Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48                                  struct sys_reg_params *params,
49                                  const struct sys_reg_desc *r)
50 {
51         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52         print_sys_reg_instr(params);
53         kvm_inject_undefined(vcpu);
54         return false;
55 }
56
57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58                                struct sys_reg_params *params,
59                                const struct sys_reg_desc *r)
60 {
61         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62         print_sys_reg_instr(params);
63         kvm_inject_undefined(vcpu);
64         return false;
65 }
66
67 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
68 {
69         u64 val = 0x8badf00d8badf00d;
70
71         if (vcpu->arch.sysregs_loaded_on_cpu &&
72             __vcpu_read_sys_reg_from_cpu(reg, &val))
73                 return val;
74
75         return __vcpu_sys_reg(vcpu, reg);
76 }
77
78 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
79 {
80         if (vcpu->arch.sysregs_loaded_on_cpu &&
81             __vcpu_write_sys_reg_to_cpu(val, reg))
82                 return;
83
84          __vcpu_sys_reg(vcpu, reg) = val;
85 }
86
87 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
88 static u32 cache_levels;
89
90 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
91 #define CSSELR_MAX 14
92
93 /* Which cache CCSIDR represents depends on CSSELR value. */
94 static u32 get_ccsidr(u32 csselr)
95 {
96         u32 ccsidr;
97
98         /* Make sure noone else changes CSSELR during this! */
99         local_irq_disable();
100         write_sysreg(csselr, csselr_el1);
101         isb();
102         ccsidr = read_sysreg(ccsidr_el1);
103         local_irq_enable();
104
105         return ccsidr;
106 }
107
108 /*
109  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
110  */
111 static bool access_dcsw(struct kvm_vcpu *vcpu,
112                         struct sys_reg_params *p,
113                         const struct sys_reg_desc *r)
114 {
115         if (!p->is_write)
116                 return read_from_write_only(vcpu, p, r);
117
118         /*
119          * Only track S/W ops if we don't have FWB. It still indicates
120          * that the guest is a bit broken (S/W operations should only
121          * be done by firmware, knowing that there is only a single
122          * CPU left in the system, and certainly not from non-secure
123          * software).
124          */
125         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
126                 kvm_set_way_flush(vcpu);
127
128         return true;
129 }
130
131 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
132 {
133         switch (r->aarch32_map) {
134         case AA32_LO:
135                 *mask = GENMASK_ULL(31, 0);
136                 *shift = 0;
137                 break;
138         case AA32_HI:
139                 *mask = GENMASK_ULL(63, 32);
140                 *shift = 32;
141                 break;
142         default:
143                 *mask = GENMASK_ULL(63, 0);
144                 *shift = 0;
145                 break;
146         }
147 }
148
149 /*
150  * Generic accessor for VM registers. Only called as long as HCR_TVM
151  * is set. If the guest enables the MMU, we stop trapping the VM
152  * sys_regs and leave it in complete control of the caches.
153  */
154 static bool access_vm_reg(struct kvm_vcpu *vcpu,
155                           struct sys_reg_params *p,
156                           const struct sys_reg_desc *r)
157 {
158         bool was_enabled = vcpu_has_cache_enabled(vcpu);
159         u64 val, mask, shift;
160
161         BUG_ON(!p->is_write);
162
163         get_access_mask(r, &mask, &shift);
164
165         if (~mask) {
166                 val = vcpu_read_sys_reg(vcpu, r->reg);
167                 val &= ~mask;
168         } else {
169                 val = 0;
170         }
171
172         val |= (p->regval & (mask >> shift)) << shift;
173         vcpu_write_sys_reg(vcpu, val, r->reg);
174
175         kvm_toggle_cache(vcpu, was_enabled);
176         return true;
177 }
178
179 static bool access_actlr(struct kvm_vcpu *vcpu,
180                          struct sys_reg_params *p,
181                          const struct sys_reg_desc *r)
182 {
183         u64 mask, shift;
184
185         if (p->is_write)
186                 return ignore_write(vcpu, p);
187
188         get_access_mask(r, &mask, &shift);
189         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
190
191         return true;
192 }
193
194 /*
195  * Trap handler for the GICv3 SGI generation system register.
196  * Forward the request to the VGIC emulation.
197  * The cp15_64 code makes sure this automatically works
198  * for both AArch64 and AArch32 accesses.
199  */
200 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
201                            struct sys_reg_params *p,
202                            const struct sys_reg_desc *r)
203 {
204         bool g1;
205
206         if (!p->is_write)
207                 return read_from_write_only(vcpu, p, r);
208
209         /*
210          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
211          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
212          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
213          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
214          * group.
215          */
216         if (p->Op0 == 0) {              /* AArch32 */
217                 switch (p->Op1) {
218                 default:                /* Keep GCC quiet */
219                 case 0:                 /* ICC_SGI1R */
220                         g1 = true;
221                         break;
222                 case 1:                 /* ICC_ASGI1R */
223                 case 2:                 /* ICC_SGI0R */
224                         g1 = false;
225                         break;
226                 }
227         } else {                        /* AArch64 */
228                 switch (p->Op2) {
229                 default:                /* Keep GCC quiet */
230                 case 5:                 /* ICC_SGI1R_EL1 */
231                         g1 = true;
232                         break;
233                 case 6:                 /* ICC_ASGI1R_EL1 */
234                 case 7:                 /* ICC_SGI0R_EL1 */
235                         g1 = false;
236                         break;
237                 }
238         }
239
240         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
241
242         return true;
243 }
244
245 static bool access_gic_sre(struct kvm_vcpu *vcpu,
246                            struct sys_reg_params *p,
247                            const struct sys_reg_desc *r)
248 {
249         if (p->is_write)
250                 return ignore_write(vcpu, p);
251
252         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
253         return true;
254 }
255
256 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
257                         struct sys_reg_params *p,
258                         const struct sys_reg_desc *r)
259 {
260         if (p->is_write)
261                 return ignore_write(vcpu, p);
262         else
263                 return read_zero(vcpu, p);
264 }
265
266 /*
267  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
268  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
269  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
270  * treat it separately.
271  */
272 static bool trap_loregion(struct kvm_vcpu *vcpu,
273                           struct sys_reg_params *p,
274                           const struct sys_reg_desc *r)
275 {
276         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
277         u32 sr = reg_to_encoding(r);
278
279         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
280                 kvm_inject_undefined(vcpu);
281                 return false;
282         }
283
284         if (p->is_write && sr == SYS_LORID_EL1)
285                 return write_to_read_only(vcpu, p, r);
286
287         return trap_raz_wi(vcpu, p, r);
288 }
289
290 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
291                            struct sys_reg_params *p,
292                            const struct sys_reg_desc *r)
293 {
294         if (p->is_write) {
295                 return ignore_write(vcpu, p);
296         } else {
297                 p->regval = (1 << 3);
298                 return true;
299         }
300 }
301
302 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
303                                    struct sys_reg_params *p,
304                                    const struct sys_reg_desc *r)
305 {
306         if (p->is_write) {
307                 return ignore_write(vcpu, p);
308         } else {
309                 p->regval = read_sysreg(dbgauthstatus_el1);
310                 return true;
311         }
312 }
313
314 /*
315  * We want to avoid world-switching all the DBG registers all the
316  * time:
317  *
318  * - If we've touched any debug register, it is likely that we're
319  *   going to touch more of them. It then makes sense to disable the
320  *   traps and start doing the save/restore dance
321  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
322  *   then mandatory to save/restore the registers, as the guest
323  *   depends on them.
324  *
325  * For this, we use a DIRTY bit, indicating the guest has modified the
326  * debug registers, used as follow:
327  *
328  * On guest entry:
329  * - If the dirty bit is set (because we're coming back from trapping),
330  *   disable the traps, save host registers, restore guest registers.
331  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
332  *   set the dirty bit, disable the traps, save host registers,
333  *   restore guest registers.
334  * - Otherwise, enable the traps
335  *
336  * On guest exit:
337  * - If the dirty bit is set, save guest registers, restore host
338  *   registers and clear the dirty bit. This ensure that the host can
339  *   now use the debug registers.
340  */
341 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
342                             struct sys_reg_params *p,
343                             const struct sys_reg_desc *r)
344 {
345         if (p->is_write) {
346                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
347                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
348         } else {
349                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
350         }
351
352         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
353
354         return true;
355 }
356
357 /*
358  * reg_to_dbg/dbg_to_reg
359  *
360  * A 32 bit write to a debug register leave top bits alone
361  * A 32 bit read from a debug register only returns the bottom bits
362  *
363  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
364  * hyp.S code switches between host and guest values in future.
