Merge branches 'pm-cpufreq', 'pm-sleep' and 'pm-em'
[linux-2.6-microblaze.git] / arch / arm64 / kvm / hyp / pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13
14
15 #define KVM_PTE_TYPE                    BIT(1)
16 #define KVM_PTE_TYPE_BLOCK              0
17 #define KVM_PTE_TYPE_PAGE               1
18 #define KVM_PTE_TYPE_TABLE              1
19
20 #define KVM_PTE_LEAF_ATTR_LO            GENMASK(11, 2)
21
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP      GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO   3
25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW   1
26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH      GENMASK(9, 8)
27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS   3
28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF      BIT(10)
29
30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R  BIT(6)
32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W  BIT(7)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH      GENMASK(9, 8)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS   3
35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF      BIT(10)
36
37 #define KVM_PTE_LEAF_ATTR_HI            GENMASK(63, 51)
38
39 #define KVM_PTE_LEAF_ATTR_HI_SW         GENMASK(58, 55)
40
41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN      BIT(54)
42
43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN      BIT(54)
44
45 #define KVM_PTE_LEAF_ATTR_S2_PERMS      (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
46                                          KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
47                                          KVM_PTE_LEAF_ATTR_HI_S2_XN)
48
49 #define KVM_INVALID_PTE_OWNER_MASK      GENMASK(9, 2)
50 #define KVM_MAX_OWNER_ID                1
51
52 struct kvm_pgtable_walk_data {
53         struct kvm_pgtable              *pgt;
54         struct kvm_pgtable_walker       *walker;
55
56         u64                             addr;
57         u64                             end;
58 };
59
60 #define KVM_PHYS_INVALID (-1ULL)
61
62 static bool kvm_phys_is_valid(u64 phys)
63 {
64         return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_PARANGE_MAX));
65 }
66
67 static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
68 {
69         u64 granule = kvm_granule_size(level);
70
71         if (!kvm_level_supports_block_mapping(level))
72                 return false;
73
74         if (granule > (end - addr))
75                 return false;
76
77         if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
78                 return false;
79
80         return IS_ALIGNED(addr, granule);
81 }
82
83 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
84 {
85         u64 shift = kvm_granule_shift(level);
86         u64 mask = BIT(PAGE_SHIFT - 3) - 1;
87
88         return (data->addr >> shift) & mask;
89 }
90
91 static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
92 {
93         u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
94         u64 mask = BIT(pgt->ia_bits) - 1;
95
96         return (addr & mask) >> shift;
97 }
98
99 static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
100 {
101         return __kvm_pgd_page_idx(data->pgt, data->addr);
102 }
103
104 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
105 {
106         struct kvm_pgtable pgt = {
107                 .ia_bits        = ia_bits,
108                 .start_level    = start_level,
109         };
110
111         return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
112 }
113
114 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
115 {
116         if (level == KVM_PGTABLE_MAX_LEVELS - 1)
117                 return false;
118
119         if (!kvm_pte_valid(pte))
120                 return false;
121
122         return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
123 }
124
125 static kvm_pte_t kvm_phys_to_pte(u64 pa)
126 {
127         kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;
128
129         if (PAGE_SHIFT == 16)
130                 pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
131
132         return pte;
133 }
134
135 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
136 {
137         return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
138 }
139
140 static void kvm_clear_pte(kvm_pte_t *ptep)
141 {
142         WRITE_ONCE(*ptep, 0);
143 }
144
145 static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp,
146                               struct kvm_pgtable_mm_ops *mm_ops)
147 {
148         kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
149
150         pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
151         pte |= KVM_PTE_VALID;
152
153         WARN_ON(kvm_pte_valid(old));
154         smp_store_release(ptep, pte);
155 }
156
157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
158 {
159         kvm_pte_t pte = kvm_phys_to_pte(pa);
160         u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
161                                                            KVM_PTE_TYPE_BLOCK;
162
163         pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
164         pte |= FIELD_PREP(KVM_PTE_TYPE, type);
165         pte |= KVM_PTE_VALID;
166
167         return pte;
168 }
169
