help
Support for Freescale FlexTimer Module (FTM) timer.
-config VF_PIT_TIMER
- bool "Vybrid Family Programmable timer" if COMPILE_TEST
+config NXP_PIT_TIMER
+ bool "NXP Periodic Interrupt Timer" if COMPILE_TEST
select CLKSRC_MMIO
help
- Support for Periodic Interrupt Timer on Freescale Vybrid Family SoCs.
+ Support for Periodic Interrupt Timer on Freescale / NXP
+ SoCs. This periodic timer is found on the Vybrid Family and
+ the Automotive S32G2/3 platforms. It contains 4 channels
+ where two can be coupled to form a 64 bits channel.
config SYS_SUPPORTS_SH_CMT
bool
obj-$(CONFIG_CLKSRC_MPS2) += mps2-timer.o
obj-$(CONFIG_CLKSRC_SAMSUNG_PWM) += samsung_pwm_timer.o
obj-$(CONFIG_FSL_FTM_TIMER) += timer-fsl-ftm.o
-obj-$(CONFIG_VF_PIT_TIMER) += timer-vf-pit.o
+obj-$(CONFIG_NXP_PIT_TIMER) += timer-nxp-pit.o
obj-$(CONFIG_CLKSRC_QCOM) += timer-qcom.o
obj-$(CONFIG_MTK_TIMER) += timer-mediatek.o
obj-$(CONFIG_MTK_CPUX_TIMER) += timer-mediatek-cpux.o
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright 2012-2013 Freescale Semiconductor, Inc.
+ */
+
+#include <linux/interrupt.h>
+#include <linux/clockchips.h>
+#include <linux/clk.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/sched_clock.h>
+
+/*
+ * Each pit takes 0x10 Bytes register space
+ */
+#define PIT0_OFFSET 0x100
+#define PIT_CH(n) (PIT0_OFFSET + 0x10 * (n))
+
+#define PITMCR(__base) (__base)
+
+#define PITMCR_FRZ BIT(0)
+#define PITMCR_MDIS BIT(1)
+
+#define PITLDVAL(__base) (__base)
+#define PITTCTRL(__base) ((__base) + 0x08)
+
+#define PITCVAL_OFFSET 0x04
+#define PITCVAL(__base) ((__base) + 0x04)
+
+#define PITTCTRL_TEN BIT(0)
+#define PITTCTRL_TIE BIT(1)
+
+#define PITTFLG(__base) ((__base) + 0x0c)
+
+#define PITTFLG_TIF BIT(0)
+
+struct pit_timer {
+ void __iomem *clksrc_base;
+ void __iomem *clkevt_base;
+ unsigned long cycle_per_jiffy;
+ struct clock_event_device ced;
+ struct clocksource cs;
+};
+
+static void __iomem *sched_clock_base;
+
+static inline struct pit_timer *ced_to_pit(struct clock_event_device *ced)
+{
+ return container_of(ced, struct pit_timer, ced);
+}
+
+static inline struct pit_timer *cs_to_pit(struct clocksource *cs)
+{
+ return container_of(cs, struct pit_timer, cs);
+}
+
+static inline void pit_module_enable(void __iomem *base)
+{
+ writel(0, PITMCR(base));
+}
+
+static inline void pit_module_disable(void __iomem *base)
+{
+ writel(PITMCR_MDIS, PITMCR(base));
+}
+
+static inline void pit_timer_enable(void __iomem *base, bool tie)
+{
+ u32 val = PITTCTRL_TEN | (tie ? PITTCTRL_TIE : 0);
+
+ writel(val, PITTCTRL(base));
+}
+
+static inline void pit_timer_disable(void __iomem *base)
+{
+ writel(0, PITTCTRL(base));
+}
+
+static inline void pit_timer_set_counter(void __iomem *base, unsigned int cnt)
+{
+ writel(cnt, PITLDVAL(base));
+}
+
+static inline void pit_timer_irqack(struct pit_timer *pit)
+{
+ writel(PITTFLG_TIF, PITTFLG(pit->clkevt_base));
+}
+
+static u64 notrace pit_read_sched_clock(void)
+{
+ return ~readl(sched_clock_base);
+}
+
+static u64 pit_timer_clocksource_read(struct clocksource *cs)
+{
+ struct pit_timer *pit = cs_to_pit(cs);
+
+ return (u64)~readl(PITCVAL(pit->clksrc_base));
+}
+
+static int __init pit_clocksource_init(struct pit_timer *pit, const char *name,
+ void __iomem *base, unsigned long rate)
+{
+ /*
+ * The channels 0 and 1 can be chained to build a 64-bit
+ * timer. Let's use the channel 2 as a clocksource and leave
+ * the channels 0 and 1 unused for anyone else who needs them
