Merge tag 'dt-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / alpha / kernel / traps.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/alpha/kernel/traps.c
4  *
5  * (C) Copyright 1994 Linus Torvalds
6  */
7
8 /*
9  * This file initializes the trap entry points
10  */
11
12 #include <linux/jiffies.h>
13 #include <linux/mm.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/debug.h>
16 #include <linux/tty.h>
17 #include <linux/delay.h>
18 #include <linux/extable.h>
19 #include <linux/kallsyms.h>
20 #include <linux/ratelimit.h>
21
22 #include <asm/gentrap.h>
23 #include <linux/uaccess.h>
24 #include <asm/unaligned.h>
25 #include <asm/sysinfo.h>
26 #include <asm/hwrpb.h>
27 #include <asm/mmu_context.h>
28 #include <asm/special_insns.h>
29
30 #include "proto.h"
31
32 /* Work-around for some SRMs which mishandle opDEC faults.  */
33
34 static int opDEC_fix;
35
36 static void
37 opDEC_check(void)
38 {
39         __asm__ __volatile__ (
40         /* Load the address of... */
41         "       br      $16, 1f\n"
42         /* A stub instruction fault handler.  Just add 4 to the
43            pc and continue.  */
44         "       ldq     $16, 8($sp)\n"
45         "       addq    $16, 4, $16\n"
46         "       stq     $16, 8($sp)\n"
47         "       call_pal %[rti]\n"
48         /* Install the instruction fault handler.  */
49         "1:     lda     $17, 3\n"
50         "       call_pal %[wrent]\n"
51         /* With that in place, the fault from the round-to-minf fp
52            insn will arrive either at the "lda 4" insn (bad) or one
53            past that (good).  This places the correct fixup in %0.  */
54         "       lda %[fix], 0\n"
55         "       cvttq/svm $f31,$f31\n"
56         "       lda %[fix], 4"
57         : [fix] "=r" (opDEC_fix)
58         : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
59         : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
60
61         if (opDEC_fix)
62                 printk("opDEC fixup enabled.\n");
63 }
64
65 void
66 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
67 {
68         printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
69                regs->pc, regs->r26, regs->ps, print_tainted());
70         printk("pc is at %pSR\n", (void *)regs->pc);
71         printk("ra is at %pSR\n", (void *)regs->r26);
72         printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
73                regs->r0, regs->r1, regs->r2);
74         printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
75                regs->r3, regs->r4, regs->r5);
76         printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
77                regs->r6, regs->r7, regs->r8);
78
79         if (r9_15) {
80                 printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
81                        r9_15[9], r9_15[10], r9_15[11]);
82                 printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
83                        r9_15[12], r9_15[13], r9_15[14]);
84                 printk("s6 = %016lx\n", r9_15[15]);
85         }
86
87         printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
88                regs->r16, regs->r17, regs->r18);
89         printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
90                regs->r19, regs->r20, regs->r21);
91         printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
92                regs->r22, regs->r23, regs->r24);
93         printk("t11= %016lx  pv = %016lx  at = %016lx\n",
94                regs->r25, regs->r27, regs->r28);
95         printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
96 #if 0
97 __halt();
98 #endif
99 }
100
101 #if 0
102 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
103                            "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
104                            "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
105                            "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
106 #endif
107
108 static void
109 dik_show_code(unsigned int *pc)
110 {
111         long i;
112
113         printk("Code:");
114         for (i = -6; i < 2; i++) {
115                 unsigned int insn;
116                 if (__get_user(insn, (unsigned int __user *)pc + i))
117                         break;
118                 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
119         }
120         printk("\n");
121 }
122
123 static void
124 dik_show_trace(unsigned long *sp, const char *loglvl)
125 {
126         long i = 0;
127         printk("%sTrace:\n", loglvl);
128         while (0x1ff8 & (unsigned long) sp) {
129                 extern char _stext[], _etext[];
130                 unsigned long tmp = *sp;
131                 sp++;
132                 if (tmp < (unsigned long) &_stext)
133                         continue;
134                 if (tmp >= (unsigned long) &_etext)
135                         continue;
136                 printk("%s[<%lx>] %pSR\n", loglvl, tmp, (void *)tmp);
137                 if (i > 40) {
138                         printk("%s ...", loglvl);
139                         break;
140                 }
141         }
142         printk("%s\n", loglvl);
143 }
144
145 static int kstack_depth_to_print = 24;
146
147 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
148 {
149         unsigned long *stack;
150         int i;
151
152         /*
153          * debugging aid: "show_stack(NULL, NULL, KERN_EMERG);" prints the
154          * back trace for this cpu.