170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
171 {
172         return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
173 }
174
175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
176                                   u32 level, kvm_pte_t *ptep,
177                                   enum kvm_pgtable_walk_flags flag)
178 {
179         struct kvm_pgtable_walker *walker = data->walker;
180         return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
181 }
182
183 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
184                               kvm_pte_t *pgtable, u32 level);
185
186 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
187                                       kvm_pte_t *ptep, u32 level)
188 {
189         int ret = 0;
190         u64 addr = data->addr;
191         kvm_pte_t *childp, pte = *ptep;
192         bool table = kvm_pte_table(pte, level);
193         enum kvm_pgtable_walk_flags flags = data->walker->flags;
194
195         if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
196                 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
197                                              KVM_PGTABLE_WALK_TABLE_PRE);
198         }
199
200         if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
201                 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
202                                              KVM_PGTABLE_WALK_LEAF);
203                 pte = *ptep;
204                 table = kvm_pte_table(pte, level);
205         }
206
207         if (ret)
208                 goto out;
209
210         if (!table) {
211                 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
212                 data->addr += kvm_granule_size(level);
213                 goto out;
214         }
215
216         childp = kvm_pte_follow(pte, data->pgt->mm_ops);
217         ret = __kvm_pgtable_walk(data, childp, level + 1);
218         if (ret)
219                 goto out;
220
221         if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
222                 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
223                                              KVM_PGTABLE_WALK_TABLE_POST);
224         }
225
226 out:
227         return ret;
228 }
229
230 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
231                               kvm_pte_t *pgtable, u32 level)
232 {
233         u32 idx;
234         int ret = 0;
235
236         if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
237                 return -EINVAL;
238
239         for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
240                 kvm_pte_t *ptep = &pgtable[idx];
241
242                 if (data->addr >= data->end)
243                         break;
244
245                 ret = __kvm_pgtable_visit(data, ptep, level);
246                 if (ret)
247                         break;
248         }
249
250         return ret;
251 }
252
253 static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
254 {
255         u32 idx;
256         int ret = 0;
257         struct kvm_pgtable *pgt = data->pgt;
258         u64 limit = BIT(pgt->ia_bits);
259
260         if (data->addr > limit || data->end > limit)
261                 return -ERANGE;
262
263         if (!pgt->pgd)
264                 return -EINVAL;
265
266         for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
267                 kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];
268
269                 ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
270                 if (ret)
271                         break;
272         }
273
274         return ret;
275 }
276
277 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
278                      struct kvm_pgtable_walker *walker)
279 {
280         struct kvm_pgtable_walk_data walk_data = {
281                 .pgt    = pgt,
282                 .addr   = ALIGN_DOWN(addr, PAGE_SIZE),
283                 .end    = PAGE_ALIGN(walk_data.addr + size),
284                 .walker = walker,
285         };
286
287         return _kvm_pgtable_walk(&walk_data);
288 }
289
290 struct leaf_walk_data {
291         kvm_pte_t       pte;
292         u32             level;
293 };
294
295 static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
296                        enum kvm_pgtable_walk_flags flag, void * const arg)
297 {
298         struct leaf_walk_data *data = arg;
299
300         data->pte   = *ptep;
301         data->level = level;
302
303         return 0;
304 }
305
306 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
307                          kvm_pte_t *ptep, u32 *level)
308 {
309         struct leaf_walk_data data;
310         struct kvm_pgtable_walker walker = {
311                 .cb     = leaf_walker,
312                 .flags  = KVM_PGTABLE_WALK_LEAF,
313                 .arg    = &data,
314         };
315         int ret;
316
317         ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
318                                PAGE_SIZE, &walker);
319         if (!ret) {
320                 if (ptep)
321                         *ptep  = data.pte;
322                 if (level)
323                         *level = data.level;
324         }
325
326         return ret;
327 }
328
329 struct hyp_map_data {