+ */
+ pit->clksrc_base = base + PIT_CH(2);
+ pit->cs.name = name;
+ pit->cs.rating = 300;
+ pit->cs.read = pit_timer_clocksource_read;
+ pit->cs.mask = CLOCKSOURCE_MASK(32);
+ pit->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
+
+ /* set the max load value and start the clock source counter */
+ pit_timer_disable(pit->clksrc_base);
+ pit_timer_set_counter(pit->clksrc_base, ~0);
+ pit_timer_enable(pit->clksrc_base, 0);
+
+ sched_clock_base = pit->clksrc_base + PITCVAL_OFFSET;
+ sched_clock_register(pit_read_sched_clock, 32, rate);
+
+ return clocksource_register_hz(&pit->cs, rate);
+}
+
+static int pit_set_next_event(unsigned long delta, struct clock_event_device *ced)
+{
+ struct pit_timer *pit = ced_to_pit(ced);
+
+ /*
+ * set a new value to PITLDVAL register will not restart the timer,
+ * to abort the current cycle and start a timer period with the new
+ * value, the timer must be disabled and enabled again.
+ * and the PITLAVAL should be set to delta minus one according to pit
+ * hardware requirement.
+ */
+ pit_timer_disable(pit->clkevt_base);
+ pit_timer_set_counter(pit->clkevt_base, delta - 1);
+ pit_timer_enable(pit->clkevt_base, true);
+
+ return 0;
+}
+
+static int pit_shutdown(struct clock_event_device *ced)
+{
+ struct pit_timer *pit = ced_to_pit(ced);
+
+ pit_timer_disable(pit->clkevt_base);
+
+ return 0;
+}
+
+static int pit_set_periodic(struct clock_event_device *ced)
+{
+ struct pit_timer *pit = ced_to_pit(ced);
+
+ pit_set_next_event(pit->cycle_per_jiffy, ced);
+
+ return 0;
+}
+
+static irqreturn_t pit_timer_interrupt(int irq, void *dev_id)
+{
+ struct clock_event_device *ced = dev_id;
+ struct pit_timer *pit = ced_to_pit(ced);
+
+ pit_timer_irqack(pit);
+
+ /*
+ * pit hardware doesn't support oneshot, it will generate an interrupt
+ * and reload the counter value from PITLDVAL when PITCVAL reach zero,
+ * and start the counter again. So software need to disable the timer
+ * to stop the counter loop in ONESHOT mode.
+ */
+ if (likely(clockevent_state_oneshot(ced)))
+ pit_timer_disable(pit->clkevt_base);
+
+ ced->event_handler(ced);
+
+ return IRQ_HANDLED;
+}
+
+static int __init pit_clockevent_init(struct pit_timer *pit, const char *name,
+ void __iomem *base, unsigned long rate,
+ int irq, unsigned int cpu)
+{
+ /*
+ * The channels 0 and 1 can be chained to build a 64-bit
+ * timer. Let's use the channel 3 as a clockevent and leave
+ * the channels 0 and 1 unused for anyone else who needs them
+ */
+ pit->clkevt_base = base + PIT_CH(3);
+ pit->cycle_per_jiffy = rate / (HZ);
+
+ pit_timer_disable(pit->clkevt_base);
+
+ pit_timer_irqack(pit);
+
+ BUG_ON(request_irq(irq, pit_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL,
+ name, &pit->ced));
+
+ pit->ced.cpumask = cpumask_of(cpu);
+ pit->ced.irq = irq;
+
+ pit->ced.name = name;
+ pit->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
+ pit->ced.set_state_shutdown = pit_shutdown;
+ pit->ced.set_state_periodic = pit_set_periodic;
+ pit->ced.set_next_event = pit_set_next_event;
+ pit->ced.rating = 300;
+
+ /*
+ * The value for the LDVAL register trigger is calculated as:
+ * LDVAL trigger = (period / clock period) - 1
+ * The pit is a 32-bit down count timer, when the counter value
+ * reaches 0, it will generate an interrupt, thus the minimal
+ * LDVAL trigger value is 1. And then the min_delta is
+ * minimal LDVAL trigger value + 1, and the max_delta is full 32-bit.