365  */
366 static void reg_to_dbg(struct kvm_vcpu *vcpu,
367                        struct sys_reg_params *p,
368                        const struct sys_reg_desc *rd,
369                        u64 *dbg_reg)
370 {
371         u64 mask, shift, val;
372
373         get_access_mask(rd, &mask, &shift);
374
375         val = *dbg_reg;
376         val &= ~mask;
377         val |= (p->regval & (mask >> shift)) << shift;
378         *dbg_reg = val;
379
380         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
381 }
382
383 static void dbg_to_reg(struct kvm_vcpu *vcpu,
384                        struct sys_reg_params *p,
385                        const struct sys_reg_desc *rd,
386                        u64 *dbg_reg)
387 {
388         u64 mask, shift;
389
390         get_access_mask(rd, &mask, &shift);
391         p->regval = (*dbg_reg & mask) >> shift;
392 }
393
394 static bool trap_bvr(struct kvm_vcpu *vcpu,
395                      struct sys_reg_params *p,
396                      const struct sys_reg_desc *rd)
397 {
398         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
399
400         if (p->is_write)
401                 reg_to_dbg(vcpu, p, rd, dbg_reg);
402         else
403                 dbg_to_reg(vcpu, p, rd, dbg_reg);
404
405         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
406
407         return true;
408 }
409
410 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411                 const struct kvm_one_reg *reg, void __user *uaddr)
412 {
413         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
414
415         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
416                 return -EFAULT;
417         return 0;
418 }
419
420 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
421         const struct kvm_one_reg *reg, void __user *uaddr)
422 {
423         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
424
425         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
426                 return -EFAULT;
427         return 0;
428 }
429
430 static void reset_bvr(struct kvm_vcpu *vcpu,
431                       const struct sys_reg_desc *rd)
432 {
433         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
434 }
435
436 static bool trap_bcr(struct kvm_vcpu *vcpu,
437                      struct sys_reg_params *p,
438                      const struct sys_reg_desc *rd)
439 {
440         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
441
442         if (p->is_write)
443                 reg_to_dbg(vcpu, p, rd, dbg_reg);
444         else
445                 dbg_to_reg(vcpu, p, rd, dbg_reg);
446
447         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
448
449         return true;
450 }
451
452 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
453                 const struct kvm_one_reg *reg, void __user *uaddr)
454 {
455         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
456
457         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
458                 return -EFAULT;
459
460         return 0;
461 }
462
463 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464         const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
467
468         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469                 return -EFAULT;
470         return 0;
471 }
472
473 static void reset_bcr(struct kvm_vcpu *vcpu,
474                       const struct sys_reg_desc *rd)
475 {
476         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
477 }
478
479 static bool trap_wvr(struct kvm_vcpu *vcpu,
480                      struct sys_reg_params *p,
481                      const struct sys_reg_desc *rd)
482 {
483         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
484
485         if (p->is_write)
486                 reg_to_dbg(vcpu, p, rd, dbg_reg);
487         else
488                 dbg_to_reg(vcpu, p, rd, dbg_reg);
489
490         trace_trap_reg(__func__, rd->CRm, p->is_write,
491                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
492
493         return true;
494 }
495
496 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
497                 const struct kvm_one_reg *reg, void __user *uaddr)
498 {
499         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
500
501         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
502                 return -EFAULT;
503         return 0;
504 }
505
506 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507         const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
510
511         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512                 return -EFAULT;
513         return 0;
514 }
515
516 static void reset_wvr(struct kvm_vcpu *vcpu,
517                       const struct sys_reg_desc *rd)
518 {
519         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
520 }
521
522 static bool trap_wcr(struct kvm_vcpu *vcpu,
523                      struct sys_reg_params *p,
524                      const struct sys_reg_desc *rd)
525 {
526         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
527
528         if (p->is_write)
529                 reg_to_dbg(vcpu, p, rd, dbg_reg);
530         else
531                 dbg_to_reg(vcpu, p, rd, dbg_reg);
532
533         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
534
535         return true;
536 }
537
538 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
539                 const struct kvm_one_reg *reg, void __user *uaddr)
540 {
541         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
542
543         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
544                 return -EFAULT;
545         return 0;
546 }
547
548 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
549         const struct kvm_one_reg *reg, void __user *uaddr)
550 {
551         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
552
553         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
554                 return -EFAULT;
555         return 0;
556 }
557
558 static void reset_wcr(struct kvm_vcpu *vcpu,
559                       const struct sys_reg_desc *rd)
560 {
561         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
562 }
563
564 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
565 {
566         u64 amair = read_sysreg(amair_el1);
567         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
568 }
569
570 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
571 {
572         u64 actlr = read_sysreg(actlr_el1);
573         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
574 }
575
576 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
577 {
578         u64 mpidr;
579
580         /*
581          * Map the vcpu_id into the first three affinity level fields of
582          * the MPIDR. We limit the number of VCPUs in level 0 due to a
583          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
584          * of the GICv3 to be able to address each CPU directly when
585          * sending IPIs.
586          */
587         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
588         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
589         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
590         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
591 }
592
593 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
594                                    const struct sys_reg_desc *r)
595 {
596         if (kvm_vcpu_has_pmu(vcpu))
597                 return 0;
598
599         return REG_HIDDEN;
600 }
601
602 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
603 {
604         u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
605
606         /* No PMU available, any PMU reg may UNDEF... */
607         if (!kvm_arm_support_pmu_v3())
608                 return;
609
610         n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
611         n &= ARMV8_PMU_PMCR_N_MASK;
612         if (n)
613                 mask |= GENMASK(n - 1, 0);
614
615         reset_unknown(vcpu, r);
616         __vcpu_sys_reg(vcpu, r->reg) &= mask;
617 }
618
619 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
620 {
621         reset_unknown(vcpu, r);
622         __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
623 }
624
625 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
626 {
627         reset_unknown(vcpu, r);
628         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
629 }
630
631 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
632 {
633         reset_unknown(vcpu, r);
634         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
635 }
636
637 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
638 {
639         u64 pmcr, val;
640
641         /* No PMU available, PMCR_EL0 may UNDEF... */
642         if (!kvm_arm_support_pmu_v3())
643                 return;
644
645         pmcr = read_sysreg(pmcr_el0);
646         /*
647          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
648          * except PMCR.E resetting to zero.
649          */
650         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
651                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
652         if (!system_supports_32bit_el0())
653                 val |= ARMV8_PMU_PMCR_LC;
654         __vcpu_sys_reg(vcpu, r->reg) = val;
655 }
656
657 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
658 {
659         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
660         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
661
662         if (!enabled)
663                 kvm_inject_undefined(vcpu);
664
665         return !enabled;
666 }
667
668 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
669 {
670         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
671 }
672
673 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
674 {
675         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
676 }
677
678 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
679 {
680         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
681 }
682
683 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
684 {
685         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
686 }
687
688 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
689                         const struct sys_reg_desc *r)
690 {
691         u64 val;
692
693         if (pmu_access_el0_disabled(vcpu))
694                 return false;
695
696         if (p->is_write) {
697                 /* Only update writeable bits of PMCR */
698                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
699                 val &= ~ARMV8_PMU_PMCR_MASK;
700                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
701                 if (!system_supports_32bit_el0())
702                         val |= ARMV8_PMU_PMCR_LC;
703                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
704                 kvm_pmu_handle_pmcr(vcpu, val);
705                 kvm_vcpu_pmu_restore_guest(vcpu);
706         } else {
707                 /* PMCR.P & PMCR.C are RAZ */
708                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
709                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
710                 p->regval = val;
711         }
712
713         return true;
714 }
715
716 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
717                           const struct sys_reg_desc *r)
718 {
719         if (pmu_access_event_counter_el0_disabled(vcpu))
720                 return false;
721
722         if (p->is_write)
723                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
724         else
725                 /* return PMSELR.SEL field */
726                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
727                             & ARMV8_PMU_COUNTER_MASK;
728
729         return true;
730 }
731
732 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
733                           const struct sys_reg_desc *r)
734 {
735         u64 pmceid, mask, shift;
736
737         BUG_ON(p->is_write);
738
739         if (pmu_access_el0_disabled(vcpu))
740                 return false;
741
742         get_access_mask(r, &mask, &shift);
743
744         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
745         pmceid &= mask;
746         pmceid >>= shift;
747
748         p->regval = pmceid;
749
750         return true;
751 }
752
753 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
754 {
755         u64 pmcr, val;
756
757         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
758         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
759         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
760                 kvm_inject_undefined(vcpu);
761                 return false;
762         }
763
764         return true;
765 }
766
767 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
768                               struct sys_reg_params *p,
769                               const struct sys_reg_desc *r)
770 {
771         u64 idx = ~0UL;
772
773         if (r->CRn == 9 && r->CRm == 13) {
774                 if (r->Op2 == 2) {
775                         /* PMXEVCNTR_EL0 */
776                         if (pmu_access_event_counter_el0_disabled(vcpu))
777                                 return false;
778
779                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
780                               & ARMV8_PMU_COUNTER_MASK;
781                 } else if (r->Op2 == 0) {
782                         /* PMCCNTR_EL0 */
783                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
784                                 return false;
785
786                         idx = ARMV8_PMU_CYCLE_IDX;
787                 }
788         } else if (r->CRn == 0 && r->CRm == 9) {
789                 /* PMCCNTR */
790                 if (pmu_access_event_counter_el0_disabled(vcpu))
791                         return false;
792
793                 idx = ARMV8_PMU_CYCLE_IDX;
794         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
795                 /* PMEVCNTRn_EL0 */
796                 if (pmu_access_event_counter_el0_disabled(vcpu))
797                         return false;
798
799                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
800         }
801
802         /* Catch any decoding mistake */
803         WARN_ON(idx == ~0UL);
804
805         if (!pmu_counter_idx_valid(vcpu, idx))
806                 return false;
807
808         if (p->is_write) {
809                 if (pmu_access_el0_disabled(vcpu))
810                         return false;
811
812                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
813         } else {
814                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
815         }
816
817         return true;
818 }
819
820 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
821                                const struct sys_reg_desc *r)
822 {
823         u64 idx, reg;
824
825         if (pmu_access_el0_disabled(vcpu))
826                 return false;
827
828         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
829                 /* PMXEVTYPER_EL0 */
830                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
831                 reg = PMEVTYPER0_EL0 + idx;
832         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
833                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
834                 if (idx == ARMV8_PMU_CYCLE_IDX)
