Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/interrupt.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/pmc.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76 #include <asm/hw_breakpoint.h>
77 #include <asm/kvm_book3s_uvmem.h>
78 #include <asm/ultravisor.h>
79 #include <asm/dtl.h>
80 #include <asm/plpar_wrappers.h>
81
82 #include "book3s.h"
83
84 #define CREATE_TRACE_POINTS
85 #include "trace_hv.h"
86
87 /* #define EXIT_DEBUG */
88 /* #define EXIT_DEBUG_SIMPLE */
89 /* #define EXIT_DEBUG_INT */
90
91 /* Used to indicate that a guest page fault needs to be handled */
92 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
93 /* Used to indicate that a guest passthrough interrupt needs to be handled */
94 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
95
96 /* Used as a "null" value for timebase values */
97 #define TB_NIL  (~(u64)0)
98
99 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
100
101 static int dynamic_mt_modes = 6;
102 module_param(dynamic_mt_modes, int, 0644);
103 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
104 static int target_smt_mode;
105 module_param(target_smt_mode, int, 0644);
106 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
107
108 static bool one_vm_per_core;
109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
111
112 #ifdef CONFIG_KVM_XICS
113 static const struct kernel_param_ops module_param_ops = {
114         .set = param_set_int,
115         .get = param_get_int,
116 };
117
118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
120
121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
123 #endif
124
125 /* If set, guests are allowed to create and control nested guests */
126 static bool nested = true;
127 module_param(nested, bool, S_IRUGO | S_IWUSR);
128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
129
130 static inline bool nesting_enabled(struct kvm *kvm)
131 {
132         return kvm->arch.nested_enable && kvm_is_radix(kvm);
133 }
134
135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
136
137 /*
138  * RWMR values for POWER8.  These control the rate at which PURR
139  * and SPURR count and should be set according to the number of
140  * online threads in the vcore being run.
141  */
142 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
143 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
144 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
145 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
146 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
148 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
150
151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
152         RWMR_RPA_P8_1THREAD,
153         RWMR_RPA_P8_1THREAD,
154         RWMR_RPA_P8_2THREAD,
155         RWMR_RPA_P8_3THREAD,
156         RWMR_RPA_P8_4THREAD,
157         RWMR_RPA_P8_5THREAD,
158         RWMR_RPA_P8_6THREAD,
159         RWMR_RPA_P8_7THREAD,
160         RWMR_RPA_P8_8THREAD,
161 };
162
163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
164                 int *ip)
165 {
166         int i = *ip;
167         struct kvm_vcpu *vcpu;
168
169         while (++i < MAX_SMT_THREADS) {
170                 vcpu = READ_ONCE(vc->runnable_threads[i]);
171                 if (vcpu) {
172                         *ip = i;
173                         return vcpu;
174                 }
175         }
176         return NULL;
177 }
178
179 /* Used to traverse the list of runnable threads for a given vcore */
180 #define for_each_runnable_thread(i, vcpu, vc) \
181         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
182
183 static bool kvmppc_ipi_thread(int cpu)
184 {
185         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
186
187         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188         if (kvmhv_on_pseries())
189                 return false;
190
191         /* On POWER9 we can use msgsnd to IPI any cpu */
192         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193                 msg |= get_hard_smp_processor_id(cpu);
194                 smp_mb();
195                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
196                 return true;
197         }
198
199         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
200         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
201                 preempt_disable();
202                 if (cpu_first_thread_sibling(cpu) ==
203                     cpu_first_thread_sibling(smp_processor_id())) {
204                         msg |= cpu_thread_in_core(cpu);
205                         smp_mb();
206                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207                         preempt_enable();
208                         return true;
209                 }
210                 preempt_enable();
211         }
212
213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214         if (cpu >= 0 && cpu < nr_cpu_ids) {
215                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
216                         xics_wake_cpu(cpu);
217                         return true;
218                 }
219                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
220                 return true;
221         }
222 #endif
223
224         return false;
225 }
226
227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
228 {
229         int cpu;
230         struct rcuwait *waitp;
231
232         waitp = kvm_arch_vcpu_get_wait(vcpu);
233         if (rcuwait_wake_up(waitp))
234                 ++vcpu->stat.generic.halt_wakeup;
235
236         cpu = READ_ONCE(vcpu->arch.thread_cpu);
237         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
238                 return;
239
240         /* CPU points to the first thread of the core */
241         cpu = vcpu->cpu;
242         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
243                 smp_send_reschedule(cpu);
244 }
245
246 /*
247  * We use the vcpu_load/put functions to measure stolen time.
248  * Stolen time is counted as time when either the vcpu is able to
249  * run as part of a virtual core, but the task running the vcore
250  * is preempted or sleeping, or when the vcpu needs something done
251  * in the kernel by the task running the vcpu, but that task is
252  * preempted or sleeping.  Those two things have to be counted
253  * separately, since one of the vcpu tasks will take on the job
254  * of running the core, and the other vcpu tasks in the vcore will
255  * sleep waiting for it to do that, but that sleep shouldn't count
256  * as stolen time.
257  *
258  * Hence we accumulate stolen time when the vcpu can run as part of
259  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
260  * needs its task to do other things in the kernel (for example,
261  * service a page fault) in busy_stolen.  We don't accumulate
262  * stolen time for a vcore when it is inactive, or for a vcpu
263  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
264  * a misnomer; it means that the vcpu task is not executing in
265  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
266  * the kernel.  We don't have any way of dividing up that time
267  * between time that the vcpu is genuinely stopped, time that
268  * the task is actively working on behalf of the vcpu, and time
269  * that the task is preempted, so we don't count any of it as
270  * stolen.
271  *
272  * Updates to busy_stolen are protected by arch.tbacct_lock;
273  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
274  * lock.  The stolen times are measured in units of timebase ticks.
275  * (Note that the != TB_NIL checks below are purely defensive;
276  * they should never fail.)
277  */
278
279 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
280 {
281         unsigned long flags;
282
283         spin_lock_irqsave(&vc->stoltb_lock, flags);
284         vc->preempt_tb = mftb();
285         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
286 }
287
288 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
289 {
290         unsigned long flags;
291
292         spin_lock_irqsave(&vc->stoltb_lock, flags);
293         if (vc->preempt_tb != TB_NIL) {
294                 vc->stolen_tb += mftb() - vc->preempt_tb;
295                 vc->preempt_tb = TB_NIL;
296         }
297         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
298 }
299
300 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
301 {
302         struct kvmppc_vcore *vc = vcpu->arch.vcore;
303         unsigned long flags;
304
305         /*
306          * We can test vc->runner without taking the vcore lock,
307          * because only this task ever sets vc->runner to this
308          * vcpu, and once it is set to this vcpu, only this task
309          * ever sets it to NULL.
310          */
311         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
312                 kvmppc_core_end_stolen(vc);
313
314         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
315         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
316             vcpu->arch.busy_preempt != TB_NIL) {
317                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
318                 vcpu->arch.busy_preempt = TB_NIL;
319         }
320         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
321 }
322
323 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
324 {
325         struct kvmppc_vcore *vc = vcpu->arch.vcore;
326         unsigned long flags;
327
328         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
329                 kvmppc_core_start_stolen(vc);
330
331         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
332         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
333                 vcpu->arch.busy_preempt = mftb();
334         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
335 }
336
337 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
338 {
339         vcpu->arch.pvr = pvr;
340 }
341
342 /* Dummy value used in computing PCR value below */
343 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
344
345 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
346 {
347         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
348         struct kvmppc_vcore *vc = vcpu->arch.vcore;
349
350         /* We can (emulate) our own architecture version and anything older */
351         if (cpu_has_feature(CPU_FTR_ARCH_31))
352                 host_pcr_bit = PCR_ARCH_31;
353         else if (cpu_has_feature(CPU_FTR_ARCH_300))
354                 host_pcr_bit = PCR_ARCH_300;
355         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
356                 host_pcr_bit = PCR_ARCH_207;
357         else if (cpu_has_feature(CPU_FTR_ARCH_206))
358                 host_pcr_bit = PCR_ARCH_206;
359         else
360                 host_pcr_bit = PCR_ARCH_205;
361
362         /* Determine lowest PCR bit needed to run guest in given PVR level */
363         guest_pcr_bit = host_pcr_bit;
364         if (arch_compat) {
365                 switch (arch_compat) {
366                 case PVR_ARCH_205:
367                         guest_pcr_bit = PCR_ARCH_205;
368                         break;
369                 case PVR_ARCH_206:
370                 case PVR_ARCH_206p:
371                         guest_pcr_bit = PCR_ARCH_206;
372                         break;
373                 case PVR_ARCH_207:
374                         guest_pcr_bit = PCR_ARCH_207;
375                         break;
376                 case PVR_ARCH_300:
377                         guest_pcr_bit = PCR_ARCH_300;
378                         break;
379                 case PVR_ARCH_31:
380                         guest_pcr_bit = PCR_ARCH_31;
381                         break;
382                 default:
383                         return -EINVAL;
384                 }
385         }
386
387         /* Check requested PCR bits don't exceed our capabilities */
388         if (guest_pcr_bit > host_pcr_bit)
389                 return -EINVAL;
390
391         spin_lock(&vc->lock);
392         vc->arch_compat = arch_compat;
393         /*
394          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
395          * Also set all reserved PCR bits
396          */
397         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
398         spin_unlock(&vc->lock);
399
400         return 0;
401 }
402
403 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
404 {
405         int r;
406
407         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
408         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
409                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
410         for (r = 0; r < 16; ++r)
411                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
412                        r, kvmppc_get_gpr(vcpu, r),
413                        r+16, kvmppc_get_gpr(vcpu, r+16));
414         pr_err("ctr = %.16lx  lr  = %.16lx\n",
415                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
416         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
417                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
418         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
419                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
420         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
421                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
422         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
423                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
424         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
425         pr_err("fault dar = %.16lx dsisr = %.8x\n",
426                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
427         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
428         for (r = 0; r < vcpu->arch.slb_max; ++r)
429                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
430                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
431         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
432                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
433                vcpu->arch.last_inst);
434 }
435
436 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
437 {
438         return kvm_get_vcpu_by_id(kvm, id);
439 }
440
441 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
442 {
443         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
444         vpa->yield_count = cpu_to_be32(1);
445 }
446
447 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
448                    unsigned long addr, unsigned long len)
449 {
450         /* check address is cacheline aligned */
451         if (addr & (L1_CACHE_BYTES - 1))
452                 return -EINVAL;
453         spin_lock(&vcpu->arch.vpa_update_lock);
454         if (v->next_gpa != addr || v->len != len) {
455                 v->next_gpa = addr;
456                 v->len = addr ? len : 0;
457                 v->update_pending = 1;
458         }
459         spin_unlock(&vcpu->arch.vpa_update_lock);
460         return 0;
461 }
462
463 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
464 struct reg_vpa {
465         u32 dummy;
466         union {
467                 __be16 hword;
468                 __be32 word;
469         } length;
470 };
471
472 static int vpa_is_registered(struct kvmppc_vpa *vpap)
473 {
474         if (vpap->update_pending)
475                 return vpap->next_gpa != 0;
476         return vpap->pinned_addr != NULL;
477 }
478
479 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
480                                        unsigned long flags,
481                                        unsigned long vcpuid, unsigned long vpa)
482 {
483         struct kvm *kvm = vcpu->kvm;
484         unsigned long len, nb;
485         void *va;
486         struct kvm_vcpu *tvcpu;
487         int err;
488         int subfunc;
489         struct kvmppc_vpa *vpap;
490
491         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
492         if (!tvcpu)
493                 return H_PARAMETER;
494
495         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
496         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
497             subfunc == H_VPA_REG_SLB) {
498                 /* Registering new area - address must be cache-line aligned */
499                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
500                         return H_PARAMETER;
501
502                 /* convert logical addr to kernel addr and read length */
503                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
504                 if (va == NULL)
505                         return H_PARAMETER;
506                 if (subfunc == H_VPA_REG_VPA)
507                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
508                 else
509                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
510                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
511
512                 /* Check length */
513                 if (len > nb || len < sizeof(struct reg_vpa))
514                         return H_PARAMETER;
515         } else {
516                 vpa = 0;
517                 len = 0;
518         }
519
520         err = H_PARAMETER;
521         vpap = NULL;
522         spin_lock(&tvcpu->arch.vpa_update_lock);
523
524         switch (subfunc) {
525         case H_VPA_REG_VPA:             /* register VPA */
526                 /*
527                  * The size of our lppaca is 1kB because of the way we align
528                  * it for the guest to avoid crossing a 4kB boundary. We only
529                  * use 640 bytes of the structure though, so we should accept
530                  * clients that set a size of 640.
531                  */
532                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
533                 if (len < sizeof(struct lppaca))
534                         break;
535                 vpap = &tvcpu->arch.vpa;
536                 err = 0;
537                 break;
538
539         case H_VPA_REG_DTL:             /* register DTL */
540                 if (len < sizeof(struct dtl_entry))
541                         break;
542                 len -= len % sizeof(struct dtl_entry);
543
544                 /* Check that they have previously registered a VPA */
545                 err = H_RESOURCE;
546                 if (!vpa_is_registered(&tvcpu->arch.vpa))
547                         break;
548
549                 vpap = &tvcpu->arch.dtl;
550                 err = 0;
551                 break;
552
553         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
554                 /* Check that they have previously registered a VPA */
555                 err = H_RESOURCE;
556                 if (!vpa_is_registered(&tvcpu->arch.vpa))
557                         break;
558
559                 vpap = &tvcpu->arch.slb_shadow;
560                 err = 0;
561                 break;
562
563         case H_VPA_DEREG_VPA:           /* deregister VPA */
564                 /* Check they don't still have a DTL or SLB buf registered */
565                 err = H_RESOURCE;
566                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
567                     vpa_is_registered(&tvcpu->arch.slb_shadow))
568                         break;
569
570                 vpap = &tvcpu->arch.vpa;
571                 err = 0;
572                 break;
573
574         case H_VPA_DEREG_DTL:           /* deregister DTL */
575                 vpap = &tvcpu->arch.dtl;
576                 err = 0;
577                 break;
578
579         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
580                 vpap = &tvcpu->arch.slb_shadow;
581                 err = 0;
582                 break;
583         }
584
585         if (vpap) {
586                 vpap->next_gpa = vpa;
587                 vpap->len = len;
588                 vpap->update_pending = 1;
589         }
590
591         spin_unlock(&tvcpu->arch.vpa_update_lock);
592
593         return err;
594 }
595
596 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
597 {
598         struct kvm *kvm = vcpu->kvm;
599         void *va;
600         unsigned long nb;
601         unsigned long gpa;
602
603         /*
604          * We need to pin the page pointed to by vpap->next_gpa,
605          * but we can't call kvmppc_pin_guest_page under the lock
606          * as it does get_user_pages() and down_read().  So we
607          * have to drop the lock, pin the page, then get the lock
608          * again and check that a new area didn't get registered
609          * in the meantime.
610          */
611         for (;;) {
612                 gpa = vpap->next_gpa;
613                 spin_unlock(&vcpu->arch.vpa_update_lock);
614                 va = NULL;
615                 nb = 0;
616                 if (gpa)
617                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
618                 spin_lock(&vcpu->arch.vpa_update_lock);
619                 if (gpa == vpap->next_gpa)
620                         break;
621                 /* sigh... unpin that one and try again */
622                 if (va)
623                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
624         }
625
626         vpap->update_pending = 0;
627         if (va && nb < vpap->len) {
628                 /*
629                  * If it's now too short, it must be that userspace
630                  * has changed the mappings underlying guest memory,
631                  * so unregister the region.
632                  */
633                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
634                 va = NULL;
635         }
636         if (vpap->pinned_addr)
637                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
638                                         vpap->dirty);
639         vpap->gpa = gpa;
640         vpap->pinned_addr = va;
641         vpap->dirty = false;
642         if (va)
643                 vpap->pinned_end = va + vpap->len;
644 }
645
646 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
647 {
648         if (!(vcpu->arch.vpa.update_pending ||
649               vcpu->arch.slb_shadow.update_pending ||
650               vcpu->arch.dtl.update_pending))
651                 return;
652
653         spin_lock(&vcpu->arch.vpa_update_lock);
654         if (vcpu->arch.vpa.update_pending) {
655                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
656                 if (vcpu->arch.vpa.pinned_addr)
657                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
658         }
659         if (vcpu->arch.dtl.update_pending) {
660                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
661                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
662                 vcpu->arch.dtl_index = 0;
663         }
664         if (vcpu->arch.slb_shadow.update_pending)
665                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
666         spin_unlock(&vcpu->arch.vpa_update_lock);
667 }
668
669 /*
670  * Return the accumulated stolen time for the vcore up until `now'.
671  * The caller should hold the vcore lock.
672  */
673 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
674 {
675         u64 p;
676         unsigned long flags;
677
678         spin_lock_irqsave(&vc->stoltb_lock, flags);
679         p = vc->stolen_tb;
680         if (vc->vcore_state != VCORE_INACTIVE &&
681             vc->preempt_tb != TB_NIL)
682                 p += now - vc->preempt_tb;
683         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
684         return p;
685 }
686
687 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
688                                     struct kvmppc_vcore *vc)
689 {
690         struct dtl_entry *dt;
691         struct lppaca *vpa;
692         unsigned long stolen;
693         unsigned long core_stolen;
694         u64 now;
695         unsigned long flags;
696
697         dt = vcpu->arch.dtl_ptr;
698         vpa = vcpu->arch.vpa.pinned_addr;
699         now = mftb();
700         core_stolen = vcore_stolen_time(vc, now);
701         stolen = core_stolen - vcpu->arch.stolen_logged;
702         vcpu->arch.stolen_logged = core_stolen;
703         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
704         stolen += vcpu->arch.busy_stolen;
705         vcpu->arch.busy_stolen = 0;
706         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
707         if (!dt || !vpa)
708                 return;
709         memset(dt, 0, sizeof(struct dtl_entry));
710         dt->dispatch_reason = 7;
711         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
712         dt->timebase = cpu_to_be64(now + vc->tb_offset);
713         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
714         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
715         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
716         ++dt;
717         if (dt == vcpu->arch.dtl.pinned_end)
718                 dt = vcpu->arch.dtl.pinned_addr;
719         vcpu->arch.dtl_ptr = dt;
720         /* order writing *dt vs. writing vpa->dtl_idx */
721         smp_wmb();
722         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
723         vcpu->arch.dtl.dirty = true;
724 }
725
726 /* See if there is a doorbell interrupt pending for a vcpu */
727 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
728 {
729         int thr;
730         struct kvmppc_vcore *vc;
731
732         if (vcpu->arch.doorbell_request)
733                 return true;
734         /*
735          * Ensure that the read of vcore->dpdes comes after the read
736          * of vcpu->doorbell_request.  This barrier matches the
737          * smp_wmb() in kvmppc_guest_entry_inject().
738          */
739         smp_rmb();
740         vc = vcpu->arch.vcore;
741         thr = vcpu->vcpu_id - vc->first_vcpuid;
742         return !!(vc->dpdes & (1 << thr));
743 }
744
745 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
746 {
747         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
748                 return true;
749         if ((!vcpu->arch.vcore->arch_compat) &&
750             cpu_has_feature(CPU_FTR_ARCH_207S))
751                 return true;
752         return false;
753 }
754
755 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
756                              unsigned long resource, unsigned long value1,
757                              unsigned long value2)
758 {
759         switch (resource) {
760         case H_SET_MODE_RESOURCE_SET_CIABR:
761                 if (!kvmppc_power8_compatible(vcpu))
762                         return H_P2;
763                 if (value2)
764                         return H_P4;
765                 if (mflags)
766                         return H_UNSUPPORTED_FLAG_START;
767                 /* Guests can't breakpoint the hypervisor */
768                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
769                         return H_P3;
770                 vcpu->arch.ciabr  = value1;
771                 return H_SUCCESS;
772         case H_SET_MODE_RESOURCE_SET_DAWR0:
773                 if (!kvmppc_power8_compatible(vcpu))
774                         return H_P2;
775                 if (!ppc_breakpoint_available())
776                         return H_P2;
777                 if (mflags)
778                         return H_UNSUPPORTED_FLAG_START;
779                 if (value2 & DABRX_HYP)
780                         return H_P4;
781                 vcpu->arch.dawr0  = value1;
782                 vcpu->arch.dawrx0 = value2;
783                 return H_SUCCESS;
784         case H_SET_MODE_RESOURCE_SET_DAWR1:
785                 if (!kvmppc_power8_compatible(vcpu))
786                         return H_P2;
787                 if (!ppc_breakpoint_available())
788                         return H_P2;
789                 if (!cpu_has_feature(CPU_FTR_DAWR1))
790                         return H_P2;
791                 if (!vcpu->kvm->arch.dawr1_enabled)
792                         return H_FUNCTION;
793                 if (mflags)
794                         return H_UNSUPPORTED_FLAG_START;
795                 if (value2 & DABRX_HYP)
796                         return H_P4;
797                 vcpu->arch.dawr1  = value1;
798                 vcpu->arch.dawrx1 = value2;
799                 return H_SUCCESS;
800         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
801                 /*
802                  * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
803                  * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
804                  */
805                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
806                                 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
807                         return H_UNSUPPORTED_FLAG_START;
808                 return H_TOO_HARD;
809         default:
810                 return H_TOO_HARD;
811         }
812 }
813
814 /* Copy guest memory in place - must reside within a single memslot */
815 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
816                                   unsigned long len)
817 {
818         struct kvm_memory_slot *to_memslot = NULL;
819         struct kvm_memory_slot *from_memslot = NULL;
820         unsigned long to_addr, from_addr;
821         int r;
822
823         /* Get HPA for from address */
824         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
825         if (!from_memslot)
826                 return -EFAULT;
827         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
828                              << PAGE_SHIFT))
829                 return -EINVAL;
830         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
831         if (kvm_is_error_hva(from_addr))
832                 return -EFAULT;
833         from_addr |= (from & (PAGE_SIZE - 1));
834
835         /* Get HPA for to address */
836         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
837         if (!to_memslot)
838                 return -EFAULT;
839         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
840                            << PAGE_SHIFT))
841                 return -EINVAL;
842         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
843         if (kvm_is_error_hva(to_addr))
844                 return -EFAULT;
845         to_addr |= (to & (PAGE_SIZE - 1));
846
847         /* Perform copy */
848         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
849                              len);
850         if (r)
851                 return -EFAULT;
852         mark_page_dirty(kvm, to >> PAGE_SHIFT);
853         return 0;
854 }
855
856 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
857                                unsigned long dest, unsigned long src)
858 {
859         u64 pg_sz = SZ_4K;              /* 4K page size */
860         u64 pg_mask = SZ_4K - 1;
861         int ret;
862
863         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
864         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
865                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
866                 return H_PARAMETER;
867
868         /* dest (and src if copy_page flag set) must be page aligned */
869         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
870                 return H_PARAMETER;
871
872         /* zero and/or copy the page as determined by the flags */
873         if (flags & H_COPY_PAGE) {
874                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
875                 if (ret < 0)
876                         return H_PARAMETER;
877         } else if (flags & H_ZERO_PAGE) {
878                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
879                 if (ret < 0)
880                         return H_PARAMETER;
881         }
882
883         /* We can ignore the remaining flags */
884
885         return H_SUCCESS;
886 }
887
888 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
889 {
890         struct kvmppc_vcore *vcore = target->arch.vcore;
891
892         /*
893          * We expect to have been called by the real mode handler
894          * (kvmppc_rm_h_confer()) which would have directly returned
895          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
896          * have useful work to do and should not confer) so we don't
897          * recheck that here.
898          *
899          * In the case of the P9 single vcpu per vcore case, the real
900          * mode handler is not called but no other threads are in the
901          * source vcore.