155          */
156         if(sp==NULL)
157                 sp=(unsigned long*)&sp;
158
159         stack = sp;
160         for(i=0; i < kstack_depth_to_print; i++) {
161                 if (((long) stack & (THREAD_SIZE-1)) == 0)
162                         break;
163                 if ((i % 4) == 0) {
164                         if (i)
165                                 pr_cont("\n");
166                         printk("%s       ", loglvl);
167                 } else {
168                         pr_cont(" ");
169                 }
170                 pr_cont("%016lx", *stack++);
171         }
172         pr_cont("\n");
173         dik_show_trace(sp, loglvl);
174 }
175
176 void
177 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
178 {
179         if (regs->ps & 8)
180                 return;
181 #ifdef CONFIG_SMP
182         printk("CPU %d ", hard_smp_processor_id());
183 #endif
184         printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
185         dik_show_regs(regs, r9_15);
186         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
187         dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT);
188         dik_show_code((unsigned int *)regs->pc);
189
190         if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
191                 printk("die_if_kernel recursion detected.\n");
192                 local_irq_enable();
193                 while (1);
194         }
195         do_exit(SIGSEGV);
196 }
197
198 #ifndef CONFIG_MATHEMU
199 static long dummy_emul(void) { return 0; }
200 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
201   = (void *)dummy_emul;
202 EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise);
203 long (*alpha_fp_emul) (unsigned long pc)
204   = (void *)dummy_emul;
205 EXPORT_SYMBOL_GPL(alpha_fp_emul);
206 #else
207 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
208 long alpha_fp_emul (unsigned long pc);
209 #endif
210
211 asmlinkage void
212 do_entArith(unsigned long summary, unsigned long write_mask,
213             struct pt_regs *regs)
214 {
215         long si_code = FPE_FLTINV;
216
217         if (summary & 1) {
218                 /* Software-completion summary bit is set, so try to
219                    emulate the instruction.  If the processor supports
220                    precise exceptions, we don't have to search.  */
221                 if (!amask(AMASK_PRECISE_TRAP))
222                         si_code = alpha_fp_emul(regs->pc - 4);
223                 else
224                         si_code = alpha_fp_emul_imprecise(regs, write_mask);
225                 if (si_code == 0)
226                         return;
227         }
228         die_if_kernel("Arithmetic fault", regs, 0, NULL);
229
230         send_sig_fault_trapno(SIGFPE, si_code, (void __user *) regs->pc, 0, current);
231 }
232
233 asmlinkage void
234 do_entIF(unsigned long type, struct pt_regs *regs)
235 {
236         int signo, code;
237
238         if ((regs->ps & ~IPL_MAX) == 0) {
239                 if (type == 1) {
240                         const unsigned int *data
241                           = (const unsigned int *) regs->pc;
242                         printk("Kernel bug at %s:%d\n",
243                                (const char *)(data[1] | (long)data[2] << 32), 
244                                data[0]);
245                 }
246 #ifdef CONFIG_ALPHA_WTINT
247                 if (type == 4) {
248                         /* If CALL_PAL WTINT is totally unsupported by the
249                            PALcode, e.g. MILO, "emulate" it by overwriting
250                            the insn.  */
251                         unsigned int *pinsn
252                           = (unsigned int *) regs->pc - 1;
253                         if (*pinsn == PAL_wtint) {
254                                 *pinsn = 0x47e01400; /* mov 0,$0 */
255                                 imb();
256                                 regs->r0 = 0;
257                                 return;
258                         }
259                 }
260 #endif /* ALPHA_WTINT */
261                 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
262                               regs, type, NULL);
263         }
264
265         switch (type) {
266               case 0: /* breakpoint */
267                 if (ptrace_cancel_bpt(current)) {
268                         regs->pc -= 4;  /* make pc point to former bpt */
269                 }
270
271                 send_sig_fault(SIGTRAP, TRAP_BRKPT, (void __user *)regs->pc,
272                                current);
273                 return;
274
275               case 1: /* bugcheck */
276                 send_sig_fault_trapno(SIGTRAP, TRAP_UNK,
277                                       (void __user *) regs->pc, 0, current);
278                 return;
279                 
280               case 2: /* gentrap */
281                 switch ((long) regs->r16) {
282                 case GEN_INTOVF:
283                         signo = SIGFPE;
284                         code = FPE_INTOVF;
285                         break;
286                 case GEN_INTDIV:
287                         signo = SIGFPE;
288                         code = FPE_INTDIV;
289                         break;
290                 case GEN_FLTOVF:
291                         signo = SIGFPE;
