Merge commit '81fd23e2b3ccf71c807e671444e8accaba98ca53' of https://git.pengutronix...
[linux-2.6-microblaze.git] / Documentation / admin-guide / mm / hugetlbpage.rst
1 .. _hugetlbpage:
2
3 =============
4 HugeTLB Pages
5 =============
6
7 Overview
8 ========
9
10 The intent of this file is to give a brief summary of hugetlbpage support in
11 the Linux kernel.  This support is built on top of multiple page size support
12 that is provided by most modern architectures.  For example, x86 CPUs normally
13 support 4K and 2M (1G if architecturally supported) page sizes, ia64
14 architecture supports multiple page sizes 4K, 8K, 64K, 256K, 1M, 4M, 16M,
15 256M and ppc64 supports 4K and 16M.  A TLB is a cache of virtual-to-physical
16 translations.  Typically this is a very scarce resource on processor.
17 Operating systems try to make best use of limited number of TLB resources.
18 This optimization is more critical now as bigger and bigger physical memories
19 (several GBs) are more readily available.
20
21 Users can use the huge page support in Linux kernel by either using the mmap
22 system call or standard SYSV shared memory system calls (shmget, shmat).
23
24 First the Linux kernel needs to be built with the CONFIG_HUGETLBFS
25 (present under "File systems") and CONFIG_HUGETLB_PAGE (selected
26 automatically when CONFIG_HUGETLBFS is selected) configuration
27 options.
28
29 The ``/proc/meminfo`` file provides information about the total number of
30 persistent hugetlb pages in the kernel's huge page pool.  It also displays
31 default huge page size and information about the number of free, reserved
32 and surplus huge pages in the pool of huge pages of default size.
33 The huge page size is needed for generating the proper alignment and
34 size of the arguments to system calls that map huge page regions.
35
36 The output of ``cat /proc/meminfo`` will include lines like::
37
38         HugePages_Total: uuu
39         HugePages_Free:  vvv
40         HugePages_Rsvd:  www
41         HugePages_Surp:  xxx
42         Hugepagesize:    yyy kB
43         Hugetlb:         zzz kB
44
45 where:
46
47 HugePages_Total
48         is the size of the pool of huge pages.
49 HugePages_Free
50         is the number of huge pages in the pool that are not yet
51         allocated.
52 HugePages_Rsvd
53         is short for "reserved," and is the number of huge pages for
54         which a commitment to allocate from the pool has been made,
55         but no allocation has yet been made.  Reserved huge pages
56         guarantee that an application will be able to allocate a
57         huge page from the pool of huge pages at fault time.
58 HugePages_Surp
59         is short for "surplus," and is the number of huge pages in
60         the pool above the value in ``/proc/sys/vm/nr_hugepages``. The
61         maximum number of surplus huge pages is controlled by
62         ``/proc/sys/vm/nr_overcommit_hugepages``.
63         Note: When the feature of freeing unused vmemmap pages associated
64         with each hugetlb page is enabled, the number of surplus huge pages
65         may be temporarily larger than the maximum number of surplus huge
66         pages when the system is under memory pressure.
67 Hugepagesize
68         is the default hugepage size (in Kb).
69 Hugetlb
70         is the total amount of memory (in kB), consumed by huge
71         pages of all sizes.
72         If huge pages of different sizes are in use, this number
73         will exceed HugePages_Total \* Hugepagesize. To get more
74         detailed information, please, refer to
75         ``/sys/kernel/mm/hugepages`` (described below).
76
77
78 ``/proc/filesystems`` should also show a filesystem of type "hugetlbfs"
79 configured in the kernel.
80
81 ``/proc/sys/vm/nr_hugepages`` indicates the current number of "persistent" huge
82 pages in the kernel's huge page pool.  "Persistent" huge pages will be
83 returned to the huge page pool when freed by a task.  A user with root
84 privileges can dynamically allocate more or free some persistent huge pages
85 by increasing or decreasing the value of ``nr_hugepages``.
86
87 Note: When the feature of freeing unused vmemmap pages associated with each
88 hugetlb page is enabled, we can fail to free the huge pages triggered by
89 the user when ths system is under memory pressure.  Please try again later.
