Merge tag 'io_uring-5.15-2021-09-11' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / arch / ia64 / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10
11 #include <linux/dma-map-ops.h>
12 #include <linux/dmar.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/memblock.h>
16 #include <linux/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/mmzone.h>
19 #include <linux/module.h>
20 #include <linux/personality.h>
21 #include <linux/reboot.h>
22 #include <linux/slab.h>
23 #include <linux/swap.h>
24 #include <linux/proc_fs.h>
25 #include <linux/bitops.h>
26 #include <linux/kexec.h>
27 #include <linux/swiotlb.h>
28
29 #include <asm/dma.h>
30 #include <asm/efi.h>
31 #include <asm/io.h>
32 #include <asm/numa.h>
33 #include <asm/patch.h>
34 #include <asm/pgalloc.h>
35 #include <asm/sal.h>
36 #include <asm/sections.h>
37 #include <asm/tlb.h>
38 #include <linux/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/mca.h>
41
42 extern void ia64_tlb_init (void);
43
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
45
46 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
47 EXPORT_SYMBOL(zero_page_memmap_ptr);
48
49 void
50 __ia64_sync_icache_dcache (pte_t pte)
51 {
52         unsigned long addr;
53         struct page *page;
54
55         page = pte_page(pte);
56         addr = (unsigned long) page_address(page);
57
58         if (test_bit(PG_arch_1, &page->flags))
59                 return;                         /* i-cache is already coherent with d-cache */
60
61         flush_icache_range(addr, addr + page_size(page));
62         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
63 }
64
65 /*
66  * Since DMA is i-cache coherent, any (complete) pages that were written via
67  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
68  * flush them when they get mapped into an executable vm-area.
69  */
70 void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
71 {
72         unsigned long pfn = PHYS_PFN(paddr);
73
74         do {
75                 set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
76         } while (++pfn <= PHYS_PFN(paddr + size - 1));
77 }
78
79 inline void
80 ia64_set_rbs_bot (void)
81 {
82         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
83
84         if (stack_size > MAX_USER_STACK_SIZE)
85                 stack_size = MAX_USER_STACK_SIZE;
86         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
87 }
88
89 /*
90  * This performs some platform-dependent address space initialization.
91  * On IA-64, we want to setup the VM area for the register backing
92  * store (which grows upwards) and install the gateway page which is
93  * used for signal trampolines, etc.
94  */
95 void
96 ia64_init_addr_space (void)
97 {
98         struct vm_area_struct *vma;
99
100         ia64_set_rbs_bot();
101
102         /*
103          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
104          * the problem.  When the process attempts to write to the register backing store
105          * for the first time, it will get a SEGFAULT in this case.
106          */
107         vma = vm_area_alloc(current->mm);
108         if (vma) {
109                 vma_set_anonymous(vma);
110                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
111                 vma->vm_end = vma->vm_start + PAGE_SIZE;
112                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
113                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
114                 mmap_write_lock(current->mm);
115                 if (insert_vm_struct(current->mm, vma)) {
116                         mmap_write_unlock(current->mm);
117                         vm_area_free(vma);
118                         return;
119                 }
120                 mmap_write_unlock(current->mm);
121         }
122
123         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
124         if (!(current->personality & MMAP_PAGE_ZERO)) {
125                 vma = vm_area_alloc(current->mm);
126                 if (vma) {
127                         vma_set_anonymous(vma);
128                         vma->vm_end = PAGE_SIZE;
129                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
130                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
131                                         VM_DONTEXPAND | VM_DONTDUMP;
132                         mmap_write_lock(current->mm);
133                         if (insert_vm_struct(current->mm, vma)) {
134                                 mmap_write_unlock(current->mm);
135                                 vm_area_free(vma);
136                                 return;
137                         }
138                         mmap_write_unlock(current->mm);
139                 }
140         }
141 }
142
143 void
144 free_initmem (void)
145 {
146         free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
147                            -1, "unused kernel");
148 }
149
150 void __init
151 free_initrd_mem (unsigned long start, unsigned long end)
152 {
153         /*
154          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
155          * Thus EFI and the kernel may have different page sizes. It is
156          * therefore possible to have the initrd share the same page as
157          * the end of the kernel (given current setup).
