Merge tag 'devicetree-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / arm64 / mm / context.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/context.c
4  *
5  * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8
9 #include <linux/bitfield.h>
10 #include <linux/bitops.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14
15 #include <asm/cpufeature.h>
16 #include <asm/mmu_context.h>
17 #include <asm/smp.h>
18 #include <asm/tlbflush.h>
19
20 static u32 asid_bits;
21 static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
22
23 static atomic64_t asid_generation;
24 static unsigned long *asid_map;
25
26 static DEFINE_PER_CPU(atomic64_t, active_asids);
27 static DEFINE_PER_CPU(u64, reserved_asids);
28 static cpumask_t tlb_flush_pending;
29
30 static unsigned long max_pinned_asids;
31 static unsigned long nr_pinned_asids;
32 static unsigned long *pinned_asid_map;
33
34 #define ASID_MASK               (~GENMASK(asid_bits - 1, 0))
35 #define ASID_FIRST_VERSION      (1UL << asid_bits)
36
37 #define NUM_USER_ASIDS          ASID_FIRST_VERSION
38 #define asid2idx(asid)          ((asid) & ~ASID_MASK)
39 #define idx2asid(idx)           asid2idx(idx)
40
41 /* Get the ASIDBits supported by the current CPU */
42 static u32 get_cpu_asid_bits(void)
43 {
44         u32 asid;
45         int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
46                                                 ID_AA64MMFR0_ASID_SHIFT);
47
48         switch (fld) {
49         default:
50                 pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
51                                         smp_processor_id(),  fld);
52                 fallthrough;
53         case 0:
54                 asid = 8;
55                 break;
56         case 2:
57                 asid = 16;
58         }
59
60         return asid;
61 }
62
63 /* Check if the current cpu's ASIDBits is compatible with asid_bits */
64 void verify_cpu_asid_bits(void)
65 {
66         u32 asid = get_cpu_asid_bits();
67
68         if (asid < asid_bits) {
69                 /*
70                  * We cannot decrease the ASID size at runtime, so panic if we support
71                  * fewer ASID bits than the boot CPU.
72                  */
73                 pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
74                                 smp_processor_id(), asid, asid_bits);
75                 cpu_panic_kernel();
76         }
77 }
78
79 static void set_kpti_asid_bits(unsigned long *map)
80 {
81         unsigned int len = BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(unsigned long);
82         /*
83          * In case of KPTI kernel/user ASIDs are allocated in
84          * pairs, the bottom bit distinguishes the two: if it
85          * is set, then the ASID will map only userspace. Thus
86          * mark even as reserved for kernel.
87          */
88         memset(map, 0xaa, len);
89 }
90
91 static void set_reserved_asid_bits(void)
92 {
93         if (pinned_asid_map)
94                 bitmap_copy(asid_map, pinned_asid_map, NUM_USER_ASIDS);
95         else if (arm64_kernel_unmapped_at_el0())
96                 set_kpti_asid_bits(asid_map);
97         else
98                 bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
99 }
100
101 #define asid_gen_match(asid) \
102         (!(((asid) ^ atomic64_read(&asid_generation)) >> asid_bits))
103
104 static void flush_context(void)
105 {
106         int i;
107         u64 asid;
108
109         /* Update the list of reserved ASIDs and the ASID bitmap. */
110         set_reserved_asid_bits();
111
112         for_each_possible_cpu(i) {
113                 asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
114                 /*
115                  * If this CPU has already been through a
116                  * rollover, but hasn't run another task in
117                  * the meantime, we must preserve its reserved
118                  * ASID, as this is the only trace we have of
119                  * the process it is still running.
120                  */
121                 if (asid == 0)
122                         asid = per_cpu(reserved_asids, i);
123                 __set_bit(asid2idx(asid), asid_map);
124                 per_cpu(reserved_asids, i) = asid;
125         }
126
127         /*
128          * Queue a TLB invalidation for each CPU to perform on next
129          * context-switch
130          */
131         cpumask_setall(&tlb_flush_pending);
132 }
133
134 static bool check_update_reserved_asid(u64 asid, u64 newasid)
135 {
136         int cpu;
137         bool hit = false;
138
139         /*
140          * Iterate over the set of reserved ASIDs looking for a match.
141          * If we find one, then we can update our mm to use newasid
142          * (i.e. the same ASID in the current generation) but we can't
143          * exit the loop early, since we need to ensure that all copies
144          * of the old ASID are updated to reflect the mm. Failure to do
145          * so could result in us missing the reserved ASID in a future
146          * generation.