90
91 Pages that are used as huge pages are reserved inside the kernel and cannot
92 be used for other purposes.  Huge pages cannot be swapped out under
93 memory pressure.
94
95 Once a number of huge pages have been pre-allocated to the kernel huge page
96 pool, a user with appropriate privilege can use either the mmap system call
97 or shared memory system calls to use the huge pages.  See the discussion of
98 :ref:`Using Huge Pages <using_huge_pages>`, below.
99
100 The administrator can allocate persistent huge pages on the kernel boot
101 command line by specifying the "hugepages=N" parameter, where 'N' = the
102 number of huge pages requested.  This is the most reliable method of
103 allocating huge pages as memory has not yet become fragmented.
104
105 Some platforms support multiple huge page sizes.  To allocate huge pages
106 of a specific size, one must precede the huge pages boot command parameters
107 with a huge page size selection parameter "hugepagesz=<size>".  <size> must
108 be specified in bytes with optional scale suffix [kKmMgG].  The default huge
109 page size may be selected with the "default_hugepagesz=<size>" boot parameter.
110
111 Hugetlb boot command line parameter semantics
112
113 hugepagesz
114         Specify a huge page size.  Used in conjunction with hugepages
115         parameter to preallocate a number of huge pages of the specified
116         size.  Hence, hugepagesz and hugepages are typically specified in
117         pairs such as::
118
119                 hugepagesz=2M hugepages=512
120
121         hugepagesz can only be specified once on the command line for a
122         specific huge page size.  Valid huge page sizes are architecture
123         dependent.
124 hugepages
125         Specify the number of huge pages to preallocate.  This typically
126         follows a valid hugepagesz or default_hugepagesz parameter.  However,
127         if hugepages is the first or only hugetlb command line parameter it
128         implicitly specifies the number of huge pages of default size to
129         allocate.  If the number of huge pages of default size is implicitly
130         specified, it can not be overwritten by a hugepagesz,hugepages
131         parameter pair for the default size.
132
133         For example, on an architecture with 2M default huge page size::
134
135                 hugepages=256 hugepagesz=2M hugepages=512
136
137         will result in 256 2M huge pages being allocated and a warning message
138         indicating that the hugepages=512 parameter is ignored.  If a hugepages
139         parameter is preceded by an invalid hugepagesz parameter, it will
140         be ignored.
141 default_hugepagesz
142         Specify the default huge page size.  This parameter can
143         only be specified once on the command line.  default_hugepagesz can
144         optionally be followed by the hugepages parameter to preallocate a
145         specific number of huge pages of default size.  The number of default
146         sized huge pages to preallocate can also be implicitly specified as
147         mentioned in the hugepages section above.  Therefore, on an
148         architecture with 2M default huge page size::
149
150                 hugepages=256
151                 default_hugepagesz=2M hugepages=256
152                 hugepages=256 default_hugepagesz=2M
153
154         will all result in 256 2M huge pages being allocated.  Valid default
155         huge page size is architecture dependent.
156 hugetlb_free_vmemmap
157         When CONFIG_HUGETLB_PAGE_FREE_VMEMMAP is set, this enables freeing
158         unused vmemmap pages associated with each HugeTLB page.
159
160 When multiple huge page sizes are supported, ``/proc/sys/vm/nr_hugepages``
161 indicates the current number of pre-allocated huge pages of the default size.
162 Thus, one can use the following command to dynamically allocate/deallocate
163 default sized persistent huge pages::
164
165         echo 20 > /proc/sys/vm/nr_hugepages
166
167 This command will try to adjust the number of default sized huge pages in the
168 huge page pool to 20, allocating or freeing huge pages, as required.
169
170 On a NUMA platform, the kernel will attempt to distribute the huge page pool
171 over all the set of allowed nodes specified by the NUMA memory policy of the
172 task that modifies ``nr_hugepages``. The default for the allowed nodes--when the
173 task has default memory policy--is all on-line nodes with memory.  Allowed
174 nodes with insufficient available, contiguous memory for a huge page will be
175 silently skipped when allocating persistent huge pages.  See the
176 :ref:`discussion below <mem_policy_and_hp_alloc>`
177 of the interaction of task memory policy, cpusets and per node attributes
178 with the allocation and freeing of persistent huge pages.