292                         code = FPE_FLTOVF;
293                         break;
294                 case GEN_FLTDIV:
295                         signo = SIGFPE;
296                         code = FPE_FLTDIV;
297                         break;
298                 case GEN_FLTUND:
299                         signo = SIGFPE;
300                         code = FPE_FLTUND;
301                         break;
302                 case GEN_FLTINV:
303                         signo = SIGFPE;
304                         code = FPE_FLTINV;
305                         break;
306                 case GEN_FLTINE:
307                         signo = SIGFPE;
308                         code = FPE_FLTRES;
309                         break;
310                 case GEN_ROPRAND:
311                         signo = SIGFPE;
312                         code = FPE_FLTUNK;
313                         break;
314
315                 case GEN_DECOVF:
316                 case GEN_DECDIV:
317                 case GEN_DECINV:
318                 case GEN_ASSERTERR:
319                 case GEN_NULPTRERR:
320                 case GEN_STKOVF:
321                 case GEN_STRLENERR:
322                 case GEN_SUBSTRERR:
323                 case GEN_RANGERR:
324                 case GEN_SUBRNG:
325                 case GEN_SUBRNG1:
326                 case GEN_SUBRNG2:
327                 case GEN_SUBRNG3:
328                 case GEN_SUBRNG4:
329                 case GEN_SUBRNG5:
330                 case GEN_SUBRNG6:
331                 case GEN_SUBRNG7:
332                 default:
333                         signo = SIGTRAP;
334                         code = TRAP_UNK;
335                         break;
336                 }
337
338                 send_sig_fault_trapno(signo, code, (void __user *) regs->pc,
339                                       regs->r16, current);
340                 return;
341
342               case 4: /* opDEC */
343                 if (implver() == IMPLVER_EV4) {
344                         long si_code;
345
346                         /* The some versions of SRM do not handle
347                            the opDEC properly - they return the PC of the
348                            opDEC fault, not the instruction after as the
349                            Alpha architecture requires.  Here we fix it up.
350                            We do this by intentionally causing an opDEC
351                            fault during the boot sequence and testing if
352                            we get the correct PC.  If not, we set a flag
353                            to correct it every time through.  */
354                         regs->pc += opDEC_fix; 
355                         
356                         /* EV4 does not implement anything except normal
357                            rounding.  Everything else will come here as
358                            an illegal instruction.  Emulate them.  */
359                         si_code = alpha_fp_emul(regs->pc - 4);
360                         if (si_code == 0)
361                                 return;
362                         if (si_code > 0) {
363                                 send_sig_fault_trapno(SIGFPE, si_code,
364                                                       (void __user *) regs->pc,
365                                                       0, current);
366                                 return;
367                         }
368                 }
369                 break;
370
371               case 3: /* FEN fault */
372                 /* Irritating users can call PAL_clrfen to disable the
373                    FPU for the process.  The kernel will then trap in
374                    do_switch_stack and undo_switch_stack when we try
375                    to save and restore the FP registers.
376
377                    Given that GCC by default generates code that uses the
378                    FP registers, PAL_clrfen is not useful except for DoS
379                    attacks.  So turn the bleeding FPU back on and be done
380                    with it.  */
381                 current_thread_info()->pcb.flags |= 1;
382                 __reload_thread(&current_thread_info()->pcb);
383                 return;
384
385               case 5: /* illoc */
386               default: /* unexpected instruction-fault type */
387                       ;
388         }
389
390         send_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc, current);
391 }
392
393 /* There is an ifdef in the PALcode in MILO that enables a 
394    "kernel debugging entry point" as an unprivileged call_pal.
395
396    We don't want to have anything to do with it, but unfortunately
397    several versions of MILO included in distributions have it enabled,
398    and if we don't put something on the entry point we'll oops.  */
399
400 asmlinkage void
401 do_entDbg(struct pt_regs *regs)
402 {
403         die_if_kernel("Instruction fault", regs, 0, NULL);
404
405         force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc);
406 }
407
408
409 /*
410  * entUna has a different register layout to be reasonably simple. It
411  * needs access to all the integer registers (the kernel doesn't use
412  * fp-regs), and it needs to have them in order for simpler access.