902          */
903
904         spin_lock(&vcore->lock);
905         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
906             vcore->vcore_state != VCORE_INACTIVE &&
907             vcore->runner)
908                 target = vcore->runner;
909         spin_unlock(&vcore->lock);
910
911         return kvm_vcpu_yield_to(target);
912 }
913
914 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
915 {
916         int yield_count = 0;
917         struct lppaca *lppaca;
918
919         spin_lock(&vcpu->arch.vpa_update_lock);
920         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
921         if (lppaca)
922                 yield_count = be32_to_cpu(lppaca->yield_count);
923         spin_unlock(&vcpu->arch.vpa_update_lock);
924         return yield_count;
925 }
926
927 /*
928  * H_RPT_INVALIDATE hcall handler for nested guests.
929  *
930  * Handles only nested process-scoped invalidation requests in L0.
931  */
932 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
933 {
934         unsigned long type = kvmppc_get_gpr(vcpu, 6);
935         unsigned long pid, pg_sizes, start, end;
936
937         /*
938          * The partition-scoped invalidations aren't handled here in L0.
939          */
940         if (type & H_RPTI_TYPE_NESTED)
941                 return RESUME_HOST;
942
943         pid = kvmppc_get_gpr(vcpu, 4);
944         pg_sizes = kvmppc_get_gpr(vcpu, 7);
945         start = kvmppc_get_gpr(vcpu, 8);
946         end = kvmppc_get_gpr(vcpu, 9);
947
948         do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
949                                 type, pg_sizes, start, end);
950
951         kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
952         return RESUME_GUEST;
953 }
954
955 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
956                                     unsigned long id, unsigned long target,
957                                     unsigned long type, unsigned long pg_sizes,
958                                     unsigned long start, unsigned long end)
959 {
960         if (!kvm_is_radix(vcpu->kvm))
961                 return H_UNSUPPORTED;
962
963         if (end < start)
964                 return H_P5;
965
966         /*
967          * Partition-scoped invalidation for nested guests.
968          */
969         if (type & H_RPTI_TYPE_NESTED) {
970                 if (!nesting_enabled(vcpu->kvm))
971                         return H_FUNCTION;
972
973                 /* Support only cores as target */
974                 if (target != H_RPTI_TARGET_CMMU)
975                         return H_P2;
976
977                 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
978                                                start, end);
979         }
980
981         /*
982          * Process-scoped invalidation for L1 guests.
983          */
984         do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
985                                 type, pg_sizes, start, end);
986         return H_SUCCESS;
987 }
988
989 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
990 {
991         struct kvm *kvm = vcpu->kvm;
992         unsigned long req = kvmppc_get_gpr(vcpu, 3);
993         unsigned long target, ret = H_SUCCESS;
994         int yield_count;
995         struct kvm_vcpu *tvcpu;
996         int idx, rc;
997
998         if (req <= MAX_HCALL_OPCODE &&
999             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1000                 return RESUME_HOST;
1001
1002         switch (req) {
1003         case H_REMOVE:
1004                 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1005                                         kvmppc_get_gpr(vcpu, 5),
1006                                         kvmppc_get_gpr(vcpu, 6));
1007                 if (ret == H_TOO_HARD)
1008                         return RESUME_HOST;
1009                 break;
1010         case H_ENTER:
1011                 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1012                                         kvmppc_get_gpr(vcpu, 5),
1013                                         kvmppc_get_gpr(vcpu, 6),
1014                                         kvmppc_get_gpr(vcpu, 7));
1015                 if (ret == H_TOO_HARD)
1016                         return RESUME_HOST;
1017                 break;
1018         case H_READ:
1019                 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1020                                         kvmppc_get_gpr(vcpu, 5));
1021                 if (ret == H_TOO_HARD)
1022                         return RESUME_HOST;
1023                 break;
1024         case H_CLEAR_MOD:
1025                 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1026                                         kvmppc_get_gpr(vcpu, 5));
1027                 if (ret == H_TOO_HARD)
1028                         return RESUME_HOST;
1029                 break;
1030         case H_CLEAR_REF:
1031                 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1032                                         kvmppc_get_gpr(vcpu, 5));
1033                 if (ret == H_TOO_HARD)
1034                         return RESUME_HOST;
1035                 break;
1036         case H_PROTECT:
1037                 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1038                                         kvmppc_get_gpr(vcpu, 5),
1039                                         kvmppc_get_gpr(vcpu, 6));
1040                 if (ret == H_TOO_HARD)
1041                         return RESUME_HOST;
1042                 break;
1043         case H_BULK_REMOVE:
1044                 ret = kvmppc_h_bulk_remove(vcpu);
1045                 if (ret == H_TOO_HARD)
1046                         return RESUME_HOST;
1047                 break;
1048
1049         case H_CEDE:
1050                 break;
1051         case H_PROD:
1052                 target = kvmppc_get_gpr(vcpu, 4);
1053                 tvcpu = kvmppc_find_vcpu(kvm, target);
1054                 if (!tvcpu) {
1055                         ret = H_PARAMETER;
1056                         break;
1057                 }
1058                 tvcpu->arch.prodded = 1;
1059                 smp_mb();
1060                 if (tvcpu->arch.ceded)
1061                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1062                 break;
1063         case H_CONFER:
1064                 target = kvmppc_get_gpr(vcpu, 4);
1065                 if (target == -1)
1066                         break;
1067                 tvcpu = kvmppc_find_vcpu(kvm, target);
1068                 if (!tvcpu) {
1069                         ret = H_PARAMETER;
1070                         break;
1071                 }
1072                 yield_count = kvmppc_get_gpr(vcpu, 5);
1073                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1074                         break;
1075                 kvm_arch_vcpu_yield_to(tvcpu);
1076                 break;
1077         case H_REGISTER_VPA:
1078                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1079                                         kvmppc_get_gpr(vcpu, 5),
1080                                         kvmppc_get_gpr(vcpu, 6));
1081                 break;
1082         case H_RTAS:
1083                 if (list_empty(&kvm->arch.rtas_tokens))
1084                         return RESUME_HOST;
1085
1086                 idx = srcu_read_lock(&kvm->srcu);
1087                 rc = kvmppc_rtas_hcall(vcpu);
1088                 srcu_read_unlock(&kvm->srcu, idx);
1089
1090                 if (rc == -ENOENT)
1091                         return RESUME_HOST;
1092                 else if (rc == 0)
1093                         break;
1094
1095                 /* Send the error out to userspace via KVM_RUN */
1096                 return rc;
1097         case H_LOGICAL_CI_LOAD:
1098                 ret = kvmppc_h_logical_ci_load(vcpu);
1099                 if (ret == H_TOO_HARD)
1100                         return RESUME_HOST;
1101                 break;
1102         case H_LOGICAL_CI_STORE:
1103                 ret = kvmppc_h_logical_ci_store(vcpu);
1104                 if (ret == H_TOO_HARD)
1105                         return RESUME_HOST;
1106                 break;
1107         case H_SET_MODE:
1108                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1109                                         kvmppc_get_gpr(vcpu, 5),
1110                                         kvmppc_get_gpr(vcpu, 6),
1111                                         kvmppc_get_gpr(vcpu, 7));
1112                 if (ret == H_TOO_HARD)
1113                         return RESUME_HOST;
1114                 break;
1115         case H_XIRR:
1116         case H_CPPR:
1117         case H_EOI:
1118         case H_IPI:
1119         case H_IPOLL:
1120         case H_XIRR_X:
1121                 if (kvmppc_xics_enabled(vcpu)) {
1122                         if (xics_on_xive()) {
1123                                 ret = H_NOT_AVAILABLE;
1124                                 return RESUME_GUEST;
1125                         }
1126                         ret = kvmppc_xics_hcall(vcpu, req);
1127                         break;
1128                 }
1129                 return RESUME_HOST;
1130         case H_SET_DABR:
1131                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1132                 break;
1133         case H_SET_XDABR:
1134                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1135                                                 kvmppc_get_gpr(vcpu, 5));
1136                 break;
1137 #ifdef CONFIG_SPAPR_TCE_IOMMU
1138         case H_GET_TCE:
1139                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1140                                                 kvmppc_get_gpr(vcpu, 5));
1141                 if (ret == H_TOO_HARD)
1142                         return RESUME_HOST;
1143                 break;
1144         case H_PUT_TCE:
1145                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1146                                                 kvmppc_get_gpr(vcpu, 5),
1147                                                 kvmppc_get_gpr(vcpu, 6));
1148                 if (ret == H_TOO_HARD)
1149                         return RESUME_HOST;
1150                 break;
1151         case H_PUT_TCE_INDIRECT:
1152                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1153                                                 kvmppc_get_gpr(vcpu, 5),
1154                                                 kvmppc_get_gpr(vcpu, 6),
1155                                                 kvmppc_get_gpr(vcpu, 7));
1156                 if (ret == H_TOO_HARD)
1157                         return RESUME_HOST;
1158                 break;
1159         case H_STUFF_TCE:
1160                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1161                                                 kvmppc_get_gpr(vcpu, 5),
1162                                                 kvmppc_get_gpr(vcpu, 6),
1163                                                 kvmppc_get_gpr(vcpu, 7));
1164                 if (ret == H_TOO_HARD)
1165                         return RESUME_HOST;
1166                 break;
1167 #endif
1168         case H_RANDOM:
1169                 if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4]))
1170                         ret = H_HARDWARE;
1171                 break;
1172         case H_RPT_INVALIDATE:
1173                 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1174                                               kvmppc_get_gpr(vcpu, 5),
1175                                               kvmppc_get_gpr(vcpu, 6),
1176                                               kvmppc_get_gpr(vcpu, 7),
1177                                               kvmppc_get_gpr(vcpu, 8),
1178                                               kvmppc_get_gpr(vcpu, 9));
1179                 break;
1180
1181         case H_SET_PARTITION_TABLE:
1182                 ret = H_FUNCTION;
1183                 if (nesting_enabled(kvm))
1184                         ret = kvmhv_set_partition_table(vcpu);
1185                 break;
1186         case H_ENTER_NESTED:
1187                 ret = H_FUNCTION;
1188                 if (!nesting_enabled(kvm))
1189                         break;
1190                 ret = kvmhv_enter_nested_guest(vcpu);
1191                 if (ret == H_INTERRUPT) {
1192                         kvmppc_set_gpr(vcpu, 3, 0);
1193                         vcpu->arch.hcall_needed = 0;
1194                         return -EINTR;
1195                 } else if (ret == H_TOO_HARD) {
1196                         kvmppc_set_gpr(vcpu, 3, 0);
1197                         vcpu->arch.hcall_needed = 0;
1198                         return RESUME_HOST;
1199                 }
1200                 break;
1201         case H_TLB_INVALIDATE:
1202                 ret = H_FUNCTION;
1203                 if (nesting_enabled(kvm))
1204                         ret = kvmhv_do_nested_tlbie(vcpu);
1205                 break;
1206         case H_COPY_TOFROM_GUEST:
1207                 ret = H_FUNCTION;
1208                 if (nesting_enabled(kvm))
1209                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1210                 break;
1211         case H_PAGE_INIT:
1212                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1213                                          kvmppc_get_gpr(vcpu, 5),
1214                                          kvmppc_get_gpr(vcpu, 6));
1215                 break;
1216         case H_SVM_PAGE_IN:
1217                 ret = H_UNSUPPORTED;
1218                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1219                         ret = kvmppc_h_svm_page_in(kvm,
1220                                                    kvmppc_get_gpr(vcpu, 4),
1221                                                    kvmppc_get_gpr(vcpu, 5),
1222                                                    kvmppc_get_gpr(vcpu, 6));
1223                 break;
1224         case H_SVM_PAGE_OUT:
1225                 ret = H_UNSUPPORTED;
1226                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1227                         ret = kvmppc_h_svm_page_out(kvm,
1228                                                     kvmppc_get_gpr(vcpu, 4),
1229                                                     kvmppc_get_gpr(vcpu, 5),
1230                                                     kvmppc_get_gpr(vcpu, 6));
1231                 break;
1232         case H_SVM_INIT_START:
1233                 ret = H_UNSUPPORTED;
1234                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1235                         ret = kvmppc_h_svm_init_start(kvm);
1236                 break;
1237         case H_SVM_INIT_DONE:
1238                 ret = H_UNSUPPORTED;
1239                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1240                         ret = kvmppc_h_svm_init_done(kvm);
1241                 break;
1242         case H_SVM_INIT_ABORT:
1243                 /*
1244                  * Even if that call is made by the Ultravisor, the SSR1 value
1245                  * is the guest context one, with the secure bit clear as it has
1246                  * not yet been secured. So we can't check it here.
1247                  * Instead the kvm->arch.secure_guest flag is checked inside
1248                  * kvmppc_h_svm_init_abort().
1249                  */
1250                 ret = kvmppc_h_svm_init_abort(kvm);
1251                 break;
1252
1253         default:
1254                 return RESUME_HOST;
1255         }
1256         WARN_ON_ONCE(ret == H_TOO_HARD);
1257         kvmppc_set_gpr(vcpu, 3, ret);
1258         vcpu->arch.hcall_needed = 0;
1259         return RESUME_GUEST;
1260 }
1261
1262 /*
1263  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1264  * handlers in book3s_hv_rmhandlers.S.
1265  *
1266  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1267  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1268  */
1269 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1270 {
1271         vcpu->arch.shregs.msr |= MSR_EE;
1272         vcpu->arch.ceded = 1;
1273         smp_mb();
1274         if (vcpu->arch.prodded) {
1275                 vcpu->arch.prodded = 0;
1276                 smp_mb();
1277                 vcpu->arch.ceded = 0;
1278         }
1279 }
1280
1281 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1282 {
1283         switch (cmd) {
1284         case H_CEDE:
1285         case H_PROD:
1286         case H_CONFER:
1287         case H_REGISTER_VPA:
1288         case H_SET_MODE:
1289         case H_LOGICAL_CI_LOAD:
1290         case H_LOGICAL_CI_STORE:
1291 #ifdef CONFIG_KVM_XICS
1292         case H_XIRR:
1293         case H_CPPR:
1294         case H_EOI:
1295         case H_IPI:
1296         case H_IPOLL:
1297         case H_XIRR_X:
1298 #endif
1299         case H_PAGE_INIT:
1300         case H_RPT_INVALIDATE:
1301                 return 1;
1302         }
1303
1304         /* See if it's in the real-mode table */
1305         return kvmppc_hcall_impl_hv_realmode(cmd);
1306 }
1307
1308 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1309 {
1310         u32 last_inst;
1311
1312         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1313                                         EMULATE_DONE) {
1314                 /*
1315                  * Fetch failed, so return to guest and
1316                  * try executing it again.
1317                  */
1318                 return RESUME_GUEST;
1319         }
1320
1321         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1322                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1323                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1324                 return RESUME_HOST;
1325         } else {
1326                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1327                 return RESUME_GUEST;
1328         }
1329 }
1330
1331 static void do_nothing(void *x)
1332 {
1333 }
1334
1335 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1336 {
1337         int thr, cpu, pcpu, nthreads;
1338         struct kvm_vcpu *v;
1339         unsigned long dpdes;
1340
1341         nthreads = vcpu->kvm->arch.emul_smt_mode;
1342         dpdes = 0;
1343         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1344         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1345                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1346                 if (!v)
1347                         continue;
1348                 /*
1349                  * If the vcpu is currently running on a physical cpu thread,
1350                  * interrupt it in order to pull it out of the guest briefly,
1351                  * which will update its vcore->dpdes value.
1352                  */
1353                 pcpu = READ_ONCE(v->cpu);
1354                 if (pcpu >= 0)
1355                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1356                 if (kvmppc_doorbell_pending(v))
1357                         dpdes |= 1 << thr;
1358         }
1359         return dpdes;
1360 }
1361
1362 /*
1363  * On POWER9, emulate doorbell-related instructions in order to
1364  * give the guest the illusion of running on a multi-threaded core.
1365  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1366  * and mfspr DPDES.
1367  */
1368 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1369 {
1370         u32 inst, rb, thr;
1371         unsigned long arg;
1372         struct kvm *kvm = vcpu->kvm;
1373         struct kvm_vcpu *tvcpu;
1374
1375         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1376                 return RESUME_GUEST;
1377         if (get_op(inst) != 31)
1378                 return EMULATE_FAIL;
1379         rb = get_rb(inst);
1380         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1381         switch (get_xop(inst)) {
1382         case OP_31_XOP_MSGSNDP:
1383                 arg = kvmppc_get_gpr(vcpu, rb);
1384                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1385                         break;
1386                 arg &= 0x7f;
1387                 if (arg >= kvm->arch.emul_smt_mode)
1388                         break;
1389                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1390                 if (!tvcpu)
1391                         break;
1392                 if (!tvcpu->arch.doorbell_request) {
1393                         tvcpu->arch.doorbell_request = 1;
1394                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1395                 }
1396                 break;
1397         case OP_31_XOP_MSGCLRP:
1398                 arg = kvmppc_get_gpr(vcpu, rb);
1399                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1400                         break;
1401                 vcpu->arch.vcore->dpdes = 0;
1402                 vcpu->arch.doorbell_request = 0;
1403                 break;
1404         case OP_31_XOP_MFSPR:
1405                 switch (get_sprn(inst)) {
1406                 case SPRN_TIR:
1407                         arg = thr;
1408                         break;
1409                 case SPRN_DPDES:
1410                         arg = kvmppc_read_dpdes(vcpu);
1411                         break;
1412                 default:
1413                         return EMULATE_FAIL;
1414                 }
1415                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1416                 break;
1417         default:
1418                 return EMULATE_FAIL;
1419         }
1420         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1421         return RESUME_GUEST;
1422 }
1423
1424 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1425                                  struct task_struct *tsk)
1426 {
1427         struct kvm_run *run = vcpu->run;
1428         int r = RESUME_HOST;
1429
1430         vcpu->stat.sum_exits++;
1431
1432         /*
1433          * This can happen if an interrupt occurs in the last stages
1434          * of guest entry or the first stages of guest exit (i.e. after
1435          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1436          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1437          * That can happen due to a bug, or due to a machine check
1438          * occurring at just the wrong time.
1439          */
1440         if (vcpu->arch.shregs.msr & MSR_HV) {
1441                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1442                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1443                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1444                         vcpu->arch.shregs.msr);
1445                 kvmppc_dump_regs(vcpu);
1446                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1447                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1448                 return RESUME_HOST;
1449         }
1450         run->exit_reason = KVM_EXIT_UNKNOWN;
1451         run->ready_for_interrupt_injection = 1;
1452         switch (vcpu->arch.trap) {
1453         /* We're good on these - the host merely wanted to get our attention */
1454         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1455                 vcpu->stat.dec_exits++;
1456                 r = RESUME_GUEST;
1457                 break;
1458         case BOOK3S_INTERRUPT_EXTERNAL:
1459         case BOOK3S_INTERRUPT_H_DOORBELL:
1460         case BOOK3S_INTERRUPT_H_VIRT:
1461                 vcpu->stat.ext_intr_exits++;
1462                 r = RESUME_GUEST;
1463                 break;
1464         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1465         case BOOK3S_INTERRUPT_HMI:
1466         case BOOK3S_INTERRUPT_PERFMON:
1467         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1468                 r = RESUME_GUEST;
1469                 break;
1470         case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1471                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1472                                               DEFAULT_RATELIMIT_BURST);
1473                 /*
1474                  * Print the MCE event to host console. Ratelimit so the guest
1475                  * can't flood the host log.
1476                  */
1477                 if (__ratelimit(&rs))
1478                         machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1479
1480                 /*
1481                  * If the guest can do FWNMI, exit to userspace so it can
1482                  * deliver a FWNMI to the guest.
1483                  * Otherwise we synthesize a machine check for the guest
1484                  * so that it knows that the machine check occurred.
1485                  */
1486                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1487                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1488                         kvmppc_core_queue_machine_check(vcpu, flags);
1489                         r = RESUME_GUEST;
1490                         break;
1491                 }
1492
1493                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1494                 run->exit_reason = KVM_EXIT_NMI;
1495                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1496                 /* Clear out the old NMI status from run->flags */
1497                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1498                 /* Now set the NMI status */
1499                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1500                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1501                 else
1502                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1503
1504                 r = RESUME_HOST;
1505                 break;
1506         }
1507         case BOOK3S_INTERRUPT_PROGRAM:
1508         {
1509                 ulong flags;
1510                 /*
1511                  * Normally program interrupts are delivered directly
1512                  * to the guest by the hardware, but we can get here
1513                  * as a result of a hypervisor emulation interrupt
1514                  * (e40) getting turned into a 700 by BML RTAS.
1515                  */
1516                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1517                 kvmppc_core_queue_program(vcpu, flags);
1518                 r = RESUME_GUEST;
1519                 break;
1520         }
1521         case BOOK3S_INTERRUPT_SYSCALL:
1522         {
1523                 int i;
1524
1525                 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1526                         /*
1527                          * Guest userspace executed sc 1. This can only be
1528                          * reached by the P9 path because the old path
1529                          * handles this case in realmode hcall handlers.
1530                          */
1531                         if (!kvmhv_vcpu_is_radix(vcpu)) {
1532                                 /*
1533                                  * A guest could be running PR KVM, so this
1534                                  * may be a PR KVM hcall. It must be reflected
1535                                  * to the guest kernel as a sc interrupt.
1536                                  */
1537                                 kvmppc_core_queue_syscall(vcpu);
1538                         } else {
1539                                 /*
1540                                  * Radix guests can not run PR KVM or nested HV
1541                                  * hash guests which might run PR KVM, so this
1542                                  * is always a privilege fault. Send a program
1543                                  * check to guest kernel.
1544                                  */
1545                                 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1546                         }
1547                         r = RESUME_GUEST;
1548                         break;
1549                 }
1550
1551                 /*
1552                  * hcall - gather args and set exit_reason. This will next be
1553                  * handled by kvmppc_pseries_do_hcall which may be able to deal
1554                  * with it and resume guest, or may punt to userspace.
1555                  */
1556                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1557                 for (i = 0; i < 9; ++i)
1558                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1559                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1560                 vcpu->arch.hcall_needed = 1;
1561                 r = RESUME_HOST;
1562                 break;
1563         }
1564         /*
1565          * We get these next two if the guest accesses a page which it thinks
1566          * it has mapped but which is not actually present, either because
1567          * it is for an emulated I/O device or because the corresonding
1568          * host page has been paged out.
1569          *
1570          * Any other HDSI/HISI interrupts have been handled already for P7/8
1571          * guests. For POWER9 hash guests not using rmhandlers, basic hash
1572          * fault handling is done here.
1573          */
1574         case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1575                 unsigned long vsid;
1576                 long err;
1577
1578                 if (vcpu->arch.fault_dsisr == HDSISR_CANARY) {
1579                         r = RESUME_GUEST; /* Just retry if it's the canary */
1580                         break;
1581                 }
1582
1583                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1584                         /*
1585                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1586                          * already attempted to handle this in rmhandlers. The
1587                          * hash fault handling below is v3 only (it uses ASDR
1588                          * via fault_gpa).
1589                          */
1590                         r = RESUME_PAGE_FAULT;
1591                         break;
1592                 }
1593
1594                 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1595                         kvmppc_core_queue_data_storage(vcpu,
1596                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1597                         r = RESUME_GUEST;
1598                         break;
1599                 }
1600
1601                 if (!(vcpu->arch.shregs.msr & MSR_DR))
1602                         vsid = vcpu->kvm->arch.vrma_slb_v;
1603                 else
1604                         vsid = vcpu->arch.fault_gpa;
1605
1606                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1607                                 vsid, vcpu->arch.fault_dsisr, true);
1608                 if (err == 0) {
1609                         r = RESUME_GUEST;
1610                 } else if (err == -1 || err == -2) {
1611                         r = RESUME_PAGE_FAULT;
1612                 } else {
1613                         kvmppc_core_queue_data_storage(vcpu,
1614                                 vcpu->arch.fault_dar, err);
1615                         r = RESUME_GUEST;
1616                 }
1617                 break;
1618         }
1619         case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1620                 unsigned long vsid;
1621                 long err;
1622
1623                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1624                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1625                         DSISR_SRR1_MATCH_64S;
1626                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1627                         /*
1628                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1629                          * already attempted to handle this in rmhandlers. The
1630                          * hash fault handling below is v3 only (it uses ASDR
1631                          * via fault_gpa).
