9b5acf8fb092c42ae93bbce929a91c2a5b0ccabb
[linux-2.6-microblaze.git] / arch / ia64 / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10
11 #include <linux/dma-map-ops.h>
12 #include <linux/dmar.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/memblock.h>
16 #include <linux/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/mmzone.h>
19 #include <linux/module.h>
20 #include <linux/personality.h>
21 #include <linux/reboot.h>
22 #include <linux/slab.h>
23 #include <linux/swap.h>
24 #include <linux/proc_fs.h>
25 #include <linux/bitops.h>
26 #include <linux/kexec.h>
27 #include <linux/swiotlb.h>
28
29 #include <asm/dma.h>
30 #include <asm/io.h>
31 #include <asm/numa.h>
32 #include <asm/patch.h>
33 #include <asm/pgalloc.h>
34 #include <asm/sal.h>
35 #include <asm/sections.h>
36 #include <asm/tlb.h>
37 #include <linux/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/mca.h>
40
41 extern void ia64_tlb_init (void);
42
43 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
44
45 #ifdef CONFIG_VIRTUAL_MEM_MAP
46 unsigned long VMALLOC_END = VMALLOC_END_INIT;
47 EXPORT_SYMBOL(VMALLOC_END);
48 struct page *vmem_map;
49 EXPORT_SYMBOL(vmem_map);
50 #endif
51
52 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
53 EXPORT_SYMBOL(zero_page_memmap_ptr);
54
55 void
56 __ia64_sync_icache_dcache (pte_t pte)
57 {
58         unsigned long addr;
59         struct page *page;
60
61         page = pte_page(pte);
62         addr = (unsigned long) page_address(page);
63
64         if (test_bit(PG_arch_1, &page->flags))
65                 return;                         /* i-cache is already coherent with d-cache */
66
67         flush_icache_range(addr, addr + page_size(page));
68         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
69 }
70
71 /*
72  * Since DMA is i-cache coherent, any (complete) pages that were written via
73  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
74  * flush them when they get mapped into an executable vm-area.
75  */
76 void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
77 {
78         unsigned long pfn = PHYS_PFN(paddr);
79
80         do {
81                 set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
82         } while (++pfn <= PHYS_PFN(paddr + size - 1));
83 }
84
85 inline void
86 ia64_set_rbs_bot (void)
87 {
88         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
89
90         if (stack_size > MAX_USER_STACK_SIZE)
91                 stack_size = MAX_USER_STACK_SIZE;
92         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
93 }
94
95 /*
96  * This performs some platform-dependent address space initialization.
97  * On IA-64, we want to setup the VM area for the register backing
98  * store (which grows upwards) and install the gateway page which is
99  * used for signal trampolines, etc.
100  */
101 void
102 ia64_init_addr_space (void)
103 {
104         struct vm_area_struct *vma;
105
106         ia64_set_rbs_bot();
107
108         /*
109          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
110          * the problem.  When the process attempts to write to the register backing store
111          * for the first time, it will get a SEGFAULT in this case.
112          */
113         vma = vm_area_alloc(current->mm);
114         if (vma) {
115                 vma_set_anonymous(vma);
116                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
117                 vma->vm_end = vma->vm_start + PAGE_SIZE;
118                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
119                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
120                 mmap_write_lock(current->mm);
121                 if (insert_vm_struct(current->mm, vma)) {
122                         mmap_write_unlock(current->mm);
123                         vm_area_free(vma);
124                         return;
125                 }
126                 mmap_write_unlock(current->mm);
127         }
128
129         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
130         if (!(current->personality & MMAP_PAGE_ZERO)) {
131                 vma = vm_area_alloc(current->mm);
132                 if (vma) {
133                         vma_set_anonymous(vma);
134                         vma->vm_end = PAGE_SIZE;
135                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
136                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
137                                         VM_DONTEXPAND | VM_DONTDUMP;
138                         mmap_write_lock(current->mm);
139                         if (insert_vm_struct(current->mm, vma)) {
140                                 mmap_write_unlock(current->mm);
141                                 vm_area_free(vma);
142                                 return;
143                         }
144                         mmap_write_unlock(current->mm);
145                 }
146         }
147 }
148
149 void
150 free_initmem (void)
151 {
152         free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
153                            -1, "unused kernel");
154 }
155
156 void __init
157 free_initrd_mem (unsigned long start, unsigned long end)
158 {
159         /*
160          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
161          * Thus EFI and the kernel may have different page sizes. It is
162          * therefore possible to have the initrd share the same page as
163          * the end of the kernel (given current setup).