147          */
148         for_each_possible_cpu(cpu) {
149                 if (per_cpu(reserved_asids, cpu) == asid) {
150                         hit = true;
151                         per_cpu(reserved_asids, cpu) = newasid;
152                 }
153         }
154
155         return hit;
156 }
157
158 static u64 new_context(struct mm_struct *mm)
159 {
160         static u32 cur_idx = 1;
161         u64 asid = atomic64_read(&mm->context.id);
162         u64 generation = atomic64_read(&asid_generation);
163
164         if (asid != 0) {
165                 u64 newasid = generation | (asid & ~ASID_MASK);
166
167                 /*
168                  * If our current ASID was active during a rollover, we
169                  * can continue to use it and this was just a false alarm.
170                  */
171                 if (check_update_reserved_asid(asid, newasid))
172                         return newasid;
173
174                 /*
175                  * If it is pinned, we can keep using it. Note that reserved
176                  * takes priority, because even if it is also pinned, we need to
177                  * update the generation into the reserved_asids.
178                  */
179                 if (refcount_read(&mm->context.pinned))
180                         return newasid;
181
182                 /*
183                  * We had a valid ASID in a previous life, so try to re-use
184                  * it if possible.
185                  */
186                 if (!__test_and_set_bit(asid2idx(asid), asid_map))
187                         return newasid;
188         }
189
190         /*
191          * Allocate a free ASID. If we can't find one, take a note of the
192          * currently active ASIDs and mark the TLBs as requiring flushes.  We
193          * always count from ASID #2 (index 1), as we use ASID #0 when setting
194          * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
195          * pairs.
196          */
197         asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
198         if (asid != NUM_USER_ASIDS)
199                 goto set_asid;
200
201         /* We're out of ASIDs, so increment the global generation count */
202         generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
203                                                  &asid_generation);
204         flush_context();
205
206         /* We have more ASIDs than CPUs, so this will always succeed */
207         asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
208
209 set_asid:
210         __set_bit(asid, asid_map);
211         cur_idx = asid;
212         return idx2asid(asid) | generation;
213 }
214
215 void check_and_switch_context(struct mm_struct *mm)
216 {
217         unsigned long flags;
218         unsigned int cpu;
219         u64 asid, old_active_asid;
220
221         if (system_supports_cnp())
222                 cpu_set_reserved_ttbr0();
223
224         asid = atomic64_read(&mm->context.id);
225
226         /*
227          * The memory ordering here is subtle.
228          * If our active_asids is non-zero and the ASID matches the current
229          * generation, then we update the active_asids entry with a relaxed
230          * cmpxchg. Racing with a concurrent rollover means that either:
231          *
232          * - We get a zero back from the cmpxchg and end up waiting on the
233          *   lock. Taking the lock synchronises with the rollover and so
234          *   we are forced to see the updated generation.
235          *
236          * - We get a valid ASID back from the cmpxchg, which means the
237          *   relaxed xchg in flush_context will treat us as reserved
238          *   because atomic RmWs are totally ordered for a given location.
239          */
240         old_active_asid = atomic64_read(this_cpu_ptr(&active_asids));
241         if (old_active_asid && asid_gen_match(asid) &&
242             atomic64_cmpxchg_relaxed(this_cpu_ptr(&active_asids),
243                                      old_active_asid, asid))
244                 goto switch_mm_fastpath;
245
246         raw_spin_lock_irqsave(&cpu_asid_lock, flags);
247         /* Check that our ASID belongs to the current generation. */
248         asid = atomic64_read(&mm->context.id);
249         if (!asid_gen_match(asid)) {
250                 asid = new_context(mm);
251                 atomic64_set(&mm->context.id, asid);
252         }
253
254         cpu = smp_processor_id();
255         if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
256                 local_flush_tlb_all();
257
258         atomic64_set(this_cpu_ptr(&active_asids), asid);
259         raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
260
261 switch_mm_fastpath:
262
263         arm64_apply_bp_hardening();
264
265         /*
266          * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
267          * emulating PAN.
268          */
269         if (!system_uses_ttbr0_pan())
270                 cpu_switch_mm(mm->pgd, mm);
271 }
272
273 unsigned long arm64_mm_context_get(struct mm_struct *mm)
274 {
275         unsigned long flags;
276         u64 asid;
277
278         if (!pinned_asid_map)
279                 return 0;
280
281         raw_spin_lock_irqsave(&cpu_asid_lock, flags);
282
283         asid = atomic64_read(&mm->context.id);
284
285         if (refcount_inc_not_zero(&mm->context.pinned))
286                 goto out_unlock;
287
288         if (nr_pinned_asids >= max_pinned_asids) {
289                 asid = 0;
290                 goto out_unlock;
291         }
292
293         if (!asid_gen_match(asid)) {
294                 /*
295                  * We went through one or more rollover since that ASID was
296                  * used. Ensure that it is still valid, or generate a new one.
