == H_INTERRUPT) {
1071                         kvmppc_set_gpr(vcpu, 3, 0);
1072                         vcpu->arch.hcall_needed = 0;
1073                         return -EINTR;
1074                 } else if (ret == H_TOO_HARD) {
1075                         kvmppc_set_gpr(vcpu, 3, 0);
1076                         vcpu->arch.hcall_needed = 0;
1077                         return RESUME_HOST;
1078                 }
1079                 break;
1080         case H_TLB_INVALIDATE:
1081                 ret = H_FUNCTION;
1082                 if (nesting_enabled(vcpu->kvm))
1083                         ret = kvmhv_do_nested_tlbie(vcpu);
1084                 break;
1085         case H_COPY_TOFROM_GUEST:
1086                 ret = H_FUNCTION;
1087                 if (nesting_enabled(vcpu->kvm))
1088                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1089                 break;
1090         case H_PAGE_INIT:
1091                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1092                                          kvmppc_get_gpr(vcpu, 5),
1093                                          kvmppc_get_gpr(vcpu, 6));
1094                 break;
1095         case H_SVM_PAGE_IN:
1096                 ret = H_UNSUPPORTED;
1097                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1098                         ret = kvmppc_h_svm_page_in(vcpu->kvm,
1099                                                    kvmppc_get_gpr(vcpu, 4),
1100                                                    kvmppc_get_gpr(vcpu, 5),
1101                                                    kvmppc_get_gpr(vcpu, 6));
1102                 break;
1103         case H_SVM_PAGE_OUT:
1104                 ret = H_UNSUPPORTED;
1105                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1106                         ret = kvmppc_h_svm_page_out(vcpu->kvm,
1107                                                     kvmppc_get_gpr(vcpu, 4),
1108                                                     kvmppc_get_gpr(vcpu, 5),
1109                                                     kvmppc_get_gpr(vcpu, 6));
1110                 break;
1111         case H_SVM_INIT_START:
1112                 ret = H_UNSUPPORTED;
1113                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1114                         ret = kvmppc_h_svm_init_start(vcpu->kvm);
1115                 break;
1116         case H_SVM_INIT_DONE:
1117                 ret = H_UNSUPPORTED;
1118                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1119                         ret = kvmppc_h_svm_init_done(vcpu->kvm);
1120                 break;
1121         case H_SVM_INIT_ABORT:
1122                 /*
1123                  * Even if that call is made by the Ultravisor, the SSR1 value
1124                  * is the guest context one, with the secure bit clear as it has
1125                  * not yet been secured. So we can't check it here.
1126                  * Instead the kvm->arch.secure_guest flag is checked inside
1127                  * kvmppc_h_svm_init_abort().
1128                  */
1129                 ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1130                 break;
1131
1132         default:
1133                 return RESUME_HOST;
1134         }
1135         kvmppc_set_gpr(vcpu, 3, ret);
1136         vcpu->arch.hcall_needed = 0;
1137         return RESUME_GUEST;
1138 }
1139
1140 /*
1141  * Handle H_CEDE in the nested virtualization case where we haven't
1142  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1143  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1144  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1145  */
1146 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1147 {
1148         vcpu->arch.shregs.msr |= MSR_EE;
1149         vcpu->arch.ceded = 1;
1150         smp_mb();
1151         if (vcpu->arch.prodded) {
1152                 vcpu->arch.prodded = 0;
1153                 smp_mb();
1154                 vcpu->arch.ceded = 0;
1155         }
1156 }
1157
1158 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1159 {
1160         switch (cmd) {
1161         case H_CEDE:
1162         case H_PROD:
1163         case H_CONFER:
1164         case H_REGISTER_VPA:
1165         case H_SET_MODE:
1166         case H_LOGICAL_CI_LOAD:
1167         case H_LOGICAL_CI_STORE:
1168 #ifdef CONFIG_KVM_XICS
1169         case H_XIRR:
1170         case H_CPPR:
1171         case H_EOI:
1172         case H_IPI:
1173         case H_IPOLL:
1174         case H_XIRR_X:
1175 #endif
1176         case H_PAGE_INIT:
1177                 return 1;
1178         }
1179
1180         /* See if it's in the real-mode table */
1181         return kvmppc_hcall_impl_hv_realmode(cmd);
1182 }
1183
1184 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1185 {
1186         u32 last_inst;
1187
1188         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1189                                         EMULATE_DONE) {
1190                 /*
1191                  * Fetch failed, so return to guest and
1192                  * try executing it again.
1193                  */
1194                 return RESUME_GUEST;
1195         }
1196
1197         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1198                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1199                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1200                 return RESUME_HOST;
1201         } else {
1202                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1203                 return RESUME_GUEST;
1204         }
1205 }
1206
1207 static void do_nothing(void *x)
1208 {
1209 }
1210
1211 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1212 {
1213         int thr, cpu, pcpu, nthreads;
1214         struct kvm_vcpu *v;
1215         unsigned long dpdes;
1216
1217         nthreads = vcpu->kvm->arch.emul_smt_mode;
1218         dpdes = 0;
1219         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1220         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1221                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1222                 if (!v)
1223                         continue;
1224                 /*
1225                  * If the vcpu is currently running on a physical cpu thread,
1226                  * interrupt it in order to pull it out of the guest briefly,
1227                  * which will update its vcore->dpdes value.
1228                  */
1229                 pcpu = READ_ONCE(v->cpu);
1230                 if (pcpu >= 0)
1231                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1232                 if (kvmppc_doorbell_pending(v))
1233                         dpdes |= 1 << thr;
1234         }
1235         return dpdes;
1236 }
1237
1238 /*
1239  * On POWER9, emulate doorbell-related instructions in order to
1240  * give the guest the illusion of running on a multi-threaded core.
1241  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1242  * and mfspr DPDES.
1243  */
1244 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1245 {
1246         u32 inst, rb, thr;
1247         unsigned long arg;
1248         struct kvm *kvm = vcpu->kvm;
1249         struct kvm_vcpu *tvcpu;
1250
1251         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1252                 return RESUME_GUEST;
1253         if (get_op(inst) != 31)
1254                 return EMULATE_FAIL;
1255         rb = get_rb(inst);
1256         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1257         switch (get_xop(inst)) {
1258         case OP_31_XOP_MSGSNDP:
1259                 arg = kvmppc_get_gpr(vcpu, rb);
1260                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1261                         break;
1262                 arg &= 0x7f;
1263                 if (arg >= kvm->arch.emul_smt_mode)
1264                         break;
1265                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1266                 if (!tvcpu)
1267                         break;
1268                 if (!tvcpu->arch.doorbell_request) {
1269                         tvcpu->arch.doorbell_request = 1;
1270                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1271                 }
1272                 break;
1273         case OP_31_XOP_MSGCLRP:
1274                 arg = kvmppc_get_gpr(vcpu, rb);
1275                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1276                         break;
1277                 vcpu->arch.vcore->dpdes = 0;
1278                 vcpu->arch.doorbell_request = 0;
1279                 break;
1280         case OP_31_XOP_MFSPR:
1281                 switch (get_sprn(inst)) {
1282                 case SPRN_TIR:
1283                         arg = thr;
1284                         break;
1285                 case SPRN_DPDES:
1286                         arg = kvmppc_read_dpdes(vcpu);
1287                         break;
1288                 default:
1289                         return EMULATE_FAIL;
1290                 }
1291                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1292                 break;
1293         default:
1294                 return EMULATE_FAIL;
1295         }
1296         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1297         return RESUME_GUEST;
1298 }
1299
1300 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1301                                  struct task_struct *tsk)
1302 {
1303         struct kvm_run *run = vcpu->run;
1304         int r = RESUME_HOST;
1305
1306         vcpu->stat.sum_exits++;
1307
1308         /*
1309          * This can happen if an interrupt occurs in the last stages
1310          * of guest entry or the first stages of guest exit (i.e. after
1311          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1312          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1313          * That can happen due to a bug, or due to a machine check
1314          * occurring at just the wrong time.
1315          */
1316         if (vcpu->arch.shregs.msr & MSR_HV) {
1317                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1318                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1319                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1320                         vcpu->arch.shregs.msr);
1321                 kvmppc_dump_regs(vcpu);
1322                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1323                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1324                 return RESUME_HOST;
1325         }
1326         run->exit_reason = KVM_EXIT_UNKNOWN;
1327         run->ready_for_interrupt_injection = 1;
1328         switch (vcpu->arch.trap) {
1329         /* We're good on these - the host merely wanted to get our attention */
1330         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1331                 vcpu->stat.dec_exits++;
1332                 r = RESUME_GUEST;
1333                 break;
1334         case BOOK3S_INTERRUPT_EXTERNAL:
1335         case BOOK3S_INTERRUPT_H_DOORBELL:
1336         case BOOK3S_INTERRUPT_H_VIRT:
1337                 vcpu->stat.ext_intr_exits++;
1338                 r = RESUME_GUEST;
1339                 break;
1340         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1341         case BOOK3S_INTERRUPT_HMI:
1342         case BOOK3S_INTERRUPT_PERFMON:
1343         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1344                 r = RESUME_GUEST;
1345                 break;
1346         case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1347                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1348                                               DEFAULT_RATELIMIT_BURST);
1349                 /*
1350                  * Print the MCE event to host console. Ratelimit so the guest
1351                  * can't flood the host log.
1352                  */
1353                 if (__ratelimit(&rs))
1354                         machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1355
1356                 /*
1357                  * If the guest can do FWNMI, exit to userspace so it can
1358                  * deliver a FWNMI to the guest.
1359                  * Otherwise we synthesize a machine check for the guest
1360                  * so that it knows that the machine check occurred.
1361                  */
1362                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1363                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1364                         kvmppc_core_queue_machine_check(vcpu, flags);
1365                         r = RESUME_GUEST;
1366                         break;
1367                 }
1368
1369                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1370                 run->exit_reason = KVM_EXIT_NMI;
1371                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1372                 /* Clear out the old NMI status from run->flags */
1373                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1374                 /* Now set the NMI status */
1375                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1376                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1377                 else
1378                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1379
1380                 r = RESUME_HOST;
1381                 break;
1382         }
1383         case BOOK3S_INTERRUPT_PROGRAM:
1384         {
1385                 ulong flags;
1386                 /*
1387                  * Normally program interrupts are delivered directly
1388                  * to the guest by the hardware, but we can get here
1389                  * as a result of a hypervisor emulation interrupt
1390                  * (e40) getting turned into a 700 by BML RTAS.
1391                  */
1392                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1393                 kvmppc_core_queue_program(vcpu, flags);
1394                 r = RESUME_GUEST;
1395                 break;
1396         }
1397         case BOOK3S_INTERRUPT_SYSCALL:
1398         {
1399                 /* hcall - punt to userspace */
1400                 int i;
1401
1402                 /* hypercall with MSR_PR has already been handled in rmode,
1403                  * and never reaches here.
1404                  */
1405
1406                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1407                 for (i = 0; i < 9; ++i)
1408                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1409                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1410                 vcpu->arch.hcall_needed = 1;
1411                 r = RESUME_HOST;
1412                 break;
1413         }
1414         /*
1415          * We get these next two if the guest accesses a page which it thinks
1416          * it has mapped but which is not actually present, either because
1417          * it is for an emulated I/O device or because the corresonding
1418          * host page has been paged out.  Any other HDSI/HISI interrupts
1419          * have been handled already.
1420          */
1421         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1422                 r = RESUME_PAGE_FAULT;
1423                 break;
1424         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1425                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1426                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1427                         DSISR_SRR1_MATCH_64S;
1428                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1429                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1430                 r = RESUME_PAGE_FAULT;
1431                 break;
1432         /*
1433          * This occurs if the guest executes an illegal instruction.
1434          * If the guest debug is disabled, generate a program interrupt
1435          * to the guest. If guest debug is enabled, we need to check
1436          * whether the instruction is a software breakpoint instruction.
1437          * Accordingly return to Guest or Host.
1438          */
1439         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1440                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1441                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1442                                 swab32(vcpu->arch.emul_inst) :
1443                                 vcpu->arch.emul_inst;
1444                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1445                         r = kvmppc_emulate_debug_inst(vcpu);
1446                 } else {
1447                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1448                         r = RESUME_GUEST;
1449                 }
1450                 break;
1451         /*
1452          * This occurs if the guest (kernel or userspace), does something that
1453          * is prohibited by HFSCR.
1454          * On POWER9, this could be a doorbell instruction that we need
1455          * to emulate.
1456          * Otherwise, we just generate a program interrupt to the guest.
1457          */
1458         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1459                 r = EMULATE_FAIL;
1460                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1461                     cpu_has_feature(CPU_FTR_ARCH_300))
1462                         r = kvmppc_emulate_doorbell_instr(vcpu);
1463                 if (r == EMULATE_FAIL) {
1464                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1465                         r = RESUME_GUEST;
1466                 }
1467                 break;
1468
1469 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1470         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1471                 /*
1472                  * This occurs for various TM-related instructions that
1473                  * we need to emulate on POWER9 DD2.2.  We have already
1474                  * handled the cases where the guest was in real-suspend
1475                  * mode and was transitioning to transactional state.
1476                  */
1477                 r = kvmhv_p9_tm_emulation(vcpu);
1478                 break;
1479 #endif
1480
1481         case BOOK3S_INTERRUPT_HV_RM_HARD:
1482                 r = RESUME_PASSTHROUGH;
1483                 break;
1484         default:
1485                 kvmppc_dump_regs(vcpu);
1486                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1487                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1488                         vcpu->arch.shregs.msr);
1489                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1490                 r = RESUME_HOST;
1491                 break;
1492         }
1493
1494         return r;
1495 }
1496
1497 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1498 {
1499         int r;
1500         int srcu_idx;
1501
1502         vcpu->stat.sum_exits++;
1503
1504         /*
1505          * This can happen if an interrupt occurs in the last stages
1506          * of guest entry or the first stages of guest exit (i.e. after
1507          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1508          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1509          * That can happen due to a bug, or due to a machine check
1510          * occurring at just the wrong time.
1511          */
1512         if (vcpu->arch.shregs.msr & MSR_HV) {
1513                 pr_emerg("KVM trap in HV mode while nested!\n");
1514                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1515                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1516                          vcpu->arch.shregs.msr);
1517                 kvmppc_dump_regs(vcpu);
1518                 return RESUME_HOST;
1519         }
1520         switch (vcpu->arch.trap) {
1521         /* We're good on these - the host merely wanted to get our attention */
1522         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1523                 vcpu->stat.dec_exits++;
1524                 r = RESUME_GUEST;
1525                 break;
1526         case BOOK3S_INTERRUPT_EXTERNAL:
1527                 vcpu->stat.ext_intr_exits++;
1528                 r = RESUME_HOST;
1529                 break;
1530         case BOOK3S_INTERRUPT_H_DOORBELL:
1531         case BOOK3S_INTERRUPT_H_VIRT:
1532                 vcpu->stat.ext_intr_exits++;
1533                 r = RESUME_GUEST;
1534                 break;
1535         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1536         case BOOK3S_INTERRUPT_HMI:
1537         case BOOK3S_INTERRUPT_PERFMON:
1538         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1539                 r = RESUME_GUEST;
1540                 break;
1541         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1542         {
1543                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1544                                               DEFAULT_RATELIMIT_BURST);
1545                 /* Pass the machine check to the L1 guest */
1546                 r = RESUME_HOST;
1547                 /* Print the MCE event to host console. */
1548                 if (__ratelimit(&rs))
1549                         machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1550                 break;
1551         }
1552         /*
1553          * We get these next two if the guest accesses a page which it thinks
1554          * it has mapped but which is not actually present, either because
1555          * it is for an emulated I/O device or because the corresonding
1556          * host page has been paged out.
1557          */
1558         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1559                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1560                 r = kvmhv_nested_page_fault(vcpu);
1561                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1562                 break;
1563         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1564                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1565                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1566                                          DSISR_SRR1_MATCH_64S;
1567                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1568                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1569                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1570                 r = kvmhv_nested_page_fault(vcpu);
1571                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1572                 break;
1573
1574 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1575         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1576                 /*
1577                  * This occurs for various TM-related instructions that
1578                  * we need to emulate on POWER9 DD2.2.  We have already
1579                  * handled the cases where the guest was in real-suspend
1580                  * mode and was transitioning to transactional state.
1581                  */
1582                 r = kvmhv_p9_tm_emulation(vcpu);
1583                 break;
1584 #endif
1585
1586         case BOOK3S_INTERRUPT_HV_RM_HARD:
1587                 vcpu->arch.trap = 0;
1588                 r = RESUME_GUEST;
1589                 if (!xics_on_xive())
1590                         kvmppc_xics_rm_complete(vcpu, 0);
1591                 break;
1592         default:
1593                 r = RESUME_HOST;
1594                 break;
1595         }
1596
1597         return r;
1598 }
1599
1600 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1601                                             struct kvm_sregs *sregs)
1602 {
1603         int i;
1604
1605         memset(sregs, 0, sizeof(struct kvm_sregs));
1606         sregs->pvr = vcpu->arch.pvr;
1607         for (i = 0; i < vcpu->arch.slb_max; i++) {
1608                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1609                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1610         }
1611
1612         return 0;
1613 }
1614
1615 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1616                                             struct kvm_sregs *sregs)
1617 {
1618         int i, j;
1619
1620         /* Only accept the same PVR as the host's, since we can't spoof it */
1621         if (sregs->pvr != vcpu->arch.pvr)
1622                 return -EINVAL;
1623
1624         j = 0;
1625         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1626                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1627                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1628                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1629                         ++j;
1630                 }
1631         }
1632         vcpu->arch.slb_max = j;
1633
1634         return 0;
1635 }
1636
1637 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1638                 bool preserve_top32)
1639 {
1640         struct kvm *kvm = vcpu->kvm;
1641         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1642         u64 mask;
1643
1644         spin_lock(&vc->lock);
1645         /*
1646          * If ILE (interrupt little-endian) has changed, update the
1647          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1648          */
1649         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1650                 struct kvm_vcpu *vcpu;
1651                 int i;
1652
1653                 kvm_for_each_vcpu(i, vcpu, kvm) {
1654                         if (vcpu->arch.vcore != vc)
1655                                 continue;
1656                         if (new_lpcr & LPCR_ILE)
1657                                 vcpu->arch.intr_msr |= MSR_LE;
1658                         else
1659                                 vcpu->arch.intr_msr &= ~MSR_LE;
1660                 }
1661         }
1662
1663         /*
1664          * Userspace can only modify DPFD (default prefetch depth),
1665          * ILE (interrupt little-endian) and TC (translation control).
1666          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1667          */
1668         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1669         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1670                 mask |= LPCR_AIL;
1671         /*
1672          * On POWER9, allow userspace to enable large decrementer for the
1673          * guest, whether or not the host has it enabled.