158          *
159          * To avoid freeing/using the wrong page (kernel sized) we:
160          *      - align up the beginning of initrd
161          *      - align down the end of initrd
162          *
163          *  |             |
164          *  |=============| a000
165          *  |             |
166          *  |             |
167          *  |             | 9000
168          *  |/////////////|
169          *  |/////////////|
170          *  |=============| 8000
171          *  |///INITRD////|
172          *  |/////////////|
173          *  |/////////////| 7000
174          *  |             |
175          *  |KKKKKKKKKKKKK|
176          *  |=============| 6000
177          *  |KKKKKKKKKKKKK|
178          *  |KKKKKKKKKKKKK|
179          *  K=kernel using 8KB pages
180          *
181          * In this example, we must free page 8000 ONLY. So we must align up
182          * initrd_start and keep initrd_end as is.
183          */
184         start = PAGE_ALIGN(start);
185         end = end & PAGE_MASK;
186
187         if (start < end)
188                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
189
190         for (; start < end; start += PAGE_SIZE) {
191                 if (!virt_addr_valid(start))
192                         continue;
193                 free_reserved_page(virt_to_page(start));
194         }
195 }
196
197 /*
198  * This installs a clean page in the kernel's page table.
199  */
200 static struct page * __init
201 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
202 {
203         pgd_t *pgd;
204         p4d_t *p4d;
205         pud_t *pud;
206         pmd_t *pmd;
207         pte_t *pte;
208
209         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
210
211         {
212                 p4d = p4d_alloc(&init_mm, pgd, address);
213                 if (!p4d)
214                         goto out;
215                 pud = pud_alloc(&init_mm, p4d, address);
216                 if (!pud)
217                         goto out;
218                 pmd = pmd_alloc(&init_mm, pud, address);
219                 if (!pmd)
220                         goto out;
221                 pte = pte_alloc_kernel(pmd, address);
222                 if (!pte)
223                         goto out;
224                 if (!pte_none(*pte))
225                         goto out;
226                 set_pte(pte, mk_pte(page, pgprot));
227         }
228   out:
229         /* no need for flush_tlb */
230         return page;
231 }
232
233 static void __init
234 setup_gate (void)
235 {
236         struct page *page;
237
238         /*
239          * Map the gate page twice: once read-only to export the ELF
240          * headers etc. and once execute-only page to enable
241          * privilege-promotion via "epc":
242          */
243         page = virt_to_page(ia64_imva(__start_gate_section));
244         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
245 #ifdef HAVE_BUGGY_SEGREL
246         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
247         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
248 #else
249         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
250         /* Fill in the holes (if any) with read-only zero pages: */
251         {
252                 unsigned long addr;
253
254                 for (addr = GATE_ADDR + PAGE_SIZE;
255                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
256                      addr += PAGE_SIZE)
257                 {
258                         put_kernel_page(ZERO_PAGE(0), addr,
259                                         PAGE_READONLY);
260                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
261                                         PAGE_READONLY);
262                 }
263         }
264 #endif
265         ia64_patch_gate();
266 }
267
268 static struct vm_area_struct gate_vma;
269
270 static int __init gate_vma_init(void)
271 {
272         vma_init(&gate_vma, NULL);
273         gate_vma.vm_start = FIXADDR_USER_START;
274         gate_vma.vm_end = FIXADDR_USER_END;
275         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
276         gate_vma.vm_page_prot = __P101;
277
278         return 0;
279 }
280 __initcall(gate_vma_init);
281
282 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
283 {
284         return &gate_vma;
285 }
286
287 int in_gate_area_no_mm(unsigned long addr)
288 {
289         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
290                 return 1;
291         return 0;
292 }
293
294 int in_gate_area(struct mm_struct *mm, unsigned long addr)
295 {
296         return in_gate_area_no_mm(addr);
297 }
298
299 void ia64_mmu_init(void *my_cpu_data)
300 {
301         unsigned long pta, impl_va_bits;
302         extern void tlb_init(void);
303
304 #ifdef CONFIG_DISABLE_VHPT
305 #       define VHPT_ENABLE_BIT  0
306 #else
307 #       define VHPT_ENABLE_BIT  1
308 #endif
309
310         /*
311          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
312          * address space.  The IA-64 architecture guarantees that at least 50 bits of
313          * virtual address space are implemented but if we pick a large enough page size
314          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
315          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
316          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
317          * problem in practice.  Alternatively, we could truncate the top of the mapped
318          * address space to not permit mappings that would overlap with the VMLPT.
319          * --davidm 00/12/06
320          */
321 #       define pte_bits                 3
322 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
323         /*
324          * The virtual page table has to cover the entire implemented address space within
325          * a region even though not all of this space may be mappable.  The reason for
326          * this is that the Access bit and Dirty bit fault handlers perform
327          * non-speculative accesses to the virtual page table, so the address range of the
328          * virtual page table itself needs to be covered by virtual page table.
