Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22 #include <linux/pgtable.h>
23
24 #include <asm/fpu.h>
25 #include <asm/page.h>
26 #include <asm/cacheflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36
37 #ifndef VECTORSPACING
38 #define VECTORSPACING 0x100     /* for EI/VI mode */
39 #endif
40
41 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42         KVM_GENERIC_VM_STATS()
43 };
44
45 const struct kvm_stats_header kvm_vm_stats_header = {
46         .name_size = KVM_STATS_NAME_SIZE,
47         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48         .id_offset = sizeof(struct kvm_stats_header),
49         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51                        sizeof(kvm_vm_stats_desc),
52 };
53
54 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55         KVM_GENERIC_VCPU_STATS(),
56         STATS_DESC_COUNTER(VCPU, wait_exits),
57         STATS_DESC_COUNTER(VCPU, cache_exits),
58         STATS_DESC_COUNTER(VCPU, signal_exits),
59         STATS_DESC_COUNTER(VCPU, int_exits),
60         STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61         STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62         STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63         STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64         STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65         STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66         STATS_DESC_COUNTER(VCPU, syscall_exits),
67         STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68         STATS_DESC_COUNTER(VCPU, break_inst_exits),
69         STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70         STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71         STATS_DESC_COUNTER(VCPU, fpe_exits),
72         STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73         STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74         STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75         STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76         STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77         STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78         STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79         STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80         STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81         STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82 #ifdef CONFIG_CPU_LOONGSON64
83         STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84 #endif
85 };
86
87 const struct kvm_stats_header kvm_vcpu_stats_header = {
88         .name_size = KVM_STATS_NAME_SIZE,
89         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90         .id_offset = sizeof(struct kvm_stats_header),
91         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93                        sizeof(kvm_vcpu_stats_desc),
94 };
95
96 bool kvm_trace_guest_mode_change;
97
98 int kvm_guest_mode_change_trace_reg(void)
99 {
100         kvm_trace_guest_mode_change = true;
101         return 0;
102 }
103
104 void kvm_guest_mode_change_trace_unreg(void)
105 {
106         kvm_trace_guest_mode_change = false;
107 }
108
109 /*
110  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111  * Config7, so we are "runnable" if interrupts are pending
112  */
113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114 {
115         return !!(vcpu->arch.pending_exceptions);
116 }
117
118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119 {
120         return false;
121 }
122
123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124 {
125         return 1;
126 }
127
128 int kvm_arch_hardware_enable(void)
129 {
130         return kvm_mips_callbacks->hardware_enable();
131 }
132
133 void kvm_arch_hardware_disable(void)
134 {
135         kvm_mips_callbacks->hardware_disable();
136 }
137
138 int kvm_arch_hardware_setup(void *opaque)
139 {
140         return 0;
141 }
142
143 int kvm_arch_check_processor_compat(void *opaque)
144 {
145         return 0;
146 }
147
148 extern void kvm_init_loongson_ipi(struct kvm *kvm);
149
150 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
151 {
152         switch (type) {
153         case KVM_VM_MIPS_AUTO:
154                 break;
155         case KVM_VM_MIPS_VZ:
156                 break;
157         default:
158                 /* Unsupported KVM type */
159                 return -EINVAL;
160         }
161
162         /* Allocate page table to map GPA -> RPA */
163         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
164         if (!kvm->arch.gpa_mm.pgd)
165                 return -ENOMEM;
166
167 #ifdef CONFIG_CPU_LOONGSON64
168         kvm_init_loongson_ipi(kvm);
169 #endif
170
171         return 0;
172 }
173
174 void kvm_mips_free_vcpus(struct kvm *kvm)
175 {
176         unsigned int i;
177         struct kvm_vcpu *vcpu;
178
179         kvm_for_each_vcpu(i, vcpu, kvm) {
180                 kvm_vcpu_destroy(vcpu);
181         }
182
183         mutex_lock(&kvm->lock);
184
185         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
186                 kvm->vcpus[i] = NULL;
187
188         atomic_set(&kvm->online_vcpus, 0);
189
190         mutex_unlock(&kvm->lock);
191 }
192
193 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
194 {
195         /* It should always be safe to remove after flushing the whole range */
196         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
197         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
198 }
199
200 void kvm_arch_destroy_vm(struct kvm *kvm)
201 {
202         kvm_mips_free_vcpus(kvm);
203         kvm_mips_free_gpa_pt(kvm);
204 }
205
206 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
207                         unsigned long arg)
208 {
209         return -ENOIOCTLCMD;
210 }
211
212 void kvm_arch_flush_shadow_all(struct kvm *kvm)
213 {
214         /* Flush whole GPA */
215         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
216         kvm_flush_remote_tlbs(kvm);
217 }
218
219 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
220                                    struct kvm_memory_slot *slot)
221 {
222         /*
223          * The slot has been made invalid (ready for moving or deletion), so we
224          * need to ensure that it can no longer be accessed by any guest VCPUs.