+ */
+ clockevents_config_and_register(&pit->ced, rate, 2, 0xffffffff);
+
+ return 0;
+}
+
+static int __init pit_timer_init(struct device_node *np)
+{
+ struct pit_timer *pit;
+ struct clk *pit_clk;
+ void __iomem *timer_base;
+ const char *name = of_node_full_name(np);
+ unsigned long clk_rate;
+ int irq, ret;
+
+ pit = kzalloc(sizeof(*pit), GFP_KERNEL);
+ if (!pit)
+ return -ENOMEM;
+
+ ret = -ENXIO;
+ timer_base = of_iomap(np, 0);
+ if (!timer_base) {
+ pr_err("Failed to iomap\n");
+ goto out_kfree;
+ }
+
+ ret = -EINVAL;
+ irq = irq_of_parse_and_map(np, 0);
+ if (irq <= 0) {
+ pr_err("Failed to irq_of_parse_and_map\n");
+ goto out_iounmap;
+ }
+
+ pit_clk = of_clk_get(np, 0);
+ if (IS_ERR(pit_clk)) {
+ ret = PTR_ERR(pit_clk);
+ goto out_iounmap;
+ }
+
+ ret = clk_prepare_enable(pit_clk);
+ if (ret)
+ goto out_clk_put;
+
+ clk_rate = clk_get_rate(pit_clk);
+
+ /* enable the pit module */
+ pit_module_enable(timer_base);
+
+ ret = pit_clocksource_init(pit, name, timer_base, clk_rate);
+ if (ret)
+ goto out_pit_module_disable;
+
+ ret = pit_clockevent_init(pit, name, timer_base, clk_rate, irq, 0);
+ if (ret)
+ goto out_pit_clocksource_unregister;
+
+ return 0;
+
+out_pit_clocksource_unregister:
+ clocksource_unregister(&pit->cs);
+out_pit_module_disable:
+ pit_module_disable(timer_base);
+ clk_disable_unprepare(pit_clk);
+out_clk_put:
+ clk_put(pit_clk);
+out_iounmap:
+ iounmap(timer_base);
+out_kfree:
+ kfree(pit);
+
+ return ret;
+}
+TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Copyright 2012-2013 Freescale Semiconductor, Inc.