413  *
414  * Due to the non-standard register layout (and because we don't want
415  * to handle floating-point regs), user-mode unaligned accesses are
416  * handled separately by do_entUnaUser below.
417  *
418  * Oh, btw, we don't handle the "gp" register correctly, but if we fault
419  * on a gp-register unaligned load/store, something is _very_ wrong
420  * in the kernel anyway..
421  */
422 struct allregs {
423         unsigned long regs[32];
424         unsigned long ps, pc, gp, a0, a1, a2;
425 };
426
427 struct unaligned_stat {
428         unsigned long count, va, pc;
429 } unaligned[2];
430
431
432 /* Macro for exception fixup code to access integer registers.  */
433 #define una_reg(r)  (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
434
435
436 asmlinkage void
437 do_entUna(void * va, unsigned long opcode, unsigned long reg,
438           struct allregs *regs)
439 {
440         long error, tmp1, tmp2, tmp3, tmp4;
441         unsigned long pc = regs->pc - 4;
442         unsigned long *_regs = regs->regs;
443         const struct exception_table_entry *fixup;
444
445         unaligned[0].count++;
446         unaligned[0].va = (unsigned long) va;
447         unaligned[0].pc = pc;
448
449         /* We don't want to use the generic get/put unaligned macros as
450            we want to trap exceptions.  Only if we actually get an
451            exception will we decide whether we should have caught it.  */
452
453         switch (opcode) {
454         case 0x0c: /* ldwu */
455                 __asm__ __volatile__(
456                 "1:     ldq_u %1,0(%3)\n"
457                 "2:     ldq_u %2,1(%3)\n"
458                 "       extwl %1,%3,%1\n"
459                 "       extwh %2,%3,%2\n"
460                 "3:\n"
461                 EXC(1b,3b,%1,%0)
462                 EXC(2b,3b,%2,%0)
463                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
464                         : "r"(va), "0"(0));
465                 if (error)
466                         goto got_exception;
467                 una_reg(reg) = tmp1|tmp2;
468                 return;
469
470         case 0x28: /* ldl */
471                 __asm__ __volatile__(
472                 "1:     ldq_u %1,0(%3)\n"
473                 "2:     ldq_u %2,3(%3)\n"
474                 "       extll %1,%3,%1\n"
475                 "       extlh %2,%3,%2\n"
476                 "3:\n"
477                 EXC(1b,3b,%1,%0)
478                 EXC(2b,3b,%2,%0)
479                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
480                         : "r"(va), "0"(0));
481                 if (error)
482                         goto got_exception;
483                 una_reg(reg) = (int)(tmp1|tmp2);
484                 return;
485
486         case 0x29: /* ldq */
487                 __asm__ __volatile__(
488                 "1:     ldq_u %1,0(%3)\n"
489                 "2:     ldq_u %2,7(%3)\n"
490                 "       extql %1,%3,%1\n"
491                 "       extqh %2,%3,%2\n"
492                 "3:\n"
493                 EXC(1b,3b,%1,%0)
494                 EXC(2b,3b,%2,%0)
495                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
496                         : "r"(va), "0"(0));
497                 if (error)
498                         goto got_exception;
499                 una_reg(reg) = tmp1|tmp2;
500                 return;
501
502         /* Note that the store sequences do not indicate that they change
503            memory because it _should_ be affecting nothing in this context.
