Merge tag 'cxl-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
[linux-2.6-microblaze.git] / Documentation / networking / dsa / dsa.rst
1 ============
2 Architecture
3 ============
4
5 This document describes the **Distributed Switch Architecture (DSA)** subsystem
6 design principles, limitations, interactions with other subsystems, and how to
7 develop drivers for this subsystem as well as a TODO for developers interested
8 in joining the effort.
9
10 Design principles
11 =================
12
13 The Distributed Switch Architecture is a subsystem which was primarily designed
14 to support Marvell Ethernet switches (MV88E6xxx, a.k.a Linkstreet product line)
15 using Linux, but has since evolved to support other vendors as well.
16
17 The original philosophy behind this design was to be able to use unmodified
18 Linux tools such as bridge, iproute2, ifconfig to work transparently whether
19 they configured/queried a switch port network device or a regular network
20 device.
21
22 An Ethernet switch is typically comprised of multiple front-panel ports, and one
23 or more CPU or management port. The DSA subsystem currently relies on the
24 presence of a management port connected to an Ethernet controller capable of
25 receiving Ethernet frames from the switch. This is a very common setup for all
26 kinds of Ethernet switches found in Small Home and Office products: routers,
27 gateways, or even top-of-the rack switches. This host Ethernet controller will
28 be later referred to as "master" and "cpu" in DSA terminology and code.
29
30 The D in DSA stands for Distributed, because the subsystem has been designed
31 with the ability to configure and manage cascaded switches on top of each other
32 using upstream and downstream Ethernet links between switches. These specific
33 ports are referred to as "dsa" ports in DSA terminology and code. A collection
34 of multiple switches connected to each other is called a "switch tree".
35
36 For each front-panel port, DSA will create specialized network devices which are
37 used as controlling and data-flowing endpoints for use by the Linux networking
38 stack. These specialized network interfaces are referred to as "slave" network
39 interfaces in DSA terminology and code.
40
41 The ideal case for using DSA is when an Ethernet switch supports a "switch tag"
42 which is a hardware feature making the switch insert a specific tag for each
43 Ethernet frames it received to/from specific ports to help the management
44 interface figure out:
45
46 - what port is this frame coming from
47 - what was the reason why this frame got forwarded
48 - how to send CPU originated traffic to specific ports
49
50 The subsystem does support switches not capable of inserting/stripping tags, but
51 the features might be slightly limited in that case (traffic separation relies
52 on Port-based VLAN IDs).
53
54 Note that DSA does not currently create network interfaces for the "cpu" and
55 "dsa" ports because:
56
57 - the "cpu" port is the Ethernet switch facing side of the management
58   controller, and as such, would create a duplication of feature, since you
59   would get two interfaces for the same conduit: master netdev, and "cpu" netdev
60
61 - the "dsa" port(s) are just conduits between two or more switches, and as such
62   cannot really be used as proper network interfaces either, only the
63   downstream, or the top-most upstream interface makes sense with that model
64
65 Switch tagging protocols
66 ------------------------
67
68 DSA supports many vendor-specific tagging protocols, one software-defined
69 tagging protocol, and a tag-less mode as well (``DSA_TAG_PROTO_NONE``).
70
71 The exact format of the tag protocol is vendor specific, but in general, they
72 all contain something which:
73
74 - identifies which port the Ethernet frame came from/should be sent to
75 - provides a reason why this frame was forwarded to the management interface
76
77 All tagging protocols are in ``net/dsa/tag_*.c`` files and implement the
78 methods of the ``struct dsa_device_ops`` structure, which are detailed below.
79
80 Tagging protocols generally fall in one of three categories:
81
82 1. The switch-specific frame header is located before the Ethernet header,
83    shifting to the right (from the perspective of the DSA master's frame
84    parser) the MAC DA, MAC SA, EtherType and the entire L2 payload.
85 2. The switch-specific frame header is located before the EtherType, keeping
86    the MAC DA and MAC SA in place from the DSA master's perspective, but
87    shifting the 'real' EtherType and L2 payload to the right.
88 3. The switch-specific frame header is located at the tail of the packet,
89    keeping all frame headers in place and not altering the view of the packet
90    that the DSA master's frame parser has.
91
92 A tagging protocol may tag all packets with switch tags of the same length, or
93 the tag length might vary (for example packets with PTP timestamps might
94 require an extended switch tag, or there might be one tag length on TX and a
95 different one on RX). Either way, the tagging protocol driver must populate the
96 ``struct dsa_device_ops::needed_headroom`` and/or ``struct dsa_device_ops::needed_tailroom``
97 with the length in octets of the longest switch frame header/trailer. The DSA
98 framework will automatically adjust the MTU of the master interface to
99 accommodate for this extra size in order for DSA user ports to support the
100 standard MTU (L2 payload length) of 1500 octets. The ``needed_headroom`` and
101 ``needed_tailroom`` properties are also used to request from the network stack,
102 on a best-effort basis, the allocation of packets with enough extra space such
103 that the act of pushing the switch tag on transmission of a packet does not
104 cause it to reallocate due to lack of memory.