835                         reg = PMCCFILTR_EL0;
836                 else
837                         /* PMEVTYPERn_EL0 */
838                         reg = PMEVTYPER0_EL0 + idx;
839         } else {
840                 BUG();
841         }
842
843         if (!pmu_counter_idx_valid(vcpu, idx))
844                 return false;
845
846         if (p->is_write) {
847                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
848                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
849                 kvm_vcpu_pmu_restore_guest(vcpu);
850         } else {
851                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
852         }
853
854         return true;
855 }
856
857 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
858                            const struct sys_reg_desc *r)
859 {
860         u64 val, mask;
861
862         if (pmu_access_el0_disabled(vcpu))
863                 return false;
864
865         mask = kvm_pmu_valid_counter_mask(vcpu);
866         if (p->is_write) {
867                 val = p->regval & mask;
868                 if (r->Op2 & 0x1) {
869                         /* accessing PMCNTENSET_EL0 */
870                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
871                         kvm_pmu_enable_counter_mask(vcpu, val);
872                         kvm_vcpu_pmu_restore_guest(vcpu);
873                 } else {
874                         /* accessing PMCNTENCLR_EL0 */
875                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
876                         kvm_pmu_disable_counter_mask(vcpu, val);
877                 }
878         } else {
879                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
880         }
881
882         return true;
883 }
884
885 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
886                            const struct sys_reg_desc *r)
887 {
888         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
889
890         if (check_pmu_access_disabled(vcpu, 0))
891                 return false;
892
893         if (p->is_write) {
894                 u64 val = p->regval & mask;
895
896                 if (r->Op2 & 0x1)
897                         /* accessing PMINTENSET_EL1 */
898                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
899                 else
900                         /* accessing PMINTENCLR_EL1 */
901                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
902         } else {
903                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
904         }
905
906         return true;
907 }
908
909 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
910                          const struct sys_reg_desc *r)
911 {
912         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
913
914         if (pmu_access_el0_disabled(vcpu))
915                 return false;
916
917         if (p->is_write) {
918                 if (r->CRm & 0x2)
919                         /* accessing PMOVSSET_EL0 */
920                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
921                 else
922                         /* accessing PMOVSCLR_EL0 */
923                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
924         } else {
925                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
926         }
927
928         return true;
929 }
930
931 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
932                            const struct sys_reg_desc *r)
933 {
934         u64 mask;
935
936         if (!p->is_write)
937                 return read_from_write_only(vcpu, p, r);
938
939         if (pmu_write_swinc_el0_disabled(vcpu))
940                 return false;
941
942         mask = kvm_pmu_valid_counter_mask(vcpu);
943         kvm_pmu_software_increment(vcpu, p->regval & mask);
944         return true;
945 }
946
947 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
948                              const struct sys_reg_desc *r)
949 {
950         if (p->is_write) {
951                 if (!vcpu_mode_priv(vcpu)) {
952                         kvm_inject_undefined(vcpu);
953                         return false;
954                 }
955
956                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
957                                p->regval & ARMV8_PMU_USERENR_MASK;
958         } else {
959                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
960                             & ARMV8_PMU_USERENR_MASK;
961         }
962
963         return true;
964 }
965
966 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
967 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
968         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
969           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
970         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
971           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
972         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
973           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
974         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
975           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
976
977 #define PMU_SYS_REG(r)                                          \
978         SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
979
980 /* Macro to expand the PMEVCNTRn_EL0 register */
981 #define PMU_PMEVCNTR_EL0(n)                                             \
982         { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
983           .reset = reset_pmevcntr,                                      \
984           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
985
986 /* Macro to expand the PMEVTYPERn_EL0 register */
987 #define PMU_PMEVTYPER_EL0(n)                                            \
988         { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
989           .reset = reset_pmevtyper,                                     \
990           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
991
992 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
993                          const struct sys_reg_desc *r)
994 {
995         kvm_inject_undefined(vcpu);
996
997         return false;
998 }
999
1000 /* Macro to expand the AMU counter and type registers*/
1001 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1002 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1003 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1004 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1005
1006 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1007                         const struct sys_reg_desc *rd)
1008 {
1009         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1010 }
1011
1012 /*
1013  * If we land here on a PtrAuth access, that is because we didn't
1014  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1015  * way this happens is when the guest does not have PtrAuth support
1016  * enabled.
1017  */
1018 #define __PTRAUTH_KEY(k)                                                \
1019         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1020         .visibility = ptrauth_visibility}
1021
1022 #define PTRAUTH_KEY(k)                                                  \
1023         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1024         __PTRAUTH_KEY(k ## KEYHI_EL1)
1025
1026 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1027                               struct sys_reg_params *p,
1028                               const struct sys_reg_desc *r)
1029 {
1030         enum kvm_arch_timers tmr;
1031         enum kvm_arch_timer_regs treg;
1032         u64 reg = reg_to_encoding(r);
1033
1034         switch (reg) {
1035         case SYS_CNTP_TVAL_EL0:
1036         case SYS_AARCH32_CNTP_TVAL:
1037                 tmr = TIMER_PTIMER;
1038                 treg = TIMER_REG_TVAL;
1039                 break;
1040         case SYS_CNTP_CTL_EL0:
1041         case SYS_AARCH32_CNTP_CTL:
1042                 tmr = TIMER_PTIMER;
1043                 treg = TIMER_REG_CTL;
1044                 break;
1045         case SYS_CNTP_CVAL_EL0:
1046         case SYS_AARCH32_CNTP_CVAL:
1047                 tmr = TIMER_PTIMER;
1048                 treg = TIMER_REG_CVAL;
1049                 break;
1050         default:
1051                 BUG();
1052         }
1053
1054         if (p->is_write)
1055                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1056         else
1057                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1058
1059         return true;
1060 }
1061
1062 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1063 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1064                 struct sys_reg_desc const *r, bool raz)
1065 {
1066         u32 id = reg_to_encoding(r);
1067         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1068
1069         switch (id) {
1070         case SYS_ID_AA64PFR0_EL1:
1071                 if (!vcpu_has_sve(vcpu))
1072                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1073                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1074                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1075                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1076                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1077                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1078                 break;
1079         case SYS_ID_AA64PFR1_EL1:
1080                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
1081                 if (kvm_has_mte(vcpu->kvm)) {
1082                         u64 pfr, mte;
1083
1084                         pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1085                         mte = cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR1_MTE_SHIFT);
1086                         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR1_MTE), mte);
1087                 }
1088                 break;
1089         case SYS_ID_AA64ISAR1_EL1:
1090                 if (!vcpu_has_ptrauth(vcpu))
1091                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) |
1092                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_API) |
1093                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) |
1094                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI));
1095                 break;
1096         case SYS_ID_AA64DFR0_EL1:
1097                 /* Limit debug to ARMv8.0 */
1098                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1099                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
1100                 /* Limit guests to PMUv3 for ARMv8.4 */
1101                 val = cpuid_feature_cap_perfmon_field(val,
1102                                                       ID_AA64DFR0_PMUVER_SHIFT,
1103                                                       kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1104                 /* Hide SPE from guests */
1105                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
1106                 break;
1107         case SYS_ID_DFR0_EL1:
1108                 /* Limit guests to PMUv3 for ARMv8.4 */
1109                 val = cpuid_feature_cap_perfmon_field(val,
1110                                                       ID_DFR0_PERFMON_SHIFT,
1111                                                       kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1112                 break;
1113         }
1114
1115         return val;
1116 }
1117
1118 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1119                                   const struct sys_reg_desc *r)
1120 {
1121         u32 id = reg_to_encoding(r);
1122
1123         switch (id) {
1124         case SYS_ID_AA64ZFR0_EL1:
1125                 if (!vcpu_has_sve(vcpu))
1126                         return REG_RAZ;
1127                 break;
1128         }
1129
1130         return 0;
1131 }
1132
1133 /* cpufeature ID register access trap handlers */
1134
1135 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1136                             struct sys_reg_params *p,
1137                             const struct sys_reg_desc *r,
1138                             bool raz)
1139 {
1140         if (p->is_write)
1141                 return write_to_read_only(vcpu, p, r);
1142
1143         p->regval = read_id_reg(vcpu, r, raz);
1144         return true;
1145 }
1146
1147 static bool access_id_reg(struct kvm_vcpu *vcpu,
1148                           struct sys_reg_params *p,
1149                           const struct sys_reg_desc *r)
1150 {
1151         bool raz = sysreg_visible_as_raz(vcpu, r);
1152
1153         return __access_id_reg(vcpu, p, r, raz);
1154 }
1155
1156 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1157                               struct sys_reg_params *p,
1158                               const struct sys_reg_desc *r)
1159 {
1160         return __access_id_reg(vcpu, p, r, true);
1161 }
1162
1163 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1164 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1165 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1166
1167 /* Visibility overrides for SVE-specific control registers */
1168 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1169                                    const struct sys_reg_desc *rd)
1170 {
1171         if (vcpu_has_sve(vcpu))
1172                 return 0;
1173
1174         return REG_HIDDEN;
1175 }
1176
1177 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1178                                const struct sys_reg_desc *rd,
1179                                const struct kvm_one_reg *reg, void __user *uaddr)
1180 {
1181         const u64 id = sys_reg_to_index(rd);
1182         u8 csv2, csv3;
1183         int err;
1184         u64 val;
1185
1186         err = reg_from_user(&val, uaddr, id);
1187         if (err)
1188                 return err;
1189
1190         /*
1191          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1192          * it doesn't promise more than what is actually provided (the
1193          * guest could otherwise be covered in ectoplasmic residue).
1194          */
1195         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1196         if (csv2 > 1 ||
1197             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1198                 return -EINVAL;
1199
1200         /* Same thing for CSV3 */
1201         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1202         if (csv3 > 1 ||
1203             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1204                 return -EINVAL;
1205
1206         /* We can only differ with CSV[23], and anything else is an error */
1207         val ^= read_id_reg(vcpu, rd, false);
1208         val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1209                  (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1210         if (val)
1211                 return -EINVAL;
1212
1213         vcpu->kvm->arch.pfr0_csv2 = csv2;
1214         vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1215
1216         return 0;
1217 }
1218
1219 /*
1220  * cpufeature ID register user accessors
1221  *
1222  * For now, these registers are immutable for userspace, so no values
1223  * are stored, and for set_id_reg() we don't allow the effective value
1224  * to be changed.