1674          */
1675         if (cpu_has_feature(CPU_FTR_ARCH_300))
1676                 mask |= LPCR_LD;
1677
1678         /* Broken 32-bit version of LPCR must not clear top bits */
1679         if (preserve_top32)
1680                 mask &= 0xFFFFFFFF;
1681         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1682         spin_unlock(&vc->lock);
1683 }
1684
1685 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1686                                  union kvmppc_one_reg *val)
1687 {
1688         int r = 0;
1689         long int i;
1690
1691         switch (id) {
1692         case KVM_REG_PPC_DEBUG_INST:
1693                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1694                 break;
1695         case KVM_REG_PPC_HIOR:
1696                 *val = get_reg_val(id, 0);
1697                 break;
1698         case KVM_REG_PPC_DABR:
1699                 *val = get_reg_val(id, vcpu->arch.dabr);
1700                 break;
1701         case KVM_REG_PPC_DABRX:
1702                 *val = get_reg_val(id, vcpu->arch.dabrx);
1703                 break;
1704         case KVM_REG_PPC_DSCR:
1705                 *val = get_reg_val(id, vcpu->arch.dscr);
1706                 break;
1707         case KVM_REG_PPC_PURR:
1708                 *val = get_reg_val(id, vcpu->arch.purr);
1709                 break;
1710         case KVM_REG_PPC_SPURR:
1711                 *val = get_reg_val(id, vcpu->arch.spurr);
1712                 break;
1713         case KVM_REG_PPC_AMR:
1714                 *val = get_reg_val(id, vcpu->arch.amr);
1715                 break;
1716         case KVM_REG_PPC_UAMOR:
1717                 *val = get_reg_val(id, vcpu->arch.uamor);
1718                 break;
1719         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1720                 i = id - KVM_REG_PPC_MMCR0;
1721                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1722                 break;
1723         case KVM_REG_PPC_MMCR2:
1724                 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
1725                 break;
1726         case KVM_REG_PPC_MMCRA:
1727                 *val = get_reg_val(id, vcpu->arch.mmcra);
1728                 break;
1729         case KVM_REG_PPC_MMCRS:
1730                 *val = get_reg_val(id, vcpu->arch.mmcrs);
1731                 break;
1732         case KVM_REG_PPC_MMCR3:
1733                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1734                 break;
1735         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1736                 i = id - KVM_REG_PPC_PMC1;
1737                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1738                 break;
1739         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1740                 i = id - KVM_REG_PPC_SPMC1;
1741                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1742                 break;
1743         case KVM_REG_PPC_SIAR:
1744                 *val = get_reg_val(id, vcpu->arch.siar);
1745                 break;
1746         case KVM_REG_PPC_SDAR:
1747                 *val = get_reg_val(id, vcpu->arch.sdar);
1748                 break;
1749         case KVM_REG_PPC_SIER:
1750                 *val = get_reg_val(id, vcpu->arch.sier[0]);
1751                 break;
1752         case KVM_REG_PPC_SIER2:
1753                 *val = get_reg_val(id, vcpu->arch.sier[1]);
1754                 break;
1755         case KVM_REG_PPC_SIER3:
1756                 *val = get_reg_val(id, vcpu->arch.sier[2]);
1757                 break;
1758         case KVM_REG_PPC_IAMR:
1759                 *val = get_reg_val(id, vcpu->arch.iamr);
1760                 break;
1761         case KVM_REG_PPC_PSPB:
1762                 *val = get_reg_val(id, vcpu->arch.pspb);
1763                 break;
1764         case KVM_REG_PPC_DPDES:
1765                 /*
1766                  * On POWER9, where we are emulating msgsndp etc.,
1767                  * we return 1 bit for each vcpu, which can come from
1768                  * either vcore->dpdes or doorbell_request.
1769                  * On POWER8, doorbell_request is 0.
1770                  */
1771                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1772                                    vcpu->arch.doorbell_request);
1773                 break;
1774         case KVM_REG_PPC_VTB:
1775                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1776                 break;
1777         case KVM_REG_PPC_DAWR:
1778                 *val = get_reg_val(id, vcpu->arch.dawr0);
1779                 break;
1780         case KVM_REG_PPC_DAWRX:
1781                 *val = get_reg_val(id, vcpu->arch.dawrx0);
1782                 break;
1783         case KVM_REG_PPC_DAWR1:
1784                 *val = get_reg_val(id, vcpu->arch.dawr1);
1785                 break;
1786         case KVM_REG_PPC_DAWRX1:
1787                 *val = get_reg_val(id, vcpu->arch.dawrx1);
1788                 break;
1789         case KVM_REG_PPC_CIABR:
1790                 *val = get_reg_val(id, vcpu->arch.ciabr);
1791                 break;
1792         case KVM_REG_PPC_CSIGR:
1793                 *val = get_reg_val(id, vcpu->arch.csigr);
1794                 break;
1795         case KVM_REG_PPC_TACR:
1796                 *val = get_reg_val(id, vcpu->arch.tacr);
1797                 break;
1798         case KVM_REG_PPC_TCSCR:
1799                 *val = get_reg_val(id, vcpu->arch.tcscr);
1800                 break;
1801         case KVM_REG_PPC_PID:
1802                 *val = get_reg_val(id, vcpu->arch.pid);
1803                 break;
1804         case KVM_REG_PPC_ACOP:
1805                 *val = get_reg_val(id, vcpu->arch.acop);
1806                 break;
1807         case KVM_REG_PPC_WORT:
1808                 *val = get_reg_val(id, vcpu->arch.wort);
1809                 break;
1810         case KVM_REG_PPC_TIDR:
1811                 *val = get_reg_val(id, vcpu->arch.tid);
1812                 break;
1813         case KVM_REG_PPC_PSSCR:
1814                 *val = get_reg_val(id, vcpu->arch.psscr);
1815                 break;
1816         case KVM_REG_PPC_VPA_ADDR:
1817                 spin_lock(&vcpu->arch.vpa_update_lock);
1818                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1819                 spin_unlock(&vcpu->arch.vpa_update_lock);
1820                 break;
1821         case KVM_REG_PPC_VPA_SLB:
1822                 spin_lock(&vcpu->arch.vpa_update_lock);
1823                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1824                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1825                 spin_unlock(&vcpu->arch.vpa_update_lock);
1826                 break;
1827         case KVM_REG_PPC_VPA_DTL:
1828                 spin_lock(&vcpu->arch.vpa_update_lock);
1829                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1830                 val->vpaval.length = vcpu->arch.dtl.len;
1831                 spin_unlock(&vcpu->arch.vpa_update_lock);
1832                 break;
1833         case KVM_REG_PPC_TB_OFFSET:
1834                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1835                 break;
1836         case KVM_REG_PPC_LPCR:
1837         case KVM_REG_PPC_LPCR_64:
1838                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1839                 break;
1840         case KVM_REG_PPC_PPR:
1841                 *val = get_reg_val(id, vcpu->arch.ppr);
1842                 break;
1843 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1844         case KVM_REG_PPC_TFHAR:
1845                 *val = get_reg_val(id, vcpu->arch.tfhar);
1846                 break;
1847         case KVM_REG_PPC_TFIAR:
1848                 *val = get_reg_val(id, vcpu->arch.tfiar);
1849                 break;
1850         case KVM_REG_PPC_TEXASR:
1851                 *val = get_reg_val(id, vcpu->arch.texasr);
1852                 break;
1853         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1854                 i = id - KVM_REG_PPC_TM_GPR0;
1855                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1856                 break;
1857         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1858         {
1859                 int j;
1860                 i = id - KVM_REG_PPC_TM_VSR0;
1861                 if (i < 32)
1862                         for (j = 0; j < TS_FPRWIDTH; j++)
1863                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1864                 else {
1865                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1866                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1867                         else
1868                                 r = -ENXIO;
1869                 }
1870                 break;
1871         }
1872         case KVM_REG_PPC_TM_CR:
1873                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1874                 break;
1875         case KVM_REG_PPC_TM_XER:
1876                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1877                 break;
1878         case KVM_REG_PPC_TM_LR:
1879                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1880                 break;
1881         case KVM_REG_PPC_TM_CTR:
1882                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1883                 break;
1884         case KVM_REG_PPC_TM_FPSCR:
1885                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1886                 break;
1887         case KVM_REG_PPC_TM_AMR:
1888                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1889                 break;
1890         case KVM_REG_PPC_TM_PPR:
1891                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1892                 break;
1893         case KVM_REG_PPC_TM_VRSAVE:
1894                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1895                 break;
1896         case KVM_REG_PPC_TM_VSCR:
1897                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1898                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1899                 else
1900                         r = -ENXIO;
1901                 break;
1902         case KVM_REG_PPC_TM_DSCR:
1903                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1904                 break;
1905         case KVM_REG_PPC_TM_TAR:
1906                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1907                 break;
1908 #endif
1909         case KVM_REG_PPC_ARCH_COMPAT:
1910                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1911                 break;
1912         case KVM_REG_PPC_DEC_EXPIRY:
1913                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1914                                    vcpu->arch.vcore->tb_offset);
1915                 break;
1916         case KVM_REG_PPC_ONLINE:
1917                 *val = get_reg_val(id, vcpu->arch.online);
1918                 break;
1919         case KVM_REG_PPC_PTCR:
1920                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1921                 break;
1922         default:
1923                 r = -EINVAL;
1924                 break;
1925         }
1926
1927         return r;
1928 }
1929
1930 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1931                                  union kvmppc_one_reg *val)
1932 {
1933         int r = 0;
1934         long int i;
1935         unsigned long addr, len;
1936
1937         switch (id) {
1938         case KVM_REG_PPC_HIOR:
1939                 /* Only allow this to be set to zero */
1940                 if (set_reg_val(id, *val))
1941                         r = -EINVAL;
1942                 break;
1943         case KVM_REG_PPC_DABR:
1944                 vcpu->arch.dabr = set_reg_val(id, *val);
1945                 break;
1946         case KVM_REG_PPC_DABRX:
1947                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1948                 break;
1949         case KVM_REG_PPC_DSCR:
1950                 vcpu->arch.dscr = set_reg_val(id, *val);
1951                 break;
1952         case KVM_REG_PPC_PURR:
1953                 vcpu->arch.purr = set_reg_val(id, *val);
1954                 break;
1955         case KVM_REG_PPC_SPURR:
1956                 vcpu->arch.spurr = set_reg_val(id, *val);
1957                 break;
1958         case KVM_REG_PPC_AMR:
1959                 vcpu->arch.amr = set_reg_val(id, *val);
1960                 break;
1961         case KVM_REG_PPC_UAMOR:
1962                 vcpu->arch.uamor = set_reg_val(id, *val);
1963                 break;
1964         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1965                 i = id - KVM_REG_PPC_MMCR0;
1966                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1967                 break;
1968         case KVM_REG_PPC_MMCR2:
1969                 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
1970                 break;
1971         case KVM_REG_PPC_MMCRA:
1972                 vcpu->arch.mmcra = set_reg_val(id, *val);
1973                 break;
1974         case KVM_REG_PPC_MMCRS:
1975                 vcpu->arch.mmcrs = set_reg_val(id, *val);
1976                 break;
1977         case KVM_REG_PPC_MMCR3:
1978                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1979                 break;
1980         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1981                 i = id - KVM_REG_PPC_PMC1;
1982                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1983                 break;
1984         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1985                 i = id - KVM_REG_PPC_SPMC1;
1986                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1987                 break;
1988         case KVM_REG_PPC_SIAR:
1989                 vcpu->arch.siar = set_reg_val(id, *val);
1990                 break;
1991         case KVM_REG_PPC_SDAR:
1992                 vcpu->arch.sdar = set_reg_val(id, *val);
1993                 break;
1994         case KVM_REG_PPC_SIER:
1995                 vcpu->arch.sier[0] = set_reg_val(id, *val);
1996                 break;
1997         case KVM_REG_PPC_SIER2:
1998                 vcpu->arch.sier[1] = set_reg_val(id, *val);
1999                 break;
2000         case KVM_REG_PPC_SIER3:
2001                 vcpu->arch.sier[2] = set_reg_val(id, *val);
2002                 break;
2003         case KVM_REG_PPC_IAMR:
2004                 vcpu->arch.iamr = set_reg_val(id, *val);
2005                 break;
2006         case KVM_REG_PPC_PSPB:
2007                 vcpu->arch.pspb = set_reg_val(id, *val);
2008                 break;
2009         case KVM_REG_PPC_DPDES:
2010                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2011                 break;
2012         case KVM_REG_PPC_VTB:
2013                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2014                 break;
2015         case KVM_REG_PPC_DAWR:
2016                 vcpu->arch.dawr0 = set_reg_val(id, *val);
2017                 break;
2018         case KVM_REG_PPC_DAWRX:
2019                 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2020                 break;
2021         case KVM_REG_PPC_DAWR1:
2022                 vcpu->arch.dawr1 = set_reg_val(id, *val);
2023                 break;
2024         case KVM_REG_PPC_DAWRX1:
2025                 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2026                 break;
2027         case KVM_REG_PPC_CIABR:
2028                 vcpu->arch.ciabr = set_reg_val(id, *val);
2029                 /* Don't allow setting breakpoints in hypervisor code */
2030                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2031                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
2032                 break;
2033         case KVM_REG_PPC_CSIGR:
2034                 vcpu->arch.csigr = set_reg_val(id, *val);
2035                 break;
2036         case KVM_REG_PPC_TACR:
2037                 vcpu->arch.tacr = set_reg_val(id, *val);
2038                 break;
2039         case KVM_REG_PPC_TCSCR:
2040                 vcpu->arch.tcscr = set_reg_val(id, *val);
2041                 break;
2042         case KVM_REG_PPC_PID:
2043                 vcpu->arch.pid = set_reg_val(id, *val);
2044                 break;
2045         case KVM_REG_PPC_ACOP:
2046                 vcpu->arch.acop = set_reg_val(id, *val);
2047                 break;
2048         case KVM_REG_PPC_WORT:
2049                 vcpu->arch.wort = set_reg_val(id, *val);
2050                 break;
2051         case KVM_REG_PPC_TIDR:
2052                 vcpu->arch.tid = set_reg_val(id, *val);
2053                 break;
2054         case KVM_REG_PPC_PSSCR:
2055                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2056                 break;
2057         case KVM_REG_PPC_VPA_ADDR:
2058                 addr = set_reg_val(id, *val);
2059                 r = -EINVAL;
2060                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2061                               vcpu->arch.dtl.next_gpa))
2062                         break;
2063                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2064                 break;
2065         case KVM_REG_PPC_VPA_SLB:
2066                 addr = val->vpaval.addr;
2067                 len = val->vpaval.length;
2068                 r = -EINVAL;
2069                 if (addr && !vcpu->arch.vpa.next_gpa)
2070                         break;
2071                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2072                 break;
2073         case KVM_REG_PPC_VPA_DTL:
2074                 addr = val->vpaval.addr;
2075                 len = val->vpaval.length;
2076                 r = -EINVAL;
2077                 if (addr && (len < sizeof(struct dtl_entry) ||
2078                              !vcpu->arch.vpa.next_gpa))
2079                         break;
2080                 len -= len % sizeof(struct dtl_entry);
2081                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2082                 break;
2083         case KVM_REG_PPC_TB_OFFSET:
2084                 /* round up to multiple of 2^24 */
2085                 vcpu->arch.vcore->tb_offset =
2086                         ALIGN(set_reg_val(id, *val), 1UL << 24);
2087                 break;
2088         case KVM_REG_PPC_LPCR:
2089                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2090                 break;
2091         case KVM_REG_PPC_LPCR_64:
2092                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2093                 break;
2094         case KVM_REG_PPC_PPR:
2095                 vcpu->arch.ppr = set_reg_val(id, *val);
2096                 break;
2097 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2098         case KVM_REG_PPC_TFHAR:
2099                 vcpu->arch.tfhar = set_reg_val(id, *val);
2100                 break;
2101         case KVM_REG_PPC_TFIAR:
2102                 vcpu->arch.tfiar = set_reg_val(id, *val);
2103                 break;
2104         case KVM_REG_PPC_TEXASR:
2105                 vcpu->arch.texasr = set_reg_val(id, *val);
2106                 break;
2107         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2108                 i = id - KVM_REG_PPC_TM_GPR0;
2109                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2110                 break;
2111         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2112         {
2113                 int j;
2114                 i = id - KVM_REG_PPC_TM_VSR0;
2115                 if (i < 32)
2116                         for (j = 0; j < TS_FPRWIDTH; j++)
2117                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2118                 else
2119                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2120                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2121                         else
2122                                 r = -ENXIO;
2123                 break;
2124         }
2125         case KVM_REG_PPC_TM_CR:
2126                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2127                 break;
2128         case KVM_REG_PPC_TM_XER:
2129                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2130                 break;
2131         case KVM_REG_PPC_TM_LR:
2132                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2133                 break;
2134         case KVM_REG_PPC_TM_CTR:
2135                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2136                 break;
2137         case KVM_REG_PPC_TM_FPSCR:
2138                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2139                 break;
2140         case KVM_REG_PPC_TM_AMR:
2141                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2142                 break;
2143         case KVM_REG_PPC_TM_PPR:
2144                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2145                 break;
2146         case KVM_REG_PPC_TM_VRSAVE:
2147                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2148                 break;
2149         case KVM_REG_PPC_TM_VSCR:
2150                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2151                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2152                 else
2153                         r = - ENXIO;
2154                 break;
2155         case KVM_REG_PPC_TM_DSCR:
2156                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2157                 break;
2158         case KVM_REG_PPC_TM_TAR:
2159                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2160                 break;
2161 #endif
2162         case KVM_REG_PPC_ARCH_COMPAT:
2163                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2164                 break;
2165         case KVM_REG_PPC_DEC_EXPIRY:
2166                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2167                         vcpu->arch.vcore->tb_offset;
2168                 break;
2169         case KVM_REG_PPC_ONLINE:
2170                 i = set_reg_val(id, *val);
2171                 if (i && !vcpu->arch.online)
2172                         atomic_inc(&vcpu->arch.vcore->online_count);
2173                 else if (!i && vcpu->arch.online)
2174                         atomic_dec(&vcpu->arch.vcore->online_count);
2175                 vcpu->arch.online = i;
2176                 break;
2177         case KVM_REG_PPC_PTCR:
2178                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2179                 break;
2180         default:
2181                 r = -EINVAL;
2182                 break;
2183         }
2184
2185         return r;
2186 }
2187
2188 /*
2189  * On POWER9, threads are independent and can be in different partitions.
2190  * Therefore we consider each thread to be a subcore.
2191  * There is a restriction that all threads have to be in the same
2192  * MMU mode (radix or HPT), unfortunately, but since we only support
2193  * HPT guests on a HPT host so far, that isn't an impediment yet.