179
180 The success or failure of huge page allocation depends on the amount of
181 physically contiguous memory that is present in system at the time of the
182 allocation attempt.  If the kernel is unable to allocate huge pages from
183 some nodes in a NUMA system, it will attempt to make up the difference by
184 allocating extra pages on other nodes with sufficient available contiguous
185 memory, if any.
186
187 System administrators may want to put this command in one of the local rc
188 init files.  This will enable the kernel to allocate huge pages early in
189 the boot process when the possibility of getting physical contiguous pages
190 is still very high.  Administrators can verify the number of huge pages
191 actually allocated by checking the sysctl or meminfo.  To check the per node
192 distribution of huge pages in a NUMA system, use::
193
194         cat /sys/devices/system/node/node*/meminfo | fgrep Huge
195
196 ``/proc/sys/vm/nr_overcommit_hugepages`` specifies how large the pool of
197 huge pages can grow, if more huge pages than ``/proc/sys/vm/nr_hugepages`` are
198 requested by applications.  Writing any non-zero value into this file
199 indicates that the hugetlb subsystem is allowed to try to obtain that
200 number of "surplus" huge pages from the kernel's normal page pool, when the
201 persistent huge page pool is exhausted. As these surplus huge pages become
202 unused, they are freed back to the kernel's normal page pool.
203
204 When increasing the huge page pool size via ``nr_hugepages``, any existing
205 surplus pages will first be promoted to persistent huge pages.  Then, additional
206 huge pages will be allocated, if necessary and if possible, to fulfill
207 the new persistent huge page pool size.
208
209 The administrator may shrink the pool of persistent huge pages for
210 the default huge page size by setting the ``nr_hugepages`` sysctl to a
211 smaller value.  The kernel will attempt to balance the freeing of huge pages
212 across all nodes in the memory policy of the task modifying ``nr_hugepages``.
213 Any free huge pages on the selected nodes will be freed back to the kernel's
214 normal page pool.
215
216 Caveat: Shrinking the persistent huge page pool via ``nr_hugepages`` such that
217 it becomes less than the number of huge pages in use will convert the balance
218 of the in-use huge pages to surplus huge pages.  This will occur even if
219 the number of surplus pages would exceed the overcommit value.  As long as
220 this condition holds--that is, until ``nr_hugepages+nr_overcommit_hugepages`` is
221 increased sufficiently, or the surplus huge pages go out of use and are freed--
222 no more surplus huge pages will be allowed to be allocated.
223
224 With support for multiple huge page pools at run-time available, much of
225 the huge page userspace interface in ``/proc/sys/vm`` has been duplicated in
226 sysfs.
227 The ``/proc`` interfaces discussed above have been retained for backwards
228 compatibility. The root huge page control directory in sysfs is::
229
230         /sys/kernel/mm/hugepages
231
232 For each huge page size supported by the running kernel, a subdirectory
233 will exist, of the form::
234
235         hugepages-${size}kB
236
237 Inside each of these directories, the same set of files will exist::
238
239         nr_hugepages
240         nr_hugepages_mempolicy
241         nr_overcommit_hugepages
242         free_hugepages
243         resv_hugepages
244         surplus_hugepages
245
246 which function as described above for the default huge page-sized case.
247
248 .. _mem_policy_and_hp_alloc:
249
250 Interaction of Task Memory Policy with Huge Page Allocation/Freeing
251 ===================================================================
252
253 Whether huge pages are allocated and freed via the ``/proc`` interface or
254 the ``/sysfs`` interface using the ``nr_hugepages_mempolicy`` attribute, the
255 NUMA nodes from which huge pages are allocated or freed are controlled by the
256 NUMA memory policy of the task that modifies the ``nr_hugepages_mempolicy``
257 sysctl or attribute.  When the ``nr_hugepages`` attribute is used, mempolicy
258 is ignored.