1632                          */
1633                         if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1634                                 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1635                         r = RESUME_PAGE_FAULT;
1636                         break;
1637                 }
1638
1639                 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1640                         kvmppc_core_queue_inst_storage(vcpu,
1641                                 vcpu->arch.fault_dsisr);
1642                         r = RESUME_GUEST;
1643                         break;
1644                 }
1645
1646                 if (!(vcpu->arch.shregs.msr & MSR_IR))
1647                         vsid = vcpu->kvm->arch.vrma_slb_v;
1648                 else
1649                         vsid = vcpu->arch.fault_gpa;
1650
1651                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1652                                 vsid, vcpu->arch.fault_dsisr, false);
1653                 if (err == 0) {
1654                         r = RESUME_GUEST;
1655                 } else if (err == -1) {
1656                         r = RESUME_PAGE_FAULT;
1657                 } else {
1658                         kvmppc_core_queue_inst_storage(vcpu, err);
1659                         r = RESUME_GUEST;
1660                 }
1661                 break;
1662         }
1663
1664         /*
1665          * This occurs if the guest executes an illegal instruction.
1666          * If the guest debug is disabled, generate a program interrupt
1667          * to the guest. If guest debug is enabled, we need to check
1668          * whether the instruction is a software breakpoint instruction.
1669          * Accordingly return to Guest or Host.
1670          */
1671         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1672                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1673                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1674                                 swab32(vcpu->arch.emul_inst) :
1675                                 vcpu->arch.emul_inst;
1676                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1677                         r = kvmppc_emulate_debug_inst(vcpu);
1678                 } else {
1679                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1680                         r = RESUME_GUEST;
1681                 }
1682                 break;
1683
1684 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1685         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1686                 /*
1687                  * This occurs for various TM-related instructions that
1688                  * we need to emulate on POWER9 DD2.2.  We have already
1689                  * handled the cases where the guest was in real-suspend
1690                  * mode and was transitioning to transactional state.
1691                  */
1692                 r = kvmhv_p9_tm_emulation(vcpu);
1693                 if (r != -1)
1694                         break;
1695                 fallthrough; /* go to facility unavailable handler */
1696 #endif
1697
1698         /*
1699          * This occurs if the guest (kernel or userspace), does something that
1700          * is prohibited by HFSCR.
1701          * On POWER9, this could be a doorbell instruction that we need
1702          * to emulate.
1703          * Otherwise, we just generate a program interrupt to the guest.
1704          */
1705         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1706                 r = EMULATE_FAIL;
1707                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1708                     cpu_has_feature(CPU_FTR_ARCH_300))
1709                         r = kvmppc_emulate_doorbell_instr(vcpu);
1710                 if (r == EMULATE_FAIL) {
1711                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1712                         r = RESUME_GUEST;
1713                 }
1714                 break;
1715
1716         case BOOK3S_INTERRUPT_HV_RM_HARD:
1717                 r = RESUME_PASSTHROUGH;
1718                 break;
1719         default:
1720                 kvmppc_dump_regs(vcpu);
1721                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1722                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1723                         vcpu->arch.shregs.msr);
1724                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1725                 r = RESUME_HOST;
1726                 break;
1727         }
1728
1729         return r;
1730 }
1731
1732 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1733 {
1734         struct kvm_nested_guest *nested = vcpu->arch.nested;
1735         int r;
1736         int srcu_idx;
1737
1738         vcpu->stat.sum_exits++;
1739
1740         /*
1741          * This can happen if an interrupt occurs in the last stages
1742          * of guest entry or the first stages of guest exit (i.e. after
1743          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1744          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1745          * That can happen due to a bug, or due to a machine check
1746          * occurring at just the wrong time.
1747          */
1748         if (vcpu->arch.shregs.msr & MSR_HV) {
1749                 pr_emerg("KVM trap in HV mode while nested!\n");
1750                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1751                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1752                          vcpu->arch.shregs.msr);
1753                 kvmppc_dump_regs(vcpu);
1754                 return RESUME_HOST;
1755         }
1756         switch (vcpu->arch.trap) {
1757         /* We're good on these - the host merely wanted to get our attention */
1758         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1759                 vcpu->stat.dec_exits++;
1760                 r = RESUME_GUEST;
1761                 break;
1762         case BOOK3S_INTERRUPT_EXTERNAL:
1763                 vcpu->stat.ext_intr_exits++;
1764                 r = RESUME_HOST;
1765                 break;
1766         case BOOK3S_INTERRUPT_H_DOORBELL:
1767         case BOOK3S_INTERRUPT_H_VIRT:
1768                 vcpu->stat.ext_intr_exits++;
1769                 r = RESUME_GUEST;
1770                 break;
1771         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1772         case BOOK3S_INTERRUPT_HMI:
1773         case BOOK3S_INTERRUPT_PERFMON:
1774         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1775                 r = RESUME_GUEST;
1776                 break;
1777         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1778         {
1779                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1780                                               DEFAULT_RATELIMIT_BURST);
1781                 /* Pass the machine check to the L1 guest */
1782                 r = RESUME_HOST;
1783                 /* Print the MCE event to host console. */
1784                 if (__ratelimit(&rs))
1785                         machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1786                 break;
1787         }
1788         /*
1789          * We get these next two if the guest accesses a page which it thinks
1790          * it has mapped but which is not actually present, either because
1791          * it is for an emulated I/O device or because the corresonding
1792          * host page has been paged out.
1793          */
1794         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1795                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1796                 r = kvmhv_nested_page_fault(vcpu);
1797                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1798                 break;
1799         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1800                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1801                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1802                                          DSISR_SRR1_MATCH_64S;
1803                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1804                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1805                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1806                 r = kvmhv_nested_page_fault(vcpu);
1807                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1808                 break;
1809
1810 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1811         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1812                 /*
1813                  * This occurs for various TM-related instructions that
1814                  * we need to emulate on POWER9 DD2.2.  We have already
1815                  * handled the cases where the guest was in real-suspend
1816                  * mode and was transitioning to transactional state.
1817                  */
1818                 r = kvmhv_p9_tm_emulation(vcpu);
1819                 if (r != -1)
1820                         break;
1821                 fallthrough; /* go to facility unavailable handler */
1822 #endif
1823
1824         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1825                 u64 cause = vcpu->arch.hfscr >> 56;
1826
1827                 /*
1828                  * Only pass HFU interrupts to the L1 if the facility is
1829                  * permitted but disabled by the L1's HFSCR, otherwise
1830                  * the interrupt does not make sense to the L1 so turn
1831                  * it into a HEAI.
1832                  */
1833                 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1834                                         (nested->hfscr & (1UL << cause))) {
1835                         vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
1836
1837                         /*
1838                          * If the fetch failed, return to guest and
1839                          * try executing it again.
1840                          */
1841                         r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1842                                                  &vcpu->arch.emul_inst);
1843                         if (r != EMULATE_DONE)
1844                                 r = RESUME_GUEST;
1845                         else
1846                                 r = RESUME_HOST;
1847                 } else {
1848                         r = RESUME_HOST;
1849                 }
1850
1851                 break;
1852         }
1853
1854         case BOOK3S_INTERRUPT_HV_RM_HARD:
1855                 vcpu->arch.trap = 0;
1856                 r = RESUME_GUEST;
1857                 if (!xics_on_xive())
1858                         kvmppc_xics_rm_complete(vcpu, 0);
1859                 break;
1860         case BOOK3S_INTERRUPT_SYSCALL:
1861         {
1862                 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1863
1864                 /*
1865                  * The H_RPT_INVALIDATE hcalls issued by nested
1866                  * guests for process-scoped invalidations when
1867                  * GTSE=0, are handled here in L0.
1868                  */
1869                 if (req == H_RPT_INVALIDATE) {
1870                         r = kvmppc_nested_h_rpt_invalidate(vcpu);
1871                         break;
1872                 }
1873
1874                 r = RESUME_HOST;
1875                 break;
1876         }
1877         default:
1878                 r = RESUME_HOST;
1879                 break;
1880         }
1881
1882         return r;
1883 }
1884
1885 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1886                                             struct kvm_sregs *sregs)
1887 {
1888         int i;
1889
1890         memset(sregs, 0, sizeof(struct kvm_sregs));
1891         sregs->pvr = vcpu->arch.pvr;
1892         for (i = 0; i < vcpu->arch.slb_max; i++) {
1893                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1894                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1895         }
1896
1897         return 0;
1898 }
1899
1900 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1901                                             struct kvm_sregs *sregs)
1902 {
1903         int i, j;
1904
1905         /* Only accept the same PVR as the host's, since we can't spoof it */
1906         if (sregs->pvr != vcpu->arch.pvr)
1907                 return -EINVAL;
1908
1909         j = 0;
1910         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1911                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1912                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1913                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1914                         ++j;
1915                 }
1916         }
1917         vcpu->arch.slb_max = j;
1918
1919         return 0;
1920 }
1921
1922 /*
1923  * Enforce limits on guest LPCR values based on hardware availability,
1924  * guest configuration, and possibly hypervisor support and security
1925  * concerns.
1926  */
1927 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
1928 {
1929         /* LPCR_TC only applies to HPT guests */
1930         if (kvm_is_radix(kvm))
1931                 lpcr &= ~LPCR_TC;
1932
1933         /* On POWER8 and above, userspace can modify AIL */
1934         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1935                 lpcr &= ~LPCR_AIL;
1936         if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
1937                 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
1938         /*
1939          * On some POWER9s we force AIL off for radix guests to prevent
1940          * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
1941          * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
1942          * be cached, which the host TLB management does not expect.
1943          */
1944         if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
1945                 lpcr &= ~LPCR_AIL;
1946
1947         /*
1948          * On POWER9, allow userspace to enable large decrementer for the
1949          * guest, whether or not the host has it enabled.
1950          */
1951         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1952                 lpcr &= ~LPCR_LD;
1953
1954         return lpcr;
1955 }
1956
1957 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
1958 {
1959         if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
1960                 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
1961                           lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
1962         }
1963 }
1964
1965 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1966                 bool preserve_top32)
1967 {
1968         struct kvm *kvm = vcpu->kvm;
1969         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1970         u64 mask;
1971
1972         spin_lock(&vc->lock);
1973
1974         /*
1975          * Userspace can only modify
1976          * DPFD (default prefetch depth), ILE (interrupt little-endian),
1977          * TC (translation control), AIL (alternate interrupt location),
1978          * LD (large decrementer).
1979          * These are subject to restrictions from kvmppc_filter_lcpr_hv().
1980          */
1981         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
1982
1983         /* Broken 32-bit version of LPCR must not clear top bits */
1984         if (preserve_top32)
1985                 mask &= 0xFFFFFFFF;
1986
1987         new_lpcr = kvmppc_filter_lpcr_hv(kvm,
1988                         (vc->lpcr & ~mask) | (new_lpcr & mask));
1989
1990         /*
1991          * If ILE (interrupt little-endian) has changed, update the
1992          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1993          */
1994         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1995                 struct kvm_vcpu *vcpu;
1996                 int i;
1997
1998                 kvm_for_each_vcpu(i, vcpu, kvm) {
1999                         if (vcpu->arch.vcore != vc)
2000                                 continue;
2001                         if (new_lpcr & LPCR_ILE)
2002                                 vcpu->arch.intr_msr |= MSR_LE;
2003                         else
2004                                 vcpu->arch.intr_msr &= ~MSR_LE;
2005                 }
2006         }
2007
2008         vc->lpcr = new_lpcr;
2009
2010         spin_unlock(&vc->lock);
2011 }
2012
2013 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2014                                  union kvmppc_one_reg *val)
2015 {
2016         int r = 0;
2017         long int i;
2018
2019         switch (id) {
2020         case KVM_REG_PPC_DEBUG_INST:
2021                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2022                 break;
2023         case KVM_REG_PPC_HIOR:
2024                 *val = get_reg_val(id, 0);
2025                 break;
2026         case KVM_REG_PPC_DABR:
2027                 *val = get_reg_val(id, vcpu->arch.dabr);
2028                 break;
2029         case KVM_REG_PPC_DABRX:
2030                 *val = get_reg_val(id, vcpu->arch.dabrx);
2031                 break;
2032         case KVM_REG_PPC_DSCR:
2033                 *val = get_reg_val(id, vcpu->arch.dscr);
2034                 break;
2035         case KVM_REG_PPC_PURR:
2036                 *val = get_reg_val(id, vcpu->arch.purr);
2037                 break;
2038         case KVM_REG_PPC_SPURR:
2039                 *val = get_reg_val(id, vcpu->arch.spurr);
2040                 break;
2041         case KVM_REG_PPC_AMR:
2042                 *val = get_reg_val(id, vcpu->arch.amr);
2043                 break;
2044         case KVM_REG_PPC_UAMOR:
2045                 *val = get_reg_val(id, vcpu->arch.uamor);
2046                 break;
2047         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2048                 i = id - KVM_REG_PPC_MMCR0;
2049                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2050                 break;
2051         case KVM_REG_PPC_MMCR2:
2052                 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2053                 break;
2054         case KVM_REG_PPC_MMCRA:
2055                 *val = get_reg_val(id, vcpu->arch.mmcra);
2056                 break;
2057         case KVM_REG_PPC_MMCRS:
2058                 *val = get_reg_val(id, vcpu->arch.mmcrs);
2059                 break;
2060         case KVM_REG_PPC_MMCR3:
2061                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2062                 break;
2063         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2064                 i = id - KVM_REG_PPC_PMC1;
2065                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
2066                 break;
2067         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2068                 i = id - KVM_REG_PPC_SPMC1;
2069                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2070                 break;
2071         case KVM_REG_PPC_SIAR:
2072                 *val = get_reg_val(id, vcpu->arch.siar);
2073                 break;
2074         case KVM_REG_PPC_SDAR:
2075                 *val = get_reg_val(id, vcpu->arch.sdar);
2076                 break;
2077         case KVM_REG_PPC_SIER:
2078                 *val = get_reg_val(id, vcpu->arch.sier[0]);
2079                 break;
2080         case KVM_REG_PPC_SIER2:
2081                 *val = get_reg_val(id, vcpu->arch.sier[1]);
2082                 break;
2083         case KVM_REG_PPC_SIER3:
2084                 *val = get_reg_val(id, vcpu->arch.sier[2]);
2085                 break;
2086         case KVM_REG_PPC_IAMR:
2087                 *val = get_reg_val(id, vcpu->arch.iamr);
2088                 break;
2089         case KVM_REG_PPC_PSPB:
2090                 *val = get_reg_val(id, vcpu->arch.pspb);
2091                 break;
2092         case KVM_REG_PPC_DPDES:
2093                 /*
2094                  * On POWER9, where we are emulating msgsndp etc.,
2095                  * we return 1 bit for each vcpu, which can come from
2096                  * either vcore->dpdes or doorbell_request.
2097                  * On POWER8, doorbell_request is 0.
2098                  */
2099                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
2100                                    vcpu->arch.doorbell_request);
2101                 break;
2102         case KVM_REG_PPC_VTB:
2103                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2104                 break;
2105         case KVM_REG_PPC_DAWR:
2106                 *val = get_reg_val(id, vcpu->arch.dawr0);
2107                 break;
2108         case KVM_REG_PPC_DAWRX:
2109                 *val = get_reg_val(id, vcpu->arch.dawrx0);
2110                 break;
2111         case KVM_REG_PPC_DAWR1:
2112                 *val = get_reg_val(id, vcpu->arch.dawr1);
2113                 break;
2114         case KVM_REG_PPC_DAWRX1:
2115                 *val = get_reg_val(id, vcpu->arch.dawrx1);
2116                 break;
2117         case KVM_REG_PPC_CIABR:
2118                 *val = get_reg_val(id, vcpu->arch.ciabr);
2119                 break;
2120         case KVM_REG_PPC_CSIGR:
2121                 *val = get_reg_val(id, vcpu->arch.csigr);
2122                 break;
2123         case KVM_REG_PPC_TACR:
2124                 *val = get_reg_val(id, vcpu->arch.tacr);
2125                 break;
2126         case KVM_REG_PPC_TCSCR:
2127                 *val = get_reg_val(id, vcpu->arch.tcscr);
2128                 break;
2129         case KVM_REG_PPC_PID:
2130                 *val = get_reg_val(id, vcpu->arch.pid);
2131                 break;
2132         case KVM_REG_PPC_ACOP:
2133                 *val = get_reg_val(id, vcpu->arch.acop);
2134                 break;
2135         case KVM_REG_PPC_WORT:
2136                 *val = get_reg_val(id, vcpu->arch.wort);
2137                 break;
2138         case KVM_REG_PPC_TIDR:
2139                 *val = get_reg_val(id, vcpu->arch.tid);
2140                 break;
2141         case KVM_REG_PPC_PSSCR:
2142                 *val = get_reg_val(id, vcpu->arch.psscr);
2143                 break;
2144         case KVM_REG_PPC_VPA_ADDR:
2145                 spin_lock(&vcpu->arch.vpa_update_lock);
2146                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2147                 spin_unlock(&vcpu->arch.vpa_update_lock);
2148                 break;
2149         case KVM_REG_PPC_VPA_SLB:
2150                 spin_lock(&vcpu->arch.vpa_update_lock);
2151                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2152                 val->vpaval.length = vcpu->arch.slb_shadow.len;
2153                 spin_unlock(&vcpu->arch.vpa_update_lock);
2154                 break;
2155         case KVM_REG_PPC_VPA_DTL:
2156                 spin_lock(&vcpu->arch.vpa_update_lock);
2157                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2158                 val->vpaval.length = vcpu->arch.dtl.len;
2159                 spin_unlock(&vcpu->arch.vpa_update_lock);
2160                 break;
2161         case KVM_REG_PPC_TB_OFFSET:
2162                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2163                 break;
2164         case KVM_REG_PPC_LPCR:
2165         case KVM_REG_PPC_LPCR_64:
2166                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2167                 break;
2168         case KVM_REG_PPC_PPR:
2169                 *val = get_reg_val(id, vcpu->arch.ppr);
2170                 break;
2171 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2172         case KVM_REG_PPC_TFHAR:
2173                 *val = get_reg_val(id, vcpu->arch.tfhar);
2174                 break;
2175         case KVM_REG_PPC_TFIAR:
2176                 *val = get_reg_val(id, vcpu->arch.tfiar);
2177                 break;
2178         case KVM_REG_PPC_TEXASR:
2179                 *val = get_reg_val(id, vcpu->arch.texasr);
2180                 break;
2181         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2182                 i = id - KVM_REG_PPC_TM_GPR0;
2183                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2184                 break;
2185         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2186         {
2187                 int j;
2188                 i = id - KVM_REG_PPC_TM_VSR0;
2189                 if (i < 32)
2190                         for (j = 0; j < TS_FPRWIDTH; j++)
2191                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2192                 else {
2193                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2194                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
2195                         else
2196                                 r = -ENXIO;
2197                 }
2198                 break;
2199         }
2200         case KVM_REG_PPC_TM_CR:
2201                 *val = get_reg_val(id, vcpu->arch.cr_tm);
2202                 break;
2203         case KVM_REG_PPC_TM_XER:
2204                 *val = get_reg_val(id, vcpu->arch.xer_tm);
2205                 break;
2206         case KVM_REG_PPC_TM_LR:
2207                 *val = get_reg_val(id, vcpu->arch.lr_tm);
2208                 break;
2209         case KVM_REG_PPC_TM_CTR:
2210                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2211                 break;
2212         case KVM_REG_PPC_TM_FPSCR:
2213                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2214                 break;
2215         case KVM_REG_PPC_TM_AMR:
2216                 *val = get_reg_val(id, vcpu->arch.amr_tm);
2217                 break;
2218         case KVM_REG_PPC_TM_PPR:
2219                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2220                 break;
2221         case KVM_REG_PPC_TM_VRSAVE:
2222                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2223                 break;
2224         case KVM_REG_PPC_TM_VSCR:
2225                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2226                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2227                 else
2228                         r = -ENXIO;
2229                 break;
2230         case KVM_REG_PPC_TM_DSCR:
2231                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2232                 break;
2233         case KVM_REG_PPC_TM_TAR:
2234                 *val = get_reg_val(id, vcpu->arch.tar_tm);
2235                 break;
2236 #endif
2237         case KVM_REG_PPC_ARCH_COMPAT:
2238                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2239                 break;
2240         case KVM_REG_PPC_DEC_EXPIRY:
2241                 *val = get_reg_val(id, vcpu->arch.dec_expires +
2242                                    vcpu->arch.vcore->tb_offset);
2243                 break;
2244         case KVM_REG_PPC_ONLINE:
2245                 *val = get_reg_val(id, vcpu->arch.online);
2246                 break;
2247         case KVM_REG_PPC_PTCR:
2248                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2249                 break;
2250         default:
2251                 r = -EINVAL;
2252                 break;
2253         }
2254
2255         return r;
2256 }
2257
2258 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2259                                  union kvmppc_one_reg *val)
2260 {
2261         int r = 0;
2262         long int i;
2263         unsigned long addr, len;
2264
2265         switch (id) {
2266         case KVM_REG_PPC_HIOR:
2267                 /* Only allow this to be set to zero */
2268                 if (set_reg_val(id, *val))
2269                         r = -EINVAL;
2270                 break;
2271         case KVM_REG_PPC_DABR:
2272                 vcpu->arch.dabr = set_reg_val(id, *val);
2273                 break;
2274         case KVM_REG_PPC_DABRX:
2275                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2276                 break;
2277         case KVM_REG_PPC_DSCR:
2278                 vcpu->arch.dscr = set_reg_val(id, *val);
2279                 break;
2280         case KVM_REG_PPC_PURR:
2281                 vcpu->arch.purr = set_reg_val(id, *val);
2282                 break;
2283         case KVM_REG_PPC_SPURR:
2284                 vcpu->arch.spurr = set_reg_val(id, *val);
2285                 break;
2286         case KVM_REG_PPC_AMR:
2287                 vcpu->arch.amr = set_reg_val(id, *val);
2288                 break;
2289         case KVM_REG_PPC_UAMOR:
2290                 vcpu->arch.uamor = set_reg_val(id, *val);
2291                 break;
2292         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2293                 i = id - KVM_REG_PPC_MMCR0;
2294                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2295                 break;
2296         case KVM_REG_PPC_MMCR2:
2297                 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2298                 break;
2299         case KVM_REG_PPC_MMCRA:
2300                 vcpu->arch.mmcra = set_reg_val(id, *val);
2301                 break;
2302         case KVM_REG_PPC_MMCRS:
2303                 vcpu->arch.mmcrs = set_reg_val(id, *val);
2304                 break;
2305         case KVM_REG_PPC_MMCR3:
2306                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2307                 break;
2308         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2309                 i = id - KVM_REG_PPC_PMC1;
2310                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2311                 break;
2312         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2313                 i = id - KVM_REG_PPC_SPMC1;
2314                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2315                 break;
2316         case KVM_REG_PPC_SIAR:
2317                 vcpu->arch.siar = set_reg_val(id, *val);
2318                 break;
2319         case KVM_REG_PPC_SDAR:
2320                 vcpu->arch.sdar = set_reg_val(id, *val);
2321                 break;
2322         case KVM_REG_PPC_SIER:
2323                 vcpu->arch.sier[0] = set_reg_val(id, *val);
2324                 break;
2325         case KVM_REG_PPC_SIER2:
2326                 vcpu->arch.sier[1] = set_reg_val(id, *val);
2327                 break;
2328         case KVM_REG_PPC_SIER3:
2329                 vcpu->arch.sier[2] = set_reg_val(id, *val);
2330                 break;
2331         case KVM_REG_PPC_IAMR:
2332                 vcpu->arch.iamr = set_reg_val(id, *val);
2333                 break;
2334         case KVM_REG_PPC_PSPB:
2335                 vcpu->arch.pspb = set_reg_val(id, *val);
2336                 break;
2337         case KVM_REG_PPC_DPDES:
2338                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2339                 break;
2340         case KVM_REG_PPC_VTB:
2341                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2342                 break;
2343         case KVM_REG_PPC_DAWR:
2344                 vcpu->arch.dawr0 = set_reg_val(id, *val);
2345                 break;
2346         case KVM_REG_PPC_DAWRX:
2347                 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2348                 break;
2349         case KVM_REG_PPC_DAWR1:
2350                 vcpu->arch.dawr1 = set_reg_val(id, *val);
2351                 break;
2352         case KVM_REG_PPC_DAWRX1:
2353                 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2354                 break;
2355         case KVM_REG_PPC_CIABR:
2356                 vcpu->arch.ciabr = set_reg_val(id, *val);
2357                 /* Don't allow setting breakpoints in hypervisor code */
2358                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2359                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
2360                 break;
2361         case KVM_REG_PPC_CSIGR:
2362                 vcpu->arch.csigr = set_reg_val(id, *val);
2363                 break;
2364         case KVM_REG_PPC_TACR:
2365                 vcpu->arch.tacr = set_reg_val(id, *val);
2366                 break;
2367         case KVM_REG_PPC_TCSCR:
2368                 vcpu->arch.tcscr = set_reg_val(id, *val);
2369                 break;
2370         case KVM_REG_PPC_PID:
2371                 vcpu->arch.pid = set_reg_val(id, *val);
2372                 break;
2373         case KVM_REG_PPC_ACOP:
2374                 vcpu->arch.acop = set_reg_val(id, *val);
2375                 break;
2376         case KVM_REG_PPC_WORT:
2377                 vcpu->arch.wort = set_reg_val(id, *val);
2378                 break;
2379         case KVM_REG_PPC_TIDR:
2380                 vcpu->arch.tid = set_reg_val(id, *val);
2381                 break;
2382         case KVM_REG_PPC_PSSCR:
2383                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2384                 break;
2385         case KVM_REG_PPC_VPA_ADDR:
2386                 addr = set_reg_val(id, *val);
2387                 r = -EINVAL;
2388                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2389                               vcpu->arch.dtl.next_gpa))
2390                         break;
2391                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2392                 break;
2393         case KVM_REG_PPC_VPA_SLB:
2394                 addr = val->vpaval.addr;
2395                 len = val->vpaval.length;
2396                 r = -EINVAL;
2397                 if (addr && !vcpu->arch.vpa.next_gpa)
2398                         break;
2399                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2400                 break;
2401         case KVM_REG_PPC_VPA_DTL:
2402                 addr = val->vpaval.addr;
2403                 len = val->vpaval.length;
2404                 r = -EINVAL;
2405                 if (addr && (len < sizeof(struct dtl_entry) ||
2406                              !vcpu->arch.vpa.next_gpa))
2407                         break;
2408                 len -= len % sizeof(struct dtl_entry);
2409                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2410                 break;
2411         case KVM_REG_PPC_TB_OFFSET:
2412                 /* round up to multiple of 2^24 */
2413                 vcpu->arch.vcore->tb_offset =
2414                         ALIGN(set_reg_val(id, *val), 1UL << 24);
2415                 break;
2416         case KVM_REG_PPC_LPCR:
2417                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2418                 break;
2419         case KVM_REG_PPC_LPCR_64:
2420                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2421                 break;
2422         case KVM_REG_PPC_PPR:
2423                 vcpu->arch.ppr = set_reg_val(id, *val);
2424                 break;
2425 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2426         case KVM_REG_PPC_TFHAR:
2427                 vcpu->arch.tfhar = set_reg_val(id, *val);
2428                 break;
2429         case KVM_REG_PPC_TFIAR:
2430                 vcpu->arch.tfiar = set_reg_val(id, *val);
2431                 break;
2432         case KVM_REG_PPC_TEXASR:
2433                 vcpu->arch.texasr = set_reg_val(id, *val);
2434                 break;
2435         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2436                 i = id - KVM_REG_PPC_TM_GPR0;
2437                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2438                 break;
2439         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2440         {
2441                 int j;
2442                 i = id - KVM_REG_PPC_TM_VSR0;
2443                 if (i < 32)
2444                         for (j = 0; j < TS_FPRWIDTH; j++)
2445                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2446                 else
2447                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2448                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2449                         else
2450                                 r = -ENXIO;
2451                 break;
2452         }
2453         case KVM_REG_PPC_TM_CR:
2454                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2455                 break;
2456         case KVM_REG_PPC_TM_XER:
2457                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2458                 break;
2459         case KVM_REG_PPC_TM_LR:
2460                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2461                 break;
2462         case KVM_REG_PPC_TM_CTR:
2463                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2464                 break;
2465         case KVM_REG_PPC_TM_FPSCR:
2466                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2467                 break;
2468         case KVM_REG_PPC_TM_AMR:
2469                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2470                 break;
2471         case KVM_REG_PPC_TM_PPR:
2472                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2473                 break;
2474         case KVM_REG_PPC_TM_VRSAVE:
2475                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2476                 break;
2477         case KVM_REG_PPC_TM_VSCR:
2478                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2479                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2480                 else
2481                         r = - ENXIO;
2482                 break;
2483         case KVM_REG_PPC_TM_DSCR:
2484                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2485                 break;
2486         case KVM_REG_PPC_TM_TAR:
2487                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2488                 break;
2489 #endif
2490         case KVM_REG_PPC_ARCH_COMPAT:
2491                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2492                 break;
2493         case KVM_REG_PPC_DEC_EXPIRY:
2494                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2495                         vcpu->arch.vcore->tb_offset;
2496                 break;
2497         case KVM_REG_PPC_ONLINE:
2498                 i = set_reg_val(id, *val);
2499                 if (i && !vcpu->arch.online)
2500                         atomic_inc(&vcpu->arch.vcore->online_count);
2501                 else if (!i && vcpu->arch.online)
2502                         atomic_dec(&vcpu->arch.vcore->online_count);
2503                 vcpu->arch.online = i;
2504                 break;
2505         case KVM_REG_PPC_PTCR:
2506                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2507                 break;
2508         default:
2509                 r = -EINVAL;
2510                 break;
2511         }
2512
2513         return r;
2514 }
2515
2516 /*
2517  * On POWER9, threads are independent and can be in different partitions.