1225  */
1226 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1227                         const struct sys_reg_desc *rd, void __user *uaddr,
1228                         bool raz)
1229 {
1230         const u64 id = sys_reg_to_index(rd);
1231         const u64 val = read_id_reg(vcpu, rd, raz);
1232
1233         return reg_to_user(uaddr, &val, id);
1234 }
1235
1236 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1237                         const struct sys_reg_desc *rd, void __user *uaddr,
1238                         bool raz)
1239 {
1240         const u64 id = sys_reg_to_index(rd);
1241         int err;
1242         u64 val;
1243
1244         err = reg_from_user(&val, uaddr, id);
1245         if (err)
1246                 return err;
1247
1248         /* This is what we mean by invariant: you can't change it. */
1249         if (val != read_id_reg(vcpu, rd, raz))
1250                 return -EINVAL;
1251
1252         return 0;
1253 }
1254
1255 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1256                       const struct kvm_one_reg *reg, void __user *uaddr)
1257 {
1258         bool raz = sysreg_visible_as_raz(vcpu, rd);
1259
1260         return __get_id_reg(vcpu, rd, uaddr, raz);
1261 }
1262
1263 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1264                       const struct kvm_one_reg *reg, void __user *uaddr)
1265 {
1266         bool raz = sysreg_visible_as_raz(vcpu, rd);
1267
1268         return __set_id_reg(vcpu, rd, uaddr, raz);
1269 }
1270
1271 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1272                           const struct kvm_one_reg *reg, void __user *uaddr)
1273 {
1274         return __get_id_reg(vcpu, rd, uaddr, true);
1275 }
1276
1277 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1278                           const struct kvm_one_reg *reg, void __user *uaddr)
1279 {
1280         return __set_id_reg(vcpu, rd, uaddr, true);
1281 }
1282
1283 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1284                       const struct kvm_one_reg *reg, void __user *uaddr)
1285 {
1286         int err;
1287         u64 val;
1288
1289         /* Perform the access even if we are going to ignore the value */
1290         err = reg_from_user(&val, uaddr, sys_reg_to_index(rd));
1291         if (err)
1292                 return err;
1293
1294         return 0;
1295 }
1296
1297 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1298                        const struct sys_reg_desc *r)
1299 {
1300         if (p->is_write)
1301                 return write_to_read_only(vcpu, p, r);
1302
1303         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1304         return true;
1305 }
1306
1307 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1308                          const struct sys_reg_desc *r)
1309 {
1310         if (p->is_write)
1311                 return write_to_read_only(vcpu, p, r);
1312
1313         p->regval = read_sysreg(clidr_el1);
1314         return true;
1315 }
1316
1317 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1318                           const struct sys_reg_desc *r)
1319 {
1320         int reg = r->reg;
1321
1322         if (p->is_write)
1323                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1324         else
1325                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1326         return true;
1327 }
1328
1329 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1330                           const struct sys_reg_desc *r)
1331 {
1332         u32 csselr;
1333
1334         if (p->is_write)
1335                 return write_to_read_only(vcpu, p, r);
1336
1337         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1338         p->regval = get_ccsidr(csselr);
1339
1340         /*
1341          * Guests should not be doing cache operations by set/way at all, and
1342          * for this reason, we trap them and attempt to infer the intent, so
1343          * that we can flush the entire guest's address space at the appropriate
1344          * time.
1345          * To prevent this trapping from causing performance problems, let's
1346          * expose the geometry of all data and unified caches (which are
1347          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1348          * [If guests should attempt to infer aliasing properties from the
1349          * geometry (which is not permitted by the architecture), they would
1350          * only do so for virtually indexed caches.]
1351          */
1352         if (!(csselr & 1)) // data or unified cache
1353                 p->regval &= ~GENMASK(27, 3);
1354         return true;
1355 }
1356
1357 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1358                                    const struct sys_reg_desc *rd)
1359 {
1360         if (kvm_has_mte(vcpu->kvm))
1361                 return 0;
1362
1363         return REG_HIDDEN;
1364 }
1365
1366 #define MTE_REG(name) {                         \
1367         SYS_DESC(SYS_##name),                   \
1368         .access = undef_access,                 \
1369         .reset = reset_unknown,                 \
1370         .reg = name,                            \
1371         .visibility = mte_visibility,           \
1372 }
1373
1374 /* sys_reg_desc initialiser for known cpufeature ID registers */
1375 #define ID_SANITISED(name) {                    \
1376         SYS_DESC(SYS_##name),                   \
1377         .access = access_id_reg,                \
1378         .get_user = get_id_reg,                 \
1379         .set_user = set_id_reg,                 \
1380         .visibility = id_visibility,            \
1381 }
1382
1383 /*
1384  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1385  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1386  * (1 <= crm < 8, 0 <= Op2 < 8).
1387  */
1388 #define ID_UNALLOCATED(crm, op2) {                      \
1389         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1390         .access = access_raz_id_reg,                    \
1391         .get_user = get_raz_id_reg,                     \
1392         .set_user = set_raz_id_reg,                     \
1393 }
1394
1395 /*
1396  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1397  * For now, these are exposed just like unallocated ID regs: they appear
1398  * RAZ for the guest.
1399  */
1400 #define ID_HIDDEN(name) {                       \
1401         SYS_DESC(SYS_##name),                   \
1402         .access = access_raz_id_reg,            \
1403         .get_user = get_raz_id_reg,             \
1404         .set_user = set_raz_id_reg,             \
1405 }
1406
1407 /*
1408  * Architected system registers.
1409  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1410  *
1411  * Debug handling: We do trap most, if not all debug related system
1412  * registers. The implementation is good enough to ensure that a guest
1413  * can use these with minimal performance degradation. The drawback is
1414  * that we don't implement any of the external debug, none of the
1415  * OSlock protocol. This should be revisited if we ever encounter a
1416  * more demanding guest...
1417  */
1418 static const struct sys_reg_desc sys_reg_descs[] = {
1419         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1420         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1421         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1422
1423         DBG_BCR_BVR_WCR_WVR_EL1(0),
1424         DBG_BCR_BVR_WCR_WVR_EL1(1),
1425         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1426         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1427         DBG_BCR_BVR_WCR_WVR_EL1(2),
1428         DBG_BCR_BVR_WCR_WVR_EL1(3),
1429         DBG_BCR_BVR_WCR_WVR_EL1(4),
1430         DBG_BCR_BVR_WCR_WVR_EL1(5),
1431         DBG_BCR_BVR_WCR_WVR_EL1(6),
1432         DBG_BCR_BVR_WCR_WVR_EL1(7),
1433         DBG_BCR_BVR_WCR_WVR_EL1(8),
1434         DBG_BCR_BVR_WCR_WVR_EL1(9),
1435         DBG_BCR_BVR_WCR_WVR_EL1(10),
1436         DBG_BCR_BVR_WCR_WVR_EL1(11),
1437         DBG_BCR_BVR_WCR_WVR_EL1(12),
1438         DBG_BCR_BVR_WCR_WVR_EL1(13),
1439         DBG_BCR_BVR_WCR_WVR_EL1(14),
1440         DBG_BCR_BVR_WCR_WVR_EL1(15),
1441
1442         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1443         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1444         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1445         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1446         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1447         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1448         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1449         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1450
1451         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1452         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1453         // DBGDTR[TR]X_EL0 share the same encoding
1454         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1455
1456         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1457
1458         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1459
1460         /*
1461          * ID regs: all ID_SANITISED() entries here must have corresponding
1462          * entries in arm64_ftr_regs[].