105
106 Even though applications are not expected to parse DSA-specific frame headers,
107 the format on the wire of the tagging protocol represents an Application Binary
108 Interface exposed by the kernel towards user space, for decoders such as
109 ``libpcap``. The tagging protocol driver must populate the ``proto`` member of
110 ``struct dsa_device_ops`` with a value that uniquely describes the
111 characteristics of the interaction required between the switch hardware and the
112 data path driver: the offset of each bit field within the frame header and any
113 stateful processing required to deal with the frames (as may be required for
114 PTP timestamping).
115
116 From the perspective of the network stack, all switches within the same DSA
117 switch tree use the same tagging protocol. In case of a packet transiting a
118 fabric with more than one switch, the switch-specific frame header is inserted
119 by the first switch in the fabric that the packet was received on. This header
120 typically contains information regarding its type (whether it is a control
121 frame that must be trapped to the CPU, or a data frame to be forwarded).
122 Control frames should be decapsulated only by the software data path, whereas
123 data frames might also be autonomously forwarded towards other user ports of
124 other switches from the same fabric, and in this case, the outermost switch
125 ports must decapsulate the packet.
126
127 Note that in certain cases, it might be the case that the tagging format used
128 by a leaf switch (not connected directly to the CPU) to not be the same as what
129 the network stack sees. This can be seen with Marvell switch trees, where the
130 CPU port can be configured to use either the DSA or the Ethertype DSA (EDSA)
131 format, but the DSA links are configured to use the shorter (without Ethertype)
132 DSA frame header, in order to reduce the autonomous packet forwarding overhead.
133 It still remains the case that, if the DSA switch tree is configured for the
134 EDSA tagging protocol, the operating system sees EDSA-tagged packets from the
135 leaf switches that tagged them with the shorter DSA header. This can be done
136 because the Marvell switch connected directly to the CPU is configured to
137 perform tag translation between DSA and EDSA (which is simply the operation of
138 adding or removing the ``ETH_P_EDSA`` EtherType and some padding octets).
139
140 It is possible to construct cascaded setups of DSA switches even if their
141 tagging protocols are not compatible with one another. In this case, there are
142 no DSA links in this fabric, and each switch constitutes a disjoint DSA switch
143 tree. The DSA links are viewed as simply a pair of a DSA master (the out-facing
144 port of the upstream DSA switch) and a CPU port (the in-facing port of the
145 downstream DSA switch).
146
147 The tagging protocol of the attached DSA switch tree can be viewed through the
148 ``dsa/tagging`` sysfs attribute of the DSA master::
149
150     cat /sys/class/net/eth0/dsa/tagging
151
152 If the hardware and driver are capable, the tagging protocol of the DSA switch
153 tree can be changed at runtime. This is done by writing the new tagging
154 protocol name to the same sysfs device attribute as above (the DSA master and
155 all attached switch ports must be down while doing this).
156
157 It is desirable that all tagging protocols are testable with the ``dsa_loop``
158 mockup driver, which can be attached to any network interface. The goal is that
159 any network interface should be capable of transmitting the same packet in the
160 same way, and the tagger should decode the same received packet in the same way
161 regardless of the driver used for the switch control path, and the driver used
162 for the DSA master.
163
164 The transmission of a packet goes through the tagger's ``xmit`` function.
165 The passed ``struct sk_buff *skb`` has ``skb->data`` pointing at
166 ``skb_mac_header(skb)``, i.e. at the destination MAC address, and the passed
167 ``struct net_device *dev`` represents the virtual DSA user network interface
168 whose hardware counterpart the packet must be steered to (i.e. ``swp0``).
169 The job of this method is to prepare the skb in a way that the switch will
170 understand what egress port the packet is for (and not deliver it towards other
171 ports). Typically this is fulfilled by pushing a frame header. Checking for
172 insufficient size in the skb headroom or tailroom is unnecessary provided that
173 the ``needed_headroom`` and ``needed_tailroom`` properties were filled out
174 properly, because DSA ensures there is enough space before calling this method.
175
176 The reception of a packet goes through the tagger's ``rcv`` function. The
177 passed ``struct sk_buff *skb`` has ``skb->data`` pointing at
178 ``skb_mac_header(skb) + ETH_ALEN`` octets, i.e. to where the first octet after
179 the EtherType would have been, were this frame not tagged. The role of this
180 method is to consume the frame header, adjust ``skb->data`` to really point at
181 the first octet after the EtherType, and to change ``skb->dev`` to point to the
182 virtual DSA user network interface corresponding to the physical front-facing
183 switch port that the packet was received on.
184
185 Since tagging protocols in category 1 and 2 break software (and most often also
186 hardware) packet dissection on the DSA master, features such as RPS (Receive
187 Packet Steering) on the DSA master would be broken. The DSA framework deals
188 with this by hooking into the flow dissector and shifting the offset at which
189 the IP header is to be found in the tagged frame as seen by the DSA master.