2518  * Therefore we consider each thread to be a subcore.
2519  * There is a restriction that all threads have to be in the same
2520  * MMU mode (radix or HPT), unfortunately, but since we only support
2521  * HPT guests on a HPT host so far, that isn't an impediment yet.
2522  */
2523 static int threads_per_vcore(struct kvm *kvm)
2524 {
2525         if (cpu_has_feature(CPU_FTR_ARCH_300))
2526                 return 1;
2527         return threads_per_subcore;
2528 }
2529
2530 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2531 {
2532         struct kvmppc_vcore *vcore;
2533
2534         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2535
2536         if (vcore == NULL)
2537                 return NULL;
2538
2539         spin_lock_init(&vcore->lock);
2540         spin_lock_init(&vcore->stoltb_lock);
2541         rcuwait_init(&vcore->wait);
2542         vcore->preempt_tb = TB_NIL;
2543         vcore->lpcr = kvm->arch.lpcr;
2544         vcore->first_vcpuid = id;
2545         vcore->kvm = kvm;
2546         INIT_LIST_HEAD(&vcore->preempt_list);
2547
2548         return vcore;
2549 }
2550
2551 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2552 static struct debugfs_timings_element {
2553         const char *name;
2554         size_t offset;
2555 } timings[] = {
2556         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2557         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2558         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2559         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2560         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2561 };
2562
2563 #define N_TIMINGS       (ARRAY_SIZE(timings))
2564
2565 struct debugfs_timings_state {
2566         struct kvm_vcpu *vcpu;
2567         unsigned int    buflen;
2568         char            buf[N_TIMINGS * 100];
2569 };
2570
2571 static int debugfs_timings_open(struct inode *inode, struct file *file)
2572 {
2573         struct kvm_vcpu *vcpu = inode->i_private;
2574         struct debugfs_timings_state *p;
2575
2576         p = kzalloc(sizeof(*p), GFP_KERNEL);
2577         if (!p)
2578                 return -ENOMEM;
2579
2580         kvm_get_kvm(vcpu->kvm);
2581         p->vcpu = vcpu;
2582         file->private_data = p;
2583
2584         return nonseekable_open(inode, file);
2585 }
2586
2587 static int debugfs_timings_release(struct inode *inode, struct file *file)
2588 {
2589         struct debugfs_timings_state *p = file->private_data;
2590
2591         kvm_put_kvm(p->vcpu->kvm);
2592         kfree(p);
2593         return 0;
2594 }
2595
2596 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2597                                     size_t len, loff_t *ppos)
2598 {
2599         struct debugfs_timings_state *p = file->private_data;
2600         struct kvm_vcpu *vcpu = p->vcpu;
2601         char *s, *buf_end;
2602         struct kvmhv_tb_accumulator tb;
2603         u64 count;
2604         loff_t pos;
2605         ssize_t n;
2606         int i, loops;
2607         bool ok;
2608
2609         if (!p->buflen) {
2610                 s = p->buf;
2611                 buf_end = s + sizeof(p->buf);
2612                 for (i = 0; i < N_TIMINGS; ++i) {
2613                         struct kvmhv_tb_accumulator *acc;
2614
2615                         acc = (struct kvmhv_tb_accumulator *)
2616                                 ((unsigned long)vcpu + timings[i].offset);
2617                         ok = false;
2618                         for (loops = 0; loops < 1000; ++loops) {
2619                                 count = acc->seqcount;
2620                                 if (!(count & 1)) {
2621                                         smp_rmb();
2622                                         tb = *acc;
2623                                         smp_rmb();
2624                                         if (count == acc->seqcount) {
2625                                                 ok = true;
2626                                                 break;
2627                                         }
2628                                 }
2629                                 udelay(1);
2630                         }
2631                         if (!ok)
2632                                 snprintf(s, buf_end - s, "%s: stuck\n",
2633                                         timings[i].name);
2634                         else
2635                                 snprintf(s, buf_end - s,
2636                                         "%s: %llu %llu %llu %llu\n",
2637                                         timings[i].name, count / 2,
2638                                         tb_to_ns(tb.tb_total),
2639                                         tb_to_ns(tb.tb_min),
2640                                         tb_to_ns(tb.tb_max));
2641                         s += strlen(s);
2642                 }
2643                 p->buflen = s - p->buf;
2644         }
2645
2646         pos = *ppos;
2647         if (pos >= p->buflen)
2648                 return 0;
2649         if (len > p->buflen - pos)
2650                 len = p->buflen - pos;
2651         n = copy_to_user(buf, p->buf + pos, len);
2652         if (n) {
2653                 if (n == len)
2654                         return -EFAULT;
2655                 len -= n;
2656         }
2657         *ppos = pos + len;
2658         return len;
2659 }
2660
2661 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2662                                      size_t len, loff_t *ppos)
2663 {
2664         return -EACCES;
2665 }
2666
2667 static const struct file_operations debugfs_timings_ops = {
2668         .owner   = THIS_MODULE,
2669         .open    = debugfs_timings_open,
2670         .release = debugfs_timings_release,
2671         .read    = debugfs_timings_read,
2672         .write   = debugfs_timings_write,
2673         .llseek  = generic_file_llseek,
2674 };
2675
2676 /* Create a debugfs directory for the vcpu */
2677 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2678 {
2679         char buf[16];
2680         struct kvm *kvm = vcpu->kvm;
2681
2682         snprintf(buf, sizeof(buf), "vcpu%u", id);
2683         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2684         debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2685                             &debugfs_timings_ops);
2686 }
2687
2688 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2689 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2690 {
2691 }
2692 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2693
2694 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2695 {
2696         int err;
2697         int core;
2698         struct kvmppc_vcore *vcore;
2699         struct kvm *kvm;
2700         unsigned int id;
2701
2702         kvm = vcpu->kvm;
2703         id = vcpu->vcpu_id;
2704
2705         vcpu->arch.shared = &vcpu->arch.shregs;
2706 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2707         /*
2708          * The shared struct is never shared on HV,
2709          * so we can always use host endianness
2710          */
2711 #ifdef __BIG_ENDIAN__
2712         vcpu->arch.shared_big_endian = true;
2713 #else
2714         vcpu->arch.shared_big_endian = false;
2715 #endif
2716 #endif
2717         vcpu->arch.mmcr[0] = MMCR0_FC;
2718         vcpu->arch.ctrl = CTRL_RUNLATCH;
2719         /* default to host PVR, since we can't spoof it */
2720         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2721         spin_lock_init(&vcpu->arch.vpa_update_lock);
2722         spin_lock_init(&vcpu->arch.tbacct_lock);
2723         vcpu->arch.busy_preempt = TB_NIL;
2724         vcpu->arch.shregs.msr = MSR_ME;
2725         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2726
2727         /*
2728          * Set the default HFSCR for the guest from the host value.
2729          * This value is only used on POWER9.
2730          * On POWER9, we want to virtualize the doorbell facility, so we
2731          * don't set the HFSCR_MSGP bit, and that causes those instructions
2732          * to trap and then we emulate them.
2733          */
2734         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2735                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2736         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2737                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2738 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2739                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2740                         vcpu->arch.hfscr |= HFSCR_TM;
2741 #endif
2742         }
2743         if (cpu_has_feature(CPU_FTR_TM_COMP))
2744                 vcpu->arch.hfscr |= HFSCR_TM;
2745
2746         vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2747
2748         kvmppc_mmu_book3s_hv_init(vcpu);
2749
2750         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2751
2752         init_waitqueue_head(&vcpu->arch.cpu_run);
2753
2754         mutex_lock(&kvm->lock);
2755         vcore = NULL;
2756         err = -EINVAL;
2757         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2758                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2759                         pr_devel("KVM: VCPU ID too high\n");
2760                         core = KVM_MAX_VCORES;
2761                 } else {
2762                         BUG_ON(kvm->arch.smt_mode != 1);
2763                         core = kvmppc_pack_vcpu_id(kvm, id);
2764                 }
2765         } else {
2766                 core = id / kvm->arch.smt_mode;
2767         }
2768         if (core < KVM_MAX_VCORES) {
2769                 vcore = kvm->arch.vcores[core];
2770                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2771                         pr_devel("KVM: collision on id %u", id);
2772                         vcore = NULL;
2773                 } else if (!vcore) {
2774                         /*
2775                          * Take mmu_setup_lock for mutual exclusion
2776                          * with kvmppc_update_lpcr().
2777                          */
2778                         err = -ENOMEM;
2779                         vcore = kvmppc_vcore_create(kvm,
2780                                         id & ~(kvm->arch.smt_mode - 1));
2781                         mutex_lock(&kvm->arch.mmu_setup_lock);
2782                         kvm->arch.vcores[core] = vcore;
2783                         kvm->arch.online_vcores++;
2784                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2785                 }
2786         }
2787         mutex_unlock(&kvm->lock);
2788
2789         if (!vcore)
2790                 return err;
2791
2792         spin_lock(&vcore->lock);
2793         ++vcore->num_threads;
2794         spin_unlock(&vcore->lock);
2795         vcpu->arch.vcore = vcore;
2796         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2797         vcpu->arch.thread_cpu = -1;
2798         vcpu->arch.prev_cpu = -1;
2799
2800         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2801         kvmppc_sanity_check(vcpu);
2802
2803         debugfs_vcpu_init(vcpu, id);
2804
2805         return 0;
2806 }
2807
2808 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2809                               unsigned long flags)
2810 {
2811         int err;
2812         int esmt = 0;
2813
2814         if (flags)
2815                 return -EINVAL;
2816         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2817                 return -EINVAL;
2818         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2819                 /*
2820                  * On POWER8 (or POWER7), the threading mode is "strict",
2821                  * so we pack smt_mode vcpus per vcore.
2822                  */
2823                 if (smt_mode > threads_per_subcore)
2824                         return -EINVAL;
2825         } else {
2826                 /*
2827                  * On POWER9, the threading mode is "loose",
2828                  * so each vcpu gets its own vcore.
2829                  */
2830                 esmt = smt_mode;
2831                 smt_mode = 1;
2832         }
2833         mutex_lock(&kvm->lock);
2834         err = -EBUSY;
2835         if (!kvm->arch.online_vcores) {
2836                 kvm->arch.smt_mode = smt_mode;
2837                 kvm->arch.emul_smt_mode = esmt;
2838                 err = 0;
2839         }
2840         mutex_unlock(&kvm->lock);
2841
2842         return err;
2843 }
2844
2845 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2846 {
2847         if (vpa->pinned_addr)
2848                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2849                                         vpa->dirty);
2850 }
2851
2852 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2853 {
2854         spin_lock(&vcpu->arch.vpa_update_lock);
2855         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2856         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2857         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2858         spin_unlock(&vcpu->arch.vpa_update_lock);
2859 }
2860
2861 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2862 {
2863         /* Indicate we want to get back into the guest */
2864         return 1;
2865 }
2866
2867 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2868 {
2869         unsigned long dec_nsec, now;
2870
2871         now = get_tb();
2872         if (now > vcpu->arch.dec_expires) {
2873                 /* decrementer has already gone negative */
2874                 kvmppc_core_queue_dec(vcpu);
2875                 kvmppc_core_prepare_to_enter(vcpu);
2876                 return;
2877         }
2878         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2879         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2880         vcpu->arch.timer_running = 1;
2881 }
2882
2883 extern int __kvmppc_vcore_entry(void);
2884
2885 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2886                                    struct kvm_vcpu *vcpu)
2887 {
2888         u64 now;
2889
2890         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2891                 return;
2892         spin_lock_irq(&vcpu->arch.tbacct_lock);
2893         now = mftb();
2894         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2895                 vcpu->arch.stolen_logged;
2896         vcpu->arch.busy_preempt = now;
2897         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2898         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2899         --vc->n_runnable;
2900         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2901 }
2902
2903 static int kvmppc_grab_hwthread(int cpu)
2904 {
2905         struct paca_struct *tpaca;
2906         long timeout = 10000;
2907
2908         tpaca = paca_ptrs[cpu];
2909
2910         /* Ensure the thread won't go into the kernel if it wakes */
2911         tpaca->kvm_hstate.kvm_vcpu = NULL;
2912         tpaca->kvm_hstate.kvm_vcore = NULL;
2913         tpaca->kvm_hstate.napping = 0;
2914         smp_wmb();
2915         tpaca->kvm_hstate.hwthread_req = 1;
2916
2917         /*
2918          * If the thread is already executing in the kernel (e.g. handling
2919          * a stray interrupt), wait for it to get back to nap mode.
2920          * The smp_mb() is to ensure that our setting of hwthread_req
2921          * is visible before we look at hwthread_state, so if this
2922          * races with the code at system_reset_pSeries and the thread
2923          * misses our setting of hwthread_req, we are sure to see its
2924          * setting of hwthread_state, and vice versa.
2925          */
2926         smp_mb();
2927         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2928                 if (--timeout <= 0) {
2929                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2930                         return -EBUSY;
2931                 }
2932                 udelay(1);
2933         }
2934         return 0;
2935 }
2936
2937 static void kvmppc_release_hwthread(int cpu)
2938 {
2939         struct paca_struct *tpaca;
2940
2941         tpaca = paca_ptrs[cpu];
2942         tpaca->kvm_hstate.hwthread_req = 0;
2943         tpaca->kvm_hstate.kvm_vcpu = NULL;
2944         tpaca->kvm_hstate.kvm_vcore = NULL;
2945         tpaca->kvm_hstate.kvm_split_mode = NULL;
2946 }
2947
2948 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2949 {
2950         struct kvm_nested_guest *nested = vcpu->arch.nested;
2951         cpumask_t *cpu_in_guest;
2952         int i;
2953
2954         cpu = cpu_first_tlb_thread_sibling(cpu);
2955         if (nested) {
2956                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2957                 cpu_in_guest = &nested->cpu_in_guest;
2958         } else {
2959                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2960                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2961         }
2962         /*
2963          * Make sure setting of bit in need_tlb_flush precedes
2964          * testing of cpu_in_guest bits.  The matching barrier on
2965          * the other side is the first smp_mb() in kvmppc_run_core().
2966          */
2967         smp_mb();
2968         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
2969                                         i += cpu_tlb_thread_sibling_step())
2970                 if (cpumask_test_cpu(i, cpu_in_guest))
2971                         smp_call_function_single(i, do_nothing, NULL, 1);
2972 }
2973
2974 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2975 {
2976         struct kvm_nested_guest *nested = vcpu->arch.nested;
2977         struct kvm *kvm = vcpu->kvm;
2978         int prev_cpu;
2979
2980         if (!cpu_has_feature(CPU_FTR_HVMODE))
2981                 return;
2982
2983         if (nested)
2984                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2985         else
2986                 prev_cpu = vcpu->arch.prev_cpu;
2987
2988         /*
2989          * With radix, the guest can do TLB invalidations itself,
2990          * and it could choose to use the local form (tlbiel) if
2991          * it is invalidating a translation that has only ever been
2992          * used on one vcpu.  However, that doesn't mean it has
2993          * only ever been used on one physical cpu, since vcpus
2994          * can move around between pcpus.  To cope with this, when
2995          * a vcpu moves from one pcpu to another, we need to tell
2996          * any vcpus running on the same core as this vcpu previously
2997          * ran to flush the TLB.  The TLB is shared between threads,
2998          * so we use a single bit in .need_tlb_flush for all 4 threads.
2999          */
3000         if (prev_cpu != pcpu) {
3001                 if (prev_cpu >= 0 &&
3002                     cpu_first_tlb_thread_sibling(prev_cpu) !=
3003                     cpu_first_tlb_thread_sibling(pcpu))
3004                         radix_flush_cpu(kvm, prev_cpu, vcpu);
3005                 if (nested)
3006                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3007                 else
3008                         vcpu->arch.prev_cpu = pcpu;
3009         }
3010 }
3011
3012 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3013 {
3014         int cpu;
3015         struct paca_struct *tpaca;
3016         struct kvm *kvm = vc->kvm;
3017
3018         cpu = vc->pcpu;
3019         if (vcpu) {
3020                 if (vcpu->arch.timer_running) {
3021                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3022                         vcpu->arch.timer_running = 0;
3023                 }
3024                 cpu += vcpu->arch.ptid;
3025                 vcpu->cpu = vc->pcpu;
3026                 vcpu->arch.thread_cpu = cpu;
3027                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
3028         }
3029         tpaca = paca_ptrs[cpu];
3030         tpaca->kvm_hstate.kvm_vcpu = vcpu;
3031         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3032         tpaca->kvm_hstate.fake_suspend = 0;
3033         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3034         smp_wmb();
3035         tpaca->kvm_hstate.kvm_vcore = vc;
3036         if (cpu != smp_processor_id())
3037                 kvmppc_ipi_thread(cpu);
3038 }
3039
3040 static void kvmppc_wait_for_nap(int n_threads)
3041 {
3042         int cpu = smp_processor_id();
3043         int i, loops;
3044
3045         if (n_threads <= 1)
3046                 return;
3047         for (loops = 0; loops < 1000000; ++loops) {
3048                 /*
3049                  * Check if all threads are finished.
3050                  * We set the vcore pointer when starting a thread
3051                  * and the thread clears it when finished, so we look
3052                  * for any threads that still have a non-NULL vcore ptr.
3053                  */
3054                 for (i = 1; i < n_threads; ++i)
3055                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3056                                 break;
3057                 if (i == n_threads) {
3058                         HMT_medium();
3059                         return;
3060                 }
3061                 HMT_low();
3062         }
3063         HMT_medium();
3064         for (i = 1; i < n_threads; ++i)
3065                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3066                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3067 }
3068
3069 /*
3070  * Check that we are on thread 0 and that any other threads in
3071  * this core are off-line.  Then grab the threads so they can't
3072  * enter the kernel.