259
260 The recommended method to allocate or free huge pages to/from the kernel
261 huge page pool, using the ``nr_hugepages`` example above, is::
262
263     numactl --interleave <node-list> echo 20 \
264                                 >/proc/sys/vm/nr_hugepages_mempolicy
265
266 or, more succinctly::
267
268     numactl -m <node-list> echo 20 >/proc/sys/vm/nr_hugepages_mempolicy
269
270 This will allocate or free ``abs(20 - nr_hugepages)`` to or from the nodes
271 specified in <node-list>, depending on whether number of persistent huge pages
272 is initially less than or greater than 20, respectively.  No huge pages will be
273 allocated nor freed on any node not included in the specified <node-list>.
274
275 When adjusting the persistent hugepage count via ``nr_hugepages_mempolicy``, any
276 memory policy mode--bind, preferred, local or interleave--may be used.  The
277 resulting effect on persistent huge page allocation is as follows:
278
279 #. Regardless of mempolicy mode [see
280    :ref:`Documentation/admin-guide/mm/numa_memory_policy.rst <numa_memory_policy>`],
281    persistent huge pages will be distributed across the node or nodes
282    specified in the mempolicy as if "interleave" had been specified.
283    However, if a node in the policy does not contain sufficient contiguous
284    memory for a huge page, the allocation will not "fallback" to the nearest
285    neighbor node with sufficient contiguous memory.  To do this would cause
286    undesirable imbalance in the distribution of the huge page pool, or
287    possibly, allocation of persistent huge pages on nodes not allowed by
288    the task's memory policy.
289
290 #. One or more nodes may be specified with the bind or interleave policy.
291    If more than one node is specified with the preferred policy, only the
292    lowest numeric id will be used.  Local policy will select the node where
293    the task is running at the time the nodes_allowed mask is constructed.
294    For local policy to be deterministic, the task must be bound to a cpu or
295    cpus in a single node.  Otherwise, the task could be migrated to some
296    other node at any time after launch and the resulting node will be
297    indeterminate.  Thus, local policy is not very useful for this purpose.
298    Any of the other mempolicy modes may be used to specify a single node.
299
300 #. The nodes allowed mask will be derived from any non-default task mempolicy,
301    whether this policy was set explicitly by the task itself or one of its
302    ancestors, such as numactl.  This means that if the task is invoked from a
303    shell with non-default policy, that policy will be used.  One can specify a
304    node list of "all" with numactl --interleave or --membind [-m] to achieve
305    interleaving over all nodes in the system or cpuset.
306
307 #. Any task mempolicy specified--e.g., using numactl--will be constrained by
308    the resource limits of any cpuset in which the task runs.  Thus, there will
309    be no way for a task with non-default policy running in a cpuset with a
310    subset of the system nodes to allocate huge pages outside the cpuset
311    without first moving to a cpuset that contains all of the desired nodes.
312
313 #. Boot-time huge page allocation attempts to distribute the requested number
314    of huge pages over all on-lines nodes with memory.
315
316 Per Node Hugepages Attributes
317 =============================
318
319 A subset of the contents of the root huge page control directory in sysfs,
320 described above, will be replicated under each the system device of each
321 NUMA node with memory in::
322
323         /sys/devices/system/node/node[0-9]*/hugepages/
324
325 Under this directory, the subdirectory for each supported huge page size
326 contains the following attribute files::
327
328         nr_hugepages
329         free_hugepages
330         surplus_hugepages
331
332 The free\_' and surplus\_' attribute files are read-only.  They return the number
333 of free and surplus [overcommitted] huge pages, respectively, on the parent
334 node.
335
336 The ``nr_hugepages`` attribute returns the total number of huge pages on the
337 specified node.  When this attribute is written, the number of persistent huge
338 pages on the parent node will be adjusted to the specified value, if sufficient
339 resources exist, regardless of the task's mempolicy or cpuset constraints.
340
341 Note that the number of overcommit and reserve pages remain global quantities,
342 as we don't know until fault time, when the faulting task's mempolicy is
343 applied, from which node the huge page allocation will be attempted.