- */
-
-#include <linux/interrupt.h>
-#include <linux/clockchips.h>
-#include <linux/clk.h>
-#include <linux/of_address.h>
-#include <linux/of_irq.h>
-#include <linux/sched_clock.h>
-
-/*
- * Each pit takes 0x10 Bytes register space
- */
-#define PIT0_OFFSET 0x100
-#define PIT_CH(n) (PIT0_OFFSET + 0x10 * (n))
-
-#define PITMCR(__base) (__base)
-
-#define PITMCR_FRZ BIT(0)
-#define PITMCR_MDIS BIT(1)
-
-#define PITLDVAL(__base) (__base)
-#define PITTCTRL(__base) ((__base) + 0x08)
-
-#define PITCVAL_OFFSET 0x04
-#define PITCVAL(__base) ((__base) + 0x04)
-
-#define PITTCTRL_TEN BIT(0)
-#define PITTCTRL_TIE BIT(1)
-
-#define PITTFLG(__base) ((__base) + 0x0c)
-
-#define PITTFLG_TIF BIT(0)
-
-struct pit_timer {
- void __iomem *clksrc_base;
- void __iomem *clkevt_base;
- unsigned long cycle_per_jiffy;
- struct clock_event_device ced;
- struct clocksource cs;
-};
-
-static void __iomem *sched_clock_base;
-
-static inline struct pit_timer *ced_to_pit(struct clock_event_device *ced)
-{
- return container_of(ced, struct pit_timer, ced);
-}
-
-static inline struct pit_timer *cs_to_pit(struct clocksource *cs)
-{
- return container_of(cs, struct pit_timer, cs);
-}
-
-static inline void pit_module_enable(void __iomem *base)
-{
- writel(0, PITMCR(base));
-}
-
-static inline void pit_module_disable(void __iomem *base)
-{
- writel(PITMCR_MDIS, PITMCR(base));
-}
-
-static inline void pit_timer_enable(void __iomem *base, bool tie)
-{
- u32 val = PITTCTRL_TEN | (tie ? PITTCTRL_TIE : 0);
-
- writel(val, PITTCTRL(base));
-}
-
-static inline void pit_timer_disable(void __iomem *base)
-{
- writel(0, PITTCTRL(base));
-}
-
-static inline void pit_timer_set_counter(void __iomem *base, unsigned int cnt)
-{
- writel(cnt, PITLDVAL(base));
-}
-
-static inline void pit_timer_irqack(struct pit_timer *pit)
-{
- writel(PITTFLG_TIF, PITTFLG(pit->clkevt_base));
-}
-
-static u64 notrace pit_read_sched_clock(void)
-{
- return ~readl(sched_clock_base);
-}
-
-static u64 pit_timer_clocksource_read(struct clocksource *cs)
-{
- struct pit_timer *pit = cs_to_pit(cs);
-
- return (u64)~readl(PITCVAL(pit->clksrc_base));
-}
-
-static int __init pit_clocksource_init(struct pit_timer *pit, const char *name,
- void __iomem *base, unsigned long rate)
-{
- /*
- * The channels 0 and 1 can be chained to build a 64-bit
- * timer. Let's use the channel 2 as a clocksource and leave
- * the channels 0 and 1 unused for anyone else who needs them
- */
- pit->clksrc_base = base + PIT_CH(2);
- pit->cs.name = name;
- pit->cs.rating = 300;
- pit->cs.read = pit_timer_clocksource_read;
- pit->cs.mask = CLOCKSOURCE_MASK(32);
- pit->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
-
- /* set the max load value and start the clock source counter */
- pit_timer_disable(pit->clksrc_base);
- pit_timer_set_counter(pit->clksrc_base, ~0);
- pit_timer_enable(pit->clksrc_base, 0);
-
- sched_clock_base = pit->clksrc_base + PITCVAL_OFFSET;
- sched_clock_register(pit_read_sched_clock, 32, rate);
-
- return clocksource_register_hz(&pit->cs, rate);
-}
-
-static int pit_set_next_event(unsigned long delta, struct clock_event_device *ced)
-{
- struct pit_timer *pit = ced_to_pit(ced);
-
- /*
- * set a new value to PITLDVAL register will not restart the timer,
- * to abort the current cycle and start a timer period with the new
- * value, the timer must be disabled and enabled again.
- * and the PITLAVAL should be set to delta minus one according to pit
- * hardware requirement.
- */
- pit_timer_disable(pit->clkevt_base);
- pit_timer_set_counter(pit->clkevt_base, delta - 1);
- pit_timer_enable(pit->clkevt_base, true);
-
- return 0;
-}
-
-static int pit_shutdown(struct clock_event_device *ced)
-{
- struct pit_timer *pit = ced_to_pit(ced);
-
- pit_timer_disable(pit->clkevt_base);
-
- return 0;
-}
-
-static int pit_set_periodic(struct clock_event_device *ced)
-{
- struct pit_timer *pit = ced_to_pit(ced);
-
- pit_set_next_event(pit->cycle_per_jiffy, ced);
-
- return 0;
-}
-
-static irqreturn_t pit_timer_interrupt(int irq, void *dev_id)
-{
- struct clock_event_device *ced = dev_id;
- struct pit_timer *pit = ced_to_pit(ced);
-
- pit_timer_irqack(pit);
-
- /*
- * pit hardware doesn't support oneshot, it will generate an interrupt
- * and reload the counter value from PITLDVAL when PITCVAL reach zero,
- * and start the counter again. So software need to disable the timer
- * to stop the counter loop in ONESHOT mode.