225          */
226
227         spin_lock(&kvm->mmu_lock);
228         /* Flush slot from GPA */
229         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
230                               slot->base_gfn + slot->npages - 1);
231         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
232         spin_unlock(&kvm->mmu_lock);
233 }
234
235 int kvm_arch_prepare_memory_region(struct kvm *kvm,
236                                    struct kvm_memory_slot *memslot,
237                                    const struct kvm_userspace_memory_region *mem,
238                                    enum kvm_mr_change change)
239 {
240         return 0;
241 }
242
243 void kvm_arch_commit_memory_region(struct kvm *kvm,
244                                    const struct kvm_userspace_memory_region *mem,
245                                    struct kvm_memory_slot *old,
246                                    const struct kvm_memory_slot *new,
247                                    enum kvm_mr_change change)
248 {
249         int needs_flush;
250
251         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
252                   __func__, kvm, mem->slot, mem->guest_phys_addr,
253                   mem->memory_size, mem->userspace_addr);
254
255         /*
256          * If dirty page logging is enabled, write protect all pages in the slot
257          * ready for dirty logging.
258          *
259          * There is no need to do this in any of the following cases:
260          * CREATE:      No dirty mappings will already exist.
261          * MOVE/DELETE: The old mappings will already have been cleaned up by
262          *              kvm_arch_flush_shadow_memslot()
263          */
264         if (change == KVM_MR_FLAGS_ONLY &&
265             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
266              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
267                 spin_lock(&kvm->mmu_lock);
268                 /* Write protect GPA page table entries */
269                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
270                                         new->base_gfn + new->npages - 1);
271                 if (needs_flush)
272                         kvm_arch_flush_remote_tlbs_memslot(kvm, new);
273                 spin_unlock(&kvm->mmu_lock);
274         }
275 }
276
277 static inline void dump_handler(const char *symbol, void *start, void *end)
278 {
279         u32 *p;
280
281         pr_debug("LEAF(%s)\n", symbol);
282
283         pr_debug("\t.set push\n");
284         pr_debug("\t.set noreorder\n");
285
286         for (p = start; p < (u32 *)end; ++p)
287                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
288
289         pr_debug("\t.set\tpop\n");
290
291         pr_debug("\tEND(%s)\n", symbol);
292 }
293
294 /* low level hrtimer wake routine */
295 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
296 {
297         struct kvm_vcpu *vcpu;
298
299         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
300
301         kvm_mips_callbacks->queue_timer_int(vcpu);
302
303         vcpu->arch.wait = 0;
304         rcuwait_wake_up(&vcpu->wait);
305
306         return kvm_mips_count_timeout(vcpu);
307 }
308
309 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
310 {
311         return 0;
312 }
313
314 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
315 {
316         int err, size;
317         void *gebase, *p, *handler, *refill_start, *refill_end;
318         int i;
319
320         kvm_debug("kvm @ %p: create cpu %d at %p\n",
321                   vcpu->kvm, vcpu->vcpu_id, vcpu);
322
323         err = kvm_mips_callbacks->vcpu_init(vcpu);
324         if (err)
325                 return err;
326
327         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
328                      HRTIMER_MODE_REL);
329         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
330
331         /*
332          * Allocate space for host mode exception handlers that handle
333          * guest mode exits
334          */
335         if (cpu_has_veic || cpu_has_vint)
336                 size = 0x200 + VECTORSPACING * 64;
337         else
338                 size = 0x4000;
339
340         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
341
342         if (!gebase) {
343                 err = -ENOMEM;
344                 goto out_uninit_vcpu;
345         }
346         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
347                   ALIGN(size, PAGE_SIZE), gebase);
348
349         /*
350          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
351          * limits us to the low 512MB of physical address space. If the memory
352          * we allocate is out of range, just give up now.
353          */
354         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
355                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
356                         gebase);
357                 err = -ENOMEM;
358                 goto out_free_gebase;
359         }
360
361         /* Save new ebase */
362         vcpu->arch.guest_ebase = gebase;
363
364         /* Build guest exception vectors dynamically in unmapped memory */
365         handler = gebase + 0x2000;
366
367         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
368         refill_start = gebase;
369         if (IS_ENABLED(CONFIG_64BIT))
370                 refill_start += 0x080;
371         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
372
373         /* General Exception Entry point */
374         kvm_mips_build_exception(gebase + 0x180, handler);
375
376         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
377         for (i = 0; i < 8; i++) {
378                 kvm_debug("L1 Vectored handler @ %p\n",
379                           gebase + 0x200 + (i * VECTORSPACING));
380                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
381                                          handler);
382         }
383
384         /* General exit handler */
385         p = handler;
386         p = kvm_mips_build_exit(p);
387
388         /* Guest entry routine */
389         vcpu->arch.vcpu_run = p;
390         p = kvm_mips_build_vcpu_run(p);
391
392         /* Dump the generated code */
393         pr_debug("#include <asm/asm.h>\n");
394         pr_debug("#include <asm/regdef.h>\n");
395         pr_debug("\n");
396         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
397         dump_handler("kvm_tlb_refill", refill_start, refill_end);
398         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
399         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
400
401         /* Invalidate the icache for these ranges */
402         flush_icache_range((unsigned long)gebase,
403                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
404
405         /* Init */
406         vcpu->arch.last_sched_cpu = -1;
407         vcpu->arch.last_exec_cpu = -1;
408
409         /* Initial guest state */
410         err = kvm_mips_callbacks->vcpu_setup(vcpu);
411         if (err)
412                 goto out_free_gebase;
413
414         return 0;
415
416 out_free_gebase:
417         kfree(gebase);
418 out_uninit_vcpu:
419         kvm_mips_callbacks->vcpu_uninit(vcpu);
420         return err;
421 }
422
423 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
424 {
425         hrtimer_cancel(&vcpu->arch.comparecount_timer);
426
427         kvm_mips_dump_stats(vcpu);
428
429         kvm_mmu_free_memory_caches(vcpu);
430         kfree(vcpu->arch.guest_ebase);
431
432         kvm_mips_callbacks->vcpu_uninit(vcpu);
433 }
434
435 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
436                                         struct kvm_guest_debug *dbg)
437 {
438         return -ENOIOCTLCMD;
439 }
440
441 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
442 {
443         int r = -EINTR;
444
445         vcpu_load(vcpu);
446
447         kvm_sigset_activate(vcpu);
448
449         if (vcpu->mmio_needed) {
450                 if (!vcpu->mmio_is_write)
451                         kvm_mips_complete_mmio_load(vcpu);
452                 vcpu->mmio_needed = 0;
453         }
454
455         if (vcpu->run->immediate_exit)
456                 goto out;
457
458         lose_fpu(1);
459
460         local_irq_disable();
461         guest_enter_irqoff();
462         trace_kvm_enter(vcpu);
463
464         /*
465          * Make sure the read of VCPU requests in vcpu_run() callback is not
466          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
467          * flush request while the requester sees the VCPU as outside of guest
468          * mode and not needing an IPI.