2194  */
2195 static int threads_per_vcore(struct kvm *kvm)
2196 {
2197         if (kvm->arch.threads_indep)
2198                 return 1;
2199         return threads_per_subcore;
2200 }
2201
2202 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2203 {
2204         struct kvmppc_vcore *vcore;
2205
2206         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2207
2208         if (vcore == NULL)
2209                 return NULL;
2210
2211         spin_lock_init(&vcore->lock);
2212         spin_lock_init(&vcore->stoltb_lock);
2213         rcuwait_init(&vcore->wait);
2214         vcore->preempt_tb = TB_NIL;
2215         vcore->lpcr = kvm->arch.lpcr;
2216         vcore->first_vcpuid = id;
2217         vcore->kvm = kvm;
2218         INIT_LIST_HEAD(&vcore->preempt_list);
2219
2220         return vcore;
2221 }
2222
2223 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2224 static struct debugfs_timings_element {
2225         const char *name;
2226         size_t offset;
2227 } timings[] = {
2228         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2229         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2230         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2231         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2232         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2233 };
2234
2235 #define N_TIMINGS       (ARRAY_SIZE(timings))
2236
2237 struct debugfs_timings_state {
2238         struct kvm_vcpu *vcpu;
2239         unsigned int    buflen;
2240         char            buf[N_TIMINGS * 100];
2241 };
2242
2243 static int debugfs_timings_open(struct inode *inode, struct file *file)
2244 {
2245         struct kvm_vcpu *vcpu = inode->i_private;
2246         struct debugfs_timings_state *p;
2247
2248         p = kzalloc(sizeof(*p), GFP_KERNEL);
2249         if (!p)
2250                 return -ENOMEM;
2251
2252         kvm_get_kvm(vcpu->kvm);
2253         p->vcpu = vcpu;
2254         file->private_data = p;
2255
2256         return nonseekable_open(inode, file);
2257 }
2258
2259 static int debugfs_timings_release(struct inode *inode, struct file *file)
2260 {
2261         struct debugfs_timings_state *p = file->private_data;
2262
2263         kvm_put_kvm(p->vcpu->kvm);
2264         kfree(p);
2265         return 0;
2266 }
2267
2268 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2269                                     size_t len, loff_t *ppos)
2270 {
2271         struct debugfs_timings_state *p = file->private_data;
2272         struct kvm_vcpu *vcpu = p->vcpu;
2273         char *s, *buf_end;
2274         struct kvmhv_tb_accumulator tb;
2275         u64 count;
2276         loff_t pos;
2277         ssize_t n;
2278         int i, loops;
2279         bool ok;
2280
2281         if (!p->buflen) {
2282                 s = p->buf;
2283                 buf_end = s + sizeof(p->buf);
2284                 for (i = 0; i < N_TIMINGS; ++i) {
2285                         struct kvmhv_tb_accumulator *acc;
2286
2287                         acc = (struct kvmhv_tb_accumulator *)
2288                                 ((unsigned long)vcpu + timings[i].offset);
2289                         ok = false;
2290                         for (loops = 0; loops < 1000; ++loops) {
2291                                 count = acc->seqcount;
2292                                 if (!(count & 1)) {
2293                                         smp_rmb();
2294                                         tb = *acc;
2295                                         smp_rmb();
2296                                         if (count == acc->seqcount) {
2297                                                 ok = true;
2298                                                 break;
2299                                         }
2300                                 }
2301                                 udelay(1);
2302                         }
2303                         if (!ok)
2304                                 snprintf(s, buf_end - s, "%s: stuck\n",
2305                                         timings[i].name);
2306                         else
2307                                 snprintf(s, buf_end - s,
2308                                         "%s: %llu %llu %llu %llu\n",
2309                                         timings[i].name, count / 2,
2310                                         tb_to_ns(tb.tb_total),
2311                                         tb_to_ns(tb.tb_min),
2312                                         tb_to_ns(tb.tb_max));
2313                         s += strlen(s);
2314                 }
2315                 p->buflen = s - p->buf;
2316         }
2317
2318         pos = *ppos;
2319         if (pos >= p->buflen)
2320                 return 0;
2321         if (len > p->buflen - pos)
2322                 len = p->buflen - pos;
2323         n = copy_to_user(buf, p->buf + pos, len);
2324         if (n) {
2325                 if (n == len)
2326                         return -EFAULT;
2327                 len -= n;
2328         }
2329         *ppos = pos + len;
2330         return len;
2331 }
2332
2333 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2334                                      size_t len, loff_t *ppos)
2335 {
2336         return -EACCES;
2337 }
2338
2339 static const struct file_operations debugfs_timings_ops = {
2340         .owner   = THIS_MODULE,
2341         .open    = debugfs_timings_open,
2342         .release = debugfs_timings_release,
2343         .read    = debugfs_timings_read,
2344         .write   = debugfs_timings_write,
2345         .llseek  = generic_file_llseek,
2346 };
2347
2348 /* Create a debugfs directory for the vcpu */
2349 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2350 {
2351         char buf[16];
2352         struct kvm *kvm = vcpu->kvm;
2353
2354         snprintf(buf, sizeof(buf), "vcpu%u", id);
2355         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2356         debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2357                             &debugfs_timings_ops);
2358 }
2359
2360 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2361 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2362 {
2363 }
2364 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2365
2366 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2367 {
2368         int err;
2369         int core;
2370         struct kvmppc_vcore *vcore;
2371         struct kvm *kvm;
2372         unsigned int id;
2373
2374         kvm = vcpu->kvm;
2375         id = vcpu->vcpu_id;
2376
2377         vcpu->arch.shared = &vcpu->arch.shregs;
2378 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2379         /*
2380          * The shared struct is never shared on HV,
2381          * so we can always use host endianness
2382          */
2383 #ifdef __BIG_ENDIAN__
2384         vcpu->arch.shared_big_endian = true;
2385 #else
2386         vcpu->arch.shared_big_endian = false;
2387 #endif
2388 #endif
2389         vcpu->arch.mmcr[0] = MMCR0_FC;
2390         vcpu->arch.ctrl = CTRL_RUNLATCH;
2391         /* default to host PVR, since we can't spoof it */
2392         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2393         spin_lock_init(&vcpu->arch.vpa_update_lock);
2394         spin_lock_init(&vcpu->arch.tbacct_lock);
2395         vcpu->arch.busy_preempt = TB_NIL;
2396         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2397
2398         /*
2399          * Set the default HFSCR for the guest from the host value.
2400          * This value is only used on POWER9.
2401          * On POWER9, we want to virtualize the doorbell facility, so we
2402          * don't set the HFSCR_MSGP bit, and that causes those instructions
2403          * to trap and then we emulate them.
2404          */
2405         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2406                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2407         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2408                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2409                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2410                         vcpu->arch.hfscr |= HFSCR_TM;
2411         }
2412         if (cpu_has_feature(CPU_FTR_TM_COMP))
2413                 vcpu->arch.hfscr |= HFSCR_TM;
2414
2415         kvmppc_mmu_book3s_hv_init(vcpu);
2416
2417         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2418
2419         init_waitqueue_head(&vcpu->arch.cpu_run);
2420
2421         mutex_lock(&kvm->lock);
2422         vcore = NULL;
2423         err = -EINVAL;
2424         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2425                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2426                         pr_devel("KVM: VCPU ID too high\n");
2427                         core = KVM_MAX_VCORES;
2428                 } else {
2429                         BUG_ON(kvm->arch.smt_mode != 1);
2430                         core = kvmppc_pack_vcpu_id(kvm, id);
2431                 }
2432         } else {
2433                 core = id / kvm->arch.smt_mode;
2434         }
2435         if (core < KVM_MAX_VCORES) {
2436                 vcore = kvm->arch.vcores[core];
2437                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2438                         pr_devel("KVM: collision on id %u", id);
2439                         vcore = NULL;
2440                 } else if (!vcore) {
2441                         /*
2442                          * Take mmu_setup_lock for mutual exclusion
2443                          * with kvmppc_update_lpcr().
2444                          */
2445                         err = -ENOMEM;
2446                         vcore = kvmppc_vcore_create(kvm,
2447                                         id & ~(kvm->arch.smt_mode - 1));
2448                         mutex_lock(&kvm->arch.mmu_setup_lock);
2449                         kvm->arch.vcores[core] = vcore;
2450                         kvm->arch.online_vcores++;
2451                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2452                 }
2453         }
2454         mutex_unlock(&kvm->lock);
2455
2456         if (!vcore)
2457                 return err;
2458
2459         spin_lock(&vcore->lock);
2460         ++vcore->num_threads;
2461         spin_unlock(&vcore->lock);
2462         vcpu->arch.vcore = vcore;
2463         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2464         vcpu->arch.thread_cpu = -1;
2465         vcpu->arch.prev_cpu = -1;
2466
2467         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2468         kvmppc_sanity_check(vcpu);
2469
2470         debugfs_vcpu_init(vcpu, id);
2471
2472         return 0;
2473 }
2474
2475 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2476                               unsigned long flags)
2477 {
2478         int err;
2479         int esmt = 0;
2480
2481         if (flags)
2482                 return -EINVAL;
2483         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2484                 return -EINVAL;
2485         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2486                 /*
2487                  * On POWER8 (or POWER7), the threading mode is "strict",
2488                  * so we pack smt_mode vcpus per vcore.
2489                  */
2490                 if (smt_mode > threads_per_subcore)
2491                         return -EINVAL;
2492         } else {
2493                 /*
2494                  * On POWER9, the threading mode is "loose",
2495                  * so each vcpu gets its own vcore.
2496                  */
2497                 esmt = smt_mode;
2498                 smt_mode = 1;
2499         }
2500         mutex_lock(&kvm->lock);
2501         err = -EBUSY;
2502         if (!kvm->arch.online_vcores) {
2503                 kvm->arch.smt_mode = smt_mode;
2504                 kvm->arch.emul_smt_mode = esmt;
2505                 err = 0;
2506         }
2507         mutex_unlock(&kvm->lock);
2508
2509         return err;
2510 }
2511
2512 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2513 {
2514         if (vpa->pinned_addr)
2515                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2516                                         vpa->dirty);
2517 }
2518
2519 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2520 {
2521         spin_lock(&vcpu->arch.vpa_update_lock);
2522         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2523         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2524         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2525         spin_unlock(&vcpu->arch.vpa_update_lock);
2526 }
2527
2528 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2529 {
2530         /* Indicate we want to get back into the guest */
2531         return 1;
2532 }
2533
2534 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2535 {
2536         unsigned long dec_nsec, now;
2537
2538         now = get_tb();
2539         if (now > vcpu->arch.dec_expires) {
2540                 /* decrementer has already gone negative */
2541                 kvmppc_core_queue_dec(vcpu);
2542                 kvmppc_core_prepare_to_enter(vcpu);
2543                 return;
2544         }
2545         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2546         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2547         vcpu->arch.timer_running = 1;
2548 }
2549
2550 extern int __kvmppc_vcore_entry(void);
2551
2552 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2553                                    struct kvm_vcpu *vcpu)
2554 {
2555         u64 now;
2556
2557         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2558                 return;
2559         spin_lock_irq(&vcpu->arch.tbacct_lock);
2560         now = mftb();
2561         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2562                 vcpu->arch.stolen_logged;
2563         vcpu->arch.busy_preempt = now;
2564         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2565         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2566         --vc->n_runnable;
2567         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2568 }
2569
2570 static int kvmppc_grab_hwthread(int cpu)
2571 {
2572         struct paca_struct *tpaca;
2573         long timeout = 10000;
2574
2575         tpaca = paca_ptrs[cpu];
2576
2577         /* Ensure the thread won't go into the kernel if it wakes */
2578         tpaca->kvm_hstate.kvm_vcpu = NULL;
2579         tpaca->kvm_hstate.kvm_vcore = NULL;
2580         tpaca->kvm_hstate.napping = 0;
2581         smp_wmb();
2582         tpaca->kvm_hstate.hwthread_req = 1;
2583
2584         /*
2585          * If the thread is already executing in the kernel (e.g. handling
2586          * a stray interrupt), wait for it to get back to nap mode.
2587          * The smp_mb() is to ensure that our setting of hwthread_req
2588          * is visible before we look at hwthread_state, so if this
2589          * races with the code at system_reset_pSeries and the thread
2590          * misses our setting of hwthread_req, we are sure to see its
2591          * setting of hwthread_state, and vice versa.
2592          */
2593         smp_mb();
2594         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2595                 if (--timeout <= 0) {
2596                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2597                         return -EBUSY;
2598                 }
2599                 udelay(1);
2600         }
2601         return 0;
2602 }
2603
2604 static void kvmppc_release_hwthread(int cpu)
2605 {
2606         struct paca_struct *tpaca;
2607
2608         tpaca = paca_ptrs[cpu];
2609         tpaca->kvm_hstate.hwthread_req = 0;
2610         tpaca->kvm_hstate.kvm_vcpu = NULL;
2611         tpaca->kvm_hstate.kvm_vcore = NULL;
2612         tpaca->kvm_hstate.kvm_split_mode = NULL;
2613 }
2614
2615 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2616 {
2617         struct kvm_nested_guest *nested = vcpu->arch.nested;
2618         cpumask_t *cpu_in_guest;
2619         int i;
2620
2621         cpu = cpu_first_thread_sibling(cpu);
2622         if (nested) {
2623                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2624                 cpu_in_guest = &nested->cpu_in_guest;
2625         } else {
2626                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2627                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2628         }
2629         /*
2630          * Make sure setting of bit in need_tlb_flush precedes
2631          * testing of cpu_in_guest bits.  The matching barrier on
2632          * the other side is the first smp_mb() in kvmppc_run_core().
2633          */
2634         smp_mb();
2635         for (i = 0; i < threads_per_core; ++i)
2636                 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2637                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2638 }
2639
2640 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2641 {
2642         struct kvm_nested_guest *nested = vcpu->arch.nested;
2643         struct kvm *kvm = vcpu->kvm;
2644         int prev_cpu;
2645
2646         if (!cpu_has_feature(CPU_FTR_HVMODE))
2647                 return;
2648
2649         if (nested)
2650                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2651         else
2652                 prev_cpu = vcpu->arch.prev_cpu;
2653
2654         /*
2655          * With radix, the guest can do TLB invalidations itself,
2656          * and it could choose to use the local form (tlbiel) if
2657          * it is invalidating a translation that has only ever been
2658          * used on one vcpu.  However, that doesn't mean it has
2659          * only ever been used on one physical cpu, since vcpus
2660          * can move around between pcpus.  To cope with this, when
2661          * a vcpu moves from one pcpu to another, we need to tell
2662          * any vcpus running on the same core as this vcpu previously
2663          * ran to flush the TLB.  The TLB is shared between threads,
2664          * so we use a single bit in .need_tlb_flush for all 4 threads.
2665          */
2666         if (prev_cpu != pcpu) {
2667                 if (prev_cpu >= 0 &&
2668                     cpu_first_thread_sibling(prev_cpu) !=
2669                     cpu_first_thread_sibling(pcpu))
2670                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2671                 if (nested)
2672                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2673                 else
2674                         vcpu->arch.prev_cpu = pcpu;
2675         }
2676 }
2677
2678 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2679 {
2680         int cpu;
2681         struct paca_struct *tpaca;
2682         struct kvm *kvm = vc->kvm;
2683
2684         cpu = vc->pcpu;
2685         if (vcpu) {
2686                 if (vcpu->arch.timer_running) {
2687                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2688                         vcpu->arch.timer_running = 0;
2689                 }
2690                 cpu += vcpu->arch.ptid;
2691                 vcpu->cpu = vc->pcpu;
2692                 vcpu->arch.thread_cpu = cpu;
2693                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2694         }
2695         tpaca = paca_ptrs[cpu];
2696         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2697         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2698         tpaca->kvm_hstate.fake_suspend = 0;
2699         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2700         smp_wmb();
2701         tpaca->kvm_hstate.kvm_vcore = vc;
2702         if (cpu != smp_processor_id())
2703                 kvmppc_ipi_thread(cpu);
2704 }
2705
2706 static void kvmppc_wait_for_nap(int n_threads)
2707 {
2708         int cpu = smp_processor_id();
2709         int i, loops;
2710
2711         if (n_threads <= 1)
2712                 return;
2713         for (loops = 0; loops < 1000000; ++loops) {
2714                 /*
2715                  * Check if all threads are finished.
2716                  * We set the vcore pointer when starting a thread
2717                  * and the thread clears it when finished, so we look
2718                  * for any threads that still have a non-NULL vcore ptr.
2719                  */
2720                 for (i = 1; i < n_threads; ++i)
2721                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2722                                 break;
2723                 if (i == n_threads) {
2724                         HMT_medium();
2725                         return;
2726                 }
2727                 HMT_low();
2728         }
2729         HMT_medium();
2730         for (i = 1; i < n_threads; ++i)
2731                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2732                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2733 }
2734
2735 /*
2736  * Check that we are on thread 0 and that any other threads in
2737  * this core are off-line.  Then grab the threads so they can't
2738  * enter the kernel.
2739  */
2740 static int on_primary_thread(void)
2741 {
2742         int cpu = smp_processor_id();
2743         int thr;
2744
2745         /* Are we on a primary subcore? */
2746         if (cpu_thread_in_subcore(cpu))
2747                 return 0;
2748
2749         thr = 0;
2750         while (++thr < threads_per_subcore)
2751                 if (cpu_online(cpu + thr))
2752                         return 0;
2753
2754         /* Grab all hw threads so they can't go into the kernel */
2755         for (thr = 1; thr < threads_per_subcore; ++thr) {
2756                 if (kvmppc_grab_hwthread(cpu + thr)) {
2757                         /* Couldn't grab one; let the others go */
2758                         do {
2759                                 kvmppc_release_hwthread(cpu + thr);
2760                         } while (--thr > 0);
2761                         return 0;
2762                 }
2763         }
2764         return 1;
2765 }
2766
2767 /*
2768  * A list of virtual cores for each physical CPU.
2769  * These are vcores that could run but their runner VCPU tasks are
2770  * (or may be) preempted.
2771  */
2772 struct preempted_vcore_list {
2773         struct list_head        list;
2774         spinlock_t              lock;
2775 };
2776
2777 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2778
2779 static void init_vcore_lists(void)
2780 {
2781         int cpu;
2782
2783         for_each_possible_cpu(cpu) {
2784                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2785                 spin_lock_init(&lp->lock);
2786                 INIT_LIST_HEAD(&lp->list);
2787         }
2788 }
2789
2790 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2791 {
2792         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2793
2794         vc->vcore_state = VCORE_PREEMPT;
2795         vc->pcpu = smp_processor_id();
2796         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2797                 spin_lock(&lp->lock);
2798                 list_add_tail(&vc->preempt_list, &lp->list);
2799                 spin_unlock(&lp->lock);
2800         }
2801
2802         /* Start accumulating stolen time */
2803         kvmppc_core_start_stolen(vc);
2804 }
2805
2806 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2807 {
2808         struct preempted_vcore_list *lp;
2809
2810         kvmppc_core_end_stolen(vc);
2811         if (!list_empty(&vc->preempt_list)) {
2812                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2813                 spin_lock(&lp->lock);
2814                 list_del_init(&vc->preempt_list);
2815                 spin_unlock(&lp->lock);
2816         }
2817         vc->vcore_state = VCORE_INACTIVE;
2818 }
2819
2820 /*
2821  * This stores information about the virtual cores currently
2822  * assigned to a physical core.