164          *
165          * To avoid freeing/using the wrong page (kernel sized) we:
166          *      - align up the beginning of initrd
167          *      - align down the end of initrd
168          *
169          *  |             |
170          *  |=============| a000
171          *  |             |
172          *  |             |
173          *  |             | 9000
174          *  |/////////////|
175          *  |/////////////|
176          *  |=============| 8000
177          *  |///INITRD////|
178          *  |/////////////|
179          *  |/////////////| 7000
180          *  |             |
181          *  |KKKKKKKKKKKKK|
182          *  |=============| 6000
183          *  |KKKKKKKKKKKKK|
184          *  |KKKKKKKKKKKKK|
185          *  K=kernel using 8KB pages
186          *
187          * In this example, we must free page 8000 ONLY. So we must align up
188          * initrd_start and keep initrd_end as is.
189          */
190         start = PAGE_ALIGN(start);
191         end = end & PAGE_MASK;
192
193         if (start < end)
194                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
195
196         for (; start < end; start += PAGE_SIZE) {
197                 if (!virt_addr_valid(start))
198                         continue;
199                 free_reserved_page(virt_to_page(start));
200         }
201 }
202
203 /*
204  * This installs a clean page in the kernel's page table.
205  */
206 static struct page * __init
207 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
208 {
209         pgd_t *pgd;
210         p4d_t *p4d;
211         pud_t *pud;
212         pmd_t *pmd;
213         pte_t *pte;
214
215         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
216
217         {
218                 p4d = p4d_alloc(&init_mm, pgd, address);
219                 if (!p4d)
220                         goto out;
221                 pud = pud_alloc(&init_mm, p4d, address);
222                 if (!pud)
223                         goto out;
224                 pmd = pmd_alloc(&init_mm, pud, address);
225                 if (!pmd)
226                         goto out;
227                 pte = pte_alloc_kernel(pmd, address);
228                 if (!pte)
229                         goto out;
230                 if (!pte_none(*pte))
231                         goto out;
232                 set_pte(pte, mk_pte(page, pgprot));
233         }
234   out:
235         /* no need for flush_tlb */
236         return page;
237 }
238
239 static void __init
240 setup_gate (void)
241 {
242         struct page *page;
243
244         /*
245          * Map the gate page twice: once read-only to export the ELF
246          * headers etc. and once execute-only page to enable
247          * privilege-promotion via "epc":
248          */
249         page = virt_to_page(ia64_imva(__start_gate_section));
250         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
251 #ifdef HAVE_BUGGY_SEGREL
252         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
253         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
254 #else
255         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
256         /* Fill in the holes (if any) with read-only zero pages: */
257         {
258                 unsigned long addr;
259
260                 for (addr = GATE_ADDR + PAGE_SIZE;
261                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
262                      addr += PAGE_SIZE)
263                 {
264                         put_kernel_page(ZERO_PAGE(0), addr,
265                                         PAGE_READONLY);
266                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
267                                         PAGE_READONLY);
268                 }
269         }
270 #endif
271         ia64_patch_gate();
272 }
273
274 static struct vm_area_struct gate_vma;
275
276 static int __init gate_vma_init(void)
277 {
278         vma_init(&gate_vma, NULL);
279         gate_vma.vm_start = FIXADDR_USER_START;
280         gate_vma.vm_end = FIXADDR_USER_END;
281         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
282         gate_vma.vm_page_prot = __P101;
283
284         return 0;
285 }
286 __initcall(gate_vma_init);
287
288 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
289 {
290         return &gate_vma;
291 }
292
293 int in_gate_area_no_mm(unsigned long addr)
294 {
295         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
296                 return 1;
297         return 0;
298 }
299
300 int in_gate_area(struct mm_struct *mm, unsigned long addr)
301 {
302         return in_gate_area_no_mm(addr);
303 }
304
305 void ia64_mmu_init(void *my_cpu_data)
306 {
307         unsigned long pta, impl_va_bits;
308         extern void tlb_init(void);
309
310 #ifdef CONFIG_DISABLE_VHPT
311 #       define VHPT_ENABLE_BIT  0
312 #else
313 #       define VHPT_ENABLE_BIT  1
314 #endif
315
316         /*
317          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
318          * address space.  The IA-64 architecture guarantees that at least 50 bits of
319          * virtual address space are implemented but if we pick a large enough page size
320          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
321          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
322          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
323          * problem in practice.  Alternatively, we could truncate the top of the mapped
324          * address space to not permit mappings that would overlap with the VMLPT.