190 This behavior is automatic based on the ``overhead`` value of the tagging
191 protocol. If not all packets are of equal size, the tagger can implement the
192 ``flow_dissect`` method of the ``struct dsa_device_ops`` and override this
193 default behavior by specifying the correct offset incurred by each individual
194 RX packet. Tail taggers do not cause issues to the flow dissector.
195
196 Due to various reasons (most common being category 1 taggers being associated
197 with DSA-unaware masters, mangling what the master perceives as MAC DA), the
198 tagging protocol may require the DSA master to operate in promiscuous mode, to
199 receive all frames regardless of the value of the MAC DA. This can be done by
200 setting the ``promisc_on_master`` property of the ``struct dsa_device_ops``.
201 Note that this assumes a DSA-unaware master driver, which is the norm.
202
203 Master network devices
204 ----------------------
205
206 Master network devices are regular, unmodified Linux network device drivers for
207 the CPU/management Ethernet interface. Such a driver might occasionally need to
208 know whether DSA is enabled (e.g.: to enable/disable specific offload features),
209 but the DSA subsystem has been proven to work with industry standard drivers:
210 ``e1000e,`` ``mv643xx_eth`` etc. without having to introduce modifications to these
211 drivers. Such network devices are also often referred to as conduit network
212 devices since they act as a pipe between the host processor and the hardware
213 Ethernet switch.
214
215 Networking stack hooks
216 ----------------------
217
218 When a master netdev is used with DSA, a small hook is placed in the
219 networking stack is in order to have the DSA subsystem process the Ethernet
220 switch specific tagging protocol. DSA accomplishes this by registering a
221 specific (and fake) Ethernet type (later becoming ``skb->protocol``) with the
222 networking stack, this is also known as a ``ptype`` or ``packet_type``. A typical
223 Ethernet Frame receive sequence looks like this:
224
225 Master network device (e.g.: e1000e):
226
227 1. Receive interrupt fires:
228
229         - receive function is invoked
230         - basic packet processing is done: getting length, status etc.
231         - packet is prepared to be processed by the Ethernet layer by calling
232           ``eth_type_trans``
233
234 2. net/ethernet/eth.c::
235
236           eth_type_trans(skb, dev)
237                   if (dev->dsa_ptr != NULL)
238                           -> skb->protocol = ETH_P_XDSA
239
240 3. drivers/net/ethernet/\*::
241
242           netif_receive_skb(skb)
243                   -> iterate over registered packet_type
244                           -> invoke handler for ETH_P_XDSA, calls dsa_switch_rcv()
245
246 4. net/dsa/dsa.c::
247
248           -> dsa_switch_rcv()
249                   -> invoke switch tag specific protocol handler in 'net/dsa/tag_*.c'
250
251 5. net/dsa/tag_*.c:
252
253         - inspect and strip switch tag protocol to determine originating port
254         - locate per-port network device
255         - invoke ``eth_type_trans()`` with the DSA slave network device
256         - invoked ``netif_receive_skb()``
257
258 Past this point, the DSA slave network devices get delivered regular Ethernet
259 frames that can be processed by the networking stack.
260
261 Slave network devices
262 ---------------------
263
264 Slave network devices created by DSA are stacked on top of their master network
265 device, each of these network interfaces will be responsible for being a
266 controlling and data-flowing end-point for each front-panel port of the switch.
267 These interfaces are specialized in order to:
268
269 - insert/remove the switch tag protocol (if it exists) when sending traffic
270   to/from specific switch ports
271 - query the switch for ethtool operations: statistics, link state,
272   Wake-on-LAN, register dumps...
273 - external/internal PHY management: link, auto-negotiation etc.
274
275 These slave network devices have custom net_device_ops and ethtool_ops function
276 pointers which allow DSA to introduce a level of layering between the networking
277 stack/ethtool, and the switch driver implementation.
278
279 Upon frame transmission from these slave network devices, DSA will look up which
280 switch tagging protocol is currently registered with these network devices, and
281 invoke a specific transmit routine which takes care of adding the relevant
282 switch tag in the Ethernet frames.
283
284 These frames are then queued for transmission using the master network device
285 ``ndo_start_xmit()`` function, since they contain the appropriate switch tag, the
286 Ethernet switch will be able to process these incoming frames from the
287 management interface and delivers these frames to the physical switch port.
288
289 Graphical representation
290 ------------------------
291
292 Summarized, this is basically how DSA looks like from a network device
293 perspective::
294
295                 Unaware application
296               opens and binds socket
297                        |  ^
298                        |  |
299            +-----------v--|--------------------+
300            |+------+ +------+ +------+ +------+|
301            || swp0 | | swp1 | | swp2 | | swp3 ||
302            |+------+-+------+-+------+-+------+|
303            |          DSA switch driver        |
304            +-----------------------------------+
305                          |        ^
306             Tag added by |        | Tag consumed by
307            switch driver |        | switch driver
308                          v        |
309            +-----------------------------------+
310            | Unmodified host interface driver  | Software
311    --------+-----------------------------------+------------
312            |       Host interface (eth0)       | Hardware
313            +-----------------------------------+
314                          |        ^
315          Tag consumed by |        | Tag added by
316          switch hardware |        | switch hardware
317                          v        |
318            +-----------------------------------+
319            |               Switch              |
320            |+------+ +------+ +------+ +------+|
321            || swp0 | | swp1 | | swp2 | | swp3 ||
322            ++------+-+------+-+------+-+------++
323
324 Slave MDIO bus
325 --------------
326
327 In order to be able to read to/from a switch PHY built into it, DSA creates a
328 slave MDIO bus which allows a specific switch driver to divert and intercept
329 MDIO reads/writes towards specific PHY addresses. In most MDIO-connected
330 switches, these functions would utilize direct or indirect PHY addressing mode
331 to return standard MII registers from the switch builtin PHYs, allowing the PHY
332 library and/or to return link status, link partner pages, auto-negotiation
333 results etc..