3073  */
3074 static int on_primary_thread(void)
3075 {
3076         int cpu = smp_processor_id();
3077         int thr;
3078
3079         /* Are we on a primary subcore? */
3080         if (cpu_thread_in_subcore(cpu))
3081                 return 0;
3082
3083         thr = 0;
3084         while (++thr < threads_per_subcore)
3085                 if (cpu_online(cpu + thr))
3086                         return 0;
3087
3088         /* Grab all hw threads so they can't go into the kernel */
3089         for (thr = 1; thr < threads_per_subcore; ++thr) {
3090                 if (kvmppc_grab_hwthread(cpu + thr)) {
3091                         /* Couldn't grab one; let the others go */
3092                         do {
3093                                 kvmppc_release_hwthread(cpu + thr);
3094                         } while (--thr > 0);
3095                         return 0;
3096                 }
3097         }
3098         return 1;
3099 }
3100
3101 /*
3102  * A list of virtual cores for each physical CPU.
3103  * These are vcores that could run but their runner VCPU tasks are
3104  * (or may be) preempted.
3105  */
3106 struct preempted_vcore_list {
3107         struct list_head        list;
3108         spinlock_t              lock;
3109 };
3110
3111 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3112
3113 static void init_vcore_lists(void)
3114 {
3115         int cpu;
3116
3117         for_each_possible_cpu(cpu) {
3118                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3119                 spin_lock_init(&lp->lock);
3120                 INIT_LIST_HEAD(&lp->list);
3121         }
3122 }
3123
3124 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3125 {
3126         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3127
3128         vc->vcore_state = VCORE_PREEMPT;
3129         vc->pcpu = smp_processor_id();
3130         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3131                 spin_lock(&lp->lock);
3132                 list_add_tail(&vc->preempt_list, &lp->list);
3133                 spin_unlock(&lp->lock);
3134         }
3135
3136         /* Start accumulating stolen time */
3137         kvmppc_core_start_stolen(vc);
3138 }
3139
3140 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3141 {
3142         struct preempted_vcore_list *lp;
3143
3144         kvmppc_core_end_stolen(vc);
3145         if (!list_empty(&vc->preempt_list)) {
3146                 lp = &per_cpu(preempted_vcores, vc->pcpu);
3147                 spin_lock(&lp->lock);
3148                 list_del_init(&vc->preempt_list);
3149                 spin_unlock(&lp->lock);
3150         }
3151         vc->vcore_state = VCORE_INACTIVE;
3152 }
3153
3154 /*
3155  * This stores information about the virtual cores currently
3156  * assigned to a physical core.
3157  */
3158 struct core_info {
3159         int             n_subcores;
3160         int             max_subcore_threads;
3161         int             total_threads;
3162         int             subcore_threads[MAX_SUBCORES];
3163         struct kvmppc_vcore *vc[MAX_SUBCORES];
3164 };
3165
3166 /*
3167  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3168  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3169  */
3170 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3171
3172 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3173 {
3174         memset(cip, 0, sizeof(*cip));
3175         cip->n_subcores = 1;
3176         cip->max_subcore_threads = vc->num_threads;
3177         cip->total_threads = vc->num_threads;
3178         cip->subcore_threads[0] = vc->num_threads;
3179         cip->vc[0] = vc;
3180 }
3181
3182 static bool subcore_config_ok(int n_subcores, int n_threads)
3183 {
3184         /*
3185          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3186          * split-core mode, with one thread per subcore.
3187          */
3188         if (cpu_has_feature(CPU_FTR_ARCH_300))
3189                 return n_subcores <= 4 && n_threads == 1;
3190
3191         /* On POWER8, can only dynamically split if unsplit to begin with */
3192         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3193                 return false;
3194         if (n_subcores > MAX_SUBCORES)
3195                 return false;
3196         if (n_subcores > 1) {
3197                 if (!(dynamic_mt_modes & 2))
3198                         n_subcores = 4;
3199                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3200                         return false;
3201         }
3202
3203         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3204 }
3205
3206 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3207 {
3208         vc->entry_exit_map = 0;
3209         vc->in_guest = 0;
3210         vc->napping_threads = 0;
3211         vc->conferring_threads = 0;
3212         vc->tb_offset_applied = 0;
3213 }
3214
3215 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3216 {
3217         int n_threads = vc->num_threads;
3218         int sub;
3219
3220         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3221                 return false;
3222
3223         /* In one_vm_per_core mode, require all vcores to be from the same vm */
3224         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3225                 return false;
3226
3227         if (n_threads < cip->max_subcore_threads)
3228                 n_threads = cip->max_subcore_threads;
3229         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3230                 return false;
3231         cip->max_subcore_threads = n_threads;
3232
3233         sub = cip->n_subcores;
3234         ++cip->n_subcores;
3235         cip->total_threads += vc->num_threads;
3236         cip->subcore_threads[sub] = vc->num_threads;
3237         cip->vc[sub] = vc;
3238         init_vcore_to_run(vc);
3239         list_del_init(&vc->preempt_list);
3240
3241         return true;
3242 }
3243
3244 /*
3245  * Work out whether it is possible to piggyback the execution of
3246  * vcore *pvc onto the execution of the other vcores described in *cip.
3247  */
3248 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3249                           int target_threads)
3250 {
3251         if (cip->total_threads + pvc->num_threads > target_threads)
3252                 return false;
3253
3254         return can_dynamic_split(pvc, cip);
3255 }
3256
3257 static void prepare_threads(struct kvmppc_vcore *vc)
3258 {
3259         int i;
3260         struct kvm_vcpu *vcpu;
3261
3262         for_each_runnable_thread(i, vcpu, vc) {
3263                 if (signal_pending(vcpu->arch.run_task))
3264                         vcpu->arch.ret = -EINTR;
3265                 else if (vcpu->arch.vpa.update_pending ||
3266                          vcpu->arch.slb_shadow.update_pending ||
3267                          vcpu->arch.dtl.update_pending)
3268                         vcpu->arch.ret = RESUME_GUEST;
3269                 else
3270                         continue;
3271                 kvmppc_remove_runnable(vc, vcpu);
3272                 wake_up(&vcpu->arch.cpu_run);
3273         }
3274 }
3275
3276 static void collect_piggybacks(struct core_info *cip, int target_threads)
3277 {
3278         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3279         struct kvmppc_vcore *pvc, *vcnext;
3280
3281         spin_lock(&lp->lock);
3282         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3283                 if (!spin_trylock(&pvc->lock))
3284                         continue;
3285                 prepare_threads(pvc);
3286                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3287                         list_del_init(&pvc->preempt_list);
3288                         if (pvc->runner == NULL) {
3289                                 pvc->vcore_state = VCORE_INACTIVE;
3290                                 kvmppc_core_end_stolen(pvc);
3291                         }
3292                         spin_unlock(&pvc->lock);
3293                         continue;
3294                 }
3295                 if (!can_piggyback(pvc, cip, target_threads)) {
3296                         spin_unlock(&pvc->lock);
3297                         continue;
3298                 }
3299                 kvmppc_core_end_stolen(pvc);
3300                 pvc->vcore_state = VCORE_PIGGYBACK;
3301                 if (cip->total_threads >= target_threads)
3302                         break;
3303         }
3304         spin_unlock(&lp->lock);
3305 }
3306
3307 static bool recheck_signals_and_mmu(struct core_info *cip)
3308 {
3309         int sub, i;
3310         struct kvm_vcpu *vcpu;
3311         struct kvmppc_vcore *vc;
3312
3313         for (sub = 0; sub < cip->n_subcores; ++sub) {
3314                 vc = cip->vc[sub];
3315                 if (!vc->kvm->arch.mmu_ready)
3316                         return true;
3317                 for_each_runnable_thread(i, vcpu, vc)
3318                         if (signal_pending(vcpu->arch.run_task))
3319                                 return true;
3320         }
3321         return false;
3322 }
3323
3324 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3325 {
3326         int still_running = 0, i;
3327         u64 now;
3328         long ret;
3329         struct kvm_vcpu *vcpu;
3330
3331         spin_lock(&vc->lock);
3332         now = get_tb();
3333         for_each_runnable_thread(i, vcpu, vc) {
3334                 /*
3335                  * It's safe to unlock the vcore in the loop here, because
3336                  * for_each_runnable_thread() is safe against removal of
3337                  * the vcpu, and the vcore state is VCORE_EXITING here,
3338                  * so any vcpus becoming runnable will have their arch.trap
3339                  * set to zero and can't actually run in the guest.
3340                  */
3341                 spin_unlock(&vc->lock);
3342                 /* cancel pending dec exception if dec is positive */
3343                 if (now < vcpu->arch.dec_expires &&
3344                     kvmppc_core_pending_dec(vcpu))
3345                         kvmppc_core_dequeue_dec(vcpu);
3346
3347                 trace_kvm_guest_exit(vcpu);
3348
3349                 ret = RESUME_GUEST;
3350                 if (vcpu->arch.trap)
3351                         ret = kvmppc_handle_exit_hv(vcpu,
3352                                                     vcpu->arch.run_task);
3353
3354                 vcpu->arch.ret = ret;
3355                 vcpu->arch.trap = 0;
3356
3357                 spin_lock(&vc->lock);
3358                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3359                         if (vcpu->arch.pending_exceptions)
3360                                 kvmppc_core_prepare_to_enter(vcpu);
3361                         if (vcpu->arch.ceded)
3362                                 kvmppc_set_timer(vcpu);
3363                         else
3364                                 ++still_running;
3365                 } else {
3366                         kvmppc_remove_runnable(vc, vcpu);
3367                         wake_up(&vcpu->arch.cpu_run);
3368                 }
3369         }
3370         if (!is_master) {
3371                 if (still_running > 0) {
3372                         kvmppc_vcore_preempt(vc);
3373                 } else if (vc->runner) {
3374                         vc->vcore_state = VCORE_PREEMPT;
3375                         kvmppc_core_start_stolen(vc);
3376                 } else {
3377                         vc->vcore_state = VCORE_INACTIVE;
3378                 }
3379                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3380                         /* make sure there's a candidate runner awake */
3381                         i = -1;
3382                         vcpu = next_runnable_thread(vc, &i);
3383                         wake_up(&vcpu->arch.cpu_run);
3384                 }
3385         }
3386         spin_unlock(&vc->lock);
3387 }
3388
3389 /*
3390  * Clear core from the list of active host cores as we are about to
3391  * enter the guest. Only do this if it is the primary thread of the
3392  * core (not if a subcore) that is entering the guest.
3393  */
3394 static inline int kvmppc_clear_host_core(unsigned int cpu)
3395 {
3396         int core;
3397
3398         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3399                 return 0;
3400         /*
3401          * Memory barrier can be omitted here as we will do a smp_wmb()
3402          * later in kvmppc_start_thread and we need ensure that state is
3403          * visible to other CPUs only after we enter guest.
3404          */
3405         core = cpu >> threads_shift;
3406         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3407         return 0;
3408 }
3409
3410 /*
3411  * Advertise this core as an active host core since we exited the guest
3412  * Only need to do this if it is the primary thread of the core that is
3413  * exiting.
3414  */
3415 static inline int kvmppc_set_host_core(unsigned int cpu)
3416 {
3417         int core;
3418
3419         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3420                 return 0;
3421
3422         /*
3423          * Memory barrier can be omitted here because we do a spin_unlock
3424          * immediately after this which provides the memory barrier.
3425          */
3426         core = cpu >> threads_shift;
3427         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3428         return 0;
3429 }
3430
3431 static void set_irq_happened(int trap)
3432 {
3433         switch (trap) {
3434         case BOOK3S_INTERRUPT_EXTERNAL:
3435                 local_paca->irq_happened |= PACA_IRQ_EE;
3436                 break;
3437         case BOOK3S_INTERRUPT_H_DOORBELL:
3438                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3439                 break;
3440         case BOOK3S_INTERRUPT_HMI:
3441                 local_paca->irq_happened |= PACA_IRQ_HMI;
3442                 break;
3443         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3444                 replay_system_reset();
3445                 break;
3446         }
3447 }
3448
3449 /*
3450  * Run a set of guest threads on a physical core.
3451  * Called with vc->lock held.
3452  */
3453 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3454 {
3455         struct kvm_vcpu *vcpu;
3456         int i;
3457         int srcu_idx;
3458         struct core_info core_info;
3459         struct kvmppc_vcore *pvc;
3460         struct kvm_split_mode split_info, *sip;
3461         int split, subcore_size, active;
3462         int sub;
3463         bool thr0_done;
3464         unsigned long cmd_bit, stat_bit;
3465         int pcpu, thr;
3466         int target_threads;
3467         int controlled_threads;
3468         int trap;
3469         bool is_power8;
3470
3471         if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3472                 return;
3473
3474         /*
3475          * Remove from the list any threads that have a signal pending
3476          * or need a VPA update done
3477          */
3478         prepare_threads(vc);
3479
3480         /* if the runner is no longer runnable, let the caller pick a new one */
3481         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3482                 return;
3483
3484         /*
3485          * Initialize *vc.
3486          */
3487         init_vcore_to_run(vc);
3488         vc->preempt_tb = TB_NIL;
3489
3490         /*
3491          * Number of threads that we will be controlling: the same as
3492          * the number of threads per subcore, except on POWER9,
3493          * where it's 1 because the threads are (mostly) independent.
3494          */
3495         controlled_threads = threads_per_vcore(vc->kvm);
3496
3497         /*
3498          * Make sure we are running on primary threads, and that secondary
3499          * threads are offline.  Also check if the number of threads in this
3500          * guest are greater than the current system threads per guest.
3501          */
3502         if ((controlled_threads > 1) &&
3503             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3504                 for_each_runnable_thread(i, vcpu, vc) {
3505                         vcpu->arch.ret = -EBUSY;
3506                         kvmppc_remove_runnable(vc, vcpu);
3507                         wake_up(&vcpu->arch.cpu_run);
3508                 }
3509                 goto out;
3510         }
3511
3512         /*
3513          * See if we could run any other vcores on the physical core
3514          * along with this one.
3515          */
3516         init_core_info(&core_info, vc);
3517         pcpu = smp_processor_id();
3518         target_threads = controlled_threads;
3519         if (target_smt_mode && target_smt_mode < target_threads)
3520                 target_threads = target_smt_mode;
3521         if (vc->num_threads < target_threads)
3522                 collect_piggybacks(&core_info, target_threads);
3523
3524         /*
3525          * Hard-disable interrupts, and check resched flag and signals.
3526          * If we need to reschedule or deliver a signal, clean up
3527          * and return without going into the guest(s).
3528          * If the mmu_ready flag has been cleared, don't go into the
3529          * guest because that means a HPT resize operation is in progress.
3530          */
3531         local_irq_disable();
3532         hard_irq_disable();
3533         if (lazy_irq_pending() || need_resched() ||
3534             recheck_signals_and_mmu(&core_info)) {
3535                 local_irq_enable();
3536                 vc->vcore_state = VCORE_INACTIVE;
3537                 /* Unlock all except the primary vcore */
3538                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3539                         pvc = core_info.vc[sub];
3540                         /* Put back on to the preempted vcores list */
3541                         kvmppc_vcore_preempt(pvc);
3542                         spin_unlock(&pvc->lock);
3543                 }
3544                 for (i = 0; i < controlled_threads; ++i)
3545                         kvmppc_release_hwthread(pcpu + i);
3546                 return;
3547         }
3548
3549         kvmppc_clear_host_core(pcpu);
3550
3551         /* Decide on micro-threading (split-core) mode */
3552         subcore_size = threads_per_subcore;
3553         cmd_bit = stat_bit = 0;
3554         split = core_info.n_subcores;
3555         sip = NULL;
3556         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3557
3558         if (split > 1) {
3559                 sip = &split_info;
3560                 memset(&split_info, 0, sizeof(split_info));
3561                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3562                         split_info.vc[sub] = core_info.vc[sub];
3563
3564                 if (is_power8) {
3565                         if (split == 2 && (dynamic_mt_modes & 2)) {
3566                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3567                                 stat_bit = HID0_POWER8_2LPARMODE;
3568                         } else {
3569                                 split = 4;
3570                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3571                                 stat_bit = HID0_POWER8_4LPARMODE;
3572                         }
3573                         subcore_size = MAX_SMT_THREADS / split;
3574                         split_info.rpr = mfspr(SPRN_RPR);
3575                         split_info.pmmar = mfspr(SPRN_PMMAR);
3576                         split_info.ldbar = mfspr(SPRN_LDBAR);
3577                         split_info.subcore_size = subcore_size;
3578                 } else {
3579                         split_info.subcore_size = 1;
3580                 }
3581
3582                 /* order writes to split_info before kvm_split_mode pointer */
3583                 smp_wmb();
3584         }
3585
3586         for (thr = 0; thr < controlled_threads; ++thr) {
3587                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3588
3589                 paca->kvm_hstate.napping = 0;
3590                 paca->kvm_hstate.kvm_split_mode = sip;
3591         }
3592
3593         /* Initiate micro-threading (split-core) on POWER8 if required */
3594         if (cmd_bit) {
3595                 unsigned long hid0 = mfspr(SPRN_HID0);
3596
3597                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3598                 mb();
3599                 mtspr(SPRN_HID0, hid0);
3600                 isync();
3601                 for (;;) {
3602                         hid0 = mfspr(SPRN_HID0);
3603                         if (hid0 & stat_bit)
3604                                 break;
3605                         cpu_relax();
3606                 }
3607         }
3608
3609         /*
3610          * On POWER8, set RWMR register.
3611          * Since it only affects PURR and SPURR, it doesn't affect
3612          * the host, so we don't save/restore the host value.
3613          */
3614         if (is_power8) {
3615                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3616                 int n_online = atomic_read(&vc->online_count);
3617
3618                 /*
3619                  * Use the 8-thread value if we're doing split-core
3620                  * or if the vcore's online count looks bogus.
3621                  */
3622                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3623                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3624                         rwmr_val = p8_rwmr_values[n_online];
3625                 mtspr(SPRN_RWMR, rwmr_val);
3626         }
3627
3628         /* Start all the threads */
3629         active = 0;
3630         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3631                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3632                 thr0_done = false;
3633                 active |= 1 << thr;
3634                 pvc = core_info.vc[sub];
3635                 pvc->pcpu = pcpu + thr;
3636                 for_each_runnable_thread(i, vcpu, pvc) {
3637                         kvmppc_start_thread(vcpu, pvc);
3638                         kvmppc_create_dtl_entry(vcpu, pvc);
3639                         trace_kvm_guest_enter(vcpu);
3640                         if (!vcpu->arch.ptid)
3641                                 thr0_done = true;
3642                         active |= 1 << (thr + vcpu->arch.ptid);
3643                 }
3644                 /*
3645                  * We need to start the first thread of each subcore
3646                  * even if it doesn't have a vcpu.
3647                  */
3648                 if (!thr0_done)
3649                         kvmppc_start_thread(NULL, pvc);
3650         }
3651
3652         /*
3653          * Ensure that split_info.do_nap is set after setting
3654          * the vcore pointer in the PACA of the secondaries.
3655          */
3656         smp_mb();
3657
3658         /*
3659          * When doing micro-threading, poke the inactive threads as well.
3660          * This gets them to the nap instruction after kvm_do_nap,
3661          * which reduces the time taken to unsplit later.
3662          */
3663         if (cmd_bit) {
3664                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3665                 for (thr = 1; thr < threads_per_subcore; ++thr)
3666                         if (!(active & (1 << thr)))
3667                                 kvmppc_ipi_thread(pcpu + thr);
3668         }
3669
3670         vc->vcore_state = VCORE_RUNNING;
3671         preempt_disable();
3672
3673         trace_kvmppc_run_core(vc, 0);
3674
3675         for (sub = 0; sub < core_info.n_subcores; ++sub)
3676                 spin_unlock(&core_info.vc[sub]->lock);
3677
3678         guest_enter_irqoff();
3679
3680         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3681
3682         this_cpu_disable_ftrace();
3683
3684         /*
3685          * Interrupts will be enabled once we get into the guest,
3686          * so tell lockdep that we're about to enable interrupts.
3687          */
3688         trace_hardirqs_on();
3689
3690         trap = __kvmppc_vcore_entry();
3691
3692         trace_hardirqs_off();
3693
3694         this_cpu_enable_ftrace();
3695
3696         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3697
3698         set_irq_happened(trap);
3699
3700         spin_lock(&vc->lock);
3701         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3702         vc->vcore_state = VCORE_EXITING;
3703
3704         /* wait for secondary threads to finish writing their state to memory */
3705         kvmppc_wait_for_nap(controlled_threads);
3706
3707         /* Return to whole-core mode if we split the core earlier */
3708         if (cmd_bit) {
3709                 unsigned long hid0 = mfspr(SPRN_HID0);
3710                 unsigned long loops = 0;
3711
3712                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3713                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3714                 mb();
3715                 mtspr(SPRN_HID0, hid0);
3716                 isync();
3717                 for (;;) {
3718                         hid0 = mfspr(SPRN_HID0);
3719                         if (!(hid0 & stat_bit))
3720                                 break;
3721                         cpu_relax();
3722                         ++loops;
3723                 }
3724                 split_info.do_nap = 0;
3725         }
3726
3727         kvmppc_set_host_core(pcpu);
3728
3729         guest_exit_irqoff();
3730
3731         local_irq_enable();
3732
3733         /* Let secondaries go back to the offline loop */
3734         for (i = 0; i < controlled_threads; ++i) {
3735                 kvmppc_release_hwthread(pcpu + i);
3736                 if (sip && sip->napped[i])
3737                         kvmppc_ipi_thread(pcpu + i);
3738                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3739         }
3740
3741         spin_unlock(&vc->lock);
3742
3743         /* make sure updates to secondary vcpu structs are visible now */
3744         smp_mb();
3745
3746         preempt_enable();
3747
3748         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3749                 pvc = core_info.vc[sub];
3750                 post_guest_process(pvc, pvc == vc);
3751         }
3752
3753         spin_lock(&vc->lock);
3754
3755  out:
3756         vc->vcore_state = VCORE_INACTIVE;
3757         trace_kvmppc_run_core(vc, 1);
3758 }
3759
3760 static void load_spr_state(struct kvm_vcpu *vcpu)
3761 {
3762         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3763         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3764         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3765         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3766         mtspr(SPRN_TAR, vcpu->arch.tar);
3767         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3768         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3769         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3770         mtspr(SPRN_TIDR, vcpu->arch.tid);
3771         mtspr(SPRN_AMR, vcpu->arch.amr);
3772         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3773
3774         /*
3775          * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI]
3776          * clear (or hstate set appropriately to catch those registers
3777          * being clobbered if we take a MCE or SRESET), so those are done
3778          * later.
3779          */
3780
3781         if (!(vcpu->arch.ctrl & 1))
3782                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3783 }
3784
3785 static void store_spr_state(struct kvm_vcpu *vcpu)
3786 {
3787         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3788
3789         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3790         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3791         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3792         vcpu->arch.tar = mfspr(SPRN_TAR);
3793         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3794         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3795         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3796         vcpu->arch.tid = mfspr(SPRN_TIDR);
3797         vcpu->arch.amr = mfspr(SPRN_AMR);
3798         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3799         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3800 }
3801
3802 /*
3803  * Privileged (non-hypervisor) host registers to save.