325          * --davidm 00/12/06
326          */
327 #       define pte_bits                 3
328 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
329         /*
330          * The virtual page table has to cover the entire implemented address space within
331          * a region even though not all of this space may be mappable.  The reason for
332          * this is that the Access bit and Dirty bit fault handlers perform
333          * non-speculative accesses to the virtual page table, so the address range of the
334          * virtual page table itself needs to be covered by virtual page table.
335          */
336 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
337 #       define POW2(n)                  (1ULL << (n))
338
339         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
340
341         if (impl_va_bits < 51 || impl_va_bits > 61)
342                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
343         /*
344          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
345          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
346          * the test makes sure that our mapped space doesn't overlap the
347          * unimplemented hole in the middle of the region.
348          */
349         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
350             (mapped_space_bits > impl_va_bits - 1))
351                 panic("Cannot build a big enough virtual-linear page table"
352                       " to cover mapped address space.\n"
353                       " Try using a smaller page size.\n");
354
355
356         /* place the VMLPT at the end of each page-table mapped region: */
357         pta = POW2(61) - POW2(vmlpt_bits);
358
359         /*
360          * Set the (virtually mapped linear) page table address.  Bit
361          * 8 selects between the short and long format, bits 2-7 the
362          * size of the table, and bit 0 whether the VHPT walker is
363          * enabled.
364          */
365         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
366
367         ia64_tlb_init();
368
369 #ifdef  CONFIG_HUGETLB_PAGE
370         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
371         ia64_srlz_d();
372 #endif
373 }
374
375 #ifdef CONFIG_VIRTUAL_MEM_MAP
376 int vmemmap_find_next_valid_pfn(int node, int i)
377 {
378         unsigned long end_address, hole_next_pfn;
379         unsigned long stop_address;
380         pg_data_t *pgdat = NODE_DATA(node);
381
382         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
383         end_address = PAGE_ALIGN(end_address);
384         stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
385
386         do {
387                 pgd_t *pgd;
388                 p4d_t *p4d;
389                 pud_t *pud;
390                 pmd_t *pmd;
391                 pte_t *pte;
392
393                 pgd = pgd_offset_k(end_address);
394                 if (pgd_none(*pgd)) {
395                         end_address += PGDIR_SIZE;
396                         continue;
397                 }
398
399                 p4d = p4d_offset(pgd, end_address);
400                 if (p4d_none(*p4d)) {
401                         end_address += P4D_SIZE;
402                         continue;
403                 }
404
405                 pud = pud_offset(p4d, end_address);
406                 if (pud_none(*pud)) {
407                         end_address += PUD_SIZE;
408                         continue;
409                 }
410
411                 pmd = pmd_offset(pud, end_address);
412                 if (pmd_none(*pmd)) {
413                         end_address += PMD_SIZE;
414                         continue;
415                 }
416
417                 pte = pte_offset_kernel(pmd, end_address);
418 retry_pte:
419                 if (pte_none(*pte)) {
420                         end_address += PAGE_SIZE;
421                         pte++;
422                         if ((end_address < stop_address) &&
423                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
424                                 goto retry_pte;
425                         continue;
426                 }
427                 /* Found next valid vmem_map page */