469          */
470         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
471
472         r = kvm_mips_callbacks->vcpu_run(vcpu);
473
474         trace_kvm_out(vcpu);
475         guest_exit_irqoff();
476         local_irq_enable();
477
478 out:
479         kvm_sigset_deactivate(vcpu);
480
481         vcpu_put(vcpu);
482         return r;
483 }
484
485 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
486                              struct kvm_mips_interrupt *irq)
487 {
488         int intr = (int)irq->irq;
489         struct kvm_vcpu *dvcpu = NULL;
490
491         if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
492             intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
493             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
494             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
495                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
496                           (int)intr);
497
498         if (irq->cpu == -1)
499                 dvcpu = vcpu;
500         else
501                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
502
503         if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
504                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
505
506         } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
507                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
508         } else {
509                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
510                         irq->cpu, irq->irq);
511                 return -EINVAL;
512         }
513
514         dvcpu->arch.wait = 0;
515
516         rcuwait_wake_up(&dvcpu->wait);
517
518         return 0;
519 }
520
521 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
522                                     struct kvm_mp_state *mp_state)
523 {
524         return -ENOIOCTLCMD;
525 }
526
527 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
528                                     struct kvm_mp_state *mp_state)
529 {
530         return -ENOIOCTLCMD;
531 }
532
533 static u64 kvm_mips_get_one_regs[] = {
534         KVM_REG_MIPS_R0,
535         KVM_REG_MIPS_R1,
536         KVM_REG_MIPS_R2,
537         KVM_REG_MIPS_R3,
538         KVM_REG_MIPS_R4,
539         KVM_REG_MIPS_R5,
540         KVM_REG_MIPS_R6,
541         KVM_REG_MIPS_R7,
542         KVM_REG_MIPS_R8,
543         KVM_REG_MIPS_R9,
544         KVM_REG_MIPS_R10,
545         KVM_REG_MIPS_R11,
546         KVM_REG_MIPS_R12,
547         KVM_REG_MIPS_R13,
548         KVM_REG_MIPS_R14,
549         KVM_REG_MIPS_R15,
550         KVM_REG_MIPS_R16,
551         KVM_REG_MIPS_R17,
552         KVM_REG_MIPS_R18,
553         KVM_REG_MIPS_R19,
554         KVM_REG_MIPS_R20,
555         KVM_REG_MIPS_R21,
556         KVM_REG_MIPS_R22,
557         KVM_REG_MIPS_R23,
558         KVM_REG_MIPS_R24,
559         KVM_REG_MIPS_R25,
560         KVM_REG_MIPS_R26,
561         KVM_REG_MIPS_R27,
562         KVM_REG_MIPS_R28,
563         KVM_REG_MIPS_R29,
564         KVM_REG_MIPS_R30,
565         KVM_REG_MIPS_R31,
566
567 #ifndef CONFIG_CPU_MIPSR6
568         KVM_REG_MIPS_HI,
569         KVM_REG_MIPS_LO,
570 #endif
571         KVM_REG_MIPS_PC,
572 };
573
574 static u64 kvm_mips_get_one_regs_fpu[] = {
575         KVM_REG_MIPS_FCR_IR,
576         KVM_REG_MIPS_FCR_CSR,
577 };
578
579 static u64 kvm_mips_get_one_regs_msa[] = {
580         KVM_REG_MIPS_MSA_IR,
581         KVM_REG_MIPS_MSA_CSR,
582 };
583
584 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
585 {
586         unsigned long ret;
587
588         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
589         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
590                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
591                 /* odd doubles */
592                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
593                         ret += 16;
594         }
595         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
596                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
597         ret += kvm_mips_callbacks->num_regs(vcpu);
598
599         return ret;
600 }
601
602 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
603 {
604         u64 index;
605         unsigned int i;
606
607         if (copy_to_user(indices, kvm_mips_get_one_regs,
608                          sizeof(kvm_mips_get_one_regs)))
609                 return -EFAULT;
610         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
611
612         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
613                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
614                                  sizeof(kvm_mips_get_one_regs_fpu)))
615                         return -EFAULT;
616                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
617
618                 for (i = 0; i < 32; ++i) {
619                         index = KVM_REG_MIPS_FPR_32(i);
620                         if (copy_to_user(indices, &index, sizeof(index)))
621                                 return -EFAULT;
622                         ++indices;
623
624                         /* skip odd doubles if no F64 */
625                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
626                                 continue;
627
628                         index = KVM_REG_MIPS_FPR_64(i);
629                         if (copy_to_user(indices, &index, sizeof(index)))
630                                 return -EFAULT;
631                         ++indices;
632                 }
633         }
634
635         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
636                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
637                                  sizeof(kvm_mips_get_one_regs_msa)))
638                         return -EFAULT;
639                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
640
641                 for (i = 0; i < 32; ++i) {
642                         index = KVM_REG_MIPS_VEC_128(i);
643                         if (copy_to_user(indices, &index, sizeof(index)))
644                                 return -EFAULT;
645                         ++indices;
646                 }
647         }
648
649         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
650 }
651
652 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
653                             const struct kvm_one_reg *reg)
654 {
655         struct mips_coproc *cop0 = vcpu->arch.cop0;
656         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
657         int ret;
658         s64 v;
659         s64 vs[2];
660         unsigned int idx;
661
662         switch (reg->id) {
663         /* General purpose registers */
664         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
665                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
666                 break;
667 #ifndef CONFIG_CPU_MIPSR6
668         case KVM_REG_MIPS_HI:
669                 v = (long)vcpu->arch.hi;
670                 break;
671         case KVM_REG_MIPS_LO:
672                 v = (long)vcpu->arch.lo;
673                 break;
674 #endif
675         case KVM_REG_MIPS_PC:
676                 v = (long)vcpu->arch.pc;
677                 break;
678
679         /* Floating point registers */
680         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
681                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
682                         return -EINVAL;
683                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