1463          */
1464
1465         /* AArch64 mappings of the AArch32 ID registers */
1466         /* CRm=1 */
1467         ID_SANITISED(ID_PFR0_EL1),
1468         ID_SANITISED(ID_PFR1_EL1),
1469         ID_SANITISED(ID_DFR0_EL1),
1470         ID_HIDDEN(ID_AFR0_EL1),
1471         ID_SANITISED(ID_MMFR0_EL1),
1472         ID_SANITISED(ID_MMFR1_EL1),
1473         ID_SANITISED(ID_MMFR2_EL1),
1474         ID_SANITISED(ID_MMFR3_EL1),
1475
1476         /* CRm=2 */
1477         ID_SANITISED(ID_ISAR0_EL1),
1478         ID_SANITISED(ID_ISAR1_EL1),
1479         ID_SANITISED(ID_ISAR2_EL1),
1480         ID_SANITISED(ID_ISAR3_EL1),
1481         ID_SANITISED(ID_ISAR4_EL1),
1482         ID_SANITISED(ID_ISAR5_EL1),
1483         ID_SANITISED(ID_MMFR4_EL1),
1484         ID_SANITISED(ID_ISAR6_EL1),
1485
1486         /* CRm=3 */
1487         ID_SANITISED(MVFR0_EL1),
1488         ID_SANITISED(MVFR1_EL1),
1489         ID_SANITISED(MVFR2_EL1),
1490         ID_UNALLOCATED(3,3),
1491         ID_SANITISED(ID_PFR2_EL1),
1492         ID_HIDDEN(ID_DFR1_EL1),
1493         ID_SANITISED(ID_MMFR5_EL1),
1494         ID_UNALLOCATED(3,7),
1495
1496         /* AArch64 ID registers */
1497         /* CRm=4 */
1498         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1499           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1500         ID_SANITISED(ID_AA64PFR1_EL1),
1501         ID_UNALLOCATED(4,2),
1502         ID_UNALLOCATED(4,3),
1503         ID_SANITISED(ID_AA64ZFR0_EL1),
1504         ID_UNALLOCATED(4,5),
1505         ID_UNALLOCATED(4,6),
1506         ID_UNALLOCATED(4,7),
1507
1508         /* CRm=5 */
1509         ID_SANITISED(ID_AA64DFR0_EL1),
1510         ID_SANITISED(ID_AA64DFR1_EL1),
1511         ID_UNALLOCATED(5,2),
1512         ID_UNALLOCATED(5,3),
1513         ID_HIDDEN(ID_AA64AFR0_EL1),
1514         ID_HIDDEN(ID_AA64AFR1_EL1),
1515         ID_UNALLOCATED(5,6),
1516         ID_UNALLOCATED(5,7),
1517
1518         /* CRm=6 */
1519         ID_SANITISED(ID_AA64ISAR0_EL1),
1520         ID_SANITISED(ID_AA64ISAR1_EL1),
1521         ID_UNALLOCATED(6,2),
1522         ID_UNALLOCATED(6,3),
1523         ID_UNALLOCATED(6,4),
1524         ID_UNALLOCATED(6,5),
1525         ID_UNALLOCATED(6,6),
1526         ID_UNALLOCATED(6,7),
1527
1528         /* CRm=7 */
1529         ID_SANITISED(ID_AA64MMFR0_EL1),
1530         ID_SANITISED(ID_AA64MMFR1_EL1),
1531         ID_SANITISED(ID_AA64MMFR2_EL1),
1532         ID_UNALLOCATED(7,3),
1533         ID_UNALLOCATED(7,4),
1534         ID_UNALLOCATED(7,5),
1535         ID_UNALLOCATED(7,6),
1536         ID_UNALLOCATED(7,7),
1537
1538         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1539         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1540         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1541
1542         MTE_REG(RGSR_EL1),
1543         MTE_REG(GCR_EL1),
1544
1545         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1546         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1547         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1548         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1549         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1550
1551         PTRAUTH_KEY(APIA),
1552         PTRAUTH_KEY(APIB),
1553         PTRAUTH_KEY(APDA),
1554         PTRAUTH_KEY(APDB),
1555         PTRAUTH_KEY(APGA),
1556
1557         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1558         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1559         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1560
1561         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1562         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1563         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1564         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1565         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1566         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1567         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1568         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1569
1570         MTE_REG(TFSR_EL1),
1571         MTE_REG(TFSRE0_EL1),
1572
1573         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1574         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1575
1576         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1577         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1578         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1579         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1580         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1581         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1582         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1583         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1584         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1585         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1586         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1587         /* PMBIDR_EL1 is not trapped */
1588
1589         { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1590           .access = access_pminten, .reg = PMINTENSET_EL1 },
1591         { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1592           .access = access_pminten, .reg = PMINTENSET_EL1 },
1593         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1594
1595         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1596         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1597
1598         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1599         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1600         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1601         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1602         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1603
1604         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1605         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1606
1607         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1608         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1609         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1610         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1611         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1612         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1613         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1614         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1615         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1616         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1617         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1618         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1619
1620         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1621         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1622
1623         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1624
1625         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1626
1627         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1628         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1629         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1630         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1631
1632         { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1633           .reset = reset_pmcr, .reg = PMCR_EL0 },
1634         { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1635           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1636         { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1637           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1638         { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1639           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1640         /*
1641          * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1642          * previously (and pointlessly) advertised in the past...
1643          */
1644         { PMU_SYS_REG(SYS_PMSWINC_EL0),
1645           .get_user = get_raz_id_reg, .set_user = set_wi_reg,
1646           .access = access_pmswinc, .reset = NULL },
1647         { PMU_SYS_REG(SYS_PMSELR_EL0),
1648           .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1649         { PMU_SYS_REG(SYS_PMCEID0_EL0),
1650           .access = access_pmceid, .reset = NULL },
1651         { PMU_SYS_REG(SYS_PMCEID1_EL0),
1652           .access = access_pmceid, .reset = NULL },
1653         { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1654           .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1655         { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1656           .access = access_pmu_evtyper, .reset = NULL },
1657         { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1658           .access = access_pmu_evcntr, .reset = NULL },
1659         /*
1660          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1661          * in 32bit mode. Here we choose to reset it as zero for consistency.
1662          */
1663         { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1664           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1665         { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1666           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1667
1668         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1669         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1670
1671         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1672
1673         { SYS_DESC(SYS_AMCR_EL0), undef_access },
1674         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1675         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1676         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1677         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1678         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1679         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1680         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1681         AMU_AMEVCNTR0_EL0(0),
1682         AMU_AMEVCNTR0_EL0(1),
1683         AMU_AMEVCNTR0_EL0(2),
1684         AMU_AMEVCNTR0_EL0(3),
1685         AMU_AMEVCNTR0_EL0(4),
1686         AMU_AMEVCNTR0_EL0(5),
1687         AMU_AMEVCNTR0_EL0(6),
1688         AMU_AMEVCNTR0_EL0(7),
1689         AMU_AMEVCNTR0_EL0(8),
1690         AMU_AMEVCNTR0_EL0(9),
1691         AMU_AMEVCNTR0_EL0(10),
1692         AMU_AMEVCNTR0_EL0(11),
1693         AMU_AMEVCNTR0_EL0(12),
1694         AMU_AMEVCNTR0_EL0(13),
1695         AMU_AMEVCNTR0_EL0(14),
1696         AMU_AMEVCNTR0_EL0(15),
1697         AMU_AMEVTYPER0_EL0(0),
1698         AMU_AMEVTYPER0_EL0(1),
1699         AMU_AMEVTYPER0_EL0(2),
1700         AMU_AMEVTYPER0_EL0(3),
1701         AMU_AMEVTYPER0_EL0(4),
1702         AMU_AMEVTYPER0_EL0(5),
1703         AMU_AMEVTYPER0_EL0(6),
1704         AMU_AMEVTYPER0_EL0(7),
1705         AMU_AMEVTYPER0_EL0(8),
1706         AMU_AMEVTYPER0_EL0(9),
1707         AMU_AMEVTYPER0_EL0(10),
1708         AMU_AMEVTYPER0_EL0(11),
1709         AMU_AMEVTYPER0_EL0(12),
1710         AMU_AMEVTYPER0_EL0(13),
1711         AMU_AMEVTYPER0_EL0(14),
1712         AMU_AMEVTYPER0_EL0(15),
1713         AMU_AMEVCNTR1_EL0(0),
1714         AMU_AMEVCNTR1_EL0(1),
1715         AMU_AMEVCNTR1_EL0(2),
1716         AMU_AMEVCNTR1_EL0(3),
1717         AMU_AMEVCNTR1_EL0(4),
1718         AMU_AMEVCNTR1_EL0(5),
1719         AMU_AMEVCNTR1_EL0(6),
1720         AMU_AMEVCNTR1_EL0(7),
1721         AMU_AMEVCNTR1_EL0(8),
1722         AMU_AMEVCNTR1_EL0(9),
1723         AMU_AMEVCNTR1_EL0(10),
1724         AMU_AMEVCNTR1_EL0(11),
1725         AMU_AMEVCNTR1_EL0(12),
1726         AMU_AMEVCNTR1_EL0(13),
1727         AMU_AMEVCNTR1_EL0(14),
1728         AMU_AMEVCNTR1_EL0(15),
1729         AMU_AMEVTYPER1_EL0(0),
1730         AMU_AMEVTYPER1_EL0(1),
1731         AMU_AMEVTYPER1_EL0(2),
1732         AMU_AMEVTYPER1_EL0(3),
1733         AMU_AMEVTYPER1_EL0(4),
1734         AMU_AMEVTYPER1_EL0(5),
1735         AMU_AMEVTYPER1_EL0(6),
1736         AMU_AMEVTYPER1_EL0(7),
1737         AMU_AMEVTYPER1_EL0(8),
1738         AMU_AMEVTYPER1_EL0(9),
1739         AMU_AMEVTYPER1_EL0(10),
1740         AMU_AMEVTYPER1_EL0(11),
1741         AMU_AMEVTYPER1_EL0(12),
1742         AMU_AMEVTYPER1_EL0(13),
1743         AMU_AMEVTYPER1_EL0(14),
1744         AMU_AMEVTYPER1_EL0(15),
1745
1746         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1747         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1748         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1749
1750         /* PMEVCNTRn_EL0 */
1751         PMU_PMEVCNTR_EL0(0),
1752         PMU_PMEVCNTR_EL0(1),
1753         PMU_PMEVCNTR_EL0(2),
1754         PMU_PMEVCNTR_EL0(3),
1755         PMU_PMEVCNTR_EL0(4),
1756         PMU_PMEVCNTR_EL0(5),
1757         PMU_PMEVCNTR_EL0(6),
1758         PMU_PMEVCNTR_EL0(7),
1759         PMU_PMEVCNTR_EL0(8),
1760         PMU_PMEVCNTR_EL0(9),
1761         PMU_PMEVCNTR_EL0(10),
1762         PMU_PMEVCNTR_EL0(11),
1763         PMU_PMEVCNTR_EL0(12),
1764         PMU_PMEVCNTR_EL0(13),
1765         PMU_PMEVCNTR_EL0(14),
1766         PMU_PMEVCNTR_EL0(15),
1767         PMU_PMEVCNTR_EL0(16),
1768         PMU_PMEVCNTR_EL0(17),
1769         PMU_PMEVCNTR_EL0(18),
1770         PMU_PMEVCNTR_EL0(19),
1771         PMU_PMEVCNTR_EL0(20),
1772         PMU_PMEVCNTR_EL0(21),
1773         PMU_PMEVCNTR_EL0(22),
1774         PMU_PMEVCNTR_EL0(23),
1775         PMU_PMEVCNTR_EL0(24),
1776         PMU_PMEVCNTR_EL0(25),
1777         PMU_PMEVCNTR_EL0(26),
1778         PMU_PMEVCNTR_EL0(27),
1779         PMU_PMEVCNTR_EL0(28),
1780         PMU_PMEVCNTR_EL0(29),
1781         PMU_PMEVCNTR_EL0(30),
1782         /* PMEVTYPERn_EL0 */
1783         PMU_PMEVTYPER_EL0(0),
1784         PMU_PMEVTYPER_EL0(1),
1785         PMU_PMEVTYPER_EL0(2),
1786         PMU_PMEVTYPER_EL0(3),
1787         PMU_PMEVTYPER_EL0(4),
1788         PMU_PMEVTYPER_EL0(5),
1789         PMU_PMEVTYPER_EL0(6),
1790         PMU_PMEVTYPER_EL0(7),
1791         PMU_PMEVTYPER_EL0(8),
1792         PMU_PMEVTYPER_EL0(9),
1793         PMU_PMEVTYPER_EL0(10),
1794         PMU_PMEVTYPER_EL0(11),
1795         PMU_PMEVTYPER_EL0(12),
1796         PMU_PMEVTYPER_EL0(13),
1797         PMU_PMEVTYPER_EL0(14),
1798         PMU_PMEVTYPER_EL0(15),
1799         PMU_PMEVTYPER_EL0(16),
1800         PMU_PMEVTYPER_EL0(17),
1801         PMU_PMEVTYPER_EL0(18),
1802         PMU_PMEVTYPER_EL0(19),
1803         PMU_PMEVTYPER_EL0(20),
1804         PMU_PMEVTYPER_EL0(21),
1805         PMU_PMEVTYPER_EL0(22),
1806         PMU_PMEVTYPER_EL0(23),
1807         PMU_PMEVTYPER_EL0(24),
1808         PMU_PMEVTYPER_EL0(25),
1809         PMU_PMEVTYPER_EL0(26),
1810         PMU_PMEVTYPER_EL0(27),
1811         PMU_PMEVTYPER_EL0(28),
1812         PMU_PMEVTYPER_EL0(29),
1813         PMU_PMEVTYPER_EL0(30),
1814         /*
1815          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1816          * in 32bit mode. Here we choose to reset it as zero for consistency.