334
335 For Ethernet switches which have both external and internal MDIO busses, the
336 slave MII bus can be utilized to mux/demux MDIO reads and writes towards either
337 internal or external MDIO devices this switch might be connected to: internal
338 PHYs, external PHYs, or even external switches.
339
340 Data structures
341 ---------------
342
343 DSA data structures are defined in ``include/net/dsa.h`` as well as
344 ``net/dsa/dsa_priv.h``:
345
346 - ``dsa_chip_data``: platform data configuration for a given switch device,
347   this structure describes a switch device's parent device, its address, as
348   well as various properties of its ports: names/labels, and finally a routing
349   table indication (when cascading switches)
350
351 - ``dsa_platform_data``: platform device configuration data which can reference
352   a collection of dsa_chip_data structure if multiples switches are cascaded,
353   the master network device this switch tree is attached to needs to be
354   referenced
355
356 - ``dsa_switch_tree``: structure assigned to the master network device under
357   ``dsa_ptr``, this structure references a dsa_platform_data structure as well as
358   the tagging protocol supported by the switch tree, and which receive/transmit
359   function hooks should be invoked, information about the directly attached
360   switch is also provided: CPU port. Finally, a collection of dsa_switch are
361   referenced to address individual switches in the tree.
362
363 - ``dsa_switch``: structure describing a switch device in the tree, referencing
364   a ``dsa_switch_tree`` as a backpointer, slave network devices, master network
365   device, and a reference to the backing``dsa_switch_ops``
366
367 - ``dsa_switch_ops``: structure referencing function pointers, see below for a
368   full description.
369
370 Design limitations
371 ==================
372
373 Lack of CPU/DSA network devices
374 -------------------------------
375
376 DSA does not currently create slave network devices for the CPU or DSA ports, as
377 described before. This might be an issue in the following cases:
378
379 - inability to fetch switch CPU port statistics counters using ethtool, which
380   can make it harder to debug MDIO switch connected using xMII interfaces
381
382 - inability to configure the CPU port link parameters based on the Ethernet
383   controller capabilities attached to it: http://patchwork.ozlabs.org/patch/509806/
384
385 - inability to configure specific VLAN IDs / trunking VLANs between switches
386   when using a cascaded setup
387
388 Common pitfalls using DSA setups
389 --------------------------------
390
391 Once a master network device is configured to use DSA (dev->dsa_ptr becomes
392 non-NULL), and the switch behind it expects a tagging protocol, this network
393 interface can only exclusively be used as a conduit interface. Sending packets
394 directly through this interface (e.g.: opening a socket using this interface)
395 will not make us go through the switch tagging protocol transmit function, so
396 the Ethernet switch on the other end, expecting a tag will typically drop this
397 frame.
398
399 Interactions with other subsystems
400 ==================================
401
402 DSA currently leverages the following subsystems:
403
404 - MDIO/PHY library: ``drivers/net/phy/phy.c``, ``mdio_bus.c``
405 - Switchdev:``net/switchdev/*``
406 - Device Tree for various of_* functions
407 - Devlink: ``net/core/devlink.c``
408
409 MDIO/PHY library
410 ----------------
411
412 Slave network devices exposed by DSA may or may not be interfacing with PHY
413 devices (``struct phy_device`` as defined in ``include/linux/phy.h)``, but the DSA
414 subsystem deals with all possible combinations:
415
416 - internal PHY devices, built into the Ethernet switch hardware
417 - external PHY devices, connected via an internal or external MDIO bus
418 - internal PHY devices, connected via an internal MDIO bus
419 - special, non-autonegotiated or non MDIO-managed PHY devices: SFPs, MoCA; a.k.a
420   fixed PHYs
421
422 The PHY configuration is done by the ``dsa_slave_phy_setup()`` function and the
423 logic basically looks like this:
424
425 - if Device Tree is used, the PHY device is looked up using the standard
426   "phy-handle" property, if found, this PHY device is created and registered
427   using ``of_phy_connect()``
428
429 - if Device Tree is used, and the PHY device is "fixed", that is, conforms to
430   the definition of a non-MDIO managed PHY as defined in
431   ``Documentation/devicetree/bindings/net/fixed-link.txt``, the PHY is registered
432   and connected transparently using the special fixed MDIO bus driver
433
434 - finally, if the PHY is built into the switch, as is very common with
435   standalone switch packages, the PHY is probed using the slave MII bus created
436   by DSA
437
438
439 SWITCHDEV
440 ---------
441
442 DSA directly utilizes SWITCHDEV when interfacing with the bridge layer, and
443 more specifically with its VLAN filtering portion when configuring VLANs on top
444 of per-port slave network devices. As of today, the only SWITCHDEV objects
445 supported by DSA are the FDB and VLAN objects.