- */
- if (likely(clockevent_state_oneshot(ced)))
- pit_timer_disable(pit->clkevt_base);
-
- ced->event_handler(ced);
-
- return IRQ_HANDLED;
-}
-
-static int __init pit_clockevent_init(struct pit_timer *pit, const char *name,
- void __iomem *base, unsigned long rate,
- int irq, unsigned int cpu)
-{
- /*
- * The channels 0 and 1 can be chained to build a 64-bit
- * timer. Let's use the channel 3 as a clockevent and leave
- * the channels 0 and 1 unused for anyone else who needs them
- */
- pit->clkevt_base = base + PIT_CH(3);
- pit->cycle_per_jiffy = rate / (HZ);
-
- pit_timer_disable(pit->clkevt_base);
-
- pit_timer_irqack(pit);
-
- BUG_ON(request_irq(irq, pit_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL,
- name, &pit->ced));
-
- pit->ced.cpumask = cpumask_of(cpu);
- pit->ced.irq = irq;
-
- pit->ced.name = name;
- pit->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
- pit->ced.set_state_shutdown = pit_shutdown;
- pit->ced.set_state_periodic = pit_set_periodic;
- pit->ced.set_next_event = pit_set_next_event;
- pit->ced.rating = 300;
-
- /*
- * The value for the LDVAL register trigger is calculated as:
- * LDVAL trigger = (period / clock period) - 1
- * The pit is a 32-bit down count timer, when the counter value
- * reaches 0, it will generate an interrupt, thus the minimal
- * LDVAL trigger value is 1. And then the min_delta is
- * minimal LDVAL trigger value + 1, and the max_delta is full 32-bit.
- */
- clockevents_config_and_register(&pit->ced, rate, 2, 0xffffffff);
-
- return 0;
-}
-
-static int __init pit_timer_init(struct device_node *np)
-{
- struct pit_timer *pit;
- struct clk *pit_clk;
- void __iomem *timer_base;
- const char *name = of_node_full_name(np);
- unsigned long clk_rate;
- int irq, ret;
-
- pit = kzalloc(sizeof(*pit), GFP_KERNEL);
- if (!pit)
- return -ENOMEM;
-
- ret = -ENXIO;
- timer_base = of_iomap(np, 0);
- if (!timer_base) {
- pr_err("Failed to iomap\n");
- goto out_kfree;
- }
-
- ret = -EINVAL;
- irq = irq_of_parse_and_map(np, 0);
- if (irq <= 0) {
- pr_err("Failed to irq_of_parse_and_map\n");
- goto out_iounmap;
- }
-
- pit_clk = of_clk_get(np, 0);
- if (IS_ERR(pit_clk)) {
- ret = PTR_ERR(pit_clk);
- goto out_iounmap;
- }
-
- ret = clk_prepare_enable(pit_clk);
- if (ret)
- goto out_clk_put;
-
- clk_rate = clk_get_rate(pit_clk);
-
- /* enable the pit module */
- pit_module_enable(timer_base);
-
- ret = pit_clocksource_init(pit, name, timer_base, clk_rate);
- if (ret)
- goto out_pit_module_disable;
-
- ret = pit_clockevent_init(pit, name, timer_base, clk_rate, irq, 0);
- if (ret)
- goto out_pit_clocksource_unregister;
-
- return 0;
-
-out_pit_clocksource_unregister:
- clocksource_unregister(&pit->cs);
-out_pit_module_disable:
- pit_module_disable(timer_base);
- clk_disable_unprepare(pit_clk);
-out_clk_put:
- clk_put(pit_clk);
-out_iounmap:
- iounmap(timer_base);
-out_kfree:
- kfree(pit);
-
- return ret;
-}
-TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);