Merge branches 'pm-cpufreq', 'pm-sleep' and 'pm-em'
[linux-2.6-microblaze.git] / arch / arm64 / kvm / vgic / vgic-v2.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5
6 #include <linux/irqchip/arm-gic.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <kvm/arm_vgic.h>
10 #include <asm/kvm_mmu.h>
11
12 #include "vgic.h"
13
14 static inline void vgic_v2_write_lr(int lr, u32 val)
15 {
16         void __iomem *base = kvm_vgic_global_state.vctrl_base;
17
18         writel_relaxed(val, base + GICH_LR0 + (lr * 4));
19 }
20
21 void vgic_v2_init_lrs(void)
22 {
23         int i;
24
25         for (i = 0; i < kvm_vgic_global_state.nr_lr; i++)
26                 vgic_v2_write_lr(i, 0);
27 }
28
29 void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
30 {
31         struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
32
33         cpuif->vgic_hcr |= GICH_HCR_UIE;
34 }
35
36 static bool lr_signals_eoi_mi(u32 lr_val)
37 {
38         return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
39                !(lr_val & GICH_LR_HW);
40 }
41
42 /*
43  * transfer the content of the LRs back into the corresponding ap_list:
44  * - active bit is transferred as is
45  * - pending bit is
46  *   - transferred as is in case of edge sensitive IRQs
47  *   - set to the line-level (resample time) for level sensitive IRQs
48  */
49 void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
50 {
51         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
52         struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
53         int lr;
54
55         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
56
57         cpuif->vgic_hcr &= ~GICH_HCR_UIE;
58
59         for (lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++) {
60                 u32 val = cpuif->vgic_lr[lr];
61                 u32 cpuid, intid = val & GICH_LR_VIRTUALID;
62                 struct vgic_irq *irq;
63                 bool deactivated;
64
65                 /* Extract the source vCPU id from the LR */
66                 cpuid = val & GICH_LR_PHYSID_CPUID;
67                 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
68                 cpuid &= 7;
69
70                 /* Notify fds when the guest EOI'ed a level-triggered SPI */
71                 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
72                         kvm_notify_acked_irq(vcpu->kvm, 0,
73                                              intid - VGIC_NR_PRIVATE_IRQS);
74
75                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
76
77                 raw_spin_lock(&irq->irq_lock);
78
79                 /* Always preserve the active bit, note deactivation */
80                 deactivated = irq->active && !(val & GICH_LR_ACTIVE_BIT);
81                 irq->active = !!(val & GICH_LR_ACTIVE_BIT);
82
83                 if (irq->active && vgic_irq_is_sgi(intid))
84                         irq->active_source = cpuid;
85
86                 /* Edge is the only case where we preserve the pending bit */
87                 if (irq->config == VGIC_CONFIG_EDGE &&
88                     (val & GICH_LR_PENDING_BIT)) {
89                         irq->pending_latch = true;
90
91                         if (vgic_irq_is_sgi(intid))
92                                 irq->source |= (1 << cpuid);
93                 }
94
95                 /*
96                  * Clear soft pending state when level irqs have been acked.
97                  */
98                 if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE))
99                         irq->pending_latch = false;
100
101                 /* Handle resampling for mapped interrupts if required */
102                 vgic_irq_handle_resampling(irq, deactivated, val & GICH_LR_PENDING_BIT);
103
104                 raw_spin_unlock(&irq->irq_lock);
105                 vgic_put_irq(vcpu->kvm, irq);
106         }
107
108         cpuif->used_lrs = 0;
109 }
110
111 /*
112  * Populates the particular LR with the state of a given IRQ:
113  * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq
114  * - for a level sensitive IRQ the pending state value is unchanged;
115  *   it is dictated directly by the input level
116  *
117  * If @irq describes an SGI with multiple sources, we choose the
118  * lowest-numbered source VCPU and clear that bit in the source bitmap.
119  *
120  * The irq_lock must be held by the caller.
121  */
122 void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
123 {
124         u32 val = irq->intid;
125         bool allow_pending = true;
126
127         if (irq->active) {
128                 val |= GICH_LR_ACTIVE_BIT;
129                 if (vgic_irq_is_sgi(irq->intid))
130                         val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
131                 if (vgic_irq_is_multi_sgi(irq)) {
132                         allow_pending = false;
133                         val |= GICH_LR_EOI;
134                 }
135         }
136
137         if (irq->group)
138                 val |= GICH_LR_GROUP1;
139
140         if (irq->hw && !vgic_irq_needs_resampling(irq)) {
141                 val |= GICH_LR_HW;
142                 val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
143                 /*
144                  * Never set pending+active on a HW interrupt, as the
145                  * pending state is kept at the physical distributor
146                  * level.