446
447 Devlink
448 -------
449
450 DSA registers one devlink device per physical switch in the fabric.
451 For each devlink device, every physical port (i.e. user ports, CPU ports, DSA
452 links or unused ports) is exposed as a devlink port.
453
454 DSA drivers can make use of the following devlink features:
455
456 - Regions: debugging feature which allows user space to dump driver-defined
457   areas of hardware information in a low-level, binary format. Both global
458   regions as well as per-port regions are supported. It is possible to export
459   devlink regions even for pieces of data that are already exposed in some way
460   to the standard iproute2 user space programs (ip-link, bridge), like address
461   tables and VLAN tables. For example, this might be useful if the tables
462   contain additional hardware-specific details which are not visible through
463   the iproute2 abstraction, or it might be useful to inspect these tables on
464   the non-user ports too, which are invisible to iproute2 because no network
465   interface is registered for them.
466 - Params: a feature which enables user to configure certain low-level tunable
467   knobs pertaining to the device. Drivers may implement applicable generic
468   devlink params, or may add new device-specific devlink params.
469 - Resources: a monitoring feature which enables users to see the degree of
470   utilization of certain hardware tables in the device, such as FDB, VLAN, etc.
471 - Shared buffers: a QoS feature for adjusting and partitioning memory and frame
472   reservations per port and per traffic class, in the ingress and egress
473   directions, such that low-priority bulk traffic does not impede the
474   processing of high-priority critical traffic.
475
476 For more details, consult ``Documentation/networking/devlink/``.
477
478 Device Tree
479 -----------
480
481 DSA features a standardized binding which is documented in
482 ``Documentation/devicetree/bindings/net/dsa/dsa.txt``. PHY/MDIO library helper
483 functions such as ``of_get_phy_mode()``, ``of_phy_connect()`` are also used to query
484 per-port PHY specific details: interface connection, MDIO bus location etc..
485
486 Driver development
487 ==================
488
489 DSA switch drivers need to implement a dsa_switch_ops structure which will
490 contain the various members described below.
491
492 ``register_switch_driver()`` registers this dsa_switch_ops in its internal list
493 of drivers to probe for. ``unregister_switch_driver()`` does the exact opposite.
494
495 Unless requested differently by setting the priv_size member accordingly, DSA
496 does not allocate any driver private context space.
497
498 Switch configuration
499 --------------------
500
501 - ``tag_protocol``: this is to indicate what kind of tagging protocol is supported,
502   should be a valid value from the ``dsa_tag_protocol`` enum
503
504 - ``probe``: probe routine which will be invoked by the DSA platform device upon
505   registration to test for the presence/absence of a switch device. For MDIO
506   devices, it is recommended to issue a read towards internal registers using
507   the switch pseudo-PHY and return whether this is a supported device. For other
508   buses, return a non-NULL string
509
510 - ``setup``: setup function for the switch, this function is responsible for setting
511   up the ``dsa_switch_ops`` private structure with all it needs: register maps,
512   interrupts, mutexes, locks etc.. This function is also expected to properly
513   configure the switch to separate all network interfaces from each other, that
514   is, they should be isolated by the switch hardware itself, typically by creating
515   a Port-based VLAN ID for each port and allowing only the CPU port and the
516   specific port to be in the forwarding vector. Ports that are unused by the
517   platform should be disabled. Past this function, the switch is expected to be
518   fully configured and ready to serve any kind of request. It is recommended
519   to issue a software reset of the switch during this setup function in order to
520   avoid relying on what a previous software agent such as a bootloader/firmware
521   may have previously configured.
522
523 PHY devices and link management
524 -------------------------------
525
526 - ``get_phy_flags``: Some switches are interfaced to various kinds of Ethernet PHYs,
527   if the PHY library PHY driver needs to know about information it cannot obtain
528   on its own (e.g.: coming from switch memory mapped registers), this function
529   should return a 32-bits bitmask of "flags", that is private between the switch
530   driver and the Ethernet PHY driver in ``drivers/net/phy/\*``.
531
532 - ``phy_read``: Function invoked by the DSA slave MDIO bus when attempting to read
533   the switch port MDIO registers. If unavailable, return 0xffff for each read.
534   For builtin switch Ethernet PHYs, this function should allow reading the link
535   status, auto-negotiation results, link partner pages etc..
536
537 - ``phy_write``: Function invoked by the DSA slave MDIO bus when attempting to write
538   to the switch port MDIO registers. If unavailable return a negative error
539   code.