2823  */
2824 struct core_info {
2825         int             n_subcores;
2826         int             max_subcore_threads;
2827         int             total_threads;
2828         int             subcore_threads[MAX_SUBCORES];
2829         struct kvmppc_vcore *vc[MAX_SUBCORES];
2830 };
2831
2832 /*
2833  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2834  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2835  */
2836 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2837
2838 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2839 {
2840         memset(cip, 0, sizeof(*cip));
2841         cip->n_subcores = 1;
2842         cip->max_subcore_threads = vc->num_threads;
2843         cip->total_threads = vc->num_threads;
2844         cip->subcore_threads[0] = vc->num_threads;
2845         cip->vc[0] = vc;
2846 }
2847
2848 static bool subcore_config_ok(int n_subcores, int n_threads)
2849 {
2850         /*
2851          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2852          * split-core mode, with one thread per subcore.
2853          */
2854         if (cpu_has_feature(CPU_FTR_ARCH_300))
2855                 return n_subcores <= 4 && n_threads == 1;
2856
2857         /* On POWER8, can only dynamically split if unsplit to begin with */
2858         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2859                 return false;
2860         if (n_subcores > MAX_SUBCORES)
2861                 return false;
2862         if (n_subcores > 1) {
2863                 if (!(dynamic_mt_modes & 2))
2864                         n_subcores = 4;
2865                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2866                         return false;
2867         }
2868
2869         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2870 }
2871
2872 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2873 {
2874         vc->entry_exit_map = 0;
2875         vc->in_guest = 0;
2876         vc->napping_threads = 0;
2877         vc->conferring_threads = 0;
2878         vc->tb_offset_applied = 0;
2879 }
2880
2881 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2882 {
2883         int n_threads = vc->num_threads;
2884         int sub;
2885
2886         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2887                 return false;
2888
2889         /* In one_vm_per_core mode, require all vcores to be from the same vm */
2890         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2891                 return false;
2892
2893         /* Some POWER9 chips require all threads to be in the same MMU mode */
2894         if (no_mixing_hpt_and_radix &&
2895             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2896                 return false;
2897
2898         if (n_threads < cip->max_subcore_threads)
2899                 n_threads = cip->max_subcore_threads;
2900         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2901                 return false;
2902         cip->max_subcore_threads = n_threads;
2903
2904         sub = cip->n_subcores;
2905         ++cip->n_subcores;
2906         cip->total_threads += vc->num_threads;
2907         cip->subcore_threads[sub] = vc->num_threads;
2908         cip->vc[sub] = vc;
2909         init_vcore_to_run(vc);
2910         list_del_init(&vc->preempt_list);
2911
2912         return true;
2913 }
2914
2915 /*
2916  * Work out whether it is possible to piggyback the execution of
2917  * vcore *pvc onto the execution of the other vcores described in *cip.
2918  */
2919 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2920                           int target_threads)
2921 {
2922         if (cip->total_threads + pvc->num_threads > target_threads)
2923                 return false;
2924
2925         return can_dynamic_split(pvc, cip);
2926 }
2927
2928 static void prepare_threads(struct kvmppc_vcore *vc)
2929 {
2930         int i;
2931         struct kvm_vcpu *vcpu;
2932
2933         for_each_runnable_thread(i, vcpu, vc) {
2934                 if (signal_pending(vcpu->arch.run_task))
2935                         vcpu->arch.ret = -EINTR;
2936                 else if (vcpu->arch.vpa.update_pending ||
2937                          vcpu->arch.slb_shadow.update_pending ||
2938                          vcpu->arch.dtl.update_pending)
2939                         vcpu->arch.ret = RESUME_GUEST;
2940                 else
2941                         continue;
2942                 kvmppc_remove_runnable(vc, vcpu);
2943                 wake_up(&vcpu->arch.cpu_run);
2944         }
2945 }
2946
2947 static void collect_piggybacks(struct core_info *cip, int target_threads)
2948 {
2949         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2950         struct kvmppc_vcore *pvc, *vcnext;
2951
2952         spin_lock(&lp->lock);
2953         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2954                 if (!spin_trylock(&pvc->lock))
2955                         continue;
2956                 prepare_threads(pvc);
2957                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2958                         list_del_init(&pvc->preempt_list);
2959                         if (pvc->runner == NULL) {
2960                                 pvc->vcore_state = VCORE_INACTIVE;
2961                                 kvmppc_core_end_stolen(pvc);
2962                         }
2963                         spin_unlock(&pvc->lock);
2964                         continue;
2965                 }
2966                 if (!can_piggyback(pvc, cip, target_threads)) {
2967                         spin_unlock(&pvc->lock);
2968                         continue;
2969                 }
2970                 kvmppc_core_end_stolen(pvc);
2971                 pvc->vcore_state = VCORE_PIGGYBACK;
2972                 if (cip->total_threads >= target_threads)
2973                         break;
2974         }
2975         spin_unlock(&lp->lock);
2976 }
2977
2978 static bool recheck_signals_and_mmu(struct core_info *cip)
2979 {
2980         int sub, i;
2981         struct kvm_vcpu *vcpu;
2982         struct kvmppc_vcore *vc;
2983
2984         for (sub = 0; sub < cip->n_subcores; ++sub) {
2985                 vc = cip->vc[sub];
2986                 if (!vc->kvm->arch.mmu_ready)
2987                         return true;
2988                 for_each_runnable_thread(i, vcpu, vc)
2989                         if (signal_pending(vcpu->arch.run_task))
2990                                 return true;
2991         }
2992         return false;
2993 }
2994
2995 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2996 {
2997         int still_running = 0, i;
2998         u64 now;
2999         long ret;
3000         struct kvm_vcpu *vcpu;
3001
3002         spin_lock(&vc->lock);
3003         now = get_tb();
3004         for_each_runnable_thread(i, vcpu, vc) {
3005                 /*
3006                  * It's safe to unlock the vcore in the loop here, because
3007                  * for_each_runnable_thread() is safe against removal of
3008                  * the vcpu, and the vcore state is VCORE_EXITING here,
3009                  * so any vcpus becoming runnable will have their arch.trap
3010                  * set to zero and can't actually run in the guest.
3011                  */
3012                 spin_unlock(&vc->lock);
3013                 /* cancel pending dec exception if dec is positive */
3014                 if (now < vcpu->arch.dec_expires &&
3015                     kvmppc_core_pending_dec(vcpu))
3016                         kvmppc_core_dequeue_dec(vcpu);
3017
3018                 trace_kvm_guest_exit(vcpu);
3019
3020                 ret = RESUME_GUEST;
3021                 if (vcpu->arch.trap)
3022                         ret = kvmppc_handle_exit_hv(vcpu,
3023                                                     vcpu->arch.run_task);
3024
3025                 vcpu->arch.ret = ret;
3026                 vcpu->arch.trap = 0;
3027
3028                 spin_lock(&vc->lock);
3029                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3030                         if (vcpu->arch.pending_exceptions)
3031                                 kvmppc_core_prepare_to_enter(vcpu);
3032                         if (vcpu->arch.ceded)
3033                                 kvmppc_set_timer(vcpu);
3034                         else
3035                                 ++still_running;
3036                 } else {
3037                         kvmppc_remove_runnable(vc, vcpu);
3038                         wake_up(&vcpu->arch.cpu_run);
3039                 }
3040         }
3041         if (!is_master) {
3042                 if (still_running > 0) {
3043                         kvmppc_vcore_preempt(vc);
3044                 } else if (vc->runner) {
3045                         vc->vcore_state = VCORE_PREEMPT;
3046                         kvmppc_core_start_stolen(vc);
3047                 } else {
3048                         vc->vcore_state = VCORE_INACTIVE;
3049                 }
3050                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3051                         /* make sure there's a candidate runner awake */
3052                         i = -1;
3053                         vcpu = next_runnable_thread(vc, &i);
3054                         wake_up(&vcpu->arch.cpu_run);
3055                 }
3056         }
3057         spin_unlock(&vc->lock);
3058 }
3059
3060 /*
3061  * Clear core from the list of active host cores as we are about to
3062  * enter the guest. Only do this if it is the primary thread of the
3063  * core (not if a subcore) that is entering the guest.
3064  */
3065 static inline int kvmppc_clear_host_core(unsigned int cpu)
3066 {
3067         int core;
3068
3069         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3070                 return 0;
3071         /*
3072          * Memory barrier can be omitted here as we will do a smp_wmb()
3073          * later in kvmppc_start_thread and we need ensure that state is
3074          * visible to other CPUs only after we enter guest.
3075          */
3076         core = cpu >> threads_shift;
3077         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3078         return 0;
3079 }
3080
3081 /*
3082  * Advertise this core as an active host core since we exited the guest
3083  * Only need to do this if it is the primary thread of the core that is
3084  * exiting.
3085  */
3086 static inline int kvmppc_set_host_core(unsigned int cpu)
3087 {
3088         int core;
3089
3090         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3091                 return 0;
3092
3093         /*
3094          * Memory barrier can be omitted here because we do a spin_unlock
3095          * immediately after this which provides the memory barrier.
3096          */
3097         core = cpu >> threads_shift;
3098         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3099         return 0;
3100 }
3101
3102 static void set_irq_happened(int trap)
3103 {
3104         switch (trap) {
3105         case BOOK3S_INTERRUPT_EXTERNAL:
3106                 local_paca->irq_happened |= PACA_IRQ_EE;
3107                 break;
3108         case BOOK3S_INTERRUPT_H_DOORBELL:
3109                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3110                 break;
3111         case BOOK3S_INTERRUPT_HMI:
3112                 local_paca->irq_happened |= PACA_IRQ_HMI;
3113                 break;
3114         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3115                 replay_system_reset();
3116                 break;
3117         }
3118 }
3119
3120 /*
3121  * Run a set of guest threads on a physical core.
3122  * Called with vc->lock held.
3123  */
3124 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3125 {
3126         struct kvm_vcpu *vcpu;
3127         int i;
3128         int srcu_idx;
3129         struct core_info core_info;
3130         struct kvmppc_vcore *pvc;
3131         struct kvm_split_mode split_info, *sip;
3132         int split, subcore_size, active;
3133         int sub;
3134         bool thr0_done;
3135         unsigned long cmd_bit, stat_bit;
3136         int pcpu, thr;
3137         int target_threads;
3138         int controlled_threads;
3139         int trap;
3140         bool is_power8;
3141         bool hpt_on_radix;
3142
3143         /*
3144          * Remove from the list any threads that have a signal pending
3145          * or need a VPA update done
3146          */
3147         prepare_threads(vc);
3148
3149         /* if the runner is no longer runnable, let the caller pick a new one */
3150         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3151                 return;
3152
3153         /*
3154          * Initialize *vc.
3155          */
3156         init_vcore_to_run(vc);
3157         vc->preempt_tb = TB_NIL;
3158
3159         /*
3160          * Number of threads that we will be controlling: the same as
3161          * the number of threads per subcore, except on POWER9,
3162          * where it's 1 because the threads are (mostly) independent.
3163          */
3164         controlled_threads = threads_per_vcore(vc->kvm);
3165
3166         /*
3167          * Make sure we are running on primary threads, and that secondary
3168          * threads are offline.  Also check if the number of threads in this
3169          * guest are greater than the current system threads per guest.
3170          * On POWER9, we need to be not in independent-threads mode if
3171          * this is a HPT guest on a radix host machine where the
3172          * CPU threads may not be in different MMU modes.
3173          */
3174         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3175                 !kvm_is_radix(vc->kvm);
3176         if (((controlled_threads > 1) &&
3177              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3178             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3179                 for_each_runnable_thread(i, vcpu, vc) {
3180                         vcpu->arch.ret = -EBUSY;
3181                         kvmppc_remove_runnable(vc, vcpu);
3182                         wake_up(&vcpu->arch.cpu_run);
3183                 }
3184                 goto out;
3185         }
3186
3187         /*
3188          * See if we could run any other vcores on the physical core
3189          * along with this one.
3190          */
3191         init_core_info(&core_info, vc);
3192         pcpu = smp_processor_id();
3193         target_threads = controlled_threads;
3194         if (target_smt_mode && target_smt_mode < target_threads)
3195                 target_threads = target_smt_mode;
3196         if (vc->num_threads < target_threads)
3197                 collect_piggybacks(&core_info, target_threads);
3198
3199         /*
3200          * On radix, arrange for TLB flushing if necessary.
3201          * This has to be done before disabling interrupts since
3202          * it uses smp_call_function().
3203          */
3204         pcpu = smp_processor_id();
3205         if (kvm_is_radix(vc->kvm)) {
3206                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3207                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3208                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3209         }
3210
3211         /*
3212          * Hard-disable interrupts, and check resched flag and signals.
3213          * If we need to reschedule or deliver a signal, clean up
3214          * and return without going into the guest(s).
3215          * If the mmu_ready flag has been cleared, don't go into the
3216          * guest because that means a HPT resize operation is in progress.
3217          */
3218         local_irq_disable();
3219         hard_irq_disable();
3220         if (lazy_irq_pending() || need_resched() ||
3221             recheck_signals_and_mmu(&core_info)) {
3222                 local_irq_enable();
3223                 vc->vcore_state = VCORE_INACTIVE;
3224                 /* Unlock all except the primary vcore */
3225                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3226                         pvc = core_info.vc[sub];
3227                         /* Put back on to the preempted vcores list */
3228                         kvmppc_vcore_preempt(pvc);
3229                         spin_unlock(&pvc->lock);
3230                 }
3231                 for (i = 0; i < controlled_threads; ++i)
3232                         kvmppc_release_hwthread(pcpu + i);
3233                 return;
3234         }
3235
3236         kvmppc_clear_host_core(pcpu);
3237
3238         /* Decide on micro-threading (split-core) mode */
3239         subcore_size = threads_per_subcore;
3240         cmd_bit = stat_bit = 0;
3241         split = core_info.n_subcores;
3242         sip = NULL;
3243         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3244                 && !cpu_has_feature(CPU_FTR_ARCH_300);
3245
3246         if (split > 1 || hpt_on_radix) {
3247                 sip = &split_info;
3248                 memset(&split_info, 0, sizeof(split_info));
3249                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3250                         split_info.vc[sub] = core_info.vc[sub];
3251
3252                 if (is_power8) {
3253                         if (split == 2 && (dynamic_mt_modes & 2)) {
3254                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3255                                 stat_bit = HID0_POWER8_2LPARMODE;
3256                         } else {
3257                                 split = 4;
3258                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3259                                 stat_bit = HID0_POWER8_4LPARMODE;
3260                         }
3261                         subcore_size = MAX_SMT_THREADS / split;
3262                         split_info.rpr = mfspr(SPRN_RPR);
3263                         split_info.pmmar = mfspr(SPRN_PMMAR);
3264                         split_info.ldbar = mfspr(SPRN_LDBAR);
3265                         split_info.subcore_size = subcore_size;
3266                 } else {
3267                         split_info.subcore_size = 1;
3268                         if (hpt_on_radix) {
3269                                 /* Use the split_info for LPCR/LPIDR changes */
3270                                 split_info.lpcr_req = vc->lpcr;
3271                                 split_info.lpidr_req = vc->kvm->arch.lpid;
3272                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3273                                 split_info.do_set = 1;
3274                         }
3275                 }
3276
3277                 /* order writes to split_info before kvm_split_mode pointer */
3278                 smp_wmb();
3279         }
3280
3281         for (thr = 0; thr < controlled_threads; ++thr) {
3282                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3283
3284                 paca->kvm_hstate.tid = thr;
3285                 paca->kvm_hstate.napping = 0;
3286                 paca->kvm_hstate.kvm_split_mode = sip;
3287         }
3288
3289         /* Initiate micro-threading (split-core) on POWER8 if required */
3290         if (cmd_bit) {
3291                 unsigned long hid0 = mfspr(SPRN_HID0);
3292
3293                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3294                 mb();
3295                 mtspr(SPRN_HID0, hid0);
3296                 isync();
3297                 for (;;) {
3298                         hid0 = mfspr(SPRN_HID0);
3299                         if (hid0 & stat_bit)
3300                                 break;
3301                         cpu_relax();
3302                 }
3303         }
3304
3305         /*
3306          * On POWER8, set RWMR register.
3307          * Since it only affects PURR and SPURR, it doesn't affect
3308          * the host, so we don't save/restore the host value.
3309          */
3310         if (is_power8) {
3311                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3312                 int n_online = atomic_read(&vc->online_count);
3313
3314                 /*
3315                  * Use the 8-thread value if we're doing split-core
3316                  * or if the vcore's online count looks bogus.
3317                  */
3318                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3319                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3320                         rwmr_val = p8_rwmr_values[n_online];
3321                 mtspr(SPRN_RWMR, rwmr_val);
3322         }
3323
3324         /* Start all the threads */
3325         active = 0;
3326         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3327                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3328                 thr0_done = false;
3329                 active |= 1 << thr;
3330                 pvc = core_info.vc[sub];
3331                 pvc->pcpu = pcpu + thr;
3332                 for_each_runnable_thread(i, vcpu, pvc) {
3333                         kvmppc_start_thread(vcpu, pvc);
3334                         kvmppc_create_dtl_entry(vcpu, pvc);
3335                         trace_kvm_guest_enter(vcpu);
3336                         if (!vcpu->arch.ptid)
3337                                 thr0_done = true;
3338                         active |= 1 << (thr + vcpu->arch.ptid);
3339                 }
3340                 /*
3341                  * We need to start the first thread of each subcore
3342                  * even if it doesn't have a vcpu.
3343                  */
3344                 if (!thr0_done)
3345                         kvmppc_start_thread(NULL, pvc);
3346         }
3347
3348         /*
3349          * Ensure that split_info.do_nap is set after setting
3350          * the vcore pointer in the PACA of the secondaries.
3351          */
3352         smp_mb();
3353
3354         /*
3355          * When doing micro-threading, poke the inactive threads as well.
3356          * This gets them to the nap instruction after kvm_do_nap,
3357          * which reduces the time taken to unsplit later.
3358          * For POWER9 HPT guest on radix host, we need all the secondary
3359          * threads woken up so they can do the LPCR/LPIDR change.
3360          */
3361         if (cmd_bit || hpt_on_radix) {
3362                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3363                 for (thr = 1; thr < threads_per_subcore; ++thr)
3364                         if (!(active & (1 << thr)))
3365                                 kvmppc_ipi_thread(pcpu + thr);
3366         }
3367
3368         vc->vcore_state = VCORE_RUNNING;
3369         preempt_disable();
3370
3371         trace_kvmppc_run_core(vc, 0);
3372
3373         for (sub = 0; sub < core_info.n_subcores; ++sub)
3374                 spin_unlock(&core_info.vc[sub]->lock);
3375
3376         guest_enter_irqoff();
3377
3378         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3379
3380         this_cpu_disable_ftrace();
3381
3382         /*
3383          * Interrupts will be enabled once we get into the guest,
3384          * so tell lockdep that we're about to enable interrupts.