684                 /* Odd singles in top of even double when FR=0 */
685                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
686                         v = get_fpr32(&fpu->fpr[idx], 0);
687                 else
688                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
689                 break;
690         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
691                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
692                         return -EINVAL;
693                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
694                 /* Can't access odd doubles in FR=0 mode */
695                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
696                         return -EINVAL;
697                 v = get_fpr64(&fpu->fpr[idx], 0);
698                 break;
699         case KVM_REG_MIPS_FCR_IR:
700                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
701                         return -EINVAL;
702                 v = boot_cpu_data.fpu_id;
703                 break;
704         case KVM_REG_MIPS_FCR_CSR:
705                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
706                         return -EINVAL;
707                 v = fpu->fcr31;
708                 break;
709
710         /* MIPS SIMD Architecture (MSA) registers */
711         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
712                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
713                         return -EINVAL;
714                 /* Can't access MSA registers in FR=0 mode */
715                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
716                         return -EINVAL;
717                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
718 #ifdef CONFIG_CPU_LITTLE_ENDIAN
719                 /* least significant byte first */
720                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
721                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
722 #else
723                 /* most significant byte first */
724                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
725                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
726 #endif
727                 break;
728         case KVM_REG_MIPS_MSA_IR:
729                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
730                         return -EINVAL;
731                 v = boot_cpu_data.msa_id;
732                 break;
733         case KVM_REG_MIPS_MSA_CSR:
734                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
735                         return -EINVAL;
736                 v = fpu->msacsr;
737                 break;
738
739         /* registers to be handled specially */
740         default:
741                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
742                 if (ret)
743                         return ret;
744                 break;
745         }
746         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
747                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
748
749                 return put_user(v, uaddr64);
750         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
751                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
752                 u32 v32 = (u32)v;
753
754                 return put_user(v32, uaddr32);
755         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
756                 void __user *uaddr = (void __user *)(long)reg->addr;
757
758                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
759         } else {
760                 return -EINVAL;
761         }
762 }
763
764 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
765                             const struct kvm_one_reg *reg)
766 {
767         struct mips_coproc *cop0 = vcpu->arch.cop0;
768         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
769         s64 v;
770         s64 vs[2];
771         unsigned int idx;
772
773         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
774                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
775
776                 if (get_user(v, uaddr64) != 0)
777                         return -EFAULT;
778         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
779                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
780                 s32 v32;
781
782                 if (get_user(v32, uaddr32) != 0)
783                         return -EFAULT;
784                 v = (s64)v32;
785         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
786                 void __user *uaddr = (void __user *)(long)reg->addr;
787
788                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
789         } else {
790                 return -EINVAL;
791         }
792
793         switch (reg->id) {
794         /* General purpose registers */
795         case KVM_REG_MIPS_R0:
796                 /* Silently ignore requests to set $0 */
797                 break;
798         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
799                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
800                 break;
801 #ifndef CONFIG_CPU_MIPSR6
802         case KVM_REG_MIPS_HI:
803                 vcpu->arch.hi = v;
804                 break;
805         case KVM_REG_MIPS_LO:
806                 vcpu->arch.lo = v;
807                 break;
808 #endif
809         case KVM_REG_MIPS_PC:
810                 vcpu->arch.pc = v;
811                 break;
812
813         /* Floating point registers */
814         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
815                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
816                         return -EINVAL;
817                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
818                 /* Odd singles in top of even double when FR=0 */
819                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
820                         set_fpr32(&fpu->fpr[idx], 0, v);
821                 else
822                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
823                 break;
824         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
825                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
826                         return -EINVAL;
827                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
828                 /* Can't access odd doubles in FR=0 mode */
829                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
830                         return -EINVAL;
831                 set_fpr64(&fpu->fpr[idx], 0, v);
832                 break;
833         case KVM_REG_MIPS_FCR_IR:
834                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
835                         return -EINVAL;
836                 /* Read-only */
837                 break;
838         case KVM_REG_MIPS_FCR_CSR:
839                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
840                         return -EINVAL;
841                 fpu->fcr31 = v;
842                 break;
843
844         /* MIPS SIMD Architecture (MSA) registers */
845         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
846                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
847                         return -EINVAL;
848                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
849 #ifdef CONFIG_CPU_LITTLE_ENDIAN