330         u64                             phys;
331         kvm_pte_t                       attr;
332         struct kvm_pgtable_mm_ops       *mm_ops;
333 };
334
335 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
336 {
337         bool device = prot & KVM_PGTABLE_PROT_DEVICE;
338         u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
339         kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
340         u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
341         u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
342                                                KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
343
344         if (!(prot & KVM_PGTABLE_PROT_R))
345                 return -EINVAL;
346
347         if (prot & KVM_PGTABLE_PROT_X) {
348                 if (prot & KVM_PGTABLE_PROT_W)
349                         return -EINVAL;
350
351                 if (device)
352                         return -EINVAL;
353         } else {
354                 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
355         }
356
357         attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
358         attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
359         attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
360         attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
361         *ptep = attr;
362
363         return 0;
364 }
365
366 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
367 {
368         enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
369         u32 ap;
370
371         if (!kvm_pte_valid(pte))
372                 return prot;
373
374         if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
375                 prot |= KVM_PGTABLE_PROT_X;
376
377         ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
378         if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
379                 prot |= KVM_PGTABLE_PROT_R;
380         else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
381                 prot |= KVM_PGTABLE_PROT_RW;
382
383         return prot;
384 }
385
386 static bool hyp_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
387 {
388         /*
389          * Tolerate KVM recreating the exact same mapping, or changing software
390          * bits if the existing mapping was valid.
391          */
392         if (old == new)
393                 return false;
394
395         if (!kvm_pte_valid(old))
396                 return true;
397
398         return !WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW);
399 }
400
401 static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
402                                     kvm_pte_t *ptep, struct hyp_map_data *data)
403 {
404         kvm_pte_t new, old = *ptep;
405         u64 granule = kvm_granule_size(level), phys = data->phys;
406
407         if (!kvm_block_mapping_supported(addr, end, phys, level))
408                 return false;
409
410         new = kvm_init_valid_leaf_pte(phys, data->attr, level);
411         if (hyp_pte_needs_update(old, new))
412                 smp_store_release(ptep, new);
413
414         data->phys += granule;
415         return true;
416 }
417
418 static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
419                           enum kvm_pgtable_walk_flags flag, void * const arg)
420 {
421         kvm_pte_t *childp;
422         struct hyp_map_data *data = arg;
423         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
424
425         if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
426                 return 0;
427
428         if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
429                 return -EINVAL;
430
431         childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
432         if (!childp)
433                 return -ENOMEM;
434
435         kvm_set_table_pte(ptep, childp, mm_ops);
436         return 0;
437 }
438
439 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
440                         enum kvm_pgtable_prot prot)
441 {
442         int ret;
443         struct hyp_map_data map_data = {
444                 .phys   = ALIGN_DOWN(phys, PAGE_SIZE),
445                 .mm_ops = pgt->mm_ops,
446         };
447         struct kvm_pgtable_walker walker = {
448                 .cb     = hyp_map_walker,
449                 .flags  = KVM_PGTABLE_WALK_LEAF,
450                 .arg    = &map_data,
451         };
452
453         ret = hyp_set_prot_attr(prot, &map_data.attr);
454         if (ret)
455                 return ret;
456
457         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
458         dsb(ishst);
459         isb();
460         return ret;
461 }
462
463 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
464                          struct kvm_pgtable_mm_ops *mm_ops)
465 {
466         u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
467
468         pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
469         if (!pgt->pgd)
470                 return -ENOMEM;
471
472         pgt->ia_bits            = va_bits;
473         pgt->start_level        = KVM_PGTABLE_MAX_LEVELS - levels;
474         pgt->mm_ops             = mm_ops;
475         pgt->mmu                = NULL;
476         pgt->force_pte_cb       = NULL;