540
541 - ``adjust_link``: Function invoked by the PHY library when a slave network device
542   is attached to a PHY device. This function is responsible for appropriately
543   configuring the switch port link parameters: speed, duplex, pause based on
544   what the ``phy_device`` is providing.
545
546 - ``fixed_link_update``: Function invoked by the PHY library, and specifically by
547   the fixed PHY driver asking the switch driver for link parameters that could
548   not be auto-negotiated, or obtained by reading the PHY registers through MDIO.
549   This is particularly useful for specific kinds of hardware such as QSGMII,
550   MoCA or other kinds of non-MDIO managed PHYs where out of band link
551   information is obtained
552
553 Ethtool operations
554 ------------------
555
556 - ``get_strings``: ethtool function used to query the driver's strings, will
557   typically return statistics strings, private flags strings etc.
558
559 - ``get_ethtool_stats``: ethtool function used to query per-port statistics and
560   return their values. DSA overlays slave network devices general statistics:
561   RX/TX counters from the network device, with switch driver specific statistics
562   per port
563
564 - ``get_sset_count``: ethtool function used to query the number of statistics items
565
566 - ``get_wol``: ethtool function used to obtain Wake-on-LAN settings per-port, this
567   function may, for certain implementations also query the master network device
568   Wake-on-LAN settings if this interface needs to participate in Wake-on-LAN
569
570 - ``set_wol``: ethtool function used to configure Wake-on-LAN settings per-port,
571   direct counterpart to set_wol with similar restrictions
572
573 - ``set_eee``: ethtool function which is used to configure a switch port EEE (Green
574   Ethernet) settings, can optionally invoke the PHY library to enable EEE at the
575   PHY level if relevant. This function should enable EEE at the switch port MAC
576   controller and data-processing logic
577
578 - ``get_eee``: ethtool function which is used to query a switch port EEE settings,
579   this function should return the EEE state of the switch port MAC controller
580   and data-processing logic as well as query the PHY for its currently configured
581   EEE settings
582
583 - ``get_eeprom_len``: ethtool function returning for a given switch the EEPROM
584   length/size in bytes
585
586 - ``get_eeprom``: ethtool function returning for a given switch the EEPROM contents
587
588 - ``set_eeprom``: ethtool function writing specified data to a given switch EEPROM
589
590 - ``get_regs_len``: ethtool function returning the register length for a given
591   switch
592
593 - ``get_regs``: ethtool function returning the Ethernet switch internal register
594   contents. This function might require user-land code in ethtool to
595   pretty-print register values and registers
596
597 Power management
598 ----------------
599
600 - ``suspend``: function invoked by the DSA platform device when the system goes to
601   suspend, should quiesce all Ethernet switch activities, but keep ports
602   participating in Wake-on-LAN active as well as additional wake-up logic if
603   supported
604
605 - ``resume``: function invoked by the DSA platform device when the system resumes,
606   should resume all Ethernet switch activities and re-configure the switch to be
607   in a fully active state
608
609 - ``port_enable``: function invoked by the DSA slave network device ndo_open
610   function when a port is administratively brought up, this function should be
611   fully enabling a given switch port. DSA takes care of marking the port with
612   ``BR_STATE_BLOCKING`` if the port is a bridge member, or ``BR_STATE_FORWARDING`` if it
613   was not, and propagating these changes down to the hardware
614
615 - ``port_disable``: function invoked by the DSA slave network device ndo_close
616   function when a port is administratively brought down, this function should be
617   fully disabling a given switch port. DSA takes care of marking the port with
618   ``BR_STATE_DISABLED`` and propagating changes to the hardware if this port is
619   disabled while being a bridge member
620
621 Bridge layer
622 ------------
623
624 - ``port_bridge_join``: bridge layer function invoked when a given switch port is
625   added to a bridge, this function should be doing the necessary at the switch
626   level to permit the joining port from being added to the relevant logical
627   domain for it to ingress/egress traffic with other members of the bridge.
628
629 - ``port_bridge_leave``: bridge layer function invoked when a given switch port is
630   removed from a bridge, this function should be doing the necessary at the
631   switch level to deny the leaving port from ingress/egress traffic from the
632   remaining bridge members. When the port leaves the bridge, it should be aged
633   out at the switch hardware for the switch to (re) learn MAC addresses behind
634   this port.
635
636 - ``port_stp_state_set``: bridge layer function invoked when a given switch port STP
637   state is computed by the bridge layer and should be propagated to switch
638   hardware to forward/block/learn traffic. The switch driver is responsible for
639   computing a STP state change based on current and asked parameters and perform
640   the relevant ageing based on the intersection results
641
642 - ``port_bridge_flags``: bridge layer function invoked when a port must
643   configure its settings for e.g. flooding of unknown traffic or source address
644   learning. The switch driver is responsible for initial setup of the
645   standalone ports with address learning disabled and egress flooding of all
646   types of traffic, then the DSA core notifies of any change to the bridge port
647   flags when the port joins and leaves a bridge. DSA does not currently manage
648   the bridge port flags for the CPU port. The assumption is that address
649   learning should be statically enabled (if supported by the hardware) on the
650   CPU port, and flooding towards the CPU port should also be enabled, due to a
651   lack of an explicit address filtering mechanism in the DSA core.