850                 /* least significant byte first */
851                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
852                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
853 #else
854                 /* most significant byte first */
855                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
856                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
857 #endif
858                 break;
859         case KVM_REG_MIPS_MSA_IR:
860                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
861                         return -EINVAL;
862                 /* Read-only */
863                 break;
864         case KVM_REG_MIPS_MSA_CSR:
865                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
866                         return -EINVAL;
867                 fpu->msacsr = v;
868                 break;
869
870         /* registers to be handled specially */
871         default:
872                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
873         }
874         return 0;
875 }
876
877 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
878                                      struct kvm_enable_cap *cap)
879 {
880         int r = 0;
881
882         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
883                 return -EINVAL;
884         if (cap->flags)
885                 return -EINVAL;
886         if (cap->args[0])
887                 return -EINVAL;
888
889         switch (cap->cap) {
890         case KVM_CAP_MIPS_FPU:
891                 vcpu->arch.fpu_enabled = true;
892                 break;
893         case KVM_CAP_MIPS_MSA:
894                 vcpu->arch.msa_enabled = true;
895                 break;
896         default:
897                 r = -EINVAL;
898                 break;
899         }
900
901         return r;
902 }
903
904 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
905                                unsigned long arg)
906 {
907         struct kvm_vcpu *vcpu = filp->private_data;
908         void __user *argp = (void __user *)arg;
909
910         if (ioctl == KVM_INTERRUPT) {
911                 struct kvm_mips_interrupt irq;
912
913                 if (copy_from_user(&irq, argp, sizeof(irq)))
914                         return -EFAULT;
915                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
916                           irq.irq);
917
918                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
919         }
920
921         return -ENOIOCTLCMD;
922 }
923
924 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
925                          unsigned long arg)
926 {
927         struct kvm_vcpu *vcpu = filp->private_data;
928         void __user *argp = (void __user *)arg;
929         long r;
930
931         vcpu_load(vcpu);
932
933         switch (ioctl) {
934         case KVM_SET_ONE_REG:
935         case KVM_GET_ONE_REG: {
936                 struct kvm_one_reg reg;
937
938                 r = -EFAULT;
939                 if (copy_from_user(&reg, argp, sizeof(reg)))
940                         break;
941                 if (ioctl == KVM_SET_ONE_REG)
942                         r = kvm_mips_set_reg(vcpu, &reg);
943                 else
944                         r = kvm_mips_get_reg(vcpu, &reg);
945                 break;
946         }
947         case KVM_GET_REG_LIST: {
948                 struct kvm_reg_list __user *user_list = argp;
949                 struct kvm_reg_list reg_list;
950                 unsigned n;
951
952                 r = -EFAULT;
953                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
954                         break;
955                 n = reg_list.n;
956                 reg_list.n = kvm_mips_num_regs(vcpu);
957                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
958                         break;
959                 r = -E2BIG;
960                 if (n < reg_list.n)
961                         break;
962                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
963                 break;
964         }
965         case KVM_ENABLE_CAP: {
966                 struct kvm_enable_cap cap;
967
968                 r = -EFAULT;
969                 if (copy_from_user(&cap, argp, sizeof(cap)))
970                         break;
971                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
972                 break;
973         }
974         default:
975                 r = -ENOIOCTLCMD;
976         }
977
978         vcpu_put(vcpu);
979         return r;
980 }
981
982 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
983 {
984
985 }
986
987 int kvm_arch_flush_remote_tlb(struct kvm *kvm)
988 {
989         kvm_mips_callbacks->prepare_flush_shadow(kvm);
990         return 1;
991 }
992
993 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
994                                         const struct kvm_memory_slot *memslot)
995 {
996         kvm_flush_remote_tlbs(kvm);
997 }
998
999 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1000 {
1001         long r;
1002
1003         switch (ioctl) {
1004         default:
1005                 r = -ENOIOCTLCMD;
1006         }
1007
1008         return r;
1009 }
1010
1011 int kvm_arch_init(void *opaque)
1012 {
1013         if (kvm_mips_callbacks) {
1014                 kvm_err("kvm: module already exists\n");
1015                 return -EEXIST;
1016         }
1017
1018         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1019 }
1020
1021 void kvm_arch_exit(void)
1022 {
1023         kvm_mips_callbacks = NULL;
1024 }
1025
1026 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1027                                   struct kvm_sregs *sregs)
1028 {
1029         return -ENOIOCTLCMD;
1030 }
1031
1032 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1033                                   struct kvm_sregs *sregs)
1034 {
1035         return -ENOIOCTLCMD;
1036 }
1037
1038 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1039 {
1040 }
1041
1042 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1043 {
1044         return -ENOIOCTLCMD;
1045 }
1046
1047 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1048 {
1049         return -ENOIOCTLCMD;
1050 }
1051
1052 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1053 {
1054         return VM_FAULT_SIGBUS;
1055 }
1056
1057 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1058 {
1059         int r;
1060
1061         switch (ext) {
1062         case KVM_CAP_ONE_REG:
1063         case KVM_CAP_ENABLE_CAP:
1064         case KVM_CAP_READONLY_MEM:
1065         case KVM_CAP_SYNC_MMU:
1066         case KVM_CAP_IMMEDIATE_EXIT:
1067                 r = 1;
1068                 break;
1069         case KVM_CAP_NR_VCPUS:
1070                 r = num_online_cpus();
1071                 break;
1072         case KVM_CAP_MAX_VCPUS:
1073                 r = KVM_MAX_VCPUS;
1074                 break;
1075         case KVM_CAP_MAX_VCPU_ID:
1076                 r = KVM_MAX_VCPU_ID;
1077                 break;
1078         case KVM_CAP_MIPS_FPU:
1079                 /* We don't handle systems with inconsistent cpu_has_fpu */
1080                 r = !!raw_cpu_has_fpu;
1081                 break;
1082         case KVM_CAP_MIPS_MSA:
1083                 /*
1084                  * We don't support MSA vector partitioning yet:
1085                  * 1) It would require explicit support which can't be tested
1086                  *    yet due to lack of support in current hardware.