477
478         return 0;
479 }
480
481 static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
482                            enum kvm_pgtable_walk_flags flag, void * const arg)
483 {
484         struct kvm_pgtable_mm_ops *mm_ops = arg;
485
486         mm_ops->put_page((void *)kvm_pte_follow(*ptep, mm_ops));
487         return 0;
488 }
489
490 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
491 {
492         struct kvm_pgtable_walker walker = {
493                 .cb     = hyp_free_walker,
494                 .flags  = KVM_PGTABLE_WALK_TABLE_POST,
495                 .arg    = pgt->mm_ops,
496         };
497
498         WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
499         pgt->mm_ops->put_page(pgt->pgd);
500         pgt->pgd = NULL;
501 }
502
503 struct stage2_map_data {
504         u64                             phys;
505         kvm_pte_t                       attr;
506         u8                              owner_id;
507
508         kvm_pte_t                       *anchor;
509         kvm_pte_t                       *childp;
510
511         struct kvm_s2_mmu               *mmu;
512         void                            *memcache;
513
514         struct kvm_pgtable_mm_ops       *mm_ops;
515
516         /* Force mappings to page granularity */
517         bool                            force_pte;
518 };
519
520 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
521 {
522         u64 vtcr = VTCR_EL2_FLAGS;
523         u8 lvls;
524
525         vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
526         vtcr |= VTCR_EL2_T0SZ(phys_shift);
527         /*
528          * Use a minimum 2 level page table to prevent splitting
529          * host PMD huge pages at stage2.
530          */
531         lvls = stage2_pgtable_levels(phys_shift);
532         if (lvls < 2)
533                 lvls = 2;
534         vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
535
536         /*
537          * Enable the Hardware Access Flag management, unconditionally
538          * on all CPUs. The features is RES0 on CPUs without the support
539          * and must be ignored by the CPUs.
540          */
541         vtcr |= VTCR_EL2_HA;
542
543         /* Set the vmid bits */
544         vtcr |= (get_vmid_bits(mmfr1) == 16) ?
545                 VTCR_EL2_VS_16BIT :
546                 VTCR_EL2_VS_8BIT;
547
548         return vtcr;
549 }
550
551 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
552 {
553         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
554                 return false;
555
556         return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
557 }
558
559 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
560
561 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
562                                 kvm_pte_t *ptep)
563 {
564         bool device = prot & KVM_PGTABLE_PROT_DEVICE;
565         kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
566                             KVM_S2_MEMATTR(pgt, NORMAL);
567         u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
568
569         if (!(prot & KVM_PGTABLE_PROT_X))
570                 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
571         else if (device)
572                 return -EINVAL;
573
574         if (prot & KVM_PGTABLE_PROT_R)
575                 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
576
577         if (prot & KVM_PGTABLE_PROT_W)
578                 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
579
580         attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
581         attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
582         attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
583         *ptep = attr;
584
585         return 0;
586 }
587
588 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
589 {
590         enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
591
592         if (!kvm_pte_valid(pte))
593                 return prot;
594
595         if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
596                 prot |= KVM_PGTABLE_PROT_R;
597         if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
598                 prot |= KVM_PGTABLE_PROT_W;
599         if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
600                 prot |= KVM_PGTABLE_PROT_X;
601
602         return prot;
603 }
604
605 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
606 {
607         if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
608                 return true;
609
610         return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
611 }
612
613 static bool stage2_pte_is_counted(kvm_pte_t pte)
614 {
615         /*
616          * The refcount tracks valid entries as well as invalid entries if they
617          * encode ownership of a page to another entity than the page-table
618          * owner, whose id is 0.
619          */
620         return !!pte;
621 }
622
623 static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr,
624                            u32 level, struct kvm_pgtable_mm_ops *mm_ops)
625 {
626         /*
627          * Clear the existing PTE, and perform break-before-make with
628          * TLB maintenance if it was valid.