504            (Otherwise we have other, much larger, problems.)  */
505         case 0x0d: /* stw */
506                 __asm__ __volatile__(
507                 "1:     ldq_u %2,1(%5)\n"
508                 "2:     ldq_u %1,0(%5)\n"
509                 "       inswh %6,%5,%4\n"
510                 "       inswl %6,%5,%3\n"
511                 "       mskwh %2,%5,%2\n"
512                 "       mskwl %1,%5,%1\n"
513                 "       or %2,%4,%2\n"
514                 "       or %1,%3,%1\n"
515                 "3:     stq_u %2,1(%5)\n"
516                 "4:     stq_u %1,0(%5)\n"
517                 "5:\n"
518                 EXC(1b,5b,%2,%0)
519                 EXC(2b,5b,%1,%0)
520                 EXC(3b,5b,$31,%0)
521                 EXC(4b,5b,$31,%0)
522                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
523                           "=&r"(tmp3), "=&r"(tmp4)
524                         : "r"(va), "r"(una_reg(reg)), "0"(0));
525                 if (error)
526                         goto got_exception;
527                 return;
528
529         case 0x2c: /* stl */
530                 __asm__ __volatile__(
531                 "1:     ldq_u %2,3(%5)\n"
532                 "2:     ldq_u %1,0(%5)\n"
533                 "       inslh %6,%5,%4\n"
534                 "       insll %6,%5,%3\n"
535                 "       msklh %2,%5,%2\n"
536                 "       mskll %1,%5,%1\n"
537                 "       or %2,%4,%2\n"
538                 "       or %1,%3,%1\n"
539                 "3:     stq_u %2,3(%5)\n"
540                 "4:     stq_u %1,0(%5)\n"
541                 "5:\n"
542                 EXC(1b,5b,%2,%0)
543                 EXC(2b,5b,%1,%0)
544                 EXC(3b,5b,$31,%0)
545                 EXC(4b,5b,$31,%0)
546                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
547                           "=&r"(tmp3), "=&r"(tmp4)
548                         : "r"(va), "r"(una_reg(reg)), "0"(0));
549                 if (error)
550                         goto got_exception;
551                 return;
552
553         case 0x2d: /* stq */
554                 __asm__ __volatile__(
555                 "1:     ldq_u %2,7(%5)\n"
556                 "2:     ldq_u %1,0(%5)\n"
557                 "       insqh %6,%5,%4\n"
558                 "       insql %6,%5,%3\n"
559                 "       mskqh %2,%5,%2\n"
560                 "       mskql %1,%5,%1\n"
561                 "       or %2,%4,%2\n"
562                 "       or %1,%3,%1\n"
563                 "3:     stq_u %2,7(%5)\n"
564                 "4:     stq_u %1,0(%5)\n"
565                 "5:\n"
566                 EXC(1b,5b,%2,%0)
567                 EXC(2b,5b,%1,%0)
568                 EXC(3b,5b,$31,%0)
569                 EXC(4b,5b,$31,%0)
570                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
571                           "=&r"(tmp3), "=&r"(tmp4)
572                         : "r"(va), "r"(una_reg(reg)), "0"(0));
573                 if (error)
574                         goto got_exception;
575                 return;
576         }
577
578         printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
579                 pc, va, opcode, reg);
580         do_exit(SIGSEGV);
581
582 got_exception:
583         /* Ok, we caught the exception, but we don't want it.  Is there
584            someone to pass it along to?  */
585         if ((fixup = search_exception_tables(pc)) != 0) {
586                 unsigned long newpc;
587                 newpc = fixup_exception(una_reg, fixup, pc);
588
589                 printk("Forwarding unaligned exception at %lx (%lx)\n",
590                        pc, newpc);
591
592                 regs->pc = newpc;
593                 return;
594         }
595
596         /*
597          * Yikes!  No one to forward the exception to.
598          * Since the registers are in a weird format, dump them ourselves.
599          */
600
601         printk("%s(%d): unhandled unaligned exception\n",
602                current->comm, task_pid_nr(current));
603
604         printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
605                pc, una_reg(26), regs->ps);
606         printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
607                una_reg(0), una_reg(1), una_reg(2));
608         printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
609                una_reg(3), una_reg(4), una_reg(5));
610         printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
611                una_reg(6), una_reg(7), una_reg(8));
612         printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
613                una_reg(9), una_reg(10), una_reg(11));
614         printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
615                una_reg(12), una_reg(13), una_reg(14));
616         printk("r15= %016lx\n", una_reg(15));
617         printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
618                una_reg(16), una_reg(17), una_reg(18));
619         printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
620                una_reg(19), una_reg(20), una_reg(21));
621         printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
622                una_reg(22), una_reg(23), una_reg(24));
623         printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
624                una_reg(25), una_reg(27), una_reg(28));
625         printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
626
627         dik_show_code((unsigned int *)pc);
628         dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT);
629
630         if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
631                 printk("die_if_kernel recursion detected.\n");
632                 local_irq_enable();
633                 while (1);
634         }
635         do_exit(SIGSEGV);
636 }
637
638 /*
639  * Convert an s-floating point value in memory format to the
640  * corresponding value in register format.  The exponent
641  * needs to be remapped to preserve non-finite values
642  * (infinities, not-a-numbers, denormals).