428                 break;
429         } while (end_address < stop_address);
430
431         end_address = min(end_address, stop_address);
432         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
433         hole_next_pfn = end_address / sizeof(struct page);
434         return hole_next_pfn - pgdat->node_start_pfn;
435 }
436
437 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
438 {
439         unsigned long address, start_page, end_page;
440         struct page *map_start, *map_end;
441         int node;
442         pgd_t *pgd;
443         p4d_t *p4d;
444         pud_t *pud;
445         pmd_t *pmd;
446         pte_t *pte;
447
448         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
449         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
450
451         start_page = (unsigned long) map_start & PAGE_MASK;
452         end_page = PAGE_ALIGN((unsigned long) map_end);
453         node = paddr_to_nid(__pa(start));
454
455         for (address = start_page; address < end_page; address += PAGE_SIZE) {
456                 pgd = pgd_offset_k(address);
457                 if (pgd_none(*pgd)) {
458                         p4d = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
459                         if (!p4d)
460                                 goto err_alloc;
461                         pgd_populate(&init_mm, pgd, p4d);
462                 }
463                 p4d = p4d_offset(pgd, address);
464
465                 if (p4d_none(*p4d)) {
466                         pud = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
467                         if (!pud)
468                                 goto err_alloc;
469                         p4d_populate(&init_mm, p4d, pud);
470                 }
471                 pud = pud_offset(p4d, address);
472
473                 if (pud_none(*pud)) {
474                         pmd = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
475                         if (!pmd)
476                                 goto err_alloc;
477                         pud_populate(&init_mm, pud, pmd);
478                 }
479                 pmd = pmd_offset(pud, address);
480
481                 if (pmd_none(*pmd)) {
482                         pte = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
483                         if (!pte)
484                                 goto err_alloc;
485                         pmd_populate_kernel(&init_mm, pmd, pte);
486                 }
487                 pte = pte_offset_kernel(pmd, address);
488
489                 if (pte_none(*pte)) {
490                         void *page = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE,
491                                                          node);
492                         if (!page)
493                                 goto err_alloc;
494                         set_pte(pte, pfn_pte(__pa(page) >> PAGE_SHIFT,
495                                              PAGE_KERNEL));
496                 }
497         }
498         return 0;
499
500 err_alloc:
501         panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d\n",
502               __func__, PAGE_SIZE, PAGE_SIZE, node);
503         return -ENOMEM;
504 }
505
506 struct memmap_init_callback_data {
507         struct page *start;
508         struct page *end;
509         int nid;
510         unsigned long zone;
511 };
512
513 static int __meminit
514 virtual_memmap_init(u64 start, u64 end, void *arg)
515 {
516         struct memmap_init_callback_data *args;
517         struct page *map_start, *map_end;
518
519         args = (struct memmap_init_callback_data *) arg;
520         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
521         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
522
523         if (map_start < args->start)
524                 map_start = args->start;
525         if (map_end > args->end)
526                 map_end = args->end;
527
528         /*
529          * We have to initialize "out of bounds" struct page elements that fit completely
530          * on the same pages that were allocated for the "in bounds" elements because they
531          * may be referenced later (and found to be "reserved").
