Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / arch / powerpc / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *              Probes initial implementation ( includes contributions from
9  *              Rusty Russell).
10  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *              interface to access function arguments.
12  * 2004-Nov     Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
13  *              for PPC64
14  */
15
16 #include <linux/kprobes.h>
17 #include <linux/ptrace.h>
18 #include <linux/preempt.h>
19 #include <linux/extable.h>
20 #include <linux/kdebug.h>
21 #include <linux/slab.h>
22 #include <asm/code-patching.h>
23 #include <asm/cacheflush.h>
24 #include <asm/sstep.h>
25 #include <asm/sections.h>
26 #include <asm/inst.h>
27 #include <linux/uaccess.h>
28
29 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
30 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
31
32 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
33
34 bool arch_within_kprobe_blacklist(unsigned long addr)
35 {
36         return  (addr >= (unsigned long)__kprobes_text_start &&
37                  addr < (unsigned long)__kprobes_text_end) ||
38                 (addr >= (unsigned long)_stext &&
39                  addr < (unsigned long)__head_end);
40 }
41
42 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
43 {
44         kprobe_opcode_t *addr = NULL;
45
46 #ifdef PPC64_ELF_ABI_v2
47         /* PPC64 ABIv2 needs local entry point */
48         addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
49         if (addr && !offset) {
50 #ifdef CONFIG_KPROBES_ON_FTRACE
51                 unsigned long faddr;
52                 /*
53                  * Per livepatch.h, ftrace location is always within the first
54                  * 16 bytes of a function on powerpc with -mprofile-kernel.
55                  */
56                 faddr = ftrace_location_range((unsigned long)addr,
57                                               (unsigned long)addr + 16);
58                 if (faddr)
59                         addr = (kprobe_opcode_t *)faddr;
60                 else
61 #endif
62                         addr = (kprobe_opcode_t *)ppc_function_entry(addr);
63         }
64 #elif defined(PPC64_ELF_ABI_v1)
65         /*
66          * 64bit powerpc ABIv1 uses function descriptors:
67          * - Check for the dot variant of the symbol first.
68          * - If that fails, try looking up the symbol provided.
69          *
70          * This ensures we always get to the actual symbol and not
71          * the descriptor.
72          *
73          * Also handle <module:symbol> format.
74          */
75         char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
76         bool dot_appended = false;
77         const char *c;
78         ssize_t ret = 0;
79         int len = 0;
80
81         if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
82                 c++;
83                 len = c - name;
84                 memcpy(dot_name, name, len);
85         } else
86                 c = name;
87
88         if (*c != '\0' && *c != '.') {
89                 dot_name[len++] = '.';
90                 dot_appended = true;
91         }
92         ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
93         if (ret > 0)
94                 addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
95
96         /* Fallback to the original non-dot symbol lookup */
97         if (!addr && dot_appended)
98                 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
99 #else
100         addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
101 #endif
102
103         return addr;
104 }
105
106 int arch_prepare_kprobe(struct kprobe *p)
107 {
108         int ret = 0;
109         struct kprobe *prev;
110         struct ppc_inst insn = ppc_inst_read((struct ppc_inst *)p->addr);
111
112         if ((unsigned long)p->addr & 0x03) {
113                 printk("Attempt to register kprobe at an unaligned address\n");
114                 ret = -EINVAL;
115         } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
116                 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
117                 ret = -EINVAL;
118         } else if ((unsigned long)p->addr & ~PAGE_MASK &&
119                    ppc_inst_prefixed(ppc_inst_read((struct ppc_inst *)(p->addr - 1)))) {
120                 printk("Cannot register a kprobe on the second word of prefixed instruction\n");
121                 ret = -EINVAL;
122         }
123         preempt_disable();
124         prev = get_kprobe(p->addr - 1);
125         preempt_enable_no_resched();
126         if (prev &&
127             ppc_inst_prefixed(ppc_inst_read((struct ppc_inst *)prev->ainsn.insn))) {
128                 printk("Cannot register a kprobe on the second word of prefixed instruction\n");
129                 ret = -EINVAL;
130         }
131
132         /* insn must be on a special executable page on ppc64.  This is
133          * not explicitly required on ppc32 (right now), but it doesn't hurt */
134         if (!ret) {
135                 p->ainsn.insn = get_insn_slot();
136                 if (!p->ainsn.insn)
137                         ret = -ENOMEM;
138         }
139
140         if (!ret) {
141                 patch_instruction((struct ppc_inst *)p->ainsn.insn, insn);
142                 p->opcode = ppc_inst_val(insn);
143         }
144
145         p->ainsn.boostable = 0;
146         return ret;
147 }
148 NOKPROBE_SYMBOL(arch_prepare_kprobe);
149
150 void arch_arm_kprobe(struct kprobe *p)
151 {
152         patch_instruction((struct ppc_inst *)p->addr, ppc_inst(BREAKPOINT_INSTRUCTION));
153 }
154 NOKPROBE_SYMBOL(arch_arm_kprobe);
155