629          */
630         if (kvm_pte_valid(*ptep)) {
631                 kvm_clear_pte(ptep);
632                 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
633         }
634
635         mm_ops->put_page(ptep);
636 }
637
638 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
639 {
640         u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
641         return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
642 }
643
644 static bool stage2_pte_executable(kvm_pte_t pte)
645 {
646         return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
647 }
648
649 static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level,
650                                         struct stage2_map_data *data)
651 {
652         if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1)))
653                 return false;
654
655         return kvm_block_mapping_supported(addr, end, data->phys, level);
656 }
657
658 static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
659                                       kvm_pte_t *ptep,
660                                       struct stage2_map_data *data)
661 {
662         kvm_pte_t new, old = *ptep;
663         u64 granule = kvm_granule_size(level), phys = data->phys;
664         struct kvm_pgtable *pgt = data->mmu->pgt;
665         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
666
667         if (!stage2_leaf_mapping_allowed(addr, end, level, data))
668                 return -E2BIG;
669
670         if (kvm_phys_is_valid(phys))
671                 new = kvm_init_valid_leaf_pte(phys, data->attr, level);
672         else
673                 new = kvm_init_invalid_leaf_owner(data->owner_id);
674
675         if (stage2_pte_is_counted(old)) {
676                 /*
677                  * Skip updating the PTE if we are trying to recreate the exact
678                  * same mapping or only change the access permissions. Instead,
679                  * the vCPU will exit one more time from guest if still needed
680                  * and then go through the path of relaxing permissions.
681                  */
682                 if (!stage2_pte_needs_update(old, new))
683                         return -EAGAIN;
684
685                 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
686         }
687
688         /* Perform CMOs before installation of the guest stage-2 PTE */
689         if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
690                 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
691                                                 granule);
692
693         if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
694                 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
695
696         smp_store_release(ptep, new);
697         if (stage2_pte_is_counted(new))
698                 mm_ops->get_page(ptep);
699         if (kvm_phys_is_valid(phys))
700                 data->phys += granule;
701         return 0;
702 }
703
704 static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
705                                      kvm_pte_t *ptep,
706                                      struct stage2_map_data *data)
707 {
708         if (data->anchor)
709                 return 0;
710
711         if (!stage2_leaf_mapping_allowed(addr, end, level, data))
712                 return 0;
713
714         data->childp = kvm_pte_follow(*ptep, data->mm_ops);
715         kvm_clear_pte(ptep);
716
717         /*
718          * Invalidate the whole stage-2, as we may have numerous leaf
719          * entries below us which would otherwise need invalidating
720          * individually.
721          */
722         kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
723         data->anchor = ptep;
724         return 0;
725 }
726
727 static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
728                                 struct stage2_map_data *data)
729 {
730         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
731         kvm_pte_t *childp, pte = *ptep;
732         int ret;
733
734         if (data->anchor) {
735                 if (stage2_pte_is_counted(pte))
736                         mm_ops->put_page(ptep);
737
738                 return 0;
739         }
740
741         ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data);
742         if (ret != -E2BIG)
743                 return ret;
744
745         if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
746                 return -EINVAL;
747
748         if (!data->memcache)
749                 return -ENOMEM;
750
751         childp = mm_ops->zalloc_page(data->memcache);
752         if (!childp)
753                 return -ENOMEM;
754
755         /*
756          * If we've run into an existing block mapping then replace it with
757          * a table. Accesses beyond 'end' that fall within the new table
758          * will be mapped lazily.
759          */
760         if (stage2_pte_is_counted(pte))
761                 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
762
763         kvm_set_table_pte(ptep, childp, mm_ops);
764         mm_ops->get_page(ptep);
765
766         return 0;
767 }
768
769 static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
770                                       kvm_pte_t *ptep,
771                                       struct stage2_map_data *data)
772 {
773         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
774         kvm_pte_t *childp;
775         int ret = 0;
776
777         if (!data->anchor)
778                 return 0;
779
780         if (data->anchor == ptep) {
781                 childp = data->childp;
782                 data->anchor = NULL;
783                 data->childp = NULL;
784                 ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
785         } else {
786                 childp = kvm_pte_follow(*ptep, mm_ops);
787         }
788
789         mm_ops->put_page(childp);
790         mm_ops->put_page(ptep);
791
792         return ret;
793 }
794
795 /*
796  * This is a little fiddly, as we use all three of the walk flags. The idea
797  * is that the TABLE_PRE callback runs for table entries on the way down,
798  * looking for table entries which we could conceivably replace with a
799  * block entry for this mapping. If it finds one, then it sets the 'anchor'
800  * field in 'struct stage2_map_data' to point at the table entry, before
801  * clearing the entry to zero and descending into the now detached table.