3385          */
3386         trace_hardirqs_on();
3387
3388         trap = __kvmppc_vcore_entry();
3389
3390         trace_hardirqs_off();
3391
3392         this_cpu_enable_ftrace();
3393
3394         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3395
3396         set_irq_happened(trap);
3397
3398         spin_lock(&vc->lock);
3399         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3400         vc->vcore_state = VCORE_EXITING;
3401
3402         /* wait for secondary threads to finish writing their state to memory */
3403         kvmppc_wait_for_nap(controlled_threads);
3404
3405         /* Return to whole-core mode if we split the core earlier */
3406         if (cmd_bit) {
3407                 unsigned long hid0 = mfspr(SPRN_HID0);
3408                 unsigned long loops = 0;
3409
3410                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3411                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3412                 mb();
3413                 mtspr(SPRN_HID0, hid0);
3414                 isync();
3415                 for (;;) {
3416                         hid0 = mfspr(SPRN_HID0);
3417                         if (!(hid0 & stat_bit))
3418                                 break;
3419                         cpu_relax();
3420                         ++loops;
3421                 }
3422         } else if (hpt_on_radix) {
3423                 /* Wait for all threads to have seen final sync */
3424                 for (thr = 1; thr < controlled_threads; ++thr) {
3425                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3426
3427                         while (paca->kvm_hstate.kvm_split_mode) {
3428                                 HMT_low();
3429                                 barrier();
3430                         }
3431                         HMT_medium();
3432                 }
3433         }
3434         split_info.do_nap = 0;
3435
3436         kvmppc_set_host_core(pcpu);
3437
3438         local_irq_enable();
3439         guest_exit();
3440
3441         /* Let secondaries go back to the offline loop */
3442         for (i = 0; i < controlled_threads; ++i) {
3443                 kvmppc_release_hwthread(pcpu + i);
3444                 if (sip && sip->napped[i])
3445                         kvmppc_ipi_thread(pcpu + i);
3446                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3447         }
3448
3449         spin_unlock(&vc->lock);
3450
3451         /* make sure updates to secondary vcpu structs are visible now */
3452         smp_mb();
3453
3454         preempt_enable();
3455
3456         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3457                 pvc = core_info.vc[sub];
3458                 post_guest_process(pvc, pvc == vc);
3459         }
3460
3461         spin_lock(&vc->lock);
3462
3463  out:
3464         vc->vcore_state = VCORE_INACTIVE;
3465         trace_kvmppc_run_core(vc, 1);
3466 }
3467
3468 /*
3469  * Load up hypervisor-mode registers on P9.
3470  */
3471 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3472                                      unsigned long lpcr)
3473 {
3474         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3475         s64 hdec;
3476         u64 tb, purr, spurr;
3477         int trap;
3478         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3479         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3480         unsigned long host_dawr0 = mfspr(SPRN_DAWR0);
3481         unsigned long host_dawrx0 = mfspr(SPRN_DAWRX0);
3482         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3483         unsigned long host_pidr = mfspr(SPRN_PID);
3484         unsigned long host_dawr1 = 0;
3485         unsigned long host_dawrx1 = 0;
3486
3487         if (cpu_has_feature(CPU_FTR_DAWR1)) {
3488                 host_dawr1 = mfspr(SPRN_DAWR1);
3489                 host_dawrx1 = mfspr(SPRN_DAWRX1);
3490         }
3491
3492         /*
3493          * P8 and P9 suppress the HDEC exception when LPCR[HDICE] = 0,
3494          * so set HDICE before writing HDEC.
3495          */
3496         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr | LPCR_HDICE);
3497         isync();
3498
3499         hdec = time_limit - mftb();
3500         if (hdec < 0) {
3501                 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3502                 isync();
3503                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3504         }
3505         mtspr(SPRN_HDEC, hdec);
3506
3507         if (vc->tb_offset) {
3508                 u64 new_tb = mftb() + vc->tb_offset;
3509                 mtspr(SPRN_TBU40, new_tb);
3510                 tb = mftb();
3511                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3512                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3513                 vc->tb_offset_applied = vc->tb_offset;
3514         }
3515
3516         if (vc->pcr)
3517                 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3518         mtspr(SPRN_DPDES, vc->dpdes);
3519         mtspr(SPRN_VTB, vc->vtb);
3520
3521         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3522         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3523         mtspr(SPRN_PURR, vcpu->arch.purr);
3524         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3525
3526         if (dawr_enabled()) {
3527                 mtspr(SPRN_DAWR0, vcpu->arch.dawr0);
3528                 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0);
3529                 if (cpu_has_feature(CPU_FTR_DAWR1)) {
3530                         mtspr(SPRN_DAWR1, vcpu->arch.dawr1);
3531                         mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1);
3532                 }
3533         }
3534         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3535         mtspr(SPRN_IC, vcpu->arch.ic);
3536         mtspr(SPRN_PID, vcpu->arch.pid);
3537
3538         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3539               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3540
3541         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3542
3543         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3544         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3545         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3546         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3547
3548         mtspr(SPRN_AMOR, ~0UL);
3549
3550         mtspr(SPRN_LPCR, lpcr);
3551         isync();
3552
3553         kvmppc_xive_push_vcpu(vcpu);
3554
3555         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3556         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3557
3558         trap = __kvmhv_vcpu_entry_p9(vcpu);
3559
3560         /* Advance host PURR/SPURR by the amount used by guest */
3561         purr = mfspr(SPRN_PURR);
3562         spurr = mfspr(SPRN_SPURR);
3563         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3564               purr - vcpu->arch.purr);
3565         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3566               spurr - vcpu->arch.spurr);
3567         vcpu->arch.purr = purr;
3568         vcpu->arch.spurr = spurr;
3569
3570         vcpu->arch.ic = mfspr(SPRN_IC);
3571         vcpu->arch.pid = mfspr(SPRN_PID);
3572         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3573
3574         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3575         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3576         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3577         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3578
3579         /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3580         mtspr(SPRN_PSSCR, host_psscr |
3581               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3582         mtspr(SPRN_HFSCR, host_hfscr);
3583         mtspr(SPRN_CIABR, host_ciabr);
3584         mtspr(SPRN_DAWR0, host_dawr0);
3585         mtspr(SPRN_DAWRX0, host_dawrx0);
3586         if (cpu_has_feature(CPU_FTR_DAWR1)) {
3587                 mtspr(SPRN_DAWR1, host_dawr1);
3588                 mtspr(SPRN_DAWRX1, host_dawrx1);
3589         }
3590         mtspr(SPRN_PID, host_pidr);
3591
3592         /*
3593          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3594          * case we interrupted the guest between a tlbie and a ptesync.
3595          */
3596         asm volatile("eieio; tlbsync; ptesync");
3597
3598         /*
3599          * cp_abort is required if the processor supports local copy-paste
3600          * to clear the copy buffer that was under control of the guest.
3601          */
3602         if (cpu_has_feature(CPU_FTR_ARCH_31))
3603                 asm volatile(PPC_CP_ABORT);
3604
3605         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3606         isync();
3607
3608         vc->dpdes = mfspr(SPRN_DPDES);
3609         vc->vtb = mfspr(SPRN_VTB);
3610         mtspr(SPRN_DPDES, 0);
3611         if (vc->pcr)
3612                 mtspr(SPRN_PCR, PCR_MASK);
3613
3614         if (vc->tb_offset_applied) {
3615                 u64 new_tb = mftb() - vc->tb_offset_applied;
3616                 mtspr(SPRN_TBU40, new_tb);
3617                 tb = mftb();
3618                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3619                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3620                 vc->tb_offset_applied = 0;
3621         }
3622
3623         mtspr(SPRN_HDEC, 0x7fffffff);
3624         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3625
3626         return trap;
3627 }
3628
3629 /*
3630  * Virtual-mode guest entry for POWER9 and later when the host and
3631  * guest are both using the radix MMU.  The LPIDR has already been set.
3632  */
3633 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3634                          unsigned long lpcr)
3635 {
3636         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3637         unsigned long host_dscr = mfspr(SPRN_DSCR);
3638         unsigned long host_tidr = mfspr(SPRN_TIDR);
3639         unsigned long host_iamr = mfspr(SPRN_IAMR);
3640         unsigned long host_amr = mfspr(SPRN_AMR);
3641         s64 dec;
3642         u64 tb;
3643         int trap, save_pmu;
3644
3645         dec = mfspr(SPRN_DEC);
3646         tb = mftb();
3647         if (dec < 0)
3648                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3649         local_paca->kvm_hstate.dec_expires = dec + tb;
3650         if (local_paca->kvm_hstate.dec_expires < time_limit)
3651                 time_limit = local_paca->kvm_hstate.dec_expires;
3652
3653         vcpu->arch.ceded = 0;
3654
3655         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3656
3657         kvmppc_subcore_enter_guest();
3658
3659         vc->entry_exit_map = 1;
3660         vc->in_guest = 1;
3661
3662         if (vcpu->arch.vpa.pinned_addr) {
3663                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3664                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3665                 lp->yield_count = cpu_to_be32(yield_count);
3666                 vcpu->arch.vpa.dirty = 1;
3667         }
3668
3669         if (cpu_has_feature(CPU_FTR_TM) ||
3670             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3671                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3672
3673         kvmhv_load_guest_pmu(vcpu);
3674
3675         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3676         load_fp_state(&vcpu->arch.fp);
3677 #ifdef CONFIG_ALTIVEC
3678         load_vr_state(&vcpu->arch.vr);
3679 #endif
3680         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3681
3682         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3683         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3684         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3685         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3686         mtspr(SPRN_TAR, vcpu->arch.tar);
3687         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3688         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3689         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3690         mtspr(SPRN_WORT, vcpu->arch.wort);
3691         mtspr(SPRN_TIDR, vcpu->arch.tid);
3692         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3693         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3694         mtspr(SPRN_AMR, vcpu->arch.amr);
3695         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3696
3697         if (!(vcpu->arch.ctrl & 1))
3698                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3699
3700         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3701
3702         if (kvmhv_on_pseries()) {
3703                 /*
3704                  * We need to save and restore the guest visible part of the
3705                  * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3706                  * doesn't do this for us. Note only required if pseries since
3707                  * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3708                  */
3709                 unsigned long host_psscr;
3710                 /* call our hypervisor to load up HV regs and go */
3711                 struct hv_guest_state hvregs;
3712
3713                 host_psscr = mfspr(SPRN_PSSCR_PR);
3714                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3715                 kvmhv_save_hv_regs(vcpu, &hvregs);
3716                 hvregs.lpcr = lpcr;
3717                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3718                 hvregs.version = HV_GUEST_STATE_VERSION;
3719                 if (vcpu->arch.nested) {
3720                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3721                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3722                 } else {
3723                         hvregs.lpid = vcpu->kvm->arch.lpid;
3724                         hvregs.vcpu_token = vcpu->vcpu_id;
3725                 }
3726                 hvregs.hdec_expiry = time_limit;
3727                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3728                                           __pa(&vcpu->arch.regs));
3729                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3730                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3731                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3732                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3733                 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3734                 mtspr(SPRN_PSSCR_PR, host_psscr);
3735
3736                 /* H_CEDE has to be handled now, not later */
3737                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3738                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3739                         kvmppc_nested_cede(vcpu);
3740                         kvmppc_set_gpr(vcpu, 3, 0);
3741                         trap = 0;
3742                 }
3743         } else {
3744                 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3745         }
3746
3747         vcpu->arch.slb_max = 0;
3748         dec = mfspr(SPRN_DEC);
3749         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3750                 dec = (s32) dec;
3751         tb = mftb();
3752         vcpu->arch.dec_expires = dec + tb;
3753         vcpu->cpu = -1;
3754         vcpu->arch.thread_cpu = -1;
3755         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3756
3757         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3758         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3759         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3760         vcpu->arch.tar = mfspr(SPRN_TAR);
3761         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3762         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3763         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3764         vcpu->arch.wort = mfspr(SPRN_WORT);
3765         vcpu->arch.tid = mfspr(SPRN_TIDR);
3766         vcpu->arch.amr = mfspr(SPRN_AMR);
3767         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3768         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3769
3770         mtspr(SPRN_PSPB, 0);
3771         mtspr(SPRN_WORT, 0);
3772         mtspr(SPRN_UAMOR, 0);
3773         mtspr(SPRN_DSCR, host_dscr);
3774         mtspr(SPRN_TIDR, host_tidr);
3775         mtspr(SPRN_IAMR, host_iamr);
3776         mtspr(SPRN_PSPB, 0);
3777
3778         if (host_amr != vcpu->arch.amr)
3779                 mtspr(SPRN_AMR, host_amr);
3780
3781         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3782         store_fp_state(&vcpu->arch.fp);
3783 #ifdef CONFIG_ALTIVEC
3784         store_vr_state(&vcpu->arch.vr);
3785 #endif
3786         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3787
3788         if (cpu_has_feature(CPU_FTR_TM) ||
3789             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3790                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3791
3792         save_pmu = 1;
3793         if (vcpu->arch.vpa.pinned_addr) {
3794                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3795                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3796                 lp->yield_count = cpu_to_be32(yield_count);
3797                 vcpu->arch.vpa.dirty = 1;
3798                 save_pmu = lp->pmcregs_in_use;
3799         }
3800         /* Must save pmu if this guest is capable of running nested guests */
3801         save_pmu |= nesting_enabled(vcpu->kvm);
3802
3803         kvmhv_save_guest_pmu(vcpu, save_pmu);
3804
3805         vc->entry_exit_map = 0x101;
3806         vc->in_guest = 0;
3807
3808         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3809         mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3810
3811         kvmhv_load_host_pmu();
3812
3813         kvmppc_subcore_exit_guest();
3814
3815         return trap;
3816 }
3817
3818 /*
3819  * Wait for some other vcpu thread to execute us, and
3820  * wake us up when we need to handle something in the host.
3821  */
3822 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3823                                  struct kvm_vcpu *vcpu, int wait_state)
3824 {
3825         DEFINE_WAIT(wait);
3826
3827         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3828         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3829                 spin_unlock(&vc->lock);
3830                 schedule();
3831                 spin_lock(&vc->lock);
3832         }
3833         finish_wait(&vcpu->arch.cpu_run, &wait);
3834 }
3835
3836 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3837 {
3838         if (!halt_poll_ns_grow)
3839                 return;
3840
3841         vc->halt_poll_ns *= halt_poll_ns_grow;
3842         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3843                 vc->halt_poll_ns = halt_poll_ns_grow_start;
3844 }
3845
3846 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3847 {
3848         if (halt_poll_ns_shrink == 0)
3849                 vc->halt_poll_ns = 0;
3850         else
3851                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3852 }
3853
3854 #ifdef CONFIG_KVM_XICS
3855 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3856 {
3857         if (!xics_on_xive())
3858                 return false;
3859         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3860                 vcpu->arch.xive_saved_state.cppr;
3861 }
3862 #else
3863 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3864 {
3865         return false;
3866 }
3867 #endif /* CONFIG_KVM_XICS */
3868
3869 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3870 {
3871         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3872             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3873                 return true;
3874
3875         return false;
3876 }
3877
3878 /*
3879  * Check to see if any of the runnable vcpus on the vcore have pending
3880  * exceptions or are no longer ceded
3881  */
3882 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3883 {
3884         struct kvm_vcpu *vcpu;
3885         int i;
3886
3887         for_each_runnable_thread(i, vcpu, vc) {
3888                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3889                         return 1;
3890         }
3891
3892         return 0;
3893 }
3894
3895 /*
3896  * All the vcpus in this vcore are idle, so wait for a decrementer
3897  * or external interrupt to one of the vcpus.  vc->lock is held.
3898  */
3899 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3900 {
3901         ktime_t cur, start_poll, start_wait;
3902         int do_sleep = 1;
3903         u64 block_ns;
3904
3905         /* Poll for pending exceptions and ceded state */
3906         cur = start_poll = ktime_get();
3907         if (vc->halt_poll_ns) {
3908                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3909                 ++vc->runner->stat.halt_attempted_poll;
3910
3911                 vc->vcore_state = VCORE_POLLING;
3912                 spin_unlock(&vc->lock);
3913
3914                 do {
3915                         if (kvmppc_vcore_check_block(vc)) {
3916                                 do_sleep = 0;
3917                                 break;
3918                         }
3919                         cur = ktime_get();
3920                 } while (single_task_running() && ktime_before(cur, stop));
3921
3922                 spin_lock(&vc->lock);
3923                 vc->vcore_state = VCORE_INACTIVE;
3924
3925                 if (!do_sleep) {
3926                         ++vc->runner->stat.halt_successful_poll;
3927                         goto out;
3928                 }
3929         }
3930
3931         prepare_to_rcuwait(&vc->wait);
3932         set_current_state(TASK_INTERRUPTIBLE);
3933         if (kvmppc_vcore_check_block(vc)) {
3934                 finish_rcuwait(&vc->wait);
3935                 do_sleep = 0;
3936                 /* If we polled, count this as a successful poll */
3937                 if (vc->halt_poll_ns)
3938                         ++vc->runner->stat.halt_successful_poll;
3939                 goto out;
3940         }
3941
3942         start_wait = ktime_get();
3943
3944         vc->vcore_state = VCORE_SLEEPING;
3945         trace_kvmppc_vcore_blocked(vc, 0);
3946         spin_unlock(&vc->lock);
3947         schedule();
3948         finish_rcuwait(&vc->wait);
3949         spin_lock(&vc->lock);
3950         vc->vcore_state = VCORE_INACTIVE;
3951         trace_kvmppc_vcore_blocked(vc, 1);
3952         ++vc->runner->stat.halt_successful_wait;
3953
3954         cur = ktime_get();
3955
3956 out:
3957         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3958
3959         /* Attribute wait time */
3960         if (do_sleep) {
3961                 vc->runner->stat.halt_wait_ns +=
3962                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3963                 /* Attribute failed poll time */
3964                 if (vc->halt_poll_ns)
3965                         vc->runner->stat.halt_poll_fail_ns +=
3966                                 ktime_to_ns(start_wait) -
3967                                 ktime_to_ns(start_poll);
3968         } else {
3969                 /* Attribute successful poll time */
3970                 if (vc->halt_poll_ns)
3971                         vc->runner->stat.halt_poll_success_ns +=
3972                                 ktime_to_ns(cur) -
3973                                 ktime_to_ns(start_poll);
3974         }
3975
3976         /* Adjust poll time */
3977         if (halt_poll_ns) {
3978                 if (block_ns <= vc->halt_poll_ns)
3979                         ;
3980                 /* We slept and blocked for longer than the max halt time */
3981                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3982                         shrink_halt_poll_ns(vc);
3983                 /* We slept and our poll time is too small */
3984                 else if (vc->halt_poll_ns < halt_poll_ns &&
3985                                 block_ns < halt_poll_ns)
3986                         grow_halt_poll_ns(vc);
3987                 if (vc->halt_poll_ns > halt_poll_ns)
3988                         vc->halt_poll_ns = halt_poll_ns;
3989         } else
3990                 vc->halt_poll_ns = 0;
3991
3992         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3993 }
3994
3995 /*
3996  * This never fails for a radix guest, as none of the operations it does
3997  * for a radix guest can fail or have a way to report failure.