3804  */
3805 struct p9_host_os_sprs {
3806         unsigned long dscr;
3807         unsigned long tidr;
3808         unsigned long iamr;
3809         unsigned long amr;
3810         unsigned long fscr;
3811 };
3812
3813 static void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs)
3814 {
3815         host_os_sprs->dscr = mfspr(SPRN_DSCR);
3816         host_os_sprs->tidr = mfspr(SPRN_TIDR);
3817         host_os_sprs->iamr = mfspr(SPRN_IAMR);
3818         host_os_sprs->amr = mfspr(SPRN_AMR);
3819         host_os_sprs->fscr = mfspr(SPRN_FSCR);
3820 }
3821
3822 /* vcpu guest regs must already be saved */
3823 static void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu,
3824                                     struct p9_host_os_sprs *host_os_sprs)
3825 {
3826         mtspr(SPRN_PSPB, 0);
3827         mtspr(SPRN_UAMOR, 0);
3828
3829         mtspr(SPRN_DSCR, host_os_sprs->dscr);
3830         mtspr(SPRN_TIDR, host_os_sprs->tidr);
3831         mtspr(SPRN_IAMR, host_os_sprs->iamr);
3832
3833         if (host_os_sprs->amr != vcpu->arch.amr)
3834                 mtspr(SPRN_AMR, host_os_sprs->amr);
3835
3836         if (host_os_sprs->fscr != vcpu->arch.fscr)
3837                 mtspr(SPRN_FSCR, host_os_sprs->fscr);
3838
3839         /* Save guest CTRL register, set runlatch to 1 */
3840         if (!(vcpu->arch.ctrl & 1))
3841                 mtspr(SPRN_CTRLT, 1);
3842 }
3843
3844 static inline bool hcall_is_xics(unsigned long req)
3845 {
3846         return req == H_EOI || req == H_CPPR || req == H_IPI ||
3847                 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3848 }
3849
3850 /*
3851  * Guest entry for POWER9 and later CPUs.
3852  */
3853 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3854                          unsigned long lpcr)
3855 {
3856         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3857         struct p9_host_os_sprs host_os_sprs;
3858         s64 dec;
3859         u64 tb;
3860         int trap, save_pmu;
3861
3862         WARN_ON_ONCE(vcpu->arch.ceded);
3863
3864         dec = mfspr(SPRN_DEC);
3865         tb = mftb();
3866         if (dec < 0)
3867                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3868         local_paca->kvm_hstate.dec_expires = dec + tb;
3869         if (local_paca->kvm_hstate.dec_expires < time_limit)
3870                 time_limit = local_paca->kvm_hstate.dec_expires;
3871
3872         save_p9_host_os_sprs(&host_os_sprs);
3873
3874         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3875
3876         kvmppc_subcore_enter_guest();
3877
3878         vc->entry_exit_map = 1;
3879         vc->in_guest = 1;
3880
3881         if (vcpu->arch.vpa.pinned_addr) {
3882                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3883                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3884                 lp->yield_count = cpu_to_be32(yield_count);
3885                 vcpu->arch.vpa.dirty = 1;
3886         }
3887
3888         if (cpu_has_feature(CPU_FTR_TM) ||
3889             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3890                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3891
3892 #ifdef CONFIG_PPC_PSERIES
3893         if (kvmhv_on_pseries()) {
3894                 barrier();
3895                 if (vcpu->arch.vpa.pinned_addr) {
3896                         struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3897                         get_lppaca()->pmcregs_in_use = lp->pmcregs_in_use;
3898                 } else {
3899                         get_lppaca()->pmcregs_in_use = 1;
3900                 }
3901                 barrier();
3902         }
3903 #endif
3904         kvmhv_load_guest_pmu(vcpu);
3905
3906         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3907         load_fp_state(&vcpu->arch.fp);
3908 #ifdef CONFIG_ALTIVEC
3909         load_vr_state(&vcpu->arch.vr);
3910 #endif
3911         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3912
3913         load_spr_state(vcpu);
3914
3915         /*
3916          * When setting DEC, we must always deal with irq_work_raise via NMI vs
3917          * setting DEC. The problem occurs right as we switch into guest mode
3918          * if a NMI hits and sets pending work and sets DEC, then that will
3919          * apply to the guest and not bring us back to the host.
3920          *
3921          * irq_work_raise could check a flag (or possibly LPCR[HDICE] for
3922          * example) and set HDEC to 1? That wouldn't solve the nested hv
3923          * case which needs to abort the hcall or zero the time limit.
3924          *
3925          * XXX: Another day's problem.
3926          */
3927         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3928
3929         if (kvmhv_on_pseries()) {
3930                 /*
3931                  * We need to save and restore the guest visible part of the
3932                  * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3933                  * doesn't do this for us. Note only required if pseries since
3934                  * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3935                  */
3936                 unsigned long host_psscr;
3937                 /* call our hypervisor to load up HV regs and go */
3938                 struct hv_guest_state hvregs;
3939
3940                 host_psscr = mfspr(SPRN_PSSCR_PR);
3941                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3942                 kvmhv_save_hv_regs(vcpu, &hvregs);
3943                 hvregs.lpcr = lpcr;
3944                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3945                 hvregs.version = HV_GUEST_STATE_VERSION;
3946                 if (vcpu->arch.nested) {
3947                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3948                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3949                 } else {
3950                         hvregs.lpid = vcpu->kvm->arch.lpid;
3951                         hvregs.vcpu_token = vcpu->vcpu_id;
3952                 }
3953                 hvregs.hdec_expiry = time_limit;
3954                 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3955                 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3956                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3957                                           __pa(&vcpu->arch.regs));
3958                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3959                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3960                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3961                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3962                 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3963                 mtspr(SPRN_PSSCR_PR, host_psscr);
3964
3965                 /* H_CEDE has to be handled now, not later */
3966                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3967                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3968                         kvmppc_cede(vcpu);
3969                         kvmppc_set_gpr(vcpu, 3, 0);
3970                         trap = 0;
3971                 }
3972         } else {
3973                 kvmppc_xive_push_vcpu(vcpu);
3974                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr);
3975                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3976                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3977                         unsigned long req = kvmppc_get_gpr(vcpu, 3);
3978
3979                         /* H_CEDE has to be handled now, not later */
3980                         if (req == H_CEDE) {
3981                                 kvmppc_cede(vcpu);
3982                                 kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */
3983                                 kvmppc_set_gpr(vcpu, 3, 0);
3984                                 trap = 0;
3985
3986                         /* XICS hcalls must be handled before xive is pulled */
3987                         } else if (hcall_is_xics(req)) {
3988                                 int ret;
3989
3990                                 ret = kvmppc_xive_xics_hcall(vcpu, req);
3991                                 if (ret != H_TOO_HARD) {
3992                                         kvmppc_set_gpr(vcpu, 3, ret);
3993                                         trap = 0;
3994                                 }
3995                         }
3996                 }
3997                 kvmppc_xive_pull_vcpu(vcpu);
3998
3999                 if (kvm_is_radix(vcpu->kvm))
4000                         vcpu->arch.slb_max = 0;
4001         }
4002
4003         dec = mfspr(SPRN_DEC);
4004         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4005                 dec = (s32) dec;
4006         tb = mftb();
4007         vcpu->arch.dec_expires = dec + tb;
4008         vcpu->cpu = -1;
4009         vcpu->arch.thread_cpu = -1;
4010
4011         store_spr_state(vcpu);
4012
4013         restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4014
4015         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
4016         store_fp_state(&vcpu->arch.fp);
4017 #ifdef CONFIG_ALTIVEC
4018         store_vr_state(&vcpu->arch.vr);
4019 #endif
4020         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
4021
4022         if (cpu_has_feature(CPU_FTR_TM) ||
4023             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
4024                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
4025
4026         save_pmu = 1;
4027         if (vcpu->arch.vpa.pinned_addr) {
4028                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4029                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4030                 lp->yield_count = cpu_to_be32(yield_count);
4031                 vcpu->arch.vpa.dirty = 1;
4032                 save_pmu = lp->pmcregs_in_use;
4033         }
4034         /* Must save pmu if this guest is capable of running nested guests */
4035         save_pmu |= nesting_enabled(vcpu->kvm);
4036
4037         kvmhv_save_guest_pmu(vcpu, save_pmu);
4038 #ifdef CONFIG_PPC_PSERIES
4039         if (kvmhv_on_pseries()) {
4040                 barrier();
4041                 get_lppaca()->pmcregs_in_use = ppc_get_pmu_inuse();
4042                 barrier();
4043         }
4044 #endif
4045
4046         vc->entry_exit_map = 0x101;
4047         vc->in_guest = 0;
4048
4049         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
4050         /* We may have raced with new irq work */
4051         if (test_irq_work_pending())
4052                 set_dec(1);
4053         mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
4054
4055         kvmhv_load_host_pmu();
4056
4057         kvmppc_subcore_exit_guest();
4058
4059         return trap;
4060 }
4061
4062 /*
4063  * Wait for some other vcpu thread to execute us, and
4064  * wake us up when we need to handle something in the host.
4065  */
4066 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4067                                  struct kvm_vcpu *vcpu, int wait_state)
4068 {
4069         DEFINE_WAIT(wait);
4070
4071         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4072         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4073                 spin_unlock(&vc->lock);
4074                 schedule();
4075                 spin_lock(&vc->lock);
4076         }
4077         finish_wait(&vcpu->arch.cpu_run, &wait);
4078 }
4079
4080 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4081 {
4082         if (!halt_poll_ns_grow)
4083                 return;
4084
4085         vc->halt_poll_ns *= halt_poll_ns_grow;
4086         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4087                 vc->halt_poll_ns = halt_poll_ns_grow_start;
4088 }
4089
4090 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4091 {
4092         if (halt_poll_ns_shrink == 0)
4093                 vc->halt_poll_ns = 0;
4094         else
4095                 vc->halt_poll_ns /= halt_poll_ns_shrink;
4096 }
4097
4098 #ifdef CONFIG_KVM_XICS
4099 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4100 {
4101         if (!xics_on_xive())
4102                 return false;
4103         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4104                 vcpu->arch.xive_saved_state.cppr;
4105 }
4106 #else
4107 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4108 {
4109         return false;
4110 }
4111 #endif /* CONFIG_KVM_XICS */
4112
4113 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4114 {
4115         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4116             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4117                 return true;
4118
4119         return false;
4120 }
4121
4122 /*
4123  * Check to see if any of the runnable vcpus on the vcore have pending
4124  * exceptions or are no longer ceded
4125  */
4126 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4127 {
4128         struct kvm_vcpu *vcpu;
4129         int i;
4130
4131         for_each_runnable_thread(i, vcpu, vc) {
4132                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4133                         return 1;
4134         }
4135
4136         return 0;
4137 }
4138
4139 /*
4140  * All the vcpus in this vcore are idle, so wait for a decrementer
4141  * or external interrupt to one of the vcpus.  vc->lock is held.
4142  */
4143 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4144 {
4145         ktime_t cur, start_poll, start_wait;
4146         int do_sleep = 1;
4147         u64 block_ns;
4148
4149         /* Poll for pending exceptions and ceded state */
4150         cur = start_poll = ktime_get();
4151         if (vc->halt_poll_ns) {
4152                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4153                 ++vc->runner->stat.generic.halt_attempted_poll;
4154
4155                 vc->vcore_state = VCORE_POLLING;
4156                 spin_unlock(&vc->lock);
4157
4158                 do {
4159                         if (kvmppc_vcore_check_block(vc)) {
4160                                 do_sleep = 0;
4161                                 break;
4162                         }
4163                         cur = ktime_get();
4164                 } while (kvm_vcpu_can_poll(cur, stop));
4165
4166                 spin_lock(&vc->lock);
4167                 vc->vcore_state = VCORE_INACTIVE;
4168
4169                 if (!do_sleep) {
4170                         ++vc->runner->stat.generic.halt_successful_poll;
4171                         goto out;
4172                 }
4173         }
4174
4175         prepare_to_rcuwait(&vc->wait);
4176         set_current_state(TASK_INTERRUPTIBLE);
4177         if (kvmppc_vcore_check_block(vc)) {
4178                 finish_rcuwait(&vc->wait);
4179                 do_sleep = 0;
4180                 /* If we polled, count this as a successful poll */
4181                 if (vc->halt_poll_ns)
4182                         ++vc->runner->stat.generic.halt_successful_poll;
4183                 goto out;
4184         }
4185
4186         start_wait = ktime_get();
4187
4188         vc->vcore_state = VCORE_SLEEPING;
4189         trace_kvmppc_vcore_blocked(vc, 0);
4190         spin_unlock(&vc->lock);
4191         schedule();
4192         finish_rcuwait(&vc->wait);
4193         spin_lock(&vc->lock);
4194         vc->vcore_state = VCORE_INACTIVE;
4195         trace_kvmppc_vcore_blocked(vc, 1);
4196         ++vc->runner->stat.halt_successful_wait;
4197
4198         cur = ktime_get();
4199
4200 out:
4201         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4202
4203         /* Attribute wait time */
4204         if (do_sleep) {
4205                 vc->runner->stat.generic.halt_wait_ns +=
4206                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
4207                 KVM_STATS_LOG_HIST_UPDATE(
4208                                 vc->runner->stat.generic.halt_wait_hist,
4209                                 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4210                 /* Attribute failed poll time */
4211                 if (vc->halt_poll_ns) {
4212                         vc->runner->stat.generic.halt_poll_fail_ns +=
4213                                 ktime_to_ns(start_wait) -
4214                                 ktime_to_ns(start_poll);
4215                         KVM_STATS_LOG_HIST_UPDATE(
4216                                 vc->runner->stat.generic.halt_poll_fail_hist,
4217                                 ktime_to_ns(start_wait) -
4218                                 ktime_to_ns(start_poll));
4219                 }
4220         } else {
4221                 /* Attribute successful poll time */
4222                 if (vc->halt_poll_ns) {
4223                         vc->runner->stat.generic.halt_poll_success_ns +=
4224                                 ktime_to_ns(cur) -
4225                                 ktime_to_ns(start_poll);
4226                         KVM_STATS_LOG_HIST_UPDATE(
4227                                 vc->runner->stat.generic.halt_poll_success_hist,
4228                                 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4229                 }
4230         }
4231
4232         /* Adjust poll time */
4233         if (halt_poll_ns) {
4234                 if (block_ns <= vc->halt_poll_ns)
4235                         ;
4236                 /* We slept and blocked for longer than the max halt time */
4237                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4238                         shrink_halt_poll_ns(vc);
4239                 /* We slept and our poll time is too small */
4240                 else if (vc->halt_poll_ns < halt_poll_ns &&
4241                                 block_ns < halt_poll_ns)
4242                         grow_halt_poll_ns(vc);
4243                 if (vc->halt_poll_ns > halt_poll_ns)
4244                         vc->halt_poll_ns = halt_poll_ns;
4245         } else
4246                 vc->halt_poll_ns = 0;
4247
4248         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4249 }
4250
4251 /*
4252  * This never fails for a radix guest, as none of the operations it does
4253  * for a radix guest can fail or have a way to report failure.
4254  */
4255 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4256 {
4257         int r = 0;
4258         struct kvm *kvm = vcpu->kvm;
4259
4260         mutex_lock(&kvm->arch.mmu_setup_lock);
4261         if (!kvm->arch.mmu_ready) {
4262                 if (!kvm_is_radix(kvm))
4263                         r = kvmppc_hv_setup_htab_rma(vcpu);
4264                 if (!r) {
4265                         if (cpu_has_feature(CPU_FTR_ARCH_300))
4266                                 kvmppc_setup_partition_table(kvm);
4267                         kvm->arch.mmu_ready = 1;
4268                 }
4269         }
4270         mutex_unlock(&kvm->arch.mmu_setup_lock);
4271         return r;
4272 }
4273
4274 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4275 {
4276         struct kvm_run *run = vcpu->run;
4277         int n_ceded, i, r;
4278         struct kvmppc_vcore *vc;
4279         struct kvm_vcpu *v;
4280
4281         trace_kvmppc_run_vcpu_enter(vcpu);
4282
4283         run->exit_reason = 0;
4284         vcpu->arch.ret = RESUME_GUEST;
4285         vcpu->arch.trap = 0;
4286         kvmppc_update_vpas(vcpu);
4287
4288         /*
4289          * Synchronize with other threads in this virtual core
4290          */
4291         vc = vcpu->arch.vcore;
4292         spin_lock(&vc->lock);
4293         vcpu->arch.ceded = 0;
4294         vcpu->arch.run_task = current;
4295         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4296         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4297         vcpu->arch.busy_preempt = TB_NIL;
4298         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4299         ++vc->n_runnable;
4300
4301         /*
4302          * This happens the first time this is called for a vcpu.
4303          * If the vcore is already running, we may be able to start
4304          * this thread straight away and have it join in.
4305          */
4306         if (!signal_pending(current)) {
4307                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4308                      vc->vcore_state == VCORE_RUNNING) &&
4309                            !VCORE_IS_EXITING(vc)) {
4310                         kvmppc_create_dtl_entry(vcpu, vc);
4311                         kvmppc_start_thread(vcpu, vc);
4312                         trace_kvm_guest_enter(vcpu);
4313                 } else if (vc->vcore_state == VCORE_SLEEPING) {
4314                         rcuwait_wake_up(&vc->wait);
4315                 }
4316
4317         }
4318
4319         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4320                !signal_pending(current)) {
4321                 /* See if the MMU is ready to go */
4322                 if (!vcpu->kvm->arch.mmu_ready) {
4323                         spin_unlock(&vc->lock);
4324                         r = kvmhv_setup_mmu(vcpu);
4325                         spin_lock(&vc->lock);
4326                         if (r) {
4327                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4328                                 run->fail_entry.
4329                                         hardware_entry_failure_reason = 0;
4330                                 vcpu->arch.ret = r;
4331                                 break;
4332                         }
4333                 }
4334
4335                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4336                         kvmppc_vcore_end_preempt(vc);
4337
4338                 if (vc->vcore_state != VCORE_INACTIVE) {
4339                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4340                         continue;
4341                 }
4342                 for_each_runnable_thread(i, v, vc) {
4343                         kvmppc_core_prepare_to_enter(v);
4344                         if (signal_pending(v->arch.run_task)) {
4345                                 kvmppc_remove_runnable(vc, v);
4346                                 v->stat.signal_exits++;
4347                                 v->run->exit_reason = KVM_EXIT_INTR;
4348                                 v->arch.ret = -EINTR;
4349                                 wake_up(&v->arch.cpu_run);
4350                         }
4351                 }
4352                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4353                         break;
4354                 n_ceded = 0;
4355                 for_each_runnable_thread(i, v, vc) {
4356                         if (!kvmppc_vcpu_woken(v))
4357                                 n_ceded += v->arch.ceded;
4358                         else
4359                                 v->arch.ceded = 0;
4360                 }
4361                 vc->runner = vcpu;
4362                 if (n_ceded == vc->n_runnable) {
4363                         kvmppc_vcore_blocked(vc);
4364                 } else if (need_resched()) {
4365                         kvmppc_vcore_preempt(vc);
4366                         /* Let something else run */
4367                         cond_resched_lock(&vc->lock);
4368                         if (vc->vcore_state == VCORE_PREEMPT)
4369                                 kvmppc_vcore_end_preempt(vc);
4370                 } else {
4371                         kvmppc_run_core(vc);
4372                 }
4373                 vc->runner = NULL;
4374         }
4375
4376         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4377                (vc->vcore_state == VCORE_RUNNING ||
4378                 vc->vcore_state == VCORE_EXITING ||
4379                 vc->vcore_state == VCORE_PIGGYBACK))
4380                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4381
4382         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4383                 kvmppc_vcore_end_preempt(vc);
4384
4385         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4386                 kvmppc_remove_runnable(vc, vcpu);
4387                 vcpu->stat.signal_exits++;
4388                 run->exit_reason = KVM_EXIT_INTR;
4389                 vcpu->arch.ret = -EINTR;
4390         }
4391
4392         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4393                 /* Wake up some vcpu to run the core */
4394                 i = -1;
4395                 v = next_runnable_thread(vc, &i);
4396                 wake_up(&v->arch.cpu_run);
4397         }
4398
4399         trace_kvmppc_run_vcpu_exit(vcpu);
4400         spin_unlock(&vc->lock);
4401         return vcpu->arch.ret;
4402 }
4403
4404 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4405                           unsigned long lpcr)
4406 {
4407         struct kvm_run *run = vcpu->run;
4408         int trap, r, pcpu;
4409         int srcu_idx;
4410         struct kvmppc_vcore *vc;
4411         struct kvm *kvm = vcpu->kvm;
4412         struct kvm_nested_guest *nested = vcpu->arch.nested;
4413
4414         trace_kvmppc_run_vcpu_enter(vcpu);
4415
4416         run->exit_reason = 0;
4417         vcpu->arch.ret = RESUME_GUEST;
4418         vcpu->arch.trap = 0;
4419
4420         vc = vcpu->arch.vcore;
4421         vcpu->arch.ceded = 0;
4422         vcpu->arch.run_task = current;
4423         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4424         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4425         vcpu->arch.busy_preempt = TB_NIL;
4426         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4427         vc->runnable_threads[0] = vcpu;
4428         vc->n_runnable = 1;
4429         vc->runner = vcpu;
4430
4431         /* See if the MMU is ready to go */
4432         if (!kvm->arch.mmu_ready) {
4433                 r = kvmhv_setup_mmu(vcpu);
4434                 if (r) {
4435                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4436                         run->fail_entry.hardware_entry_failure_reason = 0;
4437                         vcpu->arch.ret = r;
4438                         return r;
4439                 }
4440         }
4441
4442         if (need_resched())
4443                 cond_resched();
4444
4445         kvmppc_update_vpas(vcpu);
4446
4447         init_vcore_to_run(vc);
4448         vc->preempt_tb = TB_NIL;
4449
4450         preempt_disable();
4451         pcpu = smp_processor_id();
4452         vc->pcpu = pcpu;
4453         if (kvm_is_radix(kvm))
4454                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4455
4456         local_irq_disable();
4457         hard_irq_disable();
4458         if (signal_pending(current))
4459                 goto sigpend;
4460         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4461                 goto out;
4462
4463         if (!nested) {
4464                 kvmppc_core_prepare_to_enter(vcpu);
4465                 if (vcpu->arch.doorbell_request) {
4466                         vc->dpdes = 1;
4467                         smp_wmb();
4468                         vcpu->arch.doorbell_request = 0;
4469                 }
4470                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4471                              &vcpu->arch.pending_exceptions))
4472                         lpcr |= LPCR_MER;
4473         } else if (vcpu->arch.pending_exceptions ||
4474                    vcpu->arch.doorbell_request ||
4475                    xive_interrupt_pending(vcpu)) {
4476                 vcpu->arch.ret = RESUME_HOST;
4477                 goto out;
4478         }
4479
4480         kvmppc_clear_host_core(pcpu);
4481
4482         local_paca->kvm_hstate.napping = 0;
4483         local_paca->kvm_hstate.kvm_split_mode = NULL;
4484         kvmppc_start_thread(vcpu, vc);
4485         kvmppc_create_dtl_entry(vcpu, vc);
4486         trace_kvm_guest_enter(vcpu);
4487
4488         vc->vcore_state = VCORE_RUNNING;
4489         trace_kvmppc_run_core(vc, 0);
4490
4491         guest_enter_irqoff();
4492
4493         srcu_idx = srcu_read_lock(&kvm->srcu);
4494
4495         this_cpu_disable_ftrace();
4496
4497         /* Tell lockdep that we're about to enable interrupts */
4498         trace_hardirqs_on();
4499
4500         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4501         vcpu->arch.trap = trap;
4502
4503         trace_hardirqs_off();
4504
4505         this_cpu_enable_ftrace();
4506
4507         srcu_read_unlock(&kvm->srcu, srcu_idx);
4508
4509         set_irq_happened(trap);
4510
4511         kvmppc_set_host_core(pcpu);
4512
4513         guest_exit_irqoff();
4514
4515         local_irq_enable();
4516
4517         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4518
4519         preempt_enable();
4520
4521         /*
4522          * cancel pending decrementer exception if DEC is now positive, or if
4523          * entering a nested guest in which case the decrementer is now owned
4524          * by L2 and the L1 decrementer is provided in hdec_expires
4525          */
4526         if (kvmppc_core_pending_dec(vcpu) &&
4527                         ((get_tb() < vcpu->arch.dec_expires) ||
4528                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4529                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4530                 kvmppc_core_dequeue_dec(vcpu);
4531
4532         trace_kvm_guest_exit(vcpu);
4533         r = RESUME_GUEST;
4534         if (trap) {
4535                 if (!nested)
4536                         r = kvmppc_handle_exit_hv(vcpu, current);
4537                 else
4538                         r = kvmppc_handle_nested_exit(vcpu);
4539         }
4540         vcpu->arch.ret = r;
4541
4542         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4543             !kvmppc_vcpu_woken(vcpu)) {
4544                 kvmppc_set_timer(vcpu);
4545                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4546                         if (signal_pending(current)) {
4547                                 vcpu->stat.signal_exits++;
4548                                 run->exit_reason = KVM_EXIT_INTR;
4549                                 vcpu->arch.ret = -EINTR;
4550                                 break;
4551                         }
4552                         spin_lock(&vc->lock);
4553                         kvmppc_vcore_blocked(vc);
4554                         spin_unlock(&vc->lock);
4555                 }
4556         }
4557         vcpu->arch.ceded = 0;
4558
4559         vc->vcore_state = VCORE_INACTIVE;
4560         trace_kvmppc_run_core(vc, 1);
4561
4562  done:
4563         kvmppc_remove_runnable(vc, vcpu);
4564         trace_kvmppc_run_vcpu_exit(vcpu);
4565
4566         return vcpu->arch.ret;
4567
4568  sigpend:
4569         vcpu->stat.signal_exits++;
4570         run->exit_reason = KVM_EXIT_INTR;
4571         vcpu->arch.ret = -EINTR;
4572  out:
4573         local_irq_enable();
4574         preempt_enable();
4575         goto done;
4576 }
4577
4578 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4579 {
4580         struct kvm_run *run = vcpu->run;
4581         int r;
4582         int srcu_idx;
4583         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4584         unsigned long user_tar = 0;
4585         unsigned int user_vrsave;
4586         struct kvm *kvm;
4587
4588         if (!vcpu->arch.sane) {
4589                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4590                 return -EINVAL;
4591         }
4592
4593         /*
4594          * Don't allow entry with a suspended transaction, because
4595          * the guest entry/exit code will lose it.