532          */
533         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
534         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
535                     / sizeof(struct page));
536
537         if (map_start < map_end)
538                 memmap_init_zone((unsigned long)(map_end - map_start),
539                                  args->nid, args->zone, page_to_pfn(map_start),
540                                  MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
541         return 0;
542 }
543
544 void __meminit
545 memmap_init (unsigned long size, int nid, unsigned long zone,
546              unsigned long start_pfn)
547 {
548         if (!vmem_map) {
549                 memmap_init_zone(size, nid, zone, start_pfn,
550                                  MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
551         } else {
552                 struct page *start;
553                 struct memmap_init_callback_data args;
554
555                 start = pfn_to_page(start_pfn);
556                 args.start = start;
557                 args.end = start + size;
558                 args.nid = nid;
559                 args.zone = zone;
560
561                 efi_memmap_walk(virtual_memmap_init, &args);
562         }
563 }
564
565 int
566 ia64_pfn_valid (unsigned long pfn)
567 {
568         char byte;
569         struct page *pg = pfn_to_page(pfn);
570
571         return     (__get_user(byte, (char __user *) pg) == 0)
572                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
573                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
574 }
575 EXPORT_SYMBOL(ia64_pfn_valid);
576
577 #endif /* CONFIG_VIRTUAL_MEM_MAP */
578
579 int __init register_active_ranges(u64 start, u64 len, int nid)
580 {
581         u64 end = start + len;
582
583 #ifdef CONFIG_KEXEC
584         if (start > crashk_res.start && start < crashk_res.end)
585                 start = crashk_res.end;
586         if (end > crashk_res.start && end < crashk_res.end)
587                 end = crashk_res.start;
588 #endif
589
590         if (start < end)
591                 memblock_add_node(__pa(start), end - start, nid);
592         return 0;
593 }
594
595 int
596 find_max_min_low_pfn (u64 start, u64 end, void *arg)
597 {
598         unsigned long pfn_start, pfn_end;
599 #ifdef CONFIG_FLATMEM
600         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
601         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
602 #else
603         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
604         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
605 #endif
606         min_low_pfn = min(min_low_pfn, pfn_start);
607         max_low_pfn = max(max_low_pfn, pfn_end);
608         return 0;
609 }
610
611 /*
612  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
613  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
614  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
615  * useful for performance testing, but conceivably could also come in handy for debugging
616  * purposes.
617  */
618
619 static int nolwsys __initdata;
620
621 static int __init
622 nolwsys_setup (char *s)
623 {
624         nolwsys = 1;
625         return 1;
626 }
627
628 __setup("nolwsys", nolwsys_setup);
629
630 void __init
631 mem_init (void)
632 {
633         int i;
634
635         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
636         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
637         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
638
639         /*
640          * This needs to be called _after_ the command line has been parsed but
641          * _before_ any drivers that may need the PCI DMA interface are
642          * initialized or bootmem has been freed.
643          */
644 #ifdef CONFIG_INTEL_IOMMU
645         detect_intel_iommu();
646         if (!iommu_detected)
647 #endif
648 #ifdef CONFIG_SWIOTLB
649                 swiotlb_init(1);
650 #endif
651
652 #ifdef CONFIG_FLATMEM
653         BUG_ON(!mem_map);
654 #endif
655
656         set_max_mapnr(max_low_pfn);
657         high_memory = __va(max_low_pfn * PAGE_SIZE);
658         memblock_free_all();
659         mem_init_print_info(NULL);
660
661         /*
662          * For fsyscall entrpoints with no light-weight handler, use the ordinary
663          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
664          * code can tell them apart.
665          */
666         for (i = 0; i < NR_syscalls; ++i) {
667                 extern unsigned long fsyscall_table[NR_syscalls];
668                 extern unsigned long sys_call_table[NR_syscalls];
669
670                 if (!fsyscall_table[i] || nolwsys)
671                         fsyscall_table[i] = sys_call_table[i] | 1;
672         }
673         setup_gate();
674 }
675
676 #ifdef CONFIG_MEMORY_HOTPLUG
677 int arch_add_memory(int nid, u64 start, u64 size,
678                     struct mhp_params *params)
679 {
680         unsigned long start_pfn = start >> PAGE_SHIFT;
681         unsigned long nr_pages = size >> PAGE_SHIFT;
682         int ret;
683
684         if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
685                 return -EINVAL;
686
687         ret = __add_pages(nid, start_pfn, nr_pages, params);
688         if (ret)
689                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
690                        __func__,  ret);
691
692         return ret;
693 }
694
695 void arch_remove_memory(int nid, u64 start, u64 size,
696                         struct vmem_altmap *altmap)
697 {
698         unsigned long start_pfn = start >> PAGE_SHIFT;
699         unsigned long nr_pages = size >> PAGE_SHIFT;
700
701         __remove_pages(start_pfn, nr_pages, altmap);
702 }
703 #endif