156 void arch_disarm_kprobe(struct kprobe *p)
157 {
158         patch_instruction((struct ppc_inst *)p->addr, ppc_inst(p->opcode));
159 }
160 NOKPROBE_SYMBOL(arch_disarm_kprobe);
161
162 void arch_remove_kprobe(struct kprobe *p)
163 {
164         if (p->ainsn.insn) {
165                 free_insn_slot(p->ainsn.insn, 0);
166                 p->ainsn.insn = NULL;
167         }
168 }
169 NOKPROBE_SYMBOL(arch_remove_kprobe);
170
171 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
172 {
173         enable_single_step(regs);
174
175         /*
176          * On powerpc we should single step on the original
177          * instruction even if the probed insn is a trap
178          * variant as values in regs could play a part in
179          * if the trap is taken or not
180          */
181         regs->nip = (unsigned long)p->ainsn.insn;
182 }
183
184 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
185 {
186         kcb->prev_kprobe.kp = kprobe_running();
187         kcb->prev_kprobe.status = kcb->kprobe_status;
188         kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
189 }
190
191 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
192 {
193         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
194         kcb->kprobe_status = kcb->prev_kprobe.status;
195         kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
196 }
197
198 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
199                                 struct kprobe_ctlblk *kcb)
200 {
201         __this_cpu_write(current_kprobe, p);
202         kcb->kprobe_saved_msr = regs->msr;
203 }
204
205 bool arch_kprobe_on_func_entry(unsigned long offset)
206 {
207 #ifdef PPC64_ELF_ABI_v2
208 #ifdef CONFIG_KPROBES_ON_FTRACE
209         return offset <= 16;
210 #else
211         return offset <= 8;
212 #endif
213 #else
214         return !offset;
215 #endif
216 }
217
218 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
219 {
220         ri->ret_addr = (kprobe_opcode_t *)regs->link;
221         ri->fp = NULL;
222
223         /* Replace the return addr with trampoline addr */
224         regs->link = (unsigned long)kretprobe_trampoline;
225 }
226 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
227
228 static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
229 {
230         int ret;
231         struct ppc_inst insn = ppc_inst_read((struct ppc_inst *)p->ainsn.insn);
232
233         /* regs->nip is also adjusted if emulate_step returns 1 */
234         ret = emulate_step(regs, insn);
235         if (ret > 0) {
236                 /*
237                  * Once this instruction has been boosted
238                  * successfully, set the boostable flag
239                  */
240                 if (unlikely(p->ainsn.boostable == 0))
241                         p->ainsn.boostable = 1;
242         } else if (ret < 0) {
243                 /*
244                  * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
245                  * So, we should never get here... but, its still
246                  * good to catch them, just in case...
247                  */
248                 printk("Can't step on instruction %s\n", ppc_inst_as_str(insn));
249                 BUG();
250         } else {
251                 /*
252                  * If we haven't previously emulated this instruction, then it
253                  * can't be boosted. Note it down so we don't try to do so again.
254                  *
255                  * If, however, we had emulated this instruction in the past,
256                  * then this is just an error with the current run (for
257                  * instance, exceptions due to a load/store). We return 0 so
258                  * that this is now single-stepped, but continue to try
259                  * emulating it in subsequent probe hits.
260                  */
261                 if (unlikely(p->ainsn.boostable != 1))
262                         p->ainsn.boostable = -1;
263         }
264
265         return ret;
266 }
267 NOKPROBE_SYMBOL(try_to_emulate);
268
269 int kprobe_handler(struct pt_regs *regs)
270 {
271         struct kprobe *p;
272         int ret = 0;
273         unsigned int *addr = (unsigned int *)regs->nip;
274         struct kprobe_ctlblk *kcb;
275
276         if (user_mode(regs))
277                 return 0;
278
279         if (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR))
280                 return 0;
281
282         /*
283          * We don't want to be preempted for the entire
284          * duration of kprobe processing
285          */
286         preempt_disable();
287         kcb = get_kprobe_ctlblk();
288
289         p = get_kprobe(addr);
290         if (!p) {
291                 unsigned int instr;
292
293                 if (get_kernel_nofault(instr, addr))
294                         goto no_kprobe;
295
296                 if (instr != BREAKPOINT_INSTRUCTION) {
297                         /*
298                          * PowerPC has multiple variants of the "trap"
299                          * instruction. If the current instruction is a
300                          * trap variant, it could belong to someone else
301                          */
302                         if (is_trap(instr))
303                                 goto no_kprobe;
304                         /*
305                          * The breakpoint instruction was removed right
306                          * after we hit it.  Another cpu has removed
307                          * either a probepoint or a debugger breakpoint
308                          * at this address.  In either case, no further
309                          * handling of this interrupt is appropriate.