1087                  * 2) It extends the state that would need to be saved/restored
1088                  *    by e.g. QEMU for migration.
1089                  *
1090                  * When vector partitioning hardware becomes available, support
1091                  * could be added by requiring a flag when enabling
1092                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1093                  * to save/restore the appropriate extra state.
1094                  */
1095                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1096                 break;
1097         default:
1098                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1099                 break;
1100         }
1101         return r;
1102 }
1103
1104 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1105 {
1106         return kvm_mips_pending_timer(vcpu) ||
1107                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1108 }
1109
1110 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1111 {
1112         int i;
1113         struct mips_coproc *cop0;
1114
1115         if (!vcpu)
1116                 return -1;
1117
1118         kvm_debug("VCPU Register Dump:\n");
1119         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1120         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1121
1122         for (i = 0; i < 32; i += 4) {
1123                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1124                        vcpu->arch.gprs[i],
1125                        vcpu->arch.gprs[i + 1],
1126                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1127         }
1128         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1129         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1130
1131         cop0 = vcpu->arch.cop0;
1132         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1133                   kvm_read_c0_guest_status(cop0),
1134                   kvm_read_c0_guest_cause(cop0));
1135
1136         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1137
1138         return 0;
1139 }
1140
1141 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1142 {
1143         int i;
1144
1145         vcpu_load(vcpu);
1146
1147         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1148                 vcpu->arch.gprs[i] = regs->gpr[i];
1149         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1150         vcpu->arch.hi = regs->hi;
1151         vcpu->arch.lo = regs->lo;
1152         vcpu->arch.pc = regs->pc;
1153
1154         vcpu_put(vcpu);
1155         return 0;
1156 }
1157
1158 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1159 {
1160         int i;
1161
1162         vcpu_load(vcpu);
1163
1164         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1165                 regs->gpr[i] = vcpu->arch.gprs[i];
1166
1167         regs->hi = vcpu->arch.hi;
1168         regs->lo = vcpu->arch.lo;
1169         regs->pc = vcpu->arch.pc;
1170
1171         vcpu_put(vcpu);
1172         return 0;
1173 }
1174
1175 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1176                                   struct kvm_translation *tr)
1177 {
1178         return 0;
1179 }
1180
1181 static void kvm_mips_set_c0_status(void)
1182 {
1183         u32 status = read_c0_status();
1184
1185         if (cpu_has_dsp)
1186                 status |= (ST0_MX);
1187
1188         write_c0_status(status);
1189         ehb();
1190 }
1191
1192 /*
1193  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1194  */
1195 int kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1196 {
1197         struct kvm_run *run = vcpu->run;
1198         u32 cause = vcpu->arch.host_cp0_cause;
1199         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1200         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1201         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1202         enum emulation_result er = EMULATE_DONE;
1203         u32 inst;
1204         int ret = RESUME_GUEST;
1205
1206         vcpu->mode = OUTSIDE_GUEST_MODE;
1207
1208         /* Set a default exit reason */
1209         run->exit_reason = KVM_EXIT_UNKNOWN;
1210         run->ready_for_interrupt_injection = 1;
1211
1212         /*
1213          * Set the appropriate status bits based on host CPU features,
1214          * before we hit the scheduler
1215          */
1216         kvm_mips_set_c0_status();
1217
1218         local_irq_enable();
1219
1220         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1221                         cause, opc, run, vcpu);
1222         trace_kvm_exit(vcpu, exccode);
1223
1224         switch (exccode) {
1225         case EXCCODE_INT:
1226                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1227
1228                 ++vcpu->stat.int_exits;
1229
1230                 if (need_resched())
1231                         cond_resched();
1232
1233                 ret = RESUME_GUEST;
1234                 break;
1235
1236         case EXCCODE_CPU:
1237                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1238
1239                 ++vcpu->stat.cop_unusable_exits;
1240                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1241                 /* XXXKYMA: Might need to return to user space */
1242                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1243                         ret = RESUME_HOST;
1244                 break;
1245
1246         case EXCCODE_MOD:
1247                 ++vcpu->stat.tlbmod_exits;
1248                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1249                 break;
1250
1251         case EXCCODE_TLBS:
1252                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1253                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1254                           badvaddr);
1255
1256                 ++vcpu->stat.tlbmiss_st_exits;
1257                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1258                 break;
1259
1260         case EXCCODE_TLBL:
1261                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1262                           cause, opc, badvaddr);
1263
1264                 ++vcpu->stat.tlbmiss_ld_exits;
1265                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1266                 break;
1267
1268         case EXCCODE_ADES:
1269                 ++vcpu->stat.addrerr_st_exits;
1270                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1271                 break;
1272
1273         case EXCCODE_ADEL:
1274                 ++vcpu->stat.addrerr_ld_exits;