802  *
803  * The behaviour of the LEAF callback then depends on whether or not the
804  * anchor has been set. If not, then we're not using a block mapping higher
805  * up the table and we perform the mapping at the existing leaves instead.
806  * If, on the other hand, the anchor _is_ set, then we drop references to
807  * all valid leaves so that the pages beneath the anchor can be freed.
808  *
809  * Finally, the TABLE_POST callback does nothing if the anchor has not
810  * been set, but otherwise frees the page-table pages while walking back up
811  * the page-table, installing the block entry when it revisits the anchor
812  * pointer and clearing the anchor to NULL.
813  */
814 static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
815                              enum kvm_pgtable_walk_flags flag, void * const arg)
816 {
817         struct stage2_map_data *data = arg;
818
819         switch (flag) {
820         case KVM_PGTABLE_WALK_TABLE_PRE:
821                 return stage2_map_walk_table_pre(addr, end, level, ptep, data);
822         case KVM_PGTABLE_WALK_LEAF:
823                 return stage2_map_walk_leaf(addr, end, level, ptep, data);
824         case KVM_PGTABLE_WALK_TABLE_POST:
825                 return stage2_map_walk_table_post(addr, end, level, ptep, data);
826         }
827
828         return -EINVAL;
829 }
830
831 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
832                            u64 phys, enum kvm_pgtable_prot prot,
833                            void *mc)
834 {
835         int ret;
836         struct stage2_map_data map_data = {
837                 .phys           = ALIGN_DOWN(phys, PAGE_SIZE),
838                 .mmu            = pgt->mmu,
839                 .memcache       = mc,
840                 .mm_ops         = pgt->mm_ops,
841                 .force_pte      = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
842         };
843         struct kvm_pgtable_walker walker = {
844                 .cb             = stage2_map_walker,
845                 .flags          = KVM_PGTABLE_WALK_TABLE_PRE |
846                                   KVM_PGTABLE_WALK_LEAF |
847                                   KVM_PGTABLE_WALK_TABLE_POST,
848                 .arg            = &map_data,
849         };
850
851         if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
852                 return -EINVAL;
853
854         ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
855         if (ret)
856                 return ret;
857
858         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
859         dsb(ishst);
860         return ret;
861 }
862
863 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
864                                  void *mc, u8 owner_id)
865 {
866         int ret;
867         struct stage2_map_data map_data = {
868                 .phys           = KVM_PHYS_INVALID,
869                 .mmu            = pgt->mmu,
870                 .memcache       = mc,
871                 .mm_ops         = pgt->mm_ops,
872                 .owner_id       = owner_id,
873                 .force_pte      = true,
874         };
875         struct kvm_pgtable_walker walker = {
876                 .cb             = stage2_map_walker,
877                 .flags          = KVM_PGTABLE_WALK_TABLE_PRE |
878                                   KVM_PGTABLE_WALK_LEAF |
879                                   KVM_PGTABLE_WALK_TABLE_POST,
880                 .arg            = &map_data,
881         };
882
883         if (owner_id > KVM_MAX_OWNER_ID)
884                 return -EINVAL;
885
886         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
887         return ret;
888 }
889
890 static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
891                                enum kvm_pgtable_walk_flags flag,
892                                void * const arg)
893 {
894         struct kvm_pgtable *pgt = arg;
895         struct kvm_s2_mmu *mmu = pgt->mmu;
896         struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
897         kvm_pte_t pte = *ptep, *childp = NULL;
898         bool need_flush = false;
899
900         if (!kvm_pte_valid(pte)) {
901                 if (stage2_pte_is_counted(pte)) {
902                         kvm_clear_pte(ptep);
903                         mm_ops->put_page(ptep);
904                 }
905                 return 0;
906         }
907
908         if (kvm_pte_table(pte, level)) {
909                 childp = kvm_pte_follow(pte, mm_ops);
910
911                 if (mm_ops->page_count(childp) != 1)
912                         return 0;
913         } else if (stage2_pte_cacheable(pgt, pte)) {
914                 need_flush = !stage2_has_fwb(pgt);
915         }
916
917         /*
918          * This is similar to the map() path in that we unmap the entire
919          * block entry and rely on the remaining portions being faulted
920          * back lazily.