310                          */
311                         ret = 1;
312                 }
313                 /* Not one of ours: let kernel handle it */
314                 goto no_kprobe;
315         }
316
317         /* Check we're not actually recursing */
318         if (kprobe_running()) {
319                 kprobe_opcode_t insn = *p->ainsn.insn;
320                 if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
321                         /* Turn off 'trace' bits */
322                         regs->msr &= ~MSR_SINGLESTEP;
323                         regs->msr |= kcb->kprobe_saved_msr;
324                         goto no_kprobe;
325                 }
326
327                 /*
328                  * We have reentered the kprobe_handler(), since another probe
329                  * was hit while within the handler. We here save the original
330                  * kprobes variables and just single step on the instruction of
331                  * the new probe without calling any user handlers.
332                  */
333                 save_previous_kprobe(kcb);
334                 set_current_kprobe(p, regs, kcb);
335                 kprobes_inc_nmissed_count(p);
336                 kcb->kprobe_status = KPROBE_REENTER;
337                 if (p->ainsn.boostable >= 0) {
338                         ret = try_to_emulate(p, regs);
339
340                         if (ret > 0) {
341                                 restore_previous_kprobe(kcb);
342                                 preempt_enable_no_resched();
343                                 return 1;
344                         }
345                 }
346                 prepare_singlestep(p, regs);
347                 return 1;
348         }
349
350         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
351         set_current_kprobe(p, regs, kcb);
352         if (p->pre_handler && p->pre_handler(p, regs)) {
353                 /* handler changed execution path, so skip ss setup */
354                 reset_current_kprobe();
355                 preempt_enable_no_resched();
356                 return 1;
357         }
358
359         if (p->ainsn.boostable >= 0) {
360                 ret = try_to_emulate(p, regs);
361
362                 if (ret > 0) {
363                         if (p->post_handler)
364                                 p->post_handler(p, regs, 0);
365
366                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
367                         reset_current_kprobe();
368                         preempt_enable_no_resched();
369                         return 1;
370                 }
371         }
372         prepare_singlestep(p, regs);
373         kcb->kprobe_status = KPROBE_HIT_SS;
374         return 1;
375
376 no_kprobe:
377         preempt_enable_no_resched();
378         return ret;
379 }
380 NOKPROBE_SYMBOL(kprobe_handler);
381
382 /*
383  * Function return probe trampoline:
384  *      - init_kprobes() establishes a probepoint here
385  *      - When the probed function returns, this probe
386  *              causes the handlers to fire
387  */
388 asm(".global kretprobe_trampoline\n"
389         ".type kretprobe_trampoline, @function\n"
390         "kretprobe_trampoline:\n"
391         "nop\n"
392         "blr\n"
393         ".size kretprobe_trampoline, .-kretprobe_trampoline\n");
394
395 /*
396  * Called when the probe at kretprobe trampoline is hit
397  */
398 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
399 {
400         unsigned long orig_ret_address;
401
402         orig_ret_address = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
403         /*
404          * We get here through one of two paths:
405          * 1. by taking a trap -> kprobe_handler() -> here
406          * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
407          *
408          * When going back through (1), we need regs->nip to be setup properly
409          * as it is used to determine the return address from the trap.
410          * For (2), since nip is not honoured with optprobes, we instead setup
411          * the link register properly so that the subsequent 'blr' in
412          * kretprobe_trampoline jumps back to the right instruction.
413          *
414          * For nip, we should set the address to the previous instruction since
415          * we end up emulating it in kprobe_handler(), which increments the nip
416          * again.
417          */
418         regs->nip = orig_ret_address - 4;
419         regs->link = orig_ret_address;
420
421         return 0;
422 }
423 NOKPROBE_SYMBOL(trampoline_probe_handler);
424
425 /*
426  * Called after single-stepping.  p->addr is the address of the
427  * instruction whose first byte has been replaced by the "breakpoint"
428  * instruction.  To avoid the SMP problems that can occur when we
429  * temporarily put back the original opcode to single-step, we
430  * single-stepped a copy of the instruction.  The address of this
431  * copy is p->ainsn.insn.