329          */
330 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
331 #       define POW2(n)                  (1ULL << (n))
332
333         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
334
335         if (impl_va_bits < 51 || impl_va_bits > 61)
336                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
337         /*
338          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
339          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
340          * the test makes sure that our mapped space doesn't overlap the
341          * unimplemented hole in the middle of the region.
342          */
343         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
344             (mapped_space_bits > impl_va_bits - 1))
345                 panic("Cannot build a big enough virtual-linear page table"
346                       " to cover mapped address space.\n"
347                       " Try using a smaller page size.\n");
348
349
350         /* place the VMLPT at the end of each page-table mapped region: */
351         pta = POW2(61) - POW2(vmlpt_bits);
352
353         /*
354          * Set the (virtually mapped linear) page table address.  Bit
355          * 8 selects between the short and long format, bits 2-7 the
356          * size of the table, and bit 0 whether the VHPT walker is
357          * enabled.
358          */
359         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
360
361         ia64_tlb_init();
362
363 #ifdef  CONFIG_HUGETLB_PAGE
364         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
365         ia64_srlz_d();
366 #endif
367 }
368
369 int __init register_active_ranges(u64 start, u64 len, int nid)
370 {
371         u64 end = start + len;
372
373 #ifdef CONFIG_KEXEC
374         if (start > crashk_res.start && start < crashk_res.end)
375                 start = crashk_res.end;
376         if (end > crashk_res.start && end < crashk_res.end)
377                 end = crashk_res.start;
378 #endif
379
380         if (start < end)
381                 memblock_add_node(__pa(start), end - start, nid);
382         return 0;
383 }
384
385 int
386 find_max_min_low_pfn (u64 start, u64 end, void *arg)
387 {
388         unsigned long pfn_start, pfn_end;
389 #ifdef CONFIG_FLATMEM
390         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
391         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
392 #else
393         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
394         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
395 #endif
396         min_low_pfn = min(min_low_pfn, pfn_start);
397         max_low_pfn = max(max_low_pfn, pfn_end);
398         return 0;
399 }
400
401 /*
402  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
403  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
404  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
405  * useful for performance testing, but conceivably could also come in handy for debugging
406  * purposes.
407  */
408
409 static int nolwsys __initdata;
410
411 static int __init
412 nolwsys_setup (char *s)
413 {
414         nolwsys = 1;
415         return 1;
416 }
417
418 __setup("nolwsys", nolwsys_setup);
419
420 void __init
421 mem_init (void)
422 {
423         int i;
424
425         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
426         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
427         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
428
429         /*
430          * This needs to be called _after_ the command line has been parsed but
431          * _before_ any drivers that may need the PCI DMA interface are
432          * initialized or bootmem has been freed.
433          */
434         do {
435 #ifdef CONFIG_INTEL_IOMMU
436                 detect_intel_iommu();
437                 if (iommu_detected)
438                         break;
439 #endif
440 #ifdef CONFIG_SWIOTLB
441                 swiotlb_init(1);
442 #endif
443         } while (0);
444
445 #ifdef CONFIG_FLATMEM
446         BUG_ON(!mem_map);
447 #endif
448
449         set_max_mapnr(max_low_pfn);
450         high_memory = __va(max_low_pfn * PAGE_SIZE);
451         memblock_free_all();
452
453         /*
454          * For fsyscall entrpoints with no light-weight handler, use the ordinary
455          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
456          * code can tell them apart.
457          */
458         for (i = 0; i < NR_syscalls; ++i) {
459                 extern unsigned long fsyscall_table[NR_syscalls];
460                 extern unsigned long sys_call_table[NR_syscalls];
461
462                 if (!fsyscall_table[i] || nolwsys)
463                         fsyscall_table[i] = sys_call_table[i] | 1;
464         }
465         setup_gate();
466 }
467
468 #ifdef CONFIG_MEMORY_HOTPLUG
469 int arch_add_memory(int nid, u64 start, u64 size,
470                     struct mhp_params *params)
471 {
472         unsigned long start_pfn = start >> PAGE_SHIFT;
473         unsigned long nr_pages = size >> PAGE_SHIFT;
474         int ret;
475
476         if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
477                 return -EINVAL;
478
479         ret = __add_pages(nid, start_pfn, nr_pages, params);
480         if (ret)
481                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
482                        __func__,  ret);
483
484         return ret;
485 }
486
487 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
488 {
489         unsigned long start_pfn = start >> PAGE_SHIFT;
490         unsigned long nr_pages = size >> PAGE_SHIFT;
491
492         __remove_pages(start_pfn, nr_pages, altmap);
493 }
494 #endif