643  */
644 static inline unsigned long
645 s_mem_to_reg (unsigned long s_mem)
646 {
647         unsigned long frac    = (s_mem >>  0) & 0x7fffff;
648         unsigned long sign    = (s_mem >> 31) & 0x1;
649         unsigned long exp_msb = (s_mem >> 30) & 0x1;
650         unsigned long exp_low = (s_mem >> 23) & 0x7f;
651         unsigned long exp;
652
653         exp = (exp_msb << 10) | exp_low;        /* common case */
654         if (exp_msb) {
655                 if (exp_low == 0x7f) {
656                         exp = 0x7ff;
657                 }
658         } else {
659                 if (exp_low == 0x00) {
660                         exp = 0x000;
661                 } else {
662                         exp |= (0x7 << 7);
663                 }
664         }
665         return (sign << 63) | (exp << 52) | (frac << 29);
666 }
667
668 /*
669  * Convert an s-floating point value in register format to the
670  * corresponding value in memory format.
671  */
672 static inline unsigned long
673 s_reg_to_mem (unsigned long s_reg)
674 {
675         return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
676 }
677
678 /*
679  * Handle user-level unaligned fault.  Handling user-level unaligned
680  * faults is *extremely* slow and produces nasty messages.  A user
681  * program *should* fix unaligned faults ASAP.
682  *
683  * Notice that we have (almost) the regular kernel stack layout here,
684  * so finding the appropriate registers is a little more difficult
685  * than in the kernel case.
686  *
687  * Finally, we handle regular integer load/stores only.  In
688  * particular, load-linked/store-conditionally and floating point
689  * load/stores are not supported.  The former make no sense with
690  * unaligned faults (they are guaranteed to fail) and I don't think
691  * the latter will occur in any decent program.
692  *
693  * Sigh. We *do* have to handle some FP operations, because GCC will
694  * uses them as temporary storage for integer memory to memory copies.
695  * However, we need to deal with stt/ldt and sts/lds only.
696  */
697
698 #define OP_INT_MASK     ( 1L << 0x28 | 1L << 0x2c   /* ldl stl */       \
699                         | 1L << 0x29 | 1L << 0x2d   /* ldq stq */       \
700                         | 1L << 0x0c | 1L << 0x0d   /* ldwu stw */      \
701                         | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
702
703 #define OP_WRITE_MASK   ( 1L << 0x26 | 1L << 0x27   /* sts stt */       \
704                         | 1L << 0x2c | 1L << 0x2d   /* stl stq */       \
705                         | 1L << 0x0d | 1L << 0x0e ) /* stw stb */
706
707 #define R(x)    ((size_t) &((struct pt_regs *)0)->x)
708
709 static int unauser_reg_offsets[32] = {
710         R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
711         /* r9 ... r15 are stored in front of regs.  */
712         -56, -48, -40, -32, -24, -16, -8,
713         R(r16), R(r17), R(r18),
714         R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
715         R(r27), R(r28), R(gp),
716         0, 0
717 };
718
719 #undef R
720
721 asmlinkage void
722 do_entUnaUser(void __user * va, unsigned long opcode,
723               unsigned long reg, struct pt_regs *regs)
724 {
725         static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
726
727         unsigned long tmp1, tmp2, tmp3, tmp4;
728         unsigned long fake_reg, *reg_addr = &fake_reg;
729         int si_code;
730         long error;
731
732         /* Check the UAC bits to decide what the user wants us to do
733            with the unaligned access.  */
734
735         if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
736                 if (__ratelimit(&ratelimit)) {
737                         printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
738                                current->comm, task_pid_nr(current),
739                                regs->pc - 4, va, opcode, reg);
740                 }
741         }
742         if ((current_thread_info()->status & TS_UAC_SIGBUS))
743                 goto give_sigbus;
744         /* Not sure why you'd want to use this, but... */
745         if ((current_thread_info()->status & TS_UAC_NOFIX))
746                 return;
747
748         /* Don't bother reading ds in the access check since we already
749            know that this came from the user.  Also rely on the fact that
750            the page at TASK_SIZE is unmapped and so can't be touched anyway. */
