Merge tag 'sched_urgent_for_v5.15_rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / arc / include / asm / mmu_context.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4  *
5  * vineetg: May 2011
6  *  -Refactored get_new_mmu_context( ) to only handle live-mm.
7  *   retiring-mm handled in other hooks
8  *
9  * Vineetg: March 25th, 2008: Bug #92690
10  *  -Major rewrite of Core ASID allocation routine get_new_mmu_context
11  *
12  * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
13  */
14
15 #ifndef _ASM_ARC_MMU_CONTEXT_H
16 #define _ASM_ARC_MMU_CONTEXT_H
17
18 #include <linux/sched/mm.h>
19
20 #include <asm/tlb.h>
21 #include <asm-generic/mm_hooks.h>
22
23 /*              ARC ASID Management
24  *
25  * MMU tags TLBs with an 8-bit ASID, avoiding need to flush the TLB on
26  * context-switch.
27  *
28  * ASID is managed per cpu, so task threads across CPUs can have different
29  * ASID. Global ASID management is needed if hardware supports TLB shootdown
30  * and/or shared TLB across cores, which ARC doesn't.
31  *
32  * Each task is assigned unique ASID, with a simple round-robin allocator
33  * tracked in @asid_cpu. When 8-bit value rolls over,a new cycle is started
34  * over from 0, and TLB is flushed
35  *
36  * A new allocation cycle, post rollover, could potentially reassign an ASID
37  * to a different task. Thus the rule is to refresh the ASID in a new cycle.
38  * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
39  * serve as cycle/generation indicator and natural 32 bit unsigned math
40  * automagically increments the generation when lower 8 bits rollover.
41  */
42
43 #define MM_CTXT_ASID_MASK       0x000000ff /* MMU PID reg :8 bit PID */
44 #define MM_CTXT_CYCLE_MASK      (~MM_CTXT_ASID_MASK)
45
46 #define MM_CTXT_FIRST_CYCLE     (MM_CTXT_ASID_MASK + 1)
47 #define MM_CTXT_NO_ASID         0UL
48
49 #define asid_mm(mm, cpu)        mm->context.asid[cpu]
50 #define hw_pid(mm, cpu)         (asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
51
52 DECLARE_PER_CPU(unsigned int, asid_cache);
53 #define asid_cpu(cpu)           per_cpu(asid_cache, cpu)
54
55 /*
56  * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
57  * Also set the MMU PID register to existing/updated ASID
58  */
59 static inline void get_new_mmu_context(struct mm_struct *mm)
60 {
61         const unsigned int cpu = smp_processor_id();
62         unsigned long flags;
63
64         local_irq_save(flags);
65
66         /*
67          * Move to new ASID if it was not from current alloc-cycle/generation.
68          * This is done by ensuring that the generation bits in both mm->ASID
69          * and cpu's ASID counter are exactly same.
70          *
71          * Note: Callers needing new ASID unconditionally, independent of
72          *       generation, e.g. local_flush_tlb_mm() for forking  parent,
73          *       first need to destroy the context, setting it to invalid
74          *       value.
75          */
76         if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
77                 goto set_hw;
78
79         /* move to new ASID and handle rollover */
80         if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
81
82                 local_flush_tlb_all();
83
84                 /*
85                  * Above check for rollover of 8 bit ASID in 32 bit container.
86                  * If the container itself wrapped around, set it to a non zero
87                  * "generation" to distinguish from no context
88                  */
89                 if (!asid_cpu(cpu))
90                         asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
91         }
92
93         /* Assign new ASID to tsk */
94         asid_mm(mm, cpu) = asid_cpu(cpu);
95
96 set_hw:
97         mmu_setup_asid(mm, hw_pid(mm, cpu));
98
99         local_irq_restore(flags);
100 }
101
102 /*
103  * Initialize the context related info for a new mm_struct
104  * instance.
105  */
106 #define init_new_context init_new_context
107 static inline int
108 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
109 {
110         int i;
111
112         for_each_possible_cpu(i)
113                 asid_mm(mm, i) = MM_CTXT_NO_ASID;
114
115         return 0;
116 }
117
118 #define destroy_context destroy_context
119 static inline void destroy_context(struct mm_struct *mm)
120 {
121         unsigned long flags;
122
123         /* Needed to elide CONFIG_DEBUG_PREEMPT warning */
124         local_irq_save(flags);
125         asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
126         local_irq_restore(flags);
127 }
128
129 /* Prepare the MMU for task: setup PID reg with allocated ASID
130     If task doesn't have an ASID (never alloc or stolen, get a new ASID)
131 */
132 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
133                              struct task_struct *tsk)
134 {
135         const int cpu = smp_processor_id();
136
137         /*
138          * Note that the mm_cpumask is "aggregating" only, we don't clear it
139          * for the switched-out task, unlike some other arches.
140          * It is used to enlist cpus for sending TLB flush IPIs and not sending
141          * it to CPUs where a task once ran-on, could cause stale TLB entry
142          * re-use, specially for a multi-threaded task.
143          * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
144          *      For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
145          *      were to re-migrate to C1, it could access the unmapped region
146          *      via any existing stale TLB entries.
147          */
148         cpumask_set_cpu(cpu, mm_cpumask(next));
149
150         mmu_setup_pgd(next, next->pgd);
151
152         get_new_mmu_context(next);
153 }
154
155 /*
156  * activate_mm defaults (in asm-generic) to switch_mm and is called at the
157  * time of execve() to get a new ASID Note the subtlety here:
158  * get_new_mmu_context() behaves differently here vs. in switch_mm(). Here
159  * it always returns a new ASID, because mm has an unallocated "initial"
160  * value, while in latter, it moves to a new ASID, only if it was
161  * unallocated
162  */
163
164 /* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
165  * for retiring-mm. However destroy_context( ) still needs to do that because
166  * between mm_release( ) = >deactive_mm( ) and
167  * mmput => .. => __mmdrop( ) => destroy_context( )
168  * there is a good chance that task gets sched-out/in, making it's ASID valid
169  * again (this teased me for a whole day).
170  */
171
172 #include <asm-generic/mmu_context.h>
173
174 #endif /* __ASM_ARC_MMU_CONTEXT_H */