652
653 - ``port_bridge_tx_fwd_offload``: bridge layer function invoked after
654   ``port_bridge_join`` when a driver sets ``ds->num_fwd_offloading_bridges`` to
655   a non-zero value. Returning success in this function activates the TX
656   forwarding offload bridge feature for this port, which enables the tagging
657   protocol driver to inject data plane packets towards the bridging domain that
658   the port is a part of. Data plane packets are subject to FDB lookup, hardware
659   learning on the CPU port, and do not override the port STP state.
660   Additionally, replication of data plane packets (multicast, flooding) is
661   handled in hardware and the bridge driver will transmit a single skb for each
662   packet that needs replication. The method is provided as a configuration
663   point for drivers that need to configure the hardware for enabling this
664   feature.
665
666 - ``port_bridge_tx_fwd_unoffload``: bridge layer function invoken when a driver
667   leaves a bridge port which had the TX forwarding offload feature enabled.
668
669 Bridge VLAN filtering
670 ---------------------
671
672 - ``port_vlan_filtering``: bridge layer function invoked when the bridge gets
673   configured for turning on or off VLAN filtering. If nothing specific needs to
674   be done at the hardware level, this callback does not need to be implemented.
675   When VLAN filtering is turned on, the hardware must be programmed with
676   rejecting 802.1Q frames which have VLAN IDs outside of the programmed allowed
677   VLAN ID map/rules.  If there is no PVID programmed into the switch port,
678   untagged frames must be rejected as well. When turned off the switch must
679   accept any 802.1Q frames irrespective of their VLAN ID, and untagged frames are
680   allowed.
681
682 - ``port_vlan_add``: bridge layer function invoked when a VLAN is configured
683   (tagged or untagged) for the given switch port. If the operation is not
684   supported by the hardware, this function should return ``-EOPNOTSUPP`` to
685   inform the bridge code to fallback to a software implementation.
686
687 - ``port_vlan_del``: bridge layer function invoked when a VLAN is removed from the
688   given switch port
689
690 - ``port_vlan_dump``: bridge layer function invoked with a switchdev callback
691   function that the driver has to call for each VLAN the given port is a member
692   of. A switchdev object is used to carry the VID and bridge flags.
693
694 - ``port_fdb_add``: bridge layer function invoked when the bridge wants to install a
695   Forwarding Database entry, the switch hardware should be programmed with the
696   specified address in the specified VLAN Id in the forwarding database
697   associated with this VLAN ID. If the operation is not supported, this
698   function should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to
699   a software implementation.
700
701 .. note:: VLAN ID 0 corresponds to the port private database, which, in the context
702         of DSA, would be its port-based VLAN, used by the associated bridge device.
703
704 - ``port_fdb_del``: bridge layer function invoked when the bridge wants to remove a
705   Forwarding Database entry, the switch hardware should be programmed to delete
706   the specified MAC address from the specified VLAN ID if it was mapped into
707   this port forwarding database
708
709 - ``port_fdb_dump``: bridge layer function invoked with a switchdev callback
710   function that the driver has to call for each MAC address known to be behind
711   the given port. A switchdev object is used to carry the VID and FDB info.
712
713 - ``port_mdb_add``: bridge layer function invoked when the bridge wants to install
714   a multicast database entry. If the operation is not supported, this function
715   should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to a
716   software implementation. The switch hardware should be programmed with the
717   specified address in the specified VLAN ID in the forwarding database
718   associated with this VLAN ID.
719
720 .. note:: VLAN ID 0 corresponds to the port private database, which, in the context
721         of DSA, would be its port-based VLAN, used by the associated bridge device.
722
723 - ``port_mdb_del``: bridge layer function invoked when the bridge wants to remove a
724   multicast database entry, the switch hardware should be programmed to delete
725   the specified MAC address from the specified VLAN ID if it was mapped into
726   this port forwarding database.
727
728 - ``port_mdb_dump``: bridge layer function invoked with a switchdev callback
729   function that the driver has to call for each MAC address known to be behind
730   the given port. A switchdev object is used to carry the VID and MDB info.
731
732 Link aggregation
733 ----------------
734
735 Link aggregation is implemented in the Linux networking stack by the bonding
736 and team drivers, which are modeled as virtual, stackable network interfaces.
737 DSA is capable of offloading a link aggregation group (LAG) to hardware that
738 supports the feature, and supports bridging between physical ports and LAGs,
739 as well as between LAGs. A bonding/team interface which holds multiple physical
740 ports constitutes a logical port, although DSA has no explicit concept of a
741 logical port at the moment. Due to this, events where a LAG joins/leaves a
742 bridge are treated as if all individual physical ports that are members of that
743 LAG join/leave the bridge. Switchdev port attributes (VLAN filtering, STP
744 state, etc) and objects (VLANs, MDB entries) offloaded to a LAG as bridge port
745 are treated similarly: DSA offloads the same switchdev object / port attribute
746 on all members of the LAG. Static bridge FDB entries on a LAG are not yet
747 supported, since the DSA driver API does not have the concept of a logical port
748 ID.
749
750 - ``port_lag_join``: function invoked when a given switch port is added to a
751   LAG. The driver may return ``-EOPNOTSUPP``, and in this case, DSA will fall
752   back to a software implementation where all traffic from this port is sent to
753   the CPU.