3998  * kvmhv_run_single_vcpu() relies on this fact.
3999  */
4000 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4001 {
4002         int r = 0;
4003         struct kvm *kvm = vcpu->kvm;
4004
4005         mutex_lock(&kvm->arch.mmu_setup_lock);
4006         if (!kvm->arch.mmu_ready) {
4007                 if (!kvm_is_radix(kvm))
4008                         r = kvmppc_hv_setup_htab_rma(vcpu);
4009                 if (!r) {
4010                         if (cpu_has_feature(CPU_FTR_ARCH_300))
4011                                 kvmppc_setup_partition_table(kvm);
4012                         kvm->arch.mmu_ready = 1;
4013                 }
4014         }
4015         mutex_unlock(&kvm->arch.mmu_setup_lock);
4016         return r;
4017 }
4018
4019 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4020 {
4021         struct kvm_run *run = vcpu->run;
4022         int n_ceded, i, r;
4023         struct kvmppc_vcore *vc;
4024         struct kvm_vcpu *v;
4025
4026         trace_kvmppc_run_vcpu_enter(vcpu);
4027
4028         run->exit_reason = 0;
4029         vcpu->arch.ret = RESUME_GUEST;
4030         vcpu->arch.trap = 0;
4031         kvmppc_update_vpas(vcpu);
4032
4033         /*
4034          * Synchronize with other threads in this virtual core
4035          */
4036         vc = vcpu->arch.vcore;
4037         spin_lock(&vc->lock);
4038         vcpu->arch.ceded = 0;
4039         vcpu->arch.run_task = current;
4040         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4041         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4042         vcpu->arch.busy_preempt = TB_NIL;
4043         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4044         ++vc->n_runnable;
4045
4046         /*
4047          * This happens the first time this is called for a vcpu.
4048          * If the vcore is already running, we may be able to start
4049          * this thread straight away and have it join in.
4050          */
4051         if (!signal_pending(current)) {
4052                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4053                      vc->vcore_state == VCORE_RUNNING) &&
4054                            !VCORE_IS_EXITING(vc)) {
4055                         kvmppc_create_dtl_entry(vcpu, vc);
4056                         kvmppc_start_thread(vcpu, vc);
4057                         trace_kvm_guest_enter(vcpu);
4058                 } else if (vc->vcore_state == VCORE_SLEEPING) {
4059                         rcuwait_wake_up(&vc->wait);
4060                 }
4061
4062         }
4063
4064         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4065                !signal_pending(current)) {
4066                 /* See if the MMU is ready to go */
4067                 if (!vcpu->kvm->arch.mmu_ready) {
4068                         spin_unlock(&vc->lock);
4069                         r = kvmhv_setup_mmu(vcpu);
4070                         spin_lock(&vc->lock);
4071                         if (r) {
4072                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4073                                 run->fail_entry.
4074                                         hardware_entry_failure_reason = 0;
4075                                 vcpu->arch.ret = r;
4076                                 break;
4077                         }
4078                 }
4079
4080                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4081                         kvmppc_vcore_end_preempt(vc);
4082
4083                 if (vc->vcore_state != VCORE_INACTIVE) {
4084                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4085                         continue;
4086                 }
4087                 for_each_runnable_thread(i, v, vc) {
4088                         kvmppc_core_prepare_to_enter(v);
4089                         if (signal_pending(v->arch.run_task)) {
4090                                 kvmppc_remove_runnable(vc, v);
4091                                 v->stat.signal_exits++;
4092                                 v->run->exit_reason = KVM_EXIT_INTR;
4093                                 v->arch.ret = -EINTR;
4094                                 wake_up(&v->arch.cpu_run);
4095                         }
4096                 }
4097                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4098                         break;
4099                 n_ceded = 0;
4100                 for_each_runnable_thread(i, v, vc) {
4101                         if (!kvmppc_vcpu_woken(v))
4102                                 n_ceded += v->arch.ceded;
4103                         else
4104                                 v->arch.ceded = 0;
4105                 }
4106                 vc->runner = vcpu;
4107                 if (n_ceded == vc->n_runnable) {
4108                         kvmppc_vcore_blocked(vc);
4109                 } else if (need_resched()) {
4110                         kvmppc_vcore_preempt(vc);
4111                         /* Let something else run */
4112                         cond_resched_lock(&vc->lock);
4113                         if (vc->vcore_state == VCORE_PREEMPT)
4114                                 kvmppc_vcore_end_preempt(vc);
4115                 } else {
4116                         kvmppc_run_core(vc);
4117                 }
4118                 vc->runner = NULL;
4119         }
4120
4121         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4122                (vc->vcore_state == VCORE_RUNNING ||
4123                 vc->vcore_state == VCORE_EXITING ||
4124                 vc->vcore_state == VCORE_PIGGYBACK))
4125                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4126
4127         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4128                 kvmppc_vcore_end_preempt(vc);
4129
4130         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4131                 kvmppc_remove_runnable(vc, vcpu);
4132                 vcpu->stat.signal_exits++;
4133                 run->exit_reason = KVM_EXIT_INTR;
4134                 vcpu->arch.ret = -EINTR;
4135         }
4136
4137         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4138                 /* Wake up some vcpu to run the core */
4139                 i = -1;
4140                 v = next_runnable_thread(vc, &i);
4141                 wake_up(&v->arch.cpu_run);
4142         }
4143
4144         trace_kvmppc_run_vcpu_exit(vcpu);
4145         spin_unlock(&vc->lock);
4146         return vcpu->arch.ret;
4147 }
4148
4149 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4150                           unsigned long lpcr)
4151 {
4152         struct kvm_run *run = vcpu->run;
4153         int trap, r, pcpu;
4154         int srcu_idx, lpid;
4155         struct kvmppc_vcore *vc;
4156         struct kvm *kvm = vcpu->kvm;
4157         struct kvm_nested_guest *nested = vcpu->arch.nested;
4158
4159         trace_kvmppc_run_vcpu_enter(vcpu);
4160
4161         run->exit_reason = 0;
4162         vcpu->arch.ret = RESUME_GUEST;
4163         vcpu->arch.trap = 0;
4164
4165         vc = vcpu->arch.vcore;
4166         vcpu->arch.ceded = 0;
4167         vcpu->arch.run_task = current;
4168         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4169         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4170         vcpu->arch.busy_preempt = TB_NIL;
4171         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4172         vc->runnable_threads[0] = vcpu;
4173         vc->n_runnable = 1;
4174         vc->runner = vcpu;
4175
4176         /* See if the MMU is ready to go */
4177         if (!kvm->arch.mmu_ready)
4178                 kvmhv_setup_mmu(vcpu);
4179
4180         if (need_resched())
4181                 cond_resched();
4182
4183         kvmppc_update_vpas(vcpu);
4184
4185         init_vcore_to_run(vc);
4186         vc->preempt_tb = TB_NIL;
4187
4188         preempt_disable();
4189         pcpu = smp_processor_id();
4190         vc->pcpu = pcpu;
4191         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4192
4193         local_irq_disable();
4194         hard_irq_disable();
4195         if (signal_pending(current))
4196                 goto sigpend;
4197         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4198                 goto out;
4199
4200         if (!nested) {
4201                 kvmppc_core_prepare_to_enter(vcpu);
4202                 if (vcpu->arch.doorbell_request) {
4203                         vc->dpdes = 1;
4204                         smp_wmb();
4205                         vcpu->arch.doorbell_request = 0;
4206                 }
4207                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4208                              &vcpu->arch.pending_exceptions))
4209                         lpcr |= LPCR_MER;
4210         } else if (vcpu->arch.pending_exceptions ||
4211                    vcpu->arch.doorbell_request ||
4212                    xive_interrupt_pending(vcpu)) {
4213                 vcpu->arch.ret = RESUME_HOST;
4214                 goto out;
4215         }
4216
4217         kvmppc_clear_host_core(pcpu);
4218
4219         local_paca->kvm_hstate.tid = 0;
4220         local_paca->kvm_hstate.napping = 0;
4221         local_paca->kvm_hstate.kvm_split_mode = NULL;
4222         kvmppc_start_thread(vcpu, vc);
4223         kvmppc_create_dtl_entry(vcpu, vc);
4224         trace_kvm_guest_enter(vcpu);
4225
4226         vc->vcore_state = VCORE_RUNNING;
4227         trace_kvmppc_run_core(vc, 0);
4228
4229         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4230                 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4231                 mtspr(SPRN_LPID, lpid);
4232                 isync();
4233                 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4234         }
4235
4236         guest_enter_irqoff();
4237
4238         srcu_idx = srcu_read_lock(&kvm->srcu);
4239
4240         this_cpu_disable_ftrace();
4241
4242         /* Tell lockdep that we're about to enable interrupts */
4243         trace_hardirqs_on();
4244
4245         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4246         vcpu->arch.trap = trap;
4247
4248         trace_hardirqs_off();
4249
4250         this_cpu_enable_ftrace();
4251
4252         srcu_read_unlock(&kvm->srcu, srcu_idx);
4253
4254         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4255                 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4256                 isync();
4257         }
4258
4259         set_irq_happened(trap);
4260
4261         kvmppc_set_host_core(pcpu);
4262
4263         local_irq_enable();
4264         guest_exit();
4265
4266         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4267
4268         preempt_enable();
4269
4270         /*
4271          * cancel pending decrementer exception if DEC is now positive, or if
4272          * entering a nested guest in which case the decrementer is now owned
4273          * by L2 and the L1 decrementer is provided in hdec_expires
4274          */
4275         if (kvmppc_core_pending_dec(vcpu) &&
4276                         ((get_tb() < vcpu->arch.dec_expires) ||
4277                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4278                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4279                 kvmppc_core_dequeue_dec(vcpu);
4280
4281         trace_kvm_guest_exit(vcpu);
4282         r = RESUME_GUEST;
4283         if (trap) {
4284                 if (!nested)
4285                         r = kvmppc_handle_exit_hv(vcpu, current);
4286                 else
4287                         r = kvmppc_handle_nested_exit(vcpu);
4288         }
4289         vcpu->arch.ret = r;
4290
4291         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4292             !kvmppc_vcpu_woken(vcpu)) {
4293                 kvmppc_set_timer(vcpu);
4294                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4295                         if (signal_pending(current)) {
4296                                 vcpu->stat.signal_exits++;
4297                                 run->exit_reason = KVM_EXIT_INTR;
4298                                 vcpu->arch.ret = -EINTR;
4299                                 break;
4300                         }
4301                         spin_lock(&vc->lock);
4302                         kvmppc_vcore_blocked(vc);
4303                         spin_unlock(&vc->lock);
4304                 }
4305         }
4306         vcpu->arch.ceded = 0;
4307
4308         vc->vcore_state = VCORE_INACTIVE;
4309         trace_kvmppc_run_core(vc, 1);
4310
4311  done:
4312         kvmppc_remove_runnable(vc, vcpu);
4313         trace_kvmppc_run_vcpu_exit(vcpu);
4314
4315         return vcpu->arch.ret;
4316
4317  sigpend:
4318         vcpu->stat.signal_exits++;
4319         run->exit_reason = KVM_EXIT_INTR;
4320         vcpu->arch.ret = -EINTR;
4321  out:
4322         local_irq_enable();
4323         preempt_enable();
4324         goto done;
4325 }
4326
4327 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4328 {
4329         struct kvm_run *run = vcpu->run;
4330         int r;
4331         int srcu_idx;
4332         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4333         unsigned long user_tar = 0;
4334         unsigned int user_vrsave;
4335         struct kvm *kvm;
4336
4337         if (!vcpu->arch.sane) {
4338                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4339                 return -EINVAL;
4340         }
4341
4342         /*
4343          * Don't allow entry with a suspended transaction, because
4344          * the guest entry/exit code will lose it.
4345          * If the guest has TM enabled, save away their TM-related SPRs
4346          * (they will get restored by the TM unavailable interrupt).
4347          */
4348 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4349         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4350             (current->thread.regs->msr & MSR_TM)) {
4351                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4352                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4353                         run->fail_entry.hardware_entry_failure_reason = 0;
4354                         return -EINVAL;
4355                 }
4356                 /* Enable TM so we can read the TM SPRs */
4357                 mtmsr(mfmsr() | MSR_TM);
4358                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4359                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4360                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4361                 current->thread.regs->msr &= ~MSR_TM;
4362         }
4363 #endif
4364
4365         /*
4366          * Force online to 1 for the sake of old userspace which doesn't
4367          * set it.
4368          */
4369         if (!vcpu->arch.online) {
4370                 atomic_inc(&vcpu->arch.vcore->online_count);
4371                 vcpu->arch.online = 1;
4372         }
4373
4374         kvmppc_core_prepare_to_enter(vcpu);
4375
4376         /* No need to go into the guest when all we'll do is come back out */
4377         if (signal_pending(current)) {
4378                 run->exit_reason = KVM_EXIT_INTR;
4379                 return -EINTR;
4380         }
4381
4382         kvm = vcpu->kvm;
4383         atomic_inc(&kvm->arch.vcpus_running);
4384         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4385         smp_mb();
4386
4387         flush_all_to_thread(current);
4388
4389         /* Save userspace EBB and other register values */
4390         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4391                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4392                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4393                 ebb_regs[2] = mfspr(SPRN_BESCR);
4394                 user_tar = mfspr(SPRN_TAR);
4395         }
4396         user_vrsave = mfspr(SPRN_VRSAVE);
4397
4398         vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4399         vcpu->arch.pgdir = kvm->mm->pgd;
4400         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4401
4402         do {
4403                 /*
4404                  * The early POWER9 chips that can't mix radix and HPT threads
4405                  * on the same core also need the workaround for the problem
4406                  * where the TLB would prefetch entries in the guest exit path
4407                  * for radix guests using the guest PIDR value and LPID 0.
4408                  * The workaround is in the old path (kvmppc_run_vcpu())
4409                  * but not the new path (kvmhv_run_single_vcpu()).
4410                  */
4411                 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4412                     !no_mixing_hpt_and_radix)
4413                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4414                                                   vcpu->arch.vcore->lpcr);
4415                 else
4416                         r = kvmppc_run_vcpu(vcpu);
4417
4418                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4419                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4420                         trace_kvm_hcall_enter(vcpu);
4421                         r = kvmppc_pseries_do_hcall(vcpu);
4422                         trace_kvm_hcall_exit(vcpu, r);
4423                         kvmppc_core_prepare_to_enter(vcpu);
4424                 } else if (r == RESUME_PAGE_FAULT) {
4425                         srcu_idx = srcu_read_lock(&kvm->srcu);
4426                         r = kvmppc_book3s_hv_page_fault(vcpu,
4427                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4428                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4429                 } else if (r == RESUME_PASSTHROUGH) {
4430                         if (WARN_ON(xics_on_xive()))
4431                                 r = H_SUCCESS;
4432                         else
4433                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4434                 }
4435         } while (is_kvmppc_resume_guest(r));
4436
4437         /* Restore userspace EBB and other register values */
4438         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4439                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4440                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4441                 mtspr(SPRN_BESCR, ebb_regs[2]);
4442                 mtspr(SPRN_TAR, user_tar);
4443                 mtspr(SPRN_FSCR, current->thread.fscr);
4444         }
4445         mtspr(SPRN_VRSAVE, user_vrsave);
4446
4447         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4448         atomic_dec(&kvm->arch.vcpus_running);
4449         return r;
4450 }
4451
4452 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4453                                      int shift, int sllp)
4454 {
4455         (*sps)->page_shift = shift;
4456         (*sps)->slb_enc = sllp;
4457         (*sps)->enc[0].page_shift = shift;
4458         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4459         /*
4460          * Add 16MB MPSS support (may get filtered out by userspace)
4461          */
4462         if (shift != 24) {
4463                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4464                 if (penc != -1) {
4465                         (*sps)->enc[1].page_shift = 24;
4466                         (*sps)->enc[1].pte_enc = penc;
4467                 }
4468         }
4469         (*sps)++;
4470 }
4471
4472 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4473                                          struct kvm_ppc_smmu_info *info)
4474 {
4475         struct kvm_ppc_one_seg_page_size *sps;
4476
4477         /*
4478          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4479          * POWER7 doesn't support keys for instruction accesses,
4480          * POWER8 and POWER9 do.
4481          */
4482         info->data_keys = 32;
4483         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4484
4485         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4486         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4487         info->slb_size = 32;
4488
4489         /* We only support these sizes for now, and no muti-size segments */
4490         sps = &info->sps[0];
4491         kvmppc_add_seg_page_size(&sps, 12, 0);
4492         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4493         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4494
4495         /* If running as a nested hypervisor, we don't support HPT guests */
4496         if (kvmhv_on_pseries())
4497                 info->flags |= KVM_PPC_NO_HASH;
4498
4499         return 0;
4500 }
4501
4502 /*
4503  * Get (and clear) the dirty memory log for a memory slot.
4504  */
4505 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4506                                          struct kvm_dirty_log *log)
4507 {
4508         struct kvm_memslots *slots;
4509         struct kvm_memory_slot *memslot;
4510         int i, r;
4511         unsigned long n;
4512         unsigned long *buf, *p;
4513         struct kvm_vcpu *vcpu;
4514
4515         mutex_lock(&kvm->slots_lock);
4516
4517         r = -EINVAL;
4518         if (log->slot >= KVM_USER_MEM_SLOTS)
4519                 goto out;
4520
4521         slots = kvm_memslots(kvm);
4522         memslot = id_to_memslot(slots, log->slot);
4523         r = -ENOENT;
4524         if (!memslot || !memslot->dirty_bitmap)
4525                 goto out;
4526
4527         /*
4528          * Use second half of bitmap area because both HPT and radix
4529          * accumulate bits in the first half.
4530          */
4531         n = kvm_dirty_bitmap_bytes(memslot);
4532         buf = memslot->dirty_bitmap + n / sizeof(long);
4533         memset(buf, 0, n);
4534
4535         if (kvm_is_radix(kvm))
4536                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4537         else
4538                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4539         if (r)
4540                 goto out;
4541
4542         /*
4543          * We accumulate dirty bits in the first half of the
4544          * memslot's dirty_bitmap area, for when pages are paged
4545          * out or modified by the host directly.  Pick up these
4546          * bits and add them to the map.