921          */
922         stage2_put_pte(ptep, mmu, addr, level, mm_ops);
923
924         if (need_flush) {
925                 kvm_pte_t *pte_follow = kvm_pte_follow(pte, mm_ops);
926
927                 dcache_clean_inval_poc((unsigned long)pte_follow,
928                                     (unsigned long)pte_follow +
929                                             kvm_granule_size(level));
930         }
931
932         if (childp)
933                 mm_ops->put_page(childp);
934
935         return 0;
936 }
937
938 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
939 {
940         struct kvm_pgtable_walker walker = {
941                 .cb     = stage2_unmap_walker,
942                 .arg    = pgt,
943                 .flags  = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
944         };
945
946         return kvm_pgtable_walk(pgt, addr, size, &walker);
947 }
948
949 struct stage2_attr_data {
950         kvm_pte_t                       attr_set;
951         kvm_pte_t                       attr_clr;
952         kvm_pte_t                       pte;
953         u32                             level;
954         struct kvm_pgtable_mm_ops       *mm_ops;
955 };
956
957 static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
958                               enum kvm_pgtable_walk_flags flag,
959                               void * const arg)
960 {
961         kvm_pte_t pte = *ptep;
962         struct stage2_attr_data *data = arg;
963         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
964
965         if (!kvm_pte_valid(pte))
966                 return 0;
967
968         data->level = level;
969         data->pte = pte;
970         pte &= ~data->attr_clr;
971         pte |= data->attr_set;
972
973         /*
974          * We may race with the CPU trying to set the access flag here,
975          * but worst-case the access flag update gets lost and will be
976          * set on the next access instead.
977          */
978         if (data->pte != pte) {
979                 /*
980                  * Invalidate instruction cache before updating the guest
981                  * stage-2 PTE if we are going to add executable permission.
982                  */
983                 if (mm_ops->icache_inval_pou &&
984                     stage2_pte_executable(pte) && !stage2_pte_executable(*ptep))
985                         mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
986                                                   kvm_granule_size(level));
987                 WRITE_ONCE(*ptep, pte);
988         }
989
990         return 0;
991 }
992
993 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
994                                     u64 size, kvm_pte_t attr_set,
995                                     kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
996                                     u32 *level)
997 {
998         int ret;
999         kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1000         struct stage2_attr_data data = {
1001                 .attr_set       = attr_set & attr_mask,
1002                 .attr_clr       = attr_clr & attr_mask,
1003                 .mm_ops         = pgt->mm_ops,
1004         };
1005         struct kvm_pgtable_walker walker = {
1006                 .cb             = stage2_attr_walker,
1007                 .arg            = &data,
1008                 .flags          = KVM_PGTABLE_WALK_LEAF,
1009         };
1010
1011         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1012         if (ret)
1013                 return ret;
1014
1015         if (orig_pte)
1016                 *orig_pte = data.pte;
1017
1018         if (level)
1019                 *level = data.level;
1020         return 0;
1021 }
1022
1023 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1024 {
1025         return stage2_update_leaf_attrs(pgt, addr, size, 0,
1026                                         KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1027                                         NULL, NULL);
1028 }
1029
1030 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1031 {
1032         kvm_pte_t pte = 0;
1033         stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1034                                  &pte, NULL);
1035         dsb(ishst);
1036         return pte;
1037 }
1038
1039 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
1040 {
1041         kvm_pte_t pte = 0;
1042         stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
1043                                  &pte, NULL);
1044         /*
1045          * "But where's the TLBI?!", you scream.