297                  */
298                 asid = new_context(mm);
299                 atomic64_set(&mm->context.id, asid);
300         }
301
302         nr_pinned_asids++;
303         __set_bit(asid2idx(asid), pinned_asid_map);
304         refcount_set(&mm->context.pinned, 1);
305
306 out_unlock:
307         raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
308
309         asid &= ~ASID_MASK;
310
311         /* Set the equivalent of USER_ASID_BIT */
312         if (asid && arm64_kernel_unmapped_at_el0())
313                 asid |= 1;
314
315         return asid;
316 }
317 EXPORT_SYMBOL_GPL(arm64_mm_context_get);
318
319 void arm64_mm_context_put(struct mm_struct *mm)
320 {
321         unsigned long flags;
322         u64 asid = atomic64_read(&mm->context.id);
323
324         if (!pinned_asid_map)
325                 return;
326
327         raw_spin_lock_irqsave(&cpu_asid_lock, flags);
328
329         if (refcount_dec_and_test(&mm->context.pinned)) {
330                 __clear_bit(asid2idx(asid), pinned_asid_map);
331                 nr_pinned_asids--;
332         }
333
334         raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
335 }
336 EXPORT_SYMBOL_GPL(arm64_mm_context_put);
337
338 /* Errata workaround post TTBRx_EL1 update. */
339 asmlinkage void post_ttbr_update_workaround(void)
340 {
341         if (!IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456))
342                 return;
343
344         asm(ALTERNATIVE("nop; nop; nop",
345                         "ic iallu; dsb nsh; isb",
346                         ARM64_WORKAROUND_CAVIUM_27456));
347 }
348
349 void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm)
350 {
351         unsigned long ttbr1 = read_sysreg(ttbr1_el1);
352         unsigned long asid = ASID(mm);
353         unsigned long ttbr0 = phys_to_ttbr(pgd_phys);
354
355         /* Skip CNP for the reserved ASID */
356         if (system_supports_cnp() && asid)
357                 ttbr0 |= TTBR_CNP_BIT;
358
359         /* SW PAN needs a copy of the ASID in TTBR0 for entry */
360         if (IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN))
361                 ttbr0 |= FIELD_PREP(TTBR_ASID_MASK, asid);
362
363         /* Set ASID in TTBR1 since TCR.A1 is set */
364         ttbr1 &= ~TTBR_ASID_MASK;
365         ttbr1 |= FIELD_PREP(TTBR_ASID_MASK, asid);
366
367         write_sysreg(ttbr1, ttbr1_el1);
368         isb();
369         write_sysreg(ttbr0, ttbr0_el1);
370         isb();
371         post_ttbr_update_workaround();
372 }
373
374 static int asids_update_limit(void)
375 {
376         unsigned long num_available_asids = NUM_USER_ASIDS;
377
378         if (arm64_kernel_unmapped_at_el0()) {
379                 num_available_asids /= 2;
380                 if (pinned_asid_map)
381                         set_kpti_asid_bits(pinned_asid_map);
382         }
383         /*
384          * Expect allocation after rollover to fail if we don't have at least
385          * one more ASID than CPUs. ASID #0 is reserved for init_mm.
386          */
387         WARN_ON(num_available_asids - 1 <= num_possible_cpus());
388         pr_info("ASID allocator initialised with %lu entries\n",
389                 num_available_asids);
390
391         /*
392          * There must always be an ASID available after rollover. Ensure that,
393          * even if all CPUs have a reserved ASID and the maximum number of ASIDs
394          * are pinned, there still is at least one empty slot in the ASID map.
395          */
396         max_pinned_asids = num_available_asids - num_possible_cpus() - 2;
397         return 0;
398 }
399 arch_initcall(asids_update_limit);
400
401 static int asids_init(void)
402 {
403         asid_bits = get_cpu_asid_bits();
404         atomic64_set(&asid_generation, ASID_FIRST_VERSION);
405         asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL);
406         if (!asid_map)
407                 panic("Failed to allocate bitmap for %lu ASIDs\n",
408                       NUM_USER_ASIDS);
409
410         pinned_asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL);
411         nr_pinned_asids = 0;
412
413         /*
414          * We cannot call set_reserved_asid_bits() here because CPU
415          * caps are not finalized yet, so it is safer to assume KPTI
416          * and reserve kernel ASID's from beginning.
417          */
418         if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0))
419                 set_kpti_asid_bits(asid_map);
420         return 0;
421 }
422 early_initcall(asids_init);