1817          */
1818         { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1819           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1820
1821         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1822         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1823         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1824 };
1825
1826 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1827                         struct sys_reg_params *p,
1828                         const struct sys_reg_desc *r)
1829 {
1830         if (p->is_write) {
1831                 return ignore_write(vcpu, p);
1832         } else {
1833                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1834                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1835                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1836
1837                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1838                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1839                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1840                              | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1841                 return true;
1842         }
1843 }
1844
1845 /*
1846  * AArch32 debug register mappings
1847  *
1848  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1849  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1850  *
1851  * None of the other registers share their location, so treat them as
1852  * if they were 64bit.
1853  */
1854 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
1855         /* DBGBVRn */                                                         \
1856         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1857         /* DBGBCRn */                                                         \
1858         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1859         /* DBGWVRn */                                                         \
1860         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1861         /* DBGWCRn */                                                         \
1862         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1863
1864 #define DBGBXVR(n)                                                            \
1865         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1866
1867 /*
1868  * Trapped cp14 registers. We generally ignore most of the external
1869  * debug, on the principle that they don't really make sense to a
1870  * guest. Revisit this one day, would this principle change.
1871  */
1872 static const struct sys_reg_desc cp14_regs[] = {
1873         /* DBGDIDR */
1874         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1875         /* DBGDTRRXext */
1876         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1877
1878         DBG_BCR_BVR_WCR_WVR(0),
1879         /* DBGDSCRint */
1880         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1881         DBG_BCR_BVR_WCR_WVR(1),
1882         /* DBGDCCINT */
1883         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1884         /* DBGDSCRext */
1885         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1886         DBG_BCR_BVR_WCR_WVR(2),
1887         /* DBGDTR[RT]Xint */
1888         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1889         /* DBGDTR[RT]Xext */
1890         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1891         DBG_BCR_BVR_WCR_WVR(3),
1892         DBG_BCR_BVR_WCR_WVR(4),
1893         DBG_BCR_BVR_WCR_WVR(5),
1894         /* DBGWFAR */
1895         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1896         /* DBGOSECCR */
1897         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1898         DBG_BCR_BVR_WCR_WVR(6),
1899         /* DBGVCR */
1900         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1901         DBG_BCR_BVR_WCR_WVR(7),
1902         DBG_BCR_BVR_WCR_WVR(8),
1903         DBG_BCR_BVR_WCR_WVR(9),
1904         DBG_BCR_BVR_WCR_WVR(10),
1905         DBG_BCR_BVR_WCR_WVR(11),
1906         DBG_BCR_BVR_WCR_WVR(12),
1907         DBG_BCR_BVR_WCR_WVR(13),
1908         DBG_BCR_BVR_WCR_WVR(14),
1909         DBG_BCR_BVR_WCR_WVR(15),
1910
1911         /* DBGDRAR (32bit) */
1912         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1913
1914         DBGBXVR(0),
1915         /* DBGOSLAR */
1916         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1917         DBGBXVR(1),
1918         /* DBGOSLSR */
1919         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1920         DBGBXVR(2),
1921         DBGBXVR(3),
1922         /* DBGOSDLR */
1923         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1924         DBGBXVR(4),
1925         /* DBGPRCR */
1926         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1927         DBGBXVR(5),
1928         DBGBXVR(6),
1929         DBGBXVR(7),
1930         DBGBXVR(8),
1931         DBGBXVR(9),
1932         DBGBXVR(10),
1933         DBGBXVR(11),
1934         DBGBXVR(12),
1935         DBGBXVR(13),
1936         DBGBXVR(14),
1937         DBGBXVR(15),
1938
1939         /* DBGDSAR (32bit) */
1940         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1941
1942         /* DBGDEVID2 */
1943         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1944         /* DBGDEVID1 */
1945         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1946         /* DBGDEVID */
1947         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1948         /* DBGCLAIMSET */
1949         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1950         /* DBGCLAIMCLR */
1951         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1952         /* DBGAUTHSTATUS */
1953         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1954 };
1955
1956 /* Trapped cp14 64bit registers */
1957 static const struct sys_reg_desc cp14_64_regs[] = {
1958         /* DBGDRAR (64bit) */
1959         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1960
1961         /* DBGDSAR (64bit) */
1962         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1963 };
1964
1965 /* Macro to expand the PMEVCNTRn register */
1966 #define PMU_PMEVCNTR(n)                                                 \
1967         /* PMEVCNTRn */                                                 \
1968         { Op1(0), CRn(0b1110),                                          \
1969           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1970           access_pmu_evcntr }
1971
1972 /* Macro to expand the PMEVTYPERn register */
1973 #define PMU_PMEVTYPER(n)                                                \
1974         /* PMEVTYPERn */                                                \
1975         { Op1(0), CRn(0b1110),                                          \
1976           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1977           access_pmu_evtyper }
1978
1979 /*
1980  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1981  * depending on the way they are accessed (as a 32bit or a 64bit
1982  * register).
1983  */
1984 static const struct sys_reg_desc cp15_regs[] = {
1985         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1986         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1987         /* ACTLR */
1988         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1989         /* ACTLR2 */
1990         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1991         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1992         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1993         /* TTBCR */
1994         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1995         /* TTBCR2 */
1996         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1997         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1998         /* DFSR */
1999         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2000         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2001         /* ADFSR */
2002         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2003         /* AIFSR */
2004         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2005         /* DFAR */
2006         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2007         /* IFAR */
2008         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2009
2010         /*
2011          * DC{C,I,CI}SW operations:
2012          */
2013         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2014         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2015         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2016
2017         /* PMU */
2018         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2019         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2020         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2021         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2022         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2023         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2024         { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2025         { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2026         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2027         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2028         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2029         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2030         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2031         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2032         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2033         { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
2034         { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
2035         /* PMMIR */
2036         { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
2037
2038         /* PRRR/MAIR0 */
2039         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2040         /* NMRR/MAIR1 */
2041         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2042         /* AMAIR0 */
2043         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2044         /* AMAIR1 */
2045         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2046
2047         /* ICC_SRE */
2048         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2049
2050         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2051
2052         /* Arch Tmers */
2053         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2054         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2055
2056         /* PMEVCNTRn */
2057         PMU_PMEVCNTR(0),
2058         PMU_PMEVCNTR(1),
2059         PMU_PMEVCNTR(2),
2060         PMU_PMEVCNTR(3),
2061         PMU_PMEVCNTR(4),
2062         PMU_PMEVCNTR(5),
2063         PMU_PMEVCNTR(6),
2064         PMU_PMEVCNTR(7),
2065         PMU_PMEVCNTR(8),
2066         PMU_PMEVCNTR(9),
2067         PMU_PMEVCNTR(10),
2068         PMU_PMEVCNTR(11),
2069         PMU_PMEVCNTR(12),
2070         PMU_PMEVCNTR(13),
2071         PMU_PMEVCNTR(14),
2072         PMU_PMEVCNTR(15),
2073         PMU_PMEVCNTR(16),
2074         PMU_PMEVCNTR(17),
2075         PMU_PMEVCNTR(18),
2076         PMU_PMEVCNTR(19),
2077         PMU_PMEVCNTR(20),
2078         PMU_PMEVCNTR(21),
2079         PMU_PMEVCNTR(22),
2080         PMU_PMEVCNTR(23),
2081         PMU_PMEVCNTR(24),
2082         PMU_PMEVCNTR(25),
2083         PMU_PMEVCNTR(26),
2084         PMU_PMEVCNTR(27),
2085         PMU_PMEVCNTR(28),
2086         PMU_PMEVCNTR(29),
2087         PMU_PMEVCNTR(30),
2088         /* PMEVTYPERn */
2089         PMU_PMEVTYPER(0),
2090         PMU_PMEVTYPER(1),
2091         PMU_PMEVTYPER(2),
2092         PMU_PMEVTYPER(3),
2093         PMU_PMEVTYPER(4),
2094         PMU_PMEVTYPER(5),
2095         PMU_PMEVTYPER(6),
2096         PMU_PMEVTYPER(7),
2097         PMU_PMEVTYPER(8),
2098         PMU_PMEVTYPER(9),
2099         PMU_PMEVTYPER(10),
2100         PMU_PMEVTYPER(11),
2101         PMU_PMEVTYPER(12),
2102         PMU_PMEVTYPER(13),
2103         PMU_PMEVTYPER(14),
2104         PMU_PMEVTYPER(15),
2105         PMU_PMEVTYPER(16),
2106         PMU_PMEVTYPER(17),
2107         PMU_PMEVTYPER(18),
2108         PMU_PMEVTYPER(19),
2109         PMU_PMEVTYPER(20),
2110         PMU_PMEVTYPER(21),
2111         PMU_PMEVTYPER(22),
2112         PMU_PMEVTYPER(23),
2113         PMU_PMEVTYPER(24),
2114         PMU_PMEVTYPER(25),
2115         PMU_PMEVTYPER(26),
2116         PMU_PMEVTYPER(27),
2117         PMU_PMEVTYPER(28),
2118         PMU_PMEVTYPER(29),
2119         PMU_PMEVTYPER(30),
2120         /* PMCCFILTR */
2121         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2122
2123         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2124         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2125         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2126 };
2127
2128 static const struct sys_reg_desc cp15_64_regs[] = {
2129         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2130         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2131         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2132         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2133         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2134         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2135         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2136 };
2137
2138 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2139                               bool is_32)
2140 {
2141         unsigned int i;
2142
2143         for (i = 0; i < n; i++) {
2144                 if (!is_32 && table[i].reg && !table[i].reset) {
2145                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2146                                 table, i);
2147                         return 1;
2148                 }
2149
2150                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2151                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2152                         return 1;
2153                 }
2154         }
2155
2156         return 0;
2157 }
2158
2159 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2160 {
2161         kvm_inject_undefined(vcpu);
2162         return 1;
2163 }
2164
2165 static void perform_access(struct kvm_vcpu *vcpu,
2166                            struct sys_reg_params *params,
2167                            const struct sys_reg_desc *r)
2168 {
2169         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2170
2171         /* Check for regs disabled by runtime config */
2172         if (sysreg_hidden(vcpu, r)) {
2173                 kvm_inject_undefined(vcpu);
2174                 return;
2175         }
2176
2177         /*
2178          * Not having an accessor means that we have configured a trap
2179          * that we don't know how to handle. This certainly qualifies
2180          * as a gross bug that should be fixed right away.