1046          * "Over in the core code", I sigh.
1047          *
1048          * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1049          */
1050         return pte;
1051 }
1052
1053 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
1054 {
1055         kvm_pte_t pte = 0;
1056         stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
1057         return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
1058 }
1059
1060 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1061                                    enum kvm_pgtable_prot prot)
1062 {
1063         int ret;
1064         u32 level;
1065         kvm_pte_t set = 0, clr = 0;
1066
1067         if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1068                 return -EINVAL;
1069
1070         if (prot & KVM_PGTABLE_PROT_R)
1071                 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1072
1073         if (prot & KVM_PGTABLE_PROT_W)
1074                 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1075
1076         if (prot & KVM_PGTABLE_PROT_X)
1077                 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1078
1079         ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
1080         if (!ret)
1081                 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
1082         return ret;
1083 }
1084
1085 static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1086                                enum kvm_pgtable_walk_flags flag,
1087                                void * const arg)
1088 {
1089         struct kvm_pgtable *pgt = arg;
1090         struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1091         kvm_pte_t pte = *ptep;
1092         kvm_pte_t *pte_follow;
1093
1094         if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pgt, pte))
1095                 return 0;
1096
1097         pte_follow = kvm_pte_follow(pte, mm_ops);
1098         dcache_clean_inval_poc((unsigned long)pte_follow,
1099                             (unsigned long)pte_follow +
1100                                     kvm_granule_size(level));
1101         return 0;
1102 }
1103
1104 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1105 {
1106         struct kvm_pgtable_walker walker = {
1107                 .cb     = stage2_flush_walker,
1108                 .flags  = KVM_PGTABLE_WALK_LEAF,
1109                 .arg    = pgt,
1110         };
1111
1112         if (stage2_has_fwb(pgt))
1113                 return 0;
1114
1115         return kvm_pgtable_walk(pgt, addr, size, &walker);
1116 }
1117
1118
1119 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_arch *arch,
1120                               struct kvm_pgtable_mm_ops *mm_ops,
1121                               enum kvm_pgtable_stage2_flags flags,
1122                               kvm_pgtable_force_pte_cb_t force_pte_cb)
1123 {
1124         size_t pgd_sz;
1125         u64 vtcr = arch->vtcr;
1126         u32 ia_bits = VTCR_EL2_IPA(vtcr);
1127         u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1128         u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1129
1130         pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1131         pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz);
1132         if (!pgt->pgd)
1133                 return -ENOMEM;
1134
1135         pgt->ia_bits            = ia_bits;
1136         pgt->start_level        = start_level;
1137         pgt->mm_ops             = mm_ops;
1138         pgt->mmu                = &arch->mmu;
1139         pgt->flags              = flags;
1140         pgt->force_pte_cb       = force_pte_cb;
1141
1142         /* Ensure zeroed PGD pages are visible to the hardware walker */
1143         dsb(ishst);
1144         return 0;
1145 }
1146
1147 static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1148                               enum kvm_pgtable_walk_flags flag,
1149                               void * const arg)
1150 {
1151         struct kvm_pgtable_mm_ops *mm_ops = arg;
1152         kvm_pte_t pte = *ptep;
1153
1154         if (!stage2_pte_is_counted(pte))
1155                 return 0;
1156
1157         mm_ops->put_page(ptep);
1158
1159         if (kvm_pte_table(pte, level))
1160                 mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
1161
1162         return 0;
1163 }
1164
1165 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1166 {
1167         size_t pgd_sz;
1168         struct kvm_pgtable_walker walker = {
1169                 .cb     = stage2_free_walker,
1170                 .flags  = KVM_PGTABLE_WALK_LEAF |
1171                           KVM_PGTABLE_WALK_TABLE_POST,
1172                 .arg    = pgt->mm_ops,
1173         };
1174
1175         WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1176         pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1177         pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz);
1178         pgt->pgd = NULL;
1179 }