432  */
433 int kprobe_post_handler(struct pt_regs *regs)
434 {
435         int len;
436         struct kprobe *cur = kprobe_running();
437         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
438
439         if (!cur || user_mode(regs))
440                 return 0;
441
442         len = ppc_inst_len(ppc_inst_read((struct ppc_inst *)cur->ainsn.insn));
443         /* make sure we got here for instruction we have a kprobe on */
444         if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
445                 return 0;
446
447         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
448                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
449                 cur->post_handler(cur, regs, 0);
450         }
451
452         /* Adjust nip to after the single-stepped instruction */
453         regs->nip = (unsigned long)cur->addr + len;
454         regs->msr |= kcb->kprobe_saved_msr;
455
456         /*Restore back the original saved kprobes variables and continue. */
457         if (kcb->kprobe_status == KPROBE_REENTER) {
458                 restore_previous_kprobe(kcb);
459                 goto out;
460         }
461         reset_current_kprobe();
462 out:
463         preempt_enable_no_resched();
464
465         /*
466          * if somebody else is singlestepping across a probe point, msr
467          * will have DE/SE set, in which case, continue the remaining processing
468          * of do_debug, as if this is not a probe hit.
469          */
470         if (regs->msr & MSR_SINGLESTEP)
471                 return 0;
472
473         return 1;
474 }
475 NOKPROBE_SYMBOL(kprobe_post_handler);
476
477 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
478 {
479         struct kprobe *cur = kprobe_running();
480         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
481         const struct exception_table_entry *entry;
482
483         switch(kcb->kprobe_status) {
484         case KPROBE_HIT_SS:
485         case KPROBE_REENTER:
486                 /*
487                  * We are here because the instruction being single
488                  * stepped caused a page fault. We reset the current
489                  * kprobe and the nip points back to the probe address
490                  * and allow the page fault handler to continue as a
491                  * normal page fault.
492                  */
493                 regs->nip = (unsigned long)cur->addr;
494                 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
495                 regs->msr |= kcb->kprobe_saved_msr;
496                 if (kcb->kprobe_status == KPROBE_REENTER)
497                         restore_previous_kprobe(kcb);
498                 else
499                         reset_current_kprobe();
500                 preempt_enable_no_resched();
501                 break;
502         case KPROBE_HIT_ACTIVE:
503         case KPROBE_HIT_SSDONE:
504                 /*
505                  * We increment the nmissed count for accounting,
506                  * we can also use npre/npostfault count for accounting
507                  * these specific fault cases.
508                  */
509                 kprobes_inc_nmissed_count(cur);
510
511                 /*
512                  * We come here because instructions in the pre/post
513                  * handler caused the page_fault, this could happen
514                  * if handler tries to access user space by
515                  * copy_from_user(), get_user() etc. Let the
516                  * user-specified handler try to fix it first.
517                  */
518                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
519                         return 1;
520
521                 /*
522                  * In case the user-specified fault handler returned
523                  * zero, try to fix up.
524                  */
525                 if ((entry = search_exception_tables(regs->nip)) != NULL) {
526                         regs->nip = extable_fixup(entry);
527                         return 1;
528                 }
529
530                 /*
531                  * fixup_exception() could not handle it,
532                  * Let do_page_fault() fix it.
533                  */
534                 break;
535         default:
536                 break;
537         }
538         return 0;
539 }
540 NOKPROBE_SYMBOL(kprobe_fault_handler);
541
542 unsigned long arch_deref_entry_point(void *entry)
543 {
544 #ifdef PPC64_ELF_ABI_v1
545         if (!kernel_text_address((unsigned long)entry))
546                 return ppc_global_function_entry(entry);
547         else
548 #endif
549                 return (unsigned long)entry;
550 }
551 NOKPROBE_SYMBOL(arch_deref_entry_point);
552
553 static struct kprobe trampoline_p = {
554         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
555         .pre_handler = trampoline_probe_handler
556 };
557
558 int __init arch_init_kprobes(void)
559 {
560         return register_kprobe(&trampoline_p);
561 }
562
563 int arch_trampoline_kprobe(struct kprobe *p)
564 {
565         if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
566                 return 1;
567
568         return 0;
569 }
570 NOKPROBE_SYMBOL(arch_trampoline_kprobe);