344
345 .. _using_huge_pages:
346
347 Using Huge Pages
348 ================
349
350 If the user applications are going to request huge pages using mmap system
351 call, then it is required that system administrator mount a file system of
352 type hugetlbfs::
353
354   mount -t hugetlbfs \
355         -o uid=<value>,gid=<value>,mode=<value>,pagesize=<value>,size=<value>,\
356         min_size=<value>,nr_inodes=<value> none /mnt/huge
357
358 This command mounts a (pseudo) filesystem of type hugetlbfs on the directory
359 ``/mnt/huge``.  Any file created on ``/mnt/huge`` uses huge pages.
360
361 The ``uid`` and ``gid`` options sets the owner and group of the root of the
362 file system.  By default the ``uid`` and ``gid`` of the current process
363 are taken.
364
365 The ``mode`` option sets the mode of root of file system to value & 01777.
366 This value is given in octal. By default the value 0755 is picked.
367
368 If the platform supports multiple huge page sizes, the ``pagesize`` option can
369 be used to specify the huge page size and associated pool. ``pagesize``
370 is specified in bytes. If ``pagesize`` is not specified the platform's
371 default huge page size and associated pool will be used.
372
373 The ``size`` option sets the maximum value of memory (huge pages) allowed
374 for that filesystem (``/mnt/huge``). The ``size`` option can be specified
375 in bytes, or as a percentage of the specified huge page pool (``nr_hugepages``).
376 The size is rounded down to HPAGE_SIZE boundary.
377
378 The ``min_size`` option sets the minimum value of memory (huge pages) allowed
379 for the filesystem. ``min_size`` can be specified in the same way as ``size``,
380 either bytes or a percentage of the huge page pool.
381 At mount time, the number of huge pages specified by ``min_size`` are reserved
382 for use by the filesystem.
383 If there are not enough free huge pages available, the mount will fail.
384 As huge pages are allocated to the filesystem and freed, the reserve count
385 is adjusted so that the sum of allocated and reserved huge pages is always
386 at least ``min_size``.
387
388 The option ``nr_inodes`` sets the maximum number of inodes that ``/mnt/huge``
389 can use.
390
391 If the ``size``, ``min_size`` or ``nr_inodes`` option is not provided on
392 command line then no limits are set.
393
394 For ``pagesize``, ``size``, ``min_size`` and ``nr_inodes`` options, you can
395 use [G|g]/[M|m]/[K|k] to represent giga/mega/kilo.
396 For example, size=2K has the same meaning as size=2048.
397
398 While read system calls are supported on files that reside on hugetlb
399 file systems, write system calls are not.
400
401 Regular chown, chgrp, and chmod commands (with right permissions) could be
402 used to change the file attributes on hugetlbfs.
403
404 Also, it is important to note that no such mount command is required if
405 applications are going to use only shmat/shmget system calls or mmap with
406 MAP_HUGETLB.  For an example of how to use mmap with MAP_HUGETLB see
407 :ref:`map_hugetlb <map_hugetlb>` below.
408
409 Users who wish to use hugetlb memory via shared memory segment should be
410 members of a supplementary group and system admin needs to configure that gid
411 into ``/proc/sys/vm/hugetlb_shm_group``.  It is possible for same or different
412 applications to use any combination of mmaps and shm* calls, though the mount of
413 filesystem will be required for using mmap calls without MAP_HUGETLB.
414
415 Syscalls that operate on memory backed by hugetlb pages only have their lengths
416 aligned to the native page size of the processor; they will normally fail with
417 errno set to EINVAL or exclude hugetlb pages that extend beyond the length if
418 not hugepage aligned.  For example, munmap(2) will fail if memory is backed by
419 a hugetlb page and the length is smaller than the hugepage size.
420
421
422 Examples
423 ========
424
425 .. _map_hugetlb:
426
427 ``map_hugetlb``
428         see tools/testing/selftests/vm/map_hugetlb.c
429
430 ``hugepage-shm``
431         see tools/testing/selftests/vm/hugepage-shm.c
432
433 ``hugepage-mmap``
434         see tools/testing/selftests/vm/hugepage-mmap.c
435
436 The `libhugetlbfs`_  library provides a wide range of userspace tools
437 to help with huge page usability, environment setup, and control.
438
439 .. _libhugetlbfs: https://github.com/libhugetlbfs/libhugetlbfs