147                  */
148                 if (irq->active)
149                         allow_pending = false;
150         } else {
151                 if (irq->config == VGIC_CONFIG_LEVEL) {
152                         val |= GICH_LR_EOI;
153
154                         /*
155                          * Software resampling doesn't work very well
156                          * if we allow P+A, so let's not do that.
157                          */
158                         if (irq->active)
159                                 allow_pending = false;
160                 }
161         }
162
163         if (allow_pending && irq_is_pending(irq)) {
164                 val |= GICH_LR_PENDING_BIT;
165
166                 if (irq->config == VGIC_CONFIG_EDGE)
167                         irq->pending_latch = false;
168
169                 if (vgic_irq_is_sgi(irq->intid)) {
170                         u32 src = ffs(irq->source);
171
172                         if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
173                                            irq->intid))
174                                 return;
175
176                         val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
177                         irq->source &= ~(1 << (src - 1));
178                         if (irq->source) {
179                                 irq->pending_latch = true;
180                                 val |= GICH_LR_EOI;
181                         }
182                 }
183         }
184
185         /*
186          * Level-triggered mapped IRQs are special because we only observe
187          * rising edges as input to the VGIC.  We therefore lower the line
188          * level here, so that we can take new virtual IRQs.  See
189          * vgic_v2_fold_lr_state for more info.
190          */
191         if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT))
192                 irq->line_level = false;
193
194         /* The GICv2 LR only holds five bits of priority. */
195         val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
196
197         vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
198 }
199
200 void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
201 {
202         vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
203 }
204
205 void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
206 {
207         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
208         u32 vmcr;
209
210         vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) &
211                 GICH_VMCR_ENABLE_GRP0_MASK;
212         vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) &
213                 GICH_VMCR_ENABLE_GRP1_MASK;
214         vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) &
215                 GICH_VMCR_ACK_CTL_MASK;
216         vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) &
217                 GICH_VMCR_FIQ_EN_MASK;
218         vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) &
219                 GICH_VMCR_CBPR_MASK;
220         vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) &
221                 GICH_VMCR_EOI_MODE_MASK;
222         vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
223                 GICH_VMCR_ALIAS_BINPOINT_MASK;
224         vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
225                 GICH_VMCR_BINPOINT_MASK;
226         vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) <<
227                  GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK;
228
229         cpu_if->vgic_vmcr = vmcr;
230 }
231
232 void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
233 {
234         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
235         u32 vmcr;
236
237         vmcr = cpu_if->vgic_vmcr;
238
239         vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >>
240                 GICH_VMCR_ENABLE_GRP0_SHIFT;
241         vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >>
242                 GICH_VMCR_ENABLE_GRP1_SHIFT;
243         vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >>
244                 GICH_VMCR_ACK_CTL_SHIFT;
245         vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >>
246                 GICH_VMCR_FIQ_EN_SHIFT;
247         vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >>
248                 GICH_VMCR_CBPR_SHIFT;
249         vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >>
250                 GICH_VMCR_EOI_MODE_SHIFT;
251
252         vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
253                         GICH_VMCR_ALIAS_BINPOINT_SHIFT;
254         vmcrp->bpr  = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
255                         GICH_VMCR_BINPOINT_SHIFT;
256         vmcrp->pmr  = ((vmcr & GICH_VMCR_PRIMASK_MASK) >>
257                         GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT;
258 }
259
260 void vgic_v2_enable(struct kvm_vcpu *vcpu)
261 {
262         /*
263          * By forcing VMCR to zero, the GIC will restore the binary
264          * points to their reset values. Anything else resets to zero
265          * anyway.
266          */
267         vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
268
269         /* Get the show on the road... */
270         vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
271 }
272
273 /* check for overlapping regions and for regions crossing the end of memory */
274 static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
275 {
276         if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
277                 return false;
278         if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
279                 return false;
280
281         if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
282                 return true;
283         if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
284                 return true;
285
286         return false;
287 }
288
289 int vgic_v2_map_resources(struct kvm *kvm)
290 {
291         struct vgic_dist *dist = &kvm->arch.vgic;
292         int ret = 0;
293
294         if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
295             IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
296                 kvm_err("Need to set vgic cpu and dist addresses first\n");
297                 return -ENXIO;
298         }
299
300         if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
301                 kvm_err("VGIC CPU and dist frames overlap\n");
302                 return -EINVAL;
303         }
304
305         /*
306          * Initialize the vgic if this hasn't already been done on demand by
307          * accessing the vgic state from userspace.