751         if ((unsigned long)va >= TASK_SIZE)
752                 goto give_sigsegv;
753
754         ++unaligned[1].count;
755         unaligned[1].va = (unsigned long)va;
756         unaligned[1].pc = regs->pc - 4;
757
758         if ((1L << opcode) & OP_INT_MASK) {
759                 /* it's an integer load/store */
760                 if (reg < 30) {
761                         reg_addr = (unsigned long *)
762                           ((char *)regs + unauser_reg_offsets[reg]);
763                 } else if (reg == 30) {
764                         /* usp in PAL regs */
765                         fake_reg = rdusp();
766                 } else {
767                         /* zero "register" */
768                         fake_reg = 0;
769                 }
770         }
771
772         /* We don't want to use the generic get/put unaligned macros as
773            we want to trap exceptions.  Only if we actually get an
774            exception will we decide whether we should have caught it.  */
775
776         switch (opcode) {
777         case 0x0c: /* ldwu */
778                 __asm__ __volatile__(
779                 "1:     ldq_u %1,0(%3)\n"
780                 "2:     ldq_u %2,1(%3)\n"
781                 "       extwl %1,%3,%1\n"
782                 "       extwh %2,%3,%2\n"
783                 "3:\n"
784                 EXC(1b,3b,%1,%0)
785                 EXC(2b,3b,%2,%0)
786                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
787                         : "r"(va), "0"(0));
788                 if (error)
789                         goto give_sigsegv;
790                 *reg_addr = tmp1|tmp2;
791                 break;
792
793         case 0x22: /* lds */
794                 __asm__ __volatile__(
795                 "1:     ldq_u %1,0(%3)\n"
796                 "2:     ldq_u %2,3(%3)\n"
797                 "       extll %1,%3,%1\n"
798                 "       extlh %2,%3,%2\n"
799                 "3:\n"
800                 EXC(1b,3b,%1,%0)
801                 EXC(2b,3b,%2,%0)
802                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
803                         : "r"(va), "0"(0));
804                 if (error)
805                         goto give_sigsegv;
806                 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
807                 return;
808
809         case 0x23: /* ldt */
810                 __asm__ __volatile__(
811                 "1:     ldq_u %1,0(%3)\n"
812                 "2:     ldq_u %2,7(%3)\n"
813                 "       extql %1,%3,%1\n"
814                 "       extqh %2,%3,%2\n"
815                 "3:\n"
816                 EXC(1b,3b,%1,%0)
817                 EXC(2b,3b,%2,%0)
818                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
819                         : "r"(va), "0"(0));
820                 if (error)
821                         goto give_sigsegv;
822                 alpha_write_fp_reg(reg, tmp1|tmp2);
823                 return;
824
825         case 0x28: /* ldl */
826                 __asm__ __volatile__(
827                 "1:     ldq_u %1,0(%3)\n"
828                 "2:     ldq_u %2,3(%3)\n"
829                 "       extll %1,%3,%1\n"
830                 "       extlh %2,%3,%2\n"
831                 "3:\n"
832                 EXC(1b,3b,%1,%0)
833                 EXC(2b,3b,%2,%0)
834                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
835                         : "r"(va), "0"(0));
836                 if (error)
837                         goto give_sigsegv;
838                 *reg_addr = (int)(tmp1|tmp2);
839                 break;
840
841         case 0x29: /* ldq */
842                 __asm__ __volatile__(
843                 "1:     ldq_u %1,0(%3)\n"
844                 "2:     ldq_u %2,7(%3)\n"
845                 "       extql %1,%3,%1\n"
846                 "       extqh %2,%3,%2\n"
847                 "3:\n"
848                 EXC(1b,3b,%1,%0)
849                 EXC(2b,3b,%2,%0)
850                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
851                         : "r"(va), "0"(0));
852                 if (error)
853                         goto give_sigsegv;
854                 *reg_addr = tmp1|tmp2;
855                 break;
856
857         /* Note that the store sequences do not indicate that they change
858            memory because it _should_ be affecting nothing in this context.