1275                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1276                 break;
1277
1278         case EXCCODE_SYS:
1279                 ++vcpu->stat.syscall_exits;
1280                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1281                 break;
1282
1283         case EXCCODE_RI:
1284                 ++vcpu->stat.resvd_inst_exits;
1285                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1286                 break;
1287
1288         case EXCCODE_BP:
1289                 ++vcpu->stat.break_inst_exits;
1290                 ret = kvm_mips_callbacks->handle_break(vcpu);
1291                 break;
1292
1293         case EXCCODE_TR:
1294                 ++vcpu->stat.trap_inst_exits;
1295                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1296                 break;
1297
1298         case EXCCODE_MSAFPE:
1299                 ++vcpu->stat.msa_fpe_exits;
1300                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1301                 break;
1302
1303         case EXCCODE_FPE:
1304                 ++vcpu->stat.fpe_exits;
1305                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1306                 break;
1307
1308         case EXCCODE_MSADIS:
1309                 ++vcpu->stat.msa_disabled_exits;
1310                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1311                 break;
1312
1313         case EXCCODE_GE:
1314                 /* defer exit accounting to handler */
1315                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1316                 break;
1317
1318         default:
1319                 if (cause & CAUSEF_BD)
1320                         opc += 1;
1321                 inst = 0;
1322                 kvm_get_badinstr(opc, vcpu, &inst);
1323                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1324                         exccode, opc, inst, badvaddr,
1325                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1326                 kvm_arch_vcpu_dump_regs(vcpu);
1327                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1328                 ret = RESUME_HOST;
1329                 break;
1330
1331         }
1332
1333         local_irq_disable();
1334
1335         if (ret == RESUME_GUEST)
1336                 kvm_vz_acquire_htimer(vcpu);
1337
1338         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1339                 kvm_mips_deliver_interrupts(vcpu, cause);
1340
1341         if (!(ret & RESUME_HOST)) {
1342                 /* Only check for signals if not already exiting to userspace */
1343                 if (signal_pending(current)) {
1344                         run->exit_reason = KVM_EXIT_INTR;
1345                         ret = (-EINTR << 2) | RESUME_HOST;
1346                         ++vcpu->stat.signal_exits;
1347                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1348                 }
1349         }
1350
1351         if (ret == RESUME_GUEST) {
1352                 trace_kvm_reenter(vcpu);
1353
1354                 /*
1355                  * Make sure the read of VCPU requests in vcpu_reenter()
1356                  * callback is not reordered ahead of the write to vcpu->mode,
1357                  * or we could miss a TLB flush request while the requester sees
1358                  * the VCPU as outside of guest mode and not needing an IPI.
1359                  */
1360                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1361
1362                 kvm_mips_callbacks->vcpu_reenter(vcpu);
1363
1364                 /*
1365                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1366                  * is live), restore FCR31 / MSACSR.
1367                  *
1368                  * This should be before returning to the guest exception
1369                  * vector, as it may well cause an [MSA] FP exception if there
1370                  * are pending exception bits unmasked. (see
1371                  * kvm_mips_csr_die_notifier() for how that is handled).
1372                  */
1373                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1374                     read_c0_status() & ST0_CU1)
1375                         __kvm_restore_fcsr(&vcpu->arch);
1376
1377                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1378                     read_c0_config5() & MIPS_CONF5_MSAEN)
1379                         __kvm_restore_msacsr(&vcpu->arch);
1380         }
1381         return ret;
1382 }
1383
1384 /* Enable FPU for guest and restore context */
1385 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1386 {
1387         struct mips_coproc *cop0 = vcpu->arch.cop0;
1388         unsigned int sr, cfg5;
1389
1390         preempt_disable();
1391
1392         sr = kvm_read_c0_guest_status(cop0);
1393
1394         /*
1395          * If MSA state is already live, it is undefined how it interacts with
1396          * FR=0 FPU state, and we don't want to hit reserved instruction
1397          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1398          * play it safe and save it first.
1399          */
1400         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1401             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1402                 kvm_lose_fpu(vcpu);
1403
1404         /*
1405          * Enable FPU for guest
1406          * We set FR and FRE according to guest context
1407          */
1408         change_c0_status(ST0_CU1 | ST0_FR, sr);
1409         if (cpu_has_fre) {
1410                 cfg5 = kvm_read_c0_guest_config5(cop0);
1411                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1412         }
1413         enable_fpu_hazard();
1414
1415         /* If guest FPU state not active, restore it now */
1416         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1417                 __kvm_restore_fpu(&vcpu->arch);
1418                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1419                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1420         } else {
1421                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1422         }
1423
1424         preempt_enable();
1425 }
1426
1427 #ifdef CONFIG_CPU_HAS_MSA
1428 /* Enable MSA for guest and restore context */
1429 void kvm_own_msa(struct kvm_vcpu *vcpu)
1430 {
1431         struct mips_coproc *cop0 = vcpu->arch.cop0;
1432         unsigned int sr, cfg5;
1433
1434         preempt_disable();
1435
1436         /*
1437          * Enable FPU if enabled in guest, since we're restoring FPU context
1438          * anyway. We set FR and FRE according to guest context.