4547          */
4548         p = memslot->dirty_bitmap;
4549         for (i = 0; i < n / sizeof(long); ++i)
4550                 buf[i] |= xchg(&p[i], 0);
4551
4552         /* Harvest dirty bits from VPA and DTL updates */
4553         /* Note: we never modify the SLB shadow buffer areas */
4554         kvm_for_each_vcpu(i, vcpu, kvm) {
4555                 spin_lock(&vcpu->arch.vpa_update_lock);
4556                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4557                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4558                 spin_unlock(&vcpu->arch.vpa_update_lock);
4559         }
4560
4561         r = -EFAULT;
4562         if (copy_to_user(log->dirty_bitmap, buf, n))
4563                 goto out;
4564
4565         r = 0;
4566 out:
4567         mutex_unlock(&kvm->slots_lock);
4568         return r;
4569 }
4570
4571 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4572 {
4573         vfree(slot->arch.rmap);
4574         slot->arch.rmap = NULL;
4575 }
4576
4577 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4578                                         struct kvm_memory_slot *slot,
4579                                         const struct kvm_userspace_memory_region *mem,
4580                                         enum kvm_mr_change change)
4581 {
4582         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4583
4584         if (change == KVM_MR_CREATE) {
4585                 slot->arch.rmap = vzalloc(array_size(npages,
4586                                           sizeof(*slot->arch.rmap)));
4587                 if (!slot->arch.rmap)
4588                         return -ENOMEM;
4589         }
4590
4591         return 0;
4592 }
4593
4594 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4595                                 const struct kvm_userspace_memory_region *mem,
4596                                 const struct kvm_memory_slot *old,
4597                                 const struct kvm_memory_slot *new,
4598                                 enum kvm_mr_change change)
4599 {
4600         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4601
4602         /*
4603          * If we are making a new memslot, it might make
4604          * some address that was previously cached as emulated
4605          * MMIO be no longer emulated MMIO, so invalidate
4606          * all the caches of emulated MMIO translations.
4607          */
4608         if (npages)
4609                 atomic64_inc(&kvm->arch.mmio_update);
4610
4611         /*
4612          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4613          * have already called kvm_arch_flush_shadow_memslot() to
4614          * flush shadow mappings.  For KVM_MR_CREATE we have no
4615          * previous mappings.  So the only case to handle is
4616          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4617          * has been changed.
4618          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4619          * to get rid of any THP PTEs in the partition-scoped page tables
4620          * so we can track dirtiness at the page level; we flush when
4621          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4622          * using THP PTEs.
4623          */
4624         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4625             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4626                 kvmppc_radix_flush_memslot(kvm, old);
4627         /*
4628          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4629          */
4630         if (!kvm->arch.secure_guest)
4631                 return;
4632
4633         switch (change) {
4634         case KVM_MR_CREATE:
4635                 /*
4636                  * @TODO kvmppc_uvmem_memslot_create() can fail and
4637                  * return error. Fix this.
4638                  */
4639                 kvmppc_uvmem_memslot_create(kvm, new);
4640                 break;
4641         case KVM_MR_DELETE:
4642                 kvmppc_uvmem_memslot_delete(kvm, old);
4643                 break;
4644         default:
4645                 /* TODO: Handle KVM_MR_MOVE */
4646                 break;
4647         }
4648 }
4649
4650 /*
4651  * Update LPCR values in kvm->arch and in vcores.
4652  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4653  * of kvm->arch.lpcr update).
4654  */
4655 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4656 {
4657         long int i;
4658         u32 cores_done = 0;
4659
4660         if ((kvm->arch.lpcr & mask) == lpcr)
4661                 return;
4662
4663         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4664
4665         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4666                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4667                 if (!vc)
4668                         continue;
4669                 spin_lock(&vc->lock);
4670                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4671                 spin_unlock(&vc->lock);
4672                 if (++cores_done >= kvm->arch.online_vcores)
4673                         break;
4674         }
4675 }
4676
4677 void kvmppc_setup_partition_table(struct kvm *kvm)
4678 {
4679         unsigned long dw0, dw1;
4680
4681         if (!kvm_is_radix(kvm)) {
4682                 /* PS field - page size for VRMA */
4683                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4684                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4685                 /* HTABSIZE and HTABORG fields */
4686                 dw0 |= kvm->arch.sdr1;
4687
4688                 /* Second dword as set by userspace */
4689                 dw1 = kvm->arch.process_table;
4690         } else {
4691                 dw0 = PATB_HR | radix__get_tree_size() |
4692                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4693                 dw1 = PATB_GR | kvm->arch.process_table;
4694         }
4695         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4696 }
4697
4698 /*
4699  * Set up HPT (hashed page table) and RMA (real-mode area).
4700  * Must be called with kvm->arch.mmu_setup_lock held.
4701  */
4702 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4703 {
4704         int err = 0;
4705         struct kvm *kvm = vcpu->kvm;
4706         unsigned long hva;
4707         struct kvm_memory_slot *memslot;
4708         struct vm_area_struct *vma;
4709         unsigned long lpcr = 0, senc;
4710         unsigned long psize, porder;
4711         int srcu_idx;
4712
4713         /* Allocate hashed page table (if not done already) and reset it */
4714         if (!kvm->arch.hpt.virt) {
4715                 int order = KVM_DEFAULT_HPT_ORDER;
4716                 struct kvm_hpt_info info;
4717
4718                 err = kvmppc_allocate_hpt(&info, order);
4719                 /* If we get here, it means userspace didn't specify a
4720                  * size explicitly.  So, try successively smaller
4721                  * sizes if the default failed. */
4722                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4723                         err  = kvmppc_allocate_hpt(&info, order);
4724
4725                 if (err < 0) {
4726                         pr_err("KVM: Couldn't alloc HPT\n");
4727                         goto out;
4728                 }
4729
4730                 kvmppc_set_hpt(kvm, &info);
4731         }
4732
4733         /* Look up the memslot for guest physical address 0 */
4734         srcu_idx = srcu_read_lock(&kvm->srcu);
4735         memslot = gfn_to_memslot(kvm, 0);
4736
4737         /* We must have some memory at 0 by now */
4738         err = -EINVAL;
4739         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4740                 goto out_srcu;
4741
4742         /* Look up the VMA for the start of this memory slot */
4743         hva = memslot->userspace_addr;
4744         mmap_read_lock(kvm->mm);
4745         vma = find_vma(kvm->mm, hva);
4746         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4747                 goto up_out;
4748
4749         psize = vma_kernel_pagesize(vma);
4750
4751         mmap_read_unlock(kvm->mm);
4752
4753         /* We can handle 4k, 64k or 16M pages in the VRMA */
4754         if (psize >= 0x1000000)
4755                 psize = 0x1000000;
4756         else if (psize >= 0x10000)
4757                 psize = 0x10000;
4758         else
4759                 psize = 0x1000;
4760         porder = __ilog2(psize);
4761
4762         senc = slb_pgsize_encoding(psize);
4763         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4764                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4765         /* Create HPTEs in the hash page table for the VRMA */
4766         kvmppc_map_vrma(vcpu, memslot, porder);
4767
4768         /* Update VRMASD field in the LPCR */
4769         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4770                 /* the -4 is to account for senc values starting at 0x10 */
4771                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4772                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4773         }
4774
4775         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4776         smp_wmb();
4777         err = 0;
4778  out_srcu:
4779         srcu_read_unlock(&kvm->srcu, srcu_idx);
4780  out:
4781         return err;
4782
4783  up_out:
4784         mmap_read_unlock(kvm->mm);
4785         goto out_srcu;
4786 }
4787
4788 /*
4789  * Must be called with kvm->arch.mmu_setup_lock held and
4790  * mmu_ready = 0 and no vcpus running.
4791  */
4792 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4793 {
4794         if (nesting_enabled(kvm))
4795                 kvmhv_release_all_nested(kvm);
4796         kvmppc_rmap_reset(kvm);
4797         kvm->arch.process_table = 0;
4798         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4799         spin_lock(&kvm->mmu_lock);
4800         kvm->arch.radix = 0;
4801         spin_unlock(&kvm->mmu_lock);
4802         kvmppc_free_radix(kvm);
4803         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4804                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4805         return 0;
4806 }
4807
4808 /*
4809  * Must be called with kvm->arch.mmu_setup_lock held and
4810  * mmu_ready = 0 and no vcpus running.
4811  */
4812 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4813 {
4814         int err;
4815
4816         err = kvmppc_init_vm_radix(kvm);
4817         if (err)
4818                 return err;
4819         kvmppc_rmap_reset(kvm);
4820         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4821         spin_lock(&kvm->mmu_lock);
4822         kvm->arch.radix = 1;
4823         spin_unlock(&kvm->mmu_lock);
4824         kvmppc_free_hpt(&kvm->arch.hpt);
4825         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4826                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4827         return 0;
4828 }
4829
4830 #ifdef CONFIG_KVM_XICS
4831 /*
4832  * Allocate a per-core structure for managing state about which cores are
4833  * running in the host versus the guest and for exchanging data between
4834  * real mode KVM and CPU running in the host.
4835  * This is only done for the first VM.
4836  * The allocated structure stays even if all VMs have stopped.
4837  * It is only freed when the kvm-hv module is unloaded.
4838  * It's OK for this routine to fail, we just don't support host
4839  * core operations like redirecting H_IPI wakeups.
4840  */
4841 void kvmppc_alloc_host_rm_ops(void)
4842 {
4843         struct kvmppc_host_rm_ops *ops;
4844         unsigned long l_ops;
4845         int cpu, core;
4846         int size;
4847
4848         /* Not the first time here ? */
4849         if (kvmppc_host_rm_ops_hv != NULL)
4850                 return;
4851
4852         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4853         if (!ops)
4854                 return;
4855
4856         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4857         ops->rm_core = kzalloc(size, GFP_KERNEL);
4858
4859         if (!ops->rm_core) {
4860                 kfree(ops);
4861                 return;
4862         }
4863
4864         cpus_read_lock();
4865
4866         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4867                 if (!cpu_online(cpu))
4868                         continue;
4869
4870                 core = cpu >> threads_shift;
4871                 ops->rm_core[core].rm_state.in_host = 1;
4872         }
4873
4874         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4875
4876         /*
4877          * Make the contents of the kvmppc_host_rm_ops structure visible
4878          * to other CPUs before we assign it to the global variable.
4879          * Do an atomic assignment (no locks used here), but if someone
4880          * beats us to it, just free our copy and return.
4881          */
4882         smp_wmb();
4883         l_ops = (unsigned long) ops;
4884
4885         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4886                 cpus_read_unlock();
4887                 kfree(ops->rm_core);
4888                 kfree(ops);
4889                 return;
4890         }
4891
4892         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4893                                              "ppc/kvm_book3s:prepare",
4894                                              kvmppc_set_host_core,
4895                                              kvmppc_clear_host_core);
4896         cpus_read_unlock();
4897 }
4898
4899 void kvmppc_free_host_rm_ops(void)
4900 {
4901         if (kvmppc_host_rm_ops_hv) {
4902                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4903                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4904                 kfree(kvmppc_host_rm_ops_hv);
4905                 kvmppc_host_rm_ops_hv = NULL;
4906         }
4907 }
4908 #endif
4909
4910 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4911 {
4912         unsigned long lpcr, lpid;
4913         char buf[32];
4914         int ret;
4915
4916         mutex_init(&kvm->arch.uvmem_lock);
4917         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4918         mutex_init(&kvm->arch.mmu_setup_lock);
4919
4920         /* Allocate the guest's logical partition ID */
4921
4922         lpid = kvmppc_alloc_lpid();
4923         if ((long)lpid < 0)
4924                 return -ENOMEM;
4925         kvm->arch.lpid = lpid;
4926
4927         kvmppc_alloc_host_rm_ops();
4928
4929         kvmhv_vm_nested_init(kvm);
4930
4931         /*
4932          * Since we don't flush the TLB when tearing down a VM,
4933          * and this lpid might have previously been used,
4934          * make sure we flush on each core before running the new VM.
4935          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4936          * does this flush for us.
4937          */
4938         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4939                 cpumask_setall(&kvm->arch.need_tlb_flush);
4940
4941         /* Start out with the default set of hcalls enabled */
4942         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4943                sizeof(kvm->arch.enabled_hcalls));
4944
4945         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4946                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4947
4948         /* Init LPCR for virtual RMA mode */
4949         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4950                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4951                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4952                 lpcr &= LPCR_PECE | LPCR_LPES;
4953         } else {
4954                 lpcr = 0;
4955         }
4956         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4957                 LPCR_VPM0 | LPCR_VPM1;
4958         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4959                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4960         /* On POWER8 turn on online bit to enable PURR/SPURR */
4961         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4962                 lpcr |= LPCR_ONL;
4963         /*
4964          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4965          * Set HVICE bit to enable hypervisor virtualization interrupts.
4966          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4967          * be unnecessary but better safe than sorry in case we re-enable
4968          * EE in HV mode with this LPCR still set)
4969          */
4970         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4971                 lpcr &= ~LPCR_VPM0;
4972                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4973
4974                 /*
4975                  * If xive is enabled, we route 0x500 interrupts directly
4976                  * to the guest.
4977                  */
4978                 if (xics_on_xive())
4979                         lpcr |= LPCR_LPES;
4980         }
4981
4982         /*
4983          * If the host uses radix, the guest starts out as radix.
4984          */
4985         if (radix_enabled()) {
4986                 kvm->arch.radix = 1;
4987                 kvm->arch.mmu_ready = 1;
4988                 lpcr &= ~LPCR_VPM1;
4989                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4990                 ret = kvmppc_init_vm_radix(kvm);
4991                 if (ret) {
4992                         kvmppc_free_lpid(kvm->arch.lpid);
4993                         return ret;
4994                 }
4995                 kvmppc_setup_partition_table(kvm);
4996         }
4997
4998         kvm->arch.lpcr = lpcr;
4999
5000         /* Initialization for future HPT resizes */
5001         kvm->arch.resize_hpt = NULL;
5002
5003         /*
5004          * Work out how many sets the TLB has, for the use of
5005          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5006          */
5007         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5008                 /*
5009                  * P10 will flush all the congruence class with a single tlbiel
5010                  */
5011                 kvm->arch.tlb_sets = 1;
5012         } else if (radix_enabled())
5013                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5014         else if (cpu_has_feature(CPU_FTR_ARCH_300))
5015                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5016         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5017                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5018         else
5019                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5020
5021         /*
5022          * Track that we now have a HV mode VM active. This blocks secondary
5023          * CPU threads from coming online.
5024          * On POWER9, we only need to do this if the "indep_threads_mode"
5025          * module parameter has been set to N.
5026          */
5027         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5028                 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
5029                         pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
5030                         kvm->arch.threads_indep = true;
5031                 } else {
5032                         kvm->arch.threads_indep = indep_threads_mode;
5033                 }
5034         }
5035         if (!kvm->arch.threads_indep)
5036                 kvm_hv_vm_activated();
5037
5038         /*
5039          * Initialize smt_mode depending on processor.
5040          * POWER8 and earlier have to use "strict" threading, where
5041          * all vCPUs in a vcore have to run on the same (sub)core,
5042          * whereas on POWER9 the threads can each run a different
5043          * guest.
5044          */
5045         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5046                 kvm->arch.smt_mode = threads_per_subcore;
5047         else
5048                 kvm->arch.smt_mode = 1;
5049         kvm->arch.emul_smt_mode = 1;
5050
5051         /*
5052          * Create a debugfs directory for the VM
5053          */
5054         snprintf(buf, sizeof(buf), "vm%d", current->pid);
5055         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5056         kvmppc_mmu_debugfs_init(kvm);
5057         if (radix_enabled())
5058                 kvmhv_radix_debugfs_init(kvm);
5059
5060         return 0;
5061 }
5062
5063 static void kvmppc_free_vcores(struct kvm *kvm)
5064 {
5065         long int i;
5066
5067         for (i = 0; i < KVM_MAX_VCORES; ++i)
5068                 kfree(kvm->arch.vcores[i]);
5069         kvm->arch.online_vcores = 0;
5070 }
5071
5072 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5073 {
5074         debugfs_remove_recursive(kvm->arch.debugfs_dir);
5075
5076         if (!kvm->arch.threads_indep)
5077                 kvm_hv_vm_deactivated();
5078
5079         kvmppc_free_vcores(kvm);
5080
5081
5082         if (kvm_is_radix(kvm))
5083                 kvmppc_free_radix(kvm);
5084         else
5085                 kvmppc_free_hpt(&kvm->arch.hpt);
5086
5087         /* Perform global invalidation and return lpid to the pool */
5088         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5089                 if (nesting_enabled(kvm))
5090                         kvmhv_release_all_nested(kvm);
5091                 kvm->arch.process_table = 0;
5092                 if (kvm->arch.secure_guest)
5093                         uv_svm_terminate(kvm->arch.lpid);
5094                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5095         }
5096
5097         kvmppc_free_lpid(kvm->arch.lpid);
5098
5099         kvmppc_free_pimap(kvm);
5100 }
5101
5102 /* We don't need to emulate any privileged instructions or dcbz */
5103 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5104                                      unsigned int inst, int *advance)
5105 {
5106         return EMULATE_FAIL;
5107 }
5108
5109 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5110                                         ulong spr_val)
5111 {
5112         return EMULATE_FAIL;
5113 }
5114
5115 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5116                                         ulong *spr_val)
5117 {
5118         return EMULATE_FAIL;
5119 }
5120
5121 static int kvmppc_core_check_processor_compat_hv(void)
5122 {
5123         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5124             cpu_has_feature(CPU_FTR_ARCH_206))
5125                 return 0;
5126
5127         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5128         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5129                 return 0;
5130
5131         return -EIO;
5132 }
5133
5134 #ifdef CONFIG_KVM_XICS
5135
5136 void kvmppc_free_pimap(struct kvm *kvm)
5137 {
5138         kfree(kvm->arch.pimap);
5139 }
5140
5141 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5142 {
5143         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5144 }
5145
5146 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5147 {
5148         struct irq_desc *desc;
5149         struct kvmppc_irq_map *irq_map;
5150         struct kvmppc_passthru_irqmap *pimap;
5151         struct irq_chip *chip;
5152         int i, rc = 0;
5153
5154         if (!kvm_irq_bypass)
5155                 return 1;
5156
5157         desc = irq_to_desc(host_irq);
5158         if (!desc)
5159                 return -EIO;
5160
5161         mutex_lock(&kvm->lock);
5162
5163         pimap = kvm->arch.pimap;
5164         if (pimap == NULL) {
5165                 /* First call, allocate structure to hold IRQ map */
5166                 pimap = kvmppc_alloc_pimap();
5167                 if (pimap == NULL) {
5168                         mutex_unlock(&kvm->lock);
5169                         return -ENOMEM;
5170                 }
5171                 kvm->arch.pimap = pimap;
5172         }
5173
5174         /*
5175          * For now, we only support interrupts for which the EOI operation
5176          * is an OPAL call followed by a write to XIRR, since that's
5177          * what our real-mode EOI code does, or a XIVE interrupt
5178          */
5179         chip = irq_data_get_irq_chip(&desc->irq_data);
5180         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5181                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5182                         host_irq, guest_gsi);
5183                 mutex_unlock(&kvm->lock);
5184                 return -ENOENT;
5185         }
5186
5187         /*
5188          * See if we already have an entry for this guest IRQ number.
5189          * If it's mapped to a hardware IRQ number, that's an error,
5190          * otherwise re-use this entry.