859            (Otherwise we have other, much larger, problems.)  */
860         case 0x0d: /* stw */
861                 __asm__ __volatile__(
862                 "1:     ldq_u %2,1(%5)\n"
863                 "2:     ldq_u %1,0(%5)\n"
864                 "       inswh %6,%5,%4\n"
865                 "       inswl %6,%5,%3\n"
866                 "       mskwh %2,%5,%2\n"
867                 "       mskwl %1,%5,%1\n"
868                 "       or %2,%4,%2\n"
869                 "       or %1,%3,%1\n"
870                 "3:     stq_u %2,1(%5)\n"
871                 "4:     stq_u %1,0(%5)\n"
872                 "5:\n"
873                 EXC(1b,5b,%2,%0)
874                 EXC(2b,5b,%1,%0)
875                 EXC(3b,5b,$31,%0)
876                 EXC(4b,5b,$31,%0)
877                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
878                           "=&r"(tmp3), "=&r"(tmp4)
879                         : "r"(va), "r"(*reg_addr), "0"(0));
880                 if (error)
881                         goto give_sigsegv;
882                 return;
883
884         case 0x26: /* sts */
885                 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
886                 fallthrough;
887
888         case 0x2c: /* stl */
889                 __asm__ __volatile__(
890                 "1:     ldq_u %2,3(%5)\n"
891                 "2:     ldq_u %1,0(%5)\n"
892                 "       inslh %6,%5,%4\n"
893                 "       insll %6,%5,%3\n"
894                 "       msklh %2,%5,%2\n"
895                 "       mskll %1,%5,%1\n"
896                 "       or %2,%4,%2\n"
897                 "       or %1,%3,%1\n"
898                 "3:     stq_u %2,3(%5)\n"
899                 "4:     stq_u %1,0(%5)\n"
900                 "5:\n"
901                 EXC(1b,5b,%2,%0)
902                 EXC(2b,5b,%1,%0)
903                 EXC(3b,5b,$31,%0)
904                 EXC(4b,5b,$31,%0)
905                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
906                           "=&r"(tmp3), "=&r"(tmp4)
907                         : "r"(va), "r"(*reg_addr), "0"(0));
908                 if (error)
909                         goto give_sigsegv;
910                 return;
911
912         case 0x27: /* stt */
913                 fake_reg = alpha_read_fp_reg(reg);
914                 fallthrough;
915
916         case 0x2d: /* stq */
917                 __asm__ __volatile__(
918                 "1:     ldq_u %2,7(%5)\n"
919                 "2:     ldq_u %1,0(%5)\n"
920                 "       insqh %6,%5,%4\n"
921                 "       insql %6,%5,%3\n"
922                 "       mskqh %2,%5,%2\n"
923                 "       mskql %1,%5,%1\n"
924                 "       or %2,%4,%2\n"
925                 "       or %1,%3,%1\n"
926                 "3:     stq_u %2,7(%5)\n"
927                 "4:     stq_u %1,0(%5)\n"
928                 "5:\n"
929                 EXC(1b,5b,%2,%0)
930                 EXC(2b,5b,%1,%0)
931                 EXC(3b,5b,$31,%0)
932                 EXC(4b,5b,$31,%0)
933                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
934                           "=&r"(tmp3), "=&r"(tmp4)
935                         : "r"(va), "r"(*reg_addr), "0"(0));
936                 if (error)
937                         goto give_sigsegv;
938                 return;
939
940         default:
941                 /* What instruction were you trying to use, exactly?  */
942                 goto give_sigbus;
943         }
944
945         /* Only integer loads should get here; everyone else returns early. */
946         if (reg == 30)
947                 wrusp(fake_reg);
948         return;
949
950 give_sigsegv:
951         regs->pc -= 4;  /* make pc point to faulting insn */
952
953         /* We need to replicate some of the logic in mm/fault.c,
954            since we don't have access to the fault code in the
955            exception handling return path.  */
956         if ((unsigned long)va >= TASK_SIZE)
957                 si_code = SEGV_ACCERR;
958         else {
959                 struct mm_struct *mm = current->mm;
960                 mmap_read_lock(mm);
961                 if (find_vma(mm, (unsigned long)va))
962                         si_code = SEGV_ACCERR;
963                 else
964                         si_code = SEGV_MAPERR;
965                 mmap_read_unlock(mm);
966         }
967         send_sig_fault(SIGSEGV, si_code, va, current);
968         return;
969
970 give_sigbus:
971         regs->pc -= 4;
972         send_sig_fault(SIGBUS, BUS_ADRALN, va, current);
973         return;
974 }
975
976 void
977 trap_init(void)
978 {
979         /* Tell PAL-code what global pointer we want in the kernel.  */
980         register unsigned long gptr __asm__("$29");
981         wrkgp(gptr);
982
983         /* Hack for Multia (UDB) and JENSEN: some of their SRMs have
984            a bug in the handling of the opDEC fault.  Fix it up if so.  */
985         if (implver() == IMPLVER_EV4)
986                 opDEC_check();
987
988         wrent(entArith, 1);
989         wrent(entMM, 2);
990         wrent(entIF, 3);
991         wrent(entUna, 4);
992         wrent(entSys, 5);
993         wrent(entDbg, 6);
994 }