1439          */
1440         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1441                 sr = kvm_read_c0_guest_status(cop0);
1442
1443                 /*
1444                  * If FR=0 FPU state is already live, it is undefined how it
1445                  * interacts with MSA state, so play it safe and save it first.
1446                  */
1447                 if (!(sr & ST0_FR) &&
1448                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1449                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1450                         kvm_lose_fpu(vcpu);
1451
1452                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1453                 if (sr & ST0_CU1 && cpu_has_fre) {
1454                         cfg5 = kvm_read_c0_guest_config5(cop0);
1455                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1456                 }
1457         }
1458
1459         /* Enable MSA for guest */
1460         set_c0_config5(MIPS_CONF5_MSAEN);
1461         enable_fpu_hazard();
1462
1463         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1464         case KVM_MIPS_AUX_FPU:
1465                 /*
1466                  * Guest FPU state already loaded, only restore upper MSA state
1467                  */
1468                 __kvm_restore_msa_upper(&vcpu->arch);
1469                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1470                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1471                 break;
1472         case 0:
1473                 /* Neither FPU or MSA already active, restore full MSA state */
1474                 __kvm_restore_msa(&vcpu->arch);
1475                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1476                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1477                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1478                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1479                               KVM_TRACE_AUX_FPU_MSA);
1480                 break;
1481         default:
1482                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1483                 break;
1484         }
1485
1486         preempt_enable();
1487 }
1488 #endif
1489
1490 /* Drop FPU & MSA without saving it */
1491 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1492 {
1493         preempt_disable();
1494         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1495                 disable_msa();
1496                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1497                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1498         }
1499         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1500                 clear_c0_status(ST0_CU1 | ST0_FR);
1501                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1502                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1503         }
1504         preempt_enable();
1505 }
1506
1507 /* Save and disable FPU & MSA */
1508 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1509 {
1510         /*
1511          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1512          * is disabled in guest context (software), but the register state in
1513          * the hardware may still be in use.
1514          * This is why we explicitly re-enable the hardware before saving.
1515          */
1516
1517         preempt_disable();
1518         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1519                 __kvm_save_msa(&vcpu->arch);
1520                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1521
1522                 /* Disable MSA & FPU */
1523                 disable_msa();
1524                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1525                         clear_c0_status(ST0_CU1 | ST0_FR);
1526                         disable_fpu_hazard();
1527                 }
1528                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1529         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1530                 __kvm_save_fpu(&vcpu->arch);
1531                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1532                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1533
1534                 /* Disable FPU */
1535                 clear_c0_status(ST0_CU1 | ST0_FR);
1536                 disable_fpu_hazard();
1537         }
1538         preempt_enable();
1539 }
1540
1541 /*
1542  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1543  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1544  * exception if cause bits are set in the value being written.
1545  */
1546 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1547                                    unsigned long cmd, void *ptr)
1548 {
1549         struct die_args *args = (struct die_args *)ptr;
1550         struct pt_regs *regs = args->regs;
1551         unsigned long pc;
1552
1553         /* Only interested in FPE and MSAFPE */
1554         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1555                 return NOTIFY_DONE;
1556
1557         /* Return immediately if guest context isn't active */
1558         if (!(current->flags & PF_VCPU))
1559                 return NOTIFY_DONE;
1560
1561         /* Should never get here from user mode */
1562         BUG_ON(user_mode(regs));
1563
1564         pc = instruction_pointer(regs);
1565         switch (cmd) {
1566         case DIE_FP:
1567                 /* match 2nd instruction in __kvm_restore_fcsr */
1568                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1569                         return NOTIFY_DONE;
1570                 break;
1571         case DIE_MSAFP:
1572                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1573                 if (!cpu_has_msa ||
1574                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1575                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1576                         return NOTIFY_DONE;
1577                 break;
1578         }
1579
1580         /* Move PC forward a little and continue executing */
1581         instruction_pointer(regs) += 4;
1582
1583         return NOTIFY_STOP;
1584 }
1585
1586 static struct notifier_block kvm_mips_csr_die_notifier = {
1587         .notifier_call = kvm_mips_csr_die_notify,
1588 };
1589
1590 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1591         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1592         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1593         [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1594         [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1595 };
1596
1597 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1598         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1599         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1600         [MIPS_EXC_INT_IO_2]  = C_IRQ1,
1601         [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1602 };
1603
1604 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1605
1606 u32 kvm_irq_to_priority(u32 irq)
1607 {
1608         int i;
1609
1610         for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1611                 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1612                         return i;
1613         }
1614
1615         return MIPS_EXC_MAX;
1616 }
1617
1618 static int __init kvm_mips_init(void)
1619 {
1620         int ret;
1621
1622         if (cpu_has_mmid) {
1623                 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1624                 return -EOPNOTSUPP;
1625         }
1626
1627         ret = kvm_mips_entry_setup();
1628         if (ret)
1629                 return ret;
1630
1631         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1632
1633         if (ret)
1634                 return ret;
1635
1636         if (boot_cpu_type() == CPU_LOONGSON64)
1637                 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1638
1639         register_die_notifier(&kvm_mips_csr_die_notifier);
1640
1641         return 0;
1642 }
1643
1644 static void __exit kvm_mips_exit(void)
1645 {
1646         kvm_exit();
1647
1648         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1649 }
1650
1651 module_init(kvm_mips_init);
1652 module_exit(kvm_mips_exit);
1653
1654 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);