5191          */
5192         for (i = 0; i < pimap->n_mapped; i++) {
5193                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5194                         if (pimap->mapped[i].r_hwirq) {
5195                                 mutex_unlock(&kvm->lock);
5196                                 return -EINVAL;
5197                         }
5198                         break;
5199                 }
5200         }
5201
5202         if (i == KVMPPC_PIRQ_MAPPED) {
5203                 mutex_unlock(&kvm->lock);
5204                 return -EAGAIN;         /* table is full */
5205         }
5206
5207         irq_map = &pimap->mapped[i];
5208
5209         irq_map->v_hwirq = guest_gsi;
5210         irq_map->desc = desc;
5211
5212         /*
5213          * Order the above two stores before the next to serialize with
5214          * the KVM real mode handler.
5215          */
5216         smp_wmb();
5217         irq_map->r_hwirq = desc->irq_data.hwirq;
5218
5219         if (i == pimap->n_mapped)
5220                 pimap->n_mapped++;
5221
5222         if (xics_on_xive())
5223                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5224         else
5225                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5226         if (rc)
5227                 irq_map->r_hwirq = 0;
5228
5229         mutex_unlock(&kvm->lock);
5230
5231         return 0;
5232 }
5233
5234 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5235 {
5236         struct irq_desc *desc;
5237         struct kvmppc_passthru_irqmap *pimap;
5238         int i, rc = 0;
5239
5240         if (!kvm_irq_bypass)
5241                 return 0;
5242
5243         desc = irq_to_desc(host_irq);
5244         if (!desc)
5245                 return -EIO;
5246
5247         mutex_lock(&kvm->lock);
5248         if (!kvm->arch.pimap)
5249                 goto unlock;
5250
5251         pimap = kvm->arch.pimap;
5252
5253         for (i = 0; i < pimap->n_mapped; i++) {
5254                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5255                         break;
5256         }
5257
5258         if (i == pimap->n_mapped) {
5259                 mutex_unlock(&kvm->lock);
5260                 return -ENODEV;
5261         }
5262
5263         if (xics_on_xive())
5264                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5265         else
5266                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5267
5268         /* invalidate the entry (what do do on error from the above ?) */
5269         pimap->mapped[i].r_hwirq = 0;
5270
5271         /*
5272          * We don't free this structure even when the count goes to
5273          * zero. The structure is freed when we destroy the VM.
5274          */
5275  unlock:
5276         mutex_unlock(&kvm->lock);
5277         return rc;
5278 }
5279
5280 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5281                                              struct irq_bypass_producer *prod)
5282 {
5283         int ret = 0;
5284         struct kvm_kernel_irqfd *irqfd =
5285                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5286
5287         irqfd->producer = prod;
5288
5289         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5290         if (ret)
5291                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5292                         prod->irq, irqfd->gsi, ret);
5293
5294         return ret;
5295 }
5296
5297 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5298                                               struct irq_bypass_producer *prod)
5299 {
5300         int ret;
5301         struct kvm_kernel_irqfd *irqfd =
5302                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5303
5304         irqfd->producer = NULL;
5305
5306         /*
5307          * When producer of consumer is unregistered, we change back to
5308          * default external interrupt handling mode - KVM real mode
5309          * will switch back to host.
5310          */
5311         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5312         if (ret)
5313                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5314                         prod->irq, irqfd->gsi, ret);
5315 }
5316 #endif
5317
5318 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5319                                  unsigned int ioctl, unsigned long arg)
5320 {
5321         struct kvm *kvm __maybe_unused = filp->private_data;
5322         void __user *argp = (void __user *)arg;
5323         long r;
5324
5325         switch (ioctl) {
5326
5327         case KVM_PPC_ALLOCATE_HTAB: {
5328                 u32 htab_order;
5329
5330                 /* If we're a nested hypervisor, we currently only support radix */
5331                 if (kvmhv_on_pseries()) {
5332                         r = -EOPNOTSUPP;
5333                         break;
5334                 }
5335
5336                 r = -EFAULT;
5337                 if (get_user(htab_order, (u32 __user *)argp))
5338                         break;
5339                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5340                 if (r)
5341                         break;
5342                 r = 0;
5343                 break;
5344         }
5345
5346         case KVM_PPC_GET_HTAB_FD: {
5347                 struct kvm_get_htab_fd ghf;
5348
5349                 r = -EFAULT;
5350                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5351                         break;
5352                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5353                 break;
5354         }
5355
5356         case KVM_PPC_RESIZE_HPT_PREPARE: {
5357                 struct kvm_ppc_resize_hpt rhpt;
5358
5359                 r = -EFAULT;
5360                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5361                         break;
5362
5363                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5364                 break;
5365         }
5366
5367         case KVM_PPC_RESIZE_HPT_COMMIT: {
5368                 struct kvm_ppc_resize_hpt rhpt;
5369
5370                 r = -EFAULT;
5371                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5372                         break;
5373
5374                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5375                 break;
5376         }
5377
5378         default:
5379                 r = -ENOTTY;
5380         }
5381
5382         return r;
5383 }
5384
5385 /*
5386  * List of hcall numbers to enable by default.
5387  * For compatibility with old userspace, we enable by default
5388  * all hcalls that were implemented before the hcall-enabling
5389  * facility was added.  Note this list should not include H_RTAS.
5390  */
5391 static unsigned int default_hcall_list[] = {
5392         H_REMOVE,
5393         H_ENTER,
5394         H_READ,
5395         H_PROTECT,
5396         H_BULK_REMOVE,
5397         H_GET_TCE,
5398         H_PUT_TCE,
5399         H_SET_DABR,
5400         H_SET_XDABR,
5401         H_CEDE,
5402         H_PROD,
5403         H_CONFER,
5404         H_REGISTER_VPA,
5405 #ifdef CONFIG_KVM_XICS
5406         H_EOI,
5407         H_CPPR,
5408         H_IPI,
5409         H_IPOLL,
5410         H_XIRR,
5411         H_XIRR_X,
5412 #endif
5413         0
5414 };
5415
5416 static void init_default_hcalls(void)
5417 {
5418         int i;
5419         unsigned int hcall;
5420
5421         for (i = 0; default_hcall_list[i]; ++i) {
5422                 hcall = default_hcall_list[i];
5423                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5424                 __set_bit(hcall / 4, default_enabled_hcalls);
5425         }
5426 }
5427
5428 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5429 {
5430         unsigned long lpcr;
5431         int radix;
5432         int err;
5433
5434         /* If not on a POWER9, reject it */
5435         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5436                 return -ENODEV;
5437
5438         /* If any unknown flags set, reject it */
5439         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5440                 return -EINVAL;
5441
5442         /* GR (guest radix) bit in process_table field must match */
5443         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5444         if (!!(cfg->process_table & PATB_GR) != radix)
5445                 return -EINVAL;
5446
5447         /* Process table size field must be reasonable, i.e. <= 24 */
5448         if ((cfg->process_table & PRTS_MASK) > 24)
5449                 return -EINVAL;
5450
5451         /* We can change a guest to/from radix now, if the host is radix */
5452         if (radix && !radix_enabled())
5453                 return -EINVAL;
5454
5455         /* If we're a nested hypervisor, we currently only support radix */
5456         if (kvmhv_on_pseries() && !radix)
5457                 return -EINVAL;
5458
5459         mutex_lock(&kvm->arch.mmu_setup_lock);
5460         if (radix != kvm_is_radix(kvm)) {
5461                 if (kvm->arch.mmu_ready) {
5462                         kvm->arch.mmu_ready = 0;
5463                         /* order mmu_ready vs. vcpus_running */
5464                         smp_mb();
5465                         if (atomic_read(&kvm->arch.vcpus_running)) {
5466                                 kvm->arch.mmu_ready = 1;
5467                                 err = -EBUSY;
5468                                 goto out_unlock;
5469                         }
5470                 }
5471                 if (radix)
5472                         err = kvmppc_switch_mmu_to_radix(kvm);
5473                 else
5474                         err = kvmppc_switch_mmu_to_hpt(kvm);
5475                 if (err)
5476                         goto out_unlock;
5477         }
5478
5479         kvm->arch.process_table = cfg->process_table;
5480         kvmppc_setup_partition_table(kvm);
5481
5482         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5483         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5484         err = 0;
5485
5486  out_unlock:
5487         mutex_unlock(&kvm->arch.mmu_setup_lock);
5488         return err;
5489 }
5490
5491 static int kvmhv_enable_nested(struct kvm *kvm)
5492 {
5493         if (!nested)
5494                 return -EPERM;
5495         if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5496                 return -ENODEV;
5497
5498         /* kvm == NULL means the caller is testing if the capability exists */
5499         if (kvm)
5500                 kvm->arch.nested_enable = true;
5501         return 0;
5502 }
5503
5504 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5505                                  int size)
5506 {
5507         int rc = -EINVAL;
5508
5509         if (kvmhv_vcpu_is_radix(vcpu)) {
5510                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5511
5512                 if (rc > 0)
5513                         rc = -EINVAL;
5514         }
5515
5516         /* For now quadrants are the only way to access nested guest memory */
5517         if (rc && vcpu->arch.nested)
5518                 rc = -EAGAIN;
5519
5520         return rc;
5521 }
5522
5523 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5524                                 int size)
5525 {
5526         int rc = -EINVAL;
5527
5528         if (kvmhv_vcpu_is_radix(vcpu)) {
5529                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5530
5531                 if (rc > 0)
5532                         rc = -EINVAL;
5533         }
5534
5535         /* For now quadrants are the only way to access nested guest memory */
5536         if (rc && vcpu->arch.nested)
5537                 rc = -EAGAIN;
5538
5539         return rc;
5540 }
5541
5542 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5543 {
5544         unpin_vpa(kvm, vpa);
5545         vpa->gpa = 0;
5546         vpa->pinned_addr = NULL;
5547         vpa->dirty = false;
5548         vpa->update_pending = 0;
5549 }
5550
5551 /*
5552  * Enable a guest to become a secure VM, or test whether
5553  * that could be enabled.
5554  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5555  * tested (kvm == NULL) or enabled (kvm != NULL).
5556  */
5557 static int kvmhv_enable_svm(struct kvm *kvm)
5558 {
5559         if (!kvmppc_uvmem_available())
5560                 return -EINVAL;
5561         if (kvm)
5562                 kvm->arch.svm_enabled = 1;
5563         return 0;
5564 }
5565
5566 /*
5567  *  IOCTL handler to turn off secure mode of guest
5568  *
5569  * - Release all device pages
5570  * - Issue ucall to terminate the guest on the UV side
5571  * - Unpin the VPA pages.
5572  * - Reinit the partition scoped page tables
5573  */
5574 static int kvmhv_svm_off(struct kvm *kvm)
5575 {
5576         struct kvm_vcpu *vcpu;
5577         int mmu_was_ready;
5578         int srcu_idx;
5579         int ret = 0;
5580         int i;
5581
5582         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5583                 return ret;
5584
5585         mutex_lock(&kvm->arch.mmu_setup_lock);
5586         mmu_was_ready = kvm->arch.mmu_ready;
5587         if (kvm->arch.mmu_ready) {
5588                 kvm->arch.mmu_ready = 0;
5589                 /* order mmu_ready vs. vcpus_running */
5590                 smp_mb();
5591                 if (atomic_read(&kvm->arch.vcpus_running)) {
5592                         kvm->arch.mmu_ready = 1;
5593                         ret = -EBUSY;
5594                         goto out;
5595                 }
5596         }
5597
5598         srcu_idx = srcu_read_lock(&kvm->srcu);
5599         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5600                 struct kvm_memory_slot *memslot;
5601                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5602
5603                 if (!slots)
5604                         continue;
5605
5606                 kvm_for_each_memslot(memslot, slots) {
5607                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
5608                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5609                 }
5610         }
5611         srcu_read_unlock(&kvm->srcu, srcu_idx);
5612
5613         ret = uv_svm_terminate(kvm->arch.lpid);
5614         if (ret != U_SUCCESS) {
5615                 ret = -EINVAL;
5616                 goto out;
5617         }
5618
5619         /*
5620          * When secure guest is reset, all the guest pages are sent
5621          * to UV via UV_PAGE_IN before the non-boot vcpus get a
5622          * chance to run and unpin their VPA pages. Unpinning of all
5623          * VPA pages is done here explicitly so that VPA pages
5624          * can be migrated to the secure side.
5625          *
5626          * This is required to for the secure SMP guest to reboot
5627          * correctly.
5628          */
5629         kvm_for_each_vcpu(i, vcpu, kvm) {
5630                 spin_lock(&vcpu->arch.vpa_update_lock);
5631                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5632                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5633                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5634                 spin_unlock(&vcpu->arch.vpa_update_lock);
5635         }
5636
5637         kvmppc_setup_partition_table(kvm);
5638         kvm->arch.secure_guest = 0;
5639         kvm->arch.mmu_ready = mmu_was_ready;
5640 out:
5641         mutex_unlock(&kvm->arch.mmu_setup_lock);
5642         return ret;
5643 }
5644
5645 static int kvmhv_enable_dawr1(struct kvm *kvm)
5646 {
5647         if (!cpu_has_feature(CPU_FTR_DAWR1))
5648                 return -ENODEV;
5649
5650         /* kvm == NULL means the caller is testing if the capability exists */
5651         if (kvm)
5652                 kvm->arch.dawr1_enabled = true;
5653         return 0;
5654 }
5655
5656 static struct kvmppc_ops kvm_ops_hv = {
5657         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5658         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5659         .get_one_reg = kvmppc_get_one_reg_hv,
5660         .set_one_reg = kvmppc_set_one_reg_hv,
5661         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5662         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5663         .inject_interrupt = kvmppc_inject_interrupt_hv,
5664         .set_msr     = kvmppc_set_msr_hv,
5665         .vcpu_run    = kvmppc_vcpu_run_hv,
5666         .vcpu_create = kvmppc_core_vcpu_create_hv,
5667         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5668         .check_requests = kvmppc_core_check_requests_hv,
5669         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5670         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5671         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5672         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5673         .unmap_hva_range = kvm_unmap_hva_range_hv,
5674         .age_hva  = kvm_age_hva_hv,
5675         .test_age_hva = kvm_test_age_hva_hv,
5676         .set_spte_hva = kvm_set_spte_hva_hv,
5677         .free_memslot = kvmppc_core_free_memslot_hv,
5678         .init_vm =  kvmppc_core_init_vm_hv,
5679         .destroy_vm = kvmppc_core_destroy_vm_hv,
5680         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5681         .emulate_op = kvmppc_core_emulate_op_hv,
5682         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5683         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5684         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5685         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5686         .hcall_implemented = kvmppc_hcall_impl_hv,
5687 #ifdef CONFIG_KVM_XICS
5688         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5689         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5690 #endif
5691         .configure_mmu = kvmhv_configure_mmu,
5692         .get_rmmu_info = kvmhv_get_rmmu_info,
5693         .set_smt_mode = kvmhv_set_smt_mode,
5694         .enable_nested = kvmhv_enable_nested,
5695         .load_from_eaddr = kvmhv_load_from_eaddr,
5696         .store_to_eaddr = kvmhv_store_to_eaddr,
5697         .enable_svm = kvmhv_enable_svm,
5698         .svm_off = kvmhv_svm_off,
5699         .enable_dawr1 = kvmhv_enable_dawr1,
5700 };
5701
5702 static int kvm_init_subcore_bitmap(void)
5703 {
5704         int i, j;
5705         int nr_cores = cpu_nr_cores();
5706         struct sibling_subcore_state *sibling_subcore_state;
5707
5708         for (i = 0; i < nr_cores; i++) {
5709                 int first_cpu = i * threads_per_core;
5710                 int node = cpu_to_node(first_cpu);
5711
5712                 /* Ignore if it is already allocated. */
5713                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5714                         continue;
5715
5716                 sibling_subcore_state =
5717                         kzalloc_node(sizeof(struct sibling_subcore_state),
5718                                                         GFP_KERNEL, node);
5719                 if (!sibling_subcore_state)
5720                         return -ENOMEM;
5721
5722
5723                 for (j = 0; j < threads_per_core; j++) {
5724                         int cpu = first_cpu + j;
5725
5726                         paca_ptrs[cpu]->sibling_subcore_state =
5727                                                 sibling_subcore_state;
5728                 }
5729         }
5730         return 0;
5731 }
5732
5733 static int kvmppc_radix_possible(void)
5734 {
5735         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5736 }
5737
5738 static int kvmppc_book3s_init_hv(void)
5739 {
5740         int r;
5741
5742         if (!tlbie_capable) {
5743                 pr_err("KVM-HV: Host does not support TLBIE\n");
5744                 return -ENODEV;
5745         }
5746
5747         /*
5748          * FIXME!! Do we need to check on all cpus ?
5749          */
5750         r = kvmppc_core_check_processor_compat_hv();
5751         if (r < 0)
5752                 return -ENODEV;
5753
5754         r = kvmhv_nested_init();
5755         if (r)
5756                 return r;
5757
5758         r = kvm_init_subcore_bitmap();
5759         if (r)
5760                 return r;
5761
5762         /*
5763          * We need a way of accessing the XICS interrupt controller,
5764          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5765          * indirectly, via OPAL.
5766          */
5767 #ifdef CONFIG_SMP
5768         if (!xics_on_xive() && !kvmhv_on_pseries() &&
5769             !local_paca->kvm_hstate.xics_phys) {
5770                 struct device_node *np;
5771
5772                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5773                 if (!np) {
5774                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5775                         return -ENODEV;
5776                 }
5777                 /* presence of intc confirmed - node can be dropped again */
5778                 of_node_put(np);
5779         }
5780 #endif
5781
5782         kvm_ops_hv.owner = THIS_MODULE;
5783         kvmppc_hv_ops = &kvm_ops_hv;
5784
5785         init_default_hcalls();
5786
5787         init_vcore_lists();
5788
5789         r = kvmppc_mmu_hv_init();
5790         if (r)
5791                 return r;
5792
5793         if (kvmppc_radix_possible())
5794                 r = kvmppc_radix_init();
5795
5796         /*
5797          * POWER9 chips before version 2.02 can't have some threads in
5798          * HPT mode and some in radix mode on the same core.
5799          */
5800         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5801                 unsigned int pvr = mfspr(SPRN_PVR);
5802                 if ((pvr >> 16) == PVR_POWER9 &&
5803                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5804                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5805                         no_mixing_hpt_and_radix = true;
5806         }
5807
5808         r = kvmppc_uvmem_init();
5809         if (r < 0)
5810                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5811
5812         return r;
5813 }
5814
5815 static void kvmppc_book3s_exit_hv(void)
5816 {
5817         kvmppc_uvmem_free();
5818         kvmppc_free_host_rm_ops();
5819         if (kvmppc_radix_possible())
5820                 kvmppc_radix_exit();
5821         kvmppc_hv_ops = NULL;
5822         kvmhv_nested_exit();
5823 }
5824
5825 module_init(kvmppc_book3s_init_hv);
5826 module_exit(kvmppc_book3s_exit_hv);
5827 MODULE_LICENSE("GPL");
5828 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5829 MODULE_ALIAS("devname:kvm");