4596          * If the guest has TM enabled, save away their TM-related SPRs
4597          * (they will get restored by the TM unavailable interrupt).
4598          */
4599 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4600         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4601             (current->thread.regs->msr & MSR_TM)) {
4602                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4603                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4604                         run->fail_entry.hardware_entry_failure_reason = 0;
4605                         return -EINVAL;
4606                 }
4607                 /* Enable TM so we can read the TM SPRs */
4608                 mtmsr(mfmsr() | MSR_TM);
4609                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4610                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4611                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4612                 current->thread.regs->msr &= ~MSR_TM;
4613         }
4614 #endif
4615
4616         /*
4617          * Force online to 1 for the sake of old userspace which doesn't
4618          * set it.
4619          */
4620         if (!vcpu->arch.online) {
4621                 atomic_inc(&vcpu->arch.vcore->online_count);
4622                 vcpu->arch.online = 1;
4623         }
4624
4625         kvmppc_core_prepare_to_enter(vcpu);
4626
4627         /* No need to go into the guest when all we'll do is come back out */
4628         if (signal_pending(current)) {
4629                 run->exit_reason = KVM_EXIT_INTR;
4630                 return -EINTR;
4631         }
4632
4633         kvm = vcpu->kvm;
4634         atomic_inc(&kvm->arch.vcpus_running);
4635         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4636         smp_mb();
4637
4638         flush_all_to_thread(current);
4639
4640         /* Save userspace EBB and other register values */
4641         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4642                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4643                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4644                 ebb_regs[2] = mfspr(SPRN_BESCR);
4645                 user_tar = mfspr(SPRN_TAR);
4646         }
4647         user_vrsave = mfspr(SPRN_VRSAVE);
4648
4649         vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4650         vcpu->arch.pgdir = kvm->mm->pgd;
4651         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4652
4653         do {
4654                 if (cpu_has_feature(CPU_FTR_ARCH_300))
4655                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4656                                                   vcpu->arch.vcore->lpcr);
4657                 else
4658                         r = kvmppc_run_vcpu(vcpu);
4659
4660                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4661                         if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4662                                 /*
4663                                  * These should have been caught reflected
4664                                  * into the guest by now. Final sanity check:
4665                                  * don't allow userspace to execute hcalls in
4666                                  * the hypervisor.
4667                                  */
4668                                 r = RESUME_GUEST;
4669                                 continue;
4670                         }
4671                         trace_kvm_hcall_enter(vcpu);
4672                         r = kvmppc_pseries_do_hcall(vcpu);
4673                         trace_kvm_hcall_exit(vcpu, r);
4674                         kvmppc_core_prepare_to_enter(vcpu);
4675                 } else if (r == RESUME_PAGE_FAULT) {
4676                         srcu_idx = srcu_read_lock(&kvm->srcu);
4677                         r = kvmppc_book3s_hv_page_fault(vcpu,
4678                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4679                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4680                 } else if (r == RESUME_PASSTHROUGH) {
4681                         if (WARN_ON(xics_on_xive()))
4682                                 r = H_SUCCESS;
4683                         else
4684                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4685                 }
4686         } while (is_kvmppc_resume_guest(r));
4687
4688         /* Restore userspace EBB and other register values */
4689         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4690                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4691                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4692                 mtspr(SPRN_BESCR, ebb_regs[2]);
4693                 mtspr(SPRN_TAR, user_tar);
4694         }
4695         mtspr(SPRN_VRSAVE, user_vrsave);
4696
4697         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4698         atomic_dec(&kvm->arch.vcpus_running);
4699
4700         srr_regs_clobbered();
4701
4702         return r;
4703 }
4704
4705 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4706                                      int shift, int sllp)
4707 {
4708         (*sps)->page_shift = shift;
4709         (*sps)->slb_enc = sllp;
4710         (*sps)->enc[0].page_shift = shift;
4711         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4712         /*
4713          * Add 16MB MPSS support (may get filtered out by userspace)
4714          */
4715         if (shift != 24) {
4716                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4717                 if (penc != -1) {
4718                         (*sps)->enc[1].page_shift = 24;
4719                         (*sps)->enc[1].pte_enc = penc;
4720                 }
4721         }
4722         (*sps)++;
4723 }
4724
4725 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4726                                          struct kvm_ppc_smmu_info *info)
4727 {
4728         struct kvm_ppc_one_seg_page_size *sps;
4729
4730         /*
4731          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4732          * POWER7 doesn't support keys for instruction accesses,
4733          * POWER8 and POWER9 do.
4734          */
4735         info->data_keys = 32;
4736         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4737
4738         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4739         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4740         info->slb_size = 32;
4741
4742         /* We only support these sizes for now, and no muti-size segments */
4743         sps = &info->sps[0];
4744         kvmppc_add_seg_page_size(&sps, 12, 0);
4745         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4746         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4747
4748         /* If running as a nested hypervisor, we don't support HPT guests */
4749         if (kvmhv_on_pseries())
4750                 info->flags |= KVM_PPC_NO_HASH;
4751
4752         return 0;
4753 }
4754
4755 /*
4756  * Get (and clear) the dirty memory log for a memory slot.
4757  */
4758 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4759                                          struct kvm_dirty_log *log)
4760 {
4761         struct kvm_memslots *slots;
4762         struct kvm_memory_slot *memslot;
4763         int i, r;
4764         unsigned long n;
4765         unsigned long *buf, *p;
4766         struct kvm_vcpu *vcpu;
4767
4768         mutex_lock(&kvm->slots_lock);
4769
4770         r = -EINVAL;
4771         if (log->slot >= KVM_USER_MEM_SLOTS)
4772                 goto out;
4773
4774         slots = kvm_memslots(kvm);
4775         memslot = id_to_memslot(slots, log->slot);
4776         r = -ENOENT;
4777         if (!memslot || !memslot->dirty_bitmap)
4778                 goto out;
4779
4780         /*
4781          * Use second half of bitmap area because both HPT and radix
4782          * accumulate bits in the first half.
4783          */
4784         n = kvm_dirty_bitmap_bytes(memslot);
4785         buf = memslot->dirty_bitmap + n / sizeof(long);
4786         memset(buf, 0, n);
4787
4788         if (kvm_is_radix(kvm))
4789                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4790         else
4791                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4792         if (r)
4793                 goto out;
4794
4795         /*
4796          * We accumulate dirty bits in the first half of the
4797          * memslot's dirty_bitmap area, for when pages are paged
4798          * out or modified by the host directly.  Pick up these
4799          * bits and add them to the map.
4800          */
4801         p = memslot->dirty_bitmap;
4802         for (i = 0; i < n / sizeof(long); ++i)
4803                 buf[i] |= xchg(&p[i], 0);
4804
4805         /* Harvest dirty bits from VPA and DTL updates */
4806         /* Note: we never modify the SLB shadow buffer areas */
4807         kvm_for_each_vcpu(i, vcpu, kvm) {
4808                 spin_lock(&vcpu->arch.vpa_update_lock);
4809                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4810                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4811                 spin_unlock(&vcpu->arch.vpa_update_lock);
4812         }
4813
4814         r = -EFAULT;
4815         if (copy_to_user(log->dirty_bitmap, buf, n))
4816                 goto out;
4817
4818         r = 0;
4819 out:
4820         mutex_unlock(&kvm->slots_lock);
4821         return r;
4822 }
4823
4824 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4825 {
4826         vfree(slot->arch.rmap);
4827         slot->arch.rmap = NULL;
4828 }
4829
4830 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4831                                         struct kvm_memory_slot *slot,
4832                                         const struct kvm_userspace_memory_region *mem,
4833                                         enum kvm_mr_change change)
4834 {
4835         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4836
4837         if (change == KVM_MR_CREATE) {
4838                 slot->arch.rmap = vzalloc(array_size(npages,
4839                                           sizeof(*slot->arch.rmap)));
4840                 if (!slot->arch.rmap)
4841                         return -ENOMEM;
4842         }
4843
4844         return 0;
4845 }
4846
4847 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4848                                 const struct kvm_userspace_memory_region *mem,
4849                                 const struct kvm_memory_slot *old,
4850                                 const struct kvm_memory_slot *new,
4851                                 enum kvm_mr_change change)
4852 {
4853         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4854
4855         /*
4856          * If we are making a new memslot, it might make
4857          * some address that was previously cached as emulated
4858          * MMIO be no longer emulated MMIO, so invalidate
4859          * all the caches of emulated MMIO translations.
4860          */
4861         if (npages)
4862                 atomic64_inc(&kvm->arch.mmio_update);
4863
4864         /*
4865          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4866          * have already called kvm_arch_flush_shadow_memslot() to
4867          * flush shadow mappings.  For KVM_MR_CREATE we have no
4868          * previous mappings.  So the only case to handle is
4869          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4870          * has been changed.
4871          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4872          * to get rid of any THP PTEs in the partition-scoped page tables
4873          * so we can track dirtiness at the page level; we flush when
4874          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4875          * using THP PTEs.
4876          */
4877         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4878             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4879                 kvmppc_radix_flush_memslot(kvm, old);
4880         /*
4881          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4882          */
4883         if (!kvm->arch.secure_guest)
4884                 return;
4885
4886         switch (change) {
4887         case KVM_MR_CREATE:
4888                 /*
4889                  * @TODO kvmppc_uvmem_memslot_create() can fail and
4890                  * return error. Fix this.
4891                  */
4892                 kvmppc_uvmem_memslot_create(kvm, new);
4893                 break;
4894         case KVM_MR_DELETE:
4895                 kvmppc_uvmem_memslot_delete(kvm, old);
4896                 break;
4897         default:
4898                 /* TODO: Handle KVM_MR_MOVE */
4899                 break;
4900         }
4901 }
4902
4903 /*
4904  * Update LPCR values in kvm->arch and in vcores.
4905  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4906  * of kvm->arch.lpcr update).
4907  */
4908 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4909 {
4910         long int i;
4911         u32 cores_done = 0;
4912
4913         if ((kvm->arch.lpcr & mask) == lpcr)
4914                 return;
4915
4916         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4917
4918         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4919                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4920                 if (!vc)
4921                         continue;
4922
4923                 spin_lock(&vc->lock);
4924                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4925                 verify_lpcr(kvm, vc->lpcr);
4926                 spin_unlock(&vc->lock);
4927                 if (++cores_done >= kvm->arch.online_vcores)
4928                         break;
4929         }
4930 }
4931
4932 void kvmppc_setup_partition_table(struct kvm *kvm)
4933 {
4934         unsigned long dw0, dw1;
4935
4936         if (!kvm_is_radix(kvm)) {
4937                 /* PS field - page size for VRMA */
4938                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4939                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4940                 /* HTABSIZE and HTABORG fields */
4941                 dw0 |= kvm->arch.sdr1;
4942
4943                 /* Second dword as set by userspace */
4944                 dw1 = kvm->arch.process_table;
4945         } else {
4946                 dw0 = PATB_HR | radix__get_tree_size() |
4947                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4948                 dw1 = PATB_GR | kvm->arch.process_table;
4949         }
4950         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4951 }
4952
4953 /*
4954  * Set up HPT (hashed page table) and RMA (real-mode area).
4955  * Must be called with kvm->arch.mmu_setup_lock held.
4956  */
4957 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4958 {
4959         int err = 0;
4960         struct kvm *kvm = vcpu->kvm;
4961         unsigned long hva;
4962         struct kvm_memory_slot *memslot;
4963         struct vm_area_struct *vma;
4964         unsigned long lpcr = 0, senc;
4965         unsigned long psize, porder;
4966         int srcu_idx;
4967
4968         /* Allocate hashed page table (if not done already) and reset it */
4969         if (!kvm->arch.hpt.virt) {
4970                 int order = KVM_DEFAULT_HPT_ORDER;
4971                 struct kvm_hpt_info info;
4972
4973                 err = kvmppc_allocate_hpt(&info, order);
4974                 /* If we get here, it means userspace didn't specify a
4975                  * size explicitly.  So, try successively smaller
4976                  * sizes if the default failed. */
4977                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4978                         err  = kvmppc_allocate_hpt(&info, order);
4979
4980                 if (err < 0) {
4981                         pr_err("KVM: Couldn't alloc HPT\n");
4982                         goto out;
4983                 }
4984
4985                 kvmppc_set_hpt(kvm, &info);
4986         }
4987
4988         /* Look up the memslot for guest physical address 0 */
4989         srcu_idx = srcu_read_lock(&kvm->srcu);
4990         memslot = gfn_to_memslot(kvm, 0);
4991
4992         /* We must have some memory at 0 by now */
4993         err = -EINVAL;
4994         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4995                 goto out_srcu;
4996
4997         /* Look up the VMA for the start of this memory slot */
4998         hva = memslot->userspace_addr;
4999         mmap_read_lock(kvm->mm);
5000         vma = vma_lookup(kvm->mm, hva);
5001         if (!vma || (vma->vm_flags & VM_IO))
5002                 goto up_out;
5003
5004         psize = vma_kernel_pagesize(vma);
5005
5006         mmap_read_unlock(kvm->mm);
5007
5008         /* We can handle 4k, 64k or 16M pages in the VRMA */
5009         if (psize >= 0x1000000)
5010                 psize = 0x1000000;
5011         else if (psize >= 0x10000)
5012                 psize = 0x10000;
5013         else
5014                 psize = 0x1000;
5015         porder = __ilog2(psize);
5016
5017         senc = slb_pgsize_encoding(psize);
5018         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5019                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5020         /* Create HPTEs in the hash page table for the VRMA */
5021         kvmppc_map_vrma(vcpu, memslot, porder);
5022
5023         /* Update VRMASD field in the LPCR */
5024         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5025                 /* the -4 is to account for senc values starting at 0x10 */
5026                 lpcr = senc << (LPCR_VRMASD_SH - 4);
5027                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5028         }
5029
5030         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5031         smp_wmb();
5032         err = 0;
5033  out_srcu:
5034         srcu_read_unlock(&kvm->srcu, srcu_idx);
5035  out:
5036         return err;
5037
5038  up_out:
5039         mmap_read_unlock(kvm->mm);
5040         goto out_srcu;
5041 }
5042
5043 /*
5044  * Must be called with kvm->arch.mmu_setup_lock held and
5045  * mmu_ready = 0 and no vcpus running.
5046  */
5047 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5048 {
5049         if (nesting_enabled(kvm))
5050                 kvmhv_release_all_nested(kvm);
5051         kvmppc_rmap_reset(kvm);
5052         kvm->arch.process_table = 0;
5053         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5054         spin_lock(&kvm->mmu_lock);
5055         kvm->arch.radix = 0;
5056         spin_unlock(&kvm->mmu_lock);
5057         kvmppc_free_radix(kvm);
5058         kvmppc_update_lpcr(kvm, LPCR_VPM1,
5059                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
5060         return 0;
5061 }
5062
5063 /*
5064  * Must be called with kvm->arch.mmu_setup_lock held and
5065  * mmu_ready = 0 and no vcpus running.
5066  */
5067 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5068 {
5069         int err;
5070
5071         err = kvmppc_init_vm_radix(kvm);
5072         if (err)
5073                 return err;
5074         kvmppc_rmap_reset(kvm);
5075         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5076         spin_lock(&kvm->mmu_lock);
5077         kvm->arch.radix = 1;
5078         spin_unlock(&kvm->mmu_lock);
5079         kvmppc_free_hpt(&kvm->arch.hpt);
5080         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
5081                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
5082         return 0;
5083 }
5084
5085 #ifdef CONFIG_KVM_XICS
5086 /*
5087  * Allocate a per-core structure for managing state about which cores are
5088  * running in the host versus the guest and for exchanging data between
5089  * real mode KVM and CPU running in the host.
5090  * This is only done for the first VM.
5091  * The allocated structure stays even if all VMs have stopped.
5092  * It is only freed when the kvm-hv module is unloaded.
5093  * It's OK for this routine to fail, we just don't support host
5094  * core operations like redirecting H_IPI wakeups.
5095  */
5096 void kvmppc_alloc_host_rm_ops(void)
5097 {
5098         struct kvmppc_host_rm_ops *ops;
5099         unsigned long l_ops;
5100         int cpu, core;
5101         int size;
5102
5103         /* Not the first time here ? */
5104         if (kvmppc_host_rm_ops_hv != NULL)
5105                 return;
5106
5107         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5108         if (!ops)
5109                 return;
5110
5111         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5112         ops->rm_core = kzalloc(size, GFP_KERNEL);
5113
5114         if (!ops->rm_core) {
5115                 kfree(ops);
5116                 return;
5117         }
5118
5119         cpus_read_lock();
5120
5121         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5122                 if (!cpu_online(cpu))
5123                         continue;
5124
5125                 core = cpu >> threads_shift;
5126                 ops->rm_core[core].rm_state.in_host = 1;
5127         }
5128
5129         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5130
5131         /*
5132          * Make the contents of the kvmppc_host_rm_ops structure visible
5133          * to other CPUs before we assign it to the global variable.
5134          * Do an atomic assignment (no locks used here), but if someone
5135          * beats us to it, just free our copy and return.
5136          */
5137         smp_wmb();
5138         l_ops = (unsigned long) ops;
5139
5140         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5141                 cpus_read_unlock();
5142                 kfree(ops->rm_core);
5143                 kfree(ops);
5144                 return;
5145         }
5146
5147         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5148                                              "ppc/kvm_book3s:prepare",
5149                                              kvmppc_set_host_core,
5150                                              kvmppc_clear_host_core);
5151         cpus_read_unlock();
5152 }
5153
5154 void kvmppc_free_host_rm_ops(void)
5155 {
5156         if (kvmppc_host_rm_ops_hv) {
5157                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5158                 kfree(kvmppc_host_rm_ops_hv->rm_core);
5159                 kfree(kvmppc_host_rm_ops_hv);
5160                 kvmppc_host_rm_ops_hv = NULL;
5161         }
5162 }
5163 #endif
5164
5165 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5166 {
5167         unsigned long lpcr, lpid;
5168         char buf[32];
5169         int ret;
5170
5171         mutex_init(&kvm->arch.uvmem_lock);
5172         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5173         mutex_init(&kvm->arch.mmu_setup_lock);
5174
5175         /* Allocate the guest's logical partition ID */
5176
5177         lpid = kvmppc_alloc_lpid();
5178         if ((long)lpid < 0)
5179                 return -ENOMEM;
5180         kvm->arch.lpid = lpid;
5181
5182         kvmppc_alloc_host_rm_ops();
5183
5184         kvmhv_vm_nested_init(kvm);
5185
5186         /*
5187          * Since we don't flush the TLB when tearing down a VM,
5188          * and this lpid might have previously been used,
5189          * make sure we flush on each core before running the new VM.
5190          * On POWER9, the tlbie in mmu_partition_table_set_entry()
5191          * does this flush for us.
5192          */
5193         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5194                 cpumask_setall(&kvm->arch.need_tlb_flush);
5195
5196         /* Start out with the default set of hcalls enabled */
5197         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5198                sizeof(kvm->arch.enabled_hcalls));
5199
5200         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5201                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5202
5203         /* Init LPCR for virtual RMA mode */
5204         if (cpu_has_feature(CPU_FTR_HVMODE)) {
5205                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5206                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5207                 lpcr &= LPCR_PECE | LPCR_LPES;
5208         } else {
5209                 lpcr = 0;
5210         }
5211         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5212                 LPCR_VPM0 | LPCR_VPM1;
5213         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5214                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5215         /* On POWER8 turn on online bit to enable PURR/SPURR */
5216         if (cpu_has_feature(CPU_FTR_ARCH_207S))
5217                 lpcr |= LPCR_ONL;
5218         /*
5219          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5220          * Set HVICE bit to enable hypervisor virtualization interrupts.
5221          * Set HEIC to prevent OS interrupts to go to hypervisor (should
5222          * be unnecessary but better safe than sorry in case we re-enable
5223          * EE in HV mode with this LPCR still set)
5224          */
5225         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5226                 lpcr &= ~LPCR_VPM0;
5227                 lpcr |= LPCR_HVICE | LPCR_HEIC;
5228
5229                 /*
5230                  * If xive is enabled, we route 0x500 interrupts directly
5231                  * to the guest.
5232                  */
5233                 if (xics_on_xive())
5234                         lpcr |= LPCR_LPES;
5235         }
5236
5237         /*
5238          * If the host uses radix, the guest starts out as radix.
5239          */
5240         if (radix_enabled()) {
5241                 kvm->arch.radix = 1;
5242                 kvm->arch.mmu_ready = 1;
5243                 lpcr &= ~LPCR_VPM1;
5244                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5245                 ret = kvmppc_init_vm_radix(kvm);
5246                 if (ret) {
5247                         kvmppc_free_lpid(kvm->arch.lpid);
5248                         return ret;
5249                 }
5250                 kvmppc_setup_partition_table(kvm);
5251         }
5252
5253         verify_lpcr(kvm, lpcr);
5254         kvm->arch.lpcr = lpcr;
5255
5256         /* Initialization for future HPT resizes */
5257         kvm->arch.resize_hpt = NULL;
5258
5259         /*
5260          * Work out how many sets the TLB has, for the use of
5261          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5262          */
5263         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5264                 /*
5265                  * P10 will flush all the congruence class with a single tlbiel
5266                  */
5267                 kvm->arch.tlb_sets = 1;
5268         } else if (radix_enabled())
5269                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5270         else if (cpu_has_feature(CPU_FTR_ARCH_300))
5271                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5272         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5273                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5274         else
5275                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5276
5277         /*
5278          * Track that we now have a HV mode VM active. This blocks secondary
5279          * CPU threads from coming online.
5280          */
5281         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5282                 kvm_hv_vm_activated();
5283
5284         /*
5285          * Initialize smt_mode depending on processor.
5286          * POWER8 and earlier have to use "strict" threading, where
5287          * all vCPUs in a vcore have to run on the same (sub)core,
5288          * whereas on POWER9 the threads can each run a different
5289          * guest.