2181          */
2182         BUG_ON(!r->access);
2183
2184         /* Skip instruction if instructed so */
2185         if (likely(r->access(vcpu, params, r)))
2186                 kvm_incr_pc(vcpu);
2187 }
2188
2189 /*
2190  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2191  *                call the corresponding trap handler.
2192  *
2193  * @params: pointer to the descriptor of the access
2194  * @table: array of trap descriptors
2195  * @num: size of the trap descriptor array
2196  *
2197  * Return 0 if the access has been handled, and -1 if not.
2198  */
2199 static int emulate_cp(struct kvm_vcpu *vcpu,
2200                       struct sys_reg_params *params,
2201                       const struct sys_reg_desc *table,
2202                       size_t num)
2203 {
2204         const struct sys_reg_desc *r;
2205
2206         if (!table)
2207                 return -1;      /* Not handled */
2208
2209         r = find_reg(params, table, num);
2210
2211         if (r) {
2212                 perform_access(vcpu, params, r);
2213                 return 0;
2214         }
2215
2216         /* Not handled */
2217         return -1;
2218 }
2219
2220 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2221                                 struct sys_reg_params *params)
2222 {
2223         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2224         int cp = -1;
2225
2226         switch (esr_ec) {
2227         case ESR_ELx_EC_CP15_32:
2228         case ESR_ELx_EC_CP15_64:
2229                 cp = 15;
2230                 break;
2231         case ESR_ELx_EC_CP14_MR:
2232         case ESR_ELx_EC_CP14_64:
2233                 cp = 14;
2234                 break;
2235         default:
2236                 WARN_ON(1);
2237         }
2238
2239         print_sys_reg_msg(params,
2240                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2241                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2242         kvm_inject_undefined(vcpu);
2243 }
2244
2245 /**
2246  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2247  * @vcpu: The VCPU pointer
2248  * @run:  The kvm_run struct
2249  */
2250 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2251                             const struct sys_reg_desc *global,
2252                             size_t nr_global)
2253 {
2254         struct sys_reg_params params;
2255         u32 esr = kvm_vcpu_get_esr(vcpu);
2256         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2257         int Rt2 = (esr >> 10) & 0x1f;
2258
2259         params.CRm = (esr >> 1) & 0xf;
2260         params.is_write = ((esr & 1) == 0);
2261
2262         params.Op0 = 0;
2263         params.Op1 = (esr >> 16) & 0xf;
2264         params.Op2 = 0;
2265         params.CRn = 0;
2266
2267         /*
2268          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2269          * backends between AArch32 and AArch64, we get away with it.
2270          */
2271         if (params.is_write) {
2272                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2273                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2274         }
2275
2276         /*
2277          * If the table contains a handler, handle the
2278          * potential register operation in the case of a read and return
2279          * with success.
2280          */
2281         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2282                 /* Split up the value between registers for the read side */
2283                 if (!params.is_write) {
2284                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2285                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2286                 }
2287
2288                 return 1;
2289         }
2290
2291         unhandled_cp_access(vcpu, &params);
2292         return 1;
2293 }
2294
2295 /**
2296  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2297  * @vcpu: The VCPU pointer
2298  * @run:  The kvm_run struct
2299  */
2300 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2301                             const struct sys_reg_desc *global,
2302                             size_t nr_global)
2303 {
2304         struct sys_reg_params params;
2305         u32 esr = kvm_vcpu_get_esr(vcpu);
2306         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2307
2308         params.CRm = (esr >> 1) & 0xf;
2309         params.regval = vcpu_get_reg(vcpu, Rt);
2310         params.is_write = ((esr & 1) == 0);
2311         params.CRn = (esr >> 10) & 0xf;
2312         params.Op0 = 0;
2313         params.Op1 = (esr >> 14) & 0x7;
2314         params.Op2 = (esr >> 17) & 0x7;
2315
2316         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2317                 if (!params.is_write)
2318                         vcpu_set_reg(vcpu, Rt, params.regval);
2319                 return 1;
2320         }
2321
2322         unhandled_cp_access(vcpu, &params);
2323         return 1;
2324 }
2325
2326 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2327 {
2328         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2329 }
2330
2331 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2332 {
2333         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2334 }
2335
2336 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2337 {
2338         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2339 }
2340
2341 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2342 {
2343         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2344 }
2345
2346 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2347 {
2348         // See ARM DDI 0487E.a, section D12.3.2
2349         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2350 }
2351
2352 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2353                            struct sys_reg_params *params)
2354 {
2355         const struct sys_reg_desc *r;
2356
2357         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2358
2359         if (likely(r)) {
2360                 perform_access(vcpu, params, r);
2361         } else if (is_imp_def_sys_reg(params)) {
2362                 kvm_inject_undefined(vcpu);
2363         } else {
2364                 print_sys_reg_msg(params,
2365                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2366                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2367                 kvm_inject_undefined(vcpu);
2368         }
2369         return 1;
2370 }
2371
2372 /**
2373  * kvm_reset_sys_regs - sets system registers to reset value
2374  * @vcpu: The VCPU pointer
2375  *
2376  * This function finds the right table above and sets the registers on the
2377  * virtual CPU struct to their architecturally defined reset values.
2378  */
2379 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2380 {
2381         unsigned long i;
2382
2383         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2384                 if (sys_reg_descs[i].reset)
2385                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2386 }
2387
2388 /**
2389  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2390  * @vcpu: The VCPU pointer
2391  */
2392 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2393 {
2394         struct sys_reg_params params;
2395         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2396         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2397         int ret;
2398
2399         trace_kvm_handle_sys_reg(esr);
2400
2401         params = esr_sys64_to_params(esr);
2402         params.regval = vcpu_get_reg(vcpu, Rt);
2403
2404         ret = emulate_sys_reg(vcpu, &params);
2405
2406         if (!params.is_write)
2407                 vcpu_set_reg(vcpu, Rt, params.regval);
2408         return ret;
2409 }
2410
2411 /******************************************************************************
2412  * Userspace API
2413  *****************************************************************************/
2414
2415 static bool index_to_params(u64 id, struct sys_reg_params *params)
2416 {
2417         switch (id & KVM_REG_SIZE_MASK) {
2418         case KVM_REG_SIZE_U64:
2419                 /* Any unused index bits means it's not valid. */
2420                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2421                               | KVM_REG_ARM_COPROC_MASK
2422                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2423                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2424                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2425                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2426                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2427                         return false;
2428                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2429                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2430                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2431                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2432                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2433                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2434                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2435                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2436                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2437                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2438                 return true;
2439         default:
2440                 return false;
2441         }
2442 }
2443
2444 const struct sys_reg_desc *find_reg_by_id(u64 id,
2445                                           struct sys_reg_params *params,
2446                                           const struct sys_reg_desc table[],
2447                                           unsigned int num)
2448 {
2449         if (!index_to_params(id, params))
2450                 return NULL;
2451
2452         return find_reg(params, table, num);
2453 }
2454
2455 /* Decode an index value, and find the sys_reg_desc entry. */
2456 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2457                                                     u64 id)
2458 {
2459         const struct sys_reg_desc *r;
2460         struct sys_reg_params params;
2461
2462         /* We only do sys_reg for now. */
2463         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2464                 return NULL;
2465
2466         if (!index_to_params(id, &params))
2467                 return NULL;
2468
2469         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2470
2471         /* Not saved in the sys_reg array and not otherwise accessible? */
2472         if (r && !(r->reg || r->get_user))
2473                 r = NULL;
2474
2475         return r;
2476 }
2477
2478 /*
2479  * These are the invariant sys_reg registers: we let the guest see the
2480  * host versions of these, so they're part of the guest state.