308          */
309         ret = vgic_init(kvm);
310         if (ret) {
311                 kvm_err("Unable to initialize VGIC dynamic data structures\n");
312                 return ret;
313         }
314
315         ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2);
316         if (ret) {
317                 kvm_err("Unable to register VGIC MMIO regions\n");
318                 return ret;
319         }
320
321         if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
322                 ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
323                                             kvm_vgic_global_state.vcpu_base,
324                                             KVM_VGIC_V2_CPU_SIZE, true);
325                 if (ret) {
326                         kvm_err("Unable to remap VGIC CPU to VCPU\n");
327                         return ret;
328                 }
329         }
330
331         return 0;
332 }
333
334 DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);
335
336 /**
337  * vgic_v2_probe - probe for a VGICv2 compatible interrupt controller
338  * @info:       pointer to the GIC description
339  *
340  * Returns 0 if the VGICv2 has been probed successfully, returns an error code
341  * otherwise
342  */
343 int vgic_v2_probe(const struct gic_kvm_info *info)
344 {
345         int ret;
346         u32 vtr;
347
348         if (!info->vctrl.start) {
349                 kvm_err("GICH not present in the firmware table\n");
350                 return -ENXIO;
351         }
352
353         if (!PAGE_ALIGNED(info->vcpu.start) ||
354             !PAGE_ALIGNED(resource_size(&info->vcpu))) {
355                 kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
356
357                 ret = create_hyp_io_mappings(info->vcpu.start,
358                                              resource_size(&info->vcpu),
359                                              &kvm_vgic_global_state.vcpu_base_va,
360                                              &kvm_vgic_global_state.vcpu_hyp_va);
361                 if (ret) {
362                         kvm_err("Cannot map GICV into hyp\n");
363                         goto out;
364                 }
365
366                 static_branch_enable(&vgic_v2_cpuif_trap);
367         }
368
369         ret = create_hyp_io_mappings(info->vctrl.start,
370                                      resource_size(&info->vctrl),
371                                      &kvm_vgic_global_state.vctrl_base,
372                                      &kvm_vgic_global_state.vctrl_hyp);
373         if (ret) {
374                 kvm_err("Cannot map VCTRL into hyp\n");
375                 goto out;
376         }
377
378         vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
379         kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;
380
381         ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
382         if (ret) {
383                 kvm_err("Cannot register GICv2 KVM device\n");
384                 goto out;
385         }
386
387         kvm_vgic_global_state.can_emulate_gicv2 = true;
388         kvm_vgic_global_state.vcpu_base = info->vcpu.start;
389         kvm_vgic_global_state.type = VGIC_V2;
390         kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;
391
392         kvm_debug("vgic-v2@%llx\n", info->vctrl.start);
393
394         return 0;
395 out:
396         if (kvm_vgic_global_state.vctrl_base)
397                 iounmap(kvm_vgic_global_state.vctrl_base);
398         if (kvm_vgic_global_state.vcpu_base_va)
399                 iounmap(kvm_vgic_global_state.vcpu_base_va);
400
401         return ret;
402 }
403
404 static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
405 {
406         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
407         u64 used_lrs = cpu_if->used_lrs;
408         u64 elrsr;
409         int i;
410
411         elrsr = readl_relaxed(base + GICH_ELRSR0);
412         if (unlikely(used_lrs > 32))
413                 elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32;
414
415         for (i = 0; i < used_lrs; i++) {
416                 if (elrsr & (1UL << i))
417                         cpu_if->vgic_lr[i] &= ~GICH_LR_STATE;
418                 else
419                         cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4));
420
421                 writel_relaxed(0, base + GICH_LR0 + (i * 4));
422         }
423 }
424
425 void vgic_v2_save_state(struct kvm_vcpu *vcpu)
426 {
427         void __iomem *base = kvm_vgic_global_state.vctrl_base;
428         u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
429
430         if (!base)
431                 return;
432
433         if (used_lrs) {
434                 save_lrs(vcpu, base);
435                 writel_relaxed(0, base + GICH_HCR);
436         }
437 }
438
439 void vgic_v2_restore_state(struct kvm_vcpu *vcpu)
440 {
441         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
442         void __iomem *base = kvm_vgic_global_state.vctrl_base;
443         u64 used_lrs = cpu_if->used_lrs;
444         int i;
445
446         if (!base)
447                 return;
448
449         if (used_lrs) {
450                 writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR);
451                 for (i = 0; i < used_lrs; i++) {
452                         writel_relaxed(cpu_if->vgic_lr[i],
453                                        base + GICH_LR0 + (i * 4));
454                 }
455         }
456 }
457
458 void vgic_v2_load(struct kvm_vcpu *vcpu)
459 {
460         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
461
462         writel_relaxed(cpu_if->vgic_vmcr,
463                        kvm_vgic_global_state.vctrl_base + GICH_VMCR);
464         writel_relaxed(cpu_if->vgic_apr,
465                        kvm_vgic_global_state.vctrl_base + GICH_APR);
466 }
467
468 void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu)
469 {
470         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
471
472         cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
473 }
474
475 void vgic_v2_put(struct kvm_vcpu *vcpu)
476 {
477         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
478
479         vgic_v2_vmcr_sync(vcpu);
480         cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR);
481 }