5290          */
5291         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5292                 kvm->arch.smt_mode = threads_per_subcore;
5293         else
5294                 kvm->arch.smt_mode = 1;
5295         kvm->arch.emul_smt_mode = 1;
5296
5297         /*
5298          * Create a debugfs directory for the VM
5299          */
5300         snprintf(buf, sizeof(buf), "vm%d", current->pid);
5301         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5302         kvmppc_mmu_debugfs_init(kvm);
5303         if (radix_enabled())
5304                 kvmhv_radix_debugfs_init(kvm);
5305
5306         return 0;
5307 }
5308
5309 static void kvmppc_free_vcores(struct kvm *kvm)
5310 {
5311         long int i;
5312
5313         for (i = 0; i < KVM_MAX_VCORES; ++i)
5314                 kfree(kvm->arch.vcores[i]);
5315         kvm->arch.online_vcores = 0;
5316 }
5317
5318 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5319 {
5320         debugfs_remove_recursive(kvm->arch.debugfs_dir);
5321
5322         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5323                 kvm_hv_vm_deactivated();
5324
5325         kvmppc_free_vcores(kvm);
5326
5327
5328         if (kvm_is_radix(kvm))
5329                 kvmppc_free_radix(kvm);
5330         else
5331                 kvmppc_free_hpt(&kvm->arch.hpt);
5332
5333         /* Perform global invalidation and return lpid to the pool */
5334         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5335                 if (nesting_enabled(kvm))
5336                         kvmhv_release_all_nested(kvm);
5337                 kvm->arch.process_table = 0;
5338                 if (kvm->arch.secure_guest)
5339                         uv_svm_terminate(kvm->arch.lpid);
5340                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5341         }
5342
5343         kvmppc_free_lpid(kvm->arch.lpid);
5344
5345         kvmppc_free_pimap(kvm);
5346 }
5347
5348 /* We don't need to emulate any privileged instructions or dcbz */
5349 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5350                                      unsigned int inst, int *advance)
5351 {
5352         return EMULATE_FAIL;
5353 }
5354
5355 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5356                                         ulong spr_val)
5357 {
5358         return EMULATE_FAIL;
5359 }
5360
5361 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5362                                         ulong *spr_val)
5363 {
5364         return EMULATE_FAIL;
5365 }
5366
5367 static int kvmppc_core_check_processor_compat_hv(void)
5368 {
5369         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5370             cpu_has_feature(CPU_FTR_ARCH_206))
5371                 return 0;
5372
5373         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5374         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5375                 return 0;
5376
5377         return -EIO;
5378 }
5379
5380 #ifdef CONFIG_KVM_XICS
5381
5382 void kvmppc_free_pimap(struct kvm *kvm)
5383 {
5384         kfree(kvm->arch.pimap);
5385 }
5386
5387 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5388 {
5389         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5390 }
5391
5392 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5393 {
5394         struct irq_desc *desc;
5395         struct kvmppc_irq_map *irq_map;
5396         struct kvmppc_passthru_irqmap *pimap;
5397         struct irq_chip *chip;
5398         int i, rc = 0;
5399         struct irq_data *host_data;
5400
5401         if (!kvm_irq_bypass)
5402                 return 1;
5403
5404         desc = irq_to_desc(host_irq);
5405         if (!desc)
5406                 return -EIO;
5407
5408         mutex_lock(&kvm->lock);
5409
5410         pimap = kvm->arch.pimap;
5411         if (pimap == NULL) {
5412                 /* First call, allocate structure to hold IRQ map */
5413                 pimap = kvmppc_alloc_pimap();
5414                 if (pimap == NULL) {
5415                         mutex_unlock(&kvm->lock);
5416                         return -ENOMEM;
5417                 }
5418                 kvm->arch.pimap = pimap;
5419         }
5420
5421         /*
5422          * For now, we only support interrupts for which the EOI operation
5423          * is an OPAL call followed by a write to XIRR, since that's
5424          * what our real-mode EOI code does, or a XIVE interrupt
5425          */
5426         chip = irq_data_get_irq_chip(&desc->irq_data);
5427         if (!chip || !is_pnv_opal_msi(chip)) {
5428                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5429                         host_irq, guest_gsi);
5430                 mutex_unlock(&kvm->lock);
5431                 return -ENOENT;
5432         }
5433
5434         /*
5435          * See if we already have an entry for this guest IRQ number.
5436          * If it's mapped to a hardware IRQ number, that's an error,
5437          * otherwise re-use this entry.
5438          */
5439         for (i = 0; i < pimap->n_mapped; i++) {
5440                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5441                         if (pimap->mapped[i].r_hwirq) {
5442                                 mutex_unlock(&kvm->lock);
5443                                 return -EINVAL;
5444                         }
5445                         break;
5446                 }
5447         }
5448
5449         if (i == KVMPPC_PIRQ_MAPPED) {
5450                 mutex_unlock(&kvm->lock);
5451                 return -EAGAIN;         /* table is full */
5452         }
5453
5454         irq_map = &pimap->mapped[i];
5455
5456         irq_map->v_hwirq = guest_gsi;
5457         irq_map->desc = desc;
5458
5459         /*
5460          * Order the above two stores before the next to serialize with
5461          * the KVM real mode handler.
5462          */
5463         smp_wmb();
5464
5465         /*
5466          * The 'host_irq' number is mapped in the PCI-MSI domain but
5467          * the underlying calls, which will EOI the interrupt in real
5468          * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5469          */
5470         host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5471         irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5472
5473         if (i == pimap->n_mapped)
5474                 pimap->n_mapped++;
5475
5476         if (xics_on_xive())
5477                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5478         else
5479                 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5480         if (rc)
5481                 irq_map->r_hwirq = 0;
5482
5483         mutex_unlock(&kvm->lock);
5484
5485         return 0;
5486 }
5487
5488 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5489 {
5490         struct irq_desc *desc;
5491         struct kvmppc_passthru_irqmap *pimap;
5492         int i, rc = 0;
5493
5494         if (!kvm_irq_bypass)
5495                 return 0;
5496
5497         desc = irq_to_desc(host_irq);
5498         if (!desc)
5499                 return -EIO;
5500
5501         mutex_lock(&kvm->lock);
5502         if (!kvm->arch.pimap)
5503                 goto unlock;
5504
5505         pimap = kvm->arch.pimap;
5506
5507         for (i = 0; i < pimap->n_mapped; i++) {
5508                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5509                         break;
5510         }
5511
5512         if (i == pimap->n_mapped) {
5513                 mutex_unlock(&kvm->lock);
5514                 return -ENODEV;
5515         }
5516
5517         if (xics_on_xive())
5518                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5519         else
5520                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5521
5522         /* invalidate the entry (what do do on error from the above ?) */
5523         pimap->mapped[i].r_hwirq = 0;
5524
5525         /*
5526          * We don't free this structure even when the count goes to
5527          * zero. The structure is freed when we destroy the VM.
5528          */
5529  unlock:
5530         mutex_unlock(&kvm->lock);
5531         return rc;
5532 }
5533
5534 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5535                                              struct irq_bypass_producer *prod)
5536 {
5537         int ret = 0;
5538         struct kvm_kernel_irqfd *irqfd =
5539                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5540
5541         irqfd->producer = prod;
5542
5543         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5544         if (ret)
5545                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5546                         prod->irq, irqfd->gsi, ret);
5547
5548         return ret;
5549 }
5550
5551 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5552                                               struct irq_bypass_producer *prod)
5553 {
5554         int ret;
5555         struct kvm_kernel_irqfd *irqfd =
5556                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5557
5558         irqfd->producer = NULL;
5559
5560         /*
5561          * When producer of consumer is unregistered, we change back to
5562          * default external interrupt handling mode - KVM real mode
5563          * will switch back to host.
5564          */
5565         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5566         if (ret)
5567                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5568                         prod->irq, irqfd->gsi, ret);
5569 }
5570 #endif
5571
5572 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5573                                  unsigned int ioctl, unsigned long arg)
5574 {
5575         struct kvm *kvm __maybe_unused = filp->private_data;
5576         void __user *argp = (void __user *)arg;
5577         long r;
5578
5579         switch (ioctl) {
5580
5581         case KVM_PPC_ALLOCATE_HTAB: {
5582                 u32 htab_order;
5583
5584                 /* If we're a nested hypervisor, we currently only support radix */
5585                 if (kvmhv_on_pseries()) {
5586                         r = -EOPNOTSUPP;
5587                         break;
5588                 }
5589
5590                 r = -EFAULT;
5591                 if (get_user(htab_order, (u32 __user *)argp))
5592                         break;
5593                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5594                 if (r)
5595                         break;
5596                 r = 0;
5597                 break;
5598         }
5599
5600         case KVM_PPC_GET_HTAB_FD: {
5601                 struct kvm_get_htab_fd ghf;
5602
5603                 r = -EFAULT;
5604                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5605                         break;
5606                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5607                 break;
5608         }
5609
5610         case KVM_PPC_RESIZE_HPT_PREPARE: {
5611                 struct kvm_ppc_resize_hpt rhpt;
5612
5613                 r = -EFAULT;
5614                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5615                         break;
5616
5617                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5618                 break;
5619         }
5620
5621         case KVM_PPC_RESIZE_HPT_COMMIT: {
5622                 struct kvm_ppc_resize_hpt rhpt;
5623
5624                 r = -EFAULT;
5625                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5626                         break;
5627
5628                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5629                 break;
5630         }
5631
5632         default:
5633                 r = -ENOTTY;
5634         }
5635
5636         return r;
5637 }
5638
5639 /*
5640  * List of hcall numbers to enable by default.
5641  * For compatibility with old userspace, we enable by default
5642  * all hcalls that were implemented before the hcall-enabling
5643  * facility was added.  Note this list should not include H_RTAS.
5644  */
5645 static unsigned int default_hcall_list[] = {
5646         H_REMOVE,
5647         H_ENTER,
5648         H_READ,
5649         H_PROTECT,
5650         H_BULK_REMOVE,
5651 #ifdef CONFIG_SPAPR_TCE_IOMMU
5652         H_GET_TCE,
5653         H_PUT_TCE,
5654 #endif
5655         H_SET_DABR,
5656         H_SET_XDABR,
5657         H_CEDE,
5658         H_PROD,
5659         H_CONFER,
5660         H_REGISTER_VPA,
5661 #ifdef CONFIG_KVM_XICS
5662         H_EOI,
5663         H_CPPR,
5664         H_IPI,
5665         H_IPOLL,
5666         H_XIRR,
5667         H_XIRR_X,
5668 #endif
5669         0
5670 };
5671
5672 static void init_default_hcalls(void)
5673 {
5674         int i;
5675         unsigned int hcall;
5676
5677         for (i = 0; default_hcall_list[i]; ++i) {
5678                 hcall = default_hcall_list[i];
5679                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5680                 __set_bit(hcall / 4, default_enabled_hcalls);
5681         }
5682 }
5683
5684 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5685 {
5686         unsigned long lpcr;
5687         int radix;
5688         int err;
5689
5690         /* If not on a POWER9, reject it */
5691         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5692                 return -ENODEV;
5693
5694         /* If any unknown flags set, reject it */
5695         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5696                 return -EINVAL;
5697
5698         /* GR (guest radix) bit in process_table field must match */
5699         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5700         if (!!(cfg->process_table & PATB_GR) != radix)
5701                 return -EINVAL;
5702
5703         /* Process table size field must be reasonable, i.e. <= 24 */
5704         if ((cfg->process_table & PRTS_MASK) > 24)
5705                 return -EINVAL;
5706
5707         /* We can change a guest to/from radix now, if the host is radix */
5708         if (radix && !radix_enabled())
5709                 return -EINVAL;
5710
5711         /* If we're a nested hypervisor, we currently only support radix */
5712         if (kvmhv_on_pseries() && !radix)
5713                 return -EINVAL;
5714
5715         mutex_lock(&kvm->arch.mmu_setup_lock);
5716         if (radix != kvm_is_radix(kvm)) {
5717                 if (kvm->arch.mmu_ready) {
5718                         kvm->arch.mmu_ready = 0;
5719                         /* order mmu_ready vs. vcpus_running */
5720                         smp_mb();
5721                         if (atomic_read(&kvm->arch.vcpus_running)) {
5722                                 kvm->arch.mmu_ready = 1;
5723                                 err = -EBUSY;
5724                                 goto out_unlock;
5725                         }
5726                 }
5727                 if (radix)
5728                         err = kvmppc_switch_mmu_to_radix(kvm);
5729                 else
5730                         err = kvmppc_switch_mmu_to_hpt(kvm);
5731                 if (err)
5732                         goto out_unlock;
5733         }
5734
5735         kvm->arch.process_table = cfg->process_table;
5736         kvmppc_setup_partition_table(kvm);
5737
5738         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5739         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5740         err = 0;
5741
5742  out_unlock:
5743         mutex_unlock(&kvm->arch.mmu_setup_lock);
5744         return err;
5745 }
5746
5747 static int kvmhv_enable_nested(struct kvm *kvm)
5748 {
5749         if (!nested)
5750                 return -EPERM;
5751         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5752                 return -ENODEV;
5753         if (!radix_enabled())
5754                 return -ENODEV;
5755
5756         /* kvm == NULL means the caller is testing if the capability exists */
5757         if (kvm)
5758                 kvm->arch.nested_enable = true;
5759         return 0;
5760 }
5761
5762 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5763                                  int size)
5764 {
5765         int rc = -EINVAL;
5766
5767         if (kvmhv_vcpu_is_radix(vcpu)) {
5768                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5769
5770                 if (rc > 0)
5771                         rc = -EINVAL;
5772         }
5773
5774         /* For now quadrants are the only way to access nested guest memory */
5775         if (rc && vcpu->arch.nested)
5776                 rc = -EAGAIN;
5777
5778         return rc;
5779 }
5780
5781 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5782                                 int size)
5783 {
5784         int rc = -EINVAL;
5785
5786         if (kvmhv_vcpu_is_radix(vcpu)) {
5787                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5788
5789                 if (rc > 0)
5790                         rc = -EINVAL;
5791         }
5792
5793         /* For now quadrants are the only way to access nested guest memory */
5794         if (rc && vcpu->arch.nested)
5795                 rc = -EAGAIN;
5796
5797         return rc;
5798 }
5799
5800 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5801 {
5802         unpin_vpa(kvm, vpa);
5803         vpa->gpa = 0;
5804         vpa->pinned_addr = NULL;
5805         vpa->dirty = false;
5806         vpa->update_pending = 0;
5807 }
5808
5809 /*
5810  * Enable a guest to become a secure VM, or test whether
5811  * that could be enabled.
5812  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5813  * tested (kvm == NULL) or enabled (kvm != NULL).
5814  */
5815 static int kvmhv_enable_svm(struct kvm *kvm)
5816 {
5817         if (!kvmppc_uvmem_available())
5818                 return -EINVAL;
5819         if (kvm)
5820                 kvm->arch.svm_enabled = 1;
5821         return 0;
5822 }
5823
5824 /*
5825  *  IOCTL handler to turn off secure mode of guest
5826  *
5827  * - Release all device pages
5828  * - Issue ucall to terminate the guest on the UV side
5829  * - Unpin the VPA pages.
5830  * - Reinit the partition scoped page tables
5831  */
5832 static int kvmhv_svm_off(struct kvm *kvm)
5833 {
5834         struct kvm_vcpu *vcpu;
5835         int mmu_was_ready;
5836         int srcu_idx;
5837         int ret = 0;
5838         int i;
5839
5840         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5841                 return ret;
5842
5843         mutex_lock(&kvm->arch.mmu_setup_lock);
5844         mmu_was_ready = kvm->arch.mmu_ready;
5845         if (kvm->arch.mmu_ready) {
5846                 kvm->arch.mmu_ready = 0;
5847                 /* order mmu_ready vs. vcpus_running */
5848                 smp_mb();
5849                 if (atomic_read(&kvm->arch.vcpus_running)) {
5850                         kvm->arch.mmu_ready = 1;
5851                         ret = -EBUSY;
5852                         goto out;
5853                 }
5854         }
5855
5856         srcu_idx = srcu_read_lock(&kvm->srcu);
5857         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5858                 struct kvm_memory_slot *memslot;
5859                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5860
5861                 if (!slots)
5862                         continue;
5863
5864                 kvm_for_each_memslot(memslot, slots) {
5865                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
5866                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5867                 }
5868         }
5869         srcu_read_unlock(&kvm->srcu, srcu_idx);
5870
5871         ret = uv_svm_terminate(kvm->arch.lpid);
5872         if (ret != U_SUCCESS) {
5873                 ret = -EINVAL;
5874                 goto out;
5875         }
5876
5877         /*
5878          * When secure guest is reset, all the guest pages are sent
5879          * to UV via UV_PAGE_IN before the non-boot vcpus get a
5880          * chance to run and unpin their VPA pages. Unpinning of all
5881          * VPA pages is done here explicitly so that VPA pages
5882          * can be migrated to the secure side.
5883          *
5884          * This is required to for the secure SMP guest to reboot
5885          * correctly.
5886          */
5887         kvm_for_each_vcpu(i, vcpu, kvm) {
5888                 spin_lock(&vcpu->arch.vpa_update_lock);
5889                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5890                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5891                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5892                 spin_unlock(&vcpu->arch.vpa_update_lock);
5893         }
5894
5895         kvmppc_setup_partition_table(kvm);
5896         kvm->arch.secure_guest = 0;
5897         kvm->arch.mmu_ready = mmu_was_ready;
5898 out:
5899         mutex_unlock(&kvm->arch.mmu_setup_lock);
5900         return ret;
5901 }
5902
5903 static int kvmhv_enable_dawr1(struct kvm *kvm)
5904 {
5905         if (!cpu_has_feature(CPU_FTR_DAWR1))
5906                 return -ENODEV;
5907
5908         /* kvm == NULL means the caller is testing if the capability exists */
5909         if (kvm)
5910                 kvm->arch.dawr1_enabled = true;
5911         return 0;
5912 }
5913
5914 static bool kvmppc_hash_v3_possible(void)
5915 {
5916         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5917                 return false;
5918
5919         if (!cpu_has_feature(CPU_FTR_HVMODE))
5920                 return false;
5921
5922         /*
5923          * POWER9 chips before version 2.02 can't have some threads in
5924          * HPT mode and some in radix mode on the same core.
5925          */
5926         if (radix_enabled()) {
5927                 unsigned int pvr = mfspr(SPRN_PVR);
5928                 if ((pvr >> 16) == PVR_POWER9 &&
5929                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5930                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5931                         return false;
5932         }
5933
5934         return true;
5935 }
5936
5937 static struct kvmppc_ops kvm_ops_hv = {
5938         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5939         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5940         .get_one_reg = kvmppc_get_one_reg_hv,
5941         .set_one_reg = kvmppc_set_one_reg_hv,
5942         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5943         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5944         .inject_interrupt = kvmppc_inject_interrupt_hv,
5945         .set_msr     = kvmppc_set_msr_hv,
5946         .vcpu_run    = kvmppc_vcpu_run_hv,
5947         .vcpu_create = kvmppc_core_vcpu_create_hv,
5948         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5949         .check_requests = kvmppc_core_check_requests_hv,
5950         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5951         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5952         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5953         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5954         .unmap_gfn_range = kvm_unmap_gfn_range_hv,
5955         .age_gfn = kvm_age_gfn_hv,
5956         .test_age_gfn = kvm_test_age_gfn_hv,
5957         .set_spte_gfn = kvm_set_spte_gfn_hv,
5958         .free_memslot = kvmppc_core_free_memslot_hv,
5959         .init_vm =  kvmppc_core_init_vm_hv,
5960         .destroy_vm = kvmppc_core_destroy_vm_hv,
5961         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5962         .emulate_op = kvmppc_core_emulate_op_hv,
5963         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5964         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5965         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5966         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5967         .hcall_implemented = kvmppc_hcall_impl_hv,
5968 #ifdef CONFIG_KVM_XICS
5969         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5970         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5971 #endif
5972         .configure_mmu = kvmhv_configure_mmu,
5973         .get_rmmu_info = kvmhv_get_rmmu_info,
5974         .set_smt_mode = kvmhv_set_smt_mode,
5975         .enable_nested = kvmhv_enable_nested,
5976         .load_from_eaddr = kvmhv_load_from_eaddr,
5977         .store_to_eaddr = kvmhv_store_to_eaddr,
5978         .enable_svm = kvmhv_enable_svm,
5979         .svm_off = kvmhv_svm_off,
5980         .enable_dawr1 = kvmhv_enable_dawr1,
5981         .hash_v3_possible = kvmppc_hash_v3_possible,
5982 };
5983
5984 static int kvm_init_subcore_bitmap(void)
5985 {
5986         int i, j;
5987         int nr_cores = cpu_nr_cores();
5988         struct sibling_subcore_state *sibling_subcore_state;
5989
5990         for (i = 0; i < nr_cores; i++) {
5991                 int first_cpu = i * threads_per_core;
5992                 int node = cpu_to_node(first_cpu);
5993
5994                 /* Ignore if it is already allocated. */
5995                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5996                         continue;
5997
5998                 sibling_subcore_state =
5999                         kzalloc_node(sizeof(struct sibling_subcore_state),
6000                                                         GFP_KERNEL, node);
6001                 if (!sibling_subcore_state)
6002                         return -ENOMEM;
6003
6004
6005                 for (j = 0; j < threads_per_core; j++) {
6006                         int cpu = first_cpu + j;
6007
6008                         paca_ptrs[cpu]->sibling_subcore_state =
6009                                                 sibling_subcore_state;
6010                 }
6011         }
6012         return 0;
6013 }
6014
6015 static int kvmppc_radix_possible(void)
6016 {
6017         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6018 }
6019
6020 static int kvmppc_book3s_init_hv(void)
6021 {
6022         int r;
6023
6024         if (!tlbie_capable) {
6025                 pr_err("KVM-HV: Host does not support TLBIE\n");
6026                 return -ENODEV;
6027         }
6028
6029         /*
6030          * FIXME!! Do we need to check on all cpus ?
6031          */
6032         r = kvmppc_core_check_processor_compat_hv();
6033         if (r < 0)
6034                 return -ENODEV;
6035
6036         r = kvmhv_nested_init();
6037         if (r)
6038                 return r;
6039
6040         r = kvm_init_subcore_bitmap();
6041         if (r)
6042                 return r;
6043
6044         /*
6045          * We need a way of accessing the XICS interrupt controller,
6046          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6047          * indirectly, via OPAL.
6048          */
6049 #ifdef CONFIG_SMP
6050         if (!xics_on_xive() && !kvmhv_on_pseries() &&
6051             !local_paca->kvm_hstate.xics_phys) {
6052                 struct device_node *np;
6053
6054                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6055                 if (!np) {
6056                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6057                         return -ENODEV;
6058                 }
6059                 /* presence of intc confirmed - node can be dropped again */
6060                 of_node_put(np);
6061         }
6062 #endif
6063
6064         kvm_ops_hv.owner = THIS_MODULE;
6065         kvmppc_hv_ops = &kvm_ops_hv;
6066
6067         init_default_hcalls();
6068
6069         init_vcore_lists();
6070
6071         r = kvmppc_mmu_hv_init();
6072         if (r)
6073                 return r;
6074
6075         if (kvmppc_radix_possible())
6076                 r = kvmppc_radix_init();
6077
6078         r = kvmppc_uvmem_init();
6079         if (r < 0)
6080                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6081
6082         return r;
6083 }
6084
6085 static void kvmppc_book3s_exit_hv(void)
6086 {
6087         kvmppc_uvmem_free();
6088         kvmppc_free_host_rm_ops();
6089         if (kvmppc_radix_possible())
6090                 kvmppc_radix_exit();
6091         kvmppc_hv_ops = NULL;
6092         kvmhv_nested_exit();
6093 }
6094
6095 module_init(kvmppc_book3s_init_hv);
6096 module_exit(kvmppc_book3s_exit_hv);
6097 MODULE_LICENSE("GPL");
6098 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6099 MODULE_ALIAS("devname:kvm");