2481  *
2482  * A future CPU may provide a mechanism to present different values to
2483  * the guest, or a future kvm may trap them.
2484  */
2485
2486 #define FUNCTION_INVARIANT(reg)                                         \
2487         static void get_##reg(struct kvm_vcpu *v,                       \
2488                               const struct sys_reg_desc *r)             \
2489         {                                                               \
2490                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2491         }
2492
2493 FUNCTION_INVARIANT(midr_el1)
2494 FUNCTION_INVARIANT(revidr_el1)
2495 FUNCTION_INVARIANT(clidr_el1)
2496 FUNCTION_INVARIANT(aidr_el1)
2497
2498 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2499 {
2500         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2501 }
2502
2503 /* ->val is filled in by kvm_sys_reg_table_init() */
2504 static struct sys_reg_desc invariant_sys_regs[] = {
2505         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2506         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2507         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2508         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2509         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2510 };
2511
2512 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2513 {
2514         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2515                 return -EFAULT;
2516         return 0;
2517 }
2518
2519 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2520 {
2521         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2522                 return -EFAULT;
2523         return 0;
2524 }
2525
2526 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2527 {
2528         struct sys_reg_params params;
2529         const struct sys_reg_desc *r;
2530
2531         r = find_reg_by_id(id, &params, invariant_sys_regs,
2532                            ARRAY_SIZE(invariant_sys_regs));
2533         if (!r)
2534                 return -ENOENT;
2535
2536         return reg_to_user(uaddr, &r->val, id);
2537 }
2538
2539 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2540 {
2541         struct sys_reg_params params;
2542         const struct sys_reg_desc *r;
2543         int err;
2544         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2545
2546         r = find_reg_by_id(id, &params, invariant_sys_regs,
2547                            ARRAY_SIZE(invariant_sys_regs));
2548         if (!r)
2549                 return -ENOENT;
2550
2551         err = reg_from_user(&val, uaddr, id);
2552         if (err)
2553                 return err;
2554
2555         /* This is what we mean by invariant: you can't change it. */
2556         if (r->val != val)
2557                 return -EINVAL;
2558
2559         return 0;
2560 }
2561
2562 static bool is_valid_cache(u32 val)
2563 {
2564         u32 level, ctype;
2565
2566         if (val >= CSSELR_MAX)
2567                 return false;
2568
2569         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2570         level = (val >> 1);
2571         ctype = (cache_levels >> (level * 3)) & 7;
2572
2573         switch (ctype) {
2574         case 0: /* No cache */
2575                 return false;
2576         case 1: /* Instruction cache only */
2577                 return (val & 1);
2578         case 2: /* Data cache only */
2579         case 4: /* Unified cache */
2580                 return !(val & 1);
2581         case 3: /* Separate instruction and data caches */
2582                 return true;
2583         default: /* Reserved: we can't know instruction or data. */
2584                 return false;
2585         }
2586 }
2587
2588 static int demux_c15_get(u64 id, void __user *uaddr)
2589 {
2590         u32 val;
2591         u32 __user *uval = uaddr;
2592
2593         /* Fail if we have unknown bits set. */
2594         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2595                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2596                 return -ENOENT;
2597
2598         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2599         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2600                 if (KVM_REG_SIZE(id) != 4)
2601                         return -ENOENT;
2602                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2603                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2604                 if (!is_valid_cache(val))
2605                         return -ENOENT;
2606
2607                 return put_user(get_ccsidr(val), uval);
2608         default:
2609                 return -ENOENT;
2610         }
2611 }
2612
2613 static int demux_c15_set(u64 id, void __user *uaddr)
2614 {
2615         u32 val, newval;
2616         u32 __user *uval = uaddr;
2617
2618         /* Fail if we have unknown bits set. */
2619         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2620                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2621                 return -ENOENT;
2622
2623         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2624         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2625                 if (KVM_REG_SIZE(id) != 4)
2626                         return -ENOENT;
2627                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2628                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2629                 if (!is_valid_cache(val))
2630                         return -ENOENT;
2631
2632                 if (get_user(newval, uval))
2633                         return -EFAULT;
2634
2635                 /* This is also invariant: you can't change it. */
2636                 if (newval != get_ccsidr(val))
2637                         return -EINVAL;
2638                 return 0;
2639         default:
2640                 return -ENOENT;
2641         }
2642 }
2643
2644 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2645 {
2646         const struct sys_reg_desc *r;
2647         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2648
2649         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2650                 return demux_c15_get(reg->id, uaddr);
2651
2652         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2653                 return -ENOENT;
2654
2655         r = index_to_sys_reg_desc(vcpu, reg->id);
2656         if (!r)
2657                 return get_invariant_sys_reg(reg->id, uaddr);
2658
2659         /* Check for regs disabled by runtime config */
2660         if (sysreg_hidden(vcpu, r))
2661                 return -ENOENT;
2662
2663         if (r->get_user)
2664                 return (r->get_user)(vcpu, r, reg, uaddr);
2665
2666         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2667 }
2668
2669 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2670 {
2671         const struct sys_reg_desc *r;
2672         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2673
2674         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2675                 return demux_c15_set(reg->id, uaddr);
2676
2677         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2678                 return -ENOENT;
2679
2680         r = index_to_sys_reg_desc(vcpu, reg->id);
2681         if (!r)
2682                 return set_invariant_sys_reg(reg->id, uaddr);
2683
2684         /* Check for regs disabled by runtime config */
2685         if (sysreg_hidden(vcpu, r))
2686                 return -ENOENT;
2687
2688         if (r->set_user)
2689                 return (r->set_user)(vcpu, r, reg, uaddr);
2690
2691         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2692 }
2693
2694 static unsigned int num_demux_regs(void)
2695 {
2696         unsigned int i, count = 0;
2697
2698         for (i = 0; i < CSSELR_MAX; i++)
2699                 if (is_valid_cache(i))
2700                         count++;
2701
2702         return count;
2703 }
2704
2705 static int write_demux_regids(u64 __user *uindices)
2706 {
2707         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2708         unsigned int i;
2709
2710         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2711         for (i = 0; i < CSSELR_MAX; i++) {
2712                 if (!is_valid_cache(i))
2713                         continue;
2714                 if (put_user(val | i, uindices))
2715                         return -EFAULT;
2716                 uindices++;
2717         }
2718         return 0;
2719 }
2720
2721 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2722 {
2723         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2724                 KVM_REG_ARM64_SYSREG |
2725                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2726                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2727                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2728                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2729                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2730 }
2731
2732 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2733 {
2734         if (!*uind)
2735                 return true;
2736
2737         if (put_user(sys_reg_to_index(reg), *uind))
2738                 return false;
2739
2740         (*uind)++;
2741         return true;
2742 }
2743
2744 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2745                             const struct sys_reg_desc *rd,
2746                             u64 __user **uind,
2747                             unsigned int *total)
2748 {
2749         /*
2750          * Ignore registers we trap but don't save,
2751          * and for which no custom user accessor is provided.
2752          */
2753         if (!(rd->reg || rd->get_user))
2754                 return 0;
2755
2756         if (sysreg_hidden(vcpu, rd))
2757                 return 0;
2758
2759         if (!copy_reg_to_user(rd, uind))
2760                 return -EFAULT;
2761
2762         (*total)++;
2763         return 0;
2764 }
2765
2766 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2767 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2768 {
2769         const struct sys_reg_desc *i2, *end2;
2770         unsigned int total = 0;
2771         int err;
2772
2773         i2 = sys_reg_descs;
2774         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2775
2776         while (i2 != end2) {
2777                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2778                 if (err)
2779                         return err;
2780         }
2781         return total;
2782 }
2783
2784 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2785 {
2786         return ARRAY_SIZE(invariant_sys_regs)
2787                 + num_demux_regs()
2788                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2789 }
2790
2791 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2792 {
2793         unsigned int i;
2794         int err;
2795
2796         /* Then give them all the invariant registers' indices. */
2797         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2798                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2799                         return -EFAULT;
2800                 uindices++;
2801         }
2802
2803         err = walk_sys_regs(vcpu, uindices);
2804         if (err < 0)
2805                 return err;
2806         uindices += err;
2807
2808         return write_demux_regids(uindices);
2809 }
2810
2811 void kvm_sys_reg_table_init(void)
2812 {
2813         unsigned int i;
2814         struct sys_reg_desc clidr;
2815
2816         /* Make sure tables are unique and in order. */
2817         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2818         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2819         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2820         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2821         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2822         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2823
2824         /* We abuse the reset function to overwrite the table itself. */
2825         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2826                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2827
2828         /*
2829          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2830          *
2831          *   If software reads the Cache Type fields from Ctype1
2832          *   upwards, once it has seen a value of 0b000, no caches
2833          *   exist at further-out levels of the hierarchy. So, for
2834          *   example, if Ctype3 is the first Cache Type field with a
2835          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2836          *   ignored.
2837          */
2838         get_clidr_el1(NULL, &clidr); /* Ugly... */
2839         cache_levels = clidr.val;
2840         for (i = 0; i < 7; i++)
2841                 if (((cache_levels >> (i*3)) & 7) == 0)
2842                         break;
2843         /* Clear all higher bits. */
2844         cache_levels &= (1 << (i*3))-1;
2845 }