754 - ``port_lag_leave``: function invoked when a given switch port leaves a LAG
755   and returns to operation as a standalone port.
756 - ``port_lag_change``: function invoked when the link state of any member of
757   the LAG changes, and the hashing function needs rebalancing to only make use
758   of the subset of physical LAG member ports that are up.
759
760 Drivers that benefit from having an ID associated with each offloaded LAG
761 can optionally populate ``ds->num_lag_ids`` from the ``dsa_switch_ops::setup``
762 method. The LAG ID associated with a bonding/team interface can then be
763 retrieved by a DSA switch driver using the ``dsa_lag_id`` function.
764
765 IEC 62439-2 (MRP)
766 -----------------
767
768 The Media Redundancy Protocol is a topology management protocol optimized for
769 fast fault recovery time for ring networks, which has some components
770 implemented as a function of the bridge driver. MRP uses management PDUs
771 (Test, Topology, LinkDown/Up, Option) sent at a multicast destination MAC
772 address range of 01:15:4e:00:00:0x and with an EtherType of 0x88e3.
773 Depending on the node's role in the ring (MRM: Media Redundancy Manager,
774 MRC: Media Redundancy Client, MRA: Media Redundancy Automanager), certain MRP
775 PDUs might need to be terminated locally and others might need to be forwarded.
776 An MRM might also benefit from offloading to hardware the creation and
777 transmission of certain MRP PDUs (Test).
778
779 Normally an MRP instance can be created on top of any network interface,
780 however in the case of a device with an offloaded data path such as DSA, it is
781 necessary for the hardware, even if it is not MRP-aware, to be able to extract
782 the MRP PDUs from the fabric before the driver can proceed with the software
783 implementation. DSA today has no driver which is MRP-aware, therefore it only
784 listens for the bare minimum switchdev objects required for the software assist
785 to work properly. The operations are detailed below.
786
787 - ``port_mrp_add`` and ``port_mrp_del``: notifies driver when an MRP instance
788   with a certain ring ID, priority, primary port and secondary port is
789   created/deleted.
790 - ``port_mrp_add_ring_role`` and ``port_mrp_del_ring_role``: function invoked
791   when an MRP instance changes ring roles between MRM or MRC. This affects
792   which MRP PDUs should be trapped to software and which should be autonomously
793   forwarded.
794
795 IEC 62439-3 (HSR/PRP)
796 ---------------------
797
798 The Parallel Redundancy Protocol (PRP) is a network redundancy protocol which
799 works by duplicating and sequence numbering packets through two independent L2
800 networks (which are unaware of the PRP tail tags carried in the packets), and
801 eliminating the duplicates at the receiver. The High-availability Seamless
802 Redundancy (HSR) protocol is similar in concept, except all nodes that carry
803 the redundant traffic are aware of the fact that it is HSR-tagged (because HSR
804 uses a header with an EtherType of 0x892f) and are physically connected in a
805 ring topology. Both HSR and PRP use supervision frames for monitoring the
806 health of the network and for discovery of other nodes.
807
808 In Linux, both HSR and PRP are implemented in the hsr driver, which
809 instantiates a virtual, stackable network interface with two member ports.
810 The driver only implements the basic roles of DANH (Doubly Attached Node
811 implementing HSR) and DANP (Doubly Attached Node implementing PRP); the roles
812 of RedBox and QuadBox are not implemented (therefore, bridging a hsr network
813 interface with a physical switch port does not produce the expected result).
814
815 A driver which is able of offloading certain functions of a DANP or DANH should
816 declare the corresponding netdev features as indicated by the documentation at
817 ``Documentation/networking/netdev-features.rst``. Additionally, the following
818 methods must be implemented:
819
820 - ``port_hsr_join``: function invoked when a given switch port is added to a
821   DANP/DANH. The driver may return ``-EOPNOTSUPP`` and in this case, DSA will
822   fall back to a software implementation where all traffic from this port is
823   sent to the CPU.
824 - ``port_hsr_leave``: function invoked when a given switch port leaves a
825   DANP/DANH and returns to normal operation as a standalone port.
826
827 TODO
828 ====
829
830 Making SWITCHDEV and DSA converge towards an unified codebase
831 -------------------------------------------------------------
832
833 SWITCHDEV properly takes care of abstracting the networking stack with offload
834 capable hardware, but does not enforce a strict switch device driver model. On
835 the other DSA enforces a fairly strict device driver model, and deals with most
836 of the switch specific. At some point we should envision a merger between these
837 two subsystems and get the best of both worlds.
838
839 Other hanging fruits
840 --------------------
841
842 - allowing more than one CPU/management interface:
843   http://comments.gmane.